WO2022057693A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2022057693A1
WO2022057693A1 PCT/CN2021/117098 CN2021117098W WO2022057693A1 WO 2022057693 A1 WO2022057693 A1 WO 2022057693A1 CN 2021117098 W CN2021117098 W CN 2021117098W WO 2022057693 A1 WO2022057693 A1 WO 2022057693A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
counter
sub
target power
Prior art date
Application number
PCT/CN2021/117098
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2022057693A1 publication Critical patent/WO2022057693A1/zh
Priority to US18/120,436 priority Critical patent/US20230217305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and in particular, to a transmission method and apparatus of a small data packet service.
  • NR New Radio, new air interface
  • RRC Radio Resource Control, radio resource control
  • RRC_INACTIVE Radio Resource Control inactive
  • State 3GPP Rel-16 version, RRC inactive state does not support sending data.
  • UE User Equipment
  • RRC_CONNECTED RRC connection
  • the 3GPP RAN#86 meeting decided to carry out the "NR inactive state (INACTIVE state) small data packet transmission (Small Data Transmission)" work item (Work Item, WI), to study the small data packet transmission technology in the RRC_INACTIVE state, including in Send uplink data on the pre-configured PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) resource, or use Message 3 (Message 3, Msg3) or Message B (Message 3) in the Random Access (Random Access, RA) process B, MsgB) carry data.
  • the UE When the UE sends small data packets in the RRC_INACTIVE state, once the transmission starts, it needs to ensure that the transmission is as successful as possible.
  • the preamble sequence Preamble
  • if the conditions are met increase the power as much as possible to ensure the transmission of small data packets. Therefore, it is necessary to enhance the transmission power of the random access preamble when sending small data packets in the RRC_INACTIVE state.
  • two-step random access (2-stepRA) can be rolled back (Fallback) to four-step random access (4-stepRA). After the introduction of small data packet transmission, the fallback mechanism needs to be enhanced.
  • the present application provides a solution.
  • the scenario of licensed spectrum access is used as an example; the present application is also applicable to the scenario of unlicensed spectrum access, for example, to achieve technical effects similar to those in licensed spectrum.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • the interpretation of the terms in this application refers to the definition of the normative protocol of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers).
  • the present application discloses a method used in a first node of wireless communication, which is characterized by comprising:
  • the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the The third signal is used in the random access procedure, and the first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the second counter is used In order to count the number of times that the first length is increased; the difference between the second target power and the first target power is related to the first length, and it is determined to send the first length in the first state. Data is used to determine the first step length.
  • the problem to be solved by this application includes: how to ensure that small data packets are sent through the random access procedure in the RRC_INACTIVE state.
  • the characteristics of the above method include: when the condition for raising the power is satisfied, raising the target received power of the preamble according to the first length.
  • the characteristics of the above method include: the first step is dedicated to sending small data packets through the random access procedure in the RRC_INACTIVE state.
  • the advantages of the above method include: improving the probability of successful transmission of small data packets.
  • the first signaling indicates the first length.
  • the second signaling indicates a first offset and a second step size, and the sum of the first offset and the second step size is used to determine the first step size.
  • the first data includes the first sub-data and the second sub-data; the first sub-data is successfully transmitted, and the second sub-data transmission failure is used to determine the second target power
  • the difference from the first target power is related to the first length.
  • the characteristics of the above method include: when a part of the first data is successfully transmitted and a part is not successfully transmitted, the first length is adopted.
  • the advantages of the above method include: when any part of the first data is not successfully transmitted, the first step length is not used, so as to avoid raising the power too quickly.
  • the second target power when the first signal is used for the first type of random access and the third signal is used for the second type of random access, the second target power
  • the difference from the first target power is also related to a second offset, and the difference between the first substep and the second substep and the first counter are used to determine the second offset , the first sub-step size and the second sub-step size are respectively used to determine the target power of the first type of random access and the second type of random access.
  • the characteristics of the above method include: when switching between different random access types, the power boost increases the influence of the difference of different random access types.
  • the second signal includes a first field, and the first field is used to indicate whether to give up sending the first data in the first state.
  • the characteristics of the above method include: when switching between different random access types, indicating whether the UE can continue to perform small data packet transmission.
  • the third signaling is used to determine a first candidate preamble sequence grouping, and it is determined that sending the first data in the first state is related to the first candidate preamble sequence grouping, and the first candidate preamble sequence grouping is determined.
  • the preamble sequence grouping is a first-type preamble sequence group in N1 first-type preamble sequence groups, where N1 is a positive integer; the first signal includes a preamble in the first candidate preamble sequence grouping code sequence.
  • sending the first data in the first state is independent of the first candidate preamble sequence grouping.
  • the characteristics of the above method include: dividing the preamble sequence into four groups according to the random access type and whether to send small data packets in RRC_INACTIVE.
  • the characteristics of the above method include: the UE sending small data packets in RRC_INACTIVE uses a dedicated preamble sequence set.
  • the advantages of the above method include: avoiding influence on other random access users.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by comprising:
  • the first length is selected; the first signal is sent according to the first target power; the first counter is updated; the second counter is determined whether to update; when When the first counter is not greater than the first threshold, and the second counter is determined to be updated, the third signal is transmitted according to the second target power; when the first counter is greater than the first threshold, the The first data is determined to fail in transmission; the second signal is monitored in a first time window; the first state includes an RRC inactive state; the first data includes small data packets; the first time window including a positive integer number of time slots; the first signal, the second signal and the third signal are used for random access procedures, the first signal and the third signal include a preamble sequence; the The first counter is used to count the number of times the preamble sequence is sent; the second counter is used to count the number of times the first length is increased; the difference between the second target power and the first target power In relation to the first size, determining that the first data is sent in the first state is
  • the first signaling indicates the first length.
  • the second signaling indicates a first offset and a second step size, and the sum of the first offset and the second step size is used to determine the first step size.
  • the transmission of the first sub-data is determined to be successful, and the transmission of the second sub-data is determined to fail; the first sub-data includes the first sub-data and the second sub-data; the first sub-data Data transmission is successful, and the second sub-data transmission failure is used to determine that the difference between the second target power and the first target power is related to the first length.
  • the second target power when the first signal is used for the first type of random access and the third signal is used for the second type of random access, the second target power
  • the difference from the first target power is also related to a second offset, and the difference between the first substep and the second substep and the first counter are used to determine the second offset , the first sub-step size and the second sub-step size are respectively used to determine the target power of the first type of random access and the second type of random access.
  • the second signal includes a first field, and the first field is used to indicate whether to give up sending the first data in the first state.
  • the third signaling is used to determine a first candidate preamble sequence grouping, and it is determined that sending the first data in the first state is related to the first candidate preamble sequence grouping, and the first candidate preamble sequence grouping is determined.
  • the preamble sequence grouping is a first-type preamble sequence group in N1 first-type preamble sequence groups, where N1 is a positive integer; the first signal includes a preamble in the first candidate preamble sequence grouping code sequence.
  • the present application discloses a first node used for wireless communication, which is characterized by comprising:
  • the first transmitter determines whether to transmit the first data in the first state; when it is determined to transmit the first data in the first state, select the first length, and transmit the first signal according to the first target power; update the first transmitter a counter; determine whether to update the second counter; when the first counter is not greater than the first threshold and it is determined to update the second counter, send a third signal according to the second target power; when the first counter is greater than the When the first threshold is determined, it is determined that the first data transmission fails;
  • the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the The third signal is used in the random access procedure, and the first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the second counter is used In order to count the number of times that the first length is increased; the difference between the second target power and the first target power is related to the first length, and it is determined to send the first length in the first state. Data is used to determine the first step length.
  • the present application discloses a second node used for wireless communication, which is characterized by comprising:
  • the second receiver receiving the first signal; receiving the third signal;
  • a second transmitter that transmits a second signal when the first signal is received
  • the first length is selected; the first signal is sent according to the first target power; the first counter is updated; the second counter is determined whether to update; when When the first counter is not greater than the first threshold, and the second counter is determined to be updated, the third signal is transmitted according to the second target power; when the first counter is greater than the first threshold, the The first data is determined to fail in transmission; the second signal is monitored in a first time window; the first state includes an RRC inactive state; the first data includes small data packets; the first time window including a positive integer number of time slots; the first signal, the second signal and the third signal are used for random access procedures, the first signal and the third signal include a preamble sequence; the The first counter is used to count the number of times the preamble sequence is sent; the second counter is used to count the number of times the first length is increased; the difference between the second target power and the first target power In relation to the first size, determining that the first data is sent in the first state is
  • the present application has the following advantages:
  • the first step is used to avoid raising the power too fast
  • FIG. 1 shows a flow chart of transmission of a first signal, a second signal and a third signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture for the user plane and the control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless signal transmission according to another embodiment of the present application.
  • FIG. 7 shows a flowchart of sending first data in a first state according to an embodiment of the present application
  • FIG. 8 is a schematic diagram showing that the difference between the second target power and the first target power is related to both the first length and the second offset according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram illustrating whether the first field of the second signal is used to indicate whether to give up sending the first data in the first state according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the fallback of sending the first data in the first state according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of determining that sending first data in a first state is related to selecting a first candidate preamble sequence grouping according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram of a processing apparatus used in a first node according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing apparatus used in a second node according to an embodiment of the present application
  • Figure 15 shows a schematic diagram of a given timer according to one embodiment of the present application.
  • Figure 16 shows a schematic diagram of a given timer according to another embodiment of an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the transmission of the first signal, the second signal and the third signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it should be emphasized that the sequence of each block in the figure does not represent the temporal sequence relationship between the represented steps.
  • the first node in this application determines in step 101 whether to send the first data in the first state; when it is determined to send the first data in the first state, select the first length, Send the first signal according to the first target power; update the first counter; determine whether to update the second counter; when the first counter is not greater than the first threshold and it is determined to update the second counter, send according to the second target power a third signal; when the first counter is greater than the first threshold, determining that the first data transmission fails; monitoring a second signal in a first time window in step 102; wherein the first state includes RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used for random access
  • the first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the second counter is used to count the first step length The number of times that the second target power is increased; the difference between the second target
  • the phrase determining whether to transmit the first data in the first state includes whether the first data is allowed to be transmitted in the first state.
  • the phrase determining whether to transmit the first data in the first state includes whether to allow the small packet transmission to be performed in the RRC_INACTIVE state.
  • whether to transmit the first data in the first state is determined according to the first reception quality.
  • the first received quality includes RSRP (Reference Signal Received Power, reference signal received power), or RSRQ (Reference Signal Received Quality, reference signal received quality), or RSSI (Received Signal Strength) Indicator, received signal strength indicator), or SINR (Signal to Noise and Interference Ratio, signal to interference and noise ratio), or at least one of CRI (Channel Status Information reference signal resource indicator, or channel status information reference signal resource indicator) .
  • RSRP Reference Signal Received Power, reference signal received power
  • RSRQ Reference Signal Received Quality, reference signal received quality
  • RSSI Receiveived Signal Strength
  • SINR Signal to Noise and Interference Ratio, signal to interference and noise ratio
  • CRI Channel Status Information reference signal resource indicator, or channel status information reference signal resource indicator
  • the unit of the first reception quality includes dBm.
  • the first reception quality is not less than a first quality threshold is used to determine that the first data is to be sent in the first state, and the not less than includes greater than or equal to.
  • the first quality threshold is preconfigured through RRC signaling.
  • the first quality threshold is configurable.
  • the first reception quality being less than a first quality threshold is used to determine not to transmit the first data in the first state.
  • the first reception quality not greater than a first quality threshold is used to determine that the first data is to be sent in the first state, the not greater than including less than or equal to.
  • the first reception quality greater than a first quality threshold is used to determine not to transmit the first data in the first state.
  • the first reception quality is the same.
  • the first reception quality is different.
  • the phrase, when determining to transmit the first data in the first state includes when a condition for transmitting the first data in the first state is satisfied.
  • the phrase when it is determined that the first data is to be transmitted in the first state includes when it is determined that the first data is to be transmitted in the first state according to a first reception quality.
  • whether to transmit the first data in the first state is determined according to the first data size.
  • the first data size is not greater than the first size threshold is used to determine that the first data is to be sent in the first state.
  • the first data size is preconfigured through RRC.
  • the first data size is configurable.
  • the size of the first data is the same.
  • the first data size is different.
  • whether to transmit the first data in the first state is determined according to the first reception quality and the first data size.
  • the first data is generated at a MAC (Medium Access Control, medium access control) layer.
  • MAC Medium Access Control, medium access control
  • the first data is generated at an RRC (Radio Resource Control, radio resource control) layer.
  • RRC Radio Resource Control, radio resource control
  • the first data is generated at a PHY (Physical) layer.
  • the first data is generated at a higher level.
  • the first data includes a MAC subheader (Subheader).
  • Subheader MAC subheader
  • the first data does not include a MAC subheader.
  • the first data includes CCCH (Common Control Channel, common control channel).
  • CCCH Common Control Channel
  • the first data does not include CCCH.
  • the first data includes a DTCH (Dedicated Transmission Channel, dedicated transmission channel) or a NAS message.
  • DTCH Dedicated Transmission Channel, dedicated transmission channel
  • NAS message a NAS message.
  • the first data includes MAC CE (Control Element, control element).
  • the first data includes a MAC PDU (Protocol Data Unit, protocol data unit).
  • MAC PDU Protocol Data Unit, protocol data unit
  • the first data includes MAC SDU (Service Data Unit, service data unit).
  • MAC SDU Service Data Unit, service data unit
  • the first data includes TBS (Transmission Block Size, transmission block size).
  • the first data includes a data block of the physical layer.
  • the first data supports segmentation.
  • the first data does not support segmentation.
  • the first data is transmitted through message 3 .
  • the first data is transmitted through message A.
  • the first data is transmitted through the resource scheduled by message 2 .
  • the first data is transmitted through the resource scheduled by message 4 .
  • the first data is transmitted through the resource scheduled by message B.
  • the first data is transmitted through preconfigured resources.
  • the first data is transmitted through a resource indicated by a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) in the random access process.
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first data is transmitted through a resource indicated by a RAR (Random Access Response, random access response) in the random access process.
  • RAR Random Access Response, random access response
  • the first data is transmitted through a resource indicated by a MAC CE in the random access process.
  • the first data includes M1 first-type sub-data, and M1 is a positive integer.
  • the M1 is equal to one.
  • the M1 is greater than 1.
  • an acknowledgement message is received after the M1 first-type sub-data are sent.
  • an acknowledgement message is received after any sub-data in the M1 first-type sub-data is sent.
  • the M1 first-type sub-data are sent in a time-division manner.
  • the phrase that the first state includes an RRC inactive state includes: the first state refers to the RRC inactive state.
  • the phrase that the first state includes an RRC inactive state includes: the RRC inactive state is one of the first states.
  • the first state includes a CM state.
  • the first state includes an RRC state.
  • the first wireless state includes a CM-Connected state (CM-Connected).
  • the first radio state includes a CM idle state (CM-Idle).
  • CM-Idle CM idle state
  • the first wireless state includes a CM-Inactive state.
  • the first state includes an RRC connected state (RRC_CONNECTED).
  • the first state is not an RRC connected state.
  • the first state includes an RRC inactive state.
  • the RRC inactive state includes an RRC_INACTIVE state.
  • the RRC inactive state includes an RRC idle state.
  • the RRC inactive state includes an RRC_IDLE state.
  • the RRC inactive state includes a DRX (Discontinuous Reception) state.
  • the behavior of selecting the first length includes: determining the first length.
  • the behavior of selecting the first step includes: setting PREAMBLE_POWER_RAMPING_STEP from the first step.
  • the first step is used to determine a power-ramping factor.
  • the first length is used to determine that for transmitting the first data in the first state, when the second counter is updated, the second target power is relative to the first The power at which the target power is boosted.
  • the first length is configured through RRC signaling or MAC layer signaling.
  • the unit of the first length includes dB.
  • the first step length includes an integer number of dB.
  • the first step length includes one of 0dB, 2dB, 4dB, or 6dB.
  • the first step length includes a field in an RRC message, and the name of the one field includes powerRampingStep.
  • the first step length includes a field in an RRC message, and the name of the one field includes msgA-PreamblePowerRampingStep.
  • the first step length includes a field in an RRC message, and the name of the one field includes powerRampingStepHighPriority.
  • the first step length includes a field in an RRC message, and the name of the one field includes xxx-powerRampingStep.
  • the first step length includes a field in an RRC message, and the name of the one field includes xxx-msgA-PreamblePowerRampingStep
  • the first step length includes a field in an RRC message, and the name of the one field includes xxx-powerRampingStepHighPriority.
  • the phrase sending the first signal according to the first target power includes: the value of PREAMBLE_RECEIVED_TARGET_POWER is equal to the first target power, and the first signal is sent using the first target power.
  • the phrase sending the first signal according to the first target power includes: the transmit power of the first signal is obtained by calculating the first target power.
  • the phrase sending the third signal according to the second target power includes: the value of PREAMBLE_RECEIVED_TARGET_POWER is equal to the second target power, and the third signal is sent using the second target power.
  • the phrase sending the third signal according to the second target power includes: the transmission power of the third signal is obtained by calculating the second target power.
  • the first signal includes the first preamble sequence in the random access procedure.
  • the first signal includes one of the preamble sequences in the random access process.
  • the third signal includes one of the preamble sequences in the random access process.
  • the first signal and the third signal are two consecutive preamble sequences sent in a random access procedure.
  • the first signal and the third signal are two non-consecutive preamble sequences sent in the random access process.
  • the given target power includes a first initial power
  • the given target power includes the first target power or the second target power.
  • the first initial power includes msgA-PreambleReceivedTargetPower.
  • the first initial power includes preambleReceivedTargetPower.
  • the first initial power includes xxx-msgA-PreambleReceivedTargetPower.
  • the first initial power includes xxx-preambleReceivedTargetPower.
  • the given target power includes a first power difference
  • the given target power includes the first target power or the second target power
  • the first power difference value includes DELTA_PREAMBLE.
  • the first power difference is used to determine a power offset.
  • the first power difference is independent of the subcarrier spacing.
  • the first power difference is related to the subcarrier spacing.
  • the first power difference value is related to the format of the preamble sequence.
  • the first power difference value for the first signal is the same as the first power difference value for the third signal.
  • the first power difference value for the first signal is different from the first power difference value for the third signal.
  • the first power difference is equal to one of 0dB, -3dB, or -6dB.
  • the first power difference is equal to (8+3 ⁇ )dB, or (5+3 ⁇ )dB, or (3+3 ⁇ )dB, or (3 ⁇ ), or one of (11+3 ⁇ ).
  • the given target power includes a first power increment, and the given target power includes the first target power or the second target power.
  • the first power increment is related to the second counter.
  • the first power increment sum ⁇ (the product of the second counter and the first length) and the difference between the first length ⁇ are equal.
  • the first power increment (the second counter ⁇ 1) ⁇ the first length.
  • the first power increment (PREAMBLE_POWER_RAMPING_COUNTER ⁇ 1) ⁇ PREAMBLE_POWER_RAMPING_STEP.
  • the first power increment (PREAMBLE_POWER_RAMPING_COUNTER ⁇ 1) ⁇ MSGA_PREAMBLE_POWER_RAMPING_STEP.
  • the first power increment (PREAMBLE_POWER_RAMPING_COUNTER ⁇ 1) ⁇ xxx_PREAMBLE_POWER_RAMPING_STEP.
  • the first power increment (PREAMBLE_POWER_RAMPING_COUNTER ⁇ 1) ⁇ xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP.
  • the given target power includes a first fallback power increment, and the given target power includes the first target power or the second target power.
  • the first fallback power increment includes POWER_OFFSET_2STEP_RA.
  • the first fallback power increment includes POWER_OFFSET_2STEP_xxx_RA.
  • the first backoff power increment is the difference between (the difference between the second counter and 1) and (the step size corresponding to the first signal and the step size corresponding to the second signal) ) are equal.
  • the step size corresponding to the first signal includes a first step size
  • the step size corresponding to the third signal includes a candidate step size
  • the first step includes xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP
  • the candidate step includes one of MSGA_PREAMBLE_POWER_RAMPING_STEP, or PREAMBLE_POWER_RAMPING_STEP, or xxx_PREAMBLE_POWER_RAMPING_STEP.
  • the first step includes xxx_PREAMBLE_POWER_RAMPING_STEP
  • the candidate step includes one of MSGA_PREAMBLE_POWER_RAMPING_STEP, or PREAMBLE_POWER_RAMPING_STEP, or xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP.
  • the given target power is related to at least one of the first initial power, or the first power difference, or the first power increment, or a first fallback power increment.
  • the given target power is related to the first initial power, the first power difference, and the first power increment.
  • the given target power is related to the first initial power, the first power difference, the first power increment, and the first fallback power increment.
  • the given target power is equal to the sum of the first initial power, the first power difference, and the first power increment.
  • the given target power is equal to the sum of the first initial power, the first power difference, the first power increment, and the first fallback power increment.
  • the first target power includes a target received power of the first signal when the second counter is equal to C1, the C1 being a positive integer.
  • the second target power includes a target received power of the third signal when the second counter is equal to (the sum of C1 and 1).
  • the first target power includes the value of PREAMBLE_RECEIVED_TARGET_POWER when the second counter is equal to C1.
  • the second target power includes the value of PREAMBLE_RECEIVED_TARGET_POWER when the second counter is equal to (sum of C1 and 1).
  • the second target power is increased by the first length.
  • the second target power is increased by the first length.
  • the behavior of updating the first counter includes: changing the value of the first counter.
  • the behavior of updating the first counter includes: changing the current value of the first counter to another value.
  • the behavior updating the first counter includes: incrementing the first counter by 1.
  • the behavior updating the first counter includes: decrementing the first counter by 1.
  • the behavior updating the first counter includes: adding K1 to the first counter, where K1 is a positive integer greater than 1.
  • the behavior of updating the first counter includes: decrementing the first counter by K1, where K1 is a positive integer greater than 1.
  • the act of determining whether to update the second counter includes: judging whether a condition for updating the second counter is satisfied.
  • a condition for updating the second counter includes: the value of the first counter is greater than 1.
  • one condition for updating the second counter includes not receiving a notification to suspend the first counter.
  • a condition for updating the second counter includes not receiving an LBT failure indication for the first signal.
  • a condition for updating the second counter includes: at least one of SSB (Synchronization Signal Block, synchronization signal block) or CSI-RS (Channel-state Information Reference Signal) is not changed is determined to update the second counter.
  • SSB Synchronization Signal Block, synchronization signal block
  • CSI-RS Channel-state Information Reference Signal
  • the behavior of updating the second counter includes: changing the value of the second counter.
  • the behavior of updating the second counter includes: changing the current value of the second counter to another value.
  • the behavior updating the second counter includes: incrementing the second counter by 1.
  • the behavior updating the second counter includes: decrementing the second counter by 1.
  • the behavior updating the second counter includes: adding K2 to the second counter, where K2 is a positive integer greater than 1.
  • the behavior updating the second counter includes: decrementing the second counter by K2, where K2 is a positive integer greater than 1.
  • the phrase that the first counter is not greater than a first threshold includes that the first counter is equal to the first threshold.
  • the phrase that the first counter is not greater than a first threshold includes that the first counter is less than the first threshold.
  • the first threshold is configured through an RRC message.
  • the first threshold includes one of msgA-TransMax, or preambleTransMax, or xxx-msgA-TransMax, or xxx-preambleTransMax.
  • the first time window includes ra-ResponseWindow, or ra-ContentionResolutionTimer, or msgB-ResponseWindow.
  • the first time window is used to determine whether the first signal is received by the second node in the present application.
  • the first time window includes a first time sub-window and a second time sub-window.
  • the first time sub-window includes ra-ResponseWindow
  • the second time sub-window includes ra-ContentionResolutionTimer
  • the first time sub-window is used to determine the reception of the message 1 time interval
  • the second time sub-window is used to determine the time interval for receiving the message 3 .
  • the start time of the first time window is the same as the transmission time of the first signal.
  • the start time of the first time window is equal to a certain time after the transmission time of the first signal.
  • the phrase that the first time window includes a positive integer number of time slots includes: the first time window is composed of a positive integer number of time slots.
  • the phrase that the first time window includes a positive integer number of time slots includes: the size of the first time window is equal to a positive integer number of time slots.
  • the phrase that the first time window includes a positive integer number of time slots includes: the time interval of the first time window is a positive integer number of time slots.
  • the time slot includes: solt, or a radio subframe (subframe), or a radio frame (Radio Frame), or multiple OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing technology) symbols , or at least one of multiple SC-FDMA (Single Carrier Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • solt or a radio subframe (subframe), or a radio frame (Radio Frame), or multiple OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing technology) symbols , or at least one of multiple SC-FDMA (Single Carrier Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing technology
  • SC-FDMA Single Carrier Frequency Division Multiple Access, single carrier frequency division multiple access
  • the positive integer number of time slots is configurable.
  • the positive integer number of time slots are configured through RRC messages.
  • the positive integer number of time slots are preconfigured.
  • the act of monitoring the second signal during the first time window includes monitoring the second signal during operation of the first time window.
  • the act of monitoring the second signal in the first time window includes monitoring the second signal after the first time window begins and before the first time window expires.
  • the act of monitoring the second signal during the first time window includes monitoring the second signal during a time interval defined by the first time window.
  • the behavior monitoring of the second signal includes: detecting whether the second signal exists on a channel occupied by the second signal.
  • the behavior monitoring of the second signal includes: monitoring (Monitoring) the second signal.
  • the behavior monitoring of the second signal includes: detecting whether the second signal exists through a CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) check.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the behavior monitoring of the second signal includes: detecting whether the second signal exists through blind detection.
  • the behavior monitoring of the second signal includes: coherently detecting the presence of the second signal through a feature sequence.
  • the behavior monitoring of the second signal includes receiving the second signal when the second signal is detected.
  • the behavior monitoring of the second signal includes: monitoring the PDCCH.
  • the second signal is monitored in the first time window.
  • the second signal is not detected in the first time window.
  • the second signal is received.
  • the second signal is not received.
  • the fact that the first counter is greater than the first threshold includes: the value of the first counter is greater than the first threshold.
  • the fact that the first counter is greater than the first threshold includes: the first counter is equal to the first threshold plus 1.
  • the act of determining that the first data transmission fails includes: determining that the transmission of the radio link fails (Radio Link Failure).
  • the act of determining that the first data transmission fails includes: determining that a random access problem occurs.
  • the act of determining that the transmission of the first data fails includes: determining that the first data is not sent successfully.
  • the act of determining that the first data transmission fails includes: determining that an RLF occurs, the reason for the RLF is a random access failure, and the reason for the random access failure is the failure of the first data transmission.
  • the MAC layer when it is determined that the first data transmission fails, the MAC layer sends a random access problem (Random Access Problem) indication to the RRC layer.
  • Random Access Problem Random Access Problem
  • the rlf-Cause is a field in an RRC message, and the RRC message includes UEInformationResponse, or MCGFailureInformation, or SCGFailureInformation.
  • the first state is returned.
  • the RRC_IDLE state is entered.
  • the phrases the first signal, the second signal and the third signal are used for the random access procedure include: the first signal, the second signal and the third signal Signaling is a signal in the random access procedure.
  • the phrases the first signal, the second signal and the third signal are used for the random access procedure include: the first signal, the second signal and the third signal
  • the signals are respectively message 1 (Message 1, Msg1), or message 2 (Message 2, Msg2), or message 3 (Message 3, Msg3), or message 4 (Message 4, Msg4) in the random access process, Either message A (Message A, MsgA), or one of message B (Message B, MsgB).
  • the first signal, the second signal and the third signal belong to the same random access procedure.
  • the first signal, the second signal and the third signal belong to different random access procedures.
  • the first signal is used to trigger the second signal.
  • the first signal is sent for determining monitoring of the second signal.
  • the phrase that the first signal and the third signal include a preamble sequence includes: the first signal and the third signal each include a preamble sequence.
  • the phrase that the first signal and the third signal include a preamble sequence includes: the first signal includes at least a preamble sequence, and the third signal includes at least a preamble sequence.
  • the preamble sequence in the first signal and the preamble sequence in the third signal are different.
  • the preamble sequence in the first signal and the preamble sequence in the third signal are the same.
  • the preamble sequence includes Preamble.
  • the preamble sequence includes a positive integer.
  • the preamble sequence includes a bit string.
  • the first signal is transmitted over an air interface.
  • the first signal is sent through an antenna port.
  • the first signal is transmitted on PRACH (Physical Random Access Channel, physical random access channel).
  • PRACH Physical Random Access Channel, physical random access channel
  • the first signal is transmitted on the PUSCH.
  • the first signal includes at least one of PRACH or PUSCH.
  • the first signal includes all or part of a physical layer (Physical Layer) signal (Signal).
  • Physical Layer Physical Layer
  • the first signal includes all or part of an RRC message.
  • the first signal includes an uplink (Uplink, UL) signal.
  • Uplink Uplink
  • the second signal is transmitted over an air interface.
  • the second signal is sent through an antenna port.
  • the second signal includes all or part of a physical layer (Physical Layer) signal (Signal).
  • Physical Layer Physical Layer
  • the second signal includes all or part of a MAC layer signaling.
  • the second signal includes all or part of an RRC message.
  • the second signal includes a downlink (Downlink, DL) signal.
  • Downlink Downlink
  • the second signal includes all or part of the MAC layer signaling.
  • the third signal is transmitted over an air interface.
  • the third signal is transmitted through an antenna port.
  • the third signal is transmitted on PRACH.
  • the third signal is transmitted on the PUSCH.
  • the third signal includes all or part of a physical layer (Physical Layer) signal (Signal).
  • Physical Layer Physical Layer
  • the third signal includes an uplink signal.
  • the message 1 includes the preamble sequence.
  • the message 2 includes RAR.
  • the message 2 includes a MAC subheader.
  • the message 2 includes one MAC sub-PDU.
  • the message 2 includes PDCCH.
  • the message 2 includes a backoff indicator (Backoff Indicator), or RAPID, or RAPID and MAC RAR.
  • Backoff Indicator Backoff Indicator
  • RAPID RAPID
  • MAC RAR MAC RAR
  • the message 2 includes at least one of timing advance command (Timing Advance Command, TAC), or UL Grant, or C-RNTI (Temporary C-RNTI, TC-RNTI).
  • TAC Timing Advance Command
  • UL Grant UL Grant
  • C-RNTI Temporary C-RNTI, TC-RNTI
  • the message 3 includes the first data.
  • the message 3 includes CCCH SDUs.
  • the message 3 includes a BSR (Buffer Status Report, buffer status report).
  • BSR Buffer Status Report, buffer status report
  • the message 3 includes a C-RNTI (Cell Radio Network Temporary Identifier, cell radio network temporary identifier) MAC CE.
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • the message 3 includes fullI-RNTI.
  • the message 3 includes shortI-RNTI.
  • the message 4 includes a MAC subheader.
  • the message 4 includes a MAC CE.
  • the message 4 includes a UE contention resolution identity (Contention Resolution Identity) MAC CE.
  • UE contention resolution identity Contention Resolution Identity
  • the message A includes the preamble sequence.
  • the message A includes all or part of the message 1 and all or part of the message 3 .
  • the message A includes all or part of the message 1 .
  • the message B includes all or part of the message 2 and all or part of the message 4 .
  • the message B includes all or part of the message 2 .
  • the message B includes a RAR.
  • the message B includes a MAC subheader.
  • the message B includes one MAC sub-PDU.
  • the message B includes a fallback indicator (Backoff Indicator), or fallbackRAR, or successRAR, or MAC SDU for CCCH or DCCH, or at least one of padding.
  • a fallback indicator Backoff Indicator
  • fallbackRAR fallbackRAR
  • successRAR successRAR
  • MAC SDU for CCCH or DCCH, or at least one of padding.
  • a field in the message B is the same as a field in the message 2 .
  • a field in the message B is the same as a field in the message 4 .
  • a field in the message B is the same as a field in the message 2 and a field in the message 4 .
  • the first signal includes at least one physical layer signal.
  • the first signal includes an RRC layer signal.
  • the phrases the first signal, the second signal and the third signal are used for the random access procedure include: the first signal, the second signal and the third signal Signals are sent during random access procedures.
  • the random access procedure includes a first type of random access procedure.
  • the first type of random access procedure includes a two-step random access procedure (2-stepRA).
  • the first type of random access procedure includes at least one of the message A or the message B.
  • the first signal includes the message A
  • the second signal includes the message B
  • the third signal includes the message A
  • the first signal, the second signal and the third signal are used for the first type of random access procedure.
  • the random access procedure includes a second type of random access procedure.
  • the second type of random access procedure includes a four-step random access procedure (4-stepRA).
  • the first signal, the second signal and the third signal are used for the second type of random access procedure.
  • the second type of random access procedure includes at least one of the message 1, or the message 2, or the message 3, or the message 4.
  • the first signal includes the message 1
  • the second signal includes the message 2
  • the third signal includes the message 1 .
  • the random access procedure includes a first type of random access procedure and a second type of random access procedure.
  • the first signal and the second signal are used for the random access procedure of the first type, and the third signal is used for the random access of the second type Process.
  • the first signal and the second signal are used for the second type random access procedure, and the third signal is used for the first type random access Process.
  • the first signal includes the message A
  • the second signal includes the message B
  • the third signal includes the message 1 .
  • the phrase that the first counter is used to count the times of transmission of the preamble sequence includes: the value of the first counter is equal to the number of times of transmission of the preamble sequence.
  • the phrase that the first counter is used to count the times of transmission of the preamble sequence includes: the first counter is updated as the number of times of transmission of the preamble sequence increases.
  • the phrase that the first counter is used to count the number of times that the preamble sequence is sent includes: once the preamble sequence fails to be sent, the first counter is updated once.
  • the first counter includes PREAMBLE_TRANSMISSION_COUNTER.
  • the phrase that the second counter is used to count the number of times the first length is increased includes: when it is determined that the first length is used, updating the second counter.
  • the phrase that the second counter is used to count the number of times the first length is increased includes: the first length is increased once, and the second counter is updated once.
  • the phrase that the second counter is used to count the number of times the first size is increased includes: the value of the second counter is equal to the number of times the first size is increased.
  • the second counter includes PREAMBLE_POWER_RAMPING_COUNTER.
  • the phrase that the difference between the second target power and the first target power is related to the first length includes: the second target power is increased on the basis of the first target power
  • the step size is the first step size.
  • the phrase that the difference between the second target power and the first target power is related to the first length includes: the first power increment in the second target power is equal to The difference between the first power increments in the first target power is equal to the first length.
  • the first target power is independent of the first length.
  • the first target power is related to the first length.
  • the phrase determining that the first data is sent in the first state is used to determine the first length includes: when determining that the first data is sent in the first state, using The first step is long.
  • the phrase determining that the first data sent in the first state is used to determine the first length includes: the size of the first length is the same as the size of the first data sent in the first state. related to the first data.
  • the phrase determining that sending the first data in the first state is used to determine the first length includes: the first length is sending the first data in the first state A data-only.
  • the size of the first length is not related to sending the first data in the first state, and is related to the first type of random access or the second type of random access.
  • the first node in this application determines to send the first data in the first state, selects the first length, and sends the first signal according to the first target power, and the first signal is used for the first quasi-random access procedure; update the first counter, the first counter is not greater than the first threshold; determine to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for the first type of random access procedure.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is transmitted in the first state and the first signal is used for the first type of random access procedure frequency.
  • the first step size and the target step size are the same.
  • the first step size and the target step size include a value of msgA-PreamblePowerRampingStep or xxx-msgA-PreamblePowerRampingStep.
  • the first node in this application determines to send the first data in the first state, selects the first length, and sends the first signal according to the first target power, and the first signal is used for the first quasi-random access procedure; update the first counter, the first counter is not greater than the first threshold; determine to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for a random access procedure of the second type.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is transmitted in the first state and the third signal is used for the second type of random access procedure frequency.
  • the first counter when the first counter is updated, the first counter is greater than a first sub-threshold, the first sub-threshold is used to determine that the first data is to be transmitted in the first state and The maximum number of transmission times of the preamble sequence when the first signal is used for the first type of random access procedure.
  • the fact that the first counter is greater than the first sub-threshold means that the value of the first counter is equal to the sum of the first sub-threshold plus 1.
  • the first threshold is greater than the first sub-threshold.
  • the first threshold includes xxx-msgA-TransMax, and the first sub-threshold includes xxx-preambleTransMax.
  • the first step size and the target step size are different.
  • the first step includes the value of msgA-PreamblePowerRampingStep or the value of xxx-msgA-PreamblePowerRampingStep
  • the target step includes the value of powerRampingStep or the value of xxx-powerRampingStep.
  • the first node in this application determines to send the first data in the first state, selects the first length, and sends the first signal according to the first target power, and the first signal is used for the first quasi-random access process; update the first counter, the first counter is not greater than the first threshold; determine not to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for the first type of random access procedure.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is not transmitted in the first state and the third signal is used for the first type of random access procedure frequency.
  • the first counter when the first counter is updated, the first counter is greater than the first sub-threshold.
  • the first threshold is greater than the first sub-threshold.
  • the first threshold includes xxx-msgA-TransMax, and the first sub-threshold includes msgA-TransMax.
  • the first threshold is greater than the first sub-threshold.
  • the first step size and the target step size are the same.
  • the first step size and the target step size include the value of msgA-PreamblePowerRampingStep.
  • the first step size and the target step size are different.
  • the first step includes the value of msgA-PreamblePowerRampingStep
  • the target step includes the value of xxx-msgA-PreamblePowerRampingStep.
  • the first node in this application determines to send the first data in the first state, selects the first length, and sends the first signal according to the first target power, and the first signal is used for the first quasi-random access process; update the first counter, the first counter is not greater than the first threshold; determine not to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for a random access procedure of the second type.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is not transmitted in the first state and the third signal is used for the second type of random access procedure frequency.
  • the first counter when the first counter is updated, the first counter is greater than the first sub-threshold.
  • the first threshold is greater than the first sub-threshold.
  • the first threshold includes xxx-msgA-TransMax, and the first sub-threshold includes preambleTransMax.
  • the first step size and the target step size are different.
  • the first step includes the value of msgA-PreamblePowerRampingStep or the value of xxx-msgA-PreamblePowerRampingStep
  • the target step includes the value of powerRampingStep.
  • the first node in this application determines to transmit the first data in the first state, selects the first length, and transmits the first signal according to the first target power, and the first signal is used for the second quasi-random access procedure; update the first counter, the first counter is not greater than the first threshold; determine to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for a random access procedure of the second type.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is transmitted in the first state and the first signal is used for the second type of random access procedure frequency.
  • the first step size and the target step size are the same.
  • the first step size and the target step size include a value of powerRampingStep or a value of xxx-powerRampingStep.
  • the first node in this application determines to transmit the first data in the first state, selects the first length, and transmits the first signal according to the first target power, and the first signal is used for the second quasi-random access procedure; update the first counter, the first counter is not greater than the first threshold; determine to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for the first type of random access procedure.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is transmitted in the first state and the third signal is used for the first type of random access procedure frequency.
  • the first counter when the first counter is updated, the first counter is greater than a second sub-threshold, the second sub-threshold is used to determine that the first data is to be transmitted in the first state and The maximum transmission times of the preamble sequence when the first signal is used for the second type of random access procedure.
  • the fact that the first counter is greater than the second sub-threshold means that the value of the first counter is equal to the sum of the second sub-threshold plus 1.
  • the first threshold is greater than the second sub-threshold.
  • the first threshold includes xxx-preambleTransMax
  • the second sub-threshold includes xxx-preambleTransMax.
  • the first step size and the target step size are different.
  • the first step includes the value of powerRampingStep or the value of xxx-powerRampingStep
  • the target step includes the value of msgA-PreamblePowerRampingStep or the value of xxx-msgA-PreamblePowerRampingStep.
  • the first node in this application determines to transmit the first data in the first state, selects the first length, and transmits the first signal according to the first target power, and the first signal is used for the second quasi-random access process; update the first counter, the first counter is not greater than the first threshold; determine not to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for a random access procedure of the second type.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is not transmitted in the first state and the third signal is used for the second type of random access procedure frequency.
  • the first counter when the first counter is updated, the first counter is greater than the second sub-threshold.
  • the first threshold is greater than the second sub-threshold.
  • the first threshold includes xxx-preambleTransMax
  • the second sub-threshold includes preambleTransMax
  • the first step size and the target step size are the same.
  • the first step size and the target step size include the value of powerRampingStep.
  • the first step size and the target step size are different.
  • the first step is the value of xxx-powerRampingStep
  • the target step includes the value of powerRampingStep.
  • the first node in this application determines to transmit the first data in the first state, selects the first length, and transmits the first signal according to the first target power, and the first signal is used for the second quasi-random access process; update the first counter, the first counter is not greater than the first threshold; determine not to send the first data in the first state, select the target step size; determine to update the second counter, according to the second target power A third signal is sent, the third signal being used for the first type of random access procedure.
  • the first threshold is used to determine the maximum transmission of the preamble sequence when the first data is not transmitted in the first state and the third signal is used for the first type of random access procedure frequency.
  • the first counter when the first counter is updated, the first counter is greater than the second sub-threshold.
  • the first threshold is greater than the second sub-threshold.
  • the first threshold includes xxx-preambleTransMax
  • the second sub-threshold includes msgA-TransMax.
  • the first step size and the target step size are different.
  • the first step includes the value of powerRampingStep or the value of xxx-powerRampingStep
  • the target step includes the value of msgA-PreamblePowerRampingStep.
  • the xxx in this application is used to indicate that the IE or the domain is used to send the first data in the first state, and both upper and lower case are applicable.
  • the xxx includes sdt.
  • the xxx includes edt.
  • the xxx includes idt.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR (New Radio, new air interface), LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 by some other suitable term.
  • 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • the NG-RAN includes NR Node Bs (gNBs) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (eg, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players eg, MP3 players
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • the MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 .
  • MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • the P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230 .
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet-switched streaming service.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 supports transmission over a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a network with a large delay difference.
  • the UE 201 supports transmission over a terrestrial network (TN).
  • TN terrestrial network
  • the UE 201 is a user equipment (UE).
  • UE user equipment
  • the UE201 is an aircraft.
  • the UE201 is an in-vehicle terminal.
  • the UE 201 is a relay.
  • the UE 201 is a vessel.
  • the UE201 is an IoT terminal.
  • the UE201 is an industrial IoT terminal.
  • the UE201 is a device that supports low-latency and high-reliability transmission.
  • the gNB 203 corresponds to the second node in this application.
  • the gNB 203 supports transmission over a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB 203 supports transmission in a network with a large delay difference.
  • the gNB 203 supports transmission over a terrestrial network (TN).
  • TN terrestrial network
  • the gNB 203 is a macro cell (Marco Cellular) base station.
  • the gNB 203 is a micro cell (Micro Cell) base station.
  • the gNB 203 is a pico cell (Pico Cell) base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB 203 is a satellite device.
  • the gNB 203 is a UE (User Equipment).
  • the gNB 203 is a gateway.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, which shows the radio protocol architecture for the control plane 300 with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY 301, including MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence) sublayer 303 Protocol, packet data convergence protocol) sublayer 304.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing handoff support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio launch overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • SDAP Service Data Adaptation Protocol
  • DRB Data Radio Bearer
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first signal in this application is generated in the RRC 306 .
  • the first signal in this application is generated in the MAC 302 or the MAC 352.
  • the first signal in this application is generated in the PHY 301 or the PHY 351 .
  • the second signal in this application is generated in the RRC 306 .
  • the second signal in this application is generated in the MAC 302 or the MAC 352.
  • the second signal in the present application is generated in the PHY 301 or the PHY 351 .
  • the third signal in this application is generated in the RRC 306 .
  • the third signal in this application is generated in the MAC 302 or the MAC 352.
  • the third signal in this application is generated in the PHY 301 or the PHY 351 .
  • the first sub-data in this application is generated in the RRC 306 .
  • the first sub-data in this application is generated in the MAC 302 or the MAC 352.
  • the first sub-data in this application is generated in the PHY301 or the PHY351.
  • the second sub-data in this application is generated in the RRC 306 .
  • the second sub-data in this application is generated in the MAC 302 or the MAC 352.
  • the second sub-data in this application is generated in the PHY301 or the PHY351.
  • the first signaling in this application is generated in the RRC 306 .
  • the first signaling in this application is generated in the MAC 302 or the MAC 352.
  • the first signaling in this application is generated in the PHY 301 or the PHY 351.
  • the second signaling in this application is generated in the RRC 306 .
  • the second signaling in this application is generated in the MAC 302 or the MAC 352.
  • the second signaling in this application is generated in the PHY 301 or the PHY 351.
  • the third signaling in this application is generated in the RRC 306 .
  • the third signaling in this application is generated in the MAC 302 or the MAC 352.
  • the third signaling in this application is generated in the PHY 301 or the PHY 351 .
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • First communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-Phase Shift Keying (M-PSK), M-Quadrature Amplitude Modulation (M-QAM)).
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (eg, pilots) in the time and/or frequency domains, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a multi-carrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream to a baseband multi-carrier symbol stream for supply to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the received analog precoding/beamforming operation of the baseband multicarrier symbol stream from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receive processor 458 after multi-antenna detection Any spatial stream to which the first communication device 450 is the destination.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450
  • the receive function at the first communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the Used together with at least one processor, the first communication device 450 at least: determine whether to send the first data in the first state; when it is determined to send the first data in the first state, select the first length, according to The first target power sends a first signal; the first counter is updated; it is determined whether to update the second counter; when the first counter is not greater than the first threshold and it is determined to update the second counter, the first counter is sent according to the second target power.
  • the second signal is monitored in a first time window; wherein the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used for random access procedures, the The first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the second counter is used to count the number of times the first length is increased; The difference between the second target power and the first target power is related to the first length, and determining that the first data is sent in the first state is used to determine the first length.
  • the first communication device 450 includes: a memory storing a program of computer-readable instructions that, when executed by at least one processor, produces an action, the action comprising: determining whether to Send the first data in the first state; when it is determined to send the first data in the first state, select the first length, and send the first signal according to the first target power; update the first counter; determine whether to update the first Two counters; when the first counter is not greater than the first threshold and it is determined to update the second counter, a third signal is sent according to the second target power; when the first counter is greater than the first threshold, it is determined
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the second communication device 410 at least: receives the first signal; receives the third signal; when the first signal is received, sends the second signal; wherein, when the first data is determined to be sent in the first state, The first length is selected; the first signal is transmitted according to the first target power; the first counter is updated; the second counter is determined whether to update; when the first counter is not greater than the first threshold, and the first counter is When the second counter is determined to be updated, the third signal is sent according to the second target power; when the first counter is greater than the first threshold, it is determined that the transmission of the first data fails; the second signal is at is monitored in a first time window; the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the
  • the second communication device 410 includes: a memory for storing a program of computer-readable instructions, the program of computer-readable instructions generating an action when executed by at least one processor, the action comprising: receiving a first a signal; receive a third signal; when the first signal is received, send a second signal; wherein, when the first data is determined to be sent in the first state, the first length is selected; the first The signal is sent according to the first target power; the first counter is updated; the second counter is determined whether to update; when the first counter is not greater than the first threshold, and the second counter is determined to be updated, the third Signals are sent according to a second target power; when the first counter is greater than the first threshold, the first data is determined to have failed to transmit; the second signal is monitored in a first time window; the first A state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used In the random access process, the first
  • the antenna 452, the receiver 454, the receiving processor 456, the controller/processor 459 are used to monitor/receive the second signal; the antenna 420, the transmitter 418. At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the second signal.
  • the antenna 452, the receiver 454, the receive processor 456, and the controller/processor 459 are used to monitor/receive the second signal.
  • the antenna 452, the transmitter 454, the transmit processor 468, the controller/processor 459 are used to transmit the first signal; the antenna 420, the receiver 418, the The receiving processor 470, at least one of the controller/processor 475 is used to receive the first signal.
  • the antenna 452, the transmitter 454, the transmit processor 468, the controller/processor 459 are used to transmit the third signal; the antenna 420, the receiver 418, the The receiving processor 470, at least one of the controller/processor 475 is used to receive the third signal.
  • the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 are used to transmit the first sub-data; the antenna 420, the receiver 418, At least one of the receiving processor 470 and the controller/processor 475 is used to receive the first sub-data.
  • the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 are used to transmit the second sub-data; the antenna 420, the receiver 418, At least one of the receive processor 470, the controller/processor 475 is used to monitor the second sub-data.
  • the antenna 452, the receiver 454, the receiver processor 456, the controller/processor 459 are used to receive the first signaling; the antenna 420, the transmitter 418 , at least one of the transmit processor 416 and the controller/processor 475 is used to send the first signaling.
  • the antenna 452, the receiver 454, the receiver processor 456, the controller/processor 459 are used to receive the second signaling; the antenna 420, the transmitter 418 , at least one of the transmit processor 416 and the controller/processor 475 is used to send the second signaling.
  • the antenna 452, the receiver 454, the receiver processor 456, the controller/processor 459 are used to receive the third signaling; the antenna 420, the transmitter 418 , at least one of the transmit processor 416 and the controller/processor 475 is used to send the third signaling.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a terminal device.
  • the first communication device 450 is a user equipment that supports a large delay difference.
  • the first communication device 450 is a user equipment supporting NTN.
  • the first communication device 450 is an aircraft device.
  • the first communication device 450 is capable of positioning.
  • the first communication device 450 does not have the ability to fix energy.
  • the first communication device 450 is a user equipment supporting TN.
  • the second communication device 410 is a base station device (gNB/eNB/ng-eNB).
  • the second communication device 410 is a base station device that supports a large delay difference.
  • the second communication device 410 is a base station device supporting NTN.
  • the second communication device 410 is a satellite device.
  • the second communication device 410 is a flight platform device.
  • the second communication device 410 is a base station device supporting TN.
  • Embodiment 5 illustrates a flowchart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U01 is a user equipment; the second node N02 is the maintenance base station of the serving cell of the first node U01; it is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 receive the first signaling; in step S5102, receive the second signaling; in step S5103, receive the third signaling; in step S5104, determine to send in the first state first data; in step S5105, when it is determined to transmit the first data in the first state, select the first length; in step S5106, send the first signal according to the first target power; in step S5107 , monitor the second signal in the first time window; in step S5108, receive the second signal; in step S5109, send message 3; in step S5110, receive message 4; in step S5111, update the first counter; in step S5112, it is determined that the first counter is not greater than the first threshold; in step S5113, it is determined to update the second counter; in step S5114, a third signal is sent according to the second target power.
  • step S5201 For the second node N02 , in step S5201, send the first signaling; in step S5202, send the second signaling; in step S5203, send the third signaling; in step S5204, Receive the first signal; in step S5205, send the second signal; in step S5206, receive the message 3; in step S5207, send the message 4; in step S5208, receive the first Three signals.
  • the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used in the random access process, the first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the first Two counters are used to count the number of times the first length is increased; the difference between the second target power and the first target power is related to the first length, and it is determined that the transmission is performed in the first state.
  • the first data is used to determine the first step size; the first signaling indicates the first step size; or the second signaling indicates the first offset and the second step size, so The sum of the first offset and the second step size is used to determine the first step size; the third signaling is used to determine the first candidate preamble sequence grouping, and the first signal includes A preamble sequence in the first candidate preamble sequence grouping.
  • the first counter when the first counter is greater than the first threshold, it is determined that the first data transmission fails.
  • the phrase the first signaling indicates the first length includes that the first signaling is used to determine the first length.
  • the phrase the first signaling indicates the first length includes: the first length is a field in the first signaling.
  • the first signaling is transmitted through an air interface.
  • the first signaling is sent through an antenna port.
  • the first signaling is transmitted through higher layer signaling.
  • the first signaling is transmitted through higher layer signaling.
  • the first signaling includes a downlink (Downlink, DL) signal.
  • Downlink Downlink
  • the first signaling includes a side link (Sidelink, SL) signal.
  • Sidelink Sidelink
  • the first signaling includes all or part of higher layer signaling.
  • the first signaling includes all or part of higher layer signaling.
  • the first signaling includes an RRC message.
  • the first signaling includes all or part of an IE (Information Element, information element) of the RRC message.
  • IE Information Element, information element
  • the first signaling includes all or part of fields in an IE of the RRC message.
  • the first signaling includes an IE in an RRC message, and the name of the IE includes RACH-ConfigGeneric.
  • the first signaling includes an IE in an RRC message, and the name of the IE includes RACH-ConfigGenericTwoStepRA.
  • the phrase the second signaling indicates the first offset and the second step includes: the second signaling includes the first offset and the second step.
  • the phrase that the second signaling indicates the first offset and the second step includes: the first offset and the second step are respectively in the second signaling of a domain.
  • the sum of the phrase, the first offset and the second step size is used to determine the first step size comprising: the first offset amount and the second step size The sum is equal to the first step length.
  • the sum of the phrase, the first offset and the second step size is used to determine the first step size comprising: the first offset amount and the second step size The sum is equal to the first step length.
  • the sum of the phrase, the first offset and the second step size is used to determine the first step size comprising: passing the first offset and the second step size Length calculates the first step length.
  • the unit of the first offset includes dB.
  • the first offset includes an integer number of dB.
  • the first offset includes 0 dB.
  • the first offset includes 2dB.
  • the first offset is configurable.
  • the first offset is preconfigured.
  • the first offset includes a field in an RRC message, and the name of the field includes xxx-powerRampingStepoffset.
  • the first offset includes a field in an RRC message, and the name of the field includes xxx-msgA-PreamblePowerRampingStep.
  • the first offset includes a field in an RRC message, and the name of the one field includes xxx-powerRampingStepHighPriority.
  • the first step is used to determine a power-ramping factor.
  • the first length is used to determine random access purposes other than sending the first data in the first state, when the second counter is updated, the second The target power is the boosted power relative to the first target power.
  • the second step size is used for four-step randomization.
  • the second step size is used for two-step random access.
  • the unit of the second step size includes dB.
  • the second step size includes an integer number of dB.
  • the second step size includes one of 0dB, 2dB, 4dB, or 6dB.
  • the second step size includes a field in an RRC message, and the name of the one field includes powerRampingStep.
  • the second step size includes a field in an RRC message, and the name of the one field includes msgA-PreamblePowerRampingStep.
  • the second step size includes a field in an RRC message, and the name of the one field includes powerRampingStepHighPriority.
  • the second signaling is transmitted through an air interface.
  • the second signaling is sent through an antenna port.
  • the second signaling is transmitted through higher layer signaling.
  • the second signaling is transmitted through higher layer signaling.
  • the second signaling includes a downlink (Downlink, DL) signal.
  • Downlink Downlink
  • the second signaling includes a side link (Sidelink, SL) signal.
  • Sidelink Sidelink
  • the second signaling includes all or part of the higher layer signaling.
  • the second signaling includes all or part of higher layer signaling.
  • the second signaling includes an RRC message.
  • the second signaling includes all or part of an IE (Information Element, information element) of the RRC message.
  • IE Information Element, information element
  • the second signaling includes all or part of fields in an IE of the RRC message.
  • the second signaling includes an IE in an RRC message, and the name of the IE includes RACH-ConfigGeneric.
  • the second signaling includes an IE in an RRC message, and the name of the IE includes RACH-ConfigGenericTwoStepRA.
  • the second signaling includes an IE in an RRC signaling, and the name of the IE includes RA-Prioritization.
  • the second signaling indicates a second step size.
  • the second signaling indicates the first offset.
  • the third signaling is transmitted through an air interface.
  • the third signaling is sent through an antenna port.
  • the third signaling is transmitted through higher layer signaling.
  • the third signaling is transmitted through higher layer signaling.
  • the third signaling includes a downlink (Downlink, DL) signal.
  • Downlink Downlink
  • the third signaling includes all or part of high-layer signaling.
  • the third signaling includes all or part of higher layer signaling.
  • the third signaling includes an RRC message.
  • the third signaling includes all or part of an IE (Information Element, information element) of the RRC message.
  • IE Information Element, information element
  • the third signaling includes all or part of fields in an IE of the RRC message.
  • the third signaling includes SIB1.
  • the third signaling includes the UplinkConfigCommon IE.
  • the third signaling includes the UplinkConfigCommonSIB IE.
  • the third signaling includes BWP-Uplink IE.
  • the third signaling includes BWP-UplinkCommon IE.
  • the third signaling includes CellGroupConfig IE.
  • the third signaling includes RACH-ConfigCommon IE.
  • the third signaling includes RACH-ConfigCommonTwoStepRA IE.
  • the third signaling includes RACH-ConfigDedicated IE.
  • the third signaling includes RACH-ConfigGenericTwoStepRA IE.
  • the third signaling includes RACH-ConfigGeneric IE.
  • the third signaling includes SI-SchedulingInfo IE.
  • the third signaling includes a field in an RRC message, and the name of the field includes msgA-PRACH-RootSequenceIndex.
  • the third signaling includes a field in an RRC message, and the name of the field includes xxx-msgA-PRACH-RootSequenceIndex.
  • the third signaling includes a field in an RRC message, and the name of the field includes prach-RootSequenceIndex.
  • the third signaling includes a field in an RRC message, and the name of the field includes xxx-prach-RootSequenceIndex.
  • the phrase the third signaling being used to determine the first candidate preamble sequence grouping comprises: the third signaling indicating the first candidate preamble sequence grouping.
  • the phrase that the third signaling is used to determine the first candidate preamble sequence grouping includes: the first candidate preamble sequence grouping is configured by the third signaling.
  • the phrase that the third signaling is used to determine the first candidate preamble sequence grouping includes: the first candidate preamble sequence grouping can be calculated through the third signaling.
  • the phrase that the third signaling is used to determine the first candidate preamble sequence grouping includes: the third signaling implicitly indicates the first candidate preamble sequence grouping.
  • the phrase that the third signaling is used to determine the first candidate preamble sequence grouping includes: the third signaling explicitly indicates the first candidate preamble sequence grouping.
  • the first candidate preamble sequence grouping includes at least one of random access time domain resources, or frequency domain resources, or code domain resources, or space domain resources.
  • the first candidate preamble sequence grouping includes a Preamble set.
  • the first candidate preamble sequence grouping includes a set of resources occupied by the Preamble.
  • the first candidate preamble sequence grouping includes Q1 preamble sequences, where Q1 is a positive integer.
  • the value of Q1 is the same for the first signal and the third signal.
  • the value of Q1 is different for the first signal and the third signal.
  • the first candidate preamble sequence grouping includes a configuration of a random access preamble sequence.
  • the first candidate preamble sequence grouping includes a preamble sequence set to which the first signal belongs.
  • the first candidate preamble sequence group includes a preamble sequence set to which the third signal belongs.
  • the first candidate preamble sequence group to which the first signal belongs is the same as the first candidate preamble sequence group to which the third signal belongs.
  • the first candidate preamble sequence group to which the first signal belongs is different from the first candidate preamble sequence group to which the third signal belongs.
  • the dashed box F5.1 is optional.
  • the dashed box F5.2 is optional.
  • the dashed box F5.3 is optional.
  • the dashed box F5.4 is optional.
  • the dashed box F5.5 is optional.
  • At least one of the dashed box F5.1 or the dashed box F5.2 exists.
  • the dashed box F5.3 does not exist.
  • the existence of the dotted box F5.4 indicates that at least one of step S5108 or step S5205 exists.
  • the dotted box F5.4 does not exist, indicating that neither step S5108 nor step S5205 exists.
  • the existence of the dotted box F5.5 indicates that at least one of step S5109, or step S5110, or step S5206, or step S5207 exists.
  • the dotted box F5.5 does not exist, indicating that step S5109, step S5110, step S5206, and step S5207 do not exist.
  • Embodiment 6 illustrates a flowchart of wireless signal transmission according to another embodiment of the present application, as shown in FIG. 6 .
  • the first node U01 is a user equipment; the second node N02 is the maintenance base station of the serving cell of the first node U01; it is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 receive the first signaling; in step S6102, receive the second signaling; in step S6103, receive the third signaling; in step S6104, determine whether it is in the first state Send the first data; in step S6105, when it is determined to send the first data in the first state, select the first length; in step S6106, send the first signal according to the first target power; in step S6107 , monitor the second signal in the first time window; in step S6108, receive the second signal; in step S6109, send the first sub-data; in step S6110, send the second sub-data; in step S6111
  • step S6112 the first counter is updated; in step S6113, it is determined that the first counter is not greater than the first threshold; In step S6114, it is determined to update the second counter; in step S6115, a third signal is sent according to the second target power.
  • step S6201 For the second node N02 , in step S6201, send the first signaling; in step S6202, send the second signaling; in step S6203, send the third signaling; in step S6204, Receive the first signal; in step S6205, send the second signal; in step S6206, receive the first sub-data; in step S6207, receive the second sub-data; in step S6208, The third signal is received.
  • the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used in the random access process, the first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the first Two counters are used to count the number of times the first length is increased; the difference between the second target power and the first target power is related to the first length, and it is determined that the transmission is performed in the first state.
  • the first data is used to determine the first step size; the first signaling indicates the first step size; or the second signaling indicates the first offset and the second step size, so The sum of the first offset and the second step size is used to determine the first step size; the third signaling is used to determine the first candidate preamble sequence grouping, and the first signal includes A preamble sequence in the first candidate preamble sequence group; the first data includes the first sub-data and the second sub-data; the first sub-data is successfully transmitted, and the second sub-data The sub-data transmission failure is used to determine that the difference between the second target power and the first target power is related to the first length.
  • the first counter when the first counter is greater than the first threshold, it is determined that the first data transmission fails.
  • the phrase that the first data includes the first sub-data and the second sub-data includes: the first sub-data and the second sub-data are all of the first data .
  • the phrase the first data includes the first sub-data and the second sub-data includes: the first sub-data and the second sub-data are parts of the first data .
  • the first sub-data and the second sub-data are sent in different time slots.
  • the successful receipt of an acknowledgement message is used to determine that the given data is successfully transmitted, the given data including the first sub-data or the second sub-data.
  • the same confirmation message exists for the first sub-data and the second sub-data.
  • the sentence "the first sub-data transmission succeeded and the second sub-data transmission failed is used to determine the difference between the second target power and the first target power and the "The first length is related" includes: when the first sub-data transmission is successful and the second sub-data transmission fails, the difference between the second target power and the first target power is the same as the first target power. step size.
  • the sentence "the first sub-data transmission succeeded and the second sub-data transmission failed is used to determine the difference between the second target power and the first target power and the "The first length is related" includes: when the part of the first data is successfully transmitted and the part of the first data fails to be transmitted, the first length is used.
  • the phrase "when the transmission of the first sub-data succeeds and the transmission of the second sub-data fails" includes receiving an acknowledgement message for the first sub-data, for the second sub-data Data did not receive an acknowledgment message.
  • the phrase "when the transmission of the first sub-data succeeds and the transmission of the second sub-data fails" includes receiving a confirmation message indicating that the transmission of the first sub-data was successful , and the second sub-data transmission fails.
  • the first node U01 in this application determines whether to send the first data in the first state; when it is determined to send the first data in the first state, selects the first length and the candidate step long, send the first signal according to the first target power, the first target power is related to the candidate step size; update the first counter; determine whether to update the second counter; when the first counter is not greater than the first threshold, And when it is determined to update the second counter, a third signal is sent according to the second target power; when the first sub-data transmission is successful and the second sub-data transmission fails, the second target power and the The first step size is related; when both the first sub-data and the second sub-data fail to transmit, the second target power is related to the candidate step size.
  • the candidate step size is irrelevant to sending the first data in the first state
  • the first step size is related to sending the first data in the first state related.
  • the candidate step size includes the second step size.
  • the candidate step size is not equal to the first step size.
  • the phrase that the first target power is related to the candidate step size includes: calculating the first target power according to the candidate step size.
  • the phrase that the second target power is related to the first length includes: calculating the second target power according to the first length.
  • the phrase that the second target power is related to the candidate step size includes: calculating the first target power according to the candidate step size.
  • the dashed box F6.1 is optional.
  • the dashed box F6.2 is optional.
  • the dashed box F6.3 is optional.
  • the dashed box F6.4 is optional.
  • the dashed box F6.5 is optional.
  • At least one of the dashed box F6.1 or the dashed box F6.2 exists.
  • the dashed box F6.3 exists.
  • the dashed box F6.3 does not exist.
  • the dashed box F6.4 does not exist.
  • the dashed box F6.5 does not exist.
  • Embodiment 7 illustrates a flowchart of sending the first data in the first state according to an embodiment of the present application.
  • step S7001 the first node in this application determines to send the first data in the first state; in step S7002, when it is determined to send the first data in the first state , select the first length; in step S7003, send the first signal according to the first target power; in step S7004, monitor the second signal in the first time window; in step S7005, determine whether to complete the random access process , when the random access process is completed, end the current random access process, otherwise, go to step S7006; in step S7006, update the first counter; in step S7007, determine whether the first counter is not greater than the first threshold, when the first counter When a counter is not greater than the first threshold, go to step S7008(a), otherwise, when the first counter is greater than the first threshold, go to step S7008(b); in step S7008(a), determine the condition for updating the second counter Whether it is satisfied, when the condition for updating the second counter is satisfied, go to step S7009(a), otherwise, go to step S7009(b); in
  • the third target power is not increased by the first length compared to the first target power.
  • the second target power is increased by the first length compared to the first target power.
  • not all the first data are sent successfully is used to determine that the random access procedure is not completed.
  • the failure of the second signal to be received is used to determine that the random access procedure is not considered to be completed.
  • the failure of the message 3 or the message B to be received is used to determine that the random access procedure is not completed.
  • Embodiment 8 illustrates a schematic diagram in which the difference between the second target power and the first target power is related to both the first length and the second offset according to an embodiment of the present application, as shown in FIG. 8 .
  • the second target power is the same as the first
  • the difference in target power is also related to a second offset
  • the difference between the first substep and the second substep and the first counter are used to determine the second offset
  • the first The sub-step and the second sub-step are used to determine the target power of the first type of random access and the second type of random access, respectively.
  • the second offset includes the first backoff power increment.
  • the first sub-step includes MSGA_PREAMBLE_POWER_RAMPING_STEP or xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP
  • the second sub-step includes PREAMBLE_POWER_RAMPING_STEP or xxx_PREAMBLE_POWER_RAMPING_STEP.
  • the first sub-step is used to calculate the target received power of the preamble sequence of the first type of random access.
  • the second sub-step is used to calculate the target received power of the preamble sequence of the second type of random access.
  • Embodiment 9 illustrates a schematic diagram in which the first field of the second signal is used to indicate whether to give up sending the first data in the first state according to an embodiment of the present application, as shown in FIG. 9 .
  • the second signal includes a first field used to indicate whether to abandon sending the first data in the first state.
  • the second signal includes RAR.
  • the second signal includes a successful RAR (success RAR).
  • the second signal includes a fallback RAR (fallback RAR).
  • fallback RAR fallback RAR
  • the second signal includes a MAC PDU.
  • the second signal includes a MAC SDU.
  • the second signal includes a MAC CE.
  • the second signal includes a MAC subheader.
  • the second signal includes fallbackRAR and subheaer.
  • the phrase that the second signal includes a first field includes that the first field is a field in the second signal.
  • the phrase that the second signal includes the first field includes that the second signal carries the first field.
  • the phrase that the first field is used to indicate whether to give up sending the first data in the first state includes: the first field indicates a fallback random access type, the The random access type includes transmitting the first data in the first state or not transmitting the first data in the first state.
  • the phrase the first field is used to indicate whether to abandon sending the first data in the first state includes:
  • the phrase that the first field is used to indicate whether to abandon sending the first data in the first state includes: the first field is used to determine whether to abandon the first state The first data is sent.
  • the phrase that the first field is used to indicate whether to abandon the sending of the first data in the first state includes: the first field indicating whether to abandon the sending of the first data in the first state. Describe the first data.
  • the first field includes P1 bits, the P1 bits are used to indicate that sending the first data in the first state is abandoned, and the P1 is a positive integer.
  • the P1 is equal to one.
  • the P1 is greater than one.
  • the first field being set to a true value is used to indicate abandonment of sending the first data in the first state, the true value including 1, or greater than 1, or ture.
  • the first field being set to a false value is used to indicate that sending the first data in the first state is aborted, the false value including 0, or false.
  • the phrase that the first field is used to indicate whether to abandon sending the first data in the first state includes: the first field implicitly indicates whether to abandon sending the first data in the first state the first data.
  • the first domain when the first domain does not exist, it is instructed to send the first data in the first state.
  • Embodiment 10 illustrates a schematic diagram of the fallback of sending the first data in the first state according to an embodiment of the present application, as shown in FIG. 10 .
  • the solid-line boxes indicate that the first data is transmitted in the first state, and the first type of random access procedure is performed; the equal-length dashed boxes indicate that the first data is transmitted in the first state, and the second type of random access procedure is performed.
  • Random access procedure; the dashed-dotted box indicates that the first data is not sent in the first state, and the first type of random access procedure is performed;
  • the double-dotted dashed box indicates that the first data is not sent in the first state, and the second Quasi-random access procedure.
  • the second signal includes a first field used to indicate whether to abort sending the first data in the first state.
  • the solid-line box may fall back to one of the dashed-line boxes, the dashed-dotted-line boxes, or the double-dashed-line boxes.
  • the isometric dashed box can fall back to one of the solid line box, the dot-dash line box, or the double-dot-chain line box.
  • the first field includes P1 bits, the P1 bits are used to indicate that sending the first data in the first state is abandoned, and the P1 is a positive integer.
  • the P1 is equal to 2, and the values of the P1 bits correspond to the four blocks one-to-one.
  • the random access procedure is instructed to fall back to the equal-length dashed box.
  • the random access procedure is instructed to fall back to the dot-dash box.
  • the first signal is used for a first type of random access and the third signal is used for a second type of random access.
  • the first field is used to indicate a fallback to the second type of random access procedure.
  • the rollback means that the first counter does not reach the maximum value.
  • the fallback means that the first signal and the third signal belong to the same random access procedure.
  • Embodiment 11 illustrates a schematic diagram related to determining that sending the first data in the first state and selecting the first candidate preamble sequence grouping according to an embodiment of the present application, as shown in FIG. 11 .
  • the first node in the present application receives third signaling; wherein, the third signaling is used to determine the first candidate preamble sequence grouping, and it is determined that the The first data is related to the first candidate preamble sequence grouping, the first candidate preamble sequence grouping is a first-type preamble sequence grouping among N1 first-type preamble sequence groupings, and the N1 is a positive Integer; the first signal includes a preamble sequence in the first candidate preamble sequence grouping.
  • the phrase determining that sending the first data in the first state is related to selecting a first candidate preamble sequence grouping includes: the first candidate preamble sequence grouping is sent in the first state The first data is dedicated.
  • the phrase determining that sending the first data in the first state is related to selecting a first candidate preamble sequence grouping includes: the first candidate preamble sequence grouping is used to indicate that the first candidate preamble sequence grouping is used to indicate that the first candidate preamble sequence grouping is A state sends the first data.
  • the phrase determining that sending the first data in the first state is related to selecting a first candidate preamble sequence grouping includes: when determining that the first data is being sent in the first state, selecting The first candidate preamble sequences are grouped.
  • the phrase determining that sending the first data in the first state is related to selecting a first candidate preamble sequence grouping includes: when determining not to send the first data in the first state, not sending the first data in the first state The first candidate preamble sequence grouping is selected.
  • the phrase that the first candidate preamble sequence grouping is a first-type preamble sequence grouping in N1 first-type preamble sequence groups includes: the preamble sequence is divided into the N1 first-type preamble sequence groups One type of preamble sequence grouping, the N1 first-type preamble sequence groups are totally or partially different, and one group in the N1 first-type preamble sequence groups is the first candidate preamble sequence group.
  • the phrase, the first candidate preamble sequence grouping is a first-type preamble sequence group in N1 first-type preamble sequence groups, including: N1 first-type preamble sequence groups include all the first-type preamble sequence groups.
  • the first candidate preamble sequence is grouped.
  • the N1 is a positive integer greater than 1.
  • the N1 is equal to 2.
  • the N1 is equal to four.
  • the N1 is related to the characteristics of the preamble sequence used for random access.
  • the phrase that the first signal includes a preamble sequence in the first candidate preamble sequence grouping includes: the first signal carries a preamble sequence, the preamble sequence from the The first candidate preamble sequence grouping is selected.
  • the phrase that the first signal includes a preamble sequence in the first candidate preamble sequence group includes: the first signal carries a preamble sequence, and the preamble sequence belongs to the The first candidate preamble sequence is grouped.
  • the first signal is used for the first candidate preamble sequence grouping of the first type of random access procedure and the first signal is used for the first candidate preamble of the second type of random access procedure
  • the sequences are grouped differently.
  • any preamble sequence group of the first type includes a positive integer number of preamble sequences.
  • any preamble sequence in one group of preamble sequences of the first type is different from any preamble sequence in another group of preamble sequences of the first type.
  • a preamble sequence in a first-type preamble sequence grouping is the same as a preamble sequence in another first-type preamble sequence grouping.
  • all preamble sequences in one group of preamble sequences of the first type are at least one different from all preamble sequences in another group of preamble sequences of the first type.
  • the phrase, the first candidate preamble sequence grouping is a first-type preamble sequence group in the N1 first-type preamble sequence groups, including: the N1 first-type preamble sequence groups One of the sequence packets is the first candidate preamble sequence packet, and the N1 is a positive integer.
  • Embodiment 12 illustrates a schematic diagram of N1 first-type preamble sequence groupings according to an embodiment of the present application, as shown in FIG. 12 .
  • the four solid line ellipses represent four first-type preamble sequence groupings respectively
  • the realization ellipse represents the first-type preamble sequence grouping #1
  • the dashed ellipse represents the first-type preamble sequence grouping 2
  • the dashed ellipse represents the first type of preamble sequence packet #3
  • the double-dot dashed ellipse represents the first type of preamble sequence packet #4.
  • the existence of overlapping portions of the two ellipses indicates that there are the same preamble sequences in the two first-type preamble sequence groups.
  • the absence of overlapping portions of the two ellipses indicates that there are no identical preamble sequences in the two first-type preamble sequence groups.
  • the first candidate preamble sequence grouping is one preamble sequence grouping among N1 first-type preamble sequence groupings.
  • the N1 is equal to four.
  • whether the first data is sent in the first state and the random access type are used to determine four first type preamble sequence packets.
  • the random access type is the first type of random access
  • the preamble sequence is a preamble sequence in the first first type of preamble sequence group
  • the first candidate preamble sequence group includes the first first type of preamble sequence group.
  • the random access type is the second type of random access
  • the preamble sequence is a preamble sequence in the second first-type preamble sequence grouping
  • the first candidate preamble sequence grouping includes the second first-type preamble sequence grouping.
  • the random access type is the first type of random access
  • the preamble sequence is a preamble sequence in the third type 1 preamble sequence grouping.
  • the preamble sequence is a preamble sequence in the fourth type 1 preamble sequence grouping.
  • the first first-type preamble sequence grouping, the second first-type preamble sequence grouping, the third first-type preamble sequence grouping, and The fourth first-type preamble sequence grouping is respectively the first-type preamble sequence group #1, the first-type preamble sequence group #2, the first-type preamble sequence group #3, and the first-type preamble One Type 1 Preamble Sequence Packet in Sequence Packet #4.
  • FIG. 12 is only to illustrate that the same preamble sequence may exist in two first-type preamble sequence groups, and does not limit whether the same preamble exists between any two first-type preamble sequence groups code sequence.
  • two of the four first-type preamble sequence groups have the same preamble sequence.
  • two of the four first-type preamble sequence groups do not have the same preamble sequence.
  • any two preamble sequence groups of the first type do not have the same preamble sequence.
  • Embodiment 13 illustrates a structural block diagram of a processing apparatus used in a first node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the first node includes a first receiver 1301 and a first transmitter 1302 .
  • the first transmitter 1302 determines whether to transmit the first data in the first state; when it is determined to transmit the first data in the first state, select the first length, and transmit the first signal according to the first target power; update a first counter; determine whether to update a second counter; when the first counter is not greater than a first threshold, and it is determined to update the second counter, send a third signal according to the second target power; when the first counter is greater than At the first threshold, determining that the first data transmission fails;
  • the first state includes an RRC inactive state; the first data includes small data packets; the first time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used in the random access procedure, the first signal and the third signal include a preamble sequence; the first counter is used to count the number of times the preamble sequence is sent; the second The counter is used to count the number of times the first length is increased; the difference between the second target power and the first target power is related to the first length, and it is determined that the The first data is used to determine the first step length.
  • the first receiver 1301 receives first signaling, wherein the first signaling indicates the first length.
  • the first receiver 1301 receives second signaling, wherein the second signaling indicates a first offset and a second step size, and the first offset is related to the first offset. The sum of the two step sizes is used to determine the first step size.
  • the first transmitter 1302 sends the first sub-data; sends the second sub-data; the first receiver 1301 determines that the first sub-data is successfully transmitted, and the second sub-data Transmission failure; wherein the first data includes the first sub-data and the second sub-data; the first sub-data is successfully transmitted, and the second sub-data transmission failure is used to determine the first sub-data
  • the difference between the second target power and the first target power is related to the first length.
  • the second target power is the same as the first target power
  • the difference in power is also related to a second offset
  • the difference between the first substep and the second substep and the first counter are used to determine the second offset
  • the first substep The step size and the second sub-step size are used to determine the target power of the first type of random access and the second type of random access, respectively.
  • the second signal includes a first field, and the first field is used to indicate whether to abandon sending the first data in the first state.
  • the first receiver 1301 receives third signaling; wherein, the third signaling is used to determine a first candidate preamble sequence group, and determine to send the first candidate preamble sequence in the first state.
  • a data is related to the first candidate preamble sequence grouping, the first candidate preamble sequence grouping is a first-type preamble sequence grouping in N1 first-type preamble sequence groupings, and the N1 is a positive integer;
  • the first signal includes a preamble sequence in the first candidate preamble sequence grouping.
  • the first receiver 1301 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460, and data in FIG. 4 of the present application Source 467.
  • the first receiver 1301 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, and a receiving processor 456 in FIG. 4 of the present application.
  • the first receiver 1301 includes an antenna 452, a receiver 454, and a receiving processor 456 in FIG. 4 of the present application.
  • the first transmitter 1302 includes an antenna 452, a transmitter 454, a multi-antenna transmit processor 457, a transmit processor 468, a controller/processor 459, a memory 460, and data in FIG. 4 of the present application Source 467.
  • the first transmitter 1302 includes an antenna 452, a transmitter 454, a multi-antenna transmission processor 457, and a transmission processor 468 in FIG. 4 of the present application.
  • the first transmitter 1302 includes the antenna 452, the transmitter 454, and the transmission processor 468 in FIG. 4 of the present application.
  • Embodiment 14 illustrates a structural block diagram of a processing apparatus used in a second node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1400 in the second node includes a second transmitter 1401 and a second receiver 1402 .
  • the second receiver 1402 receiving the first signal; receiving the third signal;
  • the second transmitter 1401 when the first signal is received, sends a second signal
  • the first length is selected; the first signal is transmitted according to the first target power; the first counter is updated; the second counter is determined whether update; when the first counter is not greater than the first threshold and the second counter is determined to be updated, the third signal is sent according to the second target power; when the first counter is greater than the first threshold
  • the first data is determined to fail in transmission; the second signal is monitored in the first time window; the first state includes an RRC inactive state; the first data includes small data packets; the first A time window includes a positive integer number of time slots; the first signal, the second signal and the third signal are used for the random access procedure, and the first signal and the third signal include a preamble sequence ;
  • the first counter is used to count the number of times the preamble sequence is sent; the second counter is used to count the number of times the first length is increased; the second target power and the first target power
  • the difference of is related to the first length, and it is determined that the first data sent in the first
  • the second transmitter 1401 sends first signaling, wherein the first signaling indicates the first length.
  • the second transmitter 1401 sends second signaling, wherein the second signaling indicates a first offset and a second step size, and the first offset is related to the first offset. The sum of the two step sizes is used to determine the first step size.
  • the second receiver 1402 monitors the first sub-data; monitors the second sub-data; wherein, the transmission of the first sub-data is determined to be successful, and the transmission of the second sub-data is determined to be unsuccessful;
  • the first data includes the first sub-data and the second sub-data; the first sub-data transmission is successful, and the second sub-data transmission failure is used to determine the second target power and all The difference of the first target power is related to the first length.
  • the second target power is the same as the first target power
  • the difference in power is also related to a second offset
  • the difference between the first substep and the second substep and the first counter are used to determine the second offset
  • the first substep The step size and the second sub-step size are used to determine the target power of the first type of random access and the second type of random access, respectively.
  • the second signal includes a first field, and the first field is used to indicate whether to abandon sending the first data in the first state.
  • the second transmitter 1401 sends third signaling; wherein, the third signaling is used to determine the first candidate preamble sequence grouping, and it is determined to send the third signaling in the first state.
  • a data is related to the first candidate preamble sequence grouping, the first candidate preamble sequence grouping is a first-type preamble sequence grouping in N1 first-type preamble sequence groupings, and the N1 is a positive integer;
  • the first signal includes a preamble sequence in the first candidate preamble sequence grouping.
  • the second transmitter 1401 includes an antenna 420, a transmitter 418, a multi-antenna transmission processor 471, a transmission processor 416, a controller/processor 475, and a memory 476 in FIG. 4 of the present application.
  • the second transmitter 1401 includes an antenna 420, a transmitter 418, a multi-antenna transmission processor 471, and a transmission processor 416 in FIG. 4 of the present application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, and the transmission processor 416 in FIG. 4 of the present application.
  • the second receiver 1402 includes an antenna 420, a receiver 418, a multi-antenna receiving processor 472, a receiving processor 470, a controller/processor 475, and a memory 476 in FIG. 4 of the present application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in FIG. 4 of the present application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, and the receiving processor 470 in FIG. 4 of the present application.
  • Embodiment 15 illustrates a schematic diagram of a given timer according to an embodiment of the present application, as shown in FIG. 15 .
  • the horizontal axis represents time, and T1, T2, T3 and T4 represent four moments or time intervals, respectively; at T1, when the given sub-data #1 is sent, the given timer is started; at T2, when the given sub-data #1 is sent When the acknowledgment message is successfully received, stop the given timer; at T3, when the given subdata #2 is sent, start the given timer; at T4, the given timer expires, and the acknowledgment message for the given subdata #2 was not successfully received.
  • the given timer is used to determine the maximum transmission time of one sub-data of the M1 first-type sub-data of the first data.
  • the one sub-data includes the first sub-data.
  • the one sub-data includes the second sub-data.
  • the given timer includes a positive integer number of time slots.
  • the start time of the given timer includes the moment when the given sub-data is sent.
  • the start time of the given timer includes a certain moment after the given sub-data is sent.
  • the given timer is stopped when the given sub-data is received.
  • the given sub-data #1 is one sub-data in M1 first-type sub-data of the first data.
  • the given sub-data #2 is one sub-data in M1 first-type sub-data of the first data.
  • the first sub-data includes the given sub-data #1
  • the second sub-data includes the given sub-data #2.
  • the phrase "when the transmission of the first sub-data succeeds and the transmission of the second sub-data fails" includes: an acknowledgement message is received within a given timer for the first sub-data , for the second sub-data, the given timer expires.
  • the acknowledgement message includes a PDCCH.
  • the confirmation message includes a MAC CE.
  • the confirmation message includes an RRC message.
  • the acknowledgement message includes one bit.
  • the acknowledgement message being set to 1 indicates that the given sub-message was successfully transmitted.
  • the acknowledgement message being set to 0 indicates that the given sub-message failed to transmit.
  • the dashed box F15.1 is optional.
  • the dashed box F15.2 is optional.
  • At least one of the dashed box F15.1 and the dashed box F15.2 exists.
  • Embodiment 16 illustrates a schematic diagram of a given timer according to another embodiment of the present application, as shown in FIG. 16 .
  • the horizontal axis represents time, T5, T6, T7 and T8 represent four moments or time intervals respectively; at T5, when the given sub-data #1 is sent, the given timer is started; at T6, the given sub-data #2 is sent; T7, when acknowledgment messages for given subdata #1 and given subdata #2 are successfully received, stop the given timer; at T8, the given timer expires, and for given subdata #1 and given subdata # The acknowledgment message for 2 was not successfully received.
  • the given timer is used to determine the maximum transmission time of the M1 first-type sub-data of the first data.
  • a non-negative integer number of milliseconds is included between the T5 and the T6.
  • the phrase acknowledgment messages for given subdata #1 and given subdata #2 being successfully received includes that the acknowledgment messages for both given subdata #1 and given subdata #2 indicate transmission success.
  • the phrase confirmation messages for the given sub-data #1 and given sub-data #2 being successfully received includes: the confirmation message for the given sub-data #1 indicates that the transmission was successful, for the given sub-data # An acknowledgment message of 2 indicates that the transmission failed.
  • the phrase confirmation messages for given sub-data #1 and given sub-data #2 being successfully received includes: the confirmation message for the given sub-data #1 indicates a transmission failure, for the given sub-data # A confirmation message of 2 indicates that the transfer was successful.
  • the phrase that the confirmation message for the given sub-data #1 and the given sub-data #2 was not successfully received includes: no confirmation message is detected.
  • the confirmation message includes a bitmap.
  • the bitmap includes M1 bits, where M1 is a positive integer.
  • the M1 bits are respectively confirmed for the M1 first-type sub-data.
  • any bit in the bitmap corresponds to a first type of sub-data.
  • any bit in the bitmap is set to 1, it indicates that a corresponding first type of sub-data is successfully transmitted.
  • any bit in the bitmap is set to 0, it indicates that a corresponding first type of sub-data transmission fails.
  • the dashed box F16.1 is optional.
  • the dashed box F16.2 is optional.
  • one of the dashed box F16.1 and the dashed box F16.2 exists.
  • User equipment, terminals and UEs in this application include, but are not limited to, drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low Wireless communication devices such as tablet PCs.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点确定在第一状态发送第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;当所述第一计数器不大于第一阈值,并且确定更新第二计数器时,根据第二目标功率发送第三信号;在第一时间窗中监测第二信号;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及小数据包业务的传输方法和装置。
背景技术
NR(New Radio,新空口)支持RRC(Radio Resource Control,无线资源控制)非激活(RRC_INACTIVE)状态(State),直到3GPP Rel-16版本,RRC非激活状态不支持发送数据。当用户设备(User Equipment,UE)在RRC_INACTIVE状态下有周期性或非周期性的不频繁的小数据包需要发送时,需要先恢复(Resume)连接,即转换到RRC连接(RRC_CONNECTED)状态,数据发送完毕,再转换到RRC_INACTIVE状态。3GPP RAN#86次会议决定开展“NR非激活态(INACTIVE state)小数据包传输(Small Data Transmission)”工作项目(Work Item,WI),研究在RRC_INACTIVE状态中的小数据包传输技术,包括在预配置的PUSCH(Physical Uplink Shared Channel,物理上行链路共享信道)资源上发送上行数据,或者利用随机接入(Random Access,RA)过程中的消息3(Message 3,Msg3)或消息B(Message B,MsgB)携带数据。
发明内容
当UE在RRC_INACTIVE状态发送小数据包时,一旦开始传输,需要保证尽可能传输成功,发送前导码序列(Preamble)时,条件满足的情况下,尽可能提升较多功率,保证小数据包传输,因此,需要针对在RRC_INACTIVE状态发送小数据包时的随机接入前导码发射功率进行增强。另外,两步随机接入(2-stepRA)可以回退(Fallback)到四步随机接入(4-stepRA),引入小数据包传输后,需要对回退机制进行增强。
针对上述问题,本申请提供了一种解决方案。针对上述问题描述中,采用授权频谱接入场景作为一个例子;本申请也同样适用于例如非授权频谱接入的场景,取得类似授权频谱中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;
在第一时间窗中监测第二信号;
其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,本申请要解决的问题包括:如何保证在RRC_INACTIVE状态中通过随机接入过程发送小数据包。
作为一个实施例,上述方法的特质包括:当满足抬升功率条件时,根据第一步长提高前导码的目标接收功率。
作为一个实施例,上述方法的特质包括:第一步长是针对在RRC_INACTIVE状态中通过随机接入过程发送小数据包专用的。
作为一个实施例,上述方法的好处包括:提高小数据包的成功传输概率。
根据本申请的一个方面,其特征在于,包括:
接收第一信令;
其中,所述第一信令指示所述第一步长。
根据本申请的一个方面,其特征在于,包括:
接收第二信令;
其中,所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长。
根据本申请的一个方面,其特征在于,包括:
发送第一子数据;发送第二子数据;
确定所述第一子数据传输成功,并且所述第二子数据传输失败;
其中,所述第一数据包括所述第一子数据与所述第二子数据;所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
作为一个实施例,上述方法的特质包括:当所述第一数据中的部分被成功传输,部分没有被成功传输时,采用所述第一步长。
作为一个实施例,上述方法的好处包括:当所述第一数据中的任意部分没有传输成功时,不采用所述第一步长,避免抬升功率过快。
根据本申请的一个方面,其特征在于,当所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入时,所述第二目标功率与所述第一目标功率的差值还与第二偏移量有关,第一子步长和第二子步长的差值与所述第一计数器被用于确定所述第二偏移量,所述第一子步长与所述第二子步长分别被用于确定所述第一类随机接入和所述第二类随机接入的目标功率。
作为一个实施例,上述方法的特质包括:在不同的随机接入类型之间进行转换时,功率抬升增加不同随机接入类型的差异的影响。
根据本申请的一个方面,其特征在于,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
作为一个实施例,上述方法的特质包括:在不同的随机接入类型之间进行转换时,指示UE是否可以继续执行小数据包传输。
根据本申请的一个方面,其特征在于,包括:
接收第三信令;
其中,所述第三信令被用于确定第一候选前导码序列分组,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组有关,所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组,所述N1是正整数;所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
作为一个实施例,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组无关。
作为一个实施例,上述方法的特质包括:根据随机接入类型和是否在RRC_INACTIVE发送小数据包将前导码序列分为四组。
作为一个实施例,上述方法的特质包括:在RRC_INACTIVE发送小数据包的UE使用专用的前导码序列集合。
作为一个实施例,上述方法的好处包括:避免对其他随机接入目的的用户的影响。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一信号;接收第三信号;
当所述第一信号被接收到时,发送第二信号;
其中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于所述第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计 前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
根据本申请的一个方面,其特征在于,包括:
发送第一信令;
其中,所述第一信令指示所述第一步长。
根据本申请的一个方面,其特征在于,包括:
发送第二信令;
其中,所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长。
根据本申请的一个方面,其特征在于,包括:
监测第一子数据;监测第二子数据;
其中,所述第一子数据被确定传输成功,并且所述第二子数据被确定传输失败;所述第一数据包括所述第一子数据与所述第二子数据;所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
根据本申请的一个方面,其特征在于,当所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入时,所述第二目标功率与所述第一目标功率的差值还与第二偏移量有关,第一子步长和第二子步长的差值与所述第一计数器被用于确定所述第二偏移量,所述第一子步长与所述第二子步长分别被用于确定所述第一类随机接入和所述第二类随机接入的目标功率。
根据本申请的一个方面,其特征在于,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
根据本申请的一个方面,其特征在于,包括:
发送第三信令;
其中,所述第三信令被用于确定第一候选前导码序列分组,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组有关,所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组,所述N1是正整数;所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;
第一接收机,在第一时间窗中监测第二信号;
其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,接收第一信号;接收第三信号;
第二发射机,当所述第一信号被接收到时,发送第二信号;
其中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于所述第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第 三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.提高小数据包的成功传输概率;
-.只有当部分数据传输成功时,才使用第一步长,避免抬升功率过快;
-.避免对其他随机接入目的的用户的影响。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信号、第二信号和第三信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的在第一状态发送第一数据的流程图;
图8示出了根据本申请的一个实施例的第二目标功率与第一目标功率的差值与第一步长和第二偏移量都有关的示意图;
图9示出了根据本申请的一个实施例的第二信号的第一域被用于指示是否放弃在第一状态发送第一数据的示意图;
图10示出了根据本申请的一个实施例的在第一状态发送第一数据的回退的示意图;
图11示出了根据本申请的一个实施例的确定在第一状态发送第一数据与选择第一候选前导码序列分组有关的示意图;
图12示出了根据本申请的一个实施例的N1个第一类前导码序列分组的示意图;
图13示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的给定定时器的示意图;
图16示出了根据本申请的一个实施例的另一个实施例的给定定时器的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信号、第二信号和第三信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;在步骤102中在第一时间窗中监测第二信号;其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述短语确定是否在第一状态发送第一数据包括:所述第一数据是否被允许在所述第一状态被发送。
作为一个实施例,所述短语确定是否在第一状态发送第一数据包括:在RRC_INACTIVE状态是否允许执行小数据包传输。
作为一个实施例,根据第一接收质量确定是否在第一状态发送第一数据。
作为该实施例的一个子实施例,所述第一接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)、或者RSRQ(Reference Signal Received Quality,参考信号接收质量)、或者RSSI(Received Signal Strength Indicator,接收信号强度指示器)、或者SINR(Signal to Noise and Interference Ratio,信干噪比)、或者CRI(Channel Status Information reference signal resource indicator,或者信道状态信息参考信号资源指示)中的至少之一。
作为该实施例的一个子实施例,所述第一接收质量的单位包括dBm。
作为该实施例的一个子实施例,所述第一接收质量不小于第一质量阈值被用于确定在所述第一状态发送所述第一数据,所述不小于包括大于或者等于。
作为该子实施例的一个附属实施例,所述第一质量阈值通过RRC信令预配置。
作为该子实施例的一个附属实施例,所述第一质量阈值是可配置的。
作为该实施例的一个子实施例,所述第一接收质量小于第一质量阈值被用于确定不在所述第一状态发送所述第一数据。
作为该实施例的一个子实施例,所述第一接收质量不大于第一质量阈值被用于确定在所述第一状态发送所述第一数据,所述不大于包括小于或者等于。
作为该实施例的一个子实施例,所述第一接收质量大于第一质量阈值被用于确定不在所述第一状态发送所述第一数据。
作为该实施例的一个子实施例,针对第一类随机接入和第二类随机接入,所述第一接收质量相同。
作为该实施例的一个子实施例,针对第一类随机接入和第二类随机接入,所述第一接收质量不同。
作为一个实施例,所述短语当确定在所述第一状态发送所述第一数据时包括:当满足在所述第一状态发送所述第一数据的条件时。
作为一个实施例,所述短语当确定在所述第一状态发送所述第一数据时包括:当根据第一接收质量确定在所述第一状态发送所述第一数据时。
作为一个实施例,根据所述第一数据尺寸确定是否在第一状态发送第一数据。
作为该实施例的一个子实施例,所述第一数据尺寸不大于第一尺寸阈值被用于确定在第一状态发送第一数据。
作为该实施例的一个子实施例,所述第一数据尺寸通过RRC进行预配置。
作为该实施例的一个子实施例,所述第一数据尺寸是可配置的。
作为该实施例的一个子实施例,针对第一类随机接入和第二类随机接入,所述第一数据尺寸相同。
作为该实施例的一个子实施例,针对第一类随机接入和第二类随机接入,所述第一数据尺寸不同。
作为一个实施例,根据第一接收质量和第一数据尺寸确定是否在所述第一状态发送所述第一数据。
作为一个实施例,所述第一数据在MAC(Medium Access Control,介质访问控制)层生成。
作为一个实施例,所述第一数据在RRC(Radio Resource Control,无线资源控制)层生成。
作为一个实施例,所述第一数据在PHY(Physical)层生成。
作为一个实施例,所述第一数据在更高层生成。
作为一个实施例,所述第一数据包括MAC子头(Subheader)。
作为一个实施例,所述第一数据不包括MAC子头。
作为一个实施例,所述第一数据包括CCCH(Common Control Channel,公共控制信道)。
作为一个实施例,所述第一数据不包括CCCH。
作为一个实施例,所述第一数据包括DTCH(Dedicated Transmission Channel,专用传输信道)或者NAS消息。
作为一个实施例,所述第一数据包括MAC CE(Control Element,控制元素)。
作为一个实施例,所述第一数据包括MAC PDU(Protocol Data Unit,协议数据单元)。
作为一个实施例,所述第一数据包括MAC SDU(Service Data Unit,服务数据单元)。
作为一个实施例,所述第一数据包括TBS(Transmission Block Size,传输块大小)。
作为一个实施例,所述第一数据包括物理层的一个数据块。
作为一个实施例,所述第一数据支持分段(Segmentation)。
作为一个实施例,所述第一数据不支持分段。
作为一个实施例,所述第一数据通过消息3传输。
作为一个实施例,所述第一数据通过消息A传输。
作为一个实施例,所述第一数据通过消息2调度的资源传输。
作为一个实施例,所述第一数据通过消息4调度的资源传输。
作为一个实施例,所述第一数据通过消息B调度的资源传输。
作为一个实施例,所述第一数据通过预配置的资源传输。
作为一个实施例,所述第一数据通过在随机接入过程中的一个PDCCH(物理下行控制信道,Physical Downlink Control Channel)指示的资源传输。
作为一个实施例,所述第一数据通过在随机接入过程中的一个RAR(Random Access Response,随机接入响应)指示的资源传输。
作为一个实施例,所述第一数据通过在随机接入过程中的一个MAC CE指示的资源传输。
作为一个实施例,所述第一数据包括M1个第一类子数据,所述M1是正整数。
作为该实施例的一个子实施例,所述M1等于1。
作为该实施例的一个子实施例,所述M1大于1。
作为该实施例的一个子实施例,所述M1个第一类子数据被发送后接收一个确认消息。
作为该实施例的一个子实施例,所述M1个第一类子数据中任一子数据被发送后接收一个确认消息。
作为该实施例的一个子实施例,所述M1个第一类子数据通过一个通过时分方式发送。
作为一个实施例,所述短语所述第一状态包括RRC非激活状态包括:所述第一状态是指所述RRC非激活状态。
作为一个实施例,所述短语所述第一状态包括RRC非激活状态包括:所述RRC非激活状态是所述第一状态中的一个状态。
作为一个实施例,所述第一状态包括CM状态。
作为一个实施例,所述第一状态包括RRC状态。
作为该实施例的一个子实施例,所述第一无线状态包括CM连接态(CM-Connected)。
作为该实施例的一个子实施例,所述第一无线状态包括CM空闲态(CM-Idle)。
作为该实施例的一个子实施例,所述第一无线状态包括CM非激活态(CM-Inactive)。
作为一个实施例,所述第一状态包括RRC连接态(RRC_CONNECTED)。
作为一个实施例,所述第一状态不是RRC连接态。
作为一个实施例,所述第一状态包括RRC非激活状态。
作为该实施例的一个子实施例,所述RRC非激活状态包括RRC_INACTIVE状态。
作为该实施例的一个子实施例,所述RRC非激活状态包括RRC空闲状态。
作为该实施例的一个子实施例,所述RRC非激活状态包括RRC_IDLE状态。
作为该实施例的一个子实施例,所述RRC非激活状态包括DRX(Discontinuous Reception)状态。
作为一个实施例,所述行为选择第一步长包括:确定所述第一步长。
作为一个实施例,所述行为选择第一步长包括:将PREAMBLE_POWER_RAMPING_STEP设置从所述第一步长。
作为一个实施例,所述第一步长被用于确定功率抬升因子(Power-ramping factor)。
作为一个实施例,所述第一步长被用于确定针对在所述第一状态发送所述第一数据,当所述第二计数器被更新时,所述第二目标功率相对所述第一目标功率被提升的功率。
作为一个实施例,所述第一步长通过RRC信令或者MAC层信令进行配置。
作为一个实施例,所述第一步长的单位包括dB。
作为一个实施例,所述第一步长包括整数个dB。
作为一个实施例,所述第一步长包括0dB,2dB,4dB,或者6dB中的之一。
作为一个实施例,所述第一步长包括一个RRC消息中的一个域,所述一个域的名字包括powerRampingStep。
作为一个实施例,所述第一步长包括一个RRC消息中的一个域,所述一个域的名字包括msgA-PreamblePowerRampingStep。
作为一个实施例,所述第一步长包括一个RRC消息中的一个域,所述一个域的名字包括powerRampingStepHighPriority。
作为一个实施例,所述第一步长包括一个RRC消息中的一个域,所述一个域的名字包括xxx-powerRampingStep。
作为一个实施例,所述第一步长包括一个RRC消息中的一个域,所述一个域的名字包括xxx-msgA-PreamblePowerRampingStep
作为一个实施例,所述第一步长包括一个RRC消息中的一个域,所述一个域的名字包括xxx-powerRampingStepHighPriority。
作为一个实施例,所述短语根据第一目标功率发送第一信号包括:PREAMBLE_RECEIVED_TARGET_POWER的值等于所述第一目标功率,使用所述第一目标功率发送所述第一信号。
作为一个实施例,所述短语根据第一目标功率发送第一信号包括:所述第一信号的发射功率通过第一目标功率计算得到。
作为一个实施例,所述短语根据第二目标功率发送第三信号包括:PREAMBLE_RECEIVED_TARGET_POWER的值等于所述第二目标功率,使用所述第二目标功率发送所述第三信号。
作为一个实施例,所述短语根据第二目标功率发送第三信号包括:所述第三信号的发射功率通过第二目标功率计算得到。
作为一个实施例,所述第一信号包括随机接入过程中的第一个前导码序列。
作为一个实施例,所述第一信号包括随机接入过程中的其中一个前导码序列。
作为一个实施例,所述第三信号包括随机接入过程中的其中一个前导码序列。
作为一个实施例,所述第一信号和所述第三信号是随机接入过程中被发送的两个连续前导码序列。
作为一个实施例,所述第一信号和所述第三信号是随机接入过程中被发送的两个非连续前导码序列。
作为一个实施例,给定目标功率包括第一初始功率,所述给定目标功率包括所述第一目标功率或者所述第二目标功率。
作为该实施例的一个子实施例,所述第一初始功率包括msgA-PreambleReceivedTargetPower。
作为该实施例的一个子实施例,所述第一初始功率包括preambleReceivedTargetPower。
作为该实施例的一个子实施例,所述第一初始功率包括xxx-msgA-PreambleReceivedTargetPower。
作为该实施例的一个子实施例,所述第一初始功率包括xxx-preambleReceivedTargetPower。
作为一个实施例,给定目标功率包括第一功率差值,所述给定目标功率包括所述第一目标功率或者所述第二目标功率。
作为该实施例的一个子实施例,所述第一功率差值包括DELTA_PREAMBLE。
作为该实施例的一个子实施例,所述第一功率差值被用于确定功率偏移量。
作为该实施例的一个子实施例,所述第一功率差值与子载波间隔无关。
作为该实施例的一个子实施例,所述第一功率差值与子载波间隔有关。
作为该实施例的一个子实施例,所述第一功率差值与前导码序列的格式有关。
作为该实施例的一个子实施例,针对所述第一信号的所述第一功率差值与针对所述第三信号的所述第一功率差值相同。
作为该实施例的一个子实施例,针对所述第一信号的所述第一功率差值与针对所述第三信号的所述第一功率差值不同。
作为该实施例的一个子实施例,所述第一功率差值等于0dB,或者-3dB,或者-6dB中的之一。
作为该实施例的一个子实施例,所述第一功率差值等于(8+3×μ)dB,或者(5+3×μ)dB,或者(3+3×μ)dB,或者(3×μ),或者(11+3×μ)中的之一。
作为一个实施例,给定目标功率包括第一功率增量,所述给定目标功率包括所述第一目标功率或者所述第二目标功率。
作为该实施例的一个子实施例,所述第一功率增量与所述第二计数器有关。
作为该实施例的一个子实施例,所述第一功率增量和{(所述第二计数器与所述第一步长的乘积)与所述第一步长的差值}相等。
作为该实施例的一个子实施例,所述第一功率增量=(所述第二计数器-1)×所述第一步长。
作为该实施例的一个子实施例,所述第一功率增量=(PREAMBLE_POWER_RAMPING_COUNTER–1)×PREAMBLE_POWER_RAMPING_STEP。
作为该实施例的一个子实施例,所述第一功率增量=(PREAMBLE_POWER_RAMPING_COUNTER–1)×MSGA_PREAMBLE_POWER_RAMPING_STEP。
作为该实施例的一个子实施例,所述第一功率增量=(PREAMBLE_POWER_RAMPING_COUNTER–1)×xxx_PREAMBLE_POWER_RAMPING_STEP。
作为该实施例的一个子实施例,所述第一功率增量=(PREAMBLE_POWER_RAMPING_COUNTER–1)×xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP。
作为一个实施例,给定目标功率包括第一回退功率增量,所述给定目标功率包括所述第一目标功率或者所述第二目标功率。
作为该实施例的一个子实施例,所述第一回退功率增量包括POWER_OFFSET_2STEP_RA。
作为该实施例的一个子实施例,所述第一回退功率增量包括POWER_OFFSET_2STEP_xxx_RA。
作为该实施例的一个子实施例,所述第一回退功率增量与(第二计数器与1的差值)与(第一信号对应的步长和第二信号对应的步长的差值)的乘积相等。
作为该子实施例的一个附属实施例,所述第一信号对应的步长包括第一步长,所述第三信号对应的步长包括一个候选步长。
作为该子实施例的一个附属实施例,所述第一步长包括xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP,所述候选步长包括MSGA_PREAMBLE_POWER_RAMPING_STEP,或者PREAMBLE_POWER_RAMPING_STEP,或者xxx_PREAMBLE_POWER_RAMPING_STEP中的之一。
作为该子实施例的一个附属实施例,所述第一步长包括xxx_PREAMBLE_POWER_RAMPING_STEP,所述候选步长包括MSGA_PREAMBLE_POWER_RAMPING_STEP,或者PREAMBLE_POWER_RAMPING_STEP,或者xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP中的之一。
作为一个实施例,所述给定目标功率与所述第一初始功率,或者所述第一功率差值,或者所述第一功率增量,或者第一回退功率增量的至少一个有关。
作为一个实施例,所述给定目标功率与所述第一初始功率,所述第一功率差值,所述第一功率增量都有关。
作为一个实施例,所述给定目标功率与所述第一初始功率,所述第一功率差值,所述第一功率增量,第一回退功率增量都有关。
作为一个实施例,所述给定目标功率与所述第一初始功率,所述第一功率差值,与所述第一功率增量的和相等。
作为一个实施例,所述给定目标功率与所述第一初始功率,所述第一功率差值,所述第一功率增量,与第一回退功率增量的和相等。
作为一个实施例,所述第一目标功率包括当所述第二计数器等于C1时所述第一信号的目标接收功率,所述C1是正整数。
作为一个实施例,所述第二目标功率包括当所述第二计数器与(C1与1的和)相等时所述第三信号的目标接收功率。
作为一个实施例,所述第一目标功率包括当所述第二计数器等于C1时的PREAMBLE_RECEIVED_TARGET_POWER的值。
作为一个实施例,所述第二目标功率包括当所述第二计数器与(C1与1的和)相等时的PREAMBLE_RECEIVED_TARGET_POWER的值。
作为一个实施例,当所述第二计数器被更新时,所述第二目标功率增加所述第一步长。
作为一个实施例,当所述第二计数器被更新时,所述第二目标功率增加所述第一步长。
作为一个实施例,所述行为更新第一计数器包括:改变所述第一计数器的数值。
作为一个实施例,所述行为更新第一计数器包括:所述第一计数器的当前值改为另外一个数值。
作为一个实施例,所述行为更新第一计数器包括:所述第一计数器加1。
作为一个实施例,所述行为更新第一计数器包括:所述第一计数器减1。
作为一个实施例,所述行为更新第一计数器包括:所述第一计数器加K1,所述K1是大于1的正整数。
作为一个实施例,所述行为更新第一计数器包括:所述第一计数器减K1,所述K1是大于1的正整数。
作为一个实施例,所述行为确定是否更新第二计数器包括:判断是否满足更新所述第二计数器的条件。
作为该实施例的一个子实施例,更新所述第二计数器的一个条件包括:所述第一计数器的值大于1。
作为该实施例的一个子实施例,更新所述第二计数器的一个条件包括:没有接收到暂停所述第一计数器的通知。
作为该实施例的一个子实施例,更新所述第二计数器的一个条件包括:没有接收到针对所述第一信号的LBT失败指示。
作为该实施例的一个子实施例,更新所述第二计数器的一个条件包括:SSB(Synchronization Signal Block,同步信号块)或者CSI-RS(Channel-state Information Reference Signal)的至少之一没有被改变时,确定更新所述第二计数器。
作为一个实施例,所述行为更新第二计数器包括:改变所述第二计数器的数值。
作为一个实施例,所述行为更新第二计数器包括:所述第二计数器的当前值改为另外一个数值。
作为一个实施例,所述行为更新第二计数器包括:所述第二计数器加1。
作为一个实施例,所述行为更新第二计数器包括:所述第二计数器减1。
作为一个实施例,所述行为更新第二计数器包括:所述第二计数器加K2,所述K2是大于1的正整数。
作为一个实施例,所述行为更新第二计数器包括:所述第二计数器减K2,所述K2是大于1的正整数。
作为一个实施例,所述短语所述第一计数器不大于第一阈值包括:所述第一计数器等于所述第一阈值。
作为一个实施例,所述短语所述第一计数器不大于第一阈值包括:所述第一计数器小于所述第一阈值。
作为一个实施例,所述第一阈值通过RRC消息进行配置。
作为一个实施例,所述第一阈值包括msgA-TransMax,或者preambleTransMax,或者xxx-msgA-TransMax,或者xxx-preambleTransMax中的之一。
作为一个实施例,所述第一时间窗包括ra-ResponseWindow,或者ra-ContentionResolutionTimer,或者msgB-ResponseWindow。
作为一个实施例,所述第一时间窗被用于确定所述第一信号是否被本申请中的所述第二节点接收。
作为一个实施例,所述第一时间窗包括第一时间子窗和第二时间子窗。
作为该实施例的一个子实施例,所述第一时间子窗包括ra-ResponseWindow,所述第二时间子窗包括ra-ContentionResolutionTimer,所述第一时间子窗被用于确定接收所述消息1的时间间隔,所述第二时间子窗被用于确定接收所述消息3的时间间隔。
作为一个实施例,所述第一时间窗的开始时刻与所述第一信号的发送时刻相同。
作为一个实施例,所述第一时间窗的开始时刻等于所述第一信号的发送时刻之后的某个时刻。
作为一个实施例,所述短语所述第一时间窗包括正整数个时隙包括:所述第一时间窗由正整数个时隙组成。
作为一个实施例,所述短语所述第一时间窗包括正整数个时隙包括:所述第一时间窗的大小等于正整数个时隙。
作为一个实施例,所述短语所述第一时间窗包括正整数个时隙包括:所述第一时间窗的时间间隔是正整数个时隙。
作为一个实施例,所述时隙包括:solt,或者无线子帧(subframe),或者无线帧(Radio Frame), 或者多个OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用技术)符号,或者多个SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)符号中的至少一个。
作为一个实施例,所述正整数个时隙是可配置的。
作为一个实施例,所述正整数个时隙通过RRC消息进行配置。
作为一个实施例,所述正整数个时隙是预配置的。
作为一个实施例,所述行为在第一时间窗中监测第二信号包括:在所述第一时间窗运行期间,监测所述第二信号。
作为一个实施例,所述行为在第一时间窗中监测第二信号包括:在所述第一时间窗开始之后,并且所述第一时间窗过期之前,监测所述第二信号。
作为一个实施例,所述行为在第一时间窗中监测第二信号包括:在所述第一时间窗限定的时间间隔内,监测所述第二信号。
作为一个实施例,所述行为监测第二信号包括:在所述第二信号所占用的信道上检测是否存在所述第二信号。
作为一个实施例,所述行为监测第二信号包括:监听(Monitor)所述第二信号。
作为一个实施例,所述行为监测第二信号包括:通过CRC(Cyclic Redundancy Check,循环冗余码校验)校验检测是否存在所述第二信号。
作为一个实施例,所述行为监测第二信号包括:通过盲检测检测是否存在所述第二信号。
作为一个实施例,所述行为监测第二信号包括:通过特征序列的相干检测是否存在所述第二信号。
作为一个实施例,所述行为监测第二信号包括:当所述第二信号被检测到时,接收所述第二信号。
作为一个实施例,所述行为监测第二信号包括:监测PDCCH。
作为一个实施例,在所述第一时间窗中监测到所述第二信号。
作为一个实施例,在所述第一时间窗中没有监测到所述第二信号。
作为一个实施例,所述第二信号被接收。
作为一个实施例,所述第二信号没有被接收。
作为一个实施例,所述第一计数器大于第一阈值包括:所述第一计数器的值大于所述第一阈值。
作为一个实施例,所述第一计数器大于第一阈值包括:所述第一计数器等于所述第一阈值加1。
作为一个实施例,所述行为确定所述第一数据传输失败包括:确定发送无线链路失败(Radio Link Failure)。
作为一个实施例,所述行为确定所述第一数据传输失败包括:确定发生随机接入问题。
作为一个实施例,所述行为确定所述第一数据传输失败包括:确定所述第一数据没有发送成功。
作为一个实施例,所述行为确定所述第一数据传输失败包括:确定发生RLF,所述RLF的原因是随机接入失败,所述随机接入失败的原因是所述第一数据传输失败。
作为一个实施例,当确定所述第一数据传输失败时,MAC层给RRC层发送随机接入问题(Random Access Problem)指示。
作为一个实施例,当由于接收到MCG MAC层随机接入问题指示所述第一节点声称无线链路失败(RLF)时,如果随机接入过程是由于在所述第一状态发送所述第一数据发起的,设置rlf-Cause为xxxFailure,所述rlf-Cause是一个RRC消息中的一个域,所述一个RRC消息包括UEInformationResponse,或者MCGFailureInformation,或者SCGFailureInformation。
作为一个实施例,当确定所述第一数据传输失败时,返回所述第一状态。
作为一个实施例,当确定所述第一数据传输失败时,进入RRC_IDLE状态。
作为一个实施例,所述短语所述第一信号,所述第二信号和所述第三信号被用于随机接入过程包括:所述第一信号,所述第二信号和所述第三信令是所述随机接入过程中的一个信号。
作为一个实施例,所述短语所述第一信号,所述第二信号和所述第三信号被用于随机接入过程包括:所述第一信号,所述第二信号和所述第三信号分别是所述随机接入过程中的消息1(Message 1,Msg1),或者消息2(Message 2,Msg2),或者消息3(Message 3,Msg3),或者消息4(Message 4,Msg4),或者 消息A(Message A,MsgA),或者消息B(Message B,MsgB)中的其中一个。
作为一个实施例,所述第一信号,所述第二信号和所述第三信号属于同一次随机接入过程。
作为一个实施例,所述第一信号,所述第二信号和所述第三信号属于不同随机接入过程。
作为一个实施例,所述第一信号被用于触发所述第二信号。
作为一个实施例,所述第一信号被发送被用于确定监测所述第二信号。
作为一个实施例,所述短语所述第一信号和所述第三信号包括前导码序列包括:所述第一信号和所述第三信号分别包括一个前导码序列。
作为一个实施例,所述短语所述第一信号和所述第三信号包括前导码序列包括:所述第一信号至少包括前导码序列,所述第三信号至少包括前导码序列。
作为一个实施例,所述第一信号中的前导码序列和所述第三信号中的前导码序列不同。
作为一个实施例,所述第一信号中的前导码序列和所述第三信号中的前导码序列相同。
作为一个实施例,所述前导码序列包括Preamble。
作为一个实施例,所述前导码序列包括一个正整数。
作为一个实施例,所述前导码序列包括一个比特串。
作为一个实施例,所述第一信号通过空中接口传输。
作为一个实施例,所述第一信号通过天线端口发送。
作为一个实施例,所述第一信号在PRACH(Physical Random Access Channel,物理随机接入信道)上传输。
作为一个实施例,所述第一信号在PUSCH上传输。
作为一个实施例,所述第一信号包括PRACH,或者PUSCH中的至少一个。
作为一个实施例,所述第一信号包括一个物理层(Physical Layer)信号(Signal)中的全部或部分。
作为一个实施例,所述第一信号包括一个RRC消息中的全部或部分。
作为一个实施例,所述第一信号包括一个上行(Uplink,UL)信号。
作为一个实施例,所述第二信号通过空中接口传输。
作为一个实施例,所述第二信号通过天线端口发送。
作为一个实施例,所述第二信号包括一个物理层(Physical Layer)信号(Signal)中的全部或部分。
作为一个实施例,所述第二信号包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第二信号包括一个RRC消息中的全部或部分。
作为一个实施例,所述第二信号包括一个下行(Downlink,DL)信号。
作为一个实施例,所述第二信号包括MAC层信令中的全部或部分。
作为一个实施例,所述第三信号通过空中接口传输。
作为一个实施例,所述第三信号通过天线端口发送。
作为一个实施例,所述第三信号在PRACH上传输。
作为一个实施例,所述第三信号在PUSCH上传输。
作为一个实施例,所述第三信号包括一个物理层(Physical Layer)信号(Signal)中的全部或部分。
作为一个实施例,所述第三信号包括一个上行信号。
作为一个实施例,所述消息1包括所述前导码序列。
作为一个实施例,所述消息2包括RAR。
作为一个实施例,所述消息2包括一个MAC子头。
作为一个实施例,所述消息2包括一个MAC子PDU。
作为一个实施例,所述消息2包括PDCCH。
作为一个实施例,所述消息2包括回退指示(Backoff Indicator),或者RAPID,或者RAPID和MAC RAR。
作为一个实施例,所述消息2中包括定时提前量命令(Timing Advance Command,TAC),或者UL Grant,或者C-RNTI(Temporary C-RNTI,TC-RNTI)中的至少一个。
作为一个实施例,所述消息3包括所述第一数据。
作为一个实施例,所述消息3包括CCCH SDU。
作为一个实施例,所述消息3包括BSR(Buffer Status Report,缓存状态报告)。
作为一个实施例,所述消息3包括C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识符)MAC CE。
作为一个实施例,所述消息3包括fullI-RNTI。
作为一个实施例,所述消息3包括shortI-RNTI。
作为一个实施例,所述消息4包括一个MAC子头。
作为一个实施例,所述消息4包括一个MAC CE。
作为一个实施例,所述消息4包括UE竞争解决标识(Contention Resolution Identity)MAC CE。
作为一个实施例,所述消息A包括所述前导码序列。
作为一个实施例,所述消息A包括所述消息1中的全部或部分和所述消息3中的全部或部分。
作为一个实施例,所述消息A包括所述消息1中的全部或部分。
作为一个实施例,所述消息B包括所述消息2中的全部或部分和所述消息4中的全部或部分。
作为一个实施例,所述消息B包括所述消息2中的全部或部分。
作为一个实施例,所述消息B包括一个RAR。
作为一个实施例,所述消息B包括一个MAC子头。
作为一个实施例,所述消息B包括一个MAC子PDU。
作为一个实施例,所述消息B包括一个回退指示(Backoff Indicator),或者fallbackRAR,或者successRAR,或者MAC SDU for CCCH or DCCH,或者padding的至少一个。
作为一个实施例,所述消息B中的一个域与所述消息2中的一个域相同。
作为一个实施例,所述消息B中的一个域与所述消息4中的一个域相同。
作为一个实施例,所述消息B中的一个域与所述消息2中的一个域以及所述消息4中的一个域相同。
作为一个实施例,所述第一信号至少包括一个物理层信号。
作为一个实施例,所述第一信号包括一个RRC层信号。
作为一个实施例,所述短语所述第一信号,所述第二信号和所述第三信号被用于随机接入过程包括:所述第一信号,所述第二信号和所述第三信号在随机接入过程中被发送。
作为一个实施例,所述随机接入过程包括第一类随机接入过程。
作为该实施例的一个子实施例,所述第一类随机接入过程包括两步随机接入过程(2-stepRA)。
作为该实施例的一个子实施例,所述第一类随机接入过程包括所述消息A,或者所述消息B中的至少一个。
作为该实施例的一个子实施例,所述第一信号包括所述消息A,所述第二信号包括消息B,所述第三信号包括消息A。
作为该实施例的一个子实施例,所述第一信号,所述第二信号和所述第三信号被用于所述第一类随机接入过程。
作为一个实施例,所述随机接入过程包括第二类随机接入过程。
作为该实施例的一个子实施例,所述第二类随机接入过程包括四步随机接入过程(4-stepRA)。
作为该实施例的一个子实施例,所述第一信号,所述第二信号和所述第三信号被用于所述第二类随机接入过程。
作为该实施例的一个子实施例,所述第二类随机接入过程包括所述消息1,或者所述消息2,或者所述消息3,或者所述消息4中的至少一个。
作为该实施例的一个子实施例,所述第一信号包括所述消息1,所述第二信号包括所述消息2,所述第三信号包括所述消息1。
作为一个实施例,所述随机接入过程包括第一类随机接入过程和第二类随机接入过程。
作为该实施例的一个子实施例,所述第一信号和所述第二信号被用于所述第一类随机接入过程,所述第三信号被用于所述第二类随机接入过程。
作为该实施例的一个子实施例,所述第一信号和所述第二信号被用于所述第二类随机接入过程,所述第三信号被用于所述第一类随机接入过程。
作为该实施例的一个子实施例,所述第一信号包括所述消息A,所述第二信号包括所述消息B,所述第三信号包括所述消息1。
作为一个实施例,所述短语所述第一计数器被用于统计前导码序列的发送次数包括:所述第一计数器的值与所述前导码序列的发送次数相等。
作为一个实施例,所述短语所述第一计数器被用于统计前导码序列的发送次数包括:所述第一计数器随着所述前导码序列的发送次数的增加进行更新。
作为一个实施例,所述短语所述第一计数器被用于统计前导码序列的发送次数包括:前导码序列发送失败一次,所述第一计数器更新一次。
作为一个实施例,所述第一计数器包括PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述短语所述第二计数器被用于统计所述第一步长被增加的次数包括:当确定使用所述第一步长时,更新所述第二计数器。
作为一个实施例,所述短语所述第二计数器被用于统计所述第一步长被增加的次数包括:所述第一步长被增加一次,所述第二计数器更新一次。
作为一个实施例,所述短语所述第二计数器被用于统计所述第一步长被增加的次数包括:所述第二计数器的值与所述第一步长被增加的次数相等。
作为一个实施例,所述第二计数器包括PREAMBLE_POWER_RAMPING_COUNTER。
作为一个实施例,所述短语所述第二目标功率与所述第一目标功率的差值与所述第一步长有关包括:所述第二目标功率在所述第一目标功率基础是增加的步长是所述第一步长。
作为一个实施例,所述短语所述第二目标功率与所述第一目标功率的差值与所述第一步长有关包括:所述第二目标功率中的所述第一功率增量与所述第一目标功率中的所述第一功率增量的差值等于所述第一步长。
作为一个实施例,当所述第一信号被发送时,如果所述第一计数器等于0,所述第一目标功率与所述第一步长无关。
作为一个实施例,当所述第一信号被发送时,如果所述第一计数器大于0,所述第一目标功率与所述第一步长有关。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据被用于确定所述第一步长包括:当确定在所述第一状态发送所述第一数据时,使用所述第一步长。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据被用于确定所述第一步长包括:所述第一步长的大小与在所述第一状态发送所述第一数据有关。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据被用于确定所述第一步长包括:所述第一步长是在所述第一状态发送所述第一数据专用的。
作为一个实施例,所述第一步长的大小与在所述第一状态发送所述第一数据无关,与第一类随机接入还是第二类随机接入有关。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第一类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第一类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定在第一状态发送第一数据并且所述第一信号被用于第一类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,所述第一步长和所述目标步长相同。
作为该实施例的一个子实施例,所述第一步长和所述目标步长包括msgA-PreamblePowerRampingStep或者xxx-msgA-PreamblePowerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第一类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第二类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定在第一状态发送第一数据并且所述第三信号被用于第二类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,当所述第一计数器被更新时,所述第一计数器大于第一子阈值,所述第一子阈值被用于确定在第一状态发送第一数据并且所述第一信号被用于第一类随机接入过程时前导码序列的最大发送次数。
作为该子实施例的一个附属实施例,所述第一计数器大于第一子阈值是指所述第一计数器的值等于所述第一子阈值加1的和。
作为该子实施例的一个附属实施例,所述第一阈值大于所述第一子阈值。
作为该子实施例的一个附属实施例,所述第一阈值包括xxx-msgA-TransMax,所述第一子阈值包括xxx-preambleTransMax。
作为该实施例的一个子实施例,所述第一步长和所述目标步长不相同。
作为该实施例的一个子实施例,所述第一步长包括msgA-PreamblePowerRampingStep的值或者xxx-msgA-PreamblePowerRampingStep的值,所述目标步长包括powerRampingStep的值或者xxx-powerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第一类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定不在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第一类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定不在第一状态发送第一数据并且所述第三信号被用于第一类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,当所述第一计数器被更新时,所述第一计数器大于第一子阈值。
作为该实施例的一个子实施例,所述第一阈值大于所述第一子阈值。
作为该实施例的一个子实施例,所述第一阈值包括xxx-msgA-TransMax,所述第一子阈值包括msgA-TransMax。
作为该实施例的一个子实施例,所述第一阈值大于所述第一子阈值。
作为该实施例的一个子实施例,所述第一步长和所述目标步长相同。
作为该实施例的一个子实施例,所述第一步长和所述目标步长包括msgA-PreamblePowerRampingStep的值。
作为该实施例的一个子实施例,所述第一步长和所述目标步长不相同。
作为该实施例的一个子实施例,所述第一步长包括msgA-PreamblePowerRampingStep的值,所述目标步长包括xxx-msgA-PreamblePowerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第一类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定不在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第二类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定不在第一状态发送第一数据并且所述第三信号被用于第二类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,当所述第一计数器被更新时,所述第一计数器大于第一子阈值。
作为该实施例的一个子实施例,所述第一阈值大于所述第一子阈值。
作为该实施例的一个子实施例,所述第一阈值包括xxx-msgA-TransMax,所述第一子阈值包括preambleTransMax。
作为该实施例的一个子实施例,所述第一步长和所述目标步长不相同。
作为该实施例的一个子实施例,所述第一步长包括msgA-PreamblePowerRampingStep的值或者xxx-msgA-PreamblePowerRampingStep的值,所述目标步长包括powerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第二类随机接入过程;更新第一计数器,所述第一计数器不 大于第一阈值;确定在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第二类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定在第一状态发送第一数据并且所述第一信号被用于第二类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,所述第一步长和所述目标步长相同。
作为该实施例的一个子实施例,所述第一步长和所述目标步长包括powerRampingStep的值或者xxx-powerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第二类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第一类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定在第一状态发送第一数据并且所述第三信号被用于第一类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,当所述第一计数器被更新时,所述第一计数器大于第二子阈值,所述第二子阈值被用于确定在第一状态发送第一数据并且所述第一信号被用于第二类随机接入过程时前导码序列的最大发送次数。
作为该子实施例的一个附属实施例,所述第一计数器大于第二子阈值是指所述第一计数器的值等于所述第二子阈值加1的和。
作为该子实施例的一个附属实施例,所述第一阈值大于所述第二子阈值。
作为该子实施例的一个附属实施例,所述第一阈值包括xxx-preambleTransMax,所述第二子阈值包括xxx-preambleTransMax。
作为该实施例的一个子实施例,所述第一步长和所述目标步长不相同。
作为该实施例的一个子实施例,所述第一步长包括powerRampingStep的值或者xxx-powerRampingStep的值,所述目标步长包括msgA-PreamblePowerRampingStep的值或者xxx-msgA-PreamblePowerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第二类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定不在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第二类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定不在第一状态发送第一数据并且所述第三信号被用于第二类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,当所述第一计数器被更新时,所述第一计数器大于第二子阈值。
作为该实施例的一个子实施例,所述第一阈值大于所述第二子阈值。
作为该实施例的一个子实施例,所述第一阈值包括xxx-preambleTransMax,所述第二子阈值包括preambleTransMax。
作为该实施例的一个子实施例,所述第一步长和所述目标步长相同。
作为该实施例的一个子实施例,所述第一步长和所述目标步长包括powerRampingStep的值。
作为该实施例的一个子实施例,所述第一步长和所述目标步长不相同。
作为该实施例的一个子实施例,所述第一步长xxx-powerRampingStep的值,所述目标步长包括powerRampingStep的值。
作为一个实施例,本申请中的所述第一节点确定在第一状态发送第一数据,选择第一步长,根据第一目标功率发送第一信号,所述第一信号被用于第二类随机接入过程;更新第一计数器,所述第一计数器不大于第一阈值;确定不在第一状态发送第一数据,选择目标步长;确定更新所述第二计数器,根据第二目标功率发送第三信号,所述第三信号被用于第一类随机接入过程。
作为该实施例的一个子实施例,所述第一阈值被用于确定不在第一状态发送第一数据并且所述第三信号被用于第一类随机接入过程时前导码序列的最大发送次数。
作为该实施例的一个子实施例,当所述第一计数器被更新时,所述第一计数器大于第二子阈值。
作为该实施例的一个子实施例,所述第一阈值大于所述第二子阈值。
作为该实施例的一个子实施例,所述第一阈值包括xxx-preambleTransMax,所述第二子阈值包括msgA-TransMax。
作为该实施例的一个子实施例,所述第一步长和所述目标步长不相同。
作为该实施例的一个子实施例,所述第一步长包括powerRampingStep的值或者xxx-powerRampingStep的值,所述目标步长包括msgA-PreamblePowerRampingStep的值。
作为一个实施例,本申请中的所述xxx是为了表明所述IE或所述域被用于在所述第一状态发送所述第一数据,对于大小写都适用。
作为该实施例的一个子实施例,所述xxx包括sdt。
作为该实施例的一个子实施例,所述xxx包括edt。
作为该实施例的一个子实施例,所述xxx包括idt。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组***)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大时延差网络中的传输。
作为一个实施例,所述UE201支持地面网络(TN)的传输。
作为一个实施例,所述UE201是一个用户设备(UE)。
作为一个实施例,所述UE201是一个飞行器。
作为一个实施例,所述UE201是一个车载终端。
作为一个实施例,所述UE201是一个中继。
作为一个实施例,所述UE201是一个船只。
作为一个实施例,所述UE201是一个物联网终端。
作为一个实施例,所述UE201是一个工业物联网的终端。
作为一个实施例,所述UE201是一个支持低时延高可靠传输的设备。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大时延差网络中的传输。
作为一个实施例,所述gNB203支持地面网络(TN)的传输。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203是UE(用户设备)。
作为一个实施例,所述gNB203是网关。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一子数据生成于所述RRC306。
作为一个实施例,本申请中的所述第一子数据生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一子数据生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二子数据生成于所述RRC306。
作为一个实施例,本申请中的所述第二子数据生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二子数据生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收 处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;在第一时间窗中监测第二信号;其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;在第一时间窗中监测第二信号;其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个 存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:接收第一信号;接收第三信号;当所述第一信号被接收到时,发送第二信号;其中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于所述第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信号;接收第三信号;当所述第一信号被接收到时,发送第二信号;其中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于所述第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于监测/接收第二信号;所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信号。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于监测/接收第二信号。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第一信号;所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一信号。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第三信号;所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第三信号。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第一子数据;所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一子数据。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第二子数据;所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于监测第二子数据。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第一信令;所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第二信令;所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被 用于接收第三信令;所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第三信令。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个终端设备。
作为一个实施例,所述第一通信设备450是一个支持大时延差的用户设备。
作为一个实施例,所述第一通信设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信设备450是一个飞行器设备。
作为一个实施例,所述第一通信设备450具备定位能力。
作为一个实施例,所述第一通信设备450不具备定能能力。
作为一个实施例,所述第一通信设备450是一个支持TN的用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第二通信设备410是一个支持大时延差的基站设备。
作为一个实施例,所述第二通信设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信设备410是一个卫星设备。
作为一个实施例,所述第二通信设备410是一个飞行平台设备。
作为一个实施例,所述第二通信设备410是一个支持TN的基站设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。第一节点U01是一个用户设备;第二节点N02是第一节点U01的服务小区的维持基站;特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U01,在步骤S5101中,接收第一信令;在步骤S5102中,接收第二信令;在步骤S5103中,接收第三信令;在步骤S5104中,确定在第一状态发送第一数据;在步骤S5105中,当确定在所述第一状态发送所述第一数据时,选择第一步长;在步骤S5106中,根据第一目标功率发送第一信号;在步骤S5107中,在第一时间窗中监测第二信号;在步骤S5108中,接收所述第二信号;在步骤S5109中,发送消息3;在步骤S5110中,接收消息4;在步骤S5111中,更新第一计数器;在步骤S5112中,确定所述第一计数器不大于第一阈值;在步骤S5113中,确定更新第二计数器;在步骤S5114中,根据第二目标功率发送第三信号。
对于 第二节点N02,在步骤S5201中,发送所述第一信令;在步骤S5202中,发送所述第二信令;在步骤S5203中,发送所述第三信令;在步骤S5204中,接收所述第一信号;在步骤S5205中,发送所述第二信号;在步骤S5206中,接收所述消息3;在步骤S5207中,发送所述消息4;在步骤S5208中,接收所述第三信号。
在实施例5中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长;所述第一信令指示所述第一步长;或者所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长;所述第三信令被用于确定第一候选前导码序列分组,所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
作为一个实施例,当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败。
作为一个实施例,所述短语所述第一信令指示所述第一步长包括:所述第一信令被用于确定所述第一步长。
作为一个实施例,所述短语所述第一信令指示所述第一步长包括:所述第一步长是所述第一信令中的一个域。
作为一个实施例,所述第一信令通过空中接口传输。
作为一个实施例,所述第一信令通过天线端口发送。
作为一个实施例,所述第一信令通过高层信令传输。
作为一个实施例,所述第一信令通过更高层信令传输。
作为一个实施例,所述第一信令包括一个下行(Downlink,DL)信号。
作为一个实施例,所述第一信令包括一个副链路(Sidelink,SL)信号。
作为一个实施例,所述第一信令包括高层信令中的全部或部分。
作为一个实施例,所述第一信令包括更高层信令中的全部或部分。
作为一个实施例,所述第一信令包括RRC消息。
作为一个实施例,所述第一信令包括RRC消息的全部或部分IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括RRC消息的一个IE中的全部或部分域。
作为一个实施例,所述第一信令包括一个RRC消息中的一个IE,所述IE的名字包括RACH-ConfigGeneric。
作为一个实施例,所述第一信令包括一个RRC消息中的一个IE,所述IE的名字包括RACH-ConfigGenericTwoStepRA。
作为一个实施例,所述短语所述第二信令指示第一偏移量和第二步长包括:所述第二信令包括所述第一偏移量和所述第二步长。
作为一个实施例,所述短语所述第二信令指示第一偏移量和第二步长包括:所述第一偏移量和所述第二步长分别是所述第二信令中的一个域。
作为一个实施例,所述短语所述第一偏移量与所述第二步长的和被用于确定所述第一步长包括:所述第一偏移量和所述第二步长的和等于所述第一步长。
作为一个实施例,所述短语所述第一偏移量与所述第二步长的和被用于确定所述第一步长包括:所述第一偏移量和所述第二步长的和与所述第一步长相等。
作为一个实施例,所述短语所述第一偏移量与所述第二步长的和被用于确定所述第一步长包括:通过所述第一偏移量和所述第二步长计算所述第一步长。
作为一个实施例,所述第一偏移量的单位包括dB。
作为一个实施例,所述第一偏移量包括整数个dB。
作为一个实施例,所述第一偏移量包括0dB。
作为一个实施例,所述第一偏移量包括2dB。
作为一个实施例,所述第一偏移量是可配置的。
作为一个实施例,所述第一偏移量是预配置的。
作为一个实施例,所述第一偏移量包括一个RRC消息中的一个域,所述一个域的名字包括xxx-powerRampingStepoffset。
作为一个实施例,所述第一偏移量包括一个RRC消息中的一个域,所述一个域的名字包括xxx-msgA-PreamblePowerRampingStep。
作为一个实施例,所述第一偏移量包括一个RRC消息中的一个域,所述一个域的名字包括xxx-powerRampingStepHighPriority。
作为一个实施例,所述第一步长被用于确定功率抬升因子(Power-ramping factor)。
作为一个实施例,所述第一步长被用于确定针对在所述第一状态发送所述第一数据之外的随机接入目的,当所述第二计数器被更新时,所述第二目标功率相对所述第一目标功率被提升的功率。
作为一个实施例,所述第二步长被用于四步随机计入。
作为一个实施例,所述第二步长被用于两步随机接入。
作为一个实施例,所述第二步长的单位包括dB。
作为一个实施例,所述第二步长包括整数个dB。
作为一个实施例,所述第二步长包括0dB,2dB,4dB,或者6dB中的之一。
作为一个实施例,所述第二步长包括一个RRC消息中的一个域,所述一个域的名字包括 powerRampingStep。
作为一个实施例,所述第二步长包括一个RRC消息中的一个域,所述一个域的名字包括msgA-PreamblePowerRampingStep。
作为一个实施例,所述第二步长包括一个RRC消息中的一个域,所述一个域的名字包括powerRampingStepHighPriority。
作为一个实施例,所述第二信令通过空中接口传输。
作为一个实施例,所述第二信令通过天线端口发送。
作为一个实施例,所述第二信令通过高层信令传输。
作为一个实施例,所述第二信令通过更高层信令传输。
作为一个实施例,所述第二信令包括一个下行(Downlink,DL)信号。
作为一个实施例,所述第二信令包括一个副链路(Sidelink,SL)信号。
作为一个实施例,所述第二信令包括高层信令中的全部或部分。
作为一个实施例,所述第二信令包括更高层信令中的全部或部分。
作为一个实施例,所述第二信令包括RRC消息。
作为一个实施例,所述第二信令包括RRC消息的全部或部分IE(Information Element,信息元素)。
作为一个实施例,所述第二信令包括RRC消息的一个IE中的全部或部分域。
作为一个实施例,所述第二信令包括一个RRC消息中的一个IE,所述IE的名字包括RACH-ConfigGeneric。
作为一个实施例,所述第二信令包括一个RRC消息中的一个IE,所述IE的名字包括RACH-ConfigGenericTwoStepRA。
作为一个实施例,所述第二信令包括一个RRC信令中的一个IE,所述IE的名字包括RA-Prioritization。
作为一个实施例,所述第二信令指示第二步长。
作为一个实施例,所述第二信令指示所述第一偏移量。
作为一个实施例,所述第三信令通过空中接口传输。
作为一个实施例,所述第三信令通过天线端口发送。
作为一个实施例,所述第三信令通过高层信令传输。
作为一个实施例,所述第三信令通过更高层信令传输。
作为一个实施例,所述第三信令包括一个下行(Downlink,DL)信号。
作为一个实施例,所述第三信令包括高层信令中的全部或部分。
作为一个实施例,所述第三信令包括更高层信令中的全部或部分。
作为一个实施例,所述第三信令包括RRC消息。
作为一个实施例,所述第三信令包括RRC消息的全部或部分IE(Information Element,信息元素)。
作为一个实施例,所述第三信令包括RRC消息的一个IE中的全部或部分域。
作为一个实施例,所述第三信令包括SIB1。
作为一个实施例,所述第三信令包括UplinkConfigCommon IE。
作为一个实施例,所述第三信令包括UplinkConfigCommonSIB IE。
作为一个实施例,所述第三信令包括BWP-Uplink IE。
作为一个实施例,所述第三信令包括BWP-UplinkCommon IE。
作为一个实施例,所述第三信令包括CellGroupConfig IE。
作为一个实施例,所述第三信令包括RACH-ConfigCommon IE。
作为一个实施例,所述第三信令包括RACH-ConfigCommonTwoStepRA IE。
作为一个实施例,所述第三信令包括RACH-ConfigDedicated IE。
作为一个实施例,所述第三信令包括RACH-ConfigGenericTwoStepRA IE。
作为一个实施例,所述第三信令包括RACH-ConfigGeneric IE。
作为一个实施例,所述第三信令包括SI-SchedulingInfo IE。
作为一个实施例,所述第三信令包括一个RRC消息中的一个域,所述一个域的名字包括 msgA-PRACH-RootSequenceIndex。
作为一个实施例,所述第三信令包括一个RRC消息中的一个域,所述一个域的名字包括xxx-msgA-PRACH-RootSequenceIndex。
作为一个实施例,所述第三信令包括一个RRC消息中的一个域,所述一个域的名字包括prach-RootSequenceIndex。
作为一个实施例,所述第三信令包括一个RRC消息中的一个域,所述一个域的名字包括xxx-prach-RootSequenceIndex。
作为一个实施例,所述短语所述第三信令被用于确定第一候选前导码序列分组包括:所述第三信令指示所述第一候选前导码序列分组。
作为一个实施例,所述短语所述第三信令被用于确定第一候选前导码序列分组包括:所述第一候选前导码序列分组通过所述第三信令进行配置。
作为一个实施例,所述短语所述第三信令被用于确定第一候选前导码序列分组包括:通过所述第三信令可以计算出所述第一候选前导码序列分组。
作为一个实施例,所述短语所述第三信令被用于确定第一候选前导码序列分组包括:所述第三信令隐性指示所述第一候选前导码序列分组。
作为一个实施例,所述短语所述第三信令被用于确定第一候选前导码序列分组包括:所述第三信令显性指示所述第一候选前导码序列分组。
作为一个实施例,所述第一候选前导码序列分组包括随机接入的时域资源,或者频域资源,或者码域资源,或者空域资源的至少之一。
作为一个实施例,所述第一候选前导码序列分组包括Preamble集合。
作为一个实施例,所述第一候选前导码序列分组包括Preamble占用的资源集合。
作为一个实施例,所述第一候选前导码序列分组包括Q1个前导码序列,所述Q1是正整数。
作为该实施例的一个子实施例,对于所述第一信号和所述第三信号,所述Q1的值相同。
作为该实施例的一个子实施例,对于所述第一信号和所述第三信号,所述Q1的值不同。
作为一个实施例,所述第一候选前导码序列分组包括随机接入的前导码序列的配置。
作为一个实施例,所述第一候选前导码序列分组包括所述第一信号所属的前导码序列集合。
作为一个实施例,所述第一候选前导码序列分组包括所述第三信号所属的前导码序列集合。
作为一个实施例,所述第一信号中所属的所述第一候选前导码序列分组和所述第三信号所属的所述第一候选前导码序列分组相同。
作为一个实施例,所述第一信号中所属的所述第一候选前导码序列分组和所述第三信号所属的所述第一候选前导码序列分组不同。
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,虚线方框F5.2是可选的。
作为一个实施例,虚线方框F5.3是可选的。
作为一个实施例,虚线方框F5.4是可选的。
作为一个实施例,虚线方框F5.5是可选的。
作为一个实施例,所述虚线方框F5.1或所述虚线方框F5.2的至少之一存在。
作为一个实施例,虚线方框F5.3存在。
作为一个实施例,虚线方框F5.3不存在。
作为一个实施例,虚线方框F5.4存在,表示步骤S5108,或者步骤S5205中的至少之一存在。
作为一个实施例,虚线方框F5.4不存在,表示步骤S5108和步骤S5205都不存在。
作为一个实施例,虚线方框F5.5存在,表示步骤S5109,或者步骤S5110,或者步骤S5206,或者步骤S5207中的至少之一存在。
作为一个实施例,虚线方框F5.5不存在,表示步骤S5109,步骤S5110,步骤S5206,和步骤S5207都不存在。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。第一节点U01是一个用户设备;第二节点N02是第一节点U01的服务小区的维持基站;特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U01,在步骤S6101中,接收第一信令;在步骤S6102中,接收第二信令;在步骤S6103中,接收第三信令;在步骤S6104中,确定是否在第一状态发送第一数据;在步骤S6105中,当确定在所述第一状态发送所述第一数据时,选择第一步长;在步骤S6106中,根据第一目标功率发送第一信号;在步骤S6107中,在第一时间窗中监测第二信号;在步骤S6108中,接收所述第二信号;在步骤S6109中,发送第一子数据;在步骤S6110中,发送第二子数据;在步骤S6111中,确定所述第一子数据传输成功,并且确定所述第二子数据传输失败;在步骤S6112中,更新第一计数器;在步骤S6113中,确定所述第一计数器不大于第一阈值;在步骤S6114中,确定更新第二计数器;在步骤S6115中,根据第二目标功率发送第三信号。
对于 第二节点N02,在步骤S6201中,发送所述第一信令;在步骤S6202中,发送所述第二信令;在步骤S6203中,发送所述第三信令;在步骤S6204中,接收所述第一信号;在步骤S6205中,发送所述第二信号;在步骤S6206中,接收所述第一子数据;在步骤S6207中,接收所述第二子数据;在步骤S6208中,接收所述第三信号。
在实施例5中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长;所述第一信令指示所述第一步长;或者所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长;所述第三信令被用于确定第一候选前导码序列分组,所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列;所述第一数据包括所述第一子数据与所述第二子数据;所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
作为一个实施例,当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败。
作为一个实施例,所述短语所述第一数据包括所述第一子数据与所述第二子数据包括:所述第一子数据和所述第二子数据是所述第一数据的全部。
作为一个实施例,所述短语所述第一数据包括所述第一子数据与所述第二子数据包括:所述第一子数据和所述第二子数据是所述第一数据的部分。
作为一个实施例,所述第一子数据与所述第二子数据在不同的时隙被发送。
作为一个实施例,确认消息被成功接收被用于确定所述给定数据传输成功,所述给定数据包括所述第一子数据或者所述第二子数据。
作为该实施例的一个子实施例,针对所述第一子数据和所述第二子数据,分别存在一个确认消息。
作为该实施例的一个子实施例,针对所述第一子数据和所述第二子数据,存在同一个确认消息。
作为一个实施例,所述句子“所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关”包括:当所述第一子数据传输成功,并且所述第二子数据传输失败时,所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
作为一个实施例,所述句子“所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关”包括:当所述第一数据的部分被传输成功,所述第一数据的部分被传输失败时,所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
作为一个实施例,所述句子“所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关”包括:当所述第一数据的部分被传输成功,所述第一数据的部分被传输失败时,使用所述第一步长。
作为一个实施例,所述短语“当所述第一子数据传输成功,并且所述第二子数据传输失败时”包括:针对所述第一子数据接收到确认消息,针对所述第二子数据没有接收到确认消息。
作为一个实施例,所述短语“当所述第一子数据传输成功,并且所述第二子数据传输失败时”包括:接收到确认消息,所述确认消息指示所述第一子数据传输成功,并且所述第二子数据传输失败。
作为一个实施例,本申请中的所述第一节点U01确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长和候选步长,根据第一目标功率发送第一信号,所述第一目标功率与所述候选步长有关;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一子数据传输成功,并且所述第二子数据传输失败时,所述第二目标功率与所述第一步长有关;当所述第一子数据和所述第二子数据都传输失败时,所述第二目标功率与所述候选步长有关。
作为该实施例的一个子实施例,所述候选步长与在所述第一状态发送所述第一数据无关,并且所述第一步长与在所述第一状态发送所述第一数据有关。
作为该实施例的一个子实施例,所述候选步长包括所述第二步长。
作为该实施例的一个子实施例,所述候选步长与所述第一步长不相等。
作为该实施例的一个子实施例,所述短语所述第一目标功率与所述候选步长有关包括:根据所述候选步长计算所述第一目标功率。
作为该实施例的一个子实施例,所述短语所述第二目标功率与所述第一步长有关包括:根据所述第一步长计算所述第二目标功率。
作为该实施例的一个子实施例,所述短语所述第二目标功率与所述候选步长有关包括:根据所述候选步长计算所述第一目标功率。
作为一个实施例,虚线方框F6.1是可选的。
作为一个实施例,虚线方框F6.2是可选的。
作为一个实施例,虚线方框F6.3是可选的。
作为一个实施例,虚线方框F6.4是可选的。
作为一个实施例,虚线方框F6.5是可选的。
作为一个实施例,所述虚线方框F6.1或所述虚线方框F6.2的至少之一存在。
作为一个实施例,虚线方框F6.3存在.
作为一个实施例,虚线方框F6.3不存在。
作为一个实施例,虚线方框F6.4存在。
作为一个实施例,虚线方框F6.4不存在。
作为一个实施例,虚线方框F6.5存在。
作为一个实施例,虚线方框F6.5不存在。
实施例7
实施例7示例了根据本申请的一个实施例的在第一状态发送第一数据的流程图。
在实施例7中,本申请中的所述第一节点在步骤S7001中,确定在第一状态发送第一数据;在步骤S7002中,当确定在所述第一状态发送所述第一数据时,选择第一步长;在步骤S7003中,根据第一目标功率发送第一信号;在步骤S7004中,在第一时间窗中监测第二信号;在步骤S7005中,判断是否完成随机接入过程,当完成随机接入过程时,结束当前随机接入过程,否则,进入步骤S7006;在步骤S7006中,更新第一计数器;在步骤S7007中,判断第一计数器是否不大于第一阈值,当第一计数器不大于第一阈值时,进入步骤S7008(a),否则,当第一计数器大于第一阈值时,进入步骤S7008(b);在步骤S7008(a)中,判断更新第二计数器的条件是否被满足,当更新第二计数器的条件被满足时,进入步骤S7009(a),否则,进入步骤S7009(b);在步骤S7008(b)中,确定第一数据传输失败,并结束当前随机接入过程;在步骤S7009(a)中,更新第二计数器;在步骤S7010中,根据第二目标功率发送第三信号,并返回步骤S7005;在步骤S7009(b)中,根据第三目标功率发送第三信号,并返回步骤S7005。
作为一个实施例,所述第三目标功率与所述第一目标功率相比没有增加所述第一步长。
作为一个实施例,所述第二目标功率与所述第一目标功率相比增加所述第一步长。
作为一个实施例,根据所述第一时间窗是否过期判断是否完成随机接入过程。
作为该实施例的一个子实施例,当所述第一时间窗过期时,认为没有完成所述随机接入过程。
作为一个实施例,所述第一数据没有全部发送成功被用于确定认为没有完成所述随机接入过程。
作为一个实施例,所述第二信号没有被成功接收被用于确定认为没有完成所述随机接入过程。
作为一个实施例,所述消息3或者消息B没有被成功接收被用于确定认为没有完成所述随机接入过程。
实施例8
实施例8示例了根据本申请的一个实施例的第二目标功率与第一目标功率的差值与第一步长和第二偏移量都有关的示意图,如附图8所示。
在实施例8中,当所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入时,所述第二目标功率与所述第一目标功率的差值还与第二偏移量有关,第一子步长和第二子步长的差值与所述第一计数器被用于确定所述第二偏移量,所述第一子步长与所述第二子步长分别被用于确定所述第一类随机接入和所述第二类随机接入的目标功率。
作为一个实施例,所述第二偏移量包括所述第一回退功率增量。
作为一个实施例,所述第一子步长包括MSGA_PREAMBLE_POWER_RAMPING_STEP或者xxx_MSGA_PREAMBLE_POWER_RAMPING_STEP,所述第二子步长包括PREAMBLE_POWER_RAMPING_STEP或者xxx_PREAMBLE_POWER_RAMPING_STEP。
作为一个实施例,所述第一子步长被用于计算所述第一类随机接入的前导码序列的目标接收功率。
作为一个实施例,所述第二子步长被用于计算所述第二类随机接入的前导码序列的目标接收功率。
实施例9
实施例9示例了根据本申请的一个实施例的第二信号的第一域被用于指示是否放弃在第一状态发送第一数据的示意图,如附图9所示。
在实施例9中,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
作为一个实施例,所述第二信号包括RAR。
作为一个实施例,所述第二信号包括成功的RAR(successRAR)。
作为一个实施例,所述第二信号包括回退的RAR(fallbackRAR)。
作为一个实施例,所述第二信号包括一个MAC PDU。
作为一个实施例,所述第二信号包括一个MAC SDU。
作为一个实施例,所述第二信号包括MAC CE。
作为一个实施例,所述第二信号包括MAC子头(subheaer)。
作为一个实施例,所述第二信号包括fallbackRAR和subheaer。
作为一个实施例,所述短语所述第二信号包括第一域包括:所述第一域是所述第二信号中的一个域。
作为一个实施例,所述短语所述第二信号包括第一域包括:所述第二信号携带所述第一域。
作为一个实施例,所述短语所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据包括:所述第一域指示回退后的随机接入类型,所述随机接入类型包括在所述第一状态发送所述第一数据,或者不在所述第一状态发送所述第一数据。
作为一个实施例,所述短语所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据包括:
作为一个实施例,所述短语所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据包括:所述第一域被用于确定是否放弃在所述第一状态发送所述第一数据。
作为一个实施例,所述短语所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据包括:所述第一域显示指示是否放弃在所述第一状态发送所述第一数据。
作为该实施例的一个子实施例,所述第一域包括P1个比特,所述P1个比特被用于指示放弃在所述第一状态发送所述第一数据,所述P1是正整数。
作为该子实施例的一个附属实施例,所述P1等于1。
作为该子实施例的一个附属实施例,所述P1大于1。
作为该实施例的一个子实施例,所述第一域被设置为真值被用于指示放弃在所述第一状态发送所述第一数据,所述真值包括1,或大于1,或ture。
作为该实施例的一个子实施例,所述第一域被设置为假值被用于指示放弃在所述第一状态发送所述第 一数据,所述假值包括0,或false。
作为一个实施例,所述短语所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据包括:所述第一域隐式指示是否放弃在所述第一状态发送所述第一数据。
作为该实施例的一个子实施例,当所述第一域存在时,指示放弃在所述第一状态发送所述第一数据。
作为该实施例的一个子实施例,当所述第一域不存在时,指示在所述第一状态发送所述第一数据。
实施例10
实施例10示例了根据本申请的一个实施例的在第一状态发送第一数据的回退的示意图,如附图10所示。在附图10中,实线方框表示在第一状态发送第一数据,并且执行第一类随机接入过程;等长虚线方框表示在第一状态发送第一数据,并且执行第二类随机接入过程;点划线方框表示不在第一状态发送第一数据,并且执行第一类随机接入过程;双点划线方框表示不在第一状态发送第一数据,并且执行第二类随机接入过程。
在实施例10中,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
作为一个实施例,所述实线方框可以回退到等长虚线方框,或者点划线方框,或者双点划线方框中的其中之一。
作为一个实施例,所述等长虚线方框可以回退到实线方框,或者点划线方框,或者双点划线方框中的其中之一。
作为一个实施例,所述第一域包括P1个比特,所述P1个比特被用于指示放弃在所述第一状态发送所述第一数据,所述P1是正整数。
作为该实施例的一个子实施例,所述P1等于2,所述P1个比特的值与所述四个方框一一对应。
作为该实施例的一个子实施例,当所述P1设置为00时,指示随机接入过程回退到所述实线方框。
作为该实施例的一个子实施例,当所述P1设置为01时,指示随机接入过程回退到所述等长虚线方框。
作为该实施例的一个子实施例,当所述P1设置为10时,指示随机接入过程回退到所述点划线方框。
作为该实施例的一个子实施例,当所述P1设置为11时,指示随机接入过程回退到所述双点划线方框。
作为一个实施例,所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入。
作为该实施例的一个子实施例,所述第一域被用于指示回退到所述第二类随机接入过程。
作为一个实施例,所述回退的意思包括所述第一计数器没有达到最大值。
作为一个实施例,所述回退的意思包括所述第一信号和所述第三信号属于同一次所述随机接入过程。
实施例11
实施例11示例了根据本申请的一个实施例的确定在第一状态发送第一数据与选择第一候选前导码序列分组有关的示意图,如附图11所示。
在实施例11中,本申请中的所述第一节点接收第三信令;其中,所述第三信令被用于确定第一候选前导码序列分组,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组有关,所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组,所述N1是正整数;所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据与选择第一候选前导码序列分组有关包括:所述第一候选前导码序列分组是在所述第一状态发送所述第一数据专用的。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据与选择第一候选前导码序列分组有关包括:所述第一候选前导码序列分组被用于指示在所述第一状态发送所述第一数据。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据与选择第一候选前导码序列分组有关包括:当确定在所述第一状态发送所述第一数据时,选择所述第一候选前导码序列分组。
作为一个实施例,所述短语确定在所述第一状态发送所述第一数据与选择第一候选前导码序列分组有关包括:当确定不在所述第一状态发送所述第一数据时,不选择所述第一候选前导码序列分组。
作为一个实施例,所述短语所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组包括:前导码序列被分为所述N1个第一类前导码序列分组,所述N1个第一类前导码序列分组全部或部分不同,所述N1个第一类前导码序列分组中的一个分组是所述第一候选前导码序列分 组。
作为一个实施例,所述短语所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组包括:N1个第一类前导码序列分组包括所述第一候选前导码序列分组。
作为一个实施例,所述N1是大于1的正整数。
作为一个实施例,所述N1等于2。
作为一个实施例,所述N1等于4。
作为一个实施例,所述N1与被用于随机接入的前导码序列的特征有关。
作为一个实施例,所述短语所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列包括:所述第一信号携带一个前导码序列,所述前导码序列从所述第一候选前导码序列分组中选择。
作为一个实施例,所述短语所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列包括:所述第一信号携带一个前导码序列,所述前导码序列属于所述第一候选前导码序列分组。
作为一个实施例,所述第一信号被用于第一类随机接入过程的第一候选前导码序列分组和所述第一信号被用于第二类随机接入过程的第一候选前导码序列分组不同。
作为一个实施例,任一第一类前导码序列分组中包括正整数个前导码序列。
作为一个实施例,一个第一类前导码序列分组中的任一前导码序列与另一个第一类前导码序列分组中的任一前导码序列不同。
作为一个实施例,一个第一类前导码序列分组中的一个前导码序列与另一个第一类前导码序列分组中的一个前导码序列相同。
作为一个实施例,一个第一类前导码序列分组中的所有前导码序列与另一个第一类前导码序列分组中的所有前导码序列至少有一个不同。
作为一个实施例,所述短语所述第一候选前导码序列分组是所述N1个第一类前导码序列分组中的一个第一类前导码序列分组包括:所述N1个第一类前导码序列分组中的一个分组是所述第一候选前导码序列分组,所述N1是正整数。
实施例12
实施例12示例了根据本申请的一个实施例的N1个第一类前导码序列分组的示意图,如附图12所示。在附图12中,四个实线椭圆分别表示四个第一类前导码序列分组,实现椭圆表示第一类前导码序列分组#1,等虚线椭圆表示第一类前导码序列分组2,点划线椭圆表示第一类前导码序列分组#3,双点划线椭圆表示第一类前导码序列分组#4。
作为一个实施例,两个椭圆存在重叠部分表示两个第一类前导码序列分组中有相同前导码序列。
作为一个实施例,两个椭圆没有重叠部分表示两个第一类前导码序列分组中没有相同前导码序列。
作为一个实施例,第一候选前导码序列分组是N1个第一类前导码序列分组中的一个前导码序列分组。
作为一个实施例,所述N1等于4。
作为一个实施例,是否在所述第一状态发送所述第一数据和随机接入类型被用于确定四个第一类前导码序列分组。
作为该实施例的一个子实施例,当确定在所述第一状态发送所述第一数据,并且所述随机接入类型是第一类随机接入过程时,被用于随机接入过程的前导码序列是第一个第一类前导码序列分组中的一个前导码序列,所述第一候选前导码序列分组包括所述第一个第一类前导码序列分组。
作为该实施例的一个子实施例,当确定在所述第一状态发送所述第一数据,并且所述随机接入类型是第二类随机接入过程时,被用于随机接入过程的前导码序列是第二个第一类前导码序列分组中的一个前导码序列,所述第一候选前导码序列分组包括所述第二个第一类前导码序列分组。
作为该实施例的一个子实施例,当确定不在所述第一状态发送所述第一数据,并且所述随机接入类型是第一类随机接入过程时,被用于随机接入过程的前导码序列是第三个第一类前导码序列分组中的一个前导码序列。
作为该实施例的一个子实施例,当确定不在所述第一状态发送所述第一数据,并且所述随机接入类型是第二类随机接入过程时,被用于随机接入过程的前导码序列是第四个第一类前导码序列分组中的一个前导码序列。
作为该实施例的一个子实施例,所述第一个第一类前导码序列分组,所述第二个第一类前导码序列分组,所述第三个第一类前导码序列分组,和所述第四个第一类前导码序列分组分别是第一类前导码序列分组#1,第一类前导码序列分组#2,第一类前导码序列分组#3,和第一类前导码序列分组#4中的一个第一类前导码序列分组。
作为一个实施例,所述附图12只为说明两个第一类前导码序列分组中可以存在相同的前导码序列,不限制任意两个第一类前导码序列分组之间是否存在相同的前导码序列。
作为该实施例的一个子实施例,所述四个第一类前导码序列分组中的其中两个第一类前导码序列分组中有相同前导码序列。
作为该实施例的一个子实施例,所述四个第一类前导码序列分组中的其中两个第一类前导码序列分组中没有相同前导码序列。
作为该实施例的一个子实施例,任意两个第一类前导码序列分组中没有相同前导码序列。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图13所示。在附图13中,第一节点中的处理装置1300包括第一接收机1301和第一发射机1302。
第一发射机1302,确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;
第一接收机1301,在第一时间窗中监测第二信号;
实施例13中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述第一接收机1301,接收第一信令;其中,所述第一信令指示所述第一步长。
作为一个实施例,所述第一接收机1301,接收第二信令;其中,所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长。
作为一个实施例,所述第一发射机1302,发送第一子数据;发送第二子数据;所述第一接收机1301,确定所述第一子数据传输成功,并且所述第二子数据传输失败;其中,所述第一数据包括所述第一子数据与所述第二子数据;所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
作为一个实施例,当所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入时,所述第二目标功率与所述第一目标功率的差值还与第二偏移量有关,第一子步长和第二子步长的差值与所述第一计数器被用于确定所述第二偏移量,所述第一子步长与所述第二子步长分别被用于确定所述第一类随机接入和所述第二类随机接入的目标功率。
作为一个实施例,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
作为一个实施例,所述第一接收机1301,接收第三信令;其中,所述第三信令被用于确定第一候选前导码序列分组,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组有关,所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组,所述N1是正整数;所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图14所示。在附图14中,第二节点中的处理装置1400包括第二发射机1401和第二接收机1402。
第二接收机1402,接收第一信号;接收第三信号;
第二发射机1401,当所述第一信号被接收到时,发送第二信号;
实施例14中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于所述第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
作为一个实施例,所述第二发射机1401,发送第一信令;其中,所述第一信令指示所述第一步长。
作为一个实施例,所述第二发射机1401,发送第二信令;其中,所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长。
作为一个实施例,所述第二接收机1402,监测第一子数据;监测第二子数据;其中,所述第一子数据被确定传输成功,并且所述第二子数据被确定传输失败;所述第一数据包括所述第一子数据与所述第二子数据;所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
作为一个实施例,当所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入时,所述第二目标功率与所述第一目标功率的差值还与第二偏移量有关,第一子步长和第二子步长的差值与所述第一计数器被用于确定所述第二偏移量,所述第一子步长与所述第二子步长分别被用于确定所述第一类随机接入和所述第二类随机接入的目标功率。
作为一个实施例,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
作为一个实施例,所述第二发射机1401,发送第三信令;其中,所述第三信令被用于确定第一候选前导码序列分组,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组有关,所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组,所述N1是正整数;所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,接收处理器470。
实施例15
实施例15示例了根据本申请的一个实施例的给定定时器的示意图,如附图15所示。横轴表示时间,T1,T2,T3和T4分别表示四个时刻或时间间隔;在T1,当发送给定子数据#1时,启动给定定时器;在T2,当针对给定子数据#1的确认消息被成功接收时,停止给定定时器;在T3,当发送给定子数据#2时,启动给定定时器;在T4,给定定时器过期,并且针对给定子数据#2的确认消息没有被成功接收。
在实施例15中,所述给定定时器被用于确定所述第一数据的所述M1个第一类子数据中的一个子数据的最大传输时间。
作为一个实施例,所述一个子数据包括所述第一子数据。
作为一个实施例,所述一个子数据包括所述第二子数据。
作为一个实施例,所述给定定时器包括正整数个时隙。
作为一个实施例,所述给定定时器的开始时间包括所述给定子数据被发送的时刻。
作为一个实施例,所述给定定时器的开始时间包括所述给定子数据被发送后的某个时刻。
作为一个实施例,当所述给定子数据被接收到时,停止所述给定定时器。
作为一个实施例,当所述给定定时器过期时,确定所述给定子数据传输失败。
作为一个实施例,所述给定子数据#1是所述第一数据的M1个第一类子数据中的一个子数据。
作为一个实施例,所述给定子数据#2是所述第一数据的M1个第一类子数据中的一个子数据。
作为一个实施例,所述第一子数据包括所述给定子数据#1,所述第二子数据包括所述给定子数据#2。
作为一个实施例,所述短语“当所述第一子数据传输成功,并且所述第二子数据传输失败时”包括:针对所述第一子数据,在给定定时器内接收到确认消息,针对所述第二子数据,所述给定定时器过期。
作为一个实施例,所述确认消息包括一个PDCCH。
作为一个实施例,所述确认消息包括一个MAC CE。
作为一个实施例,所述确认消息包括一个RRC消息。
作为一个实施例,所述确认消息包括一个比特。
作为一个实施例,所述确认消息被设置为1表示所述给定子消息传输成功。
作为一个实施例,所述确认消息被设置为0表示所述给定子消息传输失败。
作为一个实施例,虚线方框F15.1是可选的。
作为一个实施例,虚线方框F15.2是可选的。
作为一个实施例,虚线方框F15.1和虚线方框F15.2的至少之一存在。
实施例16
实施例16示例了根据本申请的另一个实施例的给定定时器的示意图,如附图16所示。横轴表示时间,T5,T6,T7和T8分别表示四个时刻或时间间隔;在T5,当发送给定子数据#1时,启动给定定时器;在T6,发送给定子数据#2;在T7,当针对给定子数据#1和给定子数据#2的确认消息被成功接收时,停止给定定时器;在T8,给定定时器过期,并且针对给定子数据#1和给定子数据#2的确认消息没有被成功接收。
在实施例16中,所述给定定时器被用于确定所述第一数据的所述M1个第一类子数据的最大传输时间。
作为一个实施例,所述T5和所述T6之间包括非负整数个毫秒。
作为一个实施例,所述短语针对给定子数据#1和给定子数据#2的确认消息被成功接收包括:针对所述给定子数据#1和所述给定子数据#2的确认消息都指示传输成功。
作为一个实施例,所述短语针对给定子数据#1和给定子数据#2的确认消息被成功接收包括:针对所述给定子数据#1的确认消息指示传输成功,针对所述给定子数据#2的确认消息指示传输失败。
作为一个实施例,所述短语针对给定子数据#1和给定子数据#2的确认消息被成功接收包括:针对所述给定子数据#1的确认消息指示传输失败,针对所述给定子数据#2的确认消息指示传输成功。
作为一个实施例,所述短语针对给定子数据#1和给定子数据#2的确认消息没有被成功接收包括:没有监测到确认消息。
作为一个实施例,当所述给定定时器过期时,确定所述第一子数据#1和所述第二子数据#2传输失败。
作为一个实施例,所述确认消息包括一个比特位图。
作为该实施例的一个子实施例,所述比特位图包括M1个比特,所述M1是正整数。
作为该实施例的一个子实施例,所述M1个比特分别针对所述M1个第一类子数据进行确认。
作为该实施例的一个子实施例,所述比特位图中的任一比特对应一个第一类子数据。
作为该实施例的一个子实施例,所述比特位图中的任一比特被设置为1表示对应的一个第一类子数据传输成功。
作为该实施例的一个子实施例,所述比特位图中的任一比特被设置为0表示对应的一个第一类子数据传输失败。
作为一个实施例,虚线方框F16.1是可选的。
作为一个实施例,虚线方框F16.2是可选的。
作为一个实施例,虚线方框F16.1和虚线方框F16.2的之一存在。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者***设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一发射机,确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;
    第一接收机,在第一时间窗中监测第二信号;
    其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一信令;
    其中,所述第一信令指示所述第一步长。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二信令;
    其中,所述第二信令指示第一偏移量和第二步长,所述第一偏移量与所述第二步长的和被用于确定所述第一步长。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,发送第一子数据;发送第二子数据;
    所述第一接收机,确定所述第一子数据传输成功,并且所述第二子数据传输失败;
    其中,所述第一数据包括所述第一子数据与所述第二子数据;所述第一子数据传输成功,并且所述第二子数据传输失败被用于确定所述第二目标功率与所述第一目标功率的差值与所述第一步长有关。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,当所述第一信号被用于第一类随机接入,并且所述第三信号被用于第二类随机接入时,所述第二目标功率与所述第一目标功率的差值还与第二偏移量有关,第一子步长和第二子步长的差值与所述第一计数器被用于确定所述第二偏移量,所述第一子步长与所述第二子步长分别被用于确定所述第一类随机接入和所述第二类随机接入的目标功率。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第二信号包括第一域,所述第一域被用于指示是否放弃在所述第一状态发送所述第一数据。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第三信令;
    其中,所述第三信令被用于确定第一候选前导码序列分组,确定在所述第一状态发送所述第一数据与所述第一候选前导码序列分组有关,所述第一候选前导码序列分组是N1个第一类前导码序列分组中的一个第一类前导码序列分组,所述N1是正整数;所述第一信号包括所述第一候选前导码序列分组中的一个前导码序列。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收第一信号;接收第三信号;
    第二发射机,当所述第一信号被接收到时,发送第二信号;
    其中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步 长。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    确定是否在第一状态发送第一数据;当确定在所述第一状态发送所述第一数据时,选择第一步长,根据第一目标功率发送第一信号;更新第一计数器;确定是否更新第二计数器;当所述第一计数器不大于第一阈值,并且确定更新所述第二计数器时,根据第二目标功率发送第三信号;当所述第一计数器大于所述第一阈值时,确定所述第一数据传输失败;
    在第一时间窗中监测第二信号;
    其中,所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第一信号;接收第三信号;
    当所述第一信号被接收到时,发送第二信号;
    其中,当第一数据被确定在第一状态发送时,第一步长被选择;所述第一信号根据第一目标功率被发送;第一计数器被更新;第二计数器被确定是否更新;当所述第一计数器不大于第一阈值,并且所述第二计数器被确定更新时,所述第三信号根据第二目标功率被发送;当所述第一计数器大于所述第一阈值时,所述第一数据被确定传输失败;所述第二信号在第一时间窗中被监测;所述第一状态包括RRC非激活状态;所述第一数据包括小数据包;所述第一时间窗包括正整数个时隙;所述第一信号,所述第二信号和所述第三信号被用于随机接入过程,所述第一信号和所述第三信号包括前导码序列;所述第一计数器被用于统计前导码序列的发送次数;所述第二计数器被用于统计所述第一步长被增加的次数;所述第二目标功率与所述第一目标功率的差值与所述第一步长有关,确定在所述第一状态发送所述第一数据被用于确定所述第一步长。
PCT/CN2021/117098 2020-09-16 2021-09-08 一种被用于无线通信的通信节点中的方法和装置 WO2022057693A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/120,436 US20230217305A1 (en) 2020-09-16 2023-03-13 Method and device used in communication node for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010975488.5 2020-09-16
CN202010975488.5A CN114268971A (zh) 2020-09-16 2020-09-16 一种被用于无线通信的通信节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/120,436 Continuation US20230217305A1 (en) 2020-09-16 2023-03-13 Method and device used in communication node for wireless communication

Publications (1)

Publication Number Publication Date
WO2022057693A1 true WO2022057693A1 (zh) 2022-03-24

Family

ID=80777563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117098 WO2022057693A1 (zh) 2020-09-16 2021-09-08 一种被用于无线通信的通信节点中的方法和装置

Country Status (3)

Country Link
US (1) US20230217305A1 (zh)
CN (1) CN114268971A (zh)
WO (1) WO2022057693A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117528822A (zh) * 2022-07-26 2024-02-06 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232381A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Differentiated random access in new radio
CN109565888A (zh) * 2017-03-07 2019-04-02 Lg 电子株式会社 用于发送随机接入前导的方法和用户设备
CN110536403A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 功率确定方法、装置、终端及存储介质
CN110769494A (zh) * 2018-07-26 2020-02-07 维沃移动通信有限公司 功率控制方法、终端及网络侧设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744610A (zh) * 2014-12-09 2016-07-06 电信科学技术研究院 一种进行发射功率调整的方法、***和装置
EP3668194A4 (en) * 2017-08-11 2021-03-24 Fujitsu Limited METHOD AND DEVICE FOR DIRECT ACCESS PERFORMANCE CONTROL AND COMMUNICATION SYSTEM
CA3056971A1 (en) * 2018-09-27 2020-03-27 Comcast Cable Communications, Llc Power control for retransmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565888A (zh) * 2017-03-07 2019-04-02 Lg 电子株式会社 用于发送随机接入前导的方法和用户设备
WO2018232381A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Differentiated random access in new radio
CN110769494A (zh) * 2018-07-26 2020-02-07 维沃移动通信有限公司 功率控制方法、终端及网络侧设备
CN110536403A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 功率确定方法、装置、终端及存储介质

Also Published As

Publication number Publication date
US20230217305A1 (en) 2023-07-06
CN114268971A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US20240080725A1 (en) Methods, systems and devices that provide fast mobility
WO2022057693A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114641092A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114258073A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022156724A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022121922A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022105910A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114337741B (zh) 一种被用于无线通信的节点中的方法和装置
CN116015373A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023030425A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022121830A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051560A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022100639A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022073490A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114553272B (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113365367B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051559A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024001938A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868518

Country of ref document: EP

Kind code of ref document: A1