WO2022057113A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022057113A1
WO2022057113A1 PCT/CN2020/135775 CN2020135775W WO2022057113A1 WO 2022057113 A1 WO2022057113 A1 WO 2022057113A1 CN 2020135775 W CN2020135775 W CN 2020135775W WO 2022057113 A1 WO2022057113 A1 WO 2022057113A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
optical
light emitting
laser
Prior art date
Application number
PCT/CN2020/135775
Other languages
English (en)
French (fr)
Inventor
刘学儒
张洪浩
唐毅
王斌
叶书华
傅钦豪
谢一帆
张加傲
黄绪杰
董本正
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010988545.3A external-priority patent/CN114200597B/zh
Priority claimed from CN202010988200.8A external-priority patent/CN114200596B/zh
Priority claimed from CN202010990182.7A external-priority patent/CN114200603B/zh
Priority claimed from CN202010988607.0A external-priority patent/CN114200598B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022057113A1 publication Critical patent/WO2022057113A1/zh
Priority to US18/122,560 priority Critical patent/US20230258883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • optical module is improved to include two sets of light emitting sub-modules (each group emits light of one wavelength) and two sets of light receiving sub-modules (each group receives light of one wavelength). In this way, the occupied volume of the optical emitting sub-module and the optical receiving sub-module in the optical module will continue to increase, which is not conducive to the further development of the optical module.
  • the present disclosure provides an optical module, comprising: a circuit board; a light emitting sub-module, which is electrically connected to the circuit board through a flexible circuit board and used for emitting multiple beams of different wavelengths;
  • the circuit board is electrically connected to the circuit board, and is stacked with the light emission sub-module for receiving multiple beams of different wavelengths; wherein the light emission sub-module includes: a light emission housing, one end of which is provided with a jack, and the other end of which is provided with a jack.
  • a through hole is provided; a light emission cover plate is covered on the light emission shell, and forms a light emission cavity with the light emission shell; a ceramic adapter block is inserted into the light emission cavity through the jack, and is connected with the light emission cavity
  • the emitting housing is sealed and connected; one end of the connecting block is connected with the side wall of the light emitting housing provided with a through hole; an escape groove is provided on it, which is used for avoiding when the light emitting housing and the light emitting cover plate are sealed and welded.
  • the first optical fiber adapter which is connected with the other end of the connection block, communicates with the through hole through the connection block.
  • the present disclosure provides an optical module, comprising: a circuit board; a light emitting sub-module electrically connected to the circuit board through a flexible circuit board for emitting multiple beams of different wavelengths;
  • the circuit board is electrically connected to the circuit board, and is stacked with the light emitting sub-module for receiving multiple beams of different wavelengths;
  • the light emitting sub-module includes: a light emitting housing;
  • the shell forms a light emitting cavity with the light emitting shell;
  • a plurality of laser component groups are arranged in the light emitting cavity for emitting multiple beams of different wavelengths;
  • a plurality of laser drivers are arranged in the light emitting cavity , used to drive the laser component group to emit light beams;
  • a plurality of oblique light detectors arranged on the laser driver, located on the light-emitting optical path on the back of the laser component group, used to monitor the emitted light power of the laser component group; ceramic adapter block, One end is inserted into the light
  • the present disclosure provides an optical module, which is characterized by comprising: a circuit board; a light emitting sub-module, electrically connected to the circuit board, for emitting multiple beams of different wavelengths; a light-receiving sub-module, connected to the circuit board The board is electrically connected, and is stacked with the light emitting sub-module for receiving multiple beams of different wavelengths; wherein, the light emitting sub-module includes: a light emitting housing; a light emitting cover plate, which is covered on the light emitting housing, It forms a light emitting cavity with the light emitting housing; a plurality of optical multiplexers and lens assemblies are arranged in the light emitting cavity; An optical multiplexer is fixed on the platform, the lens assembly is fixed on the lens fixing member, and the multiplexed composite beams emitted by the multiple optical multiplexers are reflected and refracted by the lens assembly and then multiplexed into one signal light; the first optical fiber adapter, and The light emitting housing
  • the present disclosure provides an optical module, comprising: a circuit board; a light emitting sub-module electrically connected to the circuit board for emitting multiple signal lights of different wavelengths; an optical receiving sub-module electrically connected to the circuit board , and it is stacked with the light emitting sub-module to receive multiple signal lights of different wavelengths;
  • the light emitting sub-module includes: a light emitting housing; a light emitting cover plate, which is covered on the light emitting housing, and The light emitting shell forms a light emitting cavity; a plurality of laser component groups are arranged in the light emitting cavity and are used for emitting multiple beams of different wavelengths;
  • the component groups are correspondingly arranged for multiplexing the multiplexed beams of different wavelengths into multiplexed composite beams respectively;
  • the lens components are arranged in the light emitting cavity and are used to reflect and refract the multiplexed composite beams respectively, and convert the multiplexed composite beams
  • the composite light beam is multiplex
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • Fig. 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a decomposition structure of an optical module provided by an embodiment of the present disclosure
  • FIG. 5 is a partial cross-sectional view of an optical module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a separation structure of an optical transmitting sub-module and an optical receiving sub-module in an optical module according to an embodiment of the present disclosure
  • FIG. 7 is a partial exploded schematic diagram of an optical emission sub-module in an optical module provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a light emitting device in an optical module according to an embodiment of the present disclosure.
  • FIG. 9 is another angular structural schematic diagram of a light emitting device in an optical module according to an embodiment of the present disclosure.
  • FIG 10 is an optical path diagram of an optical emission sub-module in an optical module provided by an embodiment of the present disclosure
  • FIG. 11 is an optical path diagram of a lens assembly in an optical module according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic assembly diagram of a lens assembly, an optical multiplexer, and a support platform in an optical module provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a support platform in an optical module according to an embodiment of the present disclosure.
  • FIG. 14 is a partial structural schematic diagram of a support platform in an optical module according to an embodiment of the present disclosure.
  • 15 is a schematic diagram of the assembly of a laser component and a photodetector in an optical module provided by an embodiment of the present disclosure
  • FIG. 16 is an exploded schematic diagram of a laser assembly in an optical module according to an embodiment of the present disclosure.
  • 17 is a schematic assembly diagram of a photodetector and a laser driver in an optical module according to an embodiment of the present disclosure
  • FIG. 18 is a schematic structural diagram of an optical detector in an optical module according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a ceramic adapter block in an optical module according to an embodiment of the present disclosure.
  • FIG. 20 is an exploded schematic diagram of an emission housing and a ceramic adapter block in an optical module according to an embodiment of the present disclosure
  • FIG. 21 is a schematic structural diagram of an emission housing in an optical module according to an embodiment of the present disclosure.
  • FIG. 22 is a partial cross-sectional view of a light emitting sub-module in an optical module provided by an embodiment of the present disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.
  • the electrical connection method realized by the gold finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the gold finger has formed a variety of industry protocols/norms.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101 and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101, and a two-way optical signal connection is established with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100, and a two-way electrical signal connection is established with the optical network terminal 100;
  • the optical module realizes mutual conversion between optical signals and electrical signals, so as to establish an information connection between the optical fiber and the optical network terminal; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module.
  • the optical network terminal is used as the host computer of the optical module to monitor the work of the optical module.
  • the remote server has established a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the host computer of the optical module, providing data signals to the optical module and receiving data signals from the optical module.
  • FIG. 2 is a schematic structural diagram of an optical network terminal.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for connecting to an optical module electrical port such as a golden finger;
  • the cage 106 is provided with a radiator 107 , and the radiator 107 has raised portions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106 , and the optical port of the optical module is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage, so that the interior of the cage is provided with electrical connectors; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage. 106 and then diffuse through a heat sink 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an exploded optical module according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , a light emitting sub-module 400 and an optical receiving sub-module 500 .
  • the upper casing 201 is covered on the lower casing 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body.
  • the two side walls on both sides of the plate and the two side walls vertically arranged with the cover plate are combined with the two side plates to realize that the upper casing is covered on the lower casing.
  • the two openings may be openings (204, 205) at both ends in the same direction, or may be two openings in different directions; one of the openings is an electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204.
  • the other opening is an optical port 205, which is used for external optical fiber access to connect the optical transmitting sub-module 400 and the optical receiving sub-module 500 inside the optical module; the circuit board 300, the optical transmitting sub-module 400
  • the optoelectronic devices such as the light receiving sub-module 500 are located in the encapsulation cavity.
  • the combination of the upper case and the lower case is adopted, which facilitates the installation of the circuit board 300, the light emitting sub-module 400 and the light receiving sub-module 500 into the case, and the upper case and the lower case form the outermost part of the optical module.
  • the upper and lower casings are generally made of metal materials, which are conducive to electromagnetic shielding and heat dissipation; generally, the casing of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning Components, heat dissipation and electromagnetic shielding components cannot be installed and are not conducive to production automation.
  • the unlocking part 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part matched with the cage of the upper computer; pulling the end of the unlocking part can make the unlocking part move relatively on the surface of the outer wall; the optical module is inserted into the cage of the upper computer, and the optical module is moved by the engaging part of the unlocking part. It is fixed in the cage of the upper computer; by pulling the unlocking part, the engaging part of the unlocking part moves with it, thereby changing the connection relationship between the engaging part and the upper computer, so as to release the engaging relationship between the optical module and the upper computer, so that the The optical module is pulled out from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP), etc.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP, etc.
  • the circuit board connects the electrical components in the optical module according to the circuit design through the circuit wiring, so as to realize the electrical functions such as power supply, electrical signal transmission and grounding.
  • the chip on the circuit board 300 can be a multi-functional integrated chip, for example, the laser driver chip and the MCU chip can be integrated into one chip, or the laser driver chip, the limiting amplifier chip and the MCU can be integrated into one chip.
  • the chip is the integration of the circuit. , but the function of each circuit has not disappeared because of the collection, but the circuit appearance has changed, and the chip still has the circuit shape. Therefore, when the circuit board is provided with three independent chips, the MCU, the laser driver chip and the limiting amplifier chip, the solution is equivalent to that of a single chip with three functions in one on the circuit board 300 .
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is located on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector. Connector connections; these are inconvenient to implement with flexible circuit boards.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers.
  • the light-emitting sub-module and the light-receiving sub-module may be collectively referred to as an optical sub-module.
  • the optical module provided by the embodiment of the present disclosure includes an optical transmitting sub-module 400 and an optical receiving sub-module 500 .
  • the optical transmitting sub-module 400 and the optical receiving sub-module 500 are located at the edge of the circuit board 300 , and the optical transmitting sub-module is located at the edge of the circuit board 300 .
  • 400 and the light receiving sub-module 500 are stacked on top of each other.
  • the light-emitting sub-module 400 is closer to the upper casing 201 than the light-receiving sub-module 500 , but it is not limited to this, and the light-receiving sub-module 500 may be closer to the upper than the light-emitting sub-module 400 housing 201 .
  • the light-emitting sub-module 400 and the light-receiving sub-module 500 are physically separated from the circuit board 300 respectively, and are respectively connected to the circuit board 300 through a flexible circuit board.
  • the light-emitting sub-module 400 When the light-emitting sub-module 400 is closer to the upper casing 201 than the light-receiving sub-module 500, the light-emitting sub-module 400 and the light-receiving sub-module 500 are disposed in the encapsulation cavity formed by the upper and lower casings, and the lower casing 202 supports the light
  • the receiving sub-module 500 supports the light-emitting sub-module 400 .
  • FIG. 5 is a cross-sectional view of a structure of an optical module according to an embodiment of the present disclosure.
  • the optical module provided by the embodiment of the present disclosure includes a lower casing 202 , a circuit board 300 , a light emitting sub-module 400 and an optical receiving sub-module 500 .
  • a first optical fiber adapter 410 is provided at the end of the optical transmitting sub-module 400 away from the circuit board 300, and the first optical fiber adapter 410 is used to transmit the signal light generated by the optical transmitting sub-module 400 to the outside of the optical module; the optical receiving sub-module 500 is far away from the optical module.
  • the end of the circuit board 300 is provided with a second optical fiber adapter 510 , and the second optical fiber adapter 510 is used to transmit the signal light from the outside of the optical module to the inside of the light receiving sub-module 500 .
  • the circuit board 300 is electrically connected to the light-emitting sub-module 400 and the light-receiving sub-module 500 through corresponding flexible circuit boards, respectively.
  • the optical transmitting sub-module 400 and the optical receiving sub-module 500 are large in size and cannot be installed on the circuit board 300, so the same as the circuit board 300 is adopted. It is set in a separate way, and the electrical connection is transferred through the flexible circuit board. As shown in FIG. 5 , the first optical fiber adapter 410 and the second optical fiber adapter 510 are located at the same height compared to the bottom surface of the lower housing 202 .
  • the first optical fiber adapter 410 and the second optical fiber adapter 510 are respectively used to connect with the optical fiber connector outside the optical module; and the optical fiber connector outside the optical module is a standard part commonly used in the industry, and the shape and size of the external optical fiber connector limit the optical fiber connector.
  • the positions of the two fiber optic adapters inside the module, so the first fiber optic adapter 410 and the second fiber optic adapter 510 are set at the same height in the product.
  • FIG. 6 is a schematic structural diagram of separation of an optical transmitting sub-module and an optical receiving sub-module according to an embodiment of the present disclosure.
  • the light receiving sub-module 500 provided by the embodiment of the present disclosure further includes a light receiving cavity 520 and a light receiving cover plate 530 , and the light receiving cover plate 530 is covered on the light receiving cavity 520 from above.
  • the light receiving cavity 520 is provided with a lens, a light receiving chip, a transimpedance amplifier and other devices related to light receiving.
  • One end of the light-receiving cavity 520 is connected to the second optical fiber adapter 510, and the signal light from the outside of the optical module is received through the second optical fiber adapter 510, and the received signal light is transmitted to the optical device such as a lens arranged in the light-receiving cavity 520.
  • Light receiving chip an opening 521 is provided on the side wall of the other end of the light receiving cavity 520 for insertion of a flexible circuit board.
  • One end of the flexible circuit is inserted into and fixed in the light receiving cavity 520 and the light receiving chip, transimpedance amplifier and other electrical devices are electrically connected, and the other end of the flexible circuit is used for electrical connection with the circuit board 300 .
  • FIG. 7 is a partial exploded schematic diagram of a light emitting sub-module in an optical module according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a light emitting device 404 in an optical module according to an embodiment of the present disclosure.
  • the light emitting sub-module 400 provided by the embodiment of the present disclosure includes a light emitting housing 401 and a light emitting cover plate 402 covered on the light emitting housing 401.
  • the light emitting housing 401 and the light emitting housing 401 The emitting cover plate 402 forms a light emitting cavity 403, and the light emitting cavity 403 is provided with light emitting devices 404 such as a laser, a photodetector, a laser driver, and a lens.
  • One end of the light emitting housing 401 is connected to the first fiber adapter 410, and the light emitting device 404 is used to transmit multiple beams. After the multiple beams are multiplexed into one beam, they are finally converged and coupled to the first fiber adapter 410 to realize the multiple beams. transmitted through an optical fiber.
  • the other end of the light emitting housing 401 is provided with a ceramic adapter block, the ceramic adapter block is connected to one end of the flexible circuit board, and the flexible circuit board is electrically connected to photoelectric devices such as lasers, photodetectors, and laser drivers through the ceramic adapter block. ;
  • the other end of the flexible circuit board is used for electrical connection with the circuit board 300 .
  • the light emitting housing 401 and the light emitting cover plate 402 can be made of metal structural parts, such as die-casting and milling metal parts.
  • the light emission sub-module 400 is used for emitting a variety of signal lights of different wavelengths, and the signal lights of different wavelengths are reflected and refracted by optical devices such as different lenses in the light emission cavity 403 to realize signal photosynthesis light, the synthesized signal light is transmitted to the external optical fiber through the first optical fiber adapter 410 .
  • the light emitting device 404 includes a plurality of laser assembly groups, a plurality of collimating lenses 4042, a plurality of optical multiplexers and lens assemblies, and the plurality of laser assembly groups are used for emitting multiple beams of different wavelengths .
  • the light emitting device 404 includes two laser assembly groups, each laser assembly group includes a plurality of laser assemblies 4041, each laser assembly 4041 emits a beam of light, and each collimating lens 4042 is disposed on each laser In the outgoing light direction of the component 4041, it is used to convert the beam emitted by the laser component 4041 into a collimated beam;
  • the optical multiplexer is arranged in the outgoing light direction of the collimating lens 4042, and is used for multiplexing the beams of different wavelengths into A composite beam;
  • the lens component is arranged in the light output direction of the optical multiplexer, and is used for reflecting and refracting a composite beam emitted by the optical multiplexer to couple into the first optical fiber adapter 410 to realize light emission.
  • FIG. 9 is another angular structural schematic diagram of the light emitting device 404 in an optical module according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of an optical path of the light emitting device 404 in an optical module according to an embodiment of the present disclosure. As shown in FIGS.
  • the light emitting device 404 may include 8 laser assemblies 4041 , 8 collimating lenses 4042 , a first optical multiplexer 4043 , a second optical multiplexer 4044 , a first lens 4045 , and a second lens 4046 and the third lens 4047, 8 laser assemblies 4041 emit 8 beams of different wavelengths; 8 collimating lenses 4042 are arranged in the outgoing light direction of the 8 laser assemblies 4041 to convert 8 beams of different wavelengths into 8
  • the first optical multiplexer 4043 and the second optical multiplexer 4044 are both arranged in the light outgoing direction of the 8 collimating lenses 4042, 4 collimated beams enter the first optical multiplexer 4043, and the remaining 4
  • the collimated beams enter the second optical multiplexer 4044, and the four collimated beams entering the first optical multiplexer 4043 can be reflected in the first optical multiplexer 4043, and finally multiplexed into the first composite beam by the first optical multiplexer 4043.
  • An optical multiplexer 4043 emits; similarly, the four collimated beams entering the second optical multiplexer 4044 can be reflected in the second optical multiplexer 4044, and finally multiplexed into a second composite beam by the second optical multiplexer 4044 shoot.
  • the first lens 4045 is arranged in the outgoing light direction of the first optical multiplexer 4043, and the second lens 4046 is arranged in the outgoing light direction of the first lens 4045, so that the first composite beams emitted by the first optical multiplexer 4043 are sequentially transmitted through through the first lens 4045 and the second lens 4046;
  • the third lens 4047 is arranged in the outgoing light direction of the second optical multiplexer 4044, and the second composite beam emitted by the second optical multiplexer 4044 enters the third lens 4047, and Reflection occurs on the third lens 4047, the reflected second composite beam enters the second lens 4046, is reflected again on the second lens 4046, and the re-reflected second composite beam enters the first lens 4045.
  • Reflection occurs again on a lens 4045 , and the second composite light beam after being reflected again enters the second lens 4046 again, and this time the second composite light beam passes through the second lens 4046 .
  • the first composite beam and the second composite beam entering the second lens 4046 can be combined in the second lens 4046, and the first composite beam and the second composite beam can be combined into one beam, which can be converged and coupled to the first optical fiber inside adapter 410.
  • the first optical multiplexer 4043 and the second optical multiplexer 4044 are components with the same structure.
  • the first optical multiplexer 4043 includes a glass carrier coated with a reflective film on one side and a plurality of narrow-band filters.
  • the optical multiplexer can pass through as required. Add or add narrowband filters to adjust the beam splitting band corresponding to the optical multiplexer.
  • the first optical multiplexer 4043 includes four narrow-band filters, and the narrow-band filters are used to selectively filter the light beams entering the first optical multiplexer 4043, so that the four light beams that meet the requirements enter the first optical multiplexer 4043.
  • An optical multiplexer 4043 The light beam entering the first optical multiplexer 4043 is reflected at the glass carrier coated with the reflective film.
  • the first light beam After the first light beam is reflected, it is combined with the second light beam to synthesize the first combined light, and the first combined light continues on the glass coated with the reflective film. Reflection occurs at the carrier. After the first combined light is reflected, it is combined with the third beam to combine with the second combined light. The second combined light continues to reflect at the glass carrier coated with the reflective film. After the second combined light is reflected, it is combined with the fourth beam. The third combined light is combined, and the third combined light is output from the output end of the first optical multiplexer 4043 .
  • the first optical multiplexer 4043 combines the four collimated beams into a first composite beam, which is emitted through the output end of the first optical multiplexer 4043; the second optical multiplexer 4044 combines the other four collimated beams into a first composite beam.
  • the two composite light beams are emitted through the output end of the second optical multiplexer 4044 .
  • FIG. 11 is an optical path diagram of a lens assembly in an optical module according to an embodiment of the present disclosure.
  • the first composite beam emitted by the first optical multiplexer 4043 directly passes through the first lens 4045, and the first composite beam passing through the first lens 4045 strikes the incident light surface of the second lens 4046;
  • the second incident light surface 4073 of the third lens 4047 is provided with a reflective film, and the second composite beam emitted by the second optical multiplexer 4044 is reflected at the reflective film on the incident light surface of the third lens 4047, changing the second composite beam , so that the second composite light beam is reflected to the second lens 4046 through the third lens 4047 .
  • the first composite light beam can be directly transmitted on the first incident light surface 4072 of the second lens 4046, and the reflected second composite light beam is reflected on the first incident light surface 4072 of the second lens 4046, so that the reflected second light beam is reflected on the first incident light surface 4072 of the second lens 4046.
  • the two composite beams are reflected again to the first lens 4045 through the second lens 4046 ; the second composite beam reflected by the second lens 4046 to the exit light surface 4071 of the first lens 4045 occurs again on the exit light surface 4071 of the first lens 4045 Reflection, so that the second composite light beam is reflected to the second lens 4046 through the first lens 4045 , and the second composite light beam reflected to the second lens 4046 can be directly transmitted on the first incident light surface 4072 of the second lens 4046 .
  • an angle selective film may be disposed on the first incident light surface 4072 of the second lens 4046, and the angle selective film may selectively transmit the incident light incident on the first incident light surface 4072, That is, the angle selection film is provided with a preset incident light angle.
  • the light beam can directly transmit the second lens 4046;
  • the incident angle of the light on the first incident light surface 4072 does not meet the preset incident light angle, the light beam is reflected at the first incident light surface 4072 to change the incident angle of the incident light beam until the incident angle of the light beam satisfies the first incident light angle.
  • the preset incident light angle of the light surface 4072 is disposed on the first incident light surface 4072 of the second lens 4046, and the angle selective film may selectively transmit the incident light incident on the first incident light surface 4072, That is, the angle selection film is provided with a preset incident light angle.
  • the incident angle of the first composite light beam transmitted by the first lens 4045 satisfies the preset incident light angle of the first incident light surface 4072 of the second lens 4046, so the first composite light beam can be directly transmitted through the first light incident surface 4072 of the second lens 4046.
  • the second composite light beam reflected by the third lens 4047 to the first incident light surface 4072 of the second lens 4046 has an incident angle greater than the preset incident light angle of the first incident light surface 4072 of the second lens 4046, so the second composite light beam is at The first incident light surface 4072 is reflected again, and the reflected second composite light beam strikes the light exit surface 4071 of the first lens 4045 .
  • the preset incident light angle of the angle selective film disposed on the first incident light surface 4072 of the second lens 4046 may be 0 ⁇ 45°, and the first multiplexed light beam passing through the first lens 4045 is emitted.
  • the incident angle to the first incident light surface 4072 of the second lens 4046 is 37°, which satisfies the preset incident light angle of the angle selective film, so the first composite beam can be directly transmitted through the angle selective film;
  • the incident angle of the second multiplexed light beam on the first incident light surface 4072 of the second lens 4046 is 57°, which exceeds the preset incident light angle of the angle selective film, so the second combined light beam is reflected at the angle selective film.
  • the first incident light surface 4072 of the second lens 4046 provided by the embodiment of the present disclosure is not limited to the angle selection film, and other films can also be provided, as long as the film can realize the direct transmission of the first composite beam through the first incident light surface 4072, the second composite light beam is reflected at the first incident light surface 4072, which all belong to the protection scope of the embodiments of the present disclosure.
  • the incident angle of the second composite light beam to the first incident light surface 4072 of the second lens 4046 needs to be reduced.
  • the second composite beam reflected by the light surface 4072 is re-reflected, and when the re-reflected second composite beam hits the first incident light surface 4072 of the second lens 4046, its incident angle is reduced, which can meet the requirements of the angle selection film. Set the incident light angle.
  • the light-emitting surface 4071 of the first lens 4045 is provided with a transflective film, which can perform wavelength selection, that is, light beams in a certain wavelength range can directly pass through the transflective film, and exceed the transflective film. Light beams in the wavelength range are reflected at the transflective film.
  • the wavelength of the first composite light beam satisfies the wavelength range of the transflective film, so the first composite light beam can be directly transmitted through the light exit surface 4071 of the first lens 4045; and the wavelength of the second composite light beam The wavelength range of the transflective film is not satisfied, so the second composite light beam reflected by the second lens 4046 to the exit light surface 4071 of the first lens 4045 is reflected at the transflective film, so that the second composite light beam is emitted by the first lens 4045.
  • the outgoing light surface 4071 of the lens 4045 is reflected to the first incident light surface 4072 of the second lens 4046 again.
  • the incident angle of the second composite beam entering the first incident light surface 4072 of the second lens 4046 changes. is smaller, so that the incident angle of the second composite light beam can meet the preset incident light angle of the angle selection film, so that the reflected second composite light beam can be transmitted through the second lens 4046 .
  • the first composite light beam and the second composite light beam that re-enters the second lens 4046 after reflection can be combined in the second lens 4046, that is, the first composite light beam and the second composite light beam are combined into one light beam in the second lens 4046 , the beam is emitted by the second lens 4046 and then coupled to the first optical fiber adapter 410 .
  • a converging lens 409 can be arranged between the second lens 4046 and the end face of the optical fiber ferrule of the first optical fiber adapter 410. 410, which is finally transmitted through an external optical fiber.
  • a plane light window 4048 can also be arranged between the second lens 4046 and the converging lens 409.
  • the plane light window 4048 is a glass sheet that allows light to pass through. In order to enhance the transmittance of the plane light window and prevent the phenomenon of light reflection from affecting the light emitting device 404 Generally, the glass sheet is inclined at a preset angle (usually 8 degrees), and the surface of the glass sheet is coated with an increase coating of the corresponding wavelength.
  • the plane light window 4048 is used as a communication component between the light emitting device 404 and the first optical fiber adapter 410, and is usually disposed on the side wall where the light emitting housing 401 is connected with the first optical fiber adapter 410.
  • the light emitting device 404 can pass through the plane light window 4048.
  • the optical signal is communicated with the first fiber optic adapter 410 .
  • the light emitting device 404 provided by the embodiment of the present disclosure includes eight laser assemblies 4041, eight collimating lenses 4042, a first optical multiplexer 4043, a second optical multiplexer 4044, a first lens 4045, a second lens 4046, and a third optical multiplexer 4043.
  • Lenses 4047 and 8 laser assemblies 4041 emit 8-channel laser beams; 8 collimating lenses 4042 are respectively arranged in the light-emitting direction of the 8 laser assemblies 4041 for collimating the 8-channel laser beams to obtain 8-channel laser beams.
  • the first optical multiplexer 4043 and the second optical multiplexer 4044 are both arranged in the light-emitting direction of the 8 collimating lenses 4042, and the first optical multiplexer 4043 and the second optical multiplexer 4044 both include 4 input channels , 4-channel collimated beams of the 8-channel collimated beams enter the 4-channel first optical multiplexer 4043, and the other 4-channel collimated beams enter the 4-channel second optical multiplexer 4044, and the first optical multiplexer 4043
  • the channel collimated beam is converted into a first composite beam
  • the second optical multiplexer 4044 converts the 4-channel collimated beam into a second composite beam
  • the first lens 4045 is arranged on the light output direction of the first optical multiplexer 4043
  • the second lens 4046 is arranged in the light-emitting direction of the first lens 4045
  • the first composite beam emitted by the first optical multiplexer 4043 is directly transmitted through the first lens 4045 and the second lens 4046
  • the third lens 4047 is
  • the preset incident light angle of the light surface so the reflected second composite light beam is reflected at the incident light surface of the second lens 4046 and reflected to the light exit surface of the first lens 4045, and the reflected second composite light beam is reflected in the first
  • the light-emitting surface of the lens 4045 is reflected again, and the second composite light reflected again enters the incident light surface of the second lens 4046.
  • the light emitted by the first lens 4045 The second composite light reflected from the surface to the second lens 4046 can be directly transmitted through the second lens 4046; the first composite light and the second composite light entering the second lens 4046 after reflection can be combined into a bundle in the second lens 4046
  • the light beam is coupled to the first optical fiber adapter 410 after passing through the plane light window 4048 and the converging lens 409, so that 8-channel wavelength division multiplexed light is emitted.
  • 8-channel beams are multiplexed into two beams through two optical multiplexers, and then the transmission and reflection of the two beams are realized through the coating of three lenses and the control of the incident light angle, and the two beams are synthesized into one beam.
  • One beam of light is finally converged and coupled to an external optical fiber, which reduces the volume occupied by the optical transmitting sub-module in the optical module, which is beneficial to the miniaturization development of the optical module.
  • the first optical multiplexer 4043 , the second optical multiplexer 4044 , the first lens 4045 , the second lens 4046 , and the third lens 4047 in the optical path structure need to be Provide a platform for support and device coupling to realize passive coupling of the first optical multiplexer 4043, the second close multiplexer 4044, the first lens 4045, the second lens 4046, and the third lens 4047, reducing the coupling difficulty of the emission optical path .
  • FIG. 12 is an assembly schematic diagram of a support platform, an optical multiplexer, and a lens assembly in an optical module according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a support platform in an optical module according to an embodiment of the present disclosure.
  • the light emission cavity 403 is provided with a support platform 408
  • the first optical multiplexer 4043 , the second optical multiplexer 4044 , the first lens 4045 , the second lens 4046 , and the third lens 4047 are all It is arranged on the support platform 408 to realize passive coupling of the optical multiplexer and the lens assembly in the optical path of the dual optical multiplexer.
  • the support platform 408 is provided with a lens fixture and a plurality of platforms, the first optical multiplexer 4043 and the second optical multiplexer 4044 are fixed on the multiple platforms, and the lens components (the first lens 4045, the second lens 4046 and the third lens 4047) is fixed on the lens holder.
  • the supporting platform 408 can be pasted on the bottom plate of the light emitting cavity 403 , that is, the supporting platform 408 is adhered to the bottom plate of the light emitting cavity 403 through glue.
  • a first platform 4081 and a second platform 4086 are arranged on the side of the support platform 408 close to the collimating lens 4042, a first partition 4084 is arranged between the first platform 4081 and the second platform 4086, and the second platform 4086 is far away from the first platform
  • One side of the 4081 is provided with a second partition 4089, and the first partition 4084 and the second partition 4089 are arranged in parallel.
  • first baffle 4084 and the second baffle 4089 on the support platform 408 divide the side of the support platform 408 close to the collimating lens 4042 into two parts, one part is the first platform 4081 and the other part is the second platform 4086 .
  • the first platform 4081 is provided with a first installation groove 4082
  • the second optical multiplexer 4044 is embedded in the first installation groove 4082
  • the two opposite sides of the second optical multiplexer 4044 are respectively connected with the two sides of the first installation groove 4082.
  • side walls are in contact. That is, the light incident surface of the second optical multiplexer 4044 is in contact with one side wall of the first installation groove 4082 , and the light exit surface is in contact with the opposite side wall of the first installation groove 4082 .
  • the light incident surface of the second optical multiplexer 4044 is provided with an incident light port, and the incident light port is used for receiving the collimated light beam emitted by the collimating lens 4042 .
  • the light incident surface of the second optical multiplexer 4044 is provided with 4 incident light ports, and each incident light port is used to receive the collimated light beam emitted by a collimating lens 4042, and collimate the received light beam.
  • the light beam is transmitted to the second optical multiplexer 4044 for reflection and light combining.
  • the reflected light returns to the collimating lens 4042 along the original path, and the incident light port on the light incident surface of the second optical multiplexer 4044 is inclined and arranged by
  • the collimating lens 4042 is inclined from bottom to top to the second optical multiplexer 4044, so that when the collimated light beam enters the incident light port, the collimated light beam enters the second light multiplexer 4044 through the incident light port, and part of the collimated light beam enters the second light multiplexer 4044.
  • the reflected light beam and the incident light beam are set at a certain angle, and the reflected light beam will not return to the collimating lens 4042 along the incident light path of the incident light beam, and the collimating performance of the collimating lens 4042 will not be affected.
  • the first installation groove 4082 is provided with a first glue dispensing groove 4083, and the first glue dispensing groove 4083 is in contact with the bottom surface of the second optical multiplexer 4044 for the second optical multiplexer.
  • the simple and reliable dispensing and sealing between 4044 and the bottom surface of the first installation groove 4082 can effectively improve the sealing effect of the dispensing process, thereby improving the installation stability of the second optical multiplexer 4044 .
  • the first glue dispensing tank 4083 needs to be filled with glue.
  • the bottom edge of the first partition plate 4084 is communicated with the first installation groove 4082 , so the first installation groove 4082 can be filled with glue through the side edge of the first partition plate 4084 .
  • the side of the first partition 4084 away from the first platform 4081 is provided with a first inclined surface 4085, and the first inclined surface 4085 extends from the top to the bottom of the first partition 4084. It is inclined downward, so that it is convenient for glue replenishment, and the glue flows slowly into the first installation groove 4082 along the first inclined surface 4085 , so as to prevent the glue from accumulating on the bottom of the first partition plate 4084 .
  • the second platform 4086 is provided with a second installation groove 4087
  • the first optical multiplexer 4043 is embedded in the second installation groove 4087
  • the two opposite sides of the first optical multiplexer 4043 are respectively connected to the second installation groove
  • the two side walls of 4087 are in contact. That is, the light incident surface of the first optical multiplexer 4043 is in contact with one side wall of the second installation groove 4087 , and the light exit surface is in contact with the opposite side wall of the second installation groove 4087 .
  • the light incident surface of the first optical multiplexer 4043 is provided with an incident light port, and the incident light port is used for receiving the collimated light beam emitted by the collimating lens 4042 .
  • the light incident surface of the first optical multiplexer 4043 is provided with four incident light ports, and each incident light port is used to receive a collimated light beam emitted by a collimating lens 4042, and collimate the received light beam.
  • the light beam is transmitted to the first optical multiplexer 4043 for reflection and light combining.
  • the reflected light returns to the collimating lens 4042 along the original path, and the incident light on the light entrance surface of the first optical multiplexer 4043
  • the optical port is tilted, and the collimating lens 4042 is inclined from bottom to top to the first optical multiplexer 4043, so that when the collimated light beam enters the incident light port, the collimated light beam enters the first optical multiplexer through the incident light port 4043, and when part of the collimated beam is reflected at the incident light port, the reflected beam and the incident beam are set at a certain angle, and the reflected beam will not return to the collimating lens 4042 along the incident light path of the incident beam, and will not affect the collimating lens. 4042 collimation performance.
  • the second installation groove 4087 is provided with a second glue dispensing groove 4088, and the second glue dispensing groove 4088 is in contact with the bottom surface of the first optical multiplexer 4043 for the first optical multiplexer.
  • the simple and reliable dispensing and sealing between 4043 and the bottom surface of the second installation groove 4087 can effectively improve the sealing effect of the dispensing process, thereby improving the installation stability of the first optical multiplexer 4043 .
  • the second glue dispensing tank 4088 needs to be filled with glue.
  • the bottom edge of the second partition plate 4089 is communicated with the second installation groove 4087 , so glue can be added to the second installation groove 4087 through the side edge of the second partition plate 4089 .
  • the side of the second partition 4089 away from the second platform 4086 is provided with a second inclined surface 4090, and the second inclined surface 4090 is from the top to the bottom of the second partition It is inclined downward, so that it is convenient for glue replenishment, and the glue flows slowly into the second installation groove 4087 along the second inclined surface 4090 , so as to prevent the glue from accumulating on the bottom of the second partition plate 4089 .
  • FIG. 14 is a partial structural schematic diagram of a support platform in an optical module according to an embodiment of the present disclosure.
  • the lens fixing member includes a lens mounting post.
  • a triangular groove 4091 is provided on the side of the support platform 408 away from the collimating lens 4042.
  • the lens mounting post is arranged in the triangular groove 4091.
  • Two lenses 4046 are respectively fixed on two sides of the lens mounting post.
  • the lens mounting column is a triangular protrusion 4092
  • the first side 4094 of the triangular protrusion 4092 faces the first optical multiplexer 4043
  • the light exit surface 4071 of the first lens 4045 is pasted on the first side 4094 , so that the first lens 4045 receives the first composite beam emitted by the first optical multiplexer 4043
  • the second side 4095 of the triangular protrusion 4092 faces the first optical fiber adapter 410, and the first incident light surface 4072 of the second lens 4046 is pasted
  • the second side 4095 is used for receiving the first composite light beam passing through the first lens 4045 .
  • the triangular groove 4091 is provided on the outer edge of the triangular protrusion 4092 , which is an undercut, which is an undercut reserved for processing the triangular protrusion 4092 .
  • the thickness of the triangular protrusion 4092 can be set according to the actual situation, as long as it does not block the light outgoing from the light-emitting surface 4071 of the first lens 4045 and the incoming light on the first light-incident surface 4072 of the second lens 4046 .
  • the side of the support platform 408 away from the collimating lens 4042 is further provided with a thin groove 4093, the thin groove 4093 is a long groove, the thin groove 4093 faces the light exit surface of the second optical multiplexer 4044, and
  • the thin groove 4093 is inclined, that is, the thin groove 4093 is inclined from the first optical fiber adapter 410 to the direction of the second optical multiplexer 4044, and the distance between the thin groove 4093 and the light-emitting surface of the second optical multiplexer 4044 gradually decreases little.
  • the bottom edge of the second light incident surface 4073 of the third lens 4047 is in contact with the inclined edge of the thin groove 4093 , so that the third lens 4047 is fixed at the thin groove 4093 .
  • the third side 4096 of the triangular protrusion 4092 faces the second light incident surface 4073 of the thin groove 4093, the first side 4094 and the third side 4096 of the triangular protrusion 4092 are the shorter side, and the second side is the shorter side.
  • the angle between the first side 4094 and the second side 4095 should satisfy: the first composite beam passing through the first lens 4045 enters the first incident light surface 4072 of the second lens 4046 , the incident angle satisfies the preset incident light angle of the angle selective film set on the first incident light surface 4072 of the second lens 4046 , and the second composite beam reflected by the light exit surface 4071 of the first lens 4045 enters the second lens 4046 When the first incident light surface 4072 is formed, its incident angle satisfies the preset incident light angle of the angle selection film.
  • the inclination angle of the fine groove 4093 needs to match the angle of the second side 4095 of the triangular protrusion 4092 to ensure that the second composite beam reflected by the second incident light surface 4073 of the third lens 4047 can hit the triangular protrusion
  • the second side 4095 of the 4092 is disposed on the first incident light surface 4072 of the second lens 4046, and the incident angle of the second composite beam is greater than the preset incident light angle of the angle selection film, so that the second composite beam is on the second lens. Reflection occurs at the first incident light surface 4072 of the 4046, and the second composite beam reflected by the second lens 4046 can be incident on the light exit surface 4071 of the first lens 4045.
  • the second composite light beam can be reflected again at the light-emitting surface 4071, and the reflected second composite light beam can be emitted to.
  • the first lens 4045, the second lens 4046 and the third lens 4047 mainly realize the multiplexing of the first composite beam and the second composite beam by controlling the angle of the incident light.
  • the angle of the fine groove 4093 is used to control the incident light angles of the first lens 4045, the second lens 4046 and the third lens 4047, so that after the first composite beam directly passes through the first lens 4045, the incident angle of the second lens 4046
  • the preset incident light angle of the first incident light surface 4072 of the second lens 4046 is satisfied, so that the first composite light beam can be directly transmitted through the second lens 4046; at the same time, the second composite light beam is at the incident light surface 4073 of the third lens 4047 Reflection occurs, the second composite beam reflected to the first incident light surface 4072 of the second lens 4046 continues to reflect at the first incident light surface 4072 , and the second composite beam after re-reflection is reflected on the exit light surface 4071 of the first lens 4045 Re-reflection occurs at the place where the re
  • a support platform 408 is provided in the light emission cavity 403 , and the support platform 408 is used to support the first optical multiplexer 4043 , the second optical multiplexer 4044 , the first lens 4045 , and the second lens 4046 With the third lens 4047, it provides an optical path coupling space and a fixed platform; the supporting platform 408 realizes the passive coupling of the first optical multiplexer 4043 and the second optical multiplexer 4044 through the first platform 4081 and the second platform 4086, The 8-channel collimated beam is multiplexed into two composite beams; and the support platform 408 controls the incident light of the first lens 4045, the second lens 4046 and the third lens 4047 through the triangular protrusions 4092 and the fine grooves 4093 angle, the first composite beam and the second composite beam are multiplexed into one beam, which realizes the passive coupling of the angles of the first lens 4045, the second lens 4046 and the third lens 4047, which greatly reduces the difficulty of optical path coup
  • 8-channel light beams need to be provided, so 8 laser components 4041 are arranged in the light emitting cavity 403 .
  • a photodetector needs to be arranged on the backlight surface of the light-emitting surface of the laser assembly 4041. The photodetector is used to detect the optical power of the laser emitted from the back of the laser assembly 4041, and the optical power of the light emitted from the front of the laser assembly 4041 is the same as that of the back.
  • the optical power of the emitted light is the same, so the optical power emitted from the front of the laser assembly 4041 can be obtained according to the optical power emitted from the back of the laser assembly 4041, and the emitted optical power of the laser assembly 4041 can be adjusted according to the actual situation.
  • FIG. 15 is a schematic diagram of the assembly of a laser assembly 4041 and a photodetector in an optical module according to an embodiment of the present disclosure
  • FIG. 16 is a schematic diagram of an exploded structure of the laser assembly 4041 in an optical module according to an embodiment of the present disclosure. As shown in FIG. 15 and FIG.
  • the laser assembly 4041 includes a laser heat sink 4062 and a laser 4063, the laser 4063 is arranged on the top surface of the laser heat sink 4062, and the front side of the laser 4063 faces the collimating lens 4042 to emit a laser beam; the laser The back of the 4063 faces the photodetector, and the photodetector receives the laser beam emitted from the back of the laser 4063 to detect the laser light power.
  • the laser heat sink 4062 is used to dissipate heat from the laser 4063 .
  • a COC substrate 4061 is also disposed above the laser heat sink 4062 , and the COC substrate 4061 is used to support four laser heat sinks 4062 . That is, the four laser assemblies 4041 are arranged on the COC substrate 4061 in parallel, which can be pasted on the COC substrate 4061 by glue, and the four laser assemblies 4041 are supported and fixed by the COC substrate 4061 .
  • a semiconductor refrigerator 406 is arranged between the bottom surface of the light emission cavity 403 and the COC substrate 4061, that is, the bottom surface of the semiconductor refrigerator 406 is pasted to the bottom surface of the light emission cavity 403, and the top surface of the semiconductor refrigerator 406 is used to support and fix two COC substrate 4061, two COC substrates 4061 are used to support and fix eight laser heat sinks 4062, and one laser heat sink 4062 is used to support and fix one laser 4063.
  • the heat generated by the laser 4063 is transferred to the laser heat sink 4062 , the COC substrate 4061 and the semiconductor cooler 406 in sequence, so as to effectively realize the heat dissipation of the laser 4063 .
  • the laser heat sink 4062 is provided with a pad, and the laser 4063 is provided on the pad.
  • the laser driver 405 is provided with corresponding pads, the pads on the laser heat sink 4062 and the pads on the laser driver 405 can be connected by gold wires, and the laser driver 405 sends signals to the laser 4063 through the gold wires and pads to drive the The laser 4063 emits a laser beam.
  • the present disclosure places the photodetector 4051 on the laser driver 405 , and the photodetector 4051 is arranged on the optical path of the light emitted from the backside of the laser 4063 .
  • two laser drivers 405 are provided in the light emitting cavity 403, and each laser heat sink 4062 is provided with a pad, and the four laser components 4041 corresponding to the first optical multiplexer 4043 pass through the gold
  • the wires are connected to the pads on one laser driver 405, and the four laser components 4041 corresponding to the second optical multiplexer 4044 are connected to the pads on the other laser driver 405 by gold wires.
  • FIG. 17 is a schematic diagram of the assembly of a photodetector 4051 and a laser driver 405 according to an embodiment of the present disclosure
  • FIG. 18 is a schematic structural diagram of the photodetector 4051 according to an embodiment of the present disclosure.
  • four photodetectors 4051 are provided on each laser driver 405
  • a common anode electrode 4052 is also provided on the laser driver 405
  • the common anode electrode 4052 is far from the light incident surface of the photodetector 4051
  • the anodes of the four photodetectors 4051 are all connected to the common anode electrode 4052 through gold wires.
  • the photodetector 4051 includes a bottom surface, a top surface 4056, a first side surface 4053, a second side surface 4054, a third side surface and a fourth side surface respectively connected to the edge lines of the bottom surface and the top surface 4056,
  • the top surface 4056 of the photodetector 4051 is provided with an anode 4059 and a cathode 4058.
  • the anode 4059 is electrically connected to the common anode electrode 4052 through a gold wire, and the common anode electrode 4052 can be connected to the flexible circuit board 420 through a gold wire.
  • the cathode of the photodetector 4051 4058 can also be connected to the flexible circuit board 420 by gold wires.
  • the embodiment of the present disclosure adopts an oblique illumination type photodetector, that is, a sloped surface 4055 is provided on the second side surface 4054 of the photodetector 4051, and the sloped surface 4055 is inclined from the second side surface 4054 to the first side surface 4053.
  • the length dimension of the bottom surface of the detector 4051 is smaller than the length dimension of the top surface 4056 thereof.
  • a photosensitive surface 4057 is disposed on the inclined surface 4055 , and the photosensitive surface 4057 corresponds to the backlight surface of the laser 4063 and is used for receiving the laser beam emitted by the backlight surface of the laser 4063 .
  • the photosensitive surface 4057 is arranged on the inclined surface 4055, that is, the photosensitive surface 4057 is arranged obliquely, so that when the laser beam emitted from the back of the laser 4063 enters the photosensitive surface 4057, the laser beam enters the photodetector 4051 through the photosensitive surface 4057, and part of the laser beam may be emitted. Reflection occurs on the photosensitive surface 4057.
  • the photosensitive surface 4057 is perpendicular to the bottom surface of the photodetector 4051, when the laser beam is reflected on the photosensitive surface 4057, the reflected beam may return to the laser 4063 along the incident optical path of the laser beam, affecting the laser emission performance of the laser 4063;
  • the photosensitive surface 4057 is tilted, when the laser beam is reflected on the photosensitive surface 4057, the reflected beam is set at a certain angle with the incident beam, and the reflected beam will not return to the laser 4063 along the incident optical path, thus ensuring the laser emission performance of the laser 4063 .
  • an oblique illumination photodetector is adopted. Due to the low height and size of the oblique illumination photodetector 4051, the oblique illumination photodetector 4051 can be welded and fixed on the laser driver 405, and the four The common anode electrode 4052 to which the anode 4059 of the photodetector 4051 is commonly connected is also fixed on the laser driver 405 , which can save space and avoid disposing a support plate under the photodetector 4051 .
  • the laser driver 405 can be connected to the laser 4063 to drive the laser 4063 , and can also support the fixed photodetector 4051 and the common anode electrode 4052 .
  • a ceramic adapter block 411 is disposed between the bottom surface of the laser driver 405 and the bottom surface of the light emitting cavity 403 , and the laser driver 405 is disposed on the ceramic adapter block 411 , that is, the ceramic adapter block 411 uses
  • the laser driver 405 is supported and fixed, and one side of the ceramic adapter block 411 is provided with a pad, and the other side is connected to the flexible circuit board 420 .
  • the common anode electrode 4052 on the laser driver 405 is connected to the pad on the ceramic adapter block 411 through a gold wire, and the cathode 4058 on the photodetector 4051 is connected to the pad on the ceramic adapter block 411 through a gold wire.
  • the pad page of the device can be connected to the pads on the ceramic adapter block 411 through gold wires, and the electrical signals and working signals transmitted by the flexible circuit board 420 are transferred to the laser driver 405 and the photodetector through the ceramic adapter block 411 respectively.
  • 4051, laser 4063, etc. realize the normal operation of laser driver 405, photodetector 4051, laser 4063, etc.
  • FIG. 19 is a schematic diagram of assembling a ceramic adapter block 411 and a flexible circuit board 420 in an optical module according to an embodiment of the present disclosure.
  • a boss 4114 is provided on the side of the ceramic adapter block 411 away from the laser assembly 4041 , the boss 4114 is connected to the flexible circuit board 420 , and the signal of the circuit board 300 is transmitted to the ceramic adapter through the flexible circuit board 420 .
  • the connecting block 411, the ceramic connecting block 411 then transfers the signal to the laser driver 405, the photodetector 4051, the laser 4063 and so on.
  • a first groove 4111, a second groove 4112, and a third groove 4113 are provided on the side of the ceramic adapter block 411 close to the laser assembly 4041.
  • the second groove 4112 is provided on the bottom surface of the third groove 4113.
  • the bottom surface of the groove 4112 is recessed on the bottom surface of the third groove 4113; That is, the first groove 4111 , the second groove 4112 and the third groove 4113 are arranged in a stepped shape, the first groove 4111 is recessed in the second groove 4112 , and the second groove 4112 is recessed in the third groove 4113 .
  • the second groove 4112 and the third groove 4113 are both provided with pads, the laser driver 405 is placed in the first groove 4111, the pad on the laser driver 405, the cathode 4058 of the photodetector 4051, and the common anode electrode 4052 They are respectively connected to the pads on the second groove 4112 and the third groove 4113 through gold wires to realize signal transfer.
  • the bosses 4114 on one side of the ceramic adapter block 411 can be connected to the circuit board 300 through two flexible circuit boards 420, that is, the upper side of the bosses 4114 is connected to one flexible circuit board 420, and the lower side of the bosses 4114 is connected to another flexible circuit board 420.
  • the circuit board 420 is connected to realize the transmission of various signals.
  • FIG. 20 is an exploded schematic diagram of a ceramic adapter block 411 and a light emitting housing 401 in an optical module according to an embodiment of the present disclosure.
  • the bottom surface of the ceramic adapter block 411 is in contact with the bottom surface of the light emitting cavity 403 , and the side of the light emitting shell 401 away from the first optical fiber adapter 410 is provided with a socket 4011 through which the ceramic adapter block 411 passes.
  • the jack 4011 is inserted into the light emitting cavity 403 .
  • the jack 4011 on the light emitting housing 401 extends from the side away from the first optical fiber adapter 410 to the side close to the first optical fiber adapter 410 .
  • the bottom surface of the ceramic adapter block 411 is in contact with the bottom surface of the light emitting housing 401
  • the top surface of the ceramic adapter block 411 is in contact with the top surface of the socket 4011 .
  • the bottom surface of the ceramic adapter block 411 is welded to the bottom surface of the light emitting housing 401 by brazing
  • the top surface of the ceramic adapter block 411 is welded to the top of the socket 4011 by brazing. surface, thereby achieving hermetic packaging of the light emitting housing 401 .
  • the ceramic adapter block 411 When the ceramic adapter block 411 is welded to the light emitting housing 401, one end of the ceramic adapter block 411 is in contact with the inner side wall of the socket 4011, and the connection surfaces of the ceramic adapter block 411 and the boss 4114 can be connected to the light emitting casing.
  • the end faces of 401 are flush.
  • a connecting block 4013 is provided between the side of the light emitting housing 401 close to the first optical fiber adapter 410 and the first optical fiber adapter 410, one end of the connecting block 4013 is connected to the side wall of the light emitting housing 401, and the other end is Fiber optic adapter 410 connects.
  • a through hole 4012 is provided on the side wall connecting the light emitting housing 401 with the connecting block 4013 , the through hole 4012 communicates with the light emitting cavity 403 , and the composite beam emitted by the light emitting device 404 in the light emitting cavity 403 passes through the through hole 4012 enters the connecting block 4013, and then enters the first optical fiber adapter 410 through the connecting block 4013.
  • FIG. 21 is a schematic structural diagram of a light emitting housing 401 in an optical module according to an embodiment of the present disclosure.
  • the light emitting housing 401 is a housing with an upper end opening, and a light emitting cover plate 402 is provided at the upper end opening.
  • the light emitting cover plate 402 covers the opening of the light emitting housing 401 to realize light Sealed assembly of launch sub-module 400 .
  • the light emitting cover plate 402 is sealed and connected to the light emitting housing 401 through a soldering machine, and the side of the light emitting housing 401 away from the first optical fiber adapter 410 is sealed with a ceramic adapter block 411 to seal the socket of the light emitting housing 401 4011, thus realizing the airtight packaging of the light emitting housing 401.
  • One side of the connecting block 4013 is connected to the outer wall of the light emitting housing 401, and the thickness of the connecting block 4013 is larger than the assembly thickness dimension of the light emitting housing 401 and the light emitting cover plate 402, that is, the top surface 4015 of the connecting block 4013 protrudes from the light emitting housing 401.
  • Launch cover 402 In this way, when the light emitting cover plate 402 is sealed and welded, the brazing machine will be disturbed, so that the light emitting cover plate 402 and the light emitting casing 401 cannot be completely sealed by welding.
  • an avoidance groove 4014 is provided on the top surface 4015 of the connection block 4013 .
  • the bottom surface of the avoidance groove 4014 can be recessed in the top surface of the light emitting cover plate 402 , and can also be flush with the top surface of the light emitting cover plate 402 .
  • the distance between the avoidance groove 4014 on the connection block 4013 and the outer side wall of the light emitting housing 401 can be set according to the actual situation, so as to ensure that when the light emitting cover plate 402 is brazed, the connection block 4013 will not cause any damage to the brazing machine. interference, so as to connect the light emitting housing 401 and the connection block 4013 without affecting the parallel sealing.
  • FIG. 22 is a partial cross-sectional view of a light emitting sub-module 400 in an optical module according to an embodiment of the present disclosure.
  • the first optical fiber adapter 410 is connected to the connecting block 4013
  • the connecting block 4013 is provided with a light-passing hole 4016 penetrating the connecting block 4013 , the light-passing hole 4016 and the light-passing hole 4016 are connected to the light emitting housing
  • the through holes 4012 on the side walls of 401 are connected, so that the composite beam emitted by the light emitting device 404 in the light emitting cavity 403 enters the first optical fiber adapter 410 through the through holes 4012 and 4016 in turn to realize light emission.
  • a converging lens 409 is disposed between the second lens 4046 in the light emitting cavity 403 and the end face of the optical fiber ferrule of the first optical fiber adapter 410 , and the converging lens 409 is fixedly installed in the connecting block 4013 .
  • a side of the connection block 4013 close to the first optical fiber adapter 410 is provided with a first installation groove, the converging lens 409 is embedded in the first installation groove, and the first installation groove is connected to the light-transmitting groove.
  • the holes 4016 are connected so that a composite beam transmitted through the light-passing hole 4016 enters the converging lens 409 , and is converged in the converging lens 409 .
  • a plane light window 4048 is further provided between the second lens 4046 and the converging lens 409 in the light emitting cavity 403 , and the plane light window 4048 can be fixedly installed in the connection block 4013 .
  • a side of the connection block 4013 connected to the light emitting housing 401 is provided with a second installation groove, the plane light window 4048 is embedded in the second installation groove, and the second installation groove is connected to the second installation groove.
  • the through-hole 4016 and the through-hole 4012 are connected to each other, so that a composite beam emitted by the second lens 4046 in the light emitting cavity 403 enters the plane light window 4048 in the connection block 4013 through the through-hole 4012, and the plane light window 4048 allows the composite beam Pass through into the light-through hole 4016 .
  • the plane light window 4048 can also be fixedly installed in the side wall of the light emitting housing 401 connected with the connecting block 4013 .
  • a through hole 4012 is formed on the side wall of the light emitting housing 401 connected to the connection block 4013, a second installation groove is formed in the through hole 4012, and the plane light window 4048 is embedded in the first In the two installation slots, a composite beam emitted by the second lens 4046 in the light emitting cavity 403 enters the plane light window 4048 through the through hole 4012 .
  • connection block 4013 and the light emitting housing 401 may be an integrally formed structure, or may be an independent structure.
  • the side surface of the connecting block 4013 can be pasted on the outer wall of the light emitting housing 401 through glue, and this arrangement also facilitates the installation of the flat light window 4048 on the light emitting housing 401 inside the side wall of the connection block or inside the connection block 4013.
  • the optical module provided by the embodiment of the present disclosure emits 8-channel beams of different wavelengths through 8 laser components, and then converts the 8-channel beams into 8-channel collimated beams through a collimating lens, and then the 8-channel collimated beams pass through the first optical multiplexing in sequence.
  • the device and the second optical multiplexer multiplex the 8-channel beam into a 2-channel composite beam, and then the 2-channel composite beam is multiplexed into a 1-channel beam through the first lens, the second lens and the third lens, and the 1-channel beam is coupled to the first
  • an optical fiber adapter the simultaneous transmission of signal light of multiple wavelengths in a single optical fiber is realized; in addition, in order to save space, the present disclosure adopts a low-height oblique illumination photodetector to monitor the optical power of the laser assembly, and oblique illumination
  • the photodetector and the common anode electrode are both set on the laser driver.
  • the anode of the photodetector is connected to the common anode electrode through wire bonding
  • the cathode is connected to the ceramic adapter block through wire bonding
  • the laser driver is connected to the ceramic adapter block through wire bonding.
  • the ceramic adapter block is connected to the flexible circuit board, and the signal sent by the circuit board is transmitted to the laser driver, laser component, photodetector and other optoelectronic devices through the flexible circuit board and the ceramic adapter block; there are also ceramic adapter blocks and light emission.
  • the parallel sealing welding process is adopted between the shell, the light emitting cover and the light emitting shell, and an avoidance groove is set on the connecting block connected to the light emitting shell, so as to realize the connection of the first stage without affecting the parallel sealing welding.
  • a fiber optic adapter and light emitting housing In this way, the simultaneous transmission of signal light of multiple wavelengths in a single optical fiber can be realized, and the occupied volume of the optical transmitting sub-module in the optical module is reduced, which is beneficial to the development of miniaturization of the optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括电路板(300)及与电路板(300)电连接的光发射次模块(400)与光接收次模块(500),光发射次模块(400)包括光发射壳体(401)、光发射盖板(402)、陶瓷转接块(411)、连接块(4013)与第一光纤适配器(410),光发射壳体(401)的一端设置有插孔(4011),另一端设置有通孔(4012);光发射盖板(402)与光发射壳体(401)封焊形成光发射腔体(403);陶瓷转接块(411)通过插孔(4011)***光发射腔体(403)内,且其与光发射壳体(401)密封连接;连接块(4013)的一端与光发射壳体(401)设置有通孔(4012)的侧壁连接,其上设置有避让凹槽(4014),用于在光发射壳体(401)与光发射盖板(402)封焊时进行避让;第一光纤适配器(410)与连接块(4013)的另一端连接,通过连接块(4013)与通孔(4012)相连通;通过陶瓷转接块(411)与光发射壳体(401)密封连接,光发射壳体(401)与光发射盖板(402)之间封焊连接,实现了光发射次模块(400)的气密性封装。

Description

一种光模块
本公开要求在2020年09月18日提交中国专利局、申请号为202010988200.8、发明名称为“一种光模块”、在2020年09月18日提交中国专利局、申请号为202010990182.7、发明名称为“一种光模块”、在2020年09月18日提交中国专利局、申请号为202010988545.3、发明名称为“一种光模块”、在2020年09月18日提交中国专利局、申请号为202010988607.0、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
通常为提高光模块传输速率,可采用增加光模块中的传输通道,如将传统包括一组光发射次模块(发射一种波长的光)和一组光接收次模块(接收一种波长的光)的光模块改进为包括两组光发射次模块(每一组发射一种波长的光)和两组光接收次模块(每一组接收一种波长的光)。如此,将使光模块中光发射次模块和光接收次模块在光模块中的占有体积不断增大,进而不利于光模块进一步发展。
发明内容
第一方面,本公开提供的一种光模块,包括:电路板;光发射次模块,通过柔性电路板与电路板电连接,用于发射不同波长的多路光束;光接收次模块,通过柔性电路板与电路板电连接,其与光发射次模块层叠设置,用于接收不同波长的多路光束;其中,光发射次模块包括:光发射壳体,其一端设置有插孔,其另一端设置有通孔;光发射盖板,盖合于光发射壳体上,其与光发射壳体形成光发射腔体;陶瓷转接块,其通过插孔***光发射腔体内,且其与光发射壳体密封连接;连接块,其一端与光发射壳体设置有通孔的侧壁连接;其上设置有避让凹槽,用于在光发射壳体与光发射盖板封焊时进行避让;第一光纤适配器,其与连接块的另一端连接,通过连接块与通孔相连通。
第二方面,本公开提供的一种光模块,包括:电路板;光发射次模块,通过柔性电路板与电路板电连接,用于发射不同波长的多路光束;光接收次模块,通过柔性电路板与电路板电连接,其与光发射次模块层叠设置,用于接收不同波长的多路光束;其中,光发射次模块包括:光发射壳体;光发射盖板,盖合于光发射壳体上,其与光发射壳体形成光发射腔体;多个激光器组件组,设置于光发射腔体内,用于发射不同波长的多路光束;多个激光驱动器,设置于光发射腔体内,用于驱动激光器组件组发射光束;多个斜照式光探测器,设置于激光驱动器上,位于激光器组件组背面出光光路上,用于监控激光器组件组的发射光功率;陶瓷转接块,其一端***光发射腔体内,另一端与柔性电路板连接;激光 驱动器设置于陶瓷转接块上,激光器组件组、激光驱动器与斜照式光探测器均通过打线与陶瓷转接块连接。
第三方面,本公开提供的一种光模块,其特征在于,包括:电路板;光发射次模块,与电路板电连接,用于发射不同波长的多路光束;光接收次模块,与电路板电连接,其与光发射次模块层叠设置,用于接收不同波长的多路光束;其中,光发射次模块包括:光发射壳体;光发射盖板,盖合于光发射壳体上,其与光发射壳体形成光发射腔体;光发射腔体内设置有多个光复用器与透镜组件;支撑平台,设置于光发射腔体内,其上设置有透镜固定件与多个平台,多个光复用器固定于平台上,透镜组件固定于透镜固定件上,多个光复用器射出的多路复合光束经由透镜组件的反射、折射后复用为一路信号光;第一光纤适配器,与光发射壳体连接,用于接收信号光,将信号光发射出去。
第四方面,本公开提供的一种光模块,包括:电路板;光发射次模块,与电路板电连接,用于发射不同波长的多路信号光;光接收次模块,与电路板电连接,且其与光发射次模块层叠设置,用于接收不同波长的多路信号光;其中,光发射次模块包括:光发射壳体;光发射盖板,盖合于光发射壳体上,与光发射壳体形成光发射腔体;多个激光器组件组,设置于光发射腔体内,用于发射不同波长的多路光束;多个光复用器,设置于光发射腔体内,与多个激光器组件组相对应设置,用于分别将不同波长的多路光束复用为多路复合光束;透镜组件,设置于光发射腔体内,用于分别对多路复合光束进行反射、折射,将多路复合光束复用为一路信号光;第一光纤适配器,与光发射壳体连接,用于接收信号光,将信号光发射出去。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供的一种光模块分解结构示意图;
图5为本公开实施例提供的一种光模块的局部剖视图;
图6为本公开实施例提供的一种光模块中光发射次模块与光接收次模块的分离结构示意图;
图7为本公开实施例提供的一种光模块中光发射次模块的局部分解示意图;
图8为本公开实施例提供的一种光模块中光发射器件的结构示意图;
图9为本公开实施例提供的一种光模块中光发射器件的另一角度结构示意图;
图10为本公开实施例提供的一种光模块中光发射次模块的光路图;
图11为本公开实施例提供的一种光模块中透镜组件的光路图;
图12为本公开实施例提供的一种光模块中透镜组件、光复用器与支撑平台的装配示 意图;
图13为本公开实施例提供的一种光模块中支撑平台的结构示意图;
图14为本公开实施例提供的一种光模块中支撑平台的局部结构示意图;
图15为本公开实施例提供的一种光模块中激光器组件与光探测器的装配示意图;
图16为本公开实施例提供的一种光模块中激光器组件的分解示意图;
图17为本公开实施例提供的一种光模块中光探测器与激光器驱动器的装配示意图;
图18为本公开实施例提供的一种光模块中光探测器的结构示意图;
图19为本公开实施例提供的一种光模块中陶瓷转接块的结构示意图;
图20为本公开实施例提供的一种光模块中发射壳体与陶瓷转接块的分解示意图;
图21为本公开实施例提供的一种光模块中发射壳体的结构示意图;
图22为本公开实施例提供的一种光模块中光发射次模块的局部剖视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端中,具体为光模块的电口***笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块***笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、光发射次模块400和光接收次模块500。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开某一实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,***光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光发射次模块400和光接收次模块500;电路板300、光发射次模块400和光接收次模块500等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光发射次模块400和光接收次模块500等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块***上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板300上的芯片可以是多功能合一芯片,比如将激光驱动芯片与MCU芯片融合为一个芯片,也可以将激光驱动芯片、限幅放大器芯片及MCU融合为一个芯片,芯片是电路的集成,但各个电路的功能并没有因为集合而消失,只是电路呈现形态发生改变,芯片中仍然具有该电路形态。所以,当电路板上设置有MCU、激光驱动芯片及限幅放大器芯片三个独立芯片,这与电路板300上设置一个三功能合一的单个芯片,方案是等同的。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以***上位机笼子中的电连接器中,在本公开某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光发射次模块及光接收次模块可以统称为光学次模块。如图4所示,本公开实施例提供的光模块包括光发射次模块400及光接收次模块500,光发射次模块400及光接收次模块500位于电路板300的边缘,且光发射次模块400及光接收次模块500上下叠放。在本公开某一实施例中,光发射次模块400较光接收次模块500更靠近上壳体201,但不局限于此,还可以是光接收次模块500较光发射次模块400更靠近上壳体201。
在本公开某一实施例中,光发射次模块400及光接收次模块500分别与电路板300物理分离,分别通过柔性电路板连接电路板300。
当光发射次模块400较光接收次模块500更靠近上壳体201时,光发射次模块400和光接收次模块500设置在上、下壳体形成包裹腔体中,且下壳体202支撑光接收次模块500,光接收次模块500支撑光发射次模块400。
图5为本公开实施例提供的一种光模块结构剖面图。如图5所示,本公开实施例提供的光模块包括下壳体202、电路板300、光发射次模块400和光接收次模块500。光发射次模块400的远离电路板300的端部设置第一光纤适配器410,第一光纤适配器410用于将光 发射次模块400产生的信号光传输至光模块的外部;光接收次模块500远离电路板300的端部设置第二光纤适配器510,第二光纤适配器510用于将来自光模块外部的信号光传输至光接收次模块500的内部。电路板300通过相应的柔性电路板分别与光发射次模块400和光接收次模块500实现电连接。
由于光模块整体外形的尺寸要符合上位机的接口尺寸,受行业标准限制,而光发射次模块400和光接收次模块500的体积较大,不能设置在电路板300上,所以采用与电路板300分离的方式设置,通过柔性电路板实现电连接中转。如图5所示,相较于下壳体202的底面,第一光纤适配器410和第二光纤适配器510位于同一高度。第一光纤适配器410与第二光纤适配器510分别用于与光模块外部的光纤连接器连接;而光模块外部的光纤连接器是行业通用的标准件,外部光纤连接器的形状、尺寸限制了光模块内部两个光纤适配器的位置,所以产品中将第一光纤适配器410和第二光纤适配器510设置在同一高度上。
图6为本公开实施例提供的一种光发射次模块和光接收次模块分离的结构示意图。如图6所示,本公开实施例提供的光接收次模块500还包括光接收腔体520和光接收盖板530,光接收盖板530从上方盖合在光接收腔体520上。光接收腔体520内设置透镜、光接收芯片、跨阻放大器等与光接收相关的器件。光接收腔体520的一端连接第二光纤适配器510,通过第二光纤适配器510接收来自光模块外部的信号光,并将接收到的信号光经光接收腔体520内设置透镜等光学器件传输至光接收芯片;光接收腔体520的另一端的侧壁上设置开口521,用于柔性电路板***。柔性电路的一端***并固定在光接收腔体520内且光接收芯片、跨阻放大器等电学器件电连接,柔性电路的另一端用于与电路板300电连接。
图7为本公开实施例提供的一种光模块中光发射次模块的局部分解示意图,图8为本公开实施例提供的一种光模块中光发射器件404的结构示意图。如图7、图8所示,本公开实施例提供的光发射次模块400包括光发射壳体401及盖合于光发射壳体401上的光发射盖板402,光发射壳体401与光发射盖板402形成光发射腔体403,光发射腔体403内设置有激光器、光探测器、激光驱动器、透镜等光发射器件404。光发射壳体401的一端连接第一光纤适配器410,光发射器件404用于发射多路光束,多路光束复用为一路光束后,最终汇聚耦合至第一光纤适配器410,以实现多路光通过一根光纤发射出去。光发射壳体401的另一端设置有陶瓷转接块,该陶瓷转接块与柔性电路板的一端连接,柔性电路板通过陶瓷转接块与激光器、光探测器、激光驱动器等光电器件电连接;柔性电路板的另一端用于与电路板300电连接。光发射壳体401与光发射盖板402可采用金属材料结构件,如压铸、铣削加工的金属件。
本公开实施例提供的光模块中,光发射次模块400用于发射多种不同波长的信号光,不同波长的信号光经光发射腔体403内不同透镜等光学器件的反射、折射实现信号光合光,合成的信号光通过第一光纤适配器410传输至外部光纤。
在本公开某一实施例中,光发射器件404包括多个激光器组件组、多个准直透镜4042、多个光复用器与透镜组件,多个激光器组件组用于发射多路不同波长的光束。在本公开实施例中,光发射器件404包括两个激光器组件组,每个激光器组件组包括多个激光器组件4041,每个激光器组件4041发射一路光束,每个准直透镜4042设置在每个激光器组件4041 的出射光方向上,用于将激光器组件4041出射的光束转换为准直光束;光复用器设置在准直透镜4042的出射光方向上,用于将多路不同波长的光束复用为一路复合光束;透镜组件设置在光复用器的出光方向,用于将光复用器出射的一路复合光束经反射、折射后耦合至第一光纤适配器410内,实现光的发射。
图9为本公开实施例提供的一种光模块中光发射器件404的另一角度结构示意图,图10为本公开实施例提供的一种光模块中光发射器件404的光路示意图。如图9、图10所示,光发射器件404可包括8个激光器组件4041、8个准直透镜4042、第一光复用器4043、第二光复用器4044、第一透镜4045、第二透镜4046与第三透镜4047,8个激光器组件4041出射8束不同波长的光束;8个准直透镜4042设置在8个激光器组件4041的出射光方向上,以将8束不同波长的光束转换为8束准直光束;第一光复用器4043与第二光复用器4044均设置在8个准直透镜4042的光出射方向上,4束准直光束射入第一光复用器4043内,剩余4束准直光束射入第二光复用器4044内,进入第一光复用器4043内的4束准直光束可在第一光复用器4043内发生反射,最终复用为第一复合光束由第一光复用器4043射出;同理,进入第二光复用器4044的4束准直光束可在第二光复用器4044内发生反射,最终复用为第二复合光束由第二光复用器4044射出。
第一透镜4045设置在第一光复用器4043的出射光方向上,第二透镜4046设置在第一透镜4045的出射光方向上,如此由第一光复用器4043射出的第一复合光束依次透过第一透镜4045与第二透镜4046;第三透镜4047设置在第二光复用器4044的出射光方向上,由第二光复用器4044射出的第二复合光束射入第三透镜4047,并在第三透镜4047上发生反射,反射后的第二复合光束射入第二透镜4046,在第二透镜4046上发生再次反射,再次反射后的第二复合光束射入第一透镜4045,在第一透镜4045上再次发生反射,再次反射后的第二复合光束再次射入第二透镜4046,此次第二复合光束透过第二透镜4046。进入第二透镜4046的第一复合光束与第二复合光束可在第二透镜4046内进行合光,将第一复合光束与第二复合光束合成一路光束,该路光束可汇聚耦合至第一光纤适配器410内。
第一光复用器4043与第二光复用器4044为结构相同的组件,该第一光复用器4043包括一侧镀有反射膜的玻璃载体与多个窄带滤波器,光复用器可以根据需要通过增加或添加窄带滤波器来调节光复用器对应的分束波段。在本公开某一实施例中,第一光复用器4043包括四个窄带滤波器,窄带滤波器用于对射入第一光复用器4043的光束进行选择滤波,使得满足要求的四束光束进入第一光复用器4043。进入第一光复用器4043的光束在镀有反射膜的玻璃载体处发生反射,第一束光束反射后与第二束光束合成第一合成光,第一合成光继续在镀有反射膜的玻璃载体处发生反射,第一合成光反射后与第三束光束合成第二合成光,第二合成光继续在镀有反射膜的玻璃载体处发生反射,第二合成光反射后与第四束光束合成第三合成光,该第三合成光由第一光复用器4043的出射端出射。由此,第一光复用器4043将4束准直光束合成为第一复合光束,经由第一光复用器4043的出射端出射;第二光复用器4044将另外4束准直光束合成为第二复合光束,经由第二光复用器4044的出射端出射。
图11为本公开实施例提供的一种光模块中透镜组件的光路图。如图11所示,由第一 光复用器4043射出的第一复合光束直接透过第一透镜4045,透过第一透镜4045的第一复合光束射在第二透镜4046的入射光面上;第三透镜4047的第二入射光面4073上设置有反射膜,由第二光复用器4044射出的第二复合光束在第三透镜4047入射光面的反射膜处发生反射,改变第二复合光束的出射方向,使得第二复合光束经由第三透镜4047反射至第二透镜4046。第一复合光束可在第二透镜4046的第一入射光面4072上直接透射,而反射后的第二复合光束在第二透镜4046的第一入射光面4072上发生反射,使得反射后的第二复合光束经由第二透镜4046再次反射至第一透镜4045;由第二透镜4046反射至第一透镜4045出射光面4071的第二复合光束,在第一透镜4045的出射光面4071上再次发生反射,使得第二复合光束经由第一透镜4045反射至第二透镜4046,再次反射至第二透镜4046的第二复合光束可在第二透镜4046的第一入射光面4072上直接透射。
在本公开某一实施例中,第二透镜4046的第一入射光面4072上可设置角度选择膜,该角度选择膜可对射到第一入射光面4072的入射光进行选择性的透射,即该角度选择膜设置有预设入射光角度,当射到该第一入射光面4072的光的入射角度满足预设入射光角度时,该光束可直接透射第二透镜4046;当射到该第一入射光面4072的光的入射角度不满足预设入射光角度时,该光束在第一入射光面4072处发生反射,以改变入射光束的入射角度,直至光束的入射角度满足第一入射光面4072的预设入射光角度。
在本公开实施例中,由第一透镜4045透射出的第一复合光束的入射角度满足第二透镜4046第一入射光面4072的预设入射光角度,因此第一复合光束可直接透射通过第二透镜4046。由第三透镜4047反射至第二透镜4046第一入射光面4072的第二复合光束,其入射角度大于第二透镜4046第一入射光面4072的预设入射光角度,因此第二复合光束在第一入射光面4072处再次发生反射,反射后的第二复合光束射至第一透镜4045的出射光面4071。
在本公开实施例中,第二透镜4046的第一入射光面4072上设置的角度选择膜的预设入射光角度可为0~45°,透过第一透镜4045的第一复用光束射至第二透镜4046第一入射光面4072的入射角度为37°,其满足角度选择膜的预设入射光角度,因此第一复合光束可直接透射通过角度选择膜;由第三透镜4047反射至第二透镜4046第一入射光面4072的第二复用光束的入射角度为57°,其超过了角度选择膜的预设入射光角度,因此第二复合光束在角度选择膜处发生反射。
本公开实施例提供的第二透镜4046的第一入射光面4072处不仅限于设置角度选择膜,也可设置其他膜片,只要该膜片能够实现第一复合光束直接透射通过第一入射光面4072,第二复合光束在第一入射光面4072处发生反射,其均属于本公开实施例的保护范围。
为使得第二复合光束能够透过第二透镜4046,需要减小第二复合光束射至第二透镜4046第一入射光面4072的入射角度,因此可通过对在第二透镜4046的第一入射光面4072发生反射的第二复合光束进行再次反射,再次反射后的第二复合光束射至第二透镜4046的第一入射光面4072时,其入射角度减小,可满足角度选择膜的预设入射光角度。
第一透镜4045的出射光面4071上设置有半透半反膜,该半透半反膜可进行波长选择,即某一波长范围的光束可直接透过该半透半反膜,而超过该波长范围的光束在该半透半反 膜处发生反射。在本公开实施例中,第一复合光束的波长满足半透半反膜的波长范围,因此该第一复合光束可直接透射通过第一透镜4045的出射光面4071;而第二复合光束的波长不满足半透半反膜的波长范围,因此由第二透镜4046反射至第一透镜4045出射光面4071的第二复合光束在半透半反膜处发生反射,使得第二复合光束由第一透镜4045的出射光面4071再次反射至第二透镜4046的第一入射光面4072。
经过第二透镜4046的第一入射光面4072的反射,及第一透镜4045的出射光面4071的再次反射后,第二复合光束射入第二透镜4046第一入射光面4072的入射角度变小了,使得第二复合光束的入射角度能够满足角度选择膜的预设入射光角度,从而使得反射后的第二复合光束能够透射通过第二透镜4046。
第一复合光束与反射后再次进入第二透镜4046的第二复合光束可在第二透镜4046内进行合光,即在第二透镜4046内将第一复合光束与第二复合光束合成为一路光束,该一路光束由第二透镜4046射出后耦合至第一光纤适配器410。
为提高耦合效率,可在第二透镜4046与第一光纤适配器410的光纤插芯端面之间设置有汇聚透镜409,由第二透镜4046射出的一路光束经汇聚透镜409汇聚耦合至第一光纤适配器410,最后经由外部光纤传输出去。
还可在第二透镜4046与汇聚透镜409之间设置平面光窗4048,该平面光窗4048为允许光通过的玻璃片,为了增强平面光窗的透射度,防止光反射现象影响光发射器件404的性能,通常将玻璃片倾斜一个预设角度(通常为8度),并在玻璃片的表面镀上对应波长的增镀膜。平面光窗4048作为光发射器件404与第一光纤适配器410的通讯部件,通常设置于光发射壳体401与第一光纤适配器410连接的侧壁上,光发射器件404能够通过该平面光窗4048与第一光纤适配器410传递光信号。
本公开实施例提供的光发射器件404包括8个激光器组件4041、8个准直透镜4042、第一光复用器4043、第二光复用器4044、第一透镜4045、第二透镜4046与第三透镜4047,8个激光器组件4041发射8通道的激光光束;8个准直透镜4042分别设置在8个激光器组件4041的出光方向上,用于对8通道的激光光束进行准直,获得8通道的准直光束;第一光复用器4043与第二光复用器4044均设置在8个准直透镜4042的出光方向上,第一光复用器4043与第二光复用器4044均包括4个输入通道,8通道的准直光束中的4通道准直光束进入4通道的第一光复用器4043,另外4通道准直光束进入4通道的第二光复用器4044,第一光复用器4043将4通道准直光束转换为一束第一复合光束,第二光复用器4044将4通道准直光束转换为一束第二复合光束;第一透镜4045设置在第一光复用器4043的出光方向上,第二透镜4046设置在第一透镜4045的出光方向上,第一光复用器4043射出的第一复合光束直接透射通过第一透镜4045、第二透镜4046;第三透镜4047设置在第二光复用器4044的出光方向上,第二光复用器4044射出的第二复合光经第三透镜4047反射至第二透镜4046,由于反射后的第二复合光的入射角度不满足第二透镜4046入射光面的预设入射光角度,因此反射后的第二复合光束在第二透镜4046的入射光面处发生反射,反射至第一透镜4045的出光面,反射后的第二复合光在第一透镜4045的出光面上再次发生反射,再次反射后的第二复合光再次入射第二透镜4046的入射光面,由于反 射后第二复合光的入射角度缩小了,因此由第一透镜4045的出光面反射至第二透镜4046的第二复合光可直接透射通过第二透镜4046;第一复合光与反射后进入第二透镜4046的第二复合光可在第二透镜4046内可合成为一束光束,该光束经平面光窗4048、汇聚透镜409后耦合至第一光纤适配器410,实现了8通道波分复用的光发射出去。本公开通过两个光复用器将8通道光束复用为两路光束,再通过3个透镜的镀膜和控制入射光角度实现两路光束的透射、反射,将两路光束合成为一路光束,该一路光束最终汇聚耦合至外部光纤,减小了光发射次模块在光模块中的占有体积,有利于光模块的小型化发展。
在本公开实施例中,为实现上述实施例的发射光路,需要对光路结构中的第一光复用器4043、第二光复用器4044、第一透镜4045、第二透镜4046、第三透镜4047提供支撑和器件耦合的平台,以实现第一光复用器4043、第二关复用器4044、第一透镜4045、第二透镜4046、第三透镜4047的无源耦合,降低发射光路的耦合难度。
图12为本公开实施例提供的一种光模块中支撑平台、光复用器与透镜组件的装配示意图,图13为本公开实施例提供的一种光模块中支撑平台的结构示意图。如图12、图13所示,光发射腔体403内设置有支撑平台408,第一光复用器4043、第二光复用器4044、第一透镜4045、第二透镜4046、第三透镜4047均设置在支撑平台408上,以实现双光复用器光路中光复用器和透镜组件的无源耦合。支撑平台408上设置有透镜固定件与多个平台,第一光复用器4043与第二光复用器4044固定于多个平台上,透镜组件(第一透镜4045、第二透镜4046与第三透镜4047)固定于透镜固定件上。
支撑平台408可粘贴于光发射腔体403的底板上,即支撑平台408通过胶水粘接在光发射腔体403的底板上。支撑平台408靠近准直透镜4042的一侧设有第一平台4081与第二平台4086,第一平台4081与第二平台4086之间设置有第一隔板4084,第二平台4086远离第一平台4081的一侧设置有第二隔板4089,第一隔板4084与第二隔板4089并行设置。即支撑平台408上的第一隔板4084与第二隔板4089将支撑平台408靠近准直透镜4042的一侧分隔成两部分,一部分为第一平台4081,另一部分为第二平台4086。第一平台4081上设置有第一安装槽4082,第二光复用器4044嵌设在该第一安装槽4082内,且第二光复用器4044相对的两侧面分别与第一安装槽4082的两侧壁相接触。即第二光复用器4044的入光面与第一安装槽4082的一侧壁相接触,出光面与第一安装槽4082相对的另一侧壁相接触。
第二光复用器4044的入光面设置有入射光口,该入射光口用于接收准直透镜4042射出的准直光束。在本公开实施例中,第二光复用器4044的入光面设置有4个入射光口,每个入射光口用于接收一个准直透镜4042射出的准直光束,并将接收的准直光束传送至第二光复用器4044内进行反射合光。
为避免准直透镜4042射出的准直光束在入射光口处发生反射,反射光沿原路返回准直透镜4042处,第二光复用器4044入光面上的入射光口倾斜设置,其由准直透镜4042向第二光复用器4044自下而上倾斜设置,如此准直光束射入到入射光口时,准直光束经入射光口进入第二光复用器4044,而部分准直光束在入射光口发生反射时,反射光束与入射光束成一定角度设置,反射光束不会沿入射光束的入射光路返回准直透镜4042内,也 就不会影响准直透镜4042的准直性能。
为固定第二光复用器4044,第一安装槽4082内设置有第一点胶槽4083,该第一点胶槽4083与第二光复用器4044的底面相接触,用于第二光复用器4044与第一安装槽4082底面的简便、可靠的点胶密封,有效提高点胶处理的密封效果,从而提高了第二光复用器4044的安装稳固性。
由于第二光复用器4044的尺寸较大,为避免剪切力可靠性不足,需要对第一点胶槽4083进行补胶。第一隔板4084的底部边缘与第一安装槽4082相连通,因此可通过第一隔板4084的侧边向第一安装槽4082进行补胶。
为方便通过第一隔板4084进行补胶,第一隔板4084远离第一平台4081的一侧设有第一斜面4085,该第一斜面4085由第一隔板4084的顶面向底面自上至下倾斜设置,如此可方便补胶,且胶水顺着该第一斜面4085缓慢向第一安装槽4082内流动,避免了胶水堆积在第一隔板4084的底部。
同理,第二平台4086上设置有第二安装槽4087,第一光复用器4043嵌设在该第二安装槽4087内,且第一光复用器4043相对的两侧面分别与第二安装槽4087的两侧壁相接触。即第一光复用器4043的入光面与第二安装槽4087的一侧壁相接触,出光面与第二安装槽4087相对的另一侧壁相接触。
第一光复用器4043的入光面设置有入射光口,该入射光口用于接收准直透镜4042射出的准直光束。在本公开实施例中,第一光复用器4043的入光面设置有4个入射光口,每个入射光口用于接收一个准直透镜4042射出的准直光束,并将接收的准直光束传送至第一光复用器4043内进行反射合光。
为避免准直透镜4042射出的准直光束在第一光复用器4043的入射光口处发生反射,反射光沿原路返回准直透镜4042处,第一光复用器4043入光面上的入射光口倾斜设置,其由准直透镜4042向第一光复用器4043自下而上倾斜设置,如此准直光束射入到入射光口时,准直光束经入射光口进入第一光复用器4043,而部分准直光束在入射光口发生反射时,反射光束与入射光束成一定角度设置,反射光束不会沿入射光束的入射光路返回准直透镜4042内,也就不会影响准直透镜4042的准直性能。
为固定第一光复用器4043,第二安装槽4087内设置有第二点胶槽4088,该第二点胶槽4088与第一光复用器4043的底面相接触,用于第一光复用器4043与第二安装槽4087底面的简便、可靠的点胶密封,有效提高点胶处理的密封效果,从而提高了第一光复用器4043的安装稳固性。
由于第一光复用器4043的尺寸较大,为避免剪切力可靠性不足,需要对第二点胶槽4088进行补胶。第二隔板4089的底部边缘与第二安装槽4087相连通,因此可通过第二隔板4089的侧边向第二安装槽4087进行补胶。
为方便通过第二隔板4089进行补胶,第二隔板4089远离第二平台4086的一侧设置有第二斜面4090,该第二斜面4090由第二隔板4089的顶面向底面自上而下倾斜设置,如此可方便补胶,且胶水顺着该第二斜面4090缓慢向第二安装槽4087内流动,避免了胶水堆积在第二隔板4089的底部。
图14为本公开实施例提供的一种光模块中支撑平台的局部结构示意图。如图14所示,透镜固定件包括透镜安装柱,支撑平台408远离准直透镜4042的一侧设置有三角凹槽4091,透镜安装柱设置于该三角凹槽4091内,第一透镜4045与第二透镜4046分别固定于该透镜安装柱的两侧边上。本公开实施例中,透镜安装柱为三角凸起4092,该三角凸起4092的第一侧边4094朝向第一光复用器4043,第一透镜4045的出射光面4071粘贴于第一侧边4094,使得第一透镜4045接收第一光复用器4043射出的第一复合光束;该三角凸起4092的第二侧边4095朝向第一光纤适配器410,第二透镜4046的第一入射光面4072粘贴于第二侧边4095,用于接收透过第一透镜4045的第一复合光束。
在本公开实施例中,三角凹槽4091设置在三角凸起4092的外边缘,其为退刀槽,是为了实现三角凸起4092加工而预留的退刀槽。三角凸起4092的厚度尺寸可根据实际情况进行设置,只要其不会遮挡第一透镜4045出射光面4071的出光及第二透镜4046第一入射光面4072的入光即可。
支撑平台408远离准直透镜4042的一侧还设置有细凹槽4093,该细凹槽4093为一长条型的凹槽,该细凹槽4093朝向第二光复用器4044的出光面,且该细凹槽4093倾斜设置,即细凹槽4093由第一光纤适配器410向第二光复用器4044的方向上倾斜,且该细凹槽4093与第二光复用器4044出光面的距离逐渐减小。第三透镜4047第二入射光面4073的底部边缘与细凹槽4093的倾斜边缘相接触,从而将第三透镜4047固定于细凹槽4093处。
三角凸起4092的第三侧边4096朝向细凹槽4093的第二入射光面4073,三角凸起4092的第一侧边4094与第三侧边4096为较短的侧边,第二侧边4095为较长的侧边,第一侧边4094与第二侧边4095之间的角度应能满足:透过第一透镜4045的第一复合光束入射第二透镜4046的第一入射光面4072时,其入射角度满足第二透镜4046第一入射光面4072设置的角度选择膜的预设入射光角度,以及经由第一透镜4045的出射光面4071反射的第二复合光束入射第二透镜4046的第一入射光面4072时,其入射角度满足角度选择膜的预设入射光角度。
细凹槽4093的倾斜角度需与三角凸起4092的第二侧边4095的角度相配合,以保证第三透镜4047的第二入射光面4073反射后的第二复合光束能够射至三角凸起4092的第二侧边4095设置的第二透镜4046的第一入射光面4072上,且第二复合光束的入射角度大于角度选择膜的预设入射光角度,使得第二复合光束在第二透镜4046的第一入射光面4072处发生反射,且在第二透镜4046反射后的第二复合光束能够射至第一透镜4045的出射光面4071上,设置第一透镜4045的出射光面4071的第二复合光束能够在出射光面4071处再次发生反射,反射后的第二复合光束能够射至。
在本公开实施例中,第一透镜4045、第二透镜4046与第三透镜4047主要是通过控制入射光角度实现第一复合光束与第二复合光束的复用,因此通过设置三角凸起4092与细凹槽4093的角度来控制第一透镜4045、第二透镜4046与第三透镜4047的入射光角度,使得第一复合光束直接透过第一透镜4045后,其入射第二透镜4046的入射角度满足第二透镜4046第一入射光面4072的预设入射光角度,以使第一复合光束可以直接透射通过第 二透镜4046;同时,第二复合光束在第三透镜4047的入射光面4073处发生反射,反射至第二透镜4046第一入射光面4072的第二复合光束继续在第一入射光面4072处发生反射,再次反射后的第二复合光束在第一透镜4045的出射光面4071处再次发生反射,再次反射后的第二复合光束的入射角度能够满足第二透镜4046第一入射光面4072的预设入射光角度,以使再次反射后的第二复合光束可以直接透射通过第二透镜4046。
在本公开实施例中,通过在光发射腔体403内设置支撑平台408,该支撑平台408用于支撑第一光复用器4043、第二光复用器4044、第一透镜4045、第二透镜4046与第三透镜4047,为其提供光路耦合空间和固定平台;该支撑平台408通过第一平台4081与第二平台4086实现了第一光复用器4043、第二光复用器4044的无源耦合,实现了将8通道准直光束复用为两路复合光束;且该支撑平台408通过三角凸起4092、细凹槽4093来控制第一透镜4045、第二透镜4046、第三透镜4047的入射光角度,将第一复合光束与第二复合光束合光复用为一束光束,实现了第一透镜4045、第二透镜4046、第三透镜4047角度的无源耦合,极大地降低了光路耦合难度,实现了上述实施例的发射光路。
在申请实施例中,需要提供8通道光束,因此光发射腔体403内设置有8个激光器组件4041。激光器组件4041发射激光光束时,需要在激光器组件4041出光面的背光面设置光探测器,光探测器用于检测激光器组件4041背面发射激光的光功率,而激光器组件4041正面发射光的光功率与背面发射光的光功率相同,因此可根据激光器组件4041背面发射光功率来获取激光器组件4041正面发射的光功率,并可根据实际情况来调整激光器组件4041的发射光功率。
图15为本公开实施例提供的一种光模块中激光器组件4041与光探测器的装配示意图,图16为本公开实施例提供的一种光模块中激光器组件4041的分解结构示意图。如图15、图16所示,激光器组件4041包括激光器热沉4062与激光器4063,激光器4063设置在激光器热沉4062的顶面上,激光器4063的正面朝向准直透镜4042,以发射激光光束;激光器4063的背面朝向光探测器,光探测器接收激光器4063背面发射的激光光束来检测激光器光功率。激光器热沉4062用于对激光器4063进行散热。
激光器热沉4062的上方还设置有COC基板4061,该COC基板4061用于支撑4个激光器热沉4062。即4个激光器组件4041并行设置在COC基板4061上,其可通过胶水粘贴在COC基板4061上,通过COC基板4061来支撑固定4个激光器组件4041。
光发射腔体403的底面与COC基板4061之间设置有半导体制冷器406,即半导体制冷器406的底面粘贴于光发射腔体403的底面,半导体制冷器406的顶面用于支撑固定两个COC基板4061,两个COC基板4061用于支撑固定8个激光器热沉4062,1个激光器热沉4062用于支撑固定1个激光器4063。激光器4063产生的热量依次传递至激光器热沉4062、COC基板4061与半导体制冷器406上,有效实现激光器4063的散热。
在本公开实施例中,激光器热沉4062上设置有焊盘,激光器4063设置在该焊盘上。激光驱动器405上设置有相应的焊盘,激光器热沉4062上的焊盘与激光驱动器405上的焊盘可通过金线连接,激光驱动器405通过金线、焊盘向激光器4063发送信号,以驱动激光器4063发射激光光束。
为方便光探测器4051接收激光器4063背面发射的激光光束,本公开将光探测器4051放置在激光驱动器405上,且光探测器4051设置在激光器4063背面发射光的光路上。在本公开实施例中,光发射腔体403内设置有两个激光驱动器405,每个激光器热沉4062上均设有焊盘,对应于第一光复用器4043的四个激光器组件4041通过金线与一个激光驱动器405上的焊盘连接,对应于第二光复用器4044的四个激光器组件4041通过金线与另一个激光驱动器405上的焊盘连接。
图17为本公开实施例提供的光探测器4051与激光驱动器405的装配示意图,图18为本公开实施例提供的光探测器4051的结构示意图。如图17、图18所示,每个激光驱动器405上均设置有四个光探测器4051,激光驱动器405上还设置有共阳极电极4052,共阳极电极4052远离光探测器4051的入光面,四个光探测器4051的阳极均与共阳极电极4052通过金线连接。
在本公开某一实施例中,光探测器4051包括底面、顶面4056及分别与底面、顶面4056的边缘线连接的第一侧面4053、第二侧面4054、第三侧面与第四侧面,光探测器4051的顶面4056上设置有阳极4059与阴极4058,阳极4059通过金线与共阳极电极4052电连接,共阳极电极4052可通过金线与柔性电路板420连接,光探测器4051的阴极4058也可通过金线与柔性电路板420连接。
为了节省空间,本公开实施例采用斜照式光探测器,即光探测器4051的第二侧面4054上设置有斜面4055,该斜面4055由第二侧面4054向第一侧面4053方向上倾斜,光探测器4051底面的长度尺寸小于其顶面4056的长度尺寸。该斜面4055上设置有光敏面4057,该光敏面4057与激光器4063的背光面相对应,用于接收激光器4063背光面发射的激光光束。
光敏面4057设置在斜面4055上,即光敏面4057倾斜设置,如此激光器4063背面发射的激光光束射入光敏面4057时,激光光束经由光敏面4057进入光探测器4051内,而部分激光光束可能会在光敏面4057上发生反射。如果光敏面4057与光探测器4051的底面垂直设置时,激光光束在光敏面4057上发生反射时,反射光束可能会沿着激光光束的入射光路返回激光器4063,影响激光器4063的激光发射性能;而光敏面4057倾斜设置时,激光光束在光敏面4057上发生反射时,反射光束与入射光束成一定角度设置,反射光束不会沿入射光路返回至激光器4063内,如此保证了激光器4063的激光发射性能。
在本公开实施例中,采用斜照式光探测器,斜照式光探测器4051由于高度尺寸较低,可以实现将该斜照式光探测器4051焊接固定在激光驱动器405上,与四个光探测器4051的阳极4059共同连接的共阳极电极4052也固定在激光驱动器405上,如此可节省空间,避免了在光探测器4051下方设置支撑板。激光驱动器405既可与激光器4063连接,以驱动激光器4063,也可支撑固定光探测器4051与共阳极电极4052。
在本公开实施例中,激光驱动器405的底面与光发射腔体403的底面之间设置有陶瓷转接块411,激光驱动器405设置在陶瓷转接块411上,即该陶瓷转接块411用于支撑固定激光驱动器405,且陶瓷转接块411的一侧上设置有焊盘,另一侧与柔性电路板420连接。激光驱动器405上共阳极电极4052通过金线与陶瓷转接块411上的焊盘连接,光探测 器4051上的阴极4058通过金线与陶瓷转接块411上的焊盘连接,激光驱动器405上的焊盘页可通过金线与陶瓷转接块411上的焊盘连接,通过陶瓷转接块411将柔性电路板420传送的电信号、工作信号等分别转接至激光驱动器405、光探测器4051、激光器4063等,实现激光驱动器405、光探测器4051、激光器4063等的正常工作。
图19为本公开实施例提供的一种光模块中陶瓷转接块411与柔性电路板420的装配示意图。如图19所示,陶瓷转接块411远离激光器组件4041的一侧设置有凸台4114,该凸台4114与柔性电路板420连接,通过柔性电路板420将电路板300的信号传送至陶瓷转接块411,陶瓷转接块411再将信号转接至激光驱动器405、光探测器4051、激光器4063等。陶瓷转接块411靠近激光器组件4041的一侧设置有第一凹槽4111、第二凹槽4112、第三凹槽4113,第二凹槽4112设置在第三凹槽4113的底面上,第二凹槽4112的底面凹陷于第三凹槽4113的底面;第一凹槽4111设置在第二凹槽4112的底面上,第一凹槽4111的底面凹陷于第二凹槽4112的底面。即第一凹槽4111、第二凹槽4112与第三凹槽4113成阶梯状设置,第一凹槽4111凹陷于第二凹槽4112,第二凹槽4112凹陷于第三凹槽4113。
第二凹槽4112与第三凹槽4113上均设有焊盘,激光驱动器405放置于第一凹槽4111内,激光驱动器405上的焊盘、光探测器4051的阴极4058、共阳极电极4052分别通过金线与第二凹槽4112、第三凹槽4113上的焊盘连接,以实现信号的转接。
陶瓷转接块411一侧的凸台4114可通过两个柔性电路板420与电路板300连接,即凸台4114的上侧面与一个柔性电路板420连接,凸台4114的下侧面与另一个柔性电路板420连接,以实现各种信号的传递。
图20为本公开实施例提供的一种光模块中陶瓷转接块411与光发射壳体401的分解示意图。如图20所示,陶瓷转接块411的底面与光发射腔体403的底面相接触,光发射壳体401远离第一光纤适配器410的一侧设有插孔4011,陶瓷转接块411通过该插孔4011***光发射腔体403内。
光发射壳体401上的插孔4011由远离第一光纤适配器410的一侧向靠近第一光纤适配器410的一侧延伸,插孔4011的宽度尺寸与光发射壳体401的宽度尺寸相同。陶瓷转接块411的底面与光发射壳体401的底面相接触,陶瓷转接块411的顶面与插孔4011的顶面相接触。在本公开某一实施例中,陶瓷转接块411的底面通过钎焊方式焊接在光发射壳体401的底面上,陶瓷转接块411的顶面通过钎焊方式焊接在插孔4011的顶面上,由此实现光发射壳体401的气密封装。陶瓷转接块411焊接至光发射壳体401上时,陶瓷转接块411的一端与插孔4011的内侧壁相抵接,陶瓷转接块411、凸台4114的连接面可与光发射壳体401的端面相平齐。
光发射壳体401靠近第一光纤适配器410的一侧与第一光纤适配器410之间设置有连接块4013,该连接块4013的一端与光发射壳体401的侧壁连接,另一端与第一光纤适配器410连接。光发射壳体401与连接块4013连接的侧壁上设置有通孔4012,该通孔4012与光发射腔体403连通,光发射腔体403内的光发射器件404发射的复合光束经通孔4012进入连接块4013,再经连接块4013进入第一光纤适配器410内。
图21为本公开实施例提供的一种光模块中光发射壳体401的结构示意图。如图21所 示,光发射壳体401为上端开口的壳体,其上端开口处设有光发射盖板402,光发射盖板402盖合于光发射壳体401的开口处,以实现光发射次模块400的密封装配。光发射盖板402通过钎焊机与光发射壳体401封焊连接,光发射壳体401远离第一光纤适配器410的一侧通过陶瓷转接块411来封住光发射壳体401的插孔4011,如此实现了光发射壳体401的气密性封装。
连接块4013的一侧面与光发射壳体401的外壁连接,连接块4013的厚度尺寸大于光发射壳体401与光发射盖板402的装配厚度尺寸,即连接块4013的顶面4015突出于光发射盖板402。如此在对光发射盖板402进行封焊时,会对钎焊机产生干扰,造成光发射盖板402与光发射壳体401无法完全封焊密封。本公开在连接块4013的顶面4015上设置避让凹槽4014,该避让凹槽4014的底面可凹陷于光发射盖板402的顶面,也可与光发射盖板402的顶面相平齐。
连接块4013上避让凹槽4014与光发射壳体401的外侧壁之间的距离可根据实际情况进行设置,以保证光发射盖板402进行钎焊时,连接块4013不会对钎焊机产生干扰,以实现在不影响平行封焊的情况下连接光发射壳体401与连接块4013。
图22为本公开实施例提供的一种光模块中光发射次模块400的局部剖视图。如图22所示,第一光纤适配器410与连接块4013相连接,连接块4013内设有贯穿连接块4013的通光孔4016,该通光孔4016与该通光孔4016与光发射壳体401侧壁上的通孔4012相连通,如此光发射腔体403内的光发射器件404发射的复合光束依次通过通孔4012、通光孔4016进入第一光纤适配器410内,实现光的发射。
在本公开实施例中,光发射腔体403内的第二透镜4046与第一光纤适配器410的光纤插芯端面之间设置有汇聚透镜409,该汇聚透镜409固定安装于连接块4013内。在本公开某一实施例中,连接块4013靠近第一光纤适配器410的一侧设有第一安装槽,汇聚透镜409嵌设于该第一安装槽内,且该第一安装槽与通光孔4016相连通,如此经由通光孔4016传输的一路复合光束进入汇聚透镜409内,在汇聚透镜409内进行汇聚,最终复合光束汇聚耦合至第一光纤适配器410的光纤插芯端面。
光发射腔体403内的第二透镜4046与汇聚透镜409之间还设有平面光窗4048,该平面光窗4048可固定安装于连接块4013内。在本公开某一实施例中,连接块4013与光发射壳体401连接的一侧设有第二安装槽,平面光窗4048嵌设于该第二安装槽内,且该第二安装槽与通光孔4016、通孔4012相连通,如此光发射腔体403内第二透镜4046射出的一路复合光束经由通孔4012射入连接块4013内的平面光窗4048,平面光窗4048允许复合光束透过进入通光孔4016内。
平面光窗4048也可固定安装于光发射壳体401与连接块4013连接的侧壁内。在本公开某一实施例中,光发射壳体401与连接块4013连接的侧壁上设有通孔4012,该通孔4012内设有第二安装槽,平面光窗4048嵌设于该第二安装槽内,如此光发射腔体403内第二透镜4046射出的一路复合光束经由通孔4012射入平面光窗4048内,平面光窗4048允许复合光束透过进入通光孔4016内。
在本公开实施例中,连接块4013与光发射壳体401之间可为一体成型结构,也可为 独立结构。当连接块4013与光发射壳体401为独立结构时,连接块4013的侧面可通过胶水粘贴于光发射壳体401的外壁上,如此设置也方便将平面光窗4048安装于光发射壳体401的侧壁内或连接块4013内。
本公开实施例提供的光模块通过8个激光器组件发射不同波长的8通道光束,再通过准直透镜将8通道光束转换为8通道准直光束,之后8通道准直光束依次通过第一光复用器、第二光复用器将8通道光束复用为2通道复合光束,再经由第一透镜、第二透镜与第三透镜将2通道复合光束复用为1通道光束,1通道光束耦合至第一光纤适配器内,实现了单光纤中多个波长的信号光同时传输;另外,为了节省空间,本公开采用高度尺寸较低的斜照式光探测器来监控激光器组件的光功率,且斜照式光探测器与共阳极电极均设置在激光驱动器上,光探测器的阳极通过打线与共阳极电极连接,其阴极通过打线与陶瓷转接块连接,激光驱动器通过打线与陶瓷转接块连接,陶瓷转接块与柔性电路板连接,通过柔性电路板、陶瓷转接块将电路板发送的信号传递至激光驱动器、激光器组件、光探测器等光电器件;还有陶瓷转接块与光发射壳体、光发射盖板与光发射壳体之间采用平行封焊工艺,并在与光发射壳体连接的连接块上设置避让凹槽,实现了在不影响平行封焊的情况下连接第一光纤适配器与光发射壳体。如此,既可实现单光纤中多个波长的信号光同时传输,又使得光发射次模块在光模块中的占用体积减小,有利于光模块小型化的发展。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (40)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,通过柔性电路板与所述电路板电连接,用于发射不同波长的多路光束;
    光接收次模块,通过柔性电路板与所述电路板电连接,其与所述光发射次模块层叠设置,用于接收不同波长的多路光束;
    其中,所述光发射次模块包括:
    光发射壳体,其一端设置有插孔,其另一端设置有通孔;
    光发射盖板,盖合于所述光发射壳体上,其与所述光发射壳体形成光发射腔体;
    陶瓷转接块,其通过所述插孔***所述光发射腔体内,且其与所述光发射壳体密封连接;
    连接块,其一端与所述光发射壳体设置有通孔的侧壁连接;其上设置有避让凹槽,用于在所述光发射壳体与所述光发射盖板封焊时进行避让;
    第一光纤适配器,其与所述连接块的另一端连接,通过所述连接块与所述通孔相连通。
  2. 根据权利要求1所述的光模块,其特征在于,所述避让凹槽设置于所述连接块与所述光发射壳体连接面的相邻顶面上,所述避让凹槽的底面凹陷于所述光发射盖板与所述光发射壳体的安装面。
  3. 根据权利要求1所述的光模块,其特征在于,所述连接块内设置有通光孔,所述通光孔的一端与所述通孔相连通,另一端与所述第一光纤适配器相连通。
  4. 根据权利要求3所述的光模块,其特征在于,所述连接块与所述第一光纤适配器连接的一端设置有第一安装槽,所述第一安装槽与所述通光孔相连通;所述第一安装槽内设置有汇聚透镜,用于将所述通光孔内传输的信号光耦合至所述第一光纤适配器。
  5. 根据权利要求4所述的光模块,其特征在于,所述连接块与所述光发射壳体连接的一端设置有第二安装槽,所述第二安装槽分别与所述通孔、所述通光孔相连通;所述第二安装槽内设置有平面光窗,所述光发射腔体内的信号光经由所述通孔透过所述平面光窗。
  6. 根据权利要求4所述的光模块,其特征在于,所述光发射壳体的通孔内设置有第二安装槽,所述第二安装槽分别与所述通孔、所述通光孔相连通;所述第二安装槽内设置有平面光窗,所述光发射腔体内的信号光经由所述通孔透过所述平面光窗。
  7. 根据权利要求1所述的光模块,其特征在于,所述陶瓷转接块的一端***所述光发射壳体的插孔内,另一端设置有凸台,所述凸台与柔性电路板连接;
    所述陶瓷转接块的一端与所述插孔的内侧壁相抵接,所述陶瓷转接块、所述凸台的连接面与所述光发射壳体的端面相平齐。
  8. 根据权利要求1所述的光模块,其特征在于,所述光发射壳体与所述光发射盖板采用平行封焊工艺进行焊接。
  9. 根据权利要求1所述的光模块,其特征在于,所述光接收次模块包括光接收腔体及盖合于所述光接收腔体的光接收盖板,所述光发射盖板与所述光接收盖板层叠设置。
  10. 根据权利要求9所述的光模块,其特征在于,所述光接收次模块还包括第二光纤 适配器,所述第二光纤适配器与所述光接收腔体相连接,且所述第二光纤适配器与所述第一光纤适配器的高度相同。
  11. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,通过柔性电路板与所述电路板电连接,用于发射不同波长的多路光束;
    光接收次模块,通过柔性电路板与所述电路板电连接,其与所述光发射次模块层叠设置,用于接收不同波长的多路光束;
    其中,所述光发射次模块包括:
    光发射壳体;
    光发射盖板,盖合于所述光发射壳体上,其与所述光发射壳体形成光发射腔体;
    多个激光器组件组,设置于所述光发射腔体内,用于发射不同波长的多路光束;
    多个激光驱动器,设置于所述光发射腔体内,用于驱动所述激光器组件组发射光束;
    多个斜照式光探测器,设置于所述激光驱动器上,位于所述激光器组件组背面出光光路上,用于监控所述激光器组件组的发射光功率;
    陶瓷转接块,其一端***所述光发射腔体内,另一端与所述柔性电路板连接;所述激光驱动器设置于所述陶瓷转接块上,所述激光器组件组、所述激光驱动器与所述斜照式光探测器均通过打线与所述陶瓷转接块连接。
  12. 根据权利要求11所述的光模块,其特征在于,所述斜照式光探测器的底面固定于所述激光驱动器上,所述斜照式光探测器的顶面上设置有阳极与阴极;
    所述斜照式光探测器朝向所述激光器组件组的侧面上设置有光敏面,所述激光器组件组背面发射的光束经由所述光敏面进入所述斜照式光探测器。
  13. 根据权利要求12所述的光模块,其特征在于,所述斜照式光探测器朝向所述激光器组件组的侧面上设置有斜面,该斜面由所述斜照式光探测器的顶面向底面倾斜,所述光敏面设置于所述斜面上。
  14. 根据权利要求12所述的光模块,其特征在于,所述激光驱动器上设置有共阳极电极,所述斜照式光探测器的阳极通过打线与所述共阳极电极连接,所述共阳极电极通过打线与所述陶瓷转接块连接,所述斜照式光探测器的阴极通过打线与所述陶瓷转接块连接。
  15. 根据权利要求14所述的光模块,其特征在于,所述陶瓷转接块朝向所述激光器组件组的一侧设置有凹槽,所述激光驱动器设置于所述凹槽内;
    所述凹槽内设置有焊盘,所述斜照式光探测器的阴极、所述共阳极电极与所述激光驱动器均通过打线与所述焊盘电连接。
  16. 根据权利要求15所述的光模块,其特征在于,所述凹槽包括第一凹槽、第二凹槽与第三凹槽,所述第一凹槽凹陷于所述第二凹槽,所述第二凹槽凹陷于所述第三凹槽;所述激光驱动器设置于所述第一凹槽内;
    所述第一凹槽、所述第二凹槽与所述第三凹槽内均设置有焊盘,所述斜照式光探测器的阴极、所述共阳极电极与所述激光驱动器均通过打线与所述第一凹槽、所述第二凹槽与所述第三凹槽内的焊盘电连接。
  17. 根据权利要求11所述的光模块,其特征在于,所述陶瓷转接块朝向所述电路板的一侧设置有凸台,所述凸台的侧边与所述柔性电路板连接。
  18. 根据权利要求17所述的光模块,其特征在于,所述凸台的顶面与一柔性电路板电连接,所述凸台的底面与另一柔性电路板电连接。
  19. 根据权利要求11所述的光模块,其特征在于,所述激光器组件组包括多个激光器组件,所述激光器组件包括激光器、激光器热沉与半导体制冷器,所述激光器设置于所述激光器热沉上,所述激光器热沉设置于所述半导体制冷器上,所述半导体制冷器的底面固定于所述光发射腔体的底面上。
  20. 根据权利要求19所述的光模块,其特征在于,所述激光器组件组还包括COC基板,所述COC基板设置于所述激光器热沉与所述半导体制冷器之间,多个所述激光器热沉均设置于所述COC基板上。
  21. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,与所述电路板电连接,用于发射不同波长的多路光束;
    光接收次模块,与所述电路板电连接,其与所述光发射次模块层叠设置,用于接收不同波长的多路光束;
    其中,所述光发射次模块包括:
    光发射壳体;
    光发射盖板,盖合于所述光发射壳体上,其与所述光发射壳体形成光发射腔体;所述光发射腔体内设置有多个光复用器与透镜组件;
    支撑平台,设置于所述光发射腔体内,其上设置有透镜固定件与多个平台,所述多个光复用器固定于所述平台上,所述透镜组件固定于所述透镜固定件上,多个所述光复用器射出的多路复合光束经由所述透镜组件的反射、折射后复用为一路信号光;
    第一光纤适配器,与所述光发射壳体连接,用于接收所述信号光,将所述信号光发射出去。
  22. 根据权利要求21所述的光模块,其特征在于,所述平台包括第一平台与第二平台,所述第一平台与所述第二平台并行设置于所述支撑平台远离所述第一光纤适配器的一侧;
    所述光复用器包括第一光复用器与第二光复用器,所述第一平台上设置有第一安装槽,所述第二光复用器嵌设于所述第一安装槽内;
    所述第二平台上设置有第二安装槽,所述第一光复用器嵌设于所述第二安装槽内。
  23. 根据权利要求22所述的光模块,其特征在于,所述第一安装槽内设置有第一点胶槽,所述第一点胶槽与所述第二光复用器的底面相连接;
    所述第二安装槽内设置有第二点胶槽,所述第二点胶槽与所述第一光复用器的底面相连接。
  24. 根据权利要求23所述的光模块,其特征在于,所述第一平台与所述第二平台之间设置有第一隔板,所述第二平台远离所述第一隔板的一侧设置有第二隔板;
    所述第一隔板的底部边缘与所述第一安装槽相连通,所述第二隔板的底部边缘与所述第二安装槽相连通。
  25. 根据权利要求24所述的光模块,其特征在于,所述第一隔板朝向所述第一平台的一侧设置有第一斜面,所述第一斜面与所述第一隔板的底部边缘相连通;
    所述第二隔板朝向所述第二平台的一侧设置有第二斜面,所述第二斜面与所述第二隔板的底部边缘相连通。
  26. 根据权利要求22所述的光模块,其特征在于,所述支撑平台靠近所述第一光纤适配器的一侧设置有透镜安装柱与细凹槽,所述透镜安装柱设置于所述第二平台上第一光复用器的出射光路上,所述细凹槽设置于所述第一平台上第二光复用器的出射光路上;
    所述透镜组件包括第一透镜、第二透镜与第三透镜,所述第一透镜与所述第二透镜固定于所述透镜安装柱的两侧边上,所述第一透镜朝向所述第二平台,所述第二透镜朝向所述第一光纤适配器,所述第三透镜设置于所述细凹槽处;所述透镜安装柱与所述细凹槽成一定角度设置,以使得由所述第一光复用器射出的第一复合光束直接透射通过所述第一透镜、所述第二透镜,以及由所述第二光复用器射出的第二复合光束在所述第三透镜发生反射,反射后的第二复合光束射至所述第二透镜,经由所述第二透镜再次反射至所述第一透镜,反射至所述第一透镜的第二复合光束经由所述第一透镜再次反射至所述第二透镜,再次反射至所述第二透镜的第二复合光束透射通过所述第二透镜。
  27. 根据权利要求26所述的光模块,其特征在于,所述透镜安装柱包括第一侧边、第二侧边与第三侧边,所述第一侧边朝向所述第二平台,所述第二侧边朝向所述第一光纤适配器,所述第三侧边朝向所述细凹槽;
    所述第一透镜的出射光面固定于所述第一侧边上,所述第二透镜的入射光面固定于所述第二侧边上。
  28. 根据权利要求27所述的光模块,其特征在于,所述支撑平台上设置有退刀槽,所述透镜安装柱设置于所述退刀槽内。
  29. 根据权利要求22所述的光模块,其特征在于,所述第一安装槽与所述第二安装槽均倾斜设置。
  30. 根据权利要求26所述的光模块,其特征在于,所述透镜安装柱为三角凸起。
  31. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,与所述电路板电连接,用于发射不同波长的多路信号光;
    光接收次模块,与所述电路板电连接,且其与所述光发射次模块层叠设置,用于接收不同波长的多路信号光;
    其中,所述光发射次模块包括:
    光发射壳体;
    光发射盖板,盖合于所述光发射壳体上,与所述光发射壳体形成光发射腔体;
    多个激光器组件组,设置于所述光发射腔体内,用于发射不同波长的多路光束;
    多个光复用器,设置于所述光发射腔体内,与多个所述激光器组件组相对应设置,用 于分别将所述不同波长的多路光束复用为多路复合光束;
    透镜组件,设置于所述光发射腔体内,用于分别对所述多路复合光束进行反射、折射,将所述多路复合光束复用为一路信号光;
    第一光纤适配器,与所述光发射壳体连接,用于接收所述信号光,将所述信号光发射出去。
  32. 根据权利要求31所述光模块,其特征在于,所述光复用器包括:
    第一光复用器,设置于所述光发射腔体内,用于接收一所述激光器组件组发射的多路光束,并将所述多路光束复用为第一复合光束;
    第二光复用器,设置于所述光发射腔体内,用于接收另一所述激光器组件组发射的多路光束,并将所述多路光束复用为第二复合光束。
  33. 根据权利要求32所述光模块,其特征在于,所述透镜组件包括第一透镜、第二透镜与第三透镜,其中,
    所述第一透镜设置于所述第一光复用器的出射光路上,所述第二透镜设置于所述第一透镜的出射光路上,所述第三透镜设置于所述第二光复用器的出射光路上;
    经所述第一光复用器射出的所述第一复合光束依次直接透射通过所述第一透镜、所述第二透镜;
    经所述第二光复用器射出的所述第二复合光束由所述第三透镜反射至所述第二透镜,再经由所述第二透镜将反射后的第二复合光束再次反射至所述第一透镜,再经由所述第一透镜将反射后的第二复合光束再次反射至所述第二透镜,再次反射后的第二复合光束透射通过所述第二透镜。
  34. 根据权利要求33所述光模块,其特征在于,所述第一透镜的出射光面上设置有半反半透膜,所述第一复合光束直接透射通过所述半反半透膜,以及,反射后的所述第二复合光束经由所述半反半透膜处再次反射至所述第二透镜,改变所述第二复合光束的入射光角度;
    所述第三透镜的入射光面上设置有反射膜,所述第二复合光束经由所述反射膜反射至所述第二透镜;
    所述第二透镜的入射光面上设置有角度选择膜,所述第一复合光束直接透射通过所述角度选择膜,反射至所述第二透镜的第二复合光束经由所述角度选择膜反射至所述第一透镜的半反半透膜,以及经由所述半反半透膜再次反射至所述角度选择膜的第二复合光束透射通过所述角度选择膜。
  35. 根据权利要求34所述的光模块,其特征在于,经由所述第一透镜透射进入所述第二透镜的第一复合光束及经由所述第一透镜再次反射进入所述第二透镜的第二复合光束在所述第二透镜内合光为一路信号光。
  36. 根据权利要求35所述光模块,其特征在于,所述第一光纤适配器与所述第二透镜之间设置有汇聚透镜,用于将所述第二透镜射出的一路信号光汇聚耦合至所述第一光纤适配器。
  37. 根据权利要求36所述光模块,其特征在于,所述第二透镜与所述汇聚透镜之间 设置有平面光窗,所述平面光窗设置于所述光发射壳体的侧壁内,所述第二透镜射出的一路信号光透射通过所述平面光窗。
  38. 根据权利要求32所述光模块,其特征在于,所述光发射次模块还包括多个准直透镜,所述准直透镜设置于所述激光器组件组与所述光复用器之间,用于分别将所述激光器组件组发射的不同波长的多路光束转换为准直光束。
  39. 根据权利要求38所述光模块,其特征在于,所述第一光复用器与所述第二光复用器的入射光面上设置有入射光口,所述入射光口倾斜设置,用于接收所述准直透镜射出的准直光束,以将所述准直光束复用为两路复合光束。
  40. 根据权利要求38所述光模块,其特征在于,所述光发射次模块包括两个激光器组件组,每个所述激光器组件组包括4个激光器组件;所述光发射次模块包括8个准直透镜,所述激光器组件与所述准直透镜一一对应设置。
PCT/CN2020/135775 2020-09-18 2020-12-11 一种光模块 WO2022057113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/122,560 US20230258883A1 (en) 2020-09-18 2023-03-16 Optical module

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010988545.3A CN114200597B (zh) 2020-09-18 2020-09-18 一种光模块
CN202010988545.3 2020-09-18
CN202010990182.7 2020-09-18
CN202010988607.0 2020-09-18
CN202010988200.8 2020-09-18
CN202010988200.8A CN114200596B (zh) 2020-09-18 2020-09-18 一种光模块
CN202010990182.7A CN114200603B (zh) 2020-09-18 2020-09-18 一种光模块
CN202010988607.0A CN114200598B (zh) 2020-09-18 2020-09-18 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/122,560 Continuation-In-Part US20230258883A1 (en) 2020-09-18 2023-03-16 Optical module

Publications (1)

Publication Number Publication Date
WO2022057113A1 true WO2022057113A1 (zh) 2022-03-24

Family

ID=80775724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135775 WO2022057113A1 (zh) 2020-09-18 2020-12-11 一种光模块

Country Status (2)

Country Link
US (1) US20230258883A1 (zh)
WO (1) WO2022057113A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127059A1 (zh) * 2020-12-14 2022-06-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN117555089B (zh) * 2024-01-10 2024-04-12 深圳市维度科技股份有限公司 一种用于适配双联光纤连接器的夹具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365176A1 (en) * 2014-06-12 2015-12-17 Sumitomo Electric Industries, Ltd. Process to assemble optical receiver module
US9553671B1 (en) * 2015-07-07 2017-01-24 Inphi Corporation Package structure for photonic transceiving device
CN107966773A (zh) * 2018-01-10 2018-04-27 青岛海信宽带多媒体技术有限公司 光发射次模块及光模块
CN109212688A (zh) * 2018-10-24 2019-01-15 青岛海信宽带多媒体技术有限公司 光发射组件和光模块
CN109283634A (zh) * 2017-07-19 2019-01-29 苏州旭创科技有限公司 光模块
CN109283632A (zh) * 2017-07-19 2019-01-29 苏州旭创科技有限公司 光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365176A1 (en) * 2014-06-12 2015-12-17 Sumitomo Electric Industries, Ltd. Process to assemble optical receiver module
US9553671B1 (en) * 2015-07-07 2017-01-24 Inphi Corporation Package structure for photonic transceiving device
CN109283634A (zh) * 2017-07-19 2019-01-29 苏州旭创科技有限公司 光模块
CN109283632A (zh) * 2017-07-19 2019-01-29 苏州旭创科技有限公司 光模块
CN107966773A (zh) * 2018-01-10 2018-04-27 青岛海信宽带多媒体技术有限公司 光发射次模块及光模块
CN109212688A (zh) * 2018-10-24 2019-01-15 青岛海信宽带多媒体技术有限公司 光发射组件和光模块

Also Published As

Publication number Publication date
US20230258883A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
CN214174689U (zh) 一种光模块
CN215895036U (zh) 一种光模块
WO2022057113A1 (zh) 一种光模块
CN215813458U (zh) 一种光模块
US11994726B2 (en) Optical module
CN113721331A (zh) 一种光模块
CN114200596B (zh) 一种光模块
CN215895035U (zh) 一种光模块
CN216013740U (zh) 一种光模块
CN114624829B (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
CN115016074B (zh) 一种光模块
CN218350566U (zh) 一种光模块
CN114200603B (zh) 一种光模块
CN215895032U (zh) 一种光模块
CN217521402U (zh) 光模块
WO2022057100A1 (zh) 一种光模块
CN114624828B (zh) 一种光模块
CN214228256U (zh) 一种光模块
CN114200598B (zh) 一种光模块
CN114200600A (zh) 一种光模块
CN114200597B (zh) 一种光模块
CN115016073B (zh) 一种光模块
CN115032749B (zh) 一种光模块
CN114280733B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953969

Country of ref document: EP

Kind code of ref document: A1