WO2022057258A1 - 薄膜型像切分器装置及其工作*** - Google Patents

薄膜型像切分器装置及其工作*** Download PDF

Info

Publication number
WO2022057258A1
WO2022057258A1 PCT/CN2021/089199 CN2021089199W WO2022057258A1 WO 2022057258 A1 WO2022057258 A1 WO 2022057258A1 CN 2021089199 W CN2021089199 W CN 2021089199W WO 2022057258 A1 WO2022057258 A1 WO 2022057258A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
film
light beam
main body
optical
Prior art date
Application number
PCT/CN2021/089199
Other languages
English (en)
French (fr)
Inventor
张凯
朱永田
王磊
汤振
季杭馨
胡中文
陈忆
Original Assignee
中国科学院国家天文台南京天文光学技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院国家天文台南京天文光学技术研究所 filed Critical 中国科学院国家天文台南京天文光学技术研究所
Priority to US18/044,961 priority Critical patent/US20230359053A1/en
Publication of WO2022057258A1 publication Critical patent/WO2022057258A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Definitions

  • the invention belongs to the field of optics technology, in particular to the field of astronomical optics technology and spectroscopy technology, and particularly relates to an image slicer device and a working system thereof.
  • starlight When conducting astronomical spectroscopic observations on the ground, starlight converges at the slit of the spectrometer, and after passing through the slit, it is dispersed to form a spectrum with a certain resolution. In order to improve the spectral resolution, it is often necessary to make the width of the slit narrower than the diameter of the star image, so that most of the light is blocked outside the slit and cannot be used.
  • the image slicer divides the star image into several sliced images with the same width as the slit along the width of the slit, and arranges them along the length of the slit, so that most of the starlight can enter the spectrometer, solving the problem of spectral resolution and starlight utilization. conflicting issues. In 1938, I.S.
  • edge chipping will lead to irregular contour of the segmented image spot and harmful stray light; straightness and angle errors will cause the image spot to be unable to be segmented with equal width, reducing the work effect.
  • the existing image slicer types do not have a steering function for the outgoing direction of the light beam, and the direction of the outgoing light beam is the same as that of the incident light beam.
  • the purpose of the present invention is: in order to solve the problems of unsatisfactory working effect, low yield and inability to mass-produce the optical glass edge of the classical image slicer due to manufacturing process defects, and to increase the function of turning the outgoing beam, a thin-film type is proposed.
  • a thin-film type is proposed.
  • the slicer device and its working system it has the technical characteristics of high segmentation accuracy, long service life, high yield, and strong batch feasibility, and can also have the function of turning the outgoing beam.
  • the present invention provides the following technical solutions:
  • the invention provides a film-type image slicer device, comprising a main body prism, a flat optical element, and an optical film.
  • the main body prism includes a first surface of the main body prism and a second surface of the main body prism which form an included angle ⁇ with each other.
  • the flat plate optical element has a first surface of the flat plate optical element close to the second surface of the main body prism and a second surface of the flat plate optical element away from the second surface of the main body prism, an optical film is arranged between the main body prism and the flat plate optical element, and the A reflection cavity is formed between the optical film and the second surface of the flat optical element, the incident light beam is incident from the first surface of the main prism, and is reflected and transmitted forward in a folded line in the reflection cavity.
  • the projection direction of the reflection advancing direction is the hypotenuse of the included angle ⁇ .
  • the light beam passes through the hypotenuse repeatedly during the reflection advance, and the image spot is divided into several segmented images of equal width.
  • the arrangement direction perpendicular to the splitting direction is linearly arranged.
  • the incident light beam is a slow focal ratio light beam with telecentric optical path characteristics.
  • the focal ratio of the incident beam is slower than F/15.
  • the optical film is an optical external reflection film coated on the second surface of the main prism, and/or an optical internal reflection film coated on the first surface of the flat optical element.
  • the main body prism further includes a third surface of the main body prism, the light beam is emitted from the third surface of the main body prism, and the turning prism includes a first surface of the turning prism, a second surface of the turning prism, and a turning prism.
  • the third surface of the prism, the first surface of the steering prism is connected with the third surface of the main body prism, and the light beam exits from the third surface of the steering prism after the direction of the second surface of the steering prism is refracted.
  • the angle between the two surfaces is ⁇ .
  • the types of the main body prisms include trapezoidal prisms, triangular prisms, and rhombus prisms, and the main body prisms are a single optical element or an optical component composed of a plurality of optical elements.
  • the chief rays of the beam corresponding to each segmented image are parallel to each other.
  • the number of segments of a single image spot is between 2-5.
  • the present invention also provides a working system based on a film-type image slicer device, comprising a front optical system, the aforementioned film-type image slicer device, and a subsequent optical system.
  • the image spot exits through the front optical system and has a telecentric optical path.
  • the characteristic slow focal ratio beam the beam is incident from the first surface of the main prism into the thin-film image slicer device, and several sliced images of equal width are obtained, and several of the sliced images are arranged perpendicular to the slice direction
  • the directions are linearly arranged, and the beams corresponding to all the segmented images are emitted from the thin-film image segmenter device and enter the subsequent optical system, where they are imaged as several segmented images of equal width and linear arrangement.
  • the edge of the optical film is used to replace the edge of the classic optical glass as a tool for segmenting the image spot, so as to avoid the optical manufacturing problems of chipping, poor straightness and angle error on the edge of the glass, which can effectively improve the segmentation accuracy and inhibit the Stray light.
  • optical film is sealed between the second surface of the main prism and the first surface of the flat glass, which effectively protects the optical film, avoids damage, contamination and oxidation caused by optical performance degradation, and can prolong the service life.
  • Fig. 1 is the front view of film type image slicer device structure A
  • Fig. 2 is a partial cross-sectional view along the A-A direction in Fig. 1;
  • Fig. 3 is the front view of the structure B of the film-type image slitter device
  • Fig. 4 is the front view of film type image slicer device structure C
  • FIG. 5 is a front view of the structure D of the film-type image divider device
  • Fig. 6 is the working system schematic diagram of the film type image slicer device
  • Main body prism; 1-1 The first surface of the main body prism; 1-2, The second surface of the main body prism; 1-3, The third surface of the main body prism; 2.
  • Flat optical element; 2-1 Flat plate The first surface of the optical element; 2-2, the second surface of the flat optical element; 3, the optical film; 4, the turning prism; 4-1, the first surface of the turning prism; 4-2, the second surface of the turning prism; 4-3 , Turning to the third surface of the prism; 5.
  • the width direction of the split image spot is called the split direction (X); (2) The length direction perpendicular to the split direction (X) is called the arrangement direction (Y); (3) The beam along the light The axial propagation direction is called the optical axis direction (Z).
  • This embodiment provides a structure A of a film-type image splitter device as shown in FIG. 1 , including a main prism 1 , a flat optical element 2 (eg flat glass), and an optical film 3 .
  • the main body prism 1 comprises a main body prism first surface 1-1 and a main body prism second surface 1-2, the main body prism first surface 1-1 and the main body prism second surface 1-2 form an included angle ⁇ with each other, and the main body prism first surface 1-1 and the main body prism second surface 1-2 form an included angle ⁇ with each other.
  • the included angle ⁇ between the surface 1-1 and the second surface 1-2 of the main prism provides the incident angle required to split the image spot.
  • the incident light beam is incident perpendicular to the first surface 1-1 of the main prism, and at this time, in order to enable the light beam to irradiate the flat optical element 2, the included angle ⁇ should be less than 90°.
  • the incident light beam is a convergent light beam.
  • the plate optical element 2 has a first surface 2-1 of the plate optical element near the second surface 1-2 of the main body prism and a second surface 2-2 of the plate optical element away from the second surface 1-2 of the main body prism.
  • an optical film 3 is arranged between the main prism 1 and the flat optical element 2.
  • the optical film 3 is coated in a local area with a hypotenuse.
  • the hypotenuse is used to segment the image spot, and the corresponding bevel
  • the angle is ⁇ , and the included angle of the position, size and shape of the optical film 3 is set according to the conditions of the incident focal ratio, the size of the image spot and the number of divisions, as shown in the partial cross-sectional view of FIG. 2 .
  • a reflection cavity is formed between the optical film 3 and the second surface 2-2 of the flat optical element, in which the light beam is reflected and transmitted forward in a folded line, and the image spot is divided at the same time.
  • a segmented image of equal width is segmented by the hypotenuse, and the remaining part of the beam is reflected back to the reflective cavity.
  • the incident converging beam is incident from the first surface 1-1 of the main prism, and is reflected and transmitted forward in a fold-line manner in the reflection cavity. side, the light beam repeatedly passes through the hypotenuse during the advance, and the image spot is divided into several segmented images of equal width.
  • the chief rays of the beam corresponding to the segmented image are parallel to each other.
  • the angle between the optical axis of the incident beam and the outgoing beam is 180°-2* ⁇ .
  • This embodiment provides a film-type image splitter device structure B as shown in FIG. 3 , including a main body prism 1 (specifically, an isosceles trapezoidal prism in this embodiment), a flat optical element 2 (such as flat glass), an optical film 3.
  • Steering prism 4 (specifically, an isosceles triangular prism is preferred in this embodiment).
  • the main body prism 1 includes a main body prism first surface 1-1, a main body prism second surface 1-2, a main main body prism third surface 1-3, and the main main body prism first surface 1-1 and main main body prism second surface 1-2.
  • the included angle ⁇ is formed, and the included angle ⁇ between the first surface 1-1 of the main body prism and the second surface 1-2 of the main body prism provides the incident angle required for dividing the image spot.
  • the incident light beam is incident perpendicular to the first surface 1-1 of the main prism.
  • the included angle ⁇ should be less than 90°. 1-3 out.
  • the incident light beam is a condensed light beam.
  • the turning prism 2 includes a turning prism first surface 4-1, a turning prism second surface 4-2, and a turning prism third surface 4-3.
  • the flat optical element 2 has a flat optical element first surface 2-1 close to the body prism second surface 1-2 and a flat flat optical element second surface 2-2 remote from the main body prism second surface 1-2.
  • an optical film 3 is arranged between the main prism 1 and the flat optical element 2.
  • the optical film 3 is coated in a local area with a hypotenuse.
  • the hypotenuse is used to segment the image spot, and the corresponding bevel
  • the angle is ⁇ , and the included angle of the position, size and shape of the optical film 3 is set according to the conditions of the incident focal ratio, the size of the image spot and the number of divisions, as shown in the partial cross-sectional view of FIG. 2 .
  • a reflection cavity is formed between the optical film 3 and the second surface 2-2 of the flat optical element, in which the light beam is reflected and transmitted forward in a folded line, and the image spot is divided at the same time.
  • the beam is reflected back to the reflector.
  • the incident converging beam is incident from the first surface 1-1 of the main prism, and is reflected and transmitted forward in a folded line in the reflection cavity.
  • the optical film 3 has a hypotenuse that forms an angle ⁇ with the projection direction of the forward direction of the reflection of the beam in the reflection cavity. , the light beam repeatedly passes through the hypotenuse during the advancement, and the image spot is divided into several segmented images of equal width.
  • the principal rays of the beam corresponding to the split images are parallel to each other.
  • the first surface 4-1 of the steering prism is connected to the third surface 1-3 of the main body prism, and the light beam exits from the third surface 4-3 of the steering prism after being refracted by the second surface 4-2 of the steering prism, and the first surface 4-3 of the steering prism is turned
  • the angle between -1 and the second surface 4-2 of the turning prism is ⁇ .
  • the oblique angle ⁇ of the main prism 1 and the oblique angle ⁇ of the turning prism 4 determine the direction of the outgoing beam, and the angle between the optical axis of the incoming beam and the outgoing beam is 360°-2*( ⁇ + ⁇ ).
  • the turning prism 4 is used to provide the function of turning the outgoing light beam.
  • the third surface 4-3 of the turning prism is the light beam exit surface, and the light beam is emitted perpendicular to the surface.
  • the normal of the first surface 1-1 of the main body prism and the normal of the second surface 4-2 of the turning prism are coplanar.
  • This embodiment provides a structure C of a film-type image splitter device as shown in FIG. 4 , including a main body prism 1 (specifically, an isosceles trapezoidal prism in this embodiment), a flat optical element 2 (such as flat glass), an optical film 3.
  • Steering prism 4 (specifically, an isosceles triangular prism is preferred in this embodiment).
  • the main body prism 1 includes a main body prism first surface 1-1, a main body prism second surface 1-2, a main main body prism third surface 1-3, and the main main body prism first surface 1-1 and main main body prism second surface 1-2.
  • the included angle ⁇ is formed, and the included angle ⁇ between the first surface 1-1 of the main body prism and the second surface 1-2 of the main body prism provides the incident angle required for dividing the image spot.
  • the incident light beam is incident perpendicular to the first surface 1-1 of the main prism.
  • the included angle ⁇ should be less than 90°. 1-3 out.
  • the incident light beam is a convergent light beam.
  • the turning prism 2 includes a turning prism first surface 4-1, a turning prism second surface 4-2, and a turning prism third surface 4-3.
  • the flat optical element 2 has a flat optical element first surface 2-1 close to the body prism second surface 1-2 and a flat flat optical element second surface 2-2 away from the main body prism second surface 1-2.
  • an optical film 3 is arranged between the main prism 1 and the flat optical element 2.
  • the optical film 3 is coated in a local area with a hypotenuse, and the hypotenuse is used to segment the image spot, and the corresponding bevel
  • the angle is ⁇ , and the included angle of the position, size and shape of the optical film 3 is set according to the conditions of the incident focal ratio, the size of the image spot and the number of divisions, as shown in the partial cross-sectional view of FIG. 2 .
  • a reflection cavity is formed between the optical film 3 and the second surface 2-2 of the flat optical element, in which the light beam is reflected and transmitted forward in a folded line, and the image spot is divided at the same time.
  • the beam is reflected back to the reflector.
  • the incident convergent light beam is incident from the first surface 1-1 of the main prism, and is reflected and transmitted forward in a folded line in the reflection cavity.
  • the optical film 3 has a hypotenuse that forms an angle ⁇ with the projection direction of the forward direction of the light beam in the reflection cavity, The light beam passes through the hypotenuse repeatedly during the reflection, and the image spot is divided into several segmented images of equal width.
  • the several segmented images are linearly arranged along the arrangement direction perpendicular to the segmented direction.
  • the principal rays of the beam corresponding to the split images are parallel to each other.
  • the first surface 4-1 of the steering prism is connected to the third surface 1-3 of the main body prism, and the light beam exits from the third surface 4-3 of the steering prism after being refracted by the second surface 4-2 of the steering prism, and the first surface 4-3 of the steering prism is turned
  • the included angle between -1 and the second surface 4-2 of the steering prism is ⁇ .
  • the oblique angle ⁇ of the main prism 1 and the oblique angle ⁇ of the steering prism 4 determine the direction of the outgoing beam.
  • the included angle ⁇ and the included angle ⁇ are not coplanar, and the incident
  • the angle between the optical axis of the light beam and the outgoing light beam is a two-dimensional space angle.
  • the turning prism 4 is used to provide the function of turning the outgoing light beam.
  • the third surface 4-3 of the turning prism is the light beam exit surface, and the light beam is emitted perpendicular to the surface.
  • the normal of the first surface 1-1 of the main prism and the normal of the second surface 4-2 of the turning prism are not coplanar, and the angle between the optical axes of the incident beam and the outgoing beam is a two-dimensional spatial angle.
  • This embodiment provides a structure D of a film-type image divider device as shown in FIG. 5 .
  • the film-type image slicer device structure B when the normal line of the first surface 1-1 of the main body prism 1 is coplanar with the normal line of the third surface 4-3 of the turning prism, and the angle between the optical axis of the incident light beam and the outgoing light beam is When it is 0°, the combination of the main body prism 1 and the turning prism 4 can be replaced by a rhombus prism, that is, the main body prism 1 is a rhombus prism, and the turning prism 4 is canceled.
  • This embodiment provides a working system as shown in FIG. 6 based on the film-type image divider device of the present invention, the system includes a front optical system 6 , a film-type image divider device, and a subsequent optical system 7 .
  • the image spot 5 emits a slow focal ratio beam with telecentric optical path characteristics through the front optical system 6, and the beam enters the device from the first surface of the main prism 1 along the optical axis direction (Z); the incident beam passes through the main prism 1.
  • the two surfaces 1-2 enter the reflective cavity formed by the optical film 3 and the second surface 2-2 of the flat optical element 2, and the light beam is reflected and propagated forward in a folded line in the reflective cavity; when the light beam contacts the optical film 3, it has a certain slope.
  • the optical film 3 at the angle ⁇ divides the image spot with the same width as the hypotenuse, the segmented image passes through the second surface 1-2 of the main prism 1, and the remaining light beam is reflected back into the reflective cavity and continues to reflect forward; after several divisions, the A number of segmented images of equal width are obtained and arranged in sequence along the arrangement direction (Y).
  • the principal rays of the beams corresponding to each segmented image are parallel to each other; Entering the subsequent optical system 7, the image is formed as several segmented images 8 of equal width and linear arrangement.
  • the use of the film-type image slicer should preferably satisfy two conditions: (1) The focal ratio of the incident converging light must be a ratio of F/15 is slower; (2) the incident beam must satisfy the condition of the telecentric optical path, that is, the exit pupil is located at infinity.
  • the focal ratio of the converging beam is F/20, and the image spot is divided into two equally wide segmented images, the outline of the segmented images is regular and clear, and the imaging quality is high.
  • the angle between the optical axis of the outgoing beam and the incident beam is 150°, and the segmentation effect and image quality have not been significantly degraded during more than 3 years of use.
  • an optical internal reflection film may be coated on the first surface 2-1 of the flat optical element, or an optical external reflection film may be coated on the second surface 1-2 of the main prism.
  • the type of the main body prism 1 in the present invention is not limited to an isosceles trapezoid prism, the main body prism 1 can be replaced by other shapes of trapezoidal prisms, triangular prisms, rhombus prisms or other types of prisms, and the main body prism 1 is not limited to a single prism.
  • the optical element can also be an optical assembly formed by combining a plurality of optical elements.
  • the present invention allows simultaneous segmentation of several image spots (for example, simultaneous segmentation of 1 to 3 image spots), and a single image spot can be divided into several numbers (for example, the above embodiment can Separate the number of segmented images between 2-5).
  • the present invention uses the coated optical film instead of the classical optical glass edge as a tool for segmenting the image spot, the optical film coated on the front surface of the flat glass and the back surface that can generate total reflection form a reflection cavity,
  • the light beam is reflected and transmitted forward in a folded line in the reflective cavity, and the image spot repeatedly passes through the edge of the optical glass that forms a certain angle with the projection direction of the forward direction during the advancement of the light beam, and cuts out several segmented images of equal width.
  • the present invention can change the outgoing direction of the light beam by flexibly changing the type and combination of the main prism 1 and the turning prism 4 to match the requirements of different application environments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种薄膜型像切分器装置及工作***。薄膜型像切分器装置包括主体棱镜(1)、平板光学元件(2)、光学膜(3),光学膜(3)与平板光学元件第二表面(2-2)之间形成反射腔,光学膜(3)具有与反射腔中光束反射前进方向的投影方向呈夹角θ的斜边,光束在反射前进中反复经过斜边,像斑(5)被切分为若干个等宽的切分像(8),若干个切分像(8)沿与切分方向垂直的排列方向线性排布,每个切分像(8)对应的光束主光线相互平行。采用光学膜(3)边缘替代经典的光学玻璃棱边作为切分像斑(5)的工具,能够有效提高切分精度,抑制杂散光,成品率高,便于批量化生产,使用寿命长;可配合转向棱镜(4)改变光束的出射方向,以匹配不同应用环境的需求。

Description

薄膜型像切分器装置及其工作*** 技术领域
本发明属于光学技术领域,特别是天文光学技术、光谱技术领域,具体涉及一种像切分器装置及其工作***。
背景技术
地面开展天文光谱观测时,星光会聚在光谱仪的狭缝处,穿过狭缝后经色散形成具有一定分辨率的光谱。为了提高光谱分辨率往往需要将狭缝的宽度开得比星像直径更窄,导致大部分光被挡在狭缝之外而得不到利用。像切分器将星像沿狭缝宽度方向分成若干与狭缝等宽的切分像,并沿狭缝长度方向排列,使大部分星光都能进入光谱仪,解决光谱分辨率和星光利用率的矛盾问题。1938年,I.S.鲍恩首先设计一种迭片式像切分器。随着光学制造技术的进步,1980年代起逐渐应用到天文实测领域,出现了多种类型的像切分器。绝大部分的像切分器采用光学玻璃棱边作为切分像斑的工具,玻璃棱边的光学制造精度,包括棱边的崩边、直线度和角度,直接决定了像切分器的工作效果。直到1990年代末期,相关的光学制造技术才被逐渐攻克,但成品率低、易破损的现实问题仍未很好解决。其中,崩边会导致切分像斑的轮廓不规则,并且产生有害的杂散光;直线度和角度误差会导致无法等宽地切分像斑,降低工作效果。另一方面,现有的像切分器类型对光束出射方向都不具备转向功能,出射光束的指向均与入射光束的相同。
从现有技术的检索结果来看,目前的像切分器均保持使用光学玻璃棱边作为切分像斑的工具,因此不能有效解决上述问题;现有的像切分器国内专利均未涉及或通过其它部件来实现切分像的线性排列;现有的像切分器均未涉及或通过其它部件来实现出射光束的转向功能。
发明内容
本发明目的是:为了解决经典像切分器存在光学玻璃棱边因制造工艺缺陷导致工作效果不理想、成品率低和无法批量生产的问题,并可增加出射光束转向功能,提出一种薄膜型像切分器装置及其工作***,具有切分精度高、使用寿命长、成品率高、批量化可行性强的技术特点,并可同时具备出射光束转向功能。
为实现上述目的,本发明提供如下技术方案:
本发明提供一种薄膜型像切分器装置,包括主体棱镜、平板光学元件、光学 膜,所述主体棱镜包括相互之间呈夹角α的主体棱镜第一表面和主体棱镜第二表面,所述平板光学元件具有靠近主体棱镜第二表面的平板光学元件第一表面和远离主体棱镜第二表面的平板光学元件第二表面,所述主体棱镜和平板光学元件之间设置有光学膜,所述光学膜与平板光学元件第二表面之间形成反射腔,入射光束从主体棱镜第一表面入射,并在所述反射腔中以折线方式反射向前传输,所述光学膜具有与反射腔中光束反射前进方向的投影方向呈夹角θ的斜边,光束在反射前进中反复经过所述斜边,像斑被切分为若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布。
更进一步的,所述入射光束为具有远心光路特性的慢焦比光束。
更进一步的,所述入射光束的焦比慢于F/15。
更进一步的,所述光学膜为镀制于主体棱镜第二表面上的光学外反射膜,和/或镀制于平板光学元件第一表面上的光学内反射膜。
更进一步的,还包括转向棱镜,所述主体棱镜还包括主体棱镜第三表面,光束从所述主体棱镜第三表面出射,所述转向棱镜包括转向棱镜第一表面、转向棱镜第二表面和转向棱镜第三表面,所述转向棱镜第一表面与主体棱镜第三表面相连,光束经转向棱镜第二表面折转方向后从转向棱镜第三表面出射,所述转向棱镜第一表面与转向棱镜第二表面的夹角为β。
更进一步的,所述主体棱镜的类型包括梯形棱镜、三角棱镜、斜方棱镜,所述主体棱镜为单个光学元件或由多个光学元件组合而成的光学组件。
更进一步的,每个切分像对应的光束主光线相互平行。
更进一步的,允许对若干个像斑同时进行切分。
更进一步的,单个像斑的切分数量在2-5个之间。
本发明还提供一种基于薄膜型像切分器装置的工作***,包括前置光学***、前述的薄膜型像切分器装置、后续光学***,像斑经由前置光学***射出具有远心光路特性的慢焦比光束,光束从主体棱镜的第一表面入射进入薄膜型像切分器装置,得到若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布,所有切分像对应的光束从薄膜型像切分器装置射出,进入后续光学***,成像为若干个等宽且线性排列的切分像。
与现有技术相比,本发明的有益效果是:
(1)采用光学膜边缘替代经典的光学玻璃棱边作为切分像斑的工具,避免玻璃棱边存在崩边、直线度不佳和角度误差的光学制造问题,能够有效提高切分精度,抑制杂散光。
(2)采用成熟的镀膜技术来获得指定的光学膜技术参数,成品率高;涉及的工装设备可反复使用,便于批量化生产。
(3)光学膜密封在主体棱镜的第二表面和平板玻璃的第一表面之间,有效保护光学膜,避免破损、受污和氧化造成光学性能下降,能够延长使用寿命。
(4)选用不同类型的主体棱镜和转向棱镜进行组合,能够改变入射光束与出射光束的光轴夹角,方便匹配后续光学***。
附图说明
图1是薄膜型像切分器装置结构A的主视图;
图2是图1中沿A-A方向的局部剖视图;
图3是薄膜型像切分器装置结构B的主视图;
图4是薄膜型像切分器装置结构C的主视图;
图5是薄膜型像切分器装置结构D的主视图;
图6是薄膜型像切分器装置的工作***示意图;
图中标记:1、主体棱镜;1-1、主体棱镜第一表面;1-2、主体棱镜第二表面;1-3、主体棱镜第三表面;2、平板光学元件;2-1、平板光学元件第一表面;2-2、平板光学元件第二表面;3、光学膜;4、转向棱镜;4-1、转向棱镜第一表面;4-2、转向棱镜第二表面;4-3、转向棱镜第三表面;5、像斑;6、前置光学***;7、后续光学***;8、切分像。
具体实施方式
下面结合附图对本发明作进一步详细说明。
定义方向:(1)切分像斑的宽度方向称为切分方向(X);(2)与切分方向(X)垂直的长度方向称为排列方向(Y);(3)光束沿光轴传播方向称为光轴方向(Z)。
实施例一
本实施例提供一种如图1所示的薄膜型像切分器装置结构A,包括主体棱镜1、平板光学元件2(例如平板玻璃)、光学膜3。主体棱镜1包括主体棱镜第一 表面1-1和主体棱镜第二表面1-2,主体棱镜第一表面1-1和主体棱镜第二表面1-2相互之形成夹角α,主体棱镜第一表面1-1与主体棱镜第二表面1-2的夹角α提供切分像斑所需的入射角度。本实施例中,入射光束垂直于主体棱镜第一表面1-1入射,此时,为了使光束能够照射到平板光学元件2,所述夹角α要小于90°。为了使照射至平板光学元件2的光束产生像斑,入射光束为会聚光束。平板光学元件2具有靠近主体棱镜第二表面1-2的平板光学元件第一表面2-1和远离主体棱镜第二表面1-2的平板光学元件第二表面2-2。如图1所示,主体棱镜1和平板光学元件2之间设置有光学膜3,光学膜3镀制于带有斜边的局部区域内,其斜边用于切分像斑,对应的斜角为θ,光学膜3的位置、大小和形状夹角根据入射焦比、像斑大小和切分数量的条件来设定,见附图2的局部剖面图。光学膜3与平板光学元件第二表面2-2之间形成光束以折线方式反射向前传输的反射腔,同时切分像斑。利用该斜边切分出等宽的切分像,剩余部分的光束反射回反射腔。入射会聚光束从主体棱镜第一表面1-1入射,并在该反射腔中以折线方式反射向前传输,光学膜3具有与反射腔中光束的反射前进方向的投影方向呈夹角θ的斜边,光束在前进中反复经过所述斜边,像斑被切分为若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布,每个切分像对应的光束主光线相互平行。入射光束与出射光束的光轴夹角为180°-2*α。
实施例二
本实施例提供一种如图3所示的薄膜型像切分器装置结构B,包括主体棱镜1(本实施例具体优选等腰梯形棱镜)、平板光学元件2(例如平板玻璃)、光学膜3、转向棱镜4(本实施例具体优选等腰三角棱镜)。主体棱镜1包括主体棱镜第一表面1-1、主体棱镜第二表面1-2、主体棱镜第三表面1-3,主体棱镜第一表面1-1和主体棱镜第二表面1-2相互之形成夹角α,主体棱镜第一表面1-1与主体棱镜第二表面1-2的夹角α提供切分像斑所需的入射角度。本实施例中,入射光束垂直于主体棱镜第一表面1-1入射,此时,为了使光束能够照射到平板光学元件2,所述夹角α要小于90°,光束从主体棱镜第三表面1-3出射。为了使照射至平板光学元件2的光束为光斑,入射光束为会聚光束。转向棱镜2包括转向棱镜第一表面4-1、转向棱镜第二表面4-2和转向棱镜第三表面4-3。平板光学元件2具有靠近主体棱镜第二表面1-2的平板光学元件第一表面2-1和远离主体棱 镜第二表面1-2的平板光学元件第二表面2-2。如图3所示,主体棱镜1和平板光学元件2之间设置有光学膜3,光学膜3镀制于带有斜边的局部区域内,其斜边用于切分像斑,对应的斜角为θ,光学膜3的位置、大小和形状夹角根据入射焦比、像斑大小和切分数量的条件来设定,见附图2的局部剖面图。光学膜3与平板光学元件第二表面2-2之间形成光束以折线方式反射向前传输的反射腔,同时切分像斑,利用该斜边切分出等宽的切分像,剩余部分的光束反射回反射腔。入射会聚光束从主体棱镜第一表面1-1入射,并在该反射腔中以折线方式反射向前传输,光学膜3具有与反射腔中光束反射前进方向的投影方向呈夹角θ的斜边,光束在前进中反复经过所述斜边,像斑被切分为若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布,每个切分像对应的光束主光线相互平行。转向棱镜第一表面4-1与主体棱镜第三表面1-3相连,光束经转向棱镜第二表面4-2折转方向后从转向棱镜第三表面4-3出射,转向棱镜第一表面4-1与转向棱镜第二表面4-2的夹角为β。主体棱镜1的斜角α和转向棱镜4的斜角β决定出射光束的指向,入射光束与出射光束的光轴夹角为360°-2*(α+β)。转向棱镜4用来提供出射光束转向功能,转向棱镜第三表面4-3为光束出射面,光束垂直表面射出。
本实施例中,主体棱镜第一表面1-1的法线与转向棱镜第二表面4-2的法线共面。
实施例三
本实施例提供一种如图4所示的薄膜型像切分器装置结构C,包括主体棱镜1(本实施例具体优选等腰梯形棱镜)、平板光学元件2(例如平板玻璃)、光学膜3、转向棱镜4(本实施例具体优选等腰三角棱镜)。主体棱镜1包括主体棱镜第一表面1-1、主体棱镜第二表面1-2、主体棱镜第三表面1-3,主体棱镜第一表面1-1和主体棱镜第二表面1-2相互之形成夹角α,主体棱镜第一表面1-1与主体棱镜第二表面1-2的夹角α提供切分像斑所需的入射角度。本实施例中,入射光束垂直于主体棱镜第一表面1-1入射,此时,为了使光束能够照射到平板光学元件2,所述夹角α要小于90°,光束从主体棱镜第三表面1-3出射。为了使照射至平板光学元件2的光束产生像斑,入射光束为会聚光束。转向棱镜2包括转向棱镜第一表面4-1、转向棱镜第二表面4-2和转向棱镜第三表面4-3。平板光学 元件2具有靠近主体棱镜第二表面1-2的平板光学元件第一表面2-1和远离主体棱镜第二表面1-2的平板光学元件第二表面2-2。如图4所示,主体棱镜1和平板光学元件2之间设置有光学膜3,光学膜3镀制于带有斜边的局部区域内,其斜边用于切分像斑,对应的斜角为θ,光学膜3的位置、大小和形状夹角根据入射焦比、像斑大小和切分数量的条件来设定,见附图2的局部剖面图。光学膜3与平板光学元件第二表面2-2之间形成光束以折线方式反射向前传输的反射腔,同时切分像斑,利用该斜边切分出等宽的切分像,剩余部分的光束反射回反射腔。入射会聚光束从主体棱镜第一表面1-1入射,并在该反射腔中以折线方式反射向前传输,光学膜3具有与反射腔中光束前进方向的投影方向呈夹角θ的斜边,光束在反射前进中反复经过所述斜边,像斑被切分为若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布,每个切分像对应的光束主光线相互平行。转向棱镜第一表面4-1与主体棱镜第三表面1-3相连,光束经转向棱镜第二表面4-2折转方向后从转向棱镜第三表面4-3出射,转向棱镜第一表面4-1与转向棱镜第二表面4-2的夹角为β,主体棱镜1的斜角α和转向棱镜4的斜角β决定出射光束的指向,夹角α与夹角β不共面,入射光束与出射光束的光轴夹角为二维空间角度。转向棱镜4用来提供出射光束转向功能,转向棱镜第三表面4-3为光束出射面,光束垂直表面射出。
本实施例中,主体棱镜第一表面1-1的法线与转向棱镜第二表面4-2的法线不共面,入射光束与出射光束的光轴夹角为二维空间角度。
实施例四
本实施例提供一种如图5所示的薄膜型像切分器装置结构D。在薄膜型像切分器装置结构B中,当主体棱镜1第一表面1-1的法线与转向棱镜第三表面4-3的法线共面且入射光束与出射光束的光轴夹角为0°时,主体棱镜1和转向棱镜4的组合可以用一块斜方棱镜代替,即主体棱镜1为斜方棱镜,取消转向棱镜4。
实施例五
本实施例提供一种如图6所示的基于本发明薄膜型像切分器装置的工作***,该***包括前置光学***6、薄膜型像切分器装置、后续光学***7。
像斑5经由前置光学***6射出具有远心光路特性的慢焦比光束,光束从主体棱镜1的第一表面沿光轴方向(Z)正入射进入装置;入射光束穿过主体棱镜 1第二表面1-2,进入光学膜3与平板光学元件2第二表面2-2形成的反射腔,光束在反射腔中以折线方式反射向前传播;当光束接触光学膜3时,具有一定斜角θ的光学膜3斜边等宽地切分像斑,切分像穿过主体棱镜1第二表面1-2,而剩余的光束反射回反射腔中继续反射前进;经过若干次切分,得到若干个等宽的切分像,并沿排列方向(Y)依次排列,每个切分像对应的光束主光线相互平行;所有切分像对应的光束从薄膜型像切分器装置射出,进入后续光学***7,成像为若干个等宽且线性排列的切分像8。
需要说明的是,为了保证上述实施例中的薄膜型像切分器的使用效果,薄膜型像切分器的使用最好能满足2个条件:(1)入射会聚光的焦比必须为比F/15更慢;(2)入射光束必须满足远心光路的条件,即出瞳位于无限远处。例如,当会聚光束的入射焦比为F/20,将像斑切分成两个等宽的切分像时,切分像轮廓规则清晰,成像质量高,当使用薄膜型像切分器装置结构B时,其出射光束与入射光束的光轴夹角为150°,超过3年的使用中切分效果和像质无明显退化。
还需要说明的是,光学膜的镀制可以根据实际要求选择。例如,可在平板光学元件第一表面2-1上镀制光学内反射膜,或者可在主体棱镜第二表面1-2上镀制光学外反射膜。
需要说明的是,本发明中主体棱镜1的类型不限于等腰梯形棱镜,主体棱镜1可由其它形状的梯形棱镜、三角棱镜、斜方棱镜或者其它类型的棱镜替代,主体棱镜1也不限于单个光学元件,还可以是多个光学元件组合而成的光学组件。
需要说明的是,本发明允许对若干个像斑同时进行切分(例如对1至3个像斑同时进行切分),单个像斑的切分数量可以有若干个(例如上述实施例可切分出数量在2-5个之的切分像)。
需要说明的是,上述实施例仅列举出了几种转向棱镜4的转向方式,基于上述实施例,本领域技术人员还可以类推得到更多种通过引入不同类型或装配方向的转向棱镜4改变出射光束的指向的方式,这些方式都属于本发明的保护范围之内。
综上所述,本发明使用镀制的光学膜代替经典的光学玻璃棱边作为切分像斑的工具,镀制在平板玻璃前表面的光学膜与其能够产生全反射的后表面形成反射腔,使光束在反射腔中以折线方式反射向前传输,像斑在光束前进中反复经过与 前进方向的投影方向成一定夹角的光学玻璃棱边,切出若干个等宽的切分像,它们沿排列方向(Y)排列。另外,本发明通过灵活变换主体棱镜1和转向棱镜4的类型和组合方式可改变光束的出射方向,以匹配不同应用环境的需求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 薄膜型像切分器装置,其特征在于,包括主体棱镜(1)、平板光学元件(2)、光学膜(3),所述主体棱镜(1)包括相互之间呈夹角α的主体棱镜第一表面(1-1)和主体棱镜第二表面(1-2),所述平板光学元件(2)具有靠近主体棱镜第二表面(1-2)的平板光学元件第一表面(2-1)和远离主体棱镜第二表面(1-2)的平板光学元件第二表面(2-2),所述主体棱镜(1)和平板光学元件(2)之间设置有光学膜(3),所述光学膜(3)与平板光学元件第二表面(2-2)之间形成反射腔,入射光束从主体棱镜第一表面(1-1)入射,并在所述反射腔中以折线方式反射向前传输,所述光学膜(3)具有与反射腔中光束反射前进方向的投影方向呈夹角θ的斜边,光束在反射前进中反复经过所述斜边,像斑被切分为若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布。
  2. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,所述入射光束为具有远心光路特性的慢焦比光束。
  3. 根据权利要求2所述的薄膜型像切分器装置,其特征在于,所述入射光束的焦比慢于F/15。
  4. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,所述光学膜(3)为镀制于主体棱镜第二表面(1-2)上的光学外反射膜,和/或镀制于平板光学元件第一表面(2-1)上的光学内反射膜。
  5. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,还包括转向棱镜(4),所述主体棱镜(1)的类型为三角棱镜,还包括主体棱镜第三表面(1-3),光束从所述主体棱镜第三表面(1-3)出射,所述转向棱镜(4)包括转向棱镜第一表面(4-1)、转向棱镜第二表面(4-2)和转向棱镜第三表面(4-3),所述转向棱镜第一表面(4-1)与主体棱镜第三表面(1-3)相连,光束经转向棱镜第二表面(4-2)全反射后从转向棱镜第三表面(4-3)出射,所述转向棱镜第一表面(4-1)与转向棱镜第二表面(4-2)的夹角为β。
  6. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,所述主体棱镜(1)的类型包括梯形棱镜、三角棱镜、斜方棱镜,所述主体棱镜(1)为单个光学元件或由多个光学元件组合而成的光学组件。
  7. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,每个切分像对应的光束主光线相互平行。
  8. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,允许对若干个像斑同时进行切分。
  9. 根据权利要求1所述的薄膜型像切分器装置,其特征在于,单个像斑的切分数量在2-5个 之间。
  10. 基于薄膜型像切分器装置的工作***,其特征在于,包括前置光学***(6)、权利要求1-9中任意一项所述的薄膜型像切分器装置、后续光学***(7),像斑(5)经由前置光学***(6)射出具有远心光路特性的慢焦比光束,光束从主体棱镜(1)的第一表面入射进入薄膜型像切分器装置,得到若干个等宽的切分像,若干个所述切分像沿与切分方向垂直的排列方向线性排布,所有切分像对应的光束从薄膜型像切分器装置射出,进入后续光学***(7),成像为若干个等宽且线性排列的切分像(8)。
PCT/CN2021/089199 2020-09-21 2021-04-23 薄膜型像切分器装置及其工作*** WO2022057258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/044,961 US20230359053A1 (en) 2020-09-21 2021-04-23 Thin film type image slicer device and operating system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010995892.9 2020-09-21
CN202010995892.9A CN112114433B (zh) 2020-09-21 2020-09-21 薄膜型像切分器装置及其工作***

Publications (1)

Publication Number Publication Date
WO2022057258A1 true WO2022057258A1 (zh) 2022-03-24

Family

ID=73800578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089199 WO2022057258A1 (zh) 2020-09-21 2021-04-23 薄膜型像切分器装置及其工作***

Country Status (3)

Country Link
US (1) US20230359053A1 (zh)
CN (1) CN112114433B (zh)
WO (1) WO2022057258A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114433B (zh) * 2020-09-21 2022-06-21 中国科学院国家天文台南京天文光学技术研究所 薄膜型像切分器装置及其工作***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015240A1 (en) * 1992-12-22 1994-07-07 University College London Optical apparatus
CN103063307A (zh) * 2012-12-28 2013-04-24 南京理工大学 像面干涉高光谱显微成像装置和方法
WO2013083371A1 (en) * 2011-12-05 2013-06-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN107271037A (zh) * 2017-05-23 2017-10-20 天津大学 光谱显微成像方法及***
CN108362379A (zh) * 2018-03-15 2018-08-03 中国科学院西安光学精密机械研究所 一种宽谱段高分辨率光谱色散方法及装置
CN112114433A (zh) * 2020-09-21 2020-12-22 中国科学院国家天文台南京天文光学技术研究所 薄膜型像切分器装置及其工作***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049617B2 (en) * 2001-07-26 2006-05-23 Seiko Epson Corporation Thickness measurement in an exposure device for exposure of a film with a hologram mask, exposure method and semiconductor device manufacturing method
CN105312773A (zh) * 2014-07-30 2016-02-10 深圳市韵腾激光科技有限公司 晶圆激光切割方法
CN107111146B (zh) * 2015-01-21 2020-05-26 ***光谱***有限公司 混合图像-光瞳光学重定格式器
CN109708759B (zh) * 2018-12-28 2021-03-23 中国计量大学 一种基于叠层玻璃映射的成像光谱仪
CN110142503B (zh) * 2019-05-17 2020-09-29 中国科学院西安光学精密机械研究所 一种激光切割离焦补偿***及其补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015240A1 (en) * 1992-12-22 1994-07-07 University College London Optical apparatus
WO2013083371A1 (en) * 2011-12-05 2013-06-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN103063307A (zh) * 2012-12-28 2013-04-24 南京理工大学 像面干涉高光谱显微成像装置和方法
CN107271037A (zh) * 2017-05-23 2017-10-20 天津大学 光谱显微成像方法及***
CN108362379A (zh) * 2018-03-15 2018-08-03 中国科学院西安光学精密机械研究所 一种宽谱段高分辨率光谱色散方法及装置
CN112114433A (zh) * 2020-09-21 2020-12-22 中国科学院国家天文台南京天文光学技术研究所 薄膜型像切分器装置及其工作***

Also Published As

Publication number Publication date
CN112114433A (zh) 2020-12-22
US20230359053A1 (en) 2023-11-09
CN112114433B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Bowen The Image-Slicer a Device for Reducing Loss of Light at Slit of Stellar Spectrograph.
US5015100A (en) Apparatus and method for normal incidence reflectance spectroscopy
US9446478B2 (en) Device for applying laser radiation and device for reproducing a linear light distribution
US5303084A (en) Laser light beam homogenizer and imaging lidar system incorporating same
WO2022057258A1 (zh) 薄膜型像切分器装置及其工作***
US20150041666A1 (en) Multi-Spot Illumination For Improved Detection Sensitivity
US7102753B2 (en) Optical system for measurement
CN113465547A (zh) 一种线式扫描光谱共聚测量***与方法
US4460240A (en) Semiconductor laser scanning system
CN103949774A (zh) 监测激光束质量的激光加工头及实时监测的方法
US20210349325A1 (en) Beam splitter for achieving grazing incidence of light
CN104406691B (zh) 一种基于单个自由曲面的成像光谱仪分光***
CN112461364B (zh) 一种高通量长波红外高光谱成像光学***
US10197668B2 (en) Eighth wave corner cube retarder for laser radar
CN110542892B (zh) 一种激光发射天线
TW201710652A (zh) 多波段光譜分離裝置
CN105954286A (zh) 一种基于旋转滤光片单色器的能见度测量仪
CA1048829A (en) Optical beam combining apparatus
CN115388766A (zh) 用于椭偏量测***的自动聚焦方法
JPH1039250A (ja) フラットビームを成形する装置
US20210310866A1 (en) Optical multi-pass cells
CN112271532A (zh) 一种腔外倍频激光器
US5164857A (en) Wide band non-coated beam splitter
CN109188686A (zh) 一种准直光路光程缩短的方法与装置
Coster et al. On the resolving power of the ordinary X-ray spectrograph and the natural width of X-ray spectral lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868096

Country of ref document: EP

Kind code of ref document: A1