WO2022061602A1 - 一种有机发光显示面板及显示装置 - Google Patents

一种有机发光显示面板及显示装置 Download PDF

Info

Publication number
WO2022061602A1
WO2022061602A1 PCT/CN2020/117192 CN2020117192W WO2022061602A1 WO 2022061602 A1 WO2022061602 A1 WO 2022061602A1 CN 2020117192 W CN2020117192 W CN 2020117192W WO 2022061602 A1 WO2022061602 A1 WO 2022061602A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
shielding layer
display panel
light shielding
Prior art date
Application number
PCT/CN2020/117192
Other languages
English (en)
French (fr)
Inventor
海晓泉
王雷
梁轩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002077.6A priority Critical patent/CN114747017A/zh
Priority to PCT/CN2020/117192 priority patent/WO2022061602A1/zh
Priority to US17/419,889 priority patent/US11839118B2/en
Publication of WO2022061602A1 publication Critical patent/WO2022061602A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic light-emitting display panel and a display device.
  • the organic light-emitting display panel integrated fingerprint identification technology is a panel integration technology that provides fingerprint identification capability without reducing the effective display area of the organic light-emitting display panel.
  • Existing organic light-emitting display panels usually integrate an optical fingerprint recognition unit. The light emitted from the organic light-emitting display panel is reflected on the surface of the finger and enters the organic light-emitting display panel again and is received by the fingerprint identification unit.
  • the fingerprint identification unit can generate different identification information according to the difference in reflection of light by the valleys and ridges of the fingerprint path, so as to identify different fingerprint path information.
  • a base substrate having a plurality of sub-pixel regions and non-sub-pixel regions between the sub-pixel regions;
  • a collimation structure located in the non-sub-pixel area, the collimation structure includes at least two light-shielding layers arranged in layers, and the at least two light-shielding layers are on the side of the fingerprint identification device away from the base substrate , the orthographic projection of each of the light-shielding layers on the base substrate at least covers the orthographic projection of the fingerprint identification device on the base substrate; each of the light-shielding layers corresponds to the fingerprint identification device Each position has at least one through hole, and the through holes of each of the light shielding layers corresponding to the same fingerprint identification device are arranged in a one-to-one correspondence; wherein, the light shielding layer closest to the base substrate is insulated in the same layer as the anode set up.
  • the collimation structure includes a first light-shielding layer, a second light-shielding layer and a third light-shielding layer arranged in layers, and the first light-shielding layer is close to the the base substrate, the third light shielding layer is far away from the base substrate; the first light shielding layer and the anode are provided in the same layer as insulation;
  • the first light shielding layer has at least one first through hole at a position corresponding to the fingerprint identification device
  • the second light shielding layer has at least one second through hole at a position corresponding to the fingerprint identification device
  • the third light shielding layer has at least one third through hole at a position corresponding to the fingerprint identification device, and the first through hole, the second through hole and the third through hole at the same position are in one-to-one correspondence set up.
  • the organic light emitting display panel provided in the embodiment of the present disclosure further includes: a first encapsulation layer located on a side of the anode away from the base substrate, and a first encapsulation layer located away from the first encapsulation layer a second encapsulation layer on one side of the base substrate;
  • the second light shielding layer is located between the first encapsulation layer and the second encapsulation layer, and the third light shielding layer is located on a side of the second encapsulation layer away from the base substrate.
  • the materials of the second light shielding layer and the third light shielding layer are both black matrix materials.
  • a pixel defining layer is further included on a side of the anode away from the base substrate, and the pixel defining layer includes a stacked color resist. layer and a black color resist layer, the color resist layer is close to the anode, and the black color resist layer is far away from the anode; the pixel defining layer has an opening area corresponding to the sub-pixel area one-to-one, the The black color resist layer is multiplexed into the second light shielding layer.
  • an encapsulation layer is further included on a side of the pixel defining layer away from the base substrate, and the third light shielding layer is located at a side away from the encapsulation layer. one side of the base substrate.
  • the light-receiving angle of the collimation structure is 10°-20°.
  • the collimation structure satisfies the formula: D(H1+H2)/2H1 ⁇ P1 ⁇ D(H1+H2)/2(H2-H1) ;in,
  • D is the width of the fingerprint identification device
  • H1 is the distance between the lower surface of the first light-shielding layer and the lower surface of the second light-shielding layer
  • H2 is the lower surface of the second light-shielding layer and the lower surface of the second light-shielding layer.
  • the distance between the upper surfaces of the third light shielding layer, P1 is the distance between the through holes in the adjacent non-sub-pixel regions in the same light shielding layer.
  • the apertures of the first through holes, the second through holes and the third through holes are the same, and the apertures are 1 um-10 um .
  • the distance between the first light shielding layer and the second light shielding layer is 5um-10um, and the second light shielding layer and the first light shielding layer are 5um-10um.
  • the spacing between the three shading layers is 10um-30um.
  • the spacing between the adjacent through holes is 20um-120um.
  • the first light shielding layer has a plurality of first through holes at positions corresponding to the fingerprint identification device
  • the second light shielding layer has a plurality of first through holes
  • the fingerprint identification device has a plurality of second through holes at the corresponding positions
  • the third light shielding layer has a plurality of third through holes at the corresponding positions of the fingerprint identification device; the first through holes are evenly distributed , each of the second through holes is evenly distributed, and each of the third through holes is evenly distributed.
  • the organic light-emitting display panel provided in the embodiment of the present disclosure further includes: a light-emitting layer located between the anode and the encapsulation layer, and a cathode located between the light-emitting layer and the encapsulation layer , and a spacer layer between the pixel defining layer and the cathode.
  • the organic light emitting display panel provided in the embodiment of the present disclosure further includes a touch layer and a polarizer on the side of the light shielding layer away from the base substrate.
  • the organic light-emitting display panel provided in the embodiment of the present disclosure further includes a driving circuit located between the base substrate and the fingerprint identification device, the driving circuit includes a thin film transistor, and the thin film transistor is electrically connected to the fingerprint identification device.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned organic light-emitting display panel provided by an embodiment of the present disclosure.
  • the display device further includes a cover plate located on a side of the polarizer away from the base substrate, and the cover plate is a flexible cover plate.
  • FIG. 1 is a schematic cross-sectional structure diagram of an organic light-emitting display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structure diagram of another organic light-emitting display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional structure diagram of a non-sub-pixel region corresponding to FIG. 1;
  • Fig. 4 is the top-view structure schematic diagram corresponding to Fig. 3;
  • FIG. 5 is a schematic cross-sectional structure diagram of another non-sub-pixel region corresponding to FIG. 1;
  • FIG. 6 is a schematic top view structure diagram corresponding to FIG. 5;
  • Figure 7 is a schematic diagram of the analysis of the alignment structure and the principle of anti-crosstalk
  • Fig. 8 is a demonstration schematic diagram of a three-layer light-shielding layer and a fingerprint identification device
  • FIG. 9 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the fingerprint image area of the OLED In Cell point light source solution is small, especially the edge of the fingerprint is easily disturbed by strong light, resulting in blurred images.
  • the stitching effect is poor.
  • the light path fingerprint image of the point light source will cause uneven illuminance distribution in the image due to the existence of the polarizer, and the fingerprint in some areas will be clear, and the fingerprint signal in some areas will be weak or even difficult to distinguish.
  • an organic light-emitting display panel provided by an embodiment of the present disclosure, as shown in FIG. 1 and FIG. 2 , includes:
  • the base substrate 1 has a plurality of sub-pixel regions A1 and a non-sub-pixel region A2 located between the sub-pixel regions A1;
  • a plurality of fingerprint identification devices 2 are located in the non-sub-pixel area A2 of the base substrate 1; specifically, the fingerprint identification devices 2 are located in the non-sub-pixel area A2, which does not affect the aperture ratio of the organic light-emitting display panel.
  • the fingerprint identification device 2 can It is a PIN diode structure;
  • the collimation structure is located in the non-sub-pixel area A2.
  • the collimation structure includes at least two light-shielding layers arranged in layers (take the three light-shielding layers 41, 42 and 43 as examples), and at least two light-shielding layers (41, 42 and 43).
  • each light shielding layer (41, 42, 43) on the base substrate 1 covers at least the orthographic projection of the fingerprint identification device 2 on the base substrate 1 Projection; each light shielding layer (41, 42, 43) has at least one through hole at the position corresponding to the fingerprint identification device 2, specifically, the light shielding layer 41 has at least one through hole 01 at the position corresponding to the fingerprint identification device 2 (A through hole 01 is taken as an example in FIGS. 1 and 2 ), the light shielding layer 42 has at least one through hole 02 at a position corresponding to the fingerprint identification device 2 (one through hole 02 is taken as an example in FIGS.
  • the light shielding layer 43 has at least one through hole 03 at the position corresponding to the fingerprint identification device 2 (one through hole 03 is taken as an example in FIG. 1 and FIG. 2 ); 43) through holes (01, 02, 03) are set in one-to-one correspondence, specifically, the through holes 01 of the light shielding layer 41, the through holes 02 of the light shielding layer 42, and the through holes 03 of the light shielding layer 43 corresponding to the same fingerprint identification device 2 One-to-one correspondence is provided; wherein, the light shielding layer 41 closest to the base substrate 1 and the anode 3 are provided in the same layer of insulation.
  • the above-mentioned organic light-emitting display panel provided by the embodiment of the present disclosure adopts at least two light-shielding layers each having through holes to form a collimation structure, and the at least two through holes corresponding to each other can make the light reflected by the finger nearly collimated. Screen out and make it reach the fingerprint identification device below.
  • the fingerprint identification device can detect the intensity of the reading light. Because the energy of the light transmitted down the valley and the ridge of the fingerprint is different, the light intensity detected by the fingerprint identification device is different, and the fingerprint is obtained.
  • the light-receiving angle of the collimation structure can be defined by the top light-shielding layer and the bottom light-shielding layer, and the middle light-shielding layer can be used to block different non-sub-pixels.
  • the light crosstalk between the through holes in the area improves the accuracy of the identified fingerprint information.
  • the present disclosure only needs to fabricate at least two light-shielding layers with through holes with a relatively simple structure to achieve a better collimation effect, and the light-shielding layer closest to the substrate is on the same layer as the anode in the organic light-emitting display panel. Insulation arrangement, in this way, the pattern of the bottom light shielding layer and the anode can be formed by one patterning process, which simplifies the preparation process, saves the production cost and improves the production efficiency.
  • the collimation structure includes a first light shielding layer 41 , a second light shielding layer 42 and a third light shielding layer 41 arranged in layers.
  • the light-shielding layer 43, the first light-shielding layer 41 is close to the base substrate 1, and the third light-shielding layer 43 is far away from the base substrate 1; the first light-shielding layer 43 and the anode 3 are insulated in the same layer;
  • the patterns of the first light-shielding layer 41 and the anode 3 can be formed through a patterning process without adding a separate process for preparing the first light-shielding layer 41, which can simplify the preparation process, save production costs, and improve production efficiency;
  • the first light shielding layer 41 has at least one first through hole 01 at a position corresponding to the fingerprint identification device 2 (one first through hole 01 is taken as an example in FIG. 1 and FIG. 2 ), and the second light shielding layer 42 is connected to the fingerprint identification device. 2 has at least one second through hole 02 at the corresponding position (one second through hole 02 is taken as an example in FIG. 1 and FIG. 2 ), and the third light shielding layer 43 has at least one third through hole 02 at the position corresponding to the fingerprint identification device 2.
  • Through hole 03 (a third through hole 03 is taken as an example in FIG. 1 and FIG.
  • the first through hole 01, the second through hole 02 and the third through hole 03 at the same position are arranged in a one-to-one correspondence, through optical design
  • the first through hole 01, the second through hole 02 and the third through hole 03 can have a collimation function, which can filter out the light reflected by the finger near collimation, so that it can reach the fingerprint identification device 2 below, and realize the fingerprint identification. identify.
  • FIG. 3 is a schematic cross-sectional structure diagram of a non-sub-pixel area A2 in FIG. 1
  • FIG. 4 is FIG. 1
  • the first light shielding layer 41 has a first through hole 01 at the position corresponding to the fingerprint identification device 2
  • the second light shielding layer 42 has a position corresponding to the fingerprint identification device 2.
  • FIG. 5 is a schematic cross-sectional structure diagram of a non-sub-pixel area A2 in FIG. 1 , and FIG.
  • FIG. 6 is a top-view structure schematic diagram of a part of the film layer corresponding to FIG. 1 (multiple through holes), the first shading
  • the layer 41 has a plurality of first through holes 01 at the positions corresponding to the fingerprint identification device 2
  • the second light shielding layer 42 has a plurality of second through holes 02 at the positions corresponding to the fingerprint identification device 2
  • the third light shielding layer 43 has a middle
  • the first through holes 01, the second through holes 02 and the third through holes 03 at the same position are arranged in a one-to-one correspondence, and the first through holes are optically designed.
  • the second through hole 02 and the third through hole 03 can have a collimation function, which can filter out the light reflected by the finger near collimation, so that it reaches the fingerprint identification device 2 below to realize fingerprint identification.
  • the orthographic projections of the first through hole 01 , the second through hole 02 and the third through hole 03 on the base substrate 1 overlap as completely as possible, but according to the alignment error of the actual manufacturing process, the first light shielding layer 41 , There will be a certain offset between the through holes of the second light shielding layer 42 and the third light shielding layer 43 at the same position, and the complete overlap cannot be guaranteed, that is, there may be partial overlap.
  • the above-mentioned organic light emitting display panel provided by the embodiment of the present disclosure, as shown in FIG. 1 , further includes: a first encapsulation layer 5 located on the side of the anode 3 away from the base substrate 1 , and a first encapsulation layer 5 located on the side of the anode 3 away from the base substrate 1 .
  • the second encapsulation layer 6 on the side of the layer 5 away from the base substrate 1;
  • the second light shielding layer 42 is located between the first encapsulation layer 5 and the second encapsulation layer 6
  • the third light shielding layer 43 is located on the side of the second encapsulation layer 6 away from the base substrate 1 .
  • the first encapsulation layer 5 and the second encapsulation layer 6 are both the alternate structure of inorganic layer-organic layer-inorganic layer
  • the first encapsulation layer 5 and the second encapsulation layer 6 are both light-transmitting film layers, so that the finger The reflected light can be incident on the fingerprint identification device 2 through the through hole to realize fingerprint identification.
  • the materials of the second light shielding layer 42 and the third light shielding layer 43 may both be black matrix materials (BM).
  • the organic light emitting display panel provided by the embodiment of the present disclosure, as shown in FIG. 2 , it further includes a pixel defining layer 7 located on the side of the anode 3 away from the base substrate 1 , and the pixel defining layer 7 includes a stacked layer
  • the color resist layer 71 and the black color resist layer 72 are arranged, the color resist layer 71 is close to the anode 3, and the black color resist layer 72 is far away from the anode 3;
  • the pixel defining layer 7 has an opening area corresponding to the sub-pixel area A1 one-to-one, The anode 3 is exposed in the area, and the black color resist layer 72 is multiplexed into the second light shielding layer 42 .
  • the original pixel defining layer 7 is generally colored, which can filter out ambient light reflected back to the fingerprint identification device 2 by the finger.
  • a black color resist layer 72 is used to replace part of the original pixel defining layer 7, so that The black color resist layer 72 can be reused as the second light shielding layer 42, which can further reduce the fabrication of one light shielding layer, reduce the thickness of the device and reduce the cost.
  • the encapsulation layer 8 is further included on the side of the pixel defining layer 7 away from the base substrate 1 , and the third light shielding layer 43 is located on the side of the pixel defining layer 7 away from the base substrate 1 .
  • the encapsulation layer 8 is an alternate structure of inorganic layer-organic layer-inorganic layer, and the encapsulation layer 8 is a light-transmitting film layer, so that the light reflected from the finger can be incident on the fingerprint identification device 2 through the through hole to realize fingerprint identification.
  • FIG. 7 is a schematic diagram of the analysis of the alignment structure and the principle of anti-crosstalk.
  • the first light shielding layer 41 , the second light shielding layer 42 and the The region where the orthographic projections of the corresponding first through holes 01 , the second through holes 02 and the third through holes 03 of the third light shielding layer 43 at the same position on the base substrate 1 completely overlap constitute a via structure (collimation structure) , play the role of collimating the light rays of various angles incident to the position, so that the light rays at a certain range angle (small angle) with the normal line perpendicular to the surface of the collimation structure can pass through the hole structure, exceeding the Light rays at range angles (large angles) are cut off.
  • the difference between the minimum angle and the maximum angle of the light that can pass through is the light-receiving angle ⁇ .
  • the light-receiving angle ⁇ of the collimating structure can be 10°-20°.
  • the distance H1 between the lower surface of the first light shielding layer 41 and the lower surface of the second light shielding layer 42 may be 5um -10um
  • the distance H2 between the lower surface of the second light shielding layer 42 and the upper surface of the third light shielding layer 43 may be 10um-30um
  • the film layers between the first light-shielding layer 41 and the second light-shielding layer 42 and between the second light-shielding layer 42 and the third light-shielding layer 43 are light-transmitting film layers (not shown in FIG. 7 ).
  • the distance between the light-shielding layers of each layer is adjusted, and the distance (H1+H2) between the upper surface of the third light-shielding layer 43 and the lower surface of the first light-shielding layer 41 and the aperture size of the through hole (the first through hole) are determined.
  • the aperture D1 of 01, the aperture D2 of the second through hole 02 and the aperture D3 of the third through hole are equal), in order to adjust the required aspect ratio of the holes (01, 02, 03), and limit the light-receiving of the collimating structure
  • the angle ⁇ has achieved the required collimation effect, so that the information of the valleys and ridges of the texture can be accurately obtained.
  • the stray light at the positions 1, 2, 3, and 4 and the light behind will pass through the light-transmitting film layer between the first light shielding layer 41 and the third light shielding layer 43 to reach the fingerprint identification under the collimation structure device 2 , resulting in a blurring of the acquired image, which in turn leads to a problem of inaccurate fingerprint information identified according to the light received by the fingerprint identification device 2 . Therefore, an intermediate light-shielding layer (ie, the second light-shielding layer 42) needs to be provided to shield the crosstalk light, so that the light of the adjacent through holes is shielded or absorbed by the second light-shielding layer 42, so that the fingerprint identification device 2 will not be affected by stray light. .
  • an intermediate light-shielding layer ie, the second light-shielding layer 42
  • the distance P1 between the through holes at the same position in different non-sub-pixel areas A2 will affect the reception of the fingerprint identification device 2
  • the transmittance of the signal light and the light crosstalk of the adjacent light shielding layer through holes, such as the stray light at the positions 1, 2, 3, and 4 in Figure 7, will interfere with the leftmost fingerprint identification device 2. Therefore, in order to improve the fingerprint identification device 2.
  • the spacing P1 between adjacent through holes can be 20um-120um, so 1, 2, 3, 4
  • the stray light at the position will be blocked by the second light shielding layer 42 and cannot enter the hole structure on the far left, so that the transmittance of the signal light received by the fingerprint identification device 2 on the far left will not be affected, and the adjacent light shielding can be avoided.
  • Crosstalk of light through layer vias can be 20um-120um, so 1, 2, 3, 4
  • D is the width of the fingerprint identification device 2
  • H1 is the distance between the lower surface of the first light shielding layer 41 and the lower surface of the second light shielding layer 42
  • H2 is the lower surface of the second light shielding layer 42 and the third light shielding layer.
  • the distance between the upper surfaces of 43, P1 is the distance between the through holes in adjacent non-sub-pixel regions in the same light shielding layer.
  • the inventor of this case has found that, after satisfying the formula (3), the problem of crosstalk between adjacent light rays can be avoided, and accurate fingerprint identification can be realized.
  • the width D of the fingerprint identification device 2 is equal to the widths of the first light shielding layer 41 , the second light shielding layer 42 and the third light shielding layer 43 , and may be 20um-100um.
  • the through holes in each light shielding layer are generally arranged periodically, and the hole shape of the through holes may be in the shape of a circle, a square, etc., which is not limited here. .
  • FIG. 8 is a schematic diagram of the demonstration of the light shielding layers (41, 42 and 43) and the fingerprint identification device 2.
  • the through holes (01, 02 and 03) are circular, their apertures (D1, D, D3) is the diameter of the circle.
  • the through hole is a square, its diameter (D1, D, D3) is the side length of the square.
  • the hole pattern of the through hole is taken as an example.
  • the first through hole 01, the second through hole 02, and the third through hole 03 have the same hole diameters (corresponding to D1, D, and D3), and the hole diameters (D1, D, and D3) are the same.
  • D, D3) is 1um-10um.
  • the first light shielding layer 41 There are a plurality of first through holes 01 in the position corresponding to the fingerprint identification device 2, a plurality of second through holes 02 in the second light shielding layer 42 at a position corresponding to the fingerprint identification device 2, and a third light shielding layer 43 with the fingerprint identification device 2.
  • the above-mentioned organic light-emitting display panel provided in the embodiment of the present disclosure further includes: a light-emitting layer 9 located between the anode 3 and the first encapsulation layer 5 , and a light-emitting layer 9 located between the light-emitting layer 9 and the first encapsulation layer 5 .
  • the above-mentioned organic light-emitting display panel provided in the embodiment of the present disclosure, as shown in FIG.
  • the light-emitting layer 9 may include a red light-emitting layer R, a green light-emitting layer G, and a blue light-emitting layer B
  • the cathode 10 is a structure arranged on the entire surface
  • the spacer layer 11 plays a supporting role.
  • the above-mentioned organic light emitting display panel provided in the embodiment of the present disclosure further includes a touch layer 12 and a polarizer 13 located on the side of the light shielding layer 4 away from the base substrate 1 .
  • the touch layer 12 by integrating the touch layer 12 in the organic light emitting display panel, the thickness of the organic light emitting display panel can be reduced, and the polarizer 13 mainly plays the role of anti-glare.
  • the touch layer 12 and the polarizer 13 may be independent film layers, or may be the touch layer 12 Integrated on the polarizer 13 , the touch layer 12 can be bonded together with the third light shielding layer 43 by OCA (optical adhesive).
  • OCA optical adhesive
  • the above-mentioned organic light-emitting display panel provided by the embodiment of the present disclosure, as shown in FIG. 1 and FIG. 2 , further includes a driving circuit 14 located between the base substrate 1 and the fingerprint identification device 2 .
  • the driving circuit 14 A thin film transistor (not shown) is included, and the thin film transistor is electrically connected to the fingerprint identification device 2 .
  • the organic light emitting display panel provided in the embodiment of the present disclosure further includes a back film 17 on the side of the base substrate 1 facing away from the fingerprint identification device 2 .
  • the basic principle of fingerprint recognition through the collimation structure is as follows:
  • the OLED When the finger 16 touches the cover plate 15 (introduced in the display device), the OLED is controlled to light up the entire screen to emit light. After the light is emitted from the light-emitting layer 9, it passes upward through the first encapsulation layer 5, the second shading 42, and the second encapsulation layer 6 respectively. , the third light-shielding layer 43, OCA (optical glue), touch layer 12, polarizer 13 and cover plate 15 and other film layers reach the fingerprint interface, that is, the contact interface between the finger 16 and the cover plate 15, and reflect and scatter back on the interface.
  • OCA optical glue
  • the fingerprint identification device 2 When the light from the finger 16 passes through the above-mentioned film layer and the first light shielding layer 41, the first through hole 01, the second through hole 02 and the third through hole 03 can screen out the light reflected by the finger 16 in a nearly collimated manner, so that the When reaching the fingerprint identification device 2 below, the fingerprint identification device 2 can detect the intensity of the reading light. Since the energy of the light transmitted downward between the valley and the ridge of the finger 16 is different, the light intensity detected by the fingerprint identification device 2 is different, thereby obtaining the fingerprint information. .
  • each fingerprint identification device 2 corresponds to at least one group of through holes (take 01 to 03 as an example), and may also correspond to multiple groups of through holes ( 01 to 03), adjust the distance between the light-shielding layers through the light-transmitting film layer between the light-shielding layers, determine the distance between the top light-shielding layer and the bottom light-shielding layer and the aperture size of the through hole, so as to adjust the required
  • the depth-to-width ratio of the casing holes is limited, and the light-receiving angle ⁇ of the collimation structure is limited, and the required collimation effect has been achieved, so that the information of the valleys and ridges of the pattern can be accurately obtained, and large-area fingerprint recognition can be realized.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned organic light-emitting display panel provided by an embodiment of the present disclosure.
  • the principle of solving the problem of the display device is similar to that of the aforementioned organic light-emitting display panel. Therefore, the implementation of the display device can refer to the aforementioned implementation of the organic light-emitting display panel, and the repetition will not be repeated here.
  • the above-mentioned display device provided by the embodiments of the present disclosure may be a full-screen display device, or may also be a flexible display device, etc., which is not limited herein.
  • the above-mentioned display device provided by the embodiment of the present disclosure may be a mobile phone with a full screen as shown in FIG. 9 .
  • the above-mentioned display device provided by the embodiment of the present disclosure may also be any product or component with a display function, such as a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present disclosure.
  • a cover plate 15 is further included on the side of the polarizer 13 away from the base substrate 1 , in order to reduce the lightness and thinness of the display device
  • the cover plate 15 is a flexible cover plate, such as PI, and the cover plate 15 can be bonded together with the polarizer 13 by OCA (optical glue).
  • the above-mentioned organic light-emitting display panel provided by the embodiment of the present disclosure adopts at least two light-shielding layers each having through holes to form a collimation structure, and the at least two through holes corresponding to each other can make the light reflected by the finger nearly collimated. Screen out and make it reach the fingerprint identification device below.
  • the fingerprint identification device can detect the intensity of the reading light. Because the energy of the light transmitted down the valley and the ridge of the fingerprint is different, the light intensity detected by the fingerprint identification device is different, and the fingerprint is obtained.
  • the light-receiving angle of the collimation structure can be defined by the top light-shielding layer and the bottom light-shielding layer, and the middle light-shielding layer can be used to block different non-sub-pixels.
  • the light crosstalk between the through holes in the area improves the accuracy of the identified fingerprint information.
  • the present disclosure only needs to fabricate at least two light-shielding layers with through holes with a relatively simple structure to achieve a better collimation effect, and the light-shielding layer closest to the substrate is on the same layer as the anode in the organic light-emitting display panel. Insulation arrangement, in this way, the pattern of the bottom light shielding layer and the anode can be formed by one patterning process, which simplifies the preparation process, saves the production cost and improves the production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光显示面板及显示装置,包括:衬底基板(1),具有多个子像素区域(A1)以及位于子像素区域之间的非子像素区域(A2);多个指纹识别器件(2),位于衬底基板的非子像素区域;多个阳极(3),位于子像素区域,且位于指纹识别器件背离衬底基板的一侧;准直结构,位于非子像素区域,准直结构包括叠层设置的至少两层遮光层(41、42、43),至少两层遮光层在指纹识别器件背离衬底基板的一侧,每一遮光层在衬底基板上的正投影均至少覆盖指纹识别器件在衬底基板上的正投影;每一遮光层中与指纹识别器件对应位置处均具有至少一个通孔(01、02、03),且各遮光层的通孔一一对应设置;其中,距离衬底基板最近的遮光层(41)与阳极同层绝缘设置。

Description

一种有机发光显示面板及显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种有机发光显示面板及显示装置。
背景技术
有机发光显示面板集成指纹识别技术,是一种在不降低有机发光显示面板有效显示面积的同时提供指纹识别能力的面板集成技术。现有的有机发光显示面板通常集成光学的指纹识别单元。其中,自有机发光显示面板出射的光线在手指表面反射再次进入有机发光显示面板内被指纹识别单元接收。指纹识别单元能够根据手指纹路的纹谷与纹脊对光线反射的差异产生不同的识别信息,从而能够识别不同的手指纹路信息。
发明内容
本公开实施例提供的一种有机发光显示面板,包括:
衬底基板,具有多个子像素区域以及位于所述子像素区域之间的非子像素区域;
多个指纹识别器件,位于所述衬底基板的非子像素区域;
多个阳极,位于所述子像素区域,且位于所述指纹识别器件背离所述衬底基板的一侧;
准直结构,位于所述非子像素区域,所述准直结构包括叠层设置的至少两层遮光层,所述至少两层遮光层在所述指纹识别器件背离所述衬底基板的一侧,每一所述遮光层在所述衬底基板上的正投影均至少覆盖所述指纹识别器件在所述衬底基板上的正投影;每一所述遮光层中与所述指纹识别器件对应位置处均具有至少一个通孔,且同一所述指纹识别器件对应的各所述遮光层的通孔一一对应设置;其中,距离所述衬底基板最近的遮光层与所述阳极同层绝缘设置。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述准直结构包括叠层设置的第一遮光层、第二遮光层和第三遮光层,所述第一遮光层靠近所述衬底基板,所述第三遮光层远离所述衬底基板;所述第一遮光层与所述阳极同层绝缘设置;
所述第一遮光层中与所述指纹识别器件对应位置处具有至少一个第一通孔,所述第二遮光层中与所述指纹识别器件对应位置处具有至少一个第二通孔,所述第三遮光层具中与所述指纹识别器件对应位置处具有至少一个第三通孔,相同位置处的所述第一通孔、所述第二通孔和所述第三通孔一一对应设置。
可选地,在本公开实施例提供的上述有机发光显示面板中,还包括:位于所述阳极背离所述衬底基板一侧的第一封装层,以及位于所述第一封装层背离所述衬底基板一侧的第二封装层;
所述第二遮光层位于所述第一封装层和所述第二封装层之间,所述第三遮光层位于所述第二封装层背离所述衬底基板的一侧。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述第二遮光层和所述第三遮光层的材料均为黑矩阵材料。
可选地,在本公开实施例提供的上述有机发光显示面板中,还包括位于所述阳极背离所述衬底基板一侧的像素界定层,所述像素界定层包括叠层设置的彩色色阻层和黑色色阻层,所述彩色色阻层靠近所述阳极,所述黑色色阻层远离所述阳极;所述像素界定层具有与所述子像素区域一一对应的开口区域,所述黑色色阻层复用为所述第二遮光层。
可选地,在本公开实施例提供的上述有机发光显示面板中,还包括位于所述像素界定层背离所述衬底基板一侧的封装层,所述第三遮光层位于所述封装层背离所述衬底基板的一侧。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述准直结构的收光角为10°-20°。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述准直结 构满足公式:D(H1+H2)/2H1≤P1≤D(H1+H2)/2(H2-H1);其中,
D为所述指纹识别器件的宽度,H1为所述第一遮光层的下表面和所述第二遮光层的下表面之间的间距,H2为所述第二遮光层的下表面和所述第三遮光层的上表面之间的间距,P1为同一所述遮光层中相邻所述非子像素区域内通孔之间的间距。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述第一通孔、所述第二通孔和所述第三通孔的孔径相同,且所述孔径为1um-10um。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述第一遮光层和所述第二遮光层之间的间距为5um-10um,所述第二遮光层和所述第三遮光层之间的间距为10um-30um。
可选地,在本公开实施例提供的上述有机发光显示面板中,在同一所述遮光层中,相邻所述通孔之间的间距为20um-120um。
可选地,在本公开实施例提供的上述有机发光显示面板中,所述第一遮光层中与所述指纹识别器件对应位置处具有多个第一通孔,所述第二遮光层中与所述指纹识别器件对应位置处具有多个第二通孔,所述第三遮光层具中与所述指纹识别器件对应位置处有多个第三通孔;各所述第一通孔均匀分布,各所述第二通孔均匀分布,各所述第三通孔均匀分布。
可选地,在本公开实施例提供的上述有机发光显示面板中,还包括:位于所述阳极和所述封装层之间的发光层,位于所述发光层和所述封装层之间的阴极,以及位于所述像素界定层和所述阴极之间的隔垫物层。
可选地,在本公开实施例提供的上述有机发光显示面板中,还包括位于所述遮光层背离所述衬底基板一侧的触控层和偏光片。
可选地,在本公开实施例提供的上述有机发光显示面板中,还包括位于所述衬底基板和所述指纹识别器件之间的驱动电路,所述驱动电路包括薄膜晶体管,所述薄膜晶体管与所述指纹识别器件电连接。
相应地,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述有机发光显示面板。
可选地,在本公开实施例提供的上述显示装置中,还包括位于所述偏光片背离所述衬底基板一侧的盖板,所述盖板为柔性盖板。
附图说明
图1为本公开实施例提供的一种有机发光显示面板的剖面结构示意图;
图2为本公开实施例提供的又一种有机发光显示面板的剖面结构示意图;
图3为图1对应的一种一个非子像素区域的剖面结构示意图;
图4为图3对应的俯视结构示意图;
图5为图1对应的又一种一个非子像素区域的剖面结构示意图;
图6为图5对应的俯视结构示意图;
图7为准直结构及防串扰原理分析示意图;
图8为三层遮光层和指纹识别器件的演示示意图;
图9为本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对 位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
相关技术中,由于有机发光二极管(Organic Light-Emitting Diode,OLED)模组的超薄化,OLED In Cell点光源方案的指纹图像面积较小,尤其指纹边缘部分极易受强光干扰导致图像模糊拼接效果很差。另外点光源光路指纹图像会因为偏光片的存在导致图像照度分布不均,出现部分区域指纹清晰,部分区域指纹信号弱甚至很难分辨的现象。目前,相关技术中很难实现大面积指纹识别。
有鉴于此,本公开实施例提供的一种有机发光显示面板,如图1和图2所示,包括:
衬底基板1,具有多个子像素区域A1以及位于子像素区域A1之间的非子像素区域A2;
多个指纹识别器件2,位于衬底基板1的非子像素区域A2;具体地,该指纹识别器件2位于非子像素区域A2,不影响有机发光显示面板的开口率,该指纹识别器件2可以为PIN二极管结构;
多个阳极3,位于子像素区域A1,且位于指纹识别器件2背离衬底基板1的一侧;
准直结构,位于非子像素区域A2,准直结构包括叠层设置的至少两层遮光层(以41、42和43三层遮光层为例),至少两层遮光层(41、42和43)在指纹识别器件2背离衬底基板1的一侧,每一遮光层(41、42、43)在衬底基板1上的正投影均至少覆盖指纹识别器件2在衬底基板1上的正投影;每一遮光层(41、42、43)中与指纹识别器件2对应位置处均具有至少一个通孔,具体地,遮光层41中与指纹识别器件2对应位置处具有至少一个通孔01(图1和图2中以一个通孔01为例),遮光层42中与指纹识别器件2对应位置处具有至少一个通 孔02(图1和图2中以一个通孔02为例),遮光层43中与指纹识别器件2对应位置处具有至少一个通孔03(图1和图2中以一个通孔03为例);且同一指纹识别器件2对应的各遮光层(41、42、43)的通孔(01、02、03)一一对应设置,具体地,同一指纹识别器件2对应的遮光层41的通孔01、遮光层42的通孔02、遮光层43的通孔03一一对应设置;其中,距离衬底基板1最近的遮光层41与阳极3同层绝缘设置。
本公开实施例提供的上述有机发光显示面板,采用分别具有通孔的至少两层遮光层构成准直结构,一一对应的至少两个通孔可将手指反射后的光线近于准直化的筛选出,使其到达下方指纹识别器件,指纹识别器件可以探测读取光线的强度,由于指纹的谷与脊向下透射光的能量不同,指纹识别器件探测得到的光强不同,由此获取指纹信息,实现大面积指纹识别;并且,当本公开的遮光层大于两层时,可以通过顶部遮光层和底部遮光层限定准直结构的收光角,中间遮光层可以用于遮挡不同非子像素区域内通孔之间的光线串扰,提高识别出的指纹信息的准确性。另外,本公开由于只需要制作结构相对简单的具有通孔的至少两层遮光层即可达到较好的准直效果,并且距离衬底基板最近的遮光层与有机发光显示面板中的阳极同层绝缘设置,这样,可以通过一次构图工艺形成底部遮光层与阳极的图形,简化制备工艺流程,节省生产成本,提高生产效率。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1和图2所示,准直结构包括叠层设置的第一遮光层41、第二遮光层42和第三遮光层43,第一遮光层41靠近衬底基板1,第三遮光层43远离衬底基板1;第一遮光层43与阳极3同层绝缘设置;这样,只需要在形成阳极3时改变原有的构图图形,即可通过一次构图工艺形成第一遮光层41与阳极3的图形,不用增加单独制备第一遮光层41的工艺,可以简化制备工艺流程,节省生产成本,提高生产效率;
第一遮光层41中与指纹识别器件2对应位置处具有至少一个第一通孔01(图1和图2中以一个第一通孔01为例),第二遮光层42中与指纹识别器件2对 应位置处具有至少一个第二通孔02(图1和图2中以一个第二通孔02为例),第三遮光层43具中与指纹识别器件2对应位置处具有至少一个第三通孔03(图1和图2中以一个第三通孔03为例),相同位置处的第一通孔01、第二通孔02和第三通孔03一一对应设置,通过光学设计第一通孔01、第二通孔02和第三通孔03可以具有准直功能,可将手指反射后的光线近于准直化的筛选出,使其到达下方指纹识别器件2,实现指纹识别。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图3和图4所示,图3为图1中一个非子像素区域A2的剖面结构示意图,图4为图1对应的部分膜层的俯视结构示意图(一个通孔),第一遮光层41中与指纹识别器件2对应位置处具有一个第一通孔01,第二遮光层42中与指纹识别器件2对应位置处具有一个第二通孔02,第三遮光层43具中与指纹识别器件2对应位置处具有一个第三通孔03,第一通孔01、第二通孔02和第三通孔03一一对应设置,通过光学设计第一通孔01、第二通孔02和第三通孔03可以具有准直功能,可将手指反射后的光线近于准直化的筛选出,使其到达下方指纹识别器件2,实现指纹识别。如图5和图6所示,图5为图1中一个非子像素区域A2的剖面结构示意图,图6为图1对应的部分膜层的俯视结构示意图(多个通孔),第一遮光层41中与指纹识别器件2对应位置处具有多个第一通孔01,第二遮光层42中与指纹识别器件2对应位置处具有多个第二通孔02,第三遮光层43具中与指纹识别器件2对应位置处具有多个第三通孔03,同一位置处的第一通孔01、第二通孔02和第三通孔03一一对应设置,通过光学设计第一通孔01、第二通孔02和第三通孔03可以具有准直功能,可将手指反射后的光线近于准直化的筛选出,使其到达下方指纹识别器件2,实现指纹识别。具体地,第一通孔01、第二通孔02和第三通孔03在衬底基板1上的正投影尽可能的完全重叠,但是根据实际制作工艺的对位误差,第一遮光层41、第二遮光层42和第三遮光层43在同一位置处的通孔之间会存在一定的偏移,并不能保证完全重叠,即可能存在部分重叠的情况。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1 所示,还包括:位于阳极3背离衬底基板1一侧的第一封装层5,以及位于第一封装层5背离衬底基板1一侧的第二封装层6;
第二遮光层42位于第一封装层5和第二封装层6之间,第三遮光层43位于第二封装层6背离衬底基板1的一侧。具体地,第一封装层5和第二封装层6均为无机层-有机层-无机层的交替结构,且第一封装层5和第二封装层6均为透光膜层,这样从手指反射的光可以通过通孔入射至指纹识别器件2,实现指纹识别。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1所示,第二遮光层42和第三遮光层43的材料可以均为黑矩阵材料(BM)。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图2所示,还包括位于阳极3背离衬底基板1一侧的像素界定层7,像素界定层7包括叠层设置的彩色色阻层71和黑色色阻层72,彩色色阻层71靠近阳极3,黑色色阻层72远离阳极3;像素界定层7具有与子像素区域A1一一对应的开口区域,开口区域裸露出阳极3,黑色色阻层72复用为第二遮光层42。具体地,原有的像素界定层7一般为彩色的,可以过滤掉经手指反射回指纹识别器件2的环境光,本公开通过采用黑色色阻层72取代原有的部分像素界定层7,这样黑色色阻层72可以复用为第二遮光层42,这样可以进一步减少一层遮光层的制作,降低器件厚度以及降低成本。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图2所示,还包括位于像素界定层7背离衬底基板1一侧的封装层8,第三遮光层43位于封装层8背离衬底基板1的一侧。具体地,封装层8为无机层-有机层-无机层的交替结构,且封装层8为透光膜层,这样从手指反射的光可以通过通孔入射至指纹识别器件2,实现指纹识别。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图7所示,图7为准直结构及防串扰原理分析示意图,第一遮光层41、第二遮光层42和第三遮光层43在同一位置处对应的第一通孔01、第二通孔02和第三通孔03在衬底基板1上的正投影完全重叠的区域构成套孔结构(准直结构),起到 对入射至该位置的各个角度的光线进行准直的作用,使与垂直于准直结构表面的法线呈在一定范围角度(小角度)的光线可以通过该套孔结构,超过该范围角度(大角度)的光线被截止。可以通过光线的最小角度和最大角度之间的差值即为收光角θ,为了保证从手指反射回的光线能够尽可能的入射至指纹识别器件2,该准直结构的收光角θ可以为10°-20°。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图7所示,第一遮光层41的下表面和第二遮光层42的下表面之间的间距H1可以为5um-10um,第二遮光层42的下表面和第三遮光层43的上表面之间的间距H2可以为10um-30um。具体地,第一遮光层41和第二遮光层42之间以及第二遮光层42和第三遮光层43之间的膜层是透光膜层(图7未示出),通过透光膜层调整各层遮光层之间的距离,确定出第三遮光层43的上表面和第一遮光层41的下表面之间的距离(H1+H2)以及通孔的孔径大小(第一通孔01的孔径D1、第二通孔02的孔径D2和第三通孔的孔径D3相等),以调节所需的套孔(01、02、03)深宽比,而限定准直结构的收光角θ,已达到所需的准直效果,从而可以实现精确获取纹路的谷与脊的信息。
具体地,如图7所示,准直结构的顶部遮光层(即第三遮光层43)的上表面和底部遮光层(即第一遮光层41)的下表面之间的厚度(H1+H2)和通孔(例如01)的孔径D1大小限制了收光角θ的范围,tanθ/2=D1/(H2+H1)。在指纹识别过程中,①、②、③、④位置的杂散光线以及后面的光线都会通过第一遮光层41和第三遮光层43之间的透光膜层到达准直结构下方的指纹识别器件2,造成获取到的图像模糊问题,进而导致根据指纹识别器件2接收到的光线识别出的指纹信息不准确的问题。因此,需要设置中间遮光层(即第二遮光层42)来遮挡串扰光线,以实现相邻通孔的光被第二遮光层42遮挡或者吸收,从而指纹识别器件2不会受到杂散光的影响。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图7所示,不同非子像素区域A2内同一位置处的通孔之间的间距P1会影响指纹识别器件2接收信号光的透过率以及相邻遮光层通孔光线串扰,例如图7中①、 ②、③、④位置的杂散光线对最左侧指纹识别器件2产生干扰,因此,为了提高指纹识别器件2接收信号光的透过率以及避免相邻遮光层通孔光线串扰的问题,在同一遮光层中,相邻通孔之间的间距P1可以为20um-120um,这样①、②、③、④位置处的杂散光线会被第二遮光层42遮挡,无法进入最左侧的套孔结构,从而不会影响最左侧指纹识别器件2接收信号光的透过率,即可以避免相邻遮光层通孔光线的串扰。
进一步地,在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图7所示,为防止其他光线从相邻通孔及子像素区域A1到达指纹识别器件2,以及遮挡图中①、②、③、④杂散光线对指纹识别器件2的干扰,则准直结构满足如下关系:
D/2H1≥(P1-D/2)/H2即D(H1+H2)≥2H1P1    (1)
(P1-D/2)/H1≥(P1+D/2)/H2即P1≥D(H1+H2)/2(H2-H1)    (2)
综合(1)和(2),准直结构满足如下公式:
D(H1+H2)/2H1≤P1≤D(H1+H2)/2(H2-H1)    (3)
其中,D为指纹识别器件2的宽度,H1为第一遮光层41的下表面和第二遮光层42的下表面之间的间距,H2为第二遮光层42的下表面和第三遮光层43的上表面之间的间距,P1为同一遮光层中相邻非子像素区域内通孔之间的间距。
经本案的发明人研究发现,在满足公式(3)之后就可以避免相邻光线串扰的问题,实现精确的指纹识别。
在具体实施时,如图7所示,指纹识别器件2的宽度D与第一遮光层41、第二遮光层42和第三遮光层43的宽度大小相等,可以为20um-100um。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,各遮光层中的通孔一般呈周期排列,通孔的孔型可以是圆形、正方形等形状,在此不做限定。如图8所示,图8为各遮光层(41、42和43)和指纹识别器件2的演示示意图,在通孔(01、02和03)为圆形时,其孔径(D1、D、D3)为圆形的直径。在通孔为正方形时,其孔径(D1、D、D3)为正方形的边长。本公开实施例以通孔的孔型为圆形为例,第一通孔01、第二通孔02和第三通孔 03的孔径(对应D1、D、D3)相同,且孔径(D1、D、D3)为1um-10um。
在具体实施时,为了使手指反射回的光线尽可能多的入射至指纹识别器件,在本公开实施例提供的上述有机发光显示面板中,如图5和图6所示,第一遮光层41中与指纹识别器件2对应位置处具有多个第一通孔01,第二遮光层42中与指纹识别器件2对应位置处具有多个第二通孔02,第三遮光层43具中与指纹识别器件2对应位置处有多个第三通孔03;并且为了方便制作,各第一通孔01均匀分布,各第二通孔02均匀分布,各第三通孔03均匀分布。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1所示,还包括:位于阳极3和第一封装层5之间的发光层9,位于发光层9和第一封装层5之间的阴极10,以及位于像素界定层7和阴极10之间的隔垫物层11。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图2所示,还包括:位于阳极3和封装层8之间的发光层9,位于发光层9和封装层8之间的阴极10,以及位于像素界定层7和阴极10之间的隔垫物层11。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图4、图6和图7所示,发光层9可以包括红色发光层R、绿色发光层G和蓝色发光层B,阴极10为整面设置的结构,隔垫物层11起到支撑的作用。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1和图2所示,还包括位于遮光层4背离衬底基板1一侧的触控层12和偏光片13,本公开通过将触控层12集成在有机发光显示面板内,可以降低有机发光显示面板的厚度,偏光片13主要起到防眩光的作用。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1和图2所示,触控层12和偏光片13可以是独立的膜层,也可以是触控层12集成在偏光片13上,触控层12可以通过OCA(光学胶)和第三遮光层43粘合在一起。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1和图2所示,还包括位于衬底基板1和指纹识别器件2之间的驱动电路14,驱动电路14包括薄膜晶体管(未示出),薄膜晶体管与指纹识别器件2电连接。
需要说明的是,本公开实施例图1和图2中的指纹识别器件2和驱动电路14 的位置关系仅是示意性说明,详细的电路结构以及与指纹识别器件2的电连接关系与相关技术中相同,在此不做详述。
在具体实施时,在本公开实施例提供的上述有机发光显示面板中,如图1和图2所示,还包括位于衬底基板1背向指纹识别器件2一侧的背膜17。
具体地,在本公开实施例提供的上述有机发光显示面板中,以图1所示的有机发光显示面板为例,通过准直结构指纹识别的基本原理为:
当手指16接触盖板15(显示装置中介绍)时,控制OLED全屏点亮发出光线,光线从发光层9发出后,向上分别经过第一封装层5、第二遮光42、第二封装层6、第三遮光层43、OCA(光学胶)、触控层12和偏光片13和盖板15等膜层到达指纹界面,即手指16与盖板15的接触界面,在界面上反射与散射回的光线经过上述膜层以及第一遮光层41时,第一通孔01、第二通孔02和第三通孔03可将手指16反射后的光线近于准直化的筛选出,使其到达下方指纹识别器件2,指纹识别器件2可以探测读取光线的强度,由于手指16的谷与脊向下透射光的能量不同,指纹识别器件2探测得到的光强不同,由此获取指纹信息。
本公开通过采用具有通孔的至少两层遮光层构成的准直结构,每个指纹识别器件2上方至少对应一组通孔(以01~03为例),也可以是对应多组通孔(01~03),通过各遮光层之间的透光膜层调整各层遮光层之间的距离,确定出顶部遮光层和底部遮光层之间的距离以及通孔的孔径大小,以调节所需的套孔深宽比,而限定准直结构的收光角θ,已达到所需的准直效果,从而可以实现精确获取纹路的谷与脊的信息,实现大面积指纹识别。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述有机发光显示面板。该显示装置解决问题的原理与前述有机发光显示面板相似,因此该显示装置的实施可以参见前述有机发光显示面板的实施,重复之处在此不再赘述。
在具体实施时,本公开实施例提供的上述显示装置可以为全面屏显示装置,或者也可以为柔性显示装置等,在此不作限定。
在具体实施时,本公开实施例提供的上述显示装置可以为如图9所示的 全面屏的手机。当然,本公开实施例提供的上述显示装置也可以为平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
在具体实施时,在本公开实施例提供的上述显示装置中,如图1和图2所示,还包括位于偏光片13背离衬底基板1一侧的盖板15,为了降低显示装置的轻薄化,该盖板15为柔性盖板,如PI,盖板15可以通过OCA(光学胶)和偏光片13粘合在一起。
本公开实施例提供的上述有机发光显示面板,采用分别具有通孔的至少两层遮光层构成准直结构,一一对应的至少两个通孔可将手指反射后的光线近于准直化的筛选出,使其到达下方指纹识别器件,指纹识别器件可以探测读取光线的强度,由于指纹的谷与脊向下透射光的能量不同,指纹识别器件探测得到的光强不同,由此获取指纹信息,实现大面积指纹识别;并且,当本公开的遮光层大于两层时,可以通过顶部遮光层和底部遮光层限定准直结构的收光角,中间遮光层可以用于遮挡不同非子像素区域内通孔之间的光线串扰,提高识别出的指纹信息的准确性。另外,本公开由于只需要制作结构相对简单的具有通孔的至少两层遮光层即可达到较好的准直效果,并且距离衬底基板最近的遮光层与有机发光显示面板中的阳极同层绝缘设置,这样,可以通过一次构图工艺形成底部遮光层与阳极的图形,简化制备工艺流程,节省生产成本,提高生产效率。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种有机发光显示面板,其中,包括:
    衬底基板,具有多个子像素区域以及位于所述子像素区域之间的非子像素区域;
    多个指纹识别器件,位于所述衬底基板的非子像素区域;
    多个阳极,位于所述子像素区域,且位于所述指纹识别器件背离所述衬底基板的一侧;
    准直结构,位于所述非子像素区域,所述准直结构包括叠层设置的至少两层遮光层,所述至少两层遮光层在所述指纹识别器件背离所述衬底基板的一侧,每一所述遮光层在所述衬底基板上的正投影均至少覆盖所述指纹识别器件在所述衬底基板上的正投影;每一所述遮光层中与所述指纹识别器件对应位置处均具有至少一个通孔,且同一所述指纹识别器件对应的各所述遮光层的通孔一一对应设置;其中,距离所述衬底基板最近的遮光层与所述阳极同层绝缘设置。
  2. 如权利要求1所述的有机发光显示面板,其中,所述准直结构包括叠层设置的第一遮光层、第二遮光层和第三遮光层,所述第一遮光层靠近所述衬底基板,所述第三遮光层远离所述衬底基板;所述第一遮光层与所述阳极同层绝缘设置;
    所述第一遮光层中与所述指纹识别器件对应位置处具有至少一个第一通孔,所述第二遮光层中与所述指纹识别器件对应位置处具有至少一个第二通孔,所述第三遮光层具中与所述指纹识别器件对应位置处具有至少一个第三通孔,相同位置处的所述第一通孔、所述第二通孔和所述第三通孔一一对应设置。
  3. 如权利要求2所述的有机发光显示面板,其中,还包括:位于所述阳极背离所述衬底基板一侧的第一封装层,以及位于所述第一封装层背离所述衬底基板一侧的第二封装层;
    所述第二遮光层位于所述第一封装层和所述第二封装层之间,所述第三遮光层位于所述第二封装层背离所述衬底基板的一侧。
  4. 如权利要求3所述的有机发光显示面板,其中,所述第二遮光层和所述第三遮光层的材料均为黑矩阵材料。
  5. 如权利要求2所述的有机发光显示面板,其中,还包括位于所述阳极背离所述衬底基板一侧的像素界定层,所述像素界定层包括叠层设置的彩色色阻层和黑色色阻层,所述彩色色阻层靠近所述阳极,所述黑色色阻层远离所述阳极;所述像素界定层具有与所述子像素区域一一对应的开口区域,所述黑色色阻层复用为所述第二遮光层。
  6. 如权利要求5所述的有机发光显示面板,其中,还包括位于所述像素界定层背离所述衬底基板一侧的封装层,所述第三遮光层位于所述封装层背离所述衬底基板的一侧。
  7. 如权利要求2所述的有机发光显示面板,其中,所述准直结构的收光角为10°-20°。
  8. 如权利要求2所述的有机发光显示面板,其中,所述准直结构满足公式:D(H1+H2)/2H1≤P1≤D(H1+H2)/2(H2-H1);其中,
    D为所述指纹识别器件的宽度,H1为所述第一遮光层的下表面和所述第二遮光层的下表面之间的间距,H2为所述第二遮光层的下表面和所述第三遮光层的上表面之间的间距,P1为同一所述遮光层中相邻所述非子像素区域内通孔之间的间距。
  9. 如权利要求2所述的有机发光显示面板,其中,所述第一通孔、所述第二通孔和所述第三通孔的孔径相同,且所述孔径为1um-10um。
  10. 如权利要求1所述的有机发光显示面板,其中,所述第一遮光层和所述第二遮光层之间的间距为5um-10um,所述第二遮光层和所述第三遮光层之间的间距为10um-30um。
  11. 如权利要求1所述的有机发光显示面板,其中,在同一所述遮光层中,相邻所述通孔之间的间距为20um-120um。
  12. 如权利要求2所述的有机发光显示面板,其中,所述第一遮光层中与所述指纹识别器件对应位置处具有多个第一通孔,所述第二遮光层中与所述指纹识别器件对应位置处具有多个第二通孔,所述第三遮光层具中与所述指纹识别器件对应位置处有多个第三通孔;各所述第一通孔均匀分布,各所述第二通孔均匀分布,各所述第三通孔均匀分布。
  13. 如权利要求5所述的有机发光显示面板,其中,还包括:位于所述阳极和所述封装层之间的发光层,位于所述发光层和所述封装层之间的阴极,以及位于所述像素界定层和所述阴极之间的隔垫物层。
  14. 如权利要求1所述的有机发光显示面板,其中,还包括位于所述遮光层背离所述衬底基板一侧的触控层和偏光片。
  15. 如权利要求1所述的有机发光显示面板,其中,还包括位于所述衬底基板和所述指纹识别器件之间的驱动电路,所述驱动电路包括薄膜晶体管,所述薄膜晶体管与所述指纹识别器件电连接。
  16. 一种显示装置,其中,包括如权利要求1-15任一项所述的有机发光显示面板。
  17. 如权利要求16所述的显示装置,其中,还包括位于所述偏光片背离所述衬底基板一侧的盖板,所述盖板为柔性盖板。
PCT/CN2020/117192 2020-09-23 2020-09-23 一种有机发光显示面板及显示装置 WO2022061602A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002077.6A CN114747017A (zh) 2020-09-23 2020-09-23 一种有机发光显示面板及显示装置
PCT/CN2020/117192 WO2022061602A1 (zh) 2020-09-23 2020-09-23 一种有机发光显示面板及显示装置
US17/419,889 US11839118B2 (en) 2020-09-23 2020-09-23 Organic light-emitting display panel and display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117192 WO2022061602A1 (zh) 2020-09-23 2020-09-23 一种有机发光显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022061602A1 true WO2022061602A1 (zh) 2022-03-31

Family

ID=80844725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117192 WO2022061602A1 (zh) 2020-09-23 2020-09-23 一种有机发光显示面板及显示装置

Country Status (3)

Country Link
US (1) US11839118B2 (zh)
CN (1) CN114747017A (zh)
WO (1) WO2022061602A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785909B (zh) * 2021-02-08 2022-12-01 神盾股份有限公司 指紋感測裝置及其操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110309775A (zh) * 2019-06-28 2019-10-08 厦门天马微电子有限公司 一种显示面板和显示装置
CN111240065A (zh) * 2020-01-22 2020-06-05 厦门天马微电子有限公司 一种显示面板、显示装置及显示面板的制备方法
CN111291719A (zh) * 2020-03-03 2020-06-16 北京迈格威科技有限公司 指纹识别装置、显示面板、设备及指纹识别方法
CN111626100A (zh) * 2020-03-26 2020-09-04 北京迈格威科技有限公司 屏下指纹装置及显示模组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106022324B (zh) * 2016-08-04 2019-04-30 京东方科技集团股份有限公司 一种纹路识别显示装置
CN107230698B (zh) * 2017-05-27 2019-09-03 上海天马微电子有限公司 一种显示面板及显示装置
CN107423728B (zh) * 2017-09-07 2024-02-02 京东方科技集团股份有限公司 光学结构及其制作方法、显示基板及显示装置
CN108227230B (zh) * 2018-02-05 2021-01-22 京东方科技集团股份有限公司 一种准直结构、其制作方法及显示装置
CN108875699B (zh) * 2018-07-06 2021-01-29 京东方科技集团股份有限公司 一种感光套孔结构及其制备方法、指纹识别装置
WO2020107236A1 (zh) * 2018-11-28 2020-06-04 上海箩箕技术有限公司 光准直器及其形成方法、指纹传感器模组
CN109685003A (zh) * 2018-12-24 2019-04-26 武汉华星光电半导体显示技术有限公司 Oled显示面板及屏下光学指纹识别方法
KR20210145896A (ko) * 2020-05-25 2021-12-03 삼성디스플레이 주식회사 폴더블 디스플레이 장치, 롤러블 디스플레이 장치, 및 디스플레이 장치
KR20220030004A (ko) * 2020-09-02 2022-03-10 엘지디스플레이 주식회사 표시패널과 이를 이용한 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110309775A (zh) * 2019-06-28 2019-10-08 厦门天马微电子有限公司 一种显示面板和显示装置
CN111240065A (zh) * 2020-01-22 2020-06-05 厦门天马微电子有限公司 一种显示面板、显示装置及显示面板的制备方法
CN111291719A (zh) * 2020-03-03 2020-06-16 北京迈格威科技有限公司 指纹识别装置、显示面板、设备及指纹识别方法
CN111626100A (zh) * 2020-03-26 2020-09-04 北京迈格威科技有限公司 屏下指纹装置及显示模组

Also Published As

Publication number Publication date
CN114747017A (zh) 2022-07-12
US11839118B2 (en) 2023-12-05
US20220320222A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
CN108922469B (zh) 一种显示面板及显示装置
US10564464B2 (en) Display device
US10671830B2 (en) Array substrate, display panel and display device
US11569326B2 (en) Display panel and display device
CN110286514B (zh) 一种显示面板及显示装置
CN113629208B (zh) 显示面板及显示装置
CN110502960B (zh) 显示基板、指纹识别面板、指纹识别方法及显示装置
CN110970480A (zh) 一种显示面板及显示装置
WO2021017194A1 (zh) 显示面板及显示装置
WO2021036747A1 (zh) 显示模组及电子设备
CN111971616B (zh) 背光模组、显示装置及背光模组的制备方法
US11645863B2 (en) Display device having fingerprint recognition component
CN113690271B (zh) 显示基板及显示装置
US11726359B2 (en) Display module and electronic device
WO2021249178A1 (zh) 显示面板和显示装置
US11740503B2 (en) Display screen and electronic device
WO2022061602A1 (zh) 一种有机发光显示面板及显示装置
CN111564483A (zh) 一种显示装置
CN113224118A (zh) 纹路识别显示面板和显示装置
US11611059B2 (en) Display apparatus
WO2020232692A1 (zh) Oled显示基板、面板、装置、制作方法、指纹识别模组
WO2022174448A1 (zh) 显示基板及显示装置
WO2021238138A1 (zh) 传感器、显示面板及显示装置
US20230418111A1 (en) Liquid crystal display panel
US20230026941A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954456

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20954456

Country of ref document: EP

Kind code of ref document: A1