WO2022061608A1 - 物理下行控制信道发送、接收方法和装置 - Google Patents

物理下行控制信道发送、接收方法和装置 Download PDF

Info

Publication number
WO2022061608A1
WO2022061608A1 PCT/CN2020/117210 CN2020117210W WO2022061608A1 WO 2022061608 A1 WO2022061608 A1 WO 2022061608A1 CN 2020117210 W CN2020117210 W CN 2020117210W WO 2022061608 A1 WO2022061608 A1 WO 2022061608A1
Authority
WO
WIPO (PCT)
Prior art keywords
sending
pdcch
units
terminal
sent
Prior art date
Application number
PCT/CN2020/117210
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/117210 priority Critical patent/WO2022061608A1/zh
Priority to CN202080002357.7A priority patent/CN114531967A/zh
Publication of WO2022061608A1 publication Critical patent/WO2022061608A1/zh
Priority to US18/119,280 priority patent/US20230217455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method for sending a physical downlink control channel, a method for receiving a physical downlink control channel, an apparatus for sending a physical downlink control channel, an apparatus for receiving a physical downlink control channel, an electronic device, and a computer-readable storage medium.
  • the physical downlink control channel PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • the base station only transmits the PDCCH to the terminal through one communication link during the communication process of the terminal. If the communication link is blocked or is in deep fading, the reliability of PDCCH transmission cannot be ensured.
  • the embodiments of the present disclosure propose a method for sending a physical downlink control channel, a method for receiving a physical downlink control channel, an apparatus for sending a physical downlink control channel, an apparatus for receiving a physical downlink control channel, an electronic device, and a computer-readable storage medium to solve the problem.
  • a method for sending a physical downlink control channel is proposed, which is applicable to a base station, where multiple sending units are set in the base station, and the method includes:
  • the physical downlink control channel PDCCH is sent to the terminal through a plurality of sending units, wherein the demodulation reference signal DMRS sequences of the PDCCH sent by different sending units are different.
  • a method for receiving a physical downlink control channel is proposed, which is applicable to a terminal, where multiple receiving units are set in the terminal, and the method includes:
  • the PDCCHs sent by multiple sending units in the base station are received by the multiple receiving units, wherein the demodulation reference signal DMRS sequences of the PDCCHs sent by different sending units are different.
  • an apparatus for sending a physical downlink control channel is proposed, which is suitable for a base station, where multiple sending units are set in the base station, and the apparatus includes:
  • the downlink sending module is configured to send the physical downlink control channel PDCCH to the terminal through multiple sending units, wherein the demodulation reference signal DMRS sequences of the PDCCH sent by different sending units are different.
  • an apparatus for receiving a physical downlink control channel is proposed, which is suitable for a terminal, wherein a plurality of receiving units are set in the terminal, and the apparatus includes:
  • the downlink receiving module is configured to receive PDCCHs sent by multiple sending units in the base station through the multiple receiving units, wherein the PDCCHs sent by different sending units have different DMRS sequences of demodulation reference signals.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the above-mentioned method for sending a physical downlink control channel and/or a method for receiving a physical downlink control channel.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements a method for sending a physical downlink control channel and/or a method for receiving a physical downlink control channel. A step of.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the foregoing physical downlink control channel receiving method.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps in the foregoing method for receiving a physical downlink control channel.
  • the communication link between one of the multiple sending units and the terminal is affected due to occlusion, deep fading, etc., due to the relationship between other sending units and the terminal among the multiple sending units
  • There is also a communication link to send the PDCCH so it can ensure the smooth transmission of the PDCCH to the terminal, which is beneficial to improve the reliability of sending the PDCCH, especially in the high frequency band, the robustness of the PDCCH can be increased to meet the requirements of the URLLC service. need.
  • the terminal can estimate the corresponding wireless channel and further demodulate the PDCCH based on different DMRS sequence configurations.
  • FIG. 1 is a schematic flowchart of a method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of still another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of mapping of a DMRS sequence on time-frequency resources according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic flowchart of another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic block diagram of an apparatus for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic block diagram of another apparatus for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic block diagram of an apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic block diagram of another apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic block diagram of yet another apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic block diagram of yet another apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic block diagram of an apparatus for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic block diagram of an apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • the method for sending a physical downlink control channel shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to base stations in communication systems such as 5G base stations and 6G base stations.
  • the base station may communicate with a terminal that is a user equipment, and the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may be a terminal to which the method for receiving a physical downlink control channel described in any subsequent embodiment is applicable.
  • a plurality of sending units are provided in the base station, and the sending units may be an antenna panel panel or a transmission reception point TRP (Transmission Reception Point).
  • the base station can choose to send the PDCCH through multiple sending units, or can choose one of the sending units to send the PDCCH alone, which can be set according to the needs of the base station.
  • the method for sending a physical downlink control channel may include the following steps:
  • step S101 the physical downlink control channel PDCCH is sent to the terminal through a plurality of sending units, wherein the demodulation reference signal DMRS sequences of the PDCCH sent by different sending units are different.
  • the base station may send the PDCCH to the terminal through multiple sending units, that is, each sending unit may send the PDCCH to the terminal.
  • each sending unit can send the PDCCH to the terminal on the same time-frequency resource, or can send the PDCCH to the terminal on different time-frequency resources, which can be specifically selected by the base station as required.
  • a communication link can be formed between each sending unit and the terminal, so that multiple communication links can be formed between multiple sending units and the terminal, and the base station can send the PDCCH to the terminal through the multiple communication links.
  • the terminal can estimate the corresponding wireless channel and further demodulate the PDCCH based on different DMRS sequence configurations.
  • different sending units may be in different positions in space, or may be in the same position.
  • different sending units may send signals in different directions. For example, The direction of the transmit beam is different.
  • FIG. 2 is a schematic flowchart of another method for sending a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 2, the method further includes:
  • step S201 an initialization parameter is separately determined for each of the sending units
  • step S202 the DMRS sequence of the PDCCH sent by the sending unit is determined according to the initialization parameter and the pseudo-random sequence.
  • the DMRS sequence can be determined by a pseudo-random sequence, and the function for generating the pseudo-random sequence needs to be initialized, and the function includes, but is not limited to, the GOLD sequence generation function, and the parameters obtained by initializing the function are the initialization parameters, which can be The initialization parameters and the pseudo-random sequence determine the DMRS sequence.
  • the function for generating the pseudo-random sequence may be determined according to the initialization parameter, and then the DMRS sequence may be determined according to the function and the serial number of the DMRS sequence to be generated.
  • the initialization parameters can be allocated and determined for each sending unit, so that different initialization parameters can be obtained for different sending units, and then different pseudo random sequences can be obtained according to different initialization parameters, and finally different pseudo random sequences can be obtained based on different pseudo random sequences.
  • Different DMRS sequences can be obtained from the sequences, so that different DMRS sequences can be determined for PDCCHs sent by different sending units, thereby ensuring that the DMRS sequences of PDCCHs sent by different sending units are different.
  • FIG. 3 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • the initialization parameters respectively determined for each of the sending units include:
  • step S301 different scrambling codes are determined for different said sending units
  • step S302 the initialization parameter in the pseudo-random sequence of the corresponding transmission unit is determined according to the scrambling code
  • step S303 the scrambling code is configured to the terminal.
  • the initialization parameter may be obtained based on the scrambling code, and the base station may configure the scrambling code for determining the initialization parameter to the terminal, for example, configure the scrambling code to the terminal through Radio Resource Control (RRC) signaling, so that The terminal can determine the initialization parameter based on the received scrambling code, so as to determine the DMRS corresponding to the pseudo-random sequence, and then demodulate the PDCCH according to the DMRS sequence.
  • RRC Radio Resource Control
  • the initialization parameter can be determined with reference to the following formula:
  • l represents the position of the symbol in the time domain
  • c init is the initialization parameter of the GOLD sequence generation function
  • N IDk is a scrambling code, where k is the relevant information of the transmitting unit, that is, different scrambling codes N IDk can be set for different transmitting units,
  • the value range of each N IDk can be 0 to 65535. is the slot number within the radio frame.
  • the DMRS sequence can be determined with reference to the following formula:
  • l represents the position of the symbol in the time domain;
  • c() is the GOLD sequence generation function, both c(2m) and c(2m+1) can be regarded as different GOLD sequences;
  • m is the serial number of the DMRS sequence. From this pseudo-random sequence, a DMRS sequence mapped on symbol 1 can be generated.
  • FIG. 4 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • the initialization parameters respectively determined for each of the sending units include:
  • step S401 in response to not configuring the terminal with the scrambling code corresponding to the sending unit, determine the scrambling code according to the identity of the cell corresponding to the base station and the related information of the sending unit;
  • step S402 an initialization parameter in a pseudo-random sequence of a corresponding sending unit is determined according to the scrambling code.
  • the terminal when the base station does not configure the scrambling code corresponding to the sending unit to the terminal, the terminal cannot determine the DMRS sequence according to the scrambling code configured by the base station.
  • the scrambling code is determined according to the information of the base station, for example, the scrambling code is determined according to the identification of the corresponding cell of the base station and the related information of the transmitting unit.
  • the base station can determine the identity of its corresponding cell and the related information of its own sending unit.
  • the terminal after receiving the information sent by the base station (including but not limited to the PDCCH), the terminal can determine the identity of the cell corresponding to the base station, and when the base station sends the PDCCH through the sending unit, it can also carry the relevant information of the sending unit.
  • the terminal after receiving the PDCCH, the terminal can determine the relevant information of the transmitting unit that transmits the PDCCH, so as to determine the scrambling code according to the identification of the corresponding cell of the base station and the relevant information of the transmitting unit, and then determine the DMRS sequence according to the scrambling code.
  • the initialization parameter can be determined with reference to the following formula:
  • l represents the position of the symbol in the time domain; is the number of symbols contained in a slot, for example, it can be 14; is the time slot number in the radio frame; N ID is the scrambling code, is the identification of the corresponding cell of the base station, and k is the relevant information of the transmitting unit. Accordingly, for different transmitting units, the relevant information of the transmitting unit may be different, and the scrambling code N ID may be different, that is, for different transmitting units, Different scrambling codes N ID can be set, so that different initialization parameters can be obtained, thereby obtaining different DMRS sequences, and the value range of each N ID can be 0 to 65535.
  • FIG. 5 is a schematic flowchart of still another method for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • the initialization parameters respectively determined for each of the sending units include:
  • step S501 the function for calculating the initialization parameter is determined according to the relevant information of the sending unit; for example, according to the relevant information of the sending unit, the number of symbols included in the time slot, the position of the symbol, the time in the radio frame The slot number and scrambling code determine the function used to calculate the initialization parameters.
  • the initialization parameter needs to be determined based on a function.
  • the function is:
  • the function that calculates the initialization parameters has not changed.
  • the function for calculating the initialization parameter can be adjusted. Specifically, the function for calculating the initialization parameter can be determined according to the relevant information of the transmitting unit, the number of symbols included in the time slot, the position of the symbol, the time slot number and the scrambling code in the radio frame.
  • the function for calculating the initialization parameters for example, adding the relevant information k of the transmitting unit in the above function with an additive relationship (other relationships can also be used, such as the relationship with the scrambling code multiplication), then the function for calculating the initialization parameters can be as follows :
  • the related information k of the sending units may be different, so for different sending units, the functions used to calculate the initialization parameters are different, then the calculated initialization parameters can be Different, that is, for different sending units, different initialization parameters can be obtained, and then different DMRS sequences can be obtained.
  • the relevant information of the sending unit includes but is not limited to the identifier of the sending unit, the serial number, the random number generated for the sending unit, and the like.
  • FIG. 6 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure. As shown in FIG. 6 , the sending of the PDCCH to the terminal through multiple sending units includes:
  • step S601 the PDCCH is sent to the terminal on the same time-frequency resource through multiple sending units.
  • multiple sending units can send PDCCH to the terminal on the same time-frequency resource, that is, multiple sending units can use SDM (Space Division Multiplexing), correspondingly, the terminal can use multiple receiving units Receive multiple PDCCHs sent by the base station on the same time-frequency resource.
  • SDM Space Division Multiplexing
  • the terminal can use multiple receiving units Receive multiple PDCCHs sent by the base station on the same time-frequency resource.
  • the DMRS sequences in different PDCCHs are different, so it can ensure that the terminal demodulates different DMRS sequences based on different PDCCH corresponding to the DMRS sequence.
  • FIG. 7 is a schematic flowchart of yet another method for sending a physical downlink control channel according to an embodiment of the present disclosure. As shown in FIG. 7 , the sending of the PDCCH to the terminal through multiple sending units includes:
  • step S701 the PDCCH is sent to the terminal on the same DMRS port through multiple sending units.
  • multiple sending units may send the PDCCH to the terminal on the same DMRS port (eg, port 2000), according to which, it can be ensured that the current protocol only supports single-port transmission for the PDCCH.
  • the DMRS sequences in the multiple PDCCHs sent by the multiple sending units are different, and can be regarded as being sent on multiple non-orthogonal (also called quasi-orthogonal) DMRS ports.
  • the mapping positions in the time domain and the frequency domain are the same.
  • multiple DMRS sequences are mapped at the same position in the time domain and frequency domain, and every three data resource element REs (Resource Elements) are mapped to a DMRS RE.
  • the data REs The content can be DCI. That is, the base station transmits the RE of the DMRS and the RE of the data in the PDCCH at the same time-frequency position.
  • mapping of DMRS on time-frequency resources can be performed with reference to the following formula:
  • n 0,1,...
  • r l is the DMRS sequence
  • k' is the sequence value sequence number in the DMRS sequence
  • the downlink control information DCI in the PDCCH sent by each of the sending units to the terminal is the same.
  • the DCI in the PDCCH sent by each sending unit to the terminal may be the same. According to this, even if the communication link between a certain sending unit and the terminal among the multiple sending units is blocked or deeply faded and other reasons. Since there are communication links between other sending units in the multiple sending units and the terminal to send the PDCCH, the effectiveness of the PDCCH sending link can be improved, and higher receiving reliability can be ensured, so that the terminal can transmit the PDCCH. DCI can be obtained from PDCCH.
  • the PDCCH sent by each of the sending units to the terminal carries partial information of the DCI
  • the partial information of the DCI carried in the PDCCH sent by the multiple sending units to the terminal constitutes a complete DCI.
  • the PDCCH sent by each sending unit to the terminal may carry partial information of DCI, and the partial information of DCI carried in the PDCCH sent by multiple sending units to the terminal may constitute a complete DCI.
  • a complete DCI can be encoded and divided into 3 parts, wherein the first part is carried by the PDCCH sent by the first sending unit, and the second part is carried by the PDCCH sent by the second sending unit , the third part is carried by the PDCCH sent by the third sending unit, according to this, the flexibility of sending DCI can be improved, and in time when the data volume of the DCI is large, the DCI can also be divided into multiple data volumes. Small portions are sent separately.
  • FIG. 9 is a schematic flowchart of a method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • the method for receiving a physical downlink control channel shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to base stations in communication systems such as 5G base stations and 6G base stations.
  • the base station may be a base station to which the method for sending a physical downlink control channel described in any of the foregoing embodiments is applicable.
  • each receiving antenna can receive the downlink control channel sent by the base station.
  • the method for receiving a physical downlink control channel may include the following steps:
  • step S901 the PDCCHs sent by multiple sending units in the base station are received by the multiple receiving units, wherein the demodulation reference signal DMRS sequences of the PDCCHs sent by different sending units are different.
  • the base station can send the PDCCH to the terminal through multiple sending units, that is, each sending unit can send the PDCCH to the terminal, and accordingly, the terminal can receive the data sent by multiple sending units in the base station through multiple receiving units.
  • the DMRS sequences of the PDCCH received by different receiving units are also different.
  • each sending unit can send the PDCCH to the terminal on the same time-frequency resource, or can send the PDCCH to the terminal on different time-frequency resources, which can be specifically selected by the base station as required.
  • a communication link can be formed between each sending unit and the receiving unit, so that multiple communication links can be formed between multiple sending units and multiple receiving units, and the base station can send data to the terminal through the multiple communication links PDCCH.
  • the PDCCH is transmitted through the link, so it can ensure that the PDCCH is transmitted to the terminal smoothly, which is beneficial to improve the reliability of transmitting the PDCCH.
  • the terminal can estimate the corresponding wireless channels based on different DMRS sequence configurations and further demodulate the PDCCHs.
  • FIG. 10 is a schematic flowchart of another method for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 10, the method further includes:
  • step S1001 determine the initialization parameters corresponding to the PDCCH sent by each of the sending units;
  • step S1002 the DMRS sequence of the PDCCH sent by the corresponding sending unit is determined according to the initialization parameter and the pseudo-random sequence.
  • the base station since the base station allocates and determines initialization parameters for each transmission unit, different initialization parameters may be obtained for different transmission units. Then, when the terminal receives multiple PDCCH axes, it can determine the initialization parameters corresponding to the PDCCH sent by each transmission unit, and the determined initialization parameters corresponding to different transmission units are different, and then can be determined based on different initialization parameters and pseudo-random sequences.
  • the DMRS sequence of the PDCCH sent by the sending unit may specifically be determined by a function for generating a pseudo-random sequence according to an initialization parameter, and then the DMRS sequence is determined according to the function and the sequence number of the DMRS sequence to be generated, thereby based on different initialization parameters. A different DMRS sequence is obtained to demodulate each PDCCH.
  • FIG. 11 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • the determining of the initialization parameters corresponding to the PDCCH sent by each of the sending units includes:
  • step S1101 a scrambling code corresponding to each of the sending units is determined according to the configuration information sent by the base station, wherein the scrambling codes corresponding to different sending units are different;
  • step S1102 an initialization parameter in a pseudo-random sequence of a corresponding sending unit is determined according to the scrambling code.
  • the initialization parameter can be obtained based on the scrambling code, and the base station can configure the scrambling code used to determine the initialization parameter to the terminal, for example, configure the scrambling code to the terminal through RRC signaling, so that the terminal can configure the scrambling code to the terminal based on the received
  • the scrambling code determines the initialization parameters, so as to determine the DMRS corresponding to the pseudo-random sequence, and then demodulate the PDCCH according to the DMRS sequence.
  • the initialization parameter can be determined with reference to the following formula:
  • l represents the position of the symbol in the time domain
  • c init is the initialization parameter of the GOLD sequence generation function
  • N IDk is a scrambling code, where k is the relevant information of the transmitting unit, that is, different scrambling codes N IDk can be set for different transmitting units,
  • the value range of each N IDk can be 0 to 65535. is the slot number within the radio frame.
  • the base station can configure N IDk to the terminal, so that after the terminal receives the PDCCH sent by the sending unit with related information k, it can determine the initialization parameter corresponding to the sending unit according to the scrambling code N IDk , and then determine the corresponding initialization parameter of the sending unit.
  • DMRS sequence in PDCCH can be configured to the terminal, so that after the terminal receives the PDCCH sent by the sending unit with related information k, it can determine the initialization parameter corresponding to the sending unit according to the scrambling code N IDk , and then determine the corresponding initialization parameter of the sending unit.
  • the DMRS sequence can be determined with reference to the following formula:
  • l represents the position of the symbol in the time domain;
  • c() is the GOLD sequence generation function, both c(2m) and c(2m+1) can be regarded as different GOLD sequences;
  • m is the serial number of the DMRS sequence. From this pseudo-random sequence, a DMRS sequence mapped on symbol 1 can be generated.
  • FIG. 12 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in FIG. 12 , the determining of the initialization parameters corresponding to the PDCCH sent by each of the sending units includes:
  • step S1201 in response to the base station not configuring the terminal with the scrambling code corresponding to the sending unit, determine the scrambling code according to the identity of the cell corresponding to the base station and the related information of the sending unit;
  • step S1202 an initialization parameter in a pseudo-random sequence of a corresponding sending unit is determined according to the scrambling code.
  • the terminal when the base station does not configure the scrambling code corresponding to the sending unit to the terminal, the terminal cannot determine the DMRS sequence according to the scrambling code configured by the base station.
  • the scrambling code is determined according to the information of the base station, for example, the scrambling code is determined according to the identification of the corresponding cell of the base station and the related information of the transmitting unit.
  • the terminal After receiving the information sent by the base station (including but not limited to the PDCCH), the terminal can determine the identity of the cell corresponding to the base station, and when the base station sends the PDCCH through the sending unit, it can also carry the relevant information of the sending unit. , after receiving the PDCCH, the terminal can determine the relevant information of the transmitting unit that transmits the PDCCH, so as to determine the scrambling code according to the identification of the corresponding cell of the base station and the relevant information of the transmitting unit, and then determine the DMRS sequence according to the scrambling code.
  • the base station including but not limited to the PDCCH
  • the initialization parameter can be determined with reference to the following formula:
  • the scrambling code N ID can be different, that is, for different transmitting units, different scrambling codes N ID can be set. ID , so that different initialization parameters can be obtained, and then different DMRS sequences can be obtained, and the value range of each N ID can be 0 to 65535.
  • the terminal after the terminal receives the PDCCH sent by the transmitting unit with the relevant information k, it can determine the scrambling code N ID according to the identity of the cell corresponding to the base station and k, so as to determine the initialization parameter corresponding to the transmitting unit according to the scrambling code N ID . , and then determine the DMRS sequence in the PDCCH sent by the sending unit.
  • FIG. 13 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • the determining of the initialization parameters corresponding to the PDCCH sent by each of the sending units includes:
  • step S1301 the function for calculating the initialization parameter is determined according to the relevant information of the sending unit; a slot number and a scrambling code to determine a function for computing the initialization parameters;
  • step S1302 the initialization parameter is calculated according to the function.
  • the base station may adjust the function for calculating the initialization parameters, specifically according to the relevant information of the transmitting unit, the number of symbols included in the time slot, the position of the symbol, the time slot number and scrambling code in the radio frame Determine the function used to calculate the initialization parameter, for example, add the relevant information k of the sending unit in the above-mentioned function with an additive relationship (other relationships can also be used, such as a relationship multiplied with the scrambling code), then the function for calculating the initialization parameter can be As follows:
  • the related information k of the sending units may be different, so for different sending units, the functions used to calculate the initialization parameters are different, then the calculated initialization parameters can be Different, that is, for different sending units, different initialization parameters can be obtained, and then different DMRS sequences can be obtained.
  • the relevant information of the sending unit can also be obtained, and then the function for calculating the initialization parameters can be determined according to the relevant information of the sending unit, so as to calculate the sending unit according to the function. Corresponding initialization parameters, and then determine the DMRS sequence in the PDCCH sent by the sending unit.
  • FIG. 14 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • the receiving, by the multiple receiving units, the PDCCH sent by the multiple sending units in the base station includes:
  • step S1401 the PDCCHs sent by the multiple transmitting units in the base station are received by the multiple receiving units on the same time-frequency resource.
  • multiple sending units can send PDCCH to the terminal on the same time-frequency resource, that is, multiple sending units can space-division multiplex SDM, and correspondingly, the terminal can use multiple receiving units on the same time-frequency resource.
  • the resource receives multiple PDCCHs sent by the base station. Although multiple PDCCHs are received in the same time-frequency resource, the DMRS sequences in different PDCCHs are different, so it can ensure that the terminal demodulates the PDCCHs corresponding to different DMRS sequences based on different DMRS sequences. .
  • the PDCCHs received by multiple receiving units in the terminal correspond to the same DMRS port.
  • multiple transmitting units in the base station may transmit PDCCHs to the terminal on the same DMRS port (eg, port 2000), and correspondingly, the PDCCHs received by multiple receiving units in the terminal correspond to the same DMRS port.
  • DMRS port eg, port 2000
  • the DMRS sequences in the multiple PDCCHs sent by the multiple sending units are different, and can be regarded as sent on multiple non-orthogonal (also called quasi-orthogonal) DMRS ports.
  • the transmitted DMRS sequences are different, the mapping positions in the time domain and the frequency domain are the same.
  • FIG. 15 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 15, the method further includes:
  • step S1501 DCI is obtained from each of the PDCCHs, wherein the DCIs in each of the PDCCHs are the same.
  • the DCI in the PDCCH sent by each transmitting unit in the base station to the terminal may be the same, and then the terminal may obtain the same DCI from each PDCCH after receiving the PDCCH. According to this, even if the communication link between one of the multiple sending units and the terminal is affected due to occlusion, deep fading, etc., there is still communication between other sending units and the terminal among the multiple sending units. Therefore, the validity of the PDCCH transmission link can be improved, and higher reception reliability can be ensured, so that the terminal can obtain the DCI from the PDCCH.
  • FIG. 16 is a schematic flowchart of yet another method for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 16, the method further includes:
  • step S1601 obtain partial information of DCI from each of the PDCCHs
  • step S1602 the complete DCI is determined according to the partial information of the DCI obtained from each of the PDCCHs.
  • the PDCCH sent by each sending unit in the terminal to the terminal may carry partial information of DCI, and the partial information of DCI carried in the PDCCH sent by multiple sending units to the terminal may constitute a complete DCI.
  • the terminal may obtain partial information of DCI from each PDCCH, and then combine the partial information of DCI obtained from each PDCCH into a complete DCI.
  • a complete DCI can be encoded and divided into 3 parts, wherein the first part is carried by the PDCCH sent by the first sending unit, and the second part is carried by the PDCCH sent by the second sending unit , the third part is carried by the PDCCH sent by the third sending unit, according to this, the flexibility of sending DCI can be improved, and in time when the data volume of the DCI is large, the DCI can also be divided into multiple data volumes. Small portions are sent separately.
  • the terminal After receiving the PDCCHs of the above three transmission units, the terminal can obtain partial information of the three DCIs from the PDCCHs sent by the three transmission units, and then combine the partial information of the three DCIs into a complete DCI.
  • the sending unit includes at least one of the following:
  • the present disclosure also provides embodiments of a physical downlink control channel sending apparatus and a physical downlink control channel receiving apparatus.
  • FIG. 17 is a schematic block diagram of an apparatus for sending a physical downlink control channel according to an embodiment of the present disclosure.
  • the apparatus for sending a physical downlink control channel shown in this embodiment may be applicable to a base station, and the base station includes but is not limited to a base station in a communication system such as a 5G base station and a 6G base station.
  • the base station may communicate with a terminal that is a user equipment, and the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may be a terminal to which the apparatus for receiving a physical downlink control channel described in any subsequent embodiment is applicable.
  • a plurality of sending units are provided in the base station, and the sending units may be an antenna panel or a transmission and reception point TRP.
  • the base station can choose to send the PDCCH through multiple sending units, or can choose one of the sending units to send the PDCCH alone, which can be set according to the needs of the base station.
  • the apparatus for sending a physical downlink control channel may include:
  • the downlink sending module 1701 is configured to send the physical downlink control channel PDCCH to the terminal through multiple sending units, wherein the demodulation reference signal DMRS sequences of the PDCCH sent by different sending units are different.
  • FIG. 18 is a schematic block diagram of another apparatus for sending a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 18, the device further includes:
  • a parameter determination module 1801 configured to determine the initialization parameters for each of the sending units respectively;
  • the DMRS determining module 1802 is configured to determine the DMRS sequence of the PDCCH sent by the sending unit according to the initialization parameter and the pseudo-random sequence.
  • the needle parameter determination module is configured to determine different scrambling codes for different sending units; determine initialization parameters in pseudo-random sequences of corresponding sending units according to the scrambling codes; configured to the terminal.
  • the needle parameter determination module is configured to, in response to not configuring the terminal with the scrambling code corresponding to the sending unit, determine the scrambling code according to the identity of the cell corresponding to the base station and the related information of the sending unit. ; Determine the initialization parameters in the pseudo-random sequence of the corresponding sending unit according to the scrambling code.
  • the needle parameter determination module is configured to determine a function for calculating the initialization parameter according to the relevant information of the sending unit.
  • the downlink sending module is configured to send the PDCCH to the terminal on the same time-frequency resource through multiple sending units.
  • the downlink sending module is configured to send the PDCCH to the terminal on the same DMRS port through multiple sending units.
  • the downlink control information DCI in the PDCCH sent by each of the sending units to the terminal is the same.
  • the PDCCH sent by each of the sending units to the terminal carries partial information of the DCI
  • the partial information of the DCI carried in the PDCCH sent by the multiple sending units to the terminal constitutes a complete DCI.
  • the sending unit includes at least one of the following:
  • FIG. 19 is a schematic block diagram of an apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure.
  • the method for receiving a physical downlink control channel shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to base stations in communication systems such as 5G base stations and 6G base stations.
  • the base station may be a base station to which the apparatus for sending a physical downlink control channel described in any of the foregoing embodiments is applicable.
  • each receiving antenna can receive the downlink control channel sent by the base station.
  • the physical downlink control channel receiving apparatus may include:
  • the downlink receiving module 1901 is configured to receive, through the multiple receiving units, PDCCHs sent by multiple sending units in the base station, wherein the PDCCHs sent by different sending units have different DMRS sequences of demodulation reference signals.
  • FIG. 20 is a schematic block diagram of another apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 20, the device further includes:
  • a parameter determination module 1902 configured to determine the initialization parameters corresponding to the PDCCH sent by each of the sending units
  • the DMRS determining module 1903 is configured to determine the DMRS sequence of the PDCCH sent by the corresponding sending unit according to the initialization parameter and the pseudo-random sequence.
  • the parameter determination module is configured to determine the scrambling code corresponding to each of the sending units according to the configuration information sent by the base station, wherein the scrambling codes corresponding to different sending units are different; according to the The scrambling code determines the initialization parameters in the pseudo-random sequence of the corresponding transmission unit.
  • the parameter determination module is configured to, in response to the base station not configuring the terminal with the scrambling code corresponding to the sending unit, determine according to the identity of the cell corresponding to the base station and the related information of the sending unit. scrambling code; according to the scrambling code, determine the initialization parameters in the pseudo-random sequence of the corresponding sending unit.
  • the parameter determination module is configured to determine a function for calculating the initialization parameter according to the relevant information of the sending unit; and calculate the initialization parameter according to the function.
  • the downlink receiving module is configured to receive the PDCCH sent by multiple sending units in the base station through the multiple receiving units on the same time-frequency resource.
  • the PDCCHs received by multiple receiving units in the terminal correspond to the same DMRS port.
  • FIG. 21 is a schematic block diagram of yet another apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 21, the device further includes:
  • the first obtaining module 2101 is configured to obtain DCI from each of the PDCCHs, wherein the DCI in each of the PDCCHs is the same.
  • FIG. 22 is a schematic block diagram of yet another apparatus for receiving a physical downlink control channel according to an embodiment of the present disclosure. As shown in Figure 22, the device further includes:
  • the second obtaining module 2201 is configured to obtain partial information of DCI from each of the PDCCHs;
  • the DCI determination module 2202 is configured to determine the complete DCI according to the partial information of the DCI obtained from each of the PDCCHs.
  • the sending unit includes at least one of the following:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the PDCCH sending method described in any of the foregoing embodiments.
  • memory for storing processor-executable instructions
  • the processor is configured to execute the PDCCH receiving method described in any one of the above embodiments.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, implements the steps in the PDCCH sending method described in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, implements the steps in the PDCCH receiving method described in any of the foregoing embodiments.
  • FIG. 23 is a schematic block diagram of an apparatus 2300 for PDCCH reception according to an embodiment of the present disclosure.
  • the apparatus 2300 may be provided as a base station.
  • apparatus 2300 includes a processing component 2322, a wireless transmit/receive component 2324, an antenna component 2326, and a signal processing portion specific to a wireless interface, which may further include one or more processors.
  • One of the processors in the processing component 2322 may be configured to implement the PDCCH sending method described in any of the foregoing embodiments.
  • FIG. 24 is a schematic block diagram of an apparatus 2400 for PDCCH reception according to an embodiment of the present disclosure.
  • apparatus 2400 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the apparatus 2400 may include one or more of the following components: a processing component 2402, a memory 2404, a power supply component 2406, a multimedia component 2408, an audio component 2410, an input/output (I/O) interface 2412, a sensor component 2414, and communication component 2416.
  • the processing component 2402 generally controls the overall operation of the device 2400, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2402 may include one or more processors 2420 to execute instructions to complete all or part of the steps of the above-described PDCCH receiving method.
  • processing component 2402 may include one or more modules that facilitate interaction between processing component 2402 and other components.
  • processing component 2402 may include a multimedia module to facilitate interaction between multimedia component 2408 and processing component 2402.
  • Memory 2404 is configured to store various types of data to support operations at device 2400 . Examples of such data include instructions for any application or method operating on the device 2400, contact data, phonebook data, messages, pictures, videos, and the like. Memory 2404 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 2406 provides power to various components of device 2400.
  • Power components 2406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2400.
  • Multimedia component 2408 includes a screen that provides an output interface between the device 2400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 2408 includes a front-facing camera and/or a rear-facing camera. When the apparatus 2400 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 2410 is configured to output and/or input audio signals.
  • audio component 2410 includes a microphone (MIC) that is configured to receive external audio signals when device 2400 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 2404 or transmitted via communication component 2416.
  • audio component 2410 also includes a speaker for outputting audio signals.
  • the I/O interface 2412 provides an interface between the processing component 2402 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 2414 includes one or more sensors for providing status assessment of various aspects of device 2400.
  • the sensor assembly 2414 can detect the open/closed state of the device 2400, the relative positioning of components, such as the display and keypad of the device 2400, and the sensor assembly 2414 can also detect changes in the position of the device 2400 or a component of the device 2400 , the presence or absence of user contact with the device 2400 , the device 2400 orientation or acceleration/deceleration and the temperature change of the device 2400 .
  • Sensor assembly 2414 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 2414 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2416 is configured to facilitate wired or wireless communication between apparatus 2400 and other devices.
  • Device 2400 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 2416 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2416 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2400 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for implementing the above-mentioned PDCCH receiving method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented for implementing the above-mentioned PDCCH receiving method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2404 including instructions, is also provided, and the instructions are executable by the processor 2420 of the apparatus 2400 to complete the PDCCH receiving method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及物理下行控制信道发送方法,适用于基站,在所述基站中设置有多个发送单元,所述方法包括:通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。根据本公开,即使多个发送单元中某个发送单元与终端之间的通信链路因被遮挡、深度衰落等原因而受到影响,由于多个发送单元中的其他发送单元与终端之间还存在通信链路来发送PDCCH,因此可以确保顺利地将PDCCH发送至终端,有利于提高发送PDCCH的可靠性。另外,由于不同的发送单元发送的PDCCH所经过的无线信道不同,使得终端在接收到PDCCH后,可以基于不同的DMRS序列配置分别估计相应的无线信道并进一步解调PDCCH。

Description

物理下行控制信道发送、接收方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及物理下行控制信道发送方法、物理下行控制信道接收方法、物理下行控制信道发送装置、物理下行控制信道接收装置、电子设备和计算机可读存储介质。
背景技术
物理下行控制信道PDCCH(Physical Downlink Control Channel)可以承载下行控制信息DCI(Downlink Control Information),DCI可以起到上下行资源分配等作用,其可靠性直接影响通信***的性能和用户体验。
然而相关技术中,基站在于终端的通信过程中,只会通过一个通信链路向终端传输PDCCH,若该通信链路受到遮挡或者处于深度衰落中,将无法确保PDCCH传输的可靠性。
发明内容
有鉴于此,本公开的实施例提出了物理下行控制信道发送方法、物理下行控制信道接收方法、物理下行控制信道发送装置、物理下行控制信道接收装置、电子设备和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种物理下行控制信道发送方法,适用于基站,在所述基站中设置有多个发送单元,所述方法包括:
通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
根据本公开实施例的第二方面,提出一种物理下行控制信道接收方法,适用于终端,在所述终端中设置有多个接收单元,所述方法包括:
通过所述多个接收单元接收基站中多个发送单元发送的PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
根据本公开实施例的第三方面,提出一种物理下行控制信道发送装置,适用于 基站,在所述基站中设置有多个发送单元,所述装置包括:
下行发送模块,被配置为通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
根据本公开实施例的第四方面,提出一种物理下行控制信道接收装置,适用于终端,在所述终端中设置有多个接收单元,所述装置包括:
下行接收模块,被配置为通过所述多个接收单元接收基站中多个发送单元发送的PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
根据本公开实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述物理下行控制信道发送方法和/或物理下行控制信道接收方法。
根据本公开实施例的第六方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现物理下行控制信道发送方法和/或物理下行控制信道接收方法中的步骤。
根据本公开实施例的第七方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述物理下行控制信道接收方法。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述物理下行控制信道接收方法中的步骤。
根据本公开的实施例,即使多个发送单元中某个发送单元与终端之间的通信链路因被遮挡、深度衰落等原因而受到影响,由于多个发送单元中的其他发送单元与终端之间还存在通信链路来发送PDCCH,因此可以确保顺利地将PDCCH发送至终端,有利于提高发送PDCCH的可靠性,尤其在高频带上,可以增加PDCCH的鲁棒性,以便满足URLLC业务的需要。
另外,由于不同的发送单元发送的PDCCH所经过的无线信道不同,使得终端在接收到PDCCH后,可以基于不同的DMRS序列配置分别估计相应的无线信道并进一步解调PDCCH。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种物理下行控制信道发送方法的示意流程图。
图2是根据本公开的实施例示出的另一种物理下行控制信道发送方法的示意流程图。
图3是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。
图4是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。
图5是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。
图6是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。
图7是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。
图8是根据本公开的实施例示出的一种DMRS序列在时频资源上的映射示意图。
图9是根据本公开的实施例示出的一种物理下行控制信道接收方法的示意流程图。
图10是根据本公开的实施例示出的另一种物理下行控制信道接收方法的示意 流程图。
图11是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。
图12是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。
图13是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。
图14是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。
图15是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。
图16是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。
图17是根据本公开的实施例示出的一种物理下行控制信道发送装置的示意框图。
图18是根据本公开的实施例示出的另一种物理下行控制信道发送装置的示意框图。
图19是根据本公开的实施例示出的一种物理下行控制信道接收装置的示意框图。
图20是根据本公开的实施例示出的另一种物理下行控制信道接收装置的示意框图。
图21是根据本公开的实施例示出的又一种物理下行控制信道接收装置的示意框图。
图22是根据本公开的实施例示出的又一种物理下行控制信道接收装置的示意框图。
图23是根据本公开的实施例示出的一种用于物理下行控制信道发送的装置的示意框图。
图24是根据本公开的实施例示出的一种用于物理下行控制信道接收的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种物理下行控制信道发送方法的示意流程图。本实施例所示的物理下行控制信道发送方法可以适用于基站,所述基站包括但不限于5G基站、6G基站等通信***中的基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。在一个实施例中,所述终端可以是后续任一实施例所述物理下行控制信道接收方法所适用的终端。
在一个实施例中,在所述基站中设置有多个发送单元,所述发送单元可以是天线面板panel,也可以是传输接收点TRP(Transmission Reception Point)。基站可以选择通过多个发送单元发送PDCCH,也可以选择其中某个发送单元单独发送PDCCH,具体可以根据基站需要设置。
如图1所示,所述物理下行控制信道发送方法可以包括以下步骤:
在步骤S101中,通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
在一个实施例中,基站可以通过多个发送单元向终端发送PDCCH,也即每个发送单元都可以向终端发送PDCCH。
其中,每个发送单元可以在相同的时频资源向终端发送PDCCH,也可以在不同的时频资源向终端发送PDCCH,具体可以由基站根据需要选择。
每个发送单元与终端之间都可以形成一条通信链路,从而多个发送单元与终端之间可以形成多条通信链路,基站就可以通过该多条通信链路向终端发送PDCCH。
据此,即使多个发送单元中某个发送单元与终端之间的通信链路因被遮挡、深度衰落等原因而受到影响,由于多个发送单元中的其他发送单元与终端之间还存在通 信链路来发送PDCCH,因此可以确保顺利地将PDCCH发送至终端,有利于提高发送PDCCH的可靠性,尤其在高频带上,可以增加PDCCH的鲁棒性,以便满足URLLC(Ultra-relaible and Low Latency Communication,极可靠低时延通信)业务的需要。
另外,由于不同的发送单元发送的PDCCH所经过的无线信道不同,使得终端在接收到PDCCH后,可以基于不同的DMRS序列配置分别估计相应的无线信道并进一步解调PDCCH。
需要说明的是,不同的发送单元在空间上可以处于不同位置,也可以处于相同位置,在不同的发送单元在空间上处于相同位置的情况下,不同的发送单元发送信号的方向可以不同,例如发送波束的方向不同。
图2是根据本公开的实施例示出的另一种物理下行控制信道发送方法的示意流程图。如图2所示,所述方法还包括:
在步骤S201中,针对每个所述发送单元分别确定初始化参数;
在步骤S202中,根据所述初始化参数和伪随机序列确定所述发送单元发送的PDCCH的DMRS序列。
在一个实施例中,DMRS序列可以通过伪随机序列确定,生成伪随机序列的函数需要初始化,所述函数包括但不限于GOLD序列生成函数,对函数进行初始化得到的参数即初始化参数,进而可以根据初始化参数和伪随机序列确定DMRS序列,具体可以是根据初始化参数确定用于生成伪随机序列的函数,然后根据该函数和待生成的DMRS序列的序号来确定DMRS序列。
根据本实施例,可以针对每个发送单元分配确定初始化参数,从而可以针对不同的发送单元可以得到不同的初始化参数,进而根据不同的初始化参数可以得到不同的伪随机序列,最后基于不同的伪随机序列可以得到不同的DMRS序列,从而实现了针对不同发送单元发送的PDCCH确定不同的DMRS序列,进而保证不同发送单元发送的PDCCH的DMRS序列不同。
图3是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。如图3所示,所述针对每个所述发送单元分别确定的初始化参数包括:
在步骤S301中,针对不同的所述发送单元确定不同的扰码;
在步骤S302中,根据所述扰码确定相应发送单元的伪随机序列中的初始化参 数;
在步骤S303中,将所述扰码配置给所述终端。
在一个实施例中,初始化参数可以基于扰码得到,基站可以将用于确定初始化参数的扰码配置给终端,例如通过无线资源控制RRC(Radio Resource Control)信令将扰码配置给终端,以便终端可以基于接收到的扰码确定初始化参数,从而确定伪随机序列对应的DMRS,进而根据DMRS序列解调PDCCH。
在一个实施例中,初始化参数可以参考下式确定:
Figure PCTCN2020117210-appb-000001
其中,l表示时域上符号的位置;c init是GOLD序列生成函数的初始化参数;
Figure PCTCN2020117210-appb-000002
是一个时隙slot所包含符号symbol的数目,例如可以为14;N IDk为扰码,其中的k是发送单元的相关信息,也即针对不同的发送单元,可以设置不同的扰码N IDk,从而可以得到不同的初始化参数,进而得到不同的DMRS序列,每个N IDk的取值范围可以是0到65535,
Figure PCTCN2020117210-appb-000003
是无线帧内的时隙号。
在一个实施例中,DMRS序列可以参考下式确定:
Figure PCTCN2020117210-appb-000004
其中,l表示时域上符号的位置;c()是GOLD序列生成函数,c(2m)和c(2m+1)都可以视作不同的GOLD序列;m是DMRS序列的序号。根据该伪随机序列,可以生成在符号l上映射的DMRS序列。
图4是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。如图4所示,所述针对每个所述发送单元分别确定的初始化参数包括:
在步骤S401中,响应于不给所述终端配置所述发送单元对应的扰码,根据所述基站对应小区的标识和所述发送单元的相关信息确定扰码;
在步骤S402中,根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
在一个实施例中,在基站不给终端配置发送单元对应的扰码时,终端就不能根据基站配置的扰码来确定DMRS序列,基站和终端可以预先约定在这种情况下,基于 能够获取到的信息确定扰码,例如根据基站对应小区的标识和发送单元的相关信息确定扰码。
对于基站而言,基站可以确定自身对应小区的标识,以及自身发送单元的相关信息。对于终端而言,终端在接收到基站发送的信息(包括但不限于所述PDCCH)后,可以确定基站对应小区的标识,另外基站在通过发送单元发送PDCCH时,还可以携带发送单元的相关信息,终端在接收到PDCCH后,可以确定发送该PDCCH的发送单元的相关信息,从而根据基站对应小区的标识和发送单元的相关信息确定扰码,进而根据扰码确定DMRS序列。
在一个实施例中,初始化参数可以参考下式确定:
Figure PCTCN2020117210-appb-000005
其中,l表示时域上符号的位置;
Figure PCTCN2020117210-appb-000006
是一个时隙slot所包含符号symbol的数目,例如可以为14;
Figure PCTCN2020117210-appb-000007
是无线帧内的时隙号;N ID为扰码,
Figure PCTCN2020117210-appb-000008
为基站对应小区的标识,k为发送单元的相关信息,据此,针对不同的发送单元而言,发送单元的相关信息可以不同,扰码N ID就可以不同,也即针对不同的发送单元,可以设置不同的扰码N ID,从而可以得到不同的初始化参数,进而得到不同的DMRS序列,每个N ID的取值范围可以是0到65535。
图5是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。如图5所示,所述针对每个所述发送单元分别确定的初始化参数包括:
在步骤S501中,根据所述发送单元的相关信息确定用于计算所述初始化参数的函数;例如根据所述发送单元的相关信息、时隙包含符号的数目、符号的位置、无线帧内的时隙号和扰码确定用于计算所述初始化参数的函数。
在一个实施例中,所述初始化参数需要基于函数确定,例如在前述实施例中,所述函数为:
Figure PCTCN2020117210-appb-000009
或者为:
Figure PCTCN2020117210-appb-000010
函数计算公式中各参量的含义同图3和图4实施例部分的参数,在此不一一赘 述!
在这两个实施例中,计算初始化参数的函数并没有发生改变。
在本实施例,可以对计算初始化参数的函数进行调整,具体可以根据所述发送单元的相关信息、时隙包含符号的数目、符号的位置、无线帧内的时隙号和扰码确定用于计算所述初始化参数的函数,例如在上述函数中以加法关系(也可以采用其他关系,例如与扰码相乘的关系)添加发送单元的相关信息k,那么计算初始化参数的函数可以如下所示:
Figure PCTCN2020117210-appb-000011
函数计算公式中各参量的含义同图3和图4实施例部分的参数,在此不一一赘述!
据此,针对不同的发送单元而言,发送单元的相关信息k可以有所不同,从而针对不同的发送单元而言,用于计算初始化参数的函数有所不同,那么计算得到初始化参数就可以有所不同,也即针对不同的发送单元,可以得到不同的初始化参数,进而得到不同的DMRS序列。
需要说明的是,在所有实施例中,发送单元的相关信息,包括但不限于发送单元的标识、序号、针对发送单元生成的随机数等。
图6是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。如图6所示,所述通过多个发送单元向终端发送PDCCH包括:
在步骤S601中,通过多个发送单元在相同的时频资源向终端发送PDCCH。
在一个实施例中,多个发送单元可以在相同的时频资源向终端发送PDCCH,也即多个发送单元可以空分复用SDM(Space Division Multiplexing),相应地,终端可以通过多个接收单元在相同的时频资源接收基站发送的多个PDCCH,虽然在相同的时频资源接收到多个PDCCH,但是不同的PDCCH中的DMRS序列不同,因此可以确保终端基于不同的DMRS序列分别解调不同DMRS序列对应的PDCCH。
图7是根据本公开的实施例示出的又一种物理下行控制信道发送方法的示意流程图。如图7所示,所述通过多个发送单元向终端发送PDCCH包括:
在步骤S701中,通过多个发送单元在同一个DMRS端口向终端发送PDCCH。
在一个实施例中,多个发送单元可以在同一个DMRS端口(例如端口2000) 向终端发送PDCCH,据此,可以确保满足当前协议对于PDCCH仅支持单端口传输的要求。而多个发送单元发送的多个PDCCH中的DMRS序列不同,可以视作是在非正交(也可以称作准正交)的多个DMRS端口上发送的。
据此,可以保证虽然发送的DMRS序列不同,但是在时域和频域上映射的位置却是相同的。例如图8所示,多个DMRS序列在时域和频域上映射的位置相同,都是每隔3个数据的资源粒子RE(Resource Element)映射一个DMRS的RE,在PDCCH中,数据的RE中内容可以是DCI。也即基站在相同的时频位置发送PDCCH中DMRS的RE和数据的RE。
例如可以参考下式进行DMRS在时频资源上的映射:
Figure PCTCN2020117210-appb-000012
Figure PCTCN2020117210-appb-000013
k′=0,1,2;
n=0,1,...
其中,
Figure PCTCN2020117210-appb-000014
是DMRS序列在时频资源上的RE位置,
Figure PCTCN2020117210-appb-000015
是功率调整因子,r l是DMRS序列,k′是DMRS序列中的序列值序号,
Figure PCTCN2020117210-appb-000016
是一个PRB中包含子载波的数量,例如为12。
可选地,每个所述发送单元向终端发送的PDCCH中的下行控制信息DCI相同。
在一个实施例中,每个发送单元向终端发送的PDCCH中的DCI可以是相同的,据此,即使多个发送单元中某个发送单元与终端之间的通信链路因被遮挡、深度衰落等原因而受到影响,由于多个发送单元中的其他发送单元与终端之间还存在通信链路来发送PDCCH,因此可以提高PDCCH发送链路的有效性,保证更高的接收可靠性,使得终端能够从PDCCH中获取到DCI。
可选地,每个所述发送单元向终端发送的PDCCH中携带DCI的部分信息,且所述多个发送单元向终端发送的PDCCH中携带的DCI的部分信息构成完整的DCI。
在一个实施例中,每个发送单元向终端发送的PDCCH中可以携带DCI的部分信息,并且多个发送单元向终端发送的PDCCH中携带的DCI的部分信息可以构成完整的DCI。
例如对于3个发送单元而言,可以将一个完整的DCI编码后划分为3个部分, 其中第一部分通过第一个发送单元发送的PDCCH承载,第二部分通过第二个发送单元发送的PDCCH承载,第三部分通过第三个发送单元发送的PDCCH承载,据此,可以提高发送DCI的灵活性,并且及时在DCI的数据量较大的情况下,也可以将DCI划分为多个数据量较小的部分分别发送。
图9是根据本公开的实施例示出的一种物理下行控制信道接收方法的示意流程图。本实施例所示的物理下行控制信道接收方法可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。所述终端可以作为用户设备与基站通信,所述基站包括但不限于5G基站、6G基站等通信***中的基站。在一个实施例中,所述基站可以是上述任一实施例所述的物理下行控制信道发送方法所适用的基站。
在一个实施例中,在所述终端中设置可以有多个接收单元,例如多个接收天线,每个接收天线都可以接收基站发送的下行控制信道。
如图9所示,所述物理下行控制信道接收方法可以包括以下步骤:
在步骤S901中,通过所述多个接收单元接收基站中多个发送单元发送的PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
在一个实施例中,基站可以通过多个发送单元向终端发送PDCCH,也即每个发送单元都可以向终端发送PDCCH,相应地,终端可以通过多个接收单元接收基站中多个发送单元发送的PDCCH,不同接收单元接收的PDCCH的DMRS序列也不同。
其中,每个发送单元可以在相同的时频资源向终端发送PDCCH,也可以在不同的时频资源向终端发送PDCCH,具体可以由基站根据需要选择。
每个发送单元与接收单元之间都可以形成一条通信链路,从而多个发送单元与多个接收单元之间可以形成多条通信链路,基站就可以通过该多条通信链路向终端发送PDCCH。
据此,即使多个发送单元中某个发送单元与终端之间的通信链路因被遮挡、深度衰落等原因而受到影响,由于多个发送单元中的其他发送单元与终端之间还存在通信链路来发送PDCCH,因此可以确保顺利地将PDCCH发送至终端,有利于提高发送PDCCH的可靠性。
另外,由于不同的发送单元发送的PDCCH所经过的无线信道不同,使得终端在接收到PDCCH后,可以基于不同的DMRS序列配置分别估计相应的无线信道并进 一步解调PDCCH。
图10是根据本公开的实施例示出的另一种物理下行控制信道接收方法的示意流程图。如图10所示,所述方法还包括:
在步骤S1001中,确定每个所述发送单元发送的PDCCH分别对应的初始化参数;
在步骤S1002中,根据所述初始化参数和伪随机序列确定对应的所述发送单元发送的PDCCH的DMRS序列。
在一个实施例中,由于基站针对每个发送单元分配确定初始化参数,从而针对不同的发送单元可以得到不同的初始化参数。那么终端在接收到多个PDCCH轴,可以确定每个发送单元发送的PDCCH分别对应的初始化参数,并且确定的不同的发送单元对应的初始化参数不同,进而可以基于不同的初始化参数和伪随机序列确定所述发送单元发送的PDCCH的DMRS序列,具体可以是根据初始化参数确定用于生成伪随机序列的函数,然后根据该函数和待生成的DMRS序列的序号来确定DMRS序列,从而基于不同的初始化参数得到不同的DMRS序列,以对每个PDCCH进行解调。
图11是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。如图11所示,所述确定每个所述发送单元发送的PDCCH分别对应的初始化参数包括:
在步骤S1101中,根据所述基站发送的配置信息确定每个所述发送单元对应的扰码,其中,不同的所述发送单元对应的扰码不同;
在步骤S1102中,根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
在一个实施例中,初始化参数可以基于扰码得到,基站可以将用于确定初始化参数的扰码配置给终端,例如通过无线资源控制RRC信令将扰码配置给终端,从而终端可以基于接收到的扰码确定初始化参数,从而确定伪随机序列对应的DMRS,进而根据DMRS序列解调PDCCH。
在一个实施例中,初始化参数可以参考下式确定:
Figure PCTCN2020117210-appb-000017
其中,l表示时域上符号的位置;c init是GOLD序列生成函数的初始化参数;
Figure PCTCN2020117210-appb-000018
是一个时隙slot所包含符号symbol的数目,例如可以为14;N IDk为扰码,其中的k是发送单元的相关信息,也即针对不同的发送单元,可以设置不同的扰码N IDk,从而可以得到不同的初始化参数,进而得到不同的DMRS序列,每个N IDk的取值范围可以是0到65535,
Figure PCTCN2020117210-appb-000019
是无线帧内的时隙号。
基站可以将N IDk配置给终端,从而使得终端在接收到具有相关信息k的发送单元发送的PDCCH后,能够根据扰码N IDk来确定该发送单元对应的初始化参数,进而确定该发送单元发送的PDCCH中的DMRS序列。
在一个实施例中,DMRS序列可以参考下式确定:
Figure PCTCN2020117210-appb-000020
其中,l表示时域上符号的位置;c()是GOLD序列生成函数,c(2m)和c(2m+1)都可以视作不同的GOLD序列;m是DMRS序列的序号。根据该伪随机序列,可以生成在符号l上映射的DMRS序列。
图12是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。如图12所示,所述确定每个所述发送单元发送的PDCCH分别对应的初始化参数包括:
在步骤S1201中,响应于所述基站不给所述终端配置所述发送单元对应的扰码,根据所述基站对应小区的标识和所述发送单元的相关信息确定扰码;
在步骤S1202中,根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
在一个实施例中,在基站不给终端配置发送单元对应的扰码时,终端就不能根据基站配置的扰码来确定DMRS序列,基站和终端可以预先约定在这种情况下,基于能够获取到的信息确定扰码,例如根据基站对应小区的标识和发送单元的相关信息确定扰码。
对于终端而言,终端在接收到基站发送的信息(包括但不限于所述PDCCH)后,可以确定基站对应小区的标识,另外基站在通过发送单元发送PDCCH时,还可以携带发送单元的相关信息,终端在接收到PDCCH后,可以确定发送该PDCCH的发送单元的相关信息,从而根据基站对应小区的标识和发送单元的相关信息确定扰码, 进而根据扰码确定DMRS序列。
在一个实施例中,初始化参数可以参考下式确定:
Figure PCTCN2020117210-appb-000021
其中,l表示时域上符号的位置;
Figure PCTCN2020117210-appb-000022
是一个时隙slot所包含符号symbol的数目,例如可以为14;
Figure PCTCN2020117210-appb-000023
是无线帧内的时隙号;N ID为扰码,
Figure PCTCN2020117210-appb-000024
为基站对应小区的标识,k为发送单元的相关信息,据此,针对不同的发送单元而言,扰码N ID可以有所不同,也即针对不同的发送单元,可以设置不同的扰码N ID,从而可以得到不同的初始化参数,进而得到不同的DMRS序列,每个N ID的取值范围可以是0到65535。
相应地,终端在接收到具有相关信息k的发送单元发送的PDCCH后,可以根据基站对应小区的标识和k来确定扰码N ID,从而根据扰码N ID来确定该发送单元对应的初始化参数,进而确定该发送单元发送的PDCCH中的DMRS序列。
图13是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。如图13所示,所述确定每个所述发送单元发送的PDCCH分别对应的初始化参数包括:
在步骤S1301中,根据所述发送单元的相关信息确定用于计算所述初始化参数的函数;例如可以根据所述发送单元的相关信息、时隙包含符号的数目、符号的位置、无线帧内的时隙号和扰码确定用于计算所述初始化参数的函数;
在步骤S1302中,根据所述函数计算所述初始化参数。
在一个实施例中,基站可以对计算初始化参数的函数进行调整,具体了哟根据所述发送单元的相关信息、时隙包含符号的数目、符号的位置、无线帧内的时隙号和扰码确定用于计算所述初始化参数的函数,例如在上述函数中以加法关系(也可以采用其他关系,例如与扰码相乘的关系)添加发送单元的相关信息k,那么计算初始化参数的函数可以如下所示:
Figure PCTCN2020117210-appb-000025
函数计算公式中各参量的含义同图11和图12实施例部分的参数,在此不一一赘述!
据此,针对不同的发送单元而言,发送单元的相关信息k可以有所不同,从而针对不同的发送单元而言,用于计算初始化参数的函数有所不同,那么计算得到初始化参数就可以有所不同,也即针对不同的发送单元,可以得到不同的初始化参数,进而得到不同的DMRS序列。
对于终端而言,在接收到发送单元发送的PDCCH后,还可以获取到发送单元的相关信息,那么可以根据发送单元的相关信息确定用于计算初始化参数的函数,从而根据该函数计算出发送单元对应的初始化参数,进而确定该发送单元发送的PDCCH中的DMRS序列。
图14是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。如图14所示,所述通过所述多个接收单元接收基站中多个发送单元发送的PDCCH包括:
在步骤S1401中,通过所述多个接收单元在相同的时频资源接收基站中多个发送单元发送的PDCCH。
在一个实施例中,多个发送单元可以在相同的时频资源向终端发送PDCCH,也即多个发送单元可以空分复用SDM,相应地,终端可以通过多个接收单元在相同的时频资源接收基站发送的多个PDCCH,虽然在相同的时频资源接收到多个PDCCH,但是不同的PDCCH中的DMRS序列不同,因此可以确保终端基于不同的DMRS序列分别解调不同DMRS序列对应的PDCCH。
可选地,所述终端中多个接收单元接收的PDCCH对应于同一个DMRS端口。
在一个实施例中,基站中的多个发送单元可以在同一个DMRS端口(例如端口2000)向终端发送PDCCH,相应地,终端中多个接收单元接收的PDCCH对应于同一个DMRS端口。
据此,可以确保满足当前协议对于PDCCH仅支持单端口传输的要求。而多个发送单元发送的多个PDCCH中的DMRS序列不同,可以视作是在非正交(也可以称作准正交)的多个DMRS端口上发送的。虽然发送的DMRS序列不同,但是在时域和频域上映射的位置却是相同的。
图15是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。如图15所示,所述方法还包括:
在步骤S1501中,从每个所述PDCCH中获取DCI,其中,每个所述PDCCH 中的DCI相同。
在一个实施例中,基站中每个发送单元向终端发送的PDCCH中的DCI可以是相同的,那么终端在接收到PDCCH后,可以从每个PDCCH中获取到相同的DCI。据此,即使多个发送单元中某个发送单元与终端之间的通信链路因被遮挡、深度衰落等原因而受到影响,由于多个发送单元中的其他发送单元与终端之间还存在通信链路来发送PDCCH,因此可以提高PDCCH发送链路的有效性,保证更高的接收可靠性,使得终端能够从PDCCH中获取到DCI。
图16是根据本公开的实施例示出的又一种物理下行控制信道接收方法的示意流程图。如图16所示,所述方法还包括:
在步骤S1601中,从每个所述PDCCH中获取DCI的部分信息;
在步骤S1602中,根据从每个所述PDCCH中获取的DCI的部分信息确定完整的DCI。
在一个实施例中,终端中每个发送单元向终端发送的PDCCH中可以携带DCI的部分信息,并且多个发送单元向终端发送的PDCCH中携带的DCI的部分信息可以构成完整的DCI。终端在接收到多个PDCCH后,可以从每个PDCCH中获取DCI的部分信息,进而将每个PDCCH中获取的DCI的部分信息组成完整的DCI。
例如对于3个发送单元而言,可以将一个完整的DCI编码后划分为3个部分,其中第一部分通过第一个发送单元发送的PDCCH承载,第二部分通过第二个发送单元发送的PDCCH承载,第三部分通过第三个发送单元发送的PDCCH承载,据此,可以提高发送DCI的灵活性,并且及时在DCI的数据量较大的情况下,也可以将DCI划分为多个数据量较小的部分分别发送。
终端在接收到上述三个发送单元PDCCH后,可以从三个发送单元发送的PDCCH中获取到3个DCI的部分信息,然后将3个DCI的部分信息组成一个完整的DCI。
可选地,所述发送单元包括以下至少之一:
传输接收点、天线面板。
与前述的物理下行控制信道发送方法和物理下行控制信道接收方法的实施例相对应地,本公开还提供了物理下行控制信道发送装置和物理下行控制信道接收装置 的实施例。
图17是根据本公开的实施例示出的一种物理下行控制信道发送装置的示意框图。本实施例所示的物理下行控制信道发送装置可以适用于基站,所述基站包括但不限于5G基站、6G基站等通信***中的基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。在一个实施例中,所述终端可以是后续任一实施例所述物理下行控制信道接收装置所适用的终端。
在一个实施例中,在所述基站中设置有多个发送单元,所述发送单元可以是天线面板panel,也可以是传输接收点TRP。基站可以选择通过多个发送单元发送PDCCH,也可以选择其中某个发送单元单独发送PDCCH,具体可以根据基站需要设置。
如图17所示,所述物理下行控制信道发送装置可以包括:
下行发送模块1701,被配置为通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
图18是根据本公开的实施例示出的另一种物理下行控制信道发送装置的示意框图。如图18所示,所述装置还包括:
参数确定模块1801,被配置为针对每个所述发送单元分别确定的初始化参数;
DMRS确定模块1802,被配置为根据所述初始化参数和伪随机序列确定所述发送单元发送的PDCCH的DMRS序列。
可选地,所述针参数确定模块,被配置为针对不同的所述发送单元确定不同的扰码;根据所述扰码确定相应发送单元的伪随机序列中的初始化参数;将所述扰码配置给所述终端。
可选地,所述针参数确定模块,被配置为响应于不给所述终端配置所述发送单元对应的扰码,根据所述基站对应小区的标识和所述发送单元的相关信息确定扰码;根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
可选地,所述针参数确定模块,被配置为根据所述发送单元的相关信息确定用于计算所述初始化参数的函数。
可选地,所述下行发送模块,被配置为通过多个发送单元在相同的时频资源向 终端发送PDCCH。
可选地,所述下行发送模块,被配置为通过多个发送单元在同一个DMRS端口向终端发送PDCCH。
可选地,每个所述发送单元向终端发送的PDCCH中的下行控制信息DCI相同。
可选地,每个所述发送单元向终端发送的PDCCH中携带DCI的部分信息,且所述多个发送单元向终端发送的PDCCH中携带的DCI的部分信息构成完整的DCI。
可选地,所述发送单元包括以下至少之一:
传输接收点、天线面板。
图19是根据本公开的实施例示出的一种物理下行控制信道接收装置的示意框图。本实施例所示的物理下行控制信道接收方法可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。所述终端可以作为用户设备与基站通信,所述基站包括但不限于5G基站、6G基站等通信***中的基站。在一个实施例中,所述基站可以是上述任一实施例所述的物理下行控制信道发送装置所适用的基站。
在一个实施例中,在所述终端中设置可以有多个接收单元,例如多个接收天线,每个接收天线都可以接收基站发送的下行控制信道。
如图19所示,所述物理下行控制信道接收装置可以包括:
下行接收模块1901,被配置为通过所述多个接收单元接收基站中多个发送单元发送的PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
图20是根据本公开的实施例示出的另一种物理下行控制信道接收装置的示意框图。如图20所示,所述装置还包括:
参数确定模块1902,被配置为确定每个所述发送单元发送的PDCCH分别对应的初始化参数;
DMRS确定模块1903,被配置为根据所述初始化参数和伪随机序列确定对应的所述发送单元发送的PDCCH的DMRS序列。
可选地,所述参数确定模块,被配置为根据所述基站发送的配置信息确定每个所述发送单元对应的扰码,其中,不同的所述发送单元对应的扰码不同;根据所述扰 码确定相应发送单元的伪随机序列中的初始化参数。
可选地,所述参数确定模块,被配置为响应于所述基站不给所述终端配置所述发送单元对应的扰码,根据所述基站对应小区的标识和所述发送单元的相关信息确定扰码;根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
可选地,所述参数确定模块,被配置为根据所述发送单元的相关信息确定用于计算所述初始化参数的函数;根据所述函数计算所述初始化参数。
可选地,所述下行接收模块,被配置为通过所述多个接收单元在相同的时频资源接收基站中多个发送单元发送的PDCCH。
可选地,所述终端中多个接收单元接收的PDCCH对应于同一个DMRS端口。
图21是根据本公开的实施例示出的又一种物理下行控制信道接收装置的示意框图。如图21所示,所述装置还包括:
第一获取模块2101,被配置为从每个所述PDCCH中获取DCI,其中,每个所述PDCCH中的DCI相同。
图22是根据本公开的实施例示出的又一种物理下行控制信道接收装置的示意框图。如图22所示,所述装置还包括:
第二获取模块2201,被配置为从每个所述PDCCH中获取DCI的部分信息;
DCI确定模块2202,被配置为根据从每个所述PDCCH中获取的DCI的部分信息确定完整的DCI。
可选地,所述发送单元包括以下至少之一:
传输接收点、天线面板。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述任一实施例所述的PDCCH发送方法。
本公开的实施例还提出一种电子设备
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述任一实施例所述的PDCCH接收方法。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述PDCCH发送方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述PDCCH接收方法中的步骤。
如图23所示,图23是根据本公开的实施例示出的一种用于PDCCH接收的装置2300的示意框图。装置2300可以被提供为一基站。参照图23,装置2300包括处理组件2322、无线发射/接收组件2324、天线组件2326、以及无线接口特有的信号处理部分,处理组件2322可进一步包括一个或多个处理器。处理组件2322中的其中一个处理器可以被配置为实现上述任一实施例所述的PDCCH发送方法。
图24是根据本公开的实施例示出的一种用于PDCCH接收的装置2400的示意框图。例如,装置2400可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图24,装置2400可以包括以下一个或多个组件:处理组件2402,存储器2404,电源组件2406,多媒体组件2408,音频组件2410,输入/输出(I/O)的接口2412,传感器组件2414,以及通信组件2416。
处理组件2402通常控制装置2400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2402可以包括一个或多个处理器2420来执行指令,以完成上述的PDCCH接收方法的全部或部分步骤。此外,处理组件2402可以包括一个或多个模块,便于处理组件2402和其他组件之间的交互。例如,处理组件2402可以包括多媒体模块,以方便多媒体组件2408和处理组件2402之间的 交互。
存储器2404被配置为存储各种类型的数据以支持在装置2400的操作。这些数据的示例包括用于在装置2400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2406为装置2400的各种组件提供电力。电源组件2406可以包括电源管理***,一个或多个电源,及其他与为装置2400生成、管理和分配电力相关联的组件。
多媒体组件2408包括在所述装置2400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2408包括一个前置摄像头和/或后置摄像头。当装置2400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件2410被配置为输出和/或输入音频信号。例如,音频组件2410包括一个麦克风(MIC),当装置2400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2404或经由通信组件2416发送。在一些实施例中,音频组件2410还包括一个扬声器,用于输出音频信号。
I/O接口2412为处理组件2402和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2414包括一个或多个传感器,用于为装置2400提供各个方面的状态评估。例如,传感器组件2414可以检测到装置2400的打开/关闭状态,组件的相对 定位,例如所述组件为装置2400的显示器和小键盘,传感器组件2414还可以检测装置2400或装置2400一个组件的位置改变,用户与装置2400接触的存在或不存在,装置2400方位或加速/减速和装置2400的温度变化。传感器组件2414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2416被配置为便于装置2400和其他设备之间有线或无线方式的通信。装置2400可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件2416经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述PDCCH接收方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2404,上述指令可由装置2400的处理器2420执行以完成上述PDCCH接收方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (26)

  1. 一种物理下行控制信道发送方法,其特征在于,适用于基站,在所述基站中设置有多个发送单元,所述方法包括:
    通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    针对每个所述发送单元分别确定的初始化参数;
    根据所述初始化参数和伪随机序列确定所述发送单元发送的PDCCH的DMRS序列。
  3. 根据权利要求2所述的方法,其特征在于,所述针对每个所述发送单元分别确定的初始化参数包括:
    针对不同的所述发送单元确定不同的扰码;
    根据所述扰码确定相应发送单元的伪随机序列中的初始化参数;
    将所述扰码配置给所述终端。
  4. 根据权利要求2所述的方法,其特征在于,所述针对每个所述发送单元分别确定的初始化参数包括:
    响应于不给所述终端配置所述发送单元对应的扰码,根据所述基站对应小区的标识和所述发送单元的相关信息确定扰码;
    根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
  5. 根据权利要求2所述的方法,其特征在于,所述针对每个所述发送单元分别确定的初始化参数包括:
    根据所述发送单元的相关信息确定用于计算所述初始化参数的函数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述通过多个发送单元向终端发送PDCCH包括:
    通过多个发送单元在相同的时频资源向终端发送PDCCH。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述通过多个发送单元向终端发送PDCCH包括:
    通过多个发送单元在同一个DMRS端口向终端发送PDCCH。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,每个所述发送单元向终端发送的PDCCH中的下行控制信息DCI相同。
  9. 根据权利要求1至5中任一项所述的方法,其特征在于,每个所述发送单元向 终端发送的PDCCH中携带DCI的部分信息,且所述多个发送单元向终端发送的PDCCH中携带的DCI的部分信息构成完整的DCI。
  10. 根据权利要求1至5中任一项所述的方法,其特征在于,所述发送单元包括以下至少之一:
    传输接收点、天线面板。
  11. 一种物理下行控制信道接收方法,其特征在于,适用于终端,在所述终端中设置有多个接收单元,所述方法包括:
    通过所述多个接收单元接收基站中多个发送单元发送的PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    确定每个所述发送单元发送的PDCCH分别对应的初始化参数;
    根据所述初始化参数和伪随机序列确定对应的所述发送单元发送的PDCCH的DMRS序列。
  13. 根据权利要求12所述的方法,其特征在于,所述确定每个所述发送单元发送的PDCCH分别对应的初始化参数包括:
    根据所述基站发送的配置信息确定每个所述发送单元对应的扰码,其中,不同的所述发送单元对应的扰码不同;
    根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
  14. 根据权利要求12所述的方法,其特征在于,所述确定每个所述发送单元发送的PDCCH分别对应的初始化参数包括:
    响应于所述基站不给所述终端配置所述发送单元对应的扰码,根据所述基站对应小区的标识和所述发送单元的相关信息确定扰码;
    根据所述扰码确定相应发送单元的伪随机序列中的初始化参数。
  15. 根据权利要求12所述的方法,其特征在于,所述确定每个所述发送单元发送的PDCCH分别对应的初始化参数包括:
    根据所述发送单元的相关信息、时隙包含符号的数目、符号的位置、无线帧内的时隙号和扰码确定用于计算所述初始化参数的函数;
    根据所述函数计算所述初始化参数。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述通过所述多个接收单元接收基站中多个发送单元发送的PDCCH包括:
    通过所述多个接收单元在相同的时频资源接收基站中多个发送单元发送的 PDCCH。
  17. 根据权利要求11至15中任一项所述的方法,其特征在于,所述终端中多个接收单元接收的PDCCH对应于同一个DMRS端口。
  18. 根据权利要求11至15中任一项所述的方法,其特征在于,所述方法还包括:
    从每个所述PDCCH中获取DCI,其中,每个所述PDCCH中的DCI相同。
  19. 根据权利要求11至15中任一项所述的方法,其特征在于,所述方法还包括:
    从每个所述PDCCH中获取DCI的部分信息;
    根据从每个所述PDCCH中获取的DCI的部分信息确定完整的DCI。
  20. 根据权利要求11至15中任一项所述的方法,其特征在于,所述发送单元包括以下至少之一:
    传输接收点、天线面板。
  21. 一种物理下行控制信道发送装置,其特征在于,适用于基站,在所述基站中设置有多个发送单元,所述装置包括:
    下行发送模块,被配置为通过多个发送单元向终端发送物理下行控制信道PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
  22. 一种物理下行控制信道接收装置,其特征在于,适用于终端,在所述终端中设置有多个接收单元,所述装置包括:
    下行接收模块,被配置为通过所述多个接收单元接收基站中多个发送单元发送的PDCCH,其中,不同所述发送单元发送的PDCCH的解调参考信号DMRS序列不同。
  23. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1至10中任一项所述的物理下行控制信道发送方法。
  24. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求11至20中任一项所述的物理下行控制信道接收方法。
  25. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至10中任一项所述的物理下行控制信道发送方法中的步 骤。
  26. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时执行权利要求11至20中任一项所述的物理下行控制信道接收方法中的步骤。
PCT/CN2020/117210 2020-09-23 2020-09-23 物理下行控制信道发送、接收方法和装置 WO2022061608A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/117210 WO2022061608A1 (zh) 2020-09-23 2020-09-23 物理下行控制信道发送、接收方法和装置
CN202080002357.7A CN114531967A (zh) 2020-09-23 2020-09-23 物理下行控制信道发送、接收方法和装置
US18/119,280 US20230217455A1 (en) 2020-09-23 2023-03-08 Physical downlink control channel sending and receiving methods and apparatuses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117210 WO2022061608A1 (zh) 2020-09-23 2020-09-23 物理下行控制信道发送、接收方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/119,280 Continuation US20230217455A1 (en) 2020-09-23 2023-03-08 Physical downlink control channel sending and receiving methods and apparatuses

Publications (1)

Publication Number Publication Date
WO2022061608A1 true WO2022061608A1 (zh) 2022-03-31

Family

ID=80844685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117210 WO2022061608A1 (zh) 2020-09-23 2020-09-23 物理下行控制信道发送、接收方法和装置

Country Status (3)

Country Link
US (1) US20230217455A1 (zh)
CN (1) CN114531967A (zh)
WO (1) WO2022061608A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804695A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 下行数据发送方法、接收方法、装置和存储介质
CN110881220A (zh) * 2018-09-06 2020-03-13 电信科学技术研究院有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
CN111130708A (zh) * 2018-11-07 2020-05-08 维沃移动通信有限公司 一种反馈信息传输方法和终端设备
WO2020144540A1 (en) * 2019-01-10 2020-07-16 Lenovo (Singapore) Pte. Ltd. Uplink power control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110881220A (zh) * 2018-09-06 2020-03-13 电信科学技术研究院有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
CN111130708A (zh) * 2018-11-07 2020-05-08 维沃移动通信有限公司 一种反馈信息传输方法和终端设备
CN109804695A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 下行数据发送方法、接收方法、装置和存储介质
WO2020144540A1 (en) * 2019-01-10 2020-07-16 Lenovo (Singapore) Pte. Ltd. Uplink power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1906224, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727678 *

Also Published As

Publication number Publication date
US20230217455A1 (en) 2023-07-06
CN114531967A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN109792745B (zh) 数据传输方法、基站、用户设备及存储介质
US11483819B2 (en) Data transmission method and apparatus and user equipment
CN106664191B (zh) 配置工作带宽的方法及装置
CN111344994A (zh) 数据传输方法及数据传输装置
WO2022000143A1 (zh) 数据传输方法及装置、存储介质
WO2018195904A1 (zh) 用于信道载波配置的方法、装置、用户设备及基站
CN116471667A (zh) 波束失败请求资源分配方法、装置及存储介质
EP3706482B1 (en) Physical layer resource mapping method and device, user equipment and base station
WO2022061608A1 (zh) 物理下行控制信道发送、接收方法和装置
WO2022188004A1 (zh) 资源配置方法和装置、资源确定方法和装置
WO2022233057A1 (zh) 信道状态信息测量方法、装置及存储介质
CN109792321B (zh) 数据传输方法及装置
WO2019023880A1 (zh) 传输方向的指示方法及装置
CN108513724B (zh) 数据传输方法、装置及数据发送端
WO2022213367A1 (zh) 直连通信方法、装置及存储介质
WO2024060075A1 (zh) 物理上行控制信道发送、接收方法和装置
WO2018227627A1 (zh) 确定调度信令盲检次数的方法、装置、用户设备和基站
WO2024060074A1 (zh) 配置信息确定方法、装置、***、通信装置和存储介质
WO2024092845A1 (zh) 一种探测参考信号的传输方法、装置及介质
WO2024130590A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
CN113472509B (zh) 数据传输方法、装置及***
WO2022188074A1 (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质
WO2024130613A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
CN115053482B (zh) 一种非授权信道的检测方法、装置、设备及存储介质
WO2022133855A1 (zh) 解调性能确定方法和装置、解调性能接收方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954462

Country of ref document: EP

Kind code of ref document: A1