WO2022056678A1 - 传输方法、装置、终端、网络设备 - Google Patents

传输方法、装置、终端、网络设备 Download PDF

Info

Publication number
WO2022056678A1
WO2022056678A1 PCT/CN2020/115344 CN2020115344W WO2022056678A1 WO 2022056678 A1 WO2022056678 A1 WO 2022056678A1 CN 2020115344 W CN2020115344 W CN 2020115344W WO 2022056678 A1 WO2022056678 A1 WO 2022056678A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch transmission
signaling
transmission opportunities
dci signaling
pdcch
Prior art date
Application number
PCT/CN2020/115344
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080002387.8A priority Critical patent/CN114514717B/zh
Priority to US18/044,351 priority patent/US20230336311A1/en
Priority to PCT/CN2020/115344 priority patent/WO2022056678A1/zh
Priority to EP20953539.2A priority patent/EP4216473A4/en
Publication of WO2022056678A1 publication Critical patent/WO2022056678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission method, an apparatus, a terminal, and a network device.
  • the network device can use multiple TRPs to provide services for the terminal. For example, in order to improve the reliability and transmission efficiency of physical downlink control channel (Physical Downlink Control Channel, PDCCH) transmission, the same downlink control information (Downlink Control Information, DCI) signaling can be sent to the terminal through multiple TRPs.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • Embodiments of the present disclosure provide a transmission method, apparatus, terminal, and network device.
  • the technical solution is as follows:
  • a transmission method comprising:
  • DCI signaling is received based on the receiving manner of the DCI signaling.
  • a transmission method comprising:
  • the terminal Indicating the number of the PDCCH transmission opportunities to the terminal, where the terminal is configured to determine the receiving mode of the DCI signaling based on the number of the PDCCH transmission opportunities and the number of transmission resources;
  • a transmission device comprising:
  • an acquisition module configured to acquire the number of PDCCH transmission opportunities
  • a determining module configured to determine a receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources;
  • the receiving module is configured to receive the DCI signaling based on the receiving manner of the DCI signaling.
  • a transmission device comprising:
  • a determining module configured to determine the number of PDCCH transmission opportunities
  • an indication module configured to indicate the number of the PDCCH transmission opportunities to the terminal, where the terminal is configured to determine the receiving mode of the DCI signaling based on the number of the PDCCH transmission opportunities and the number of transmission resources;
  • a sending module configured to send DCI signaling to the terminal.
  • a terminal comprising: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to load and execute the executable Instructions to implement the transmission method of the aforementioned DCI signaling.
  • a network device comprising: a processor; a memory for storing processor-executable instructions; wherein the processor is configured to load and execute the The instructions are executable to implement the aforementioned transmission method of DCI signaling.
  • a computer-readable storage medium when the instructions in the computer-readable storage medium are executed by a processor, the foregoing method for transmitting DCI signaling can be performed.
  • the terminal when the terminal receives DCI signaling, it first determines the number of PDCCH transmission opportunities, and through the number of PDCCH transmission opportunities and the number of transmission resources, the receiving mode of DCI signaling can be determined, for example, the number of PDCCH transmission opportunities and the number of transmission resources can be determined.
  • the number of transmission resources is equal, it means that the complete content of the same DCI signaling is transmitted each time on each PDCCH transmission resource. Repeated transmission of the same DCI signaling is implemented on each transmission resource. In this case, if the terminal can correctly decode the DCI signaling by receiving the DCI signaling on one of the transmission resources, the terminal may not need to receive the DCI signaling on the other transmission resources.
  • the terminal may also perform soft combining of the DCI signaling transmitted multiple times to further improve the decoding success rate.
  • the number of PDCCH transmission opportunities is less than the number of transmission resources, it means that part of the same DCI signaling is transmitted on each PDCCH transmission resource, and at this time, the complete content of the same DCI signaling is transmitted according to multiple transmission resources ( That is, each transmission resource transmits a partial content of the same DCI signaling), that is, the content on multiple transmission resources is combined to form a complete DCI signaling. Determining the receiving mode of the DCI signaling in the above manner can ensure the correct reception and decoding of the DCI signaling by the terminal, thereby improving the communication quality.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • FIG. 2 is a flowchart of a transmission method according to an exemplary embodiment
  • FIG. 3 is a flowchart of a transmission method according to an exemplary embodiment
  • FIG. 4 is a flowchart showing a transmission method according to an exemplary embodiment
  • FIG. 5 is a flowchart showing a transmission method according to an exemplary embodiment
  • FIG. 6 is a schematic structural diagram of a transmission device according to an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of a transmission device according to an exemplary embodiment
  • FIG. 8 is a block diagram of a terminal according to an exemplary embodiment
  • Fig. 9 is a block diagram of a network device according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: a network side 12 and a terminal 13 .
  • the network side 12 includes several network devices 120 .
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may be a base station of a serving cell of the terminal 13 or a base station of a neighboring cell of the serving cell of the terminal 13 .
  • the base station may include various forms of macro base station, micro base station, relay station, access point, transmission reception point (Transmission Reception Point, TRP) and so on.
  • TRP Transmission Reception Point
  • the names of devices with base station functions may be different.
  • NR, New Radio 5G New Radio
  • they are called gNodeBs or gNBs.
  • the network device 120 may also be a location management function entity (Location Management Function, LMF).
  • LMF Location Management Function
  • the network device 120 may also be a vehicle terminal device.
  • the terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem, as well as various forms of user equipment, mobile stations (Mobile Station, MS), Terminal, Internet of Things (Internet of Things, IoT), Industrial Internet of Things (Industry Internet of Things, IIoT) and so on.
  • mobile stations Mobile Station, MS
  • Terminal Internet of Things (Internet of Things, IoT), Industrial Internet of Things (Industry Internet of Things, IIoT) and so on.
  • IoT Internet of Things
  • Industrial Internet of Things Industrial Internet of Things
  • the complete content of the same DCI signaling is sent on each PDCCH transmission resource provided by each TRP, that is, multiple TRPs repeatedly send the same DCI signaling.
  • the terminal may not need to receive the DCI signaling on the other transmission resources. Otherwise, the terminal may also perform soft combining of the multiple-transmitted DCI signaling to further improve the decoding success rate and improve the reliability of PDCCH transmission.
  • the other is that only part of one DCI signaling is sent on each PDCCH transmission resource provided by each TRP, and the terminal can obtain DCI by receiving parts of multiple DCI signaling on multiple TRPs for splicing and decoding.
  • the complete content of the signaling improves the reliability of PDCCH transmission (when the transmission code rate is reduced, the reliability is higher).
  • the DCI signaling cannot be decoded successfully.
  • the terminal in order to achieve the above transmission effect, the terminal must know which transmission mode is currently used. Otherwise, if the terminal adopts the wrong way to receive, it may cause an error in receiving the DCI signaling, which may lead to a decrease in communication quality.
  • the communication systems and service scenarios described in the embodiments of the present disclosure are for the purpose of illustrating the technical solutions of the embodiments of the present disclosure more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure.
  • the evolution of new business scenarios and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present disclosure are also applicable to similar technical problems.
  • Fig. 2 is a flow chart of a transmission method according to an exemplary embodiment. Referring to Figure 2, the method includes the following steps:
  • step 101 the terminal acquires the number of PDCCH transmission opportunities.
  • the number of PDCCH transmission opportunities refers to the number of times that multiple TRPs transmit the same DCI signaling, and the transmission reliability can be improved by repeating the transmission.
  • step 102 the terminal determines a receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources.
  • each TRP transmits the DCI signaling once; or each PDCCH can transmit the DCI signaling once.
  • the transmission resources only transmit part of the DCI signaling, that is, multiple TRPs transmit the DCI signaling once together. This results in a different relationship between the number of PDCCH transmission opportunities and the number of transmission resources. Through the relationship between the two, the way that multiple TRPs send the same DCI signaling can be reversed, so as to determine the corresponding receiving mode and realize the DCI signaling. received correctly.
  • step 103 the terminal receives the DCI signaling based on the receiving manner of the DCI signaling.
  • the terminal when receiving DCI signaling, the terminal first determines the number of PDCCH transmission opportunities, and the receiving method of DCI signaling can be determined by the number of PDCCH transmission opportunities and the number of transmission resources, for example, the number of PDCCH transmission opportunities and the number of transmission resources.
  • the number of resources is equal, it means that the complete content of the same DCI signaling is transmitted on each PDCCH transmission resource.
  • the same DCI signaling is transmitted multiple times and received. In this case, if the terminal can correctly decode the DCI signaling by receiving the DCI signaling on one of the transmission resources, the terminal may not need to receive the DCI signaling on the other transmission resources.
  • the terminal may also perform soft combining of the DCI signaling transmitted multiple times to further improve the decoding success rate.
  • the number of PDCCH transmission opportunities is less than the number of transmission resources, it means that part of the content of the same DCI signaling is transmitted on each PDCCH transmission resource, and the complete content of the same DCI signaling is transmitted according to multiple transmission resources (that is, each The transmission resource is received in the manner of transmitting a part of the same DCI signaling), that is, it is received in the manner that the contents transmitted by multiple transmission resources are combined into a complete DCI signaling. Determining the receiving mode of the DCI signaling in the above manner can ensure the correct reception and decoding of the DCI signaling by the terminal, thereby improving the communication quality.
  • the PDCCH transmission opportunity refers to the complete transmission of one DCI signaling.
  • each PDCCH transmission opportunity corresponds to one PDCCH transmission resource, and each PDCCH transmission resource is used to transmit the complete content of the first DCI signaling.
  • each PDCCH transmission opportunity corresponds to multiple PDCCH transmission resources, each PDCCH transmission resource is used to transmit part of the content of the second DCI signaling, and the multiple PDCCH transmission resources corresponding to one PDCCH transmission opportunity transmit the second DCI signaling.
  • the partial contents of are combined into the complete contents of the second DCI signaling.
  • the obtaining the number of PDCCH transmission opportunities includes:
  • the embodiment of the present disclosure provides two schemes for obtaining the number of PDCCH transmission opportunities. One is to obtain the number of transmissions locally, and the number of transmissions is written in the protocol configuration or local storage in advance; For example, it is obtained by indicating signaling.
  • the indication signaling is at least one of radio resource control (Radio Resource Control, RRC) signaling, medium access control (Medium Access Control, MAC) signaling, or DCI signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the network device can either directly indicate the number of PDCCH transmission opportunities in the indication signaling, or indirectly indicate the number of PDCCH transmission opportunities by using other parameters, such as indicating the transmission configuration for PDCCH transmission
  • the number of indication Transmission Configuration Indication, TCI
  • TCI Transmission Configuration Indication
  • DMRS Demodulation Reference Signal
  • Some of these parameters are directly equal to the number of PDCCH transmission opportunities, some The number of PDCCH transmission opportunities can be further determined.
  • the determining the number of the PDCCH transmission opportunities based on the indication signaling may include the following situations:
  • the number of PDCCH transmission opportunities is determined from the indication signaling that carries the number of PDCCH transmission opportunities.
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the number of TCI states, and the number of PDCCH transmission opportunities is equal to the number of TCI states.
  • the TCI state is used to indicate the beam used for PDCCH transmission.
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the PDCCH transmission method and the number of TCI states, and the number of PDCCH transmission opportunities is equal to 1 or equal to the number of TCI states.
  • the PDCCH transmission method includes frequency division multiplexing (Frequency-division multiplexing, FDM), space division multiplexing (Space-division multiplexing, SDM), time division multiplexing (intra-slot Time-division multiplexing, intra-slot -slot TDM) and inter-slot time division multiplexing (inter-slot TDM).
  • FDM Frequency-division multiplexing
  • SDM Space-division multiplexing
  • time division multiplexing intra-slot Time-division multiplexing
  • intra-slot TDM intra-slot Time division multiplexing
  • inter-slot TDM inter-slot time division multiplexing
  • the number of PDCCH transmission opportunities is equal to the number of TCI states; if each transmission resource block transmits part of the content of DCI signaling, the number of PDCCH transmission opportunities is equal to 1 .
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the number of DMRSs, and the number of PDCCH transmission opportunities is equal to the number of DMRSs.
  • the different DMRSs indicate that at least one of the ports, sequences, time-domain resources, frequency-domain resources, or code division multiplexing groups of the DMRSs is different.
  • the number of DMRSs indicated in the indication signaling is M, and M is greater than or equal to 2.
  • the sequence of each of the M DMRSs is different; or,
  • the time domain resources of each of the M DMRSs are different; or,
  • the frequency domain resources of each of the M DMRSs are different; or
  • the corresponding code division multiplexing group (Code Division Multiplexing group, CDM group) of each of the M DMRSs is different.
  • At least N transmission resources among the plurality of PDCCH transmission resources are in one-to-one correspondence with N TCI states, where N is greater than or equal to 2.
  • all PDCCH transmission resources correspond to the same control resource set (Control Resource Set, CORESET). In this case, it further includes the following situations:
  • All PDCCH transmission resources correspond to the same Search Space.
  • One control resource set corresponds to multiple TRPs, and one control resource set has multiple search spaces.
  • All PDCCH transmission resources correspond to the same PDCCH candidate position in the same search space. Among them, there are multiple candidate (Candidate) positions that can be used for PDCCH transmission in one search space.
  • Different PDCCH transmission resources correspond to different control channel elements (Control Channel Element, CCE) of the same PDCCH candidate position, that is, the frequency domains corresponding to each PDCCH transmission resource are different.
  • CCE Control Channel Element
  • the PDCCH candidate position includes 4 CCEs, 2 of which correspond to TCI#0 and are sent by TRP#0, and the other 2 correspond to TCI#1 and are sent by TRP#1.
  • different CCEs correspond to the aforementioned different TCI states.
  • Different PDCCH transmission resources correspond to different resource element groups (Resource Element Group bundles, REG bundles) of the same CCE at the same PDCCH candidate position, that is, the frequency domains corresponding to each PDCCH transmission resource are different.
  • the PDCCH candidate position contains 1 CCE
  • the CCE contains 2 REG bundles, of which 1 REG bundle corresponds to TCI#0, which is sent by TRP#0, and the other REG bundle corresponds to TCI#1, which is sent by TRP #1 Send.
  • different REG bundles correspond to different TCI states.
  • Different PDCCH transmission resources correspond to all CCEs in the same PDCCH candidate position, that is, the time domain and frequency domain corresponding to each PDCCH transmission resource are the same.
  • the PDCCH candidate position contains 4 CCEs, and the 4 CCEs correspond to TCI#0 and TCI#1.
  • TRP#0 and TRP#1 use different beams to send the same DCI on these 4 CCEs signaling.
  • different TRPs use different TCI states to send DCI signaling on the same time-frequency resource.
  • At least two PDCCH transmission resources in all PDCCH transmission resources correspond to different PDCCH candidate positions, that is, the frequency domains corresponding to each PDCCH transmission resource are different.
  • different PDCCH candidate positions correspond to different TCI states and are sent by different TRPs.
  • At least two PDCCH transmission resources in all PDCCH transmission resources correspond to different search spaces.
  • different search spaces correspond to different TCI states and are sent by different TRPs.
  • At least two PDCCH transmission resources in all PDCCH transmission resources correspond to different control resource sets.
  • different control resource sets correspond to different TCI states and are sent by different TRPs.
  • the above parameters carried in the indication signaling are not always equal to the number of PDCCH transmission opportunities, but only when a certain parameter is equal to the number of PDCCH transmission opportunities, the network device uses it to indicate the number of PDCCH transmission opportunities. When a certain parameter is not equal to the number of PDCCH transmission opportunities, the network device will not use it to indicate the number of PDCCH transmission opportunities.
  • determining the receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources including:
  • each transmission resource In response to the number of PDCCH transmission opportunities being equal to the number of transmission resources, receiving in a manner that each transmission resource transmits the complete content of the same DCI signaling, that is, each transmission resource transmits the DCI signaling once; or,
  • each transmission resource transmits a partial content of the same DCI signaling
  • all The transmission resources transmit the DCI signaling once together.
  • the terminal When the terminal receives the complete content of the same DCI signaling according to each transmission resource, the terminal will receive multiple copies of the complete content of the DCI signaling. In this case, if the terminal can correctly decode the DCI signaling by receiving the DCI signaling on one of the transmission resources, the terminal may not need to receive the DCI signaling on the other transmission resources. Otherwise, the terminal can also perform soft combining and decoding on the complete contents of multiple pieces of DCI signaling to ensure the reliability of PDCCH transmission.
  • the terminal When the terminal transmits the partial content of the same DCI signaling according to each transmission resource, the terminal will receive the partial content of the multiple DCI signaling, and by splicing and decoding the partial content of the multiple DCI signaling, the All partial contents transmitted by each transmission resource are combined to decode the complete contents of the DCI signaling, so as to ensure the reliability of PDCCH transmission.
  • the method further includes:
  • the manner of acquiring the number of transmission resources may be similar to the manner of acquiring the number of PDCCH transmission opportunities, for example, it may be acquired locally or acquired through an instruction.
  • the instruction may directly carry the number of transmission resources, or may carry other parameters to indirectly indicate the number of transmission resources.
  • At least one of time domain, frequency domain, spatial domain and code domain of any two PDCCH transmission resources is different.
  • Fig. 3 is a flow chart of a transmission method according to an exemplary embodiment. Referring to Figure 3, the method includes the following steps:
  • step 201 the network device determines the number of PDCCH transmission opportunities.
  • the network device indicates the number of the PDCCH transmission opportunities to the terminal, and the terminal is configured to determine the receiving mode of the DCI signaling based on the number of the PDCCH transmission opportunities and the number of transmission resources.
  • the network device determines the number of PDCCH transmission opportunities, it can either directly send the number of PDCCH transmission opportunities to the terminal, or send other parameters that can indirectly indicate the number of PDCCH transmission opportunities to the terminal, as long as the terminal can determine the PDCCH from these parameters.
  • the number of transmission opportunities is sufficient.
  • step 203 the network device sends DCI signaling to the terminal.
  • the sending mode adopted by the network device corresponds to the receiving mode determined by the terminal. For example, when the terminal transmits the complete content of one DCI signaling for each transmission resource, the network device also transmits the complete content of one DCI signaling each time.
  • the content is sent in the form of content, that is, it is sent in the form of multiple transmissions for the same DCI signaling through multiple transmission resources.
  • the terminal may not need to receive the DCI signaling on the other transmission resources. Otherwise, the terminal may also perform soft combining of the DCI signaling transmitted multiple times to further improve the decoding success rate.
  • the network device When the terminal transmits the complete content of the same DCI signaling according to multiple transmission resources (that is, each transmission resource transmits part of the same DCI signaling), the network device also transmits the same DCI signaling each time. Partial content is sent, that is, the content transmitted through multiple transmission resources is combined into a complete DCI signaling.
  • the network device indicates the number of PDCCH transmission opportunities to the terminal, so that the terminal can determine the receiving mode of DCI signaling by comparing the number of PDCCH transmission opportunities and the number of transmission resources, for example, the number of PDCCH transmission opportunities and the number of transmission resources If they are equal, it means that the complete content of the same DCI signaling is transmitted on each PDCCH transmission resource. If the terminal can correctly decode the DCI signaling by receiving the DCI signaling on one of the transmission resources, the terminal does not need to receive the DCI signaling on the other transmission resources. Otherwise, the terminal may also perform soft combining of the DCI signaling transmitted multiple times to further improve the decoding success rate.
  • the number of PDCCH transmission opportunities is less than the number of transmission resources, it means that part of the content of the same DCI signaling is transmitted on each PDCCH transmission resource, and at this time, the complete content of the same DCI signaling is transmitted according to multiple transmission resources (that is, Each transmission resource is received in a manner of transmitting a part of the same DCI signaling), that is, received in a manner in which the contents transmitted by multiple transmission resources are combined into a complete DCI signaling. Determining the receiving mode of the DCI signaling in the above manner can ensure the correct reception and decoding of the DCI signaling by the terminal, thereby improving the communication quality.
  • the indicating the number of the PDCCH transmission opportunities to the terminal includes:
  • the indication signaling is at least one of RRC signaling, MAC signaling or DCI signaling.
  • the sending indication signaling includes:
  • sending the indication signaling carrying the number of TCI states, and the number of PDCCH transmission opportunities is equal to the number of TCI states
  • sending the indication signaling carrying the PDCCH transmission method and the number of TCI states, and the number of PDCCH transmission opportunities is equal to 1 or equal to the number of the TCI states;
  • the indication signaling carrying the number of DMRSs is sent, and the number of PDCCH transmission opportunities is equal to the number of DMRSs.
  • different DMRSs indicate that at least one of the ports, sequences, time-domain resources, frequency-domain resources, or code division multiplexing groups of the DMRSs is different.
  • the method further includes:
  • the number of transmission resources is indicated to the terminal.
  • the way of indicating the number of transmission resources may be similar to the way of indicating the number of PDCCH transmission opportunities, for example, the number of transmission resources may be directly carried in the command, or other parameters may be carried to indirectly indicate the number of transmission resources.
  • At least one of time domain, frequency domain, spatial domain and code domain of any two PDCCH transmission resources is different.
  • Fig. 4 is a flowchart showing a transmission method according to an exemplary embodiment. Referring to Figure 4, the method includes the following steps:
  • step 301 the network device determines the number of PDCCH transmission opportunities.
  • the network device determines the number of PDCCH transmission opportunities according to network conditions, terminal priorities, and the like.
  • the number of PDCCH transmission opportunities is multiple times, multiple TRPs are used to transmit the same DCI signaling multiple times. At this time, in order to ensure correct reception of the terminal, the number of PDCCH transmission opportunities may be indicated to the terminal.
  • step 302 the network device sends indication signaling, where the indication signaling is used to indicate the number of the PDCCH transmission opportunities.
  • the terminal receives the indication signaling.
  • the indication signaling is at least one of RRC signaling, MAC signaling or DCI signaling.
  • step 303 the terminal determines the number of the PDCCH transmission opportunities based on the indication signaling.
  • the PDCCH transmission opportunity refers to the complete transmission of one DCI signaling.
  • each PDCCH transmission opportunity corresponds to one PDCCH transmission resource, and each PDCCH transmission resource is used to transmit the complete content of the first DCI signaling.
  • each PDCCH transmission opportunity corresponds to multiple PDCCH transmission resources, each PDCCH transmission resource is used to transmit part of the content of the second DCI signaling, and the multiple PDCCH transmission resources corresponding to one PDCCH transmission opportunity transmit the second DCI signaling.
  • the partial contents of are combined into the complete contents of the second DCI signaling.
  • the network device can either directly indicate the number of PDCCH transmission opportunities in the indication signaling, or can use other parameters to indirectly indicate the number of PDCCH transmission opportunities, such as indicating the TCI state used for PDCCH transmission Some of these parameters are directly equal to the number of PDCCH transmission opportunities, and some can further determine the number of PDCCH transmission opportunities.
  • the determining the number of the PDCCH transmission opportunities based on the indication signaling may include the following situations:
  • the number of PDCCH transmission opportunities is determined from the indication signaling that carries the number of PDCCH transmission opportunities.
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the number of transmission configuration indication (Transmission Configuration Indication, TCI) states, and the number of PDCCH transmission opportunities is equal to the number of TCI states.
  • TCI Transmission Configuration Indication
  • the TCI state is used to indicate the beam used for PDCCH transmission.
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the PDCCH transmission method and the number of TCI states, and the number of PDCCH transmission opportunities is equal to 1 or equal to the number of TCI states.
  • the PDCCH transmission methods include FDM, SDM, intra-slot TDM and inter-slot TDM.
  • the four methods also include two ways of transmitting the complete content of the same DCI signaling in each transmission resource block and transmitting part of the content of one DCI signaling in each transmission resource block. If each transmission resource block transmits the complete content of the same DCI signaling, the number of PDCCH transmission opportunities is equal to the number of TCI states; if each transmission resource block transmits part of the DCI signaling, the number of PDCCH transmission opportunities is equal to 1.
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the number of demodulation reference signals (Demodulation Reference Signal, DMRS), and the number of PDCCH transmission opportunities is equal to the number of DMRSs.
  • DMRS Demodulation Reference Signal
  • the different DMRSs indicate that at least one of the ports, sequences, time-domain resources, frequency-domain resources, or code division multiplexing groups of the DMRSs is different.
  • the number of DMRSs indicated in the indication signaling is M, and M is greater than or equal to 2.
  • the port of each DMRS in the M DMRSs is different; or,
  • the sequence of each of the M DMRSs is different; or,
  • the time domain resources of each of the M DMRSs are different; or,
  • the frequency domain resources of each of the M DMRSs are different; or
  • the corresponding CDM group of each of the M DMRSs is different.
  • At least N transmission resources among the plurality of PDCCH transmission resources are in one-to-one correspondence with N TCI states, where N is greater than or equal to 2.
  • all PDCCH transmission resources correspond to the same control resource set. In this case, it further includes the following situations:
  • All PDCCH transmission resources correspond to the same search space.
  • All PDCCH transmission resources correspond to the same PDCCH candidate position in the same search space.
  • the PDCCH candidate position includes 4 CCEs, of which 2 correspond to TCI#0 and are sent by TRP#0, and the other 2 correspond to TCI#1 and are sent by TRP#1.
  • different CCEs correspond to the aforementioned different TCI states.
  • Different PDCCH transmission resources correspond to different REG bundles of the same CCE at the same PDCCH candidate position, that is, the frequency domains corresponding to each PDCCH transmission resource are different.
  • the PDCCH candidate position contains 1 CCE
  • the CCE contains 2 REG bundles, of which 1 REG bundle corresponds to TCI#0, which is sent by TRP#0, and the other REG bundle corresponds to TCI#1, which is sent by TRP #1 Send.
  • different REG bundles correspond to different TCI states.
  • Different PDCCH transmission resources correspond to all CCEs in the same PDCCH candidate position, that is, the time domain and frequency domain corresponding to each PDCCH transmission resource are the same.
  • the PDCCH candidate position contains 4 CCEs, and the 4 CCEs correspond to TCI#0 and TCI#1.
  • TRP#0 and TRP#1 use different beams to send the same DCI on these 4 CCEs signaling.
  • different TRPs use different TCI states to send DCI signaling on the same time-frequency resource.
  • At least two PDCCH transmission resources in all PDCCH transmission resources correspond to different PDCCH candidate positions, that is, the frequency domains corresponding to each PDCCH transmission resource are different.
  • different PDCCH candidate positions correspond to different TCI states and are sent by different TRPs.
  • At least two PDCCH transmission resources in all PDCCH transmission resources correspond to different search spaces.
  • different search spaces correspond to different TCI states and are sent by different TRPs.
  • At least two PDCCH transmission resources in all PDCCH transmission resources correspond to different control resource sets.
  • different control resource sets correspond to different TCI states and are sent by different TRPs.
  • the above parameters carried in the indication signaling are not always equal to the number of PDCCH transmission opportunities, but only when a certain parameter is equal to the number of PDCCH transmission opportunities, the network device uses it to indicate the number of PDCCH transmission opportunities. When a certain parameter is not equal to the number of PDCCH transmission opportunities, the network device will not use it to indicate the number of PDCCH transmission opportunities.
  • step 304 the terminal determines a receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources.
  • determining the receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources including:
  • each transmission resource transmits the complete content of the same DCI signaling, that is, each transmission resource transmits the DCI signaling once.
  • the terminal may not need to receive the DCI signaling on the other transmission resources. Otherwise, the terminal may also perform soft combining of the DCI signaling transmitted multiple times to further improve the decoding success rate. ;or,
  • each transmission resource transmits a partial content of the same DCI signaling
  • all The transmission resources transmit the DCI signaling once together.
  • the method further includes:
  • the manner of acquiring the number of transmission resources may be similar to the manner of acquiring the number of PDCCH transmission opportunities, for example, it may be acquired locally or acquired through an instruction.
  • the instruction may directly carry the number of transmission resources, or may carry other parameters to indirectly indicate the number of transmission resources.
  • At least one of time domain, frequency domain, spatial domain and code domain of any two PDCCH transmission resources is different.
  • step 305 the network device sends DCI signaling to the terminal.
  • the terminal receives the DCI signaling based on the receiving manner of the DCI signaling.
  • the sending mode adopted by the network device corresponds to the receiving mode determined by the terminal.
  • the terminal receives the complete content of the same DCI signaling according to each transmission resource It is sent by the way of transmitting the complete content of the same DCI signaling; the terminal receives the complete content of the same DCI signaling according to multiple transmission resources (that is, each transmission resource transmits part of the same DCI signaling).
  • the network device also transmits the partial content of the same DCI signaling on each transmission resource, that is, the content transmitted through multiple transmission resources is combined into a complete DCI signaling.
  • Fig. 5 is a flowchart showing a transmission method according to an exemplary embodiment. Referring to Figure 5, the method includes the following steps:
  • step 401 the terminal obtains the protocol configuration and the number of locally stored PDCCH transmission opportunities.
  • the number of PDCCH transmission opportunities in FIG. 5 may be a default value configured by a protocol or stored locally, and does not need to be acquired from a network device every time.
  • the protocol configuration or locally stored defaults can also be updated.
  • the network device can still send instruction signaling to the terminal, and the instruction signaling can be used to indicate whether the terminal is turned on
  • the DCI signaling is repeatedly transmitted, that is, whether the same DCI signaling is repeatedly sent through multiple TRPs.
  • step 402 the terminal determines a receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources.
  • step 402 the implementation manner of the terminal determining the receiving manner of the DCI signaling is the same as that in step 304, which will not be repeated here.
  • step 403 the network device sends DCI signaling to the terminal.
  • the terminal receives the DCI signaling based on the receiving manner of the DCI signaling.
  • the transmission mode of the DCI signaling in step 403 is the same as that in step 305, which is not repeated here.
  • Fig. 6 is a schematic structural diagram of a transmission device according to an exemplary embodiment.
  • the apparatus has the function of realizing the terminal in the above method embodiment, and the function may be realized by hardware, or by executing corresponding software in hardware.
  • the apparatus includes: an acquiring module 501 , a determining module 502 and a receiving module 503 .
  • the obtaining module 501 is configured to obtain the number of PDCCH transmission opportunities
  • a determination module 502 configured to determine a receiving mode of DCI signaling based on the number of PDCCH transmission opportunities and the number of transmission resources;
  • the receiving module 503 is configured to receive the DCI signaling based on the receiving manner of the DCI signaling.
  • the obtaining module 501 is configured to obtain the protocol configuration and the number of locally stored PDCCH transmission opportunities; or, obtain indication signaling; and determine the number of PDCCH transmission opportunities based on the indication signaling.
  • the indication signaling is at least one of RRC signaling, MAC signaling or DCI signaling.
  • the obtaining module 501 is configured to determine the number of PDCCH transmission opportunities from the indication signaling carrying the number of PDCCH transmission opportunities;
  • the number of PDCCH transmission opportunities is determined from the indication signaling carrying the number of DMRSs, and the number of PDCCH transmission opportunities is equal to the number of DMRSs.
  • the different DMRSs indicate that at least one of the ports, sequences, time-domain resources, frequency-domain resources, or code division multiplexing groups of the DMRSs is different.
  • the determining module 502 is configured to, in response to that the number of PDCCH transmission opportunities and the number of transmission resources are equal, receive in a manner that each transmission resource transmits the complete content of the same DCI signaling.
  • the terminal may not need to receive the DCI signaling on the other transmission resources. Otherwise, the terminal may also perform soft combining of the DCI signaling transmitted multiple times to further improve the decoding success rate. or,
  • each transmission resource transmits a partial content of the same DCI signaling
  • all The transmission resources transmit the DCI signaling once together.
  • the obtaining module 501 is further configured to obtain the number of transmission resources.
  • At least one of time domain, frequency domain, spatial domain and code domain of any two PDCCH transmission resources is different.
  • Fig. 7 is a schematic structural diagram of a transmission device according to an exemplary embodiment.
  • the apparatus has the function of implementing the network device in the above method embodiment, and the function may be implemented by hardware, or by executing corresponding software by hardware.
  • the apparatus includes: a determining module 601 , an indicating module 602 and a sending module 603 .
  • the determining module 601 is configured to determine the number of PDCCH transmission opportunities
  • the indicating module 602 is configured to indicate the number of the PDCCH transmission opportunities to the terminal, and the terminal is configured to determine the receiving mode of the DCI signaling based on the number of the PDCCH transmission opportunities and the number of transmission resources;
  • the sending module 603 is configured to send DCI signaling to the terminal.
  • the indication module 602 is configured to send indication signaling, where the indication signaling is used to indicate the number of the PDCCH transmission opportunities.
  • the indication signaling is at least one of RRC signaling, MAC signaling or DCI signaling.
  • the indication module 602 is configured to send the indication signaling carrying the number of the PDCCH transmission opportunities
  • sending the indication signaling carrying the number of TCI states, and the number of PDCCH transmission opportunities is equal to the number of TCI states
  • sending the indication signaling carrying the PDCCH transmission method and the number of TCI states, and the number of PDCCH transmission opportunities is equal to 1 or equal to the number of the TCI states;
  • the indication signaling carrying the number of DMRSs is sent, and the number of PDCCH transmission opportunities is equal to the number of DMRSs.
  • different DMRSs indicate that at least one of the ports, sequences, time-domain resources, frequency-domain resources, or code division multiplexing groups of the DMRSs is different.
  • the indicating module 602 is further configured to indicate the quantity of the transmission resources to the terminal.
  • At least one of time domain, frequency domain, spatial domain and code domain of any two PDCCH transmission resources is different.
  • FIG. 8 is a block diagram of a terminal 700 according to an exemplary embodiment.
  • the terminal 700 may include: a processor 701 , a receiver 702 , a transmitter 703 , a memory 704 and a bus 705 .
  • the processor 701 includes one or more processing cores, and the processor 701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 702 and the transmitter 703 may be implemented as a communication component, which may be a communication chip.
  • Memory 704 is connected to processor 701 via bus 705 .
  • the memory 704 may be configured to store at least one instruction, and the processor 701 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 704 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the transmission method provided by each of the foregoing method embodiments.
  • FIG. 9 is a block diagram of a network device 800 according to an exemplary embodiment.
  • the network device 800 may include: a processor 801 , a receiver 802 , a transmitter 803 and a memory 804 .
  • the receiver 802, the transmitter 803 and the memory 804 are respectively connected to the processor 801 through a bus.
  • the processor 801 includes one or more processing cores, and the processor 801 executes the method performed by the network device in the transmission method provided by the embodiment of the present disclosure by running software programs and modules.
  • Memory 804 may be used to store software programs and modules. Specifically, the memory 804 can store the operating system 8041 and an application module 8042 required for at least one function.
  • the receiver 802 is used for receiving communication data sent by other devices, and the transmitter 803 is used for sending communication data to other devices.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the transmission method provided by each of the foregoing method embodiments.
  • An exemplary embodiment of the present disclosure also provides a transmission system, where the transmission system includes a terminal and a network device.
  • the terminal is the terminal provided by the embodiment shown in FIG. 8 .
  • the network device is the network device provided by the embodiment shown in FIG. 9 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种传输方法、装置、终端、网络设备,属于通信技术领域。所述方法包括:获取PDCCH传输机会数量;基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;基于所述DCI信令的接收方式接收DCI信令。

Description

传输方法、装置、终端、网络设备 技术领域
本公开涉及通信技术领域,尤其涉及一种传输方法、装置、终端、网络设备。
背景技术
在5G新空口(NR,New Radio)***中,特别是通信频段在频率范围2(frequency range 2)时,由于高频信道衰减较快,为了保证覆盖范围,需要采用波束(beam)进行信号发送和接收。
当网络设备具有多个传输接收点(Transmission Reception Point,TRP)时,网络设备可以使用多个TRP为终端提供服务。例如为了提高物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输的可靠性和传输效率,可以通过多个TRP向终端发送同一个下行控制信息(Downlink Control Information,DCI)信令。
发明内容
本公开实施例提供了一种传输方法、装置、终端、网络设备。所述技术方案如下:
根据本公开实施例的一方面,提供一种传输方法,所述方法包括:
获取PDCCH传输机会数量;
基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
基于所述DCI信令的接收方式接收DCI信令。
根据本公开实施例的一方面,提供一种传输方法,所述方法包括:
确定PDCCH传输机会数量;
将所述PDCCH传输机会数量指示给终端,所述终端用于基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
向所述终端发送DCI信令。
根据本公开实施例的一方面,提供一种传输装置,所述装置包括:
获取模块,被配置为获取PDCCH传输机会数量;
确定模块,被配置为基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
接收模块,被配置为基于所述DCI信令的接收方式接收DCI信令。
根据本公开实施例的一方面,提供一种传输装置,所述装置包括:
确定模块,被配置为确定PDCCH传输机会数量;
指示模块,被配置为将所述PDCCH传输机会数量指示给终端,所述终端用于基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
发送模块,被配置为向所述终端发送DCI信令。
根据本公开实施例的另一方面,提供一种终端,所述终端包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述DCI信令的传输方法。
根据本公开实施例的另一方面,提供一种网络设备,所述网络设备包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述DCI信令的传输方法。
根据本公开实施例的另一方面,提供一种计算机可读存储介质,当所述计算机可读存储介质中的指令由处理器执行时,能够执行如前所述的DCI信令的传输方法。
在本公开实施例中,终端在进行DCI信令的接收时,先确定PDCCH传输机会数量,通过PDCCH传输机会数量和传输资源数量,可以确定DCI信令的接收方式,例如,PDCCH传输机会数量和传输资源数量相等时,说明在每个PDCCH传输资源上每次传输的是同一个DCI信令的完整内容,此时按照每个传输资源传输一个DCI信令的完整内容的方式接收,即在多个传输资源上实现了同一个DCI信令的重复传输。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率。再例如,PDCCH传输机会数量小于传输资源数量时,说明在每个PDCCH传输资源上传输的是同一个DCI信令的部分内容,此时按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI 信令的部分内容)的方式接收,即多个传输资源上的内容合起来才是一个完整的DCI信令。通过上述方式确定出DCI信令的接收方式,可以保证终端对于DCI信令的正确接收和解码,进而提高通信质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1示出的是本公开一个示意性实施例提供的通信***的框图;
图2是根据一示例性实施例示出的一种传输方法的流程图;
图3是根据一示例性实施例示出的一种传输方法的流程图;
图4是根据一示例性实施例示出的一种传输方法的流程图;
图5是根据一示例性实施例示出的一种传输方法的流程图;
图6是根据一示例性实施例示出的一种传输装置的结构示意图;
图7是根据一示例性实施例示出的一种传输装置的结构示意图;
图8是根据一示例性实施例示出的一种终端的框图;
图9是根据一示例性实施例示出的一种网络设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
应当理解,尽管在本公开实施例为了便于理解而编号的方式对步骤进行了说明,但是这些编号并不代表步骤的执行顺序,也并不代表采用顺序编号的步骤必须在一起执行。应当理解,采用顺序编号的多个步骤中的一个或几个步骤可以单独执行以解决相应的技术问题并达到预定的技术方案。即使是在附图中被示例性的列在一起的多个步骤,并不代表这些步骤必须被一起执行;附图只是为了便于理解而示例性的将这些步骤列在了一起。
图1示出的是本公开一个示意性实施例提供的通信***的框图,如图1所示,该通信***可以包括:网络侧12和终端13。
网络侧12中包括若干网络设备120。网络设备120可以是基站,基站是一种部署在接入网中用以为终端提供无线通信功能的装置。该基站既可以是终端13的服务小区的基站,也可以是终端13的服务小区相邻小区的基站。基站可以包括各种形式的宏基站,微基站,中继站,接入点、发送接收点(Transmission Reception Point,TRP)等等。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,在5G新空口(NR,New Radio)***中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能描述,会变化。网络设备120也可以是定位管理功能实体(Location Management Function,LMF)。车联网通信中,网络设备120也可以是车载终端设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端,物联网设备(Internet of Things,IoT),工业物联网设备(Industry Internet of Things,IIoT)等等。为方便描述,上面提到的设备统称为终端。网络设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
在采用多个TRP向终端发送同一个DCI信令时,可以有如下两种方式:
一种是,每个TRP提供的每个PDCCH传输资源上都发送同一DCI信令的完整内容,即多个TRP重复多次发送同一DCI信令。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率,提高PDCCH传输的可靠性。
另一种是,每个TRP提供的每个PDCCH传输资源上都只发送一个DCI信令的部分内容,终端通过接收多个TRP上的多份DCI信令的部分内容进行拼接解码,才能获得DCI信令的完整内容,提高PDCCH传输的可靠性(传输码率降低时,可靠性更高)。而如果只接收其中一个TRP上的DCI信令的部分内容,是无法成功解码该DCI信令的。
但是,要达到上述传输效果,终端必须知道当前采用的是哪种传输方式,否则终端如果采用了错误的方式接收,有可能造成DCI信令接收出错,反而导致通信质量下降。
本公开实施例描述的通信***以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信***的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图2是根据一示例性实施例示出的一种传输方法的流程图。参见图2,该方法包括以下步骤:
在步骤101中,终端获取PDCCH传输机会数量。
PDCCH传输机会数量(Transmission Occasion)是指多个TRP传输同一个DCI信令的次数,通过重复传输可以提高传输的可靠性。
在步骤102中,终端基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式。
如前所示,多个TRP在传输同一个DCI信令时,既可以每个PDCCH传输资源都传输DCI信令的完整内容,即每个TRP都传输一次该DCI信令;也可以每个PDCCH传输资源都只传输DCI信令的部分内容,即多个TRP一起传输一次该DCI信令。这就造成PDCCH传输机会数量和传输资源数量存在不同的关系,通过二者的关系可以反推出多个TRP发送同一个DCI信令的方式,从而确定与之对应的接收方式,实现DCI信令的正确接收。
在步骤103中,终端基于所述DCI信令的接收方式接收DCI信令。
在本公开实施例中,终端在进行DCI信令接收时,先确定PDCCH传输机会数量,通过PDCCH传输机会数量和传输资源数量,可以确定DCI信令的接收方式,例如,PDCCH传输机会数量和传输资源数量相等时,说明在每个PDCCH传输资源上分别传输同一个DCI信令的完整内容,此时按照每个传输资源传输一个DCI信令的完整内容的方式接收,即按照多个传输资源针对同一DCI信令传输了多次的方式接收。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率。再例如,PDCCH传输机会数量小于传输资源数量时,说明在每个PDCCH传输资源上传输同一个DCI信令的部分内容,按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收,即按照多个传输资源传输的内容合起来为一个完整的DCI信令的方式接收。通过上述方式确定出DCI信令的接收方式,可以保证终端对于DCI信令的正确接收和解码,进而提高通信质量。
其中,PDCCH传输机会是指完整传输一个DCI信令。例如,每个PDCCH传输机会对应一个PDCCH传输资源,每个PDCCH传输资源用于传输所述第一DCI信令的完整内容。再例如,每个PDCCH传输机会对应多个PDCCH传输资源,每个PDCCH传输资源用于传输第二DCI信令的部分内容,一个PDCCH传输机会对应的多个PDCCH传输资源传输的第二DCI信令的部分内容合起来为第二DCI信令的完整内容。
可选地,所述获取PDCCH传输机会数量,包括:
获取协议配置、本地存储的PDCCH传输机会数量;
或者,获取指示信令;基于所述指示信令,确定所述PDCCH传输机会数量。
本公开实施例提供了两种获取PDCCH传输机会数量的方案,一种是采用本地获取的方式,事先将传输次数写在协议配置或者本地存储中;另一种方式是实时地从网络设备获取,例如通过指示信令获取。
示例性地,所述指示信令为无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Medium Access Control,MAC)信令或者DCI信令中的至少一个。
在采用指示信令获取PDCCH传输机会数量时,网络设备既可以在该指示信 令中直接指示PDCCH传输机会数量,也可以采用其他参数间接指示PDCCH传输机会数量,例如指示用于PDCCH传输的传输配置指示(Transmission Configuration Indication,TCI)状态的数量、用于PDCCH解调的解调参考信号(Demodulation Reference Signal,DMRS)数量、PDCCH的传输方法等,这些参数有的直接等于PDCCH传输机会数量,有的可以进一步确定出PDCCH传输机会数量。
可选地,所述基于所述指示信令,确定所述PDCCH传输机会数量,可以包括如下几种情况:
第一种,从携带有所述PDCCH传输机会数量的所述指示信令中,确定所述PDCCH传输机会数量。
第二种,从携带有TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述TCI状态的数量。
其中,TCI状态用于指示PDCCH传输使用的波束。
第三种,从携带有PDCCH传输方法和TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量。
其中,PDCCH传输方法包括频分多路复用(Frequency-division multiplexing,FDM)、空分复用(Space-division multiplexing,SDM)、时隙内时分复用(intra-slot Time-division multiplexing,intra-slot TDM)和时隙间时分复用(inter-slot TDM)。这四种方法中又包含每个传输资源块传输一个DCI信令的完整内容和每个传输资源块传输同一个DCI信令的部分内容两种方式。如果每个传输资源块传输的是DCI信令的完整内容,则PDCCH传输机会数量等于TCI状态的数量;如果每个传输资源块传输的是DCI信令的部分内容,则PDCCH传输机会数量等于1。
第四种,从携带有DMRS数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述DMRS数量。
其中,不同的DMRS表示DMRS的端口、序列、时域资源、频域资源或者码分复用组中至少一项不同。
例如,指示信令中指示的DMRS数量为M,M大于或等于2。
则,M个DMRS中每个DMRS的端口(Port)不同;或,
M个DMRS中每个DMRS的序列不同;或,
M个DMRS中每个DMRS的时域资源不同;或,
M个DMRS中每个DMRS的频域资源不同;或
M个DMRS中每个DMRS的对应的码分复用组(Code Division Multiplexing group,CDM group)不同。
可选地,所述多个PDCCH传输资源中的至少N个传输资源与N个TCI状态一一对应,其中N大于或等于2。
在一种情况下,所有PDCCH传输资源都对应同一个控制资源集合(Control Resource Set,CORESET)。这种情况下,又进一步包括如下几种情况:
1、所有PDCCH传输资源都对应同一个搜索空间(Search Space)。其中,一个控制资源集合对应多个TRP,一个控制资源集合具有多个搜索空间。
1.1、所有PDCCH传输资源都对应同一个搜索空间中的同一个PDCCH候选位置。其中,一个搜索空间中有多个可以用于传输PDCCH的候选(Candidate)位置。
1.1.1不同PDCCH传输资源对应同一个PDCCH候选位置的不同控制信道元素(Control Channel Element,CCE),也即各个PDCCH传输资源对应的频域不同。以聚合等级(Aggregation Level)4为例,PDCCH候选位置包含4个CCE,其中2个对应TCI#0,由TRP#0发送,另外2个对应TCI#1,由TRP#1发送。这种情况下,不同CCE对应前述不同TCI状态。
1.1.2不同PDCCH传输资源对应同一个PDCCH候选位置的同一个CCE的不同资源元素组包(Resource Element Group bundle,REG bundle),也即各个PDCCH传输资源对应的频域不同。以聚合等级1为例,PDCCH候选位置包含1个CCE,该CCE包含2个REG bundle,其中1个REG bundle对应TCI#0,由TRP#0发送,另一个REG bundle对应TCI#1,由TRP#1发送。这种情况下,不同REG bundle对应不同TCI状态。
1.1.3不同PDCCH传输资源对应同一个PDCCH候选位置的所有CCE,也即各个PDCCH传输资源对应的时域频域相同。例如,以聚合等级4为例,PDCCH候选位置包含4个CCE,4个CCE对应TCI#0和TCI#1,由TRP#0和TRP#1使用不同波束在这个4个CCE上发送同一个DCI信令。这种情况下,不同TRP使用不同的TCI状态在同样的时频资源上发送DCI信令。
1.2所有PDCCH传输资源中的至少两个PDCCH传输资源对应不同的PDCCH候选位置,也即各个PDCCH传输资源对应的频域不同。这种情况下,不同的PDCCH候选位置对应不同的TCI状态,由不同的TRP发送。
2、所有PDCCH传输资源中的至少两个PDCCH传输资源对应不同的搜索空间。这种情况下,不同的搜索空间对应不同的TCI状态,由不同的TRP发送。
在另一种情况下,所有PDCCH传输资源中的至少2个PDCCH传输资源对应不同的控制资源集合。这种情况下,不同的控制资源集合对应不同的TCI状态,由不同的TRP发送。
需要说明的是,指示信令携带的上述参数并不总是等于PDCCH传输机会数量,而只有在某个参数等于PDCCH传输机会数量时,网络设备采用使用它进行PDCCH传输机会数量的指示。当某个参数不等于PDCCH传输机会数量时,网络设备则不会使用它进行PDCCH传输机会数量的指示。
可选地,所述基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式,包括:
响应于所述PDCCH传输机会数量和传输资源数量相等,按照每个传输资源传输同一个DCI信令的完整内容的方式接收,即每个传输资源传输一次所述DCI信令;或者,
响应于所述PDCCH传输机会数量小于传输资源数量,按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收,即所有传输资源一起传输一次所述DCI信令。
终端在按照每个传输资源传输同一个DCI信令的完整内容的方式接收时,终端会接收到多份DCI信令的完整内容。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以通过对多份DCI信令的完整内容进行软合并解码,保证PDCCH传输的可靠性。
终端在按照每个传输资源传输同一个DCI信令的部分内容的方式接收时,终端会接收到多份DCI信令的部分内容,通过对多份DCI信令的部分内容进行拼接解码,即将多个传输资源传输的所有部分内容合起来解码出所述DCI信令的完整内容,保证PDCCH传输可靠性。
可选地,所述方法还包括:
获取所述传输资源数量。
其中,传输资源数量的获取方式可以和PDCCH传输机会数量的获取方式类似,例如可以本地获取也可以通过指令获取。指令获取时,既可以在指令中直接携带传输资源数量,也可以携带其他参数间接指示传输资源数量等。
示例性地,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
值得说明的是,前述步骤101~步骤103与上述可选步骤可以任意组合。
图3是根据一示例性实施例示出的一种传输方法的流程图。参见图3,该方法包括以下步骤:
在步骤201中,网络设备确定PDCCH传输机会数量。
在步骤202中,网络设备将所述PDCCH传输机会数量指示给终端,所述终端用于基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式。
网络设备在确定出PDCCH传输机会数量,既可以直接将该PDCCH传输机会数量发送给终端,也可以向终端发送能够间接指示该PDCCH传输机会数量的其他参数,只要终端从这些参数中能够确定出PDCCH传输机会数量即可。
在步骤203中,网络设备向所述终端发送DCI信令。
网络设备所采用的发送方式与终端确定出的接收方式相应,例如,终端按照每个传输资源传输一个DCI信令的完整内容的方式接收时,网络设备也是按照每次传输一个DCI信令的完整内容的方式发送的,即通过多个传输资源针对同一DCI信令传输多次的方式发送。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率。终端按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收时,网络设备也是按照每次传输同一个DCI信令的部分内容的方式发送的,即通过多个传输资源传输的内容合起来为一个完整的DCI信令的方式发送。
在本公开实施例中,网络设备将PDCCH传输机会数量指示给终端,使得终端可以通过比较PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式,例如,PDCCH传输机会数量和传输资源数量相等时,说明在每个PDCCH传输资源上分别传输同一个DCI信令的完整内容,此时按照每个传输资源传输一个DCI信令的完整内容的方式接收,即按照多个传输资源针对同一DCI信令传输了多次的方式接收,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。 否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率。再例如,PDCCH传输机会数量小于传输资源数量时,说明在每个PDCCH传输资源上传输同一个DCI信令的部分内容,此时按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收,即按照多个传输资源传输的内容合起来为一个完整的DCI信令的方式接收。通过上述方式确定出DCI信令的接收方式,可以保证终端对于DCI信令的正确接收和解码,进而提高通信质量。
可选地,所述将所述PDCCH传输机会数量指示给终端,包括:
发送指示信令,所述指示信令用于指示所述PDCCH传输机会数量。
示例性地,所述指示信令为RRC信令、MAC信令或者DCI信令中的至少一个。
可选地,所述发送指示信令,包括:
发送携带有所述PDCCH传输机会数量的所述指示信令;
或者,发送携带有TCI状态的数量的所述指示信令,所述PDCCH传输机会数量等于所述TCI状态的数量;
或者,发送携带有PDCCH传输方法和TCI状态的数量的所述指示信令,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量;
或者,发送携带有DMRS数量的所述指示信令,所述PDCCH传输机会数量等于所述DMRS数量。
示例性地,不同的DMRS表示DMRS的端口、序列、时域资源、频域资源或者码分复用组中至少一项不同。
可选地,所述方法还包括:
将所述传输资源数量指示给终端。
其中,传输资源数量的指示方式可以和PDCCH传输机会数量的指示方式类似,例如可以在指令中直接携带传输资源数量,也可以携带其他参数间接指示传输资源数量等。
示例性地,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
值得说明的是,前述步骤201~步骤203与上述可选步骤可以任意组合。
图4是根据一示例性实施例示出的一种传输方法的流程图。参见图4,该方 法包括以下步骤:
在步骤301中,网络设备确定PDCCH传输机会数量。
网络设备基于传输协议根据网络状况、终端优先级等情况,确定PDCCH传输机会数量。
当PDCCH传输机会数量为多次时,采用多个TRP进行同一个DCI信令的多次传输。此时,为了保证终端的正确接收,可以将PDCCH传输机会数量指示给终端。
在步骤302中,网络设备发送指示信令,所述指示信令用于指示所述PDCCH传输机会数量。终端接收指示信令。
示例性地,所述指示信令为RRC信令、MAC信令或者DCI信令中的至少一个。
在步骤303中,终端基于所述指示信令,确定所述PDCCH传输机会数量。
其中,PDCCH传输机会是指完整传输一个DCI信令。例如,每个PDCCH传输机会对应一个PDCCH传输资源,每个PDCCH传输资源用于传输所述第一DCI信令的完整内容。再例如,每个PDCCH传输机会对应多个PDCCH传输资源,每个PDCCH传输资源用于传输第二DCI信令的部分内容,一个PDCCH传输机会对应的多个PDCCH传输资源传输的第二DCI信令的部分内容合起来为第二DCI信令的完整内容。
在采用指示信令获取PDCCH传输机会数量时,网络设备既可以在该指示信令中直接指示PDCCH传输机会数量,也可以采用其他参数间接指示PDCCH传输机会数量,例如指示用于PDCCH传输的TCI状态的数量、用于PDCCH解调的DMRS数量、PDCCH的传输方法等,这些参数有的直接等于PDCCH传输机会数量,有的可以进一步确定出PDCCH传输机会数量。
可选地,所述基于所述指示信令,确定所述PDCCH传输机会数量,可以包括如下几种情况:
第一种,从携带有所述PDCCH传输机会数量的所述指示信令中,确定所述PDCCH传输机会数量。
第二种,从携带有传输配置指示(Transmission Configuration Indication,TCI)状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述TCI状态的数量。
其中,TCI状态用于指示PDCCH传输使用的波束。
第三种,从携带有PDCCH传输方法和TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量。
其中,PDCCH传输方法包括FDM、SDM、intra-slot TDM和inter-slot TDM。这四种方法中又分别包含每个传输资源块传输同一个DCI信令的完整内容和每个传输资源块传输一个DCI信令的部分内容两种方式。如果每个传输资源块传输的是同一DCI信令的完整内容,则PDCCH传输机会数量等于TCI状态的数量;如果每个传输资源块传输的是DCI信令的部分内容,则PDCCH传输机会数量等于1。
第四种,从携带有解调参考信号(Demodulation Reference Signal,DMRS)数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述DMRS数量。
其中,不同的DMRS表示DMRS的端口、序列、时域资源、频域资源或者码分复用组中至少一项不同。
例如,指示信令中指示的DMRS数量为M,M大于或等于2。
则,M个DMRS中每个DMRS的端口不同;或,
M个DMRS中每个DMRS的序列不同;或,
M个DMRS中每个DMRS的时域资源不同;或,
M个DMRS中每个DMRS的频域资源不同;或
M个DMRS中每个DMRS的对应的CDM group不同。
可选地,所述多个PDCCH传输资源中的至少N个传输资源与N个TCI状态一一对应,其中N大于或等于2。
在一种情况下,所有PDCCH传输资源都对应同一个控制资源集合。这种情况下,又进一步包括如下几种情况:
1、所有PDCCH传输资源都对应同一个搜索空间。
1.1、所有PDCCH传输资源都对应同一个搜索空间中的同一个PDCCH候选位置。
1.1.1不同PDCCH传输资源对应同一个PDCCH候选位置的不同CCE,也即各个PDCCH传输资源对应的频域不同。以聚合等级4为例,PDCCH候选位置包含4个CCE,其中2个对应TCI#0,由TRP#0发送,另外2个对应TCI#1,由TRP#1发送。这种情况下,不同CCE对应前述不同TCI状态。
1.1.2不同PDCCH传输资源对应同一个PDCCH候选位置的同一个CCE的不同REG bundle,也即各个PDCCH传输资源对应的频域不同。以聚合等级1为例,PDCCH候选位置包含1个CCE,该CCE包含2个REG bundle,其中1个REG bundle对应TCI#0,由TRP#0发送,另一个REG bundle对应TCI#1,由TRP#1发送。这种情况下,不同REG bundle对应不同TCI状态。
1.1.3不同PDCCH传输资源对应同一个PDCCH候选位置的所有CCE,也即各个PDCCH传输资源对应的时域频域相同。例如,以聚合等级4为例,PDCCH候选位置包含4个CCE,4个CCE对应TCI#0和TCI#1,由TRP#0和TRP#1使用不同波束在这个4个CCE上发送同一个DCI信令。这种情况下,不同TRP使用不同的TCI状态在同样的时频资源上发送DCI信令。
1.2所有PDCCH传输资源中的至少两个PDCCH传输资源对应不同的PDCCH候选位置,也即各个PDCCH传输资源对应的频域不同。这种情况下,不同的PDCCH候选位置对应不同的TCI状态,由不同的TRP发送。
2、所有PDCCH传输资源中的至少两个PDCCH传输资源对应不同的搜索空间。这种情况下,不同的搜索空间对应不同的TCI状态,由不同的TRP发送。
在另一种情况下,所有PDCCH传输资源中的至少2个PDCCH传输资源对应不同的控制资源集合。这种情况下,不同的控制资源集合对应不同的TCI状态,由不同的TRP发送。
需要说明的是,指示信令携带的上述参数并不总是等于PDCCH传输机会数量,而只有在某个参数等于PDCCH传输机会数量时,网络设备采用使用它进行PDCCH传输机会数量的指示。当某个参数不等于PDCCH传输机会数量时,网络设备则不会使用它进行PDCCH传输机会数量的指示。
在步骤304中,终端基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式。
可选地,所述基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式,包括:
响应于所述PDCCH传输机会数量和传输资源数量相等,按照每个传输资源传输同一个DCI信令的完整内容的方式接收,即每个传输资源传输一次所述DCI信令。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率。;或者,
响应于所述PDCCH传输机会数量小于传输资源数量,按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收,即所有传输资源一起传输一次所述DCI信令。
可选地,所述方法还包括:
获取所述传输资源数量。
其中,传输资源数量的获取方式可以和PDCCH传输机会数量的获取方式类似,例如可以本地获取也可以通过指令获取。指令获取时,既可以在指令中直接携带传输资源数量,也可以携带其他参数间接指示传输资源数量等。
示例性地,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
在步骤305中,网络设备向所述终端发送DCI信令。终端基于所述DCI信令的接收方式接收DCI信令。
这里,网络设备所采用的发送方式与终端确定出的接收方式相应,例如,终端按照每个传输资源分别传输同一个DCI信令的完整内容的方式接收时,网络设备也是按照在每个传输资源上传输同一个DCI信令的完整内容的方式发送的;终端按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收时,网络设备也是按照在每个传输资源上传输同一个DCI信令的部分内容的方式发送的,即通过多个传输资源传输的内容合起来为一个完整的DCI信令的方式发送。
图5是根据一示例性实施例示出的一种传输方法的流程图。参见图5,该方法包括以下步骤:
在步骤401中,终端获取协议配置、本地存储的PDCCH传输机会数量。
相比于图4中PDCCH传输机会数量采用信令传输的实现方式,图5中PDCCH传输机会数量可以是协议配置或本地存储的默认值,无需每次都从网络设备获取。当然,该协议配置或本地存储的默认值也可以进行更新。
另外,虽然图5所示的方式中无需指示信令进行PDCCH传输机会数量的指示,但在该方案中,网络设备仍然可以向终端发送指示信令,该指示信令可以用于指示终端是否开启DCI信令重复传输,也即是否通过多个TRP重复发送同一个DCI信令。
在步骤402中,终端基于所述PDCCH传输机会数量和传输资源数量,确定 DCI信令的接收方式。
步骤402中终端确定DCI信令的接收方式的实现方式与步骤304相同,这里不做赘述。
在步骤403中,网络设备向所述终端发送DCI信令。终端基于所述DCI信令的接收方式接收DCI信令。
步骤403中DCI信令的传输方式与步骤305相同,这里不做赘述。
图6是根据一示例性实施例示出的一种传输装置的结构示意图。该装置具有实现上述方法实施例中终端的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图6所示,该装置包括:获取模块501、确定模块502和接收模块503。
其中,获取模块501,被配置为获取PDCCH传输机会数量;
确定模块502,被配置为基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
接收模块503,被配置为基于所述DCI信令的接收方式接收DCI信令。
可选地,获取模块501,被配置为获取协议配置、本地存储的PDCCH传输机会数量;或者,获取指示信令;基于所述指示信令,确定所述PDCCH传输机会数量。
示例性地,所述指示信令为RRC信令、MAC信令或者DCI信令中的至少一个。
可选地,获取模块501,被配置为从携带有所述PDCCH传输机会数量的所述指示信令中,确定所述PDCCH传输机会数量;
或者,从携带有TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述TCI状态的数量;
或者,从携带有PDCCH传输方法和TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量;
或者,从携带有DMRS数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述DMRS数量。
可选地,不同的DMRS表示DMRS的端口、序列、时域资源、频域资源或者码分复用组中至少一项不同。
可选地,确定模块502被配置为响应于所述PDCCH传输机会数量和传输资源数量相等,按照每个传输资源传输同一个DCI信令的完整内容的方式接收。这种情况下,如果终端通过接收其中一个传输资源上的DCI信令就能正确解码该DCI信令,则终端可以不用接收其它传输资源上的该DCI信令。否则,终端也可以将多次传输的DCI信令进行软合并,进一步提高解码成功率。或者,
响应于所述PDCCH传输机会数量小于传输资源数量,按照多个传输资源传输同一个DCI信令的完整内容(也即每个传输资源传输同一个DCI信令的部分内容)的方式接收,即所有传输资源一起传输一次所述DCI信令。
可选地,获取模块501,还被配置为获取所述传输资源数量。
示例性地,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
图7是根据一示例性实施例示出的一种传输装置的结构示意图。该装置具有实现上述方法实施例中网络设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图7所示,该装置包括:确定模块601、指示模块602和发送模块603。
其中,确定模块601,被配置为确定PDCCH传输机会数量;
指示模块602,被配置为将所述PDCCH传输机会数量指示给终端,所述终端用于基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
发送模块603,被配置为向所述终端发送DCI信令。
可选地,指示模块602,被配置为发送指示信令,所述指示信令用于指示所述PDCCH传输机会数量。
示例性地,所述指示信令为RRC信令、MAC信令或者DCI信令中的至少一个。
可选地,指示模块602,被配置为发送携带有所述PDCCH传输机会数量的所述指示信令;
或者,发送携带有TCI状态的数量的所述指示信令,所述PDCCH传输机会数量等于所述TCI状态的数量;
或者,发送携带有PDCCH传输方法和TCI状态的数量的所述指示信令,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量;
或者,发送携带有DMRS数量的所述指示信令,所述PDCCH传输机会数量等于所述DMRS数量。
示例性地,不同的DMRS表示DMRS的端口、序列、时域资源、频域资源或者码分复用组中至少一项不同。
可选地,指示模块602,还被配置为将所述传输资源数量指示给终端。
示例性地,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
图8是根据一示例性实施例示出的一种终端700的框图,该终端700可以包括:处理器701、接收器702、发射器703、存储器704和总线705。
处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器702和发射器703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器704通过总线705与处理器701相连。
存储器704可用于存储至少一个指令,处理器701用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的传输方法。
图9是根据一示例性实施例示出的一种网络设备800的框图,网络设备800可以包括:处理器801、接收机802、发射机803和存储器804。接收机802、发射机803和存储器804分别通过总线与处理器801连接。
其中,处理器801包括一个或者一个以上处理核心,处理器801通过运行软 件程序以及模块以执行本公开实施例提供的传输方法中网络设备所执行的方法。存储器804可用于存储软件程序以及模块。具体的,存储器804可存储操作***8041、至少一个功能所需的应用程序模块8042。接收机802用于接收其他设备发送的通信数据,发射机803用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的传输方法。
本公开一示例性实施例还提供了一种传输***,所述传输***包括终端和网络设备。所述终端为如图8所示实施例提供的终端。所述网络设备为如图9所示实施例提供的网络设备。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种传输方法,其特征在于,所述方法包括:
    获取PDCCH传输机会数量;
    基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
    基于所述DCI信令的接收方式接收DCI信令。
  2. 根据权利要求1所述的方法,其特征在于,所述获取PDCCH传输机会数量,包括:
    获取协议配置、本地存储的PDCCH传输机会数量;
    或者,获取指示信令;基于所述指示信令,确定所述PDCCH传输机会数量。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信令为RRC信令、MAC信令或者DCI信令中的至少一个。
  4. 根据权利要求2所述的方法,其特征在于,所述基于所述指示信令,确定所述PDCCH传输机会数量,包括:
    从携带有所述PDCCH传输机会数量的所述指示信令中,确定所述PDCCH传输机会数量;
    或者,从携带有TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述TCI状态的数量;
    或者,从携带有PDCCH传输方法和TCI状态的数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量;
    或者,从携带有DMRS数量的所述指示信令中,确定所述PDCCH传输机会数量,所述PDCCH传输机会数量等于所述DMRS数量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式,包括:
    响应于所述PDCCH传输机会数量和传输资源数量相等,按照每个传输资源传输同一个DCI信令的完整内容的方式接收;或者,
    响应于所述PDCCH传输机会数量小于传输资源数量,按照多个传输资源传输同一个DCI信令的完整内容的方式接收。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    获取所述传输资源数量。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
  8. 一种传输方法,其特征在于,所述方法包括:
    确定PDCCH传输机会数量;
    将所述PDCCH传输机会数量指示给终端,所述终端用于基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
    向所述终端发送DCI信令。
  9. 根据权利要求8所述的方法,其特征在于,所述将所述PDCCH传输机会数量指示给终端,包括:
    发送指示信令,所述指示信令用于指示所述PDCCH传输机会数量。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信令为RRC信令、MAC信令或者DCI信令中的至少一个。
  11. 根据权利要求9所述的方法,其特征在于,所述发送指示信令,包括:
    发送携带有所述PDCCH传输机会数量的所述指示信令;
    或者,发送携带有TCI状态的数量的所述指示信令,所述PDCCH传输机会数量等于所述TCI状态的数量;
    或者,发送携带有PDCCH传输方法和TCI状态的数量的所述指示信令,所述PDCCH传输机会数量等于1或等于所述TCI状态的数量;
    或者,发送携带有DMRS数量的所述指示信令,所述PDCCH传输机会数量等于所述DMRS数量。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述方法还包括:
    将所述传输资源数量指示给终端。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,任意两个PDCCH传输资源的时域、频域、空域和码域中的至少一个不同。
  14. 一种传输装置,其特征在于,所述装置包括:
    获取模块,被配置为获取PDCCH传输机会数量;
    确定模块,被配置为基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
    接收模块,被配置为基于所述DCI信令的接收方式接收DCI信令。
  15. 一种传输装置,其特征在于,所述装置包括:
    确定模块,被配置为确定PDCCH传输机会数量;
    指示模块,被配置为将所述PDCCH传输机会数量指示给终端,所述终端用于基于所述PDCCH传输机会数量和传输资源数量,确定DCI信令的接收方式;
    发送模块,被配置为向所述终端发送DCI信令。
  16. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求1至7任一项所述的DCI信令的传输方法。
  17. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求8至13任一项所述的DCI信令的传输方法。
  18. 一种计算机可读存储介质,其特征在于,当所述计算机可读存储介质中的指令由处理器执行时,能够执行权利要求1至7任一所述的传输方法,或者,能够执行权利要求8至13任一项所述的DCI信令的传输方法。
PCT/CN2020/115344 2020-09-15 2020-09-15 传输方法、装置、终端、网络设备 WO2022056678A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080002387.8A CN114514717B (zh) 2020-09-15 2020-09-15 传输方法、装置、终端、网络设备
US18/044,351 US20230336311A1 (en) 2020-09-15 2020-09-15 Transmission method and apparatus, and terminal and network device
PCT/CN2020/115344 WO2022056678A1 (zh) 2020-09-15 2020-09-15 传输方法、装置、终端、网络设备
EP20953539.2A EP4216473A4 (en) 2020-09-15 2020-09-15 TRANSMISSION METHOD AND APPARATUS, TERMINAL AND NETWORK DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115344 WO2022056678A1 (zh) 2020-09-15 2020-09-15 传输方法、装置、终端、网络设备

Publications (1)

Publication Number Publication Date
WO2022056678A1 true WO2022056678A1 (zh) 2022-03-24

Family

ID=80777486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115344 WO2022056678A1 (zh) 2020-09-15 2020-09-15 传输方法、装置、终端、网络设备

Country Status (4)

Country Link
US (1) US20230336311A1 (zh)
EP (1) EP4216473A4 (zh)
CN (1) CN114514717B (zh)
WO (1) WO2022056678A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127145A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 通信方法、装置和***
CN110830203A (zh) * 2018-08-10 2020-02-21 ***通信有限公司研究院 一种准共址信息指示的方法和设备
CN111435897A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 信息传输的方法和通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076584B (zh) * 2016-06-29 2021-05-18 华为技术有限公司 通信方法、装置和***
WO2021162423A1 (ko) * 2020-02-11 2021-08-19 엘지전자 주식회사 무선 통신 시스템에서 다중 송수신 포인트로부터의 하향링크 채널 송수신 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127145A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 通信方法、装置和***
CN110830203A (zh) * 2018-08-10 2020-02-21 ***通信有限公司研究院 一种准共址信息指示的方法和设备
CN111435897A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 信息传输的方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues on multi-DCI based Multi-TRP", 3GPP DRAFT; R1-2006689, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918197 *
See also references of EP4216473A4 *

Also Published As

Publication number Publication date
US20230336311A1 (en) 2023-10-19
CN114514717A (zh) 2022-05-17
CN114514717B (zh) 2023-09-29
EP4216473A1 (en) 2023-07-26
EP4216473A4 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
US11870551B2 (en) Multi-codeword transmission method and apparatus
RU2725159C1 (ru) Способы и узлы для определения размера блока данных передачи
WO2014110907A1 (zh) 控制信道传输、传输处理方法及装置、网络侧设备、终端
RU2763399C1 (ru) Способ и устройство для приема данных нисходящей линии связи, способ и устройство для передачи данных нисходящей линии связи, а также носитель данных
WO2021062580A1 (zh) 确定侧行链路传输资源的方法和装置
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
AU2020416372B2 (en) Physical channel transmission method, apparatus, and node, and storage medium
BR112021015176A2 (pt) Métodos realizados por uma estação base e por um dispositivo terminal, estação base, dispositivo terminal, e, mídia legível por computador
WO2023070390A1 (zh) 传输配置指示确定方法、装置、终端及存储介质
WO2022056678A1 (zh) 传输方法、装置、终端、网络设备
WO2022056849A1 (zh) 发送dmrs的方法、装置、终端和介质
WO2021248329A1 (zh) 信道估计方法、装置、设备及存储介质
CN112088557A (zh) 资源调度方法、终端及网络设备
US11108527B2 (en) CQI codepoint reinterpretation
WO2023004706A1 (zh) Pdcch传输方法、装置及通信设备
WO2024050816A1 (zh) Tci状态确定方法、装置、设备及存储介质
WO2022073239A1 (zh) 接收方法、装置、终端设备及存储介质
RU2814209C1 (ru) Способ и устройство приема, терминальное устройство и носитель данных
WO2024016286A1 (zh) Tci状态指示方法、装置及存储介质
WO2021223230A1 (zh) 物理下行控制信道传输方法、装置及存储介质
WO2024045171A1 (zh) 信息指示方法、装置、设备及存储介质
WO2023078050A1 (zh) 信息传输方法、设备和存储介质
US20230413282A1 (en) Method for transmitting information, apparatus, terminal, device and medium
EP4362373A1 (en) Reference signal receiving and sending methods, first communication node, second communication node, and medium
US20230345495A1 (en) Uplink control information sending method and receiving method, apparatuses, device, and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020953539

Country of ref document: EP

Effective date: 20230417