WO2022054739A1 - Li2O-Al2O3-SiO2系結晶化ガラス - Google Patents

Li2O-Al2O3-SiO2系結晶化ガラス Download PDF

Info

Publication number
WO2022054739A1
WO2022054739A1 PCT/JP2021/032579 JP2021032579W WO2022054739A1 WO 2022054739 A1 WO2022054739 A1 WO 2022054739A1 JP 2021032579 W JP2021032579 W JP 2021032579W WO 2022054739 A1 WO2022054739 A1 WO 2022054739A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
sio
crystallized glass
ppm
Prior art date
Application number
PCT/JP2021/032579
Other languages
English (en)
French (fr)
Inventor
裕基 横田
悠佑 岡田
能弘 高橋
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2022547570A priority Critical patent/JPWO2022054739A1/ja
Priority to US18/024,158 priority patent/US20230382787A1/en
Priority to KR1020227038526A priority patent/KR20230066267A/ko
Priority to CN202180062339.2A priority patent/CN116057023A/zh
Priority to EP21866698.0A priority patent/EP4212490A1/en
Publication of WO2022054739A1 publication Critical patent/WO2022054739A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass.
  • front windows such as oil stoves and wood stoves, substrates for high-tech products such as substrates for color filters and image sensors, setters for firing electronic components, light diffusers, core tubes for semiconductor manufacturing, masks for semiconductor manufacturing, etc.
  • the present invention relates to Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass suitable as a material.
  • front windows such as oil stoves and wood stoves, substrates for high-tech products such as substrates for color filters and image sensors, setters for firing electronic components, light diffusers, core tubes for semiconductor manufacturing, masks for semiconductor manufacturing, optical lenses, etc.
  • substrates for high-tech products such as substrates for color filters and image sensors, setters for firing electronic components, light diffusers, core tubes for semiconductor manufacturing, masks for semiconductor manufacturing, optical lenses, etc.
  • Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass is used.
  • Patent Documents 1 to 3 ⁇ -quartz solid solution (Li 2 O ⁇ Al 2 O 3 ⁇ nSiO 2 [however 2 ⁇ n ⁇ 4]) and ⁇ -spodium solid solution (Li 2 O ⁇ Al 2 O) are described as main crystals. 3.
  • Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass obtained by precipitating Li 2 O-Al 2 O 3 -SiO 2 -based crystals such as nSiO 2 [where n ⁇ 4]) is disclosed. There is.
  • the Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass has excellent thermal properties because it has a low coefficient of thermal expansion and high mechanical strength. Further, by appropriately adjusting the heat treatment conditions in the crystallization step, it is possible to control the type of precipitated crystals, and transparent crystallized glass ( ⁇ -quartz solid solution is precipitated) can be easily produced.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass has a problem that it is colored due to TiO 2 or Fe 2 O 3 and has a yellowish color, which is not preferable in appearance.
  • the content of TiO 2 may be reduced, but if the content of TiO 2 is reduced, the crystal nucleation rate in the crystallization step becomes slow and the amount of crystal nuclei produced. Is likely to decrease. As a result, the number of coarse crystals increases, the crystallized glass becomes cloudy, and the transparency tends to be impaired.
  • An object of the present invention is to provide a Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass that suppresses yellow coloring caused by TiO 2 or Fe 2 O 3 while ensuring transparency. be.
  • the present inventors have found that the shortage of crystal nucleation amount due to the reduction in the content of TiO 2 can be compensated for by containing a large amount of water.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention contains TiO 20 to less than 0.5% by mass and has a ⁇ -OH value of 0.001 to 2 / mm. It is characterized by being. Even if the TiO 2 content is reduced to less than 0.5% in order to improve the yellow coloring, the glass can be sufficiently crystallized by setting the ⁇ -OH value to 0.001 / mm or more. Is.
  • the " ⁇ -OH value” refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following formula.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 )
  • X Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm -1
  • T 2 Minimum transmittance (%) near hydroxyl group absorption wavelength 3600 cm -1
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention further contains, in terms of mass%, SiO 2 40 to 90%, Al 2 O 35 to 30%, Li 2 O 1 to 10%, and Li 2 O 1 to 10%. It preferably contains SnO 20 to 20%, ZrO 2 1 to 20%, MgO 0 to 10%, P 2 O 50 to 10%, and Sb 2 O 3 + As 2 O 30 to less than 2%.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention further has Na 2 O 0 to 10%, K 2 O 0 to 10%, CaO 0 to 10%, and SrO 0 in mass%. It preferably contains ⁇ 10%, BaO 0-10%, ZnO 0-10% , and B2O 30-10%.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention further preferably contains Fe 2 O 3 0.1% or less in mass%.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a mass ratio of SnO 2 / (SnO 2 + ZrO 2 + P 2 O 5 + TiO 2 + B 2 O 3 ) of 0.06 or more. Is preferable.
  • SnO 2 / (SnO 2 + ZrO 2 + P 2 O 5 + TiO 2 + B 2 O 3 ) means that the content of SnO 2 is SnO 2 , ZrO 2 , P 2 O 5 , TiO 2 , and B 2 . It is a value divided by the total amount of O3.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably has Al 2 O 3 / (SnO 2 + ZrO 2 ) of 7.1 or less in terms of mass ratio.
  • Al 2 O 3 / (SnO 2 + ZrO 2 ) is a value obtained by dividing the content of Al 2 O 3 by the total amount of SnO 2 and ZrO 2 .
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably has SnO 2 / (SnO 2 + ZrO 2 ) of 0.01 to 0.99 in terms of mass ratio.
  • SnO 2 / (SnO 2 + ZrO 2 ) is a value obtained by dividing the content of SnO 2 by the total amount of SnO 2 and ZrO 2 .
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably contains 8% or less of Na 2 O + K 2 O + CaO + SrO + BaO in% by mass.
  • Na 2 O + K 2 O + CaO + SrO + BaO is the total amount of Na 2 O, K 2 O, CaO, SrO, and BaO.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably has (SiO 2 + Al 2 O 3 ) / Li 2 O of 20 or more in terms of mass ratio.
  • (SiO 2 + Al 2 O 3 ) / Li 2 O is a value obtained by dividing the total amount of SiO 2 and Al 2 O 3 by the content of Li 2 O.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably has (SiO 2 + Al 2 O 3 ) / SnO 2 of 44 or more in terms of mass ratio.
  • (SiO 2 + Al 2 O 3 ) / SnO 2 is a value obtained by dividing the total amount of SiO 2 and Al 2 O 3 by the content of SnO 2 .
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably has (MgO + ZnO) / Li 2 O of less than 0.395 or more than 0.754 in terms of mass ratio.
  • MgO + ZnO) / Li 2 O is a value obtained by dividing the total amount of MgO and ZnO by the content of Li 2O .
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably has (Li 2 O + Na 2 O + K 2 O) / ZrO 2 of 2.0 or less in terms of mass ratio.
  • (Li 2 O + Na 2 O + K 2 O) / ZrO 2 is a value obtained by dividing the total amount of Li 2 O, Na 2 O and K 2 O by the content of ZrO 2 .
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably has a TiO 2 / ZrO 2 of 0.0001 to 5.0 in terms of mass ratio.
  • TiO 2 / ZrO 2 is a value obtained by dividing the content of TiO 2 by the content of ZrO 2 .
  • TiO 2 / TiO 2 + Fe 2 O 3 is 0.001 to 0.999 in terms of mass ratio.
  • TiO 2 / (TiO 2 + Fe 2 O 3 ) is a value obtained by dividing the content of TiO 2 by the total amount of TiO 2 and Fe 2 O 3 .
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably contains HfO 2 + Ta 2 O 5 less than 0.05% by mass.
  • HfO 2 + Ta 2 O 5 is the total amount of HfO 2 and Ta 2 O 5 .
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably contains Pt of 7 ppm or less in mass%.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably contains Rh 7 ppm or less in mass%.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably contains Pt + Rh of 9 ppm or less in mass%.
  • Pt + Rh is the total amount of Pt and Rh.
  • the Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass of the present invention preferably has a colorless and transparent appearance.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention preferably has a thickness of 3 mm and a transmittance of 10% or more at a wavelength of 300 nm. In this way, it can be suitably used for various applications that require ultraviolet transparency.
  • the coefficient of thermal expansion at 30 to 380 ° C. is preferably 30 ⁇ 10-7 / ° C. or less. In this way, it can be suitably used for various applications that require low expansion.
  • the coefficient of thermal expansion at 30 to 750 ° C. is preferably 30 ⁇ 10 ⁇ 7 / ° C. or less. In this way, it can be suitably used for various applications that require low expansion in a wide temperature range.
  • the transmittance change rate before and after crystallization at a thickness of 3 mm and a wavelength of 300 nm is 50% or less.
  • the "transmittance change rate before and after crystallization” is ⁇ (transmittance before crystallization (%)-transmittance after crystallization (%)) / transmittance before crystallization (%) ⁇ ⁇ . It means 100 (%).
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has an Al 2 O 3 / (Li 2 O + (1/2 ⁇ (MgO + ZnO)) of 3.0 to 8.0 in terms of mass ratio.
  • Al 2 O 3 / (Li 2 O + (1/2 ⁇ (MgO + ZnO)” means that the content of Al 2 O 3 is the content of Li 2 O and the content of Mg O and Zn O. It is a value divided by the sum of the total amount divided by 2.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention contains more than 30 % of MoO in mass% and has a ⁇ -OH value of 0.001 to 0.5 / mm. It is characterized by.
  • Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass that suppresses yellow coloring caused by TiO 2 or Fe 2 O 3 while ensuring transparency. can.
  • Sample No. 27 is a transmittance curve before crystallization.
  • Sample No. 27 is a transmittance curve after crystallization. It is a graph which shows the relationship between the ⁇ -OH value of the sample A to E and the density. It is a graph which shows the relationship between the ⁇ -OH value of the sample F to J, and the density. It is a graph which shows the relationship between the ⁇ -OH value of the sample K to M, and the density.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention contains less than 0.5% of TiO in mass% and has a ⁇ -OH value of 0.001 to 2 / mm. It is characterized by.
  • TiO 2 is a nucleation component for precipitating crystals in the crystallization step.
  • the coloring of the glass is remarkably strengthened.
  • zirconia titanate-based crystals containing ZrO 2 and TiO 2 act as crystal nuclei, but electrons transition from the valence band of oxygen, which is a ligand, to the conduction bands of zirconia and titanium, which are central metals (LMCT). Transition), involved in the coloring of crystallized glass.
  • LMCT central metals
  • the content of TiO 2 is 0 to less than 0.5%, 0 to 0.48%, 0 to 0.46%, 0 to 0.44%, 0 to 0.42%, 0 to 0.4. %, 0 to 0.38%, 0 to 0.36%, 0 to 0.34%, 0 to 0.32%, 0 to 0.3%, 0 to 0.28%, 0 to 0.26%.
  • the lower limit of the TiO 2 content is 0.0003% or more, 0.0005% or more, 0.001% or more, 0.005% or more, 0.01% or more, especially. It is preferably 0.02% or more.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention may contain the following components in the glass composition.
  • SiO 2 is a component that forms a glass skeleton and constitutes a Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystal.
  • the content of SiO 2 is 40 to 90%, 52 to 80%, 55 to 75%, 56 to 70%, 59 to 70%, 60 to 70%, 60 to 69.5%, 60.5 to 69.5. %, 61-69.5%, 61.5-69.5%, 62-69.5%, 62.5-69.5%, 63-69.5%, especially 63.5-69.5% Is preferable. If the content of SiO 2 is too small, the coefficient of thermal expansion tends to be high, and it becomes difficult to obtain crystallized glass having excellent thermal shock resistance. It also tends to reduce chemical durability.
  • Al 2 O 3 is a component that forms a glass skeleton and constitutes a Li 2 O-Al 2 O 3 -SiO 2 system crystal.
  • Al 2 O 3 is a component that coordinates around the crystal nucleus and forms a core-shell structure.
  • the presence of the core-shell structure makes it difficult for the crystal nuclei component to be supplied from the outside of the shell, so that the crystal nuclei are less likely to enlarge and a large number of fine crystal nuclei are likely to be formed.
  • the content of Al 2 O 3 is 5 to 30%, 8 to 30%, 9 to 28%, 10 to 27%, 12 to 27%, 14 to 27%, 16 to 27%, 17 to 27%, 18 to.
  • the content of Al 2 O 3 is too small, the coefficient of thermal expansion tends to be high, and it becomes difficult to obtain crystallized glass having excellent thermal shock resistance. It also tends to reduce chemical durability. Further, the crystal nuclei become large, and the crystallized glass tends to become cloudy. On the other hand, if the content of Al 2 O 3 is too large, the meltability of the glass decreases, the viscosity of the glass melt becomes high and it becomes difficult to clarify, and the molding of the glass becomes difficult and the productivity decreases. It will be easier. In addition, mullite crystals tend to precipitate and the glass tends to be devitrified, so that the crystallized glass is easily damaged.
  • Li 2 O is a component constituting Li 2 O-Al 2 O 3 -SiO 2 system crystals, which has a great influence on crystallinity and lowers the viscosity of glass to improve the meltability and moldability of glass. It is an ingredient that makes it.
  • the content of Li 2 O is 1-10%, 2-10%, 2-8%, 2.5-6%, 2.8-5.5%, 2.8-5%, 3-5%, It is preferably 3 to 4.5%, 3 to 4.2%, and particularly preferably 3.2 to 4%. If the Li 2 O content is too low, mullite crystals tend to precipitate and the glass tends to devitrify.
  • Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystals are less likely to precipitate, and it becomes difficult to obtain crystallized glass having excellent thermal shock resistance. Further, the meltability of the glass is lowered, the viscosity of the glass melt becomes high, the clarification becomes difficult, the molding of the glass becomes difficult, and the productivity tends to be lowered. On the other hand, if the content of Li 2 O is too large, the crystallinity becomes too strong, the glass tends to be devitrified, and the crystallized glass is easily broken.
  • SiO 2 , Al 2 O 3 , and Li 2 O are the main constituents of the ⁇ -quartz solid solution, which is the main crystal, and Li 2 O and Al 2 O 3 complement each other's charges to form a SiO 2 skeleton. It dissolves in solid solution. By containing these three components in a suitable ratio, crystallization proceeds efficiently and production at low cost becomes possible.
  • the mass ratio of (SiO 2 + Al 2 O 3 ) / Li 2 O is preferably 20 or more, 20.2 or more, 20.4 or more, 20.6 or more, 20.8 or more, and particularly preferably 21 or more.
  • SnO 2 is a component that acts as a clarifying agent. It is also a component necessary for efficiently precipitating crystals in the crystallization step. On the other hand, it is also a component that remarkably enhances the coloring of glass when contained in a large amount.
  • the content of SnO 2 is 0 to 20%, more than 0 to 20%, 0.05 to 20%, 0.1 to 10%, 0.1 to 5%, 0.1 to 4%, 0.1 to 3 %, 0.15 to 3%, 0.2 to 3%, 0.2 to 2.7%, 0.2 to 2.4%, 0.25 to 2.4%, 0.3 to 2.4.
  • crystal nuclei may not be sufficiently formed, and coarse crystals may precipitate to cause the glass to become cloudy or damaged.
  • the content of SnO 2 is too large, the crystallized glass may be strongly colored.
  • the amount of SnO 2 evaporation at the time of melting increases, and the environmental load tends to increase.
  • ZrO 2 is a nucleation component for precipitating crystals in the crystallization step.
  • the content of ZrO 2 is 1 to 20%, 1 to 15%, 1 to 10%, 1 to 5%, 1.5 to 5%, 1.75 to 4.5%, 1.75 to 4.4.
  • TiO 2 and ZrO 2 are components that can function as crystal nuclei, respectively.
  • Ti and Zr are homologous elements and have similar electronegativity and ionic radius. Therefore, it has been found that it is easy to have a similar molecular conformation as an oxide, and in the coexistence of TIO 2 and ZrO 2 , phase separation at the initial stage of crystallization is likely to occur. Therefore, within the range where coloring is allowed, TIM 2 / ZrO 2 has a mass ratio of 0.0001 to 5.0, 0.0001 to 4.0, 0.0001 to 3.0, 0.0001 to 2. .5, 0.0001 to 2.0, 0.0001 to 1.5, 0.0001 to 1.0, 0.0001 to 0.5, 0.0001 to 0.4, especially 0.0001 to 0.
  • TIM 2 / ZrO 2 is too small, the raw material batch tends to be expensive and the manufacturing cost tends to increase. On the other hand, if TiO 2 / ZrO 2 is too large, the crystal nucleation rate becomes slow and the manufacturing cost may increase.
  • SnO 2 + ZrO 2 is 1 to 30%, 1.1 to 30%, 1.1 to 27%, 1.1 to 24%, 1.1 to 21%, 1.1 to 20%, 1.1 to 17%, 1.1-14%, 1.1-11%, 1.1-9%, 1.1-7.5%, 1.4-7.5%, 1.8-7.5% , 2.0-7.5%, 2.2-7%, 2.2-6.4%, 2.2-6.2%, 2.2-6%, 2.3-6%, 2 It is preferably .4 to 6%, 2.5 to 6%, and particularly preferably 2.8 to 6%. If the amount of SnO 2 + ZrO 2 is too small, crystal nuclei are less likely to precipitate and crystallization is less likely to occur. On the other hand, if the amount of SnO 2 + ZrO 2 is too large, the crystal nuclei become large and the crystallized glass tends to become cloudy.
  • SnO 2 has the effect of promoting phase separation in the glass.
  • SnO 2 / (to reduce the risk of devitrification due to primary phase precipitation) while keeping the liquid phase temperature low (while suppressing the risk of devitrification), to efficiently generate phase separation, and to rapidly perform nucleation and crystal growth in subsequent steps.
  • SnO 2 + ZrO 2 is a mass ratio of 0.01 to 0.99, 0.01 to 0.98, 0.01 to 0.94, 0.01 to 0.90, 0.01 to 0.86, 0.01 to 0.82, 0.01 to 0.78, 0.01 to 0.74, 0.01 to 0.70, 0.03 to 0.70, especially 0.05 to 0.70. Is preferable.
  • SnO 2 causes a reaction of SnO 2 ⁇ SnO + 1 / 2O 2 at high temperature, and releases O 2 gas into the glass melt.
  • This reaction is known as the clarification mechanism of SnO 2
  • the O 2 gas released during the reaction enlarges the fine bubbles existing in the glass melt and releases them to the outside of the glass system.
  • it has a "stirring action" to mix the glass melt.
  • the contents of SiO 2 and Al 2 O 3 occupy the majority, and these components are sparingly soluble, so that they are efficient. In order to form a uniform glass melt, it is necessary to contain these three components in an appropriate ratio.
  • (SiO 2 + Al 2 O 3 ) / SnO 2 has a mass ratio of 44 or more, 44.3 or more, 44.7 or more, 45 or more, and 45.2 or more. It is preferably 45.4 or more, 45.6 or more, 45.8 or more, and particularly preferably 46 or more.
  • Al 2 O 3 / (SnO 2 + ZrO 2 ) is 7.1 or less, 7.05 or less, 7.0 or less, 6.95 or less, 66.9 or less, 6.85 or less, 6.8 or less in terms of mass ratio. , 6.75 or less, 6.7 or less, 6.65 or less, 6.6 or less, 6.55 or less, 6.5 or less, 6.45 or less, 6.4 or less, 6.35 or less, 6.3 or less , 6.25 or less, 6.2 or less, 6.15 or less, 6.1 or less, 6.05 or less, 6.0 or less, 5.98 or less, 5.95 or less, 5.92 or less, 5.9 or less It is preferably 5.8 or less, 5.7 or less, 5.6 or less, and particularly preferably 5.5 or less.
  • Al 2 O 3 / (SnO 2 + ZrO 2 ) is too large, nucleation does not proceed efficiently and it becomes difficult to crystallize efficiently.
  • Al 2 O 3 / (SnO 2 + ZrO 2 ) is too small, the crystal nuclei become large and the crystallized glass tends to become cloudy. Therefore, the lower limit of Al 2 O 3 / (SnO 2 + ZrO 2 ) is preferably 0.01 or more.
  • MgO is a component that dissolves in a Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystal and increases the coefficient of thermal expansion of the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystal.
  • the content of MgO is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0.02 to 3.
  • P 2 O 5 is a component that suppresses the precipitation of coarse ZrO 2 crystals.
  • the content of P 2 O 5 is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4%, 0 to 3.5%, 0.02 to 3.5%, 0. .05-3.5%, 0.08-3.5%, 0.1-3.5%, 0.1-3.3%, 0.1-3%, 0.13-3%, 0 .15-3%, 0.17-3%, 0.19-3%, 0.2-2.9%, 0.2-2.7%, 0.2-2.5%, 0.2 It is preferably about 2.3%, 0.2 to 2.2%, 0.2 to 2.1%, 0.2 to 2%, and particularly preferably 0.3 to 1.8%.
  • the content of P 2 O 5 is too small, coarse ZrO 2 crystals may be deposited and the glass may be easily devitrified, and the crystallized glass may be easily broken.
  • the content of P 2 O 5 is too large, the amount of precipitation of Li 2 O-Al 2 O 3 -SiO 2 system crystals tends to be small, and the coefficient of thermal expansion tends to be high.
  • Na 2 O is a component that can be solid-solved in Li 2 O-Al 2 O 3 -SiO 2 system crystals, which has a great influence on crystallinity and lowers the viscosity of glass to make the glass meltable and formable. It is an ingredient that improves. It is also a component for adjusting the coefficient of thermal expansion and the refractive index of the crystallized glass.
  • the content of Na 2 O is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0 to 3%. , 0 to 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, particularly preferably 0 to 1.5%.
  • the content of Na 2 O is too high, the crystallinity becomes too strong, the glass is easily devitrified, and the crystallized glass is easily broken. Further, since the ionic radius of the Na cation is larger than that of the Li cation or Mg cation which is a constituent component of the main crystal and is difficult to be incorporated into the crystal, the Na cation after crystallization tends to remain in the residual glass (glass matrix). Therefore, if the content of Na 2 O is too large, a difference in refractive index between the crystalline phase and the residual glass tends to occur, and the crystallized glass tends to become cloudy.
  • the lower limit of the Na 2 O content is preferably 0.0003% or more, 0.0005% or more, and particularly preferably 0.001% or more.
  • K 2 O is a component that can be dissolved in Li 2 O-Al 2 O 3 -SiO 2 system crystals, which has a great influence on crystallinity and lowers the viscosity of glass to make the glass meltable and formable. It is an ingredient that improves. It is also a component for adjusting the coefficient of thermal expansion and the refractive index of the crystallized glass.
  • the content of K 2 O is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0 to 3%.
  • the lower limit of the content of K2O is preferably 0.0003% or more , 0.0005% or more, and particularly preferably 0.001% or more.
  • Li 2 O, Na 2 O, and K 2 O are components that improve the meltability and moldability of glass, but if the content of these components is too large, the low temperature viscosity will drop too much and the glass will flow too much during crystallization. There is a risk that it will end up. Further, Li 2 O, Na 2 O, and K 2 O are components that can deteriorate the weather resistance, water resistance, chemical resistance, and the like of the glass before crystallization. If the glass before crystallization is deteriorated by moisture or the like, there is a risk that the desired crystallization behavior and eventually the desired characteristics cannot be obtained.
  • ZrO 2 is a component that functions as a nucleating agent, and has an effect of preferentially crystallizing in the early stage of crystallization and suppressing the flow of residual glass.
  • ZrO 2 efficiently fills the void portion of the glass network mainly composed of the SiO 2 skeleton, has the effect of inhibiting the diffusion of protons and various chemical components in the glass network, and has the effect of inhibiting the diffusion of protons and various chemical components in the glass network.
  • (Li 2 O + Na 2 O + K 2 O) / ZrO 2 should be suitably controlled in order to obtain a crystallized glass having a desired shape and characteristics.
  • (Li 2 O + Na 2 O + K 2 O) / ZrO 2 shall have a mass ratio of 2.0 or less, 1.98 or less, 1.96 or less, 1.94 or less, 1.92 or less, especially 1.90 or less. Is preferable.
  • CaO is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. It is also a component for adjusting the coefficient of thermal expansion and the refractive index of the crystallized glass.
  • the CaO content is 0-10%, 0-8%, 0-6%, 0-5%, 0-4.5%, 0-4%, 0-3.5%, 0-3%, 0. It is preferably about 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, and particularly preferably 0 to 1.5%. If the CaO content is too high, the glass is liable to be devitrified and the crystallized glass is liable to break.
  • the ionic radius of the Ca cation is larger than that of the Li cation or Mg cation which is a constituent component of the main crystal and is difficult to be incorporated into the crystal, the Ca cation after crystallization tends to remain in the residual glass. Therefore, if the content of CaO is too large, a difference in refractive index between the crystalline phase and the residual glass tends to occur, and the crystallized glass tends to become cloudy.
  • the lower limit of the CaO content is preferably 0.0001% or more, 0.0003% or more, and particularly preferably 0.0005% or more.
  • SrO is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. It is also a component for adjusting the coefficient of thermal expansion and the refractive index of the crystallized glass.
  • the content of SrO is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0 to 3%, 0. It is preferably about 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, 0 to 1.5%, and particularly preferably 0-1%. If the content of SrO is too high, the glass tends to be devitrified and the crystallized glass is easily broken.
  • the lower limit of the SrO content is preferably 0.0001% or more, 0.0003% or more, and particularly preferably 0.0005% or more.
  • BaO is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. It is also a component for adjusting the coefficient of thermal expansion and the refractive index of the crystallized glass.
  • the content of BaO is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0 to 3%, 0. It is preferably about 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, 0 to 1.5%, and particularly preferably 0-1%.
  • the content of BaO is too large, crystals containing Ba are deposited and the glass is liable to be devitrified, and the crystallized glass is liable to be damaged. Further, since the ionic radius of the Ba cation is larger than that of the Li cation and the Mg cation which are the constituents of the main crystal and is difficult to be incorporated into the crystal, the Ba cation after crystallization tends to remain in the residual glass. Therefore, if the content of BaO is too large, a difference in refractive index between the crystalline phase and the residual glass tends to occur, and the crystallized glass tends to become cloudy.
  • the lower limit of the BaO content is preferably 0.0001% or more, 0.0003% or more, and particularly preferably 0.0005% or more.
  • MgO, CaO, SrO, and BaO are components that improve the meltability and moldability of glass, but if the content of these components is too large, the low-temperature viscosity will drop too much, and the glass may flow too much during crystallization. be.
  • ZrO 2 is a component that functions as a nucleating agent, and has an effect of preferentially crystallizing in the early stage of crystallization and suppressing the flow of residual glass. In order to obtain a crystallized glass having a desired shape and characteristics, (MgO + CaO + SrO + BaO) / ZrO 2 should be suitably controlled.
  • (MgO + CaO + SrO + BaO) / ZrO 2 is a mass ratio of 0 to 3, 0 to 2.8, 0 to 2.6, 0 to 2.4, 0 to 2.2, 0 to 2.1, 0 to 2, 0. It is preferably ⁇ 1.8, 0 to 1.7, 0 to 1.6, and particularly preferably 0 to 1.5.
  • Na 2 O, K 2 O, CaO, SrO, and BaO tend to remain in the residual glass after crystallization. Therefore, if the total amount thereof is too large, a difference in refractive index between the crystalline phase and the residual glass tends to occur, and the crystallized glass tends to become cloudy. Therefore, Na 2 O + K 2 O + CaO + SrO + BaO is 8% or less, 7% or less, 6% or less, 5% or less, 4.5% or less, 4% or less, 3.5% or less, 3% or less, 2.7% or less. It is preferably 2.42% or less, 2.415% or less, 2.410% or less, 2.405% or less, and particularly preferably 2.4% or less.
  • Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO are components that improve the meltability and moldability of glass. Further, the glass melt containing a large amount of MgO, CaO, SrO, and BaO tends to have a gradual change in viscosity (viscosity curve) with respect to temperature, and the glass melt containing a large amount of Li 2 O, Na 2 O, and K 2 O tends to be gradual. Changes tend to be sudden. If the change in the viscosity curve is too gradual, the glass will flow even after being molded into a predetermined shape, making it difficult to obtain a desired shape.
  • viscosity curve viscosity curve
  • (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) should be suitably controlled.
  • (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is a mass ratio of 0 to 2, 0 to 1.8, 0 to 1.5, 0 to 1.2, 0 to 1, 0 to 0.9, It is preferably 0 to 0.8, 0 to 0.7, 0 to 0.6, 0 to 0.5, and particularly preferably 0 to 0.45.
  • ZnO is a component that dissolves in Li 2 O-Al 2 O 3 -SiO 2 system crystals and has a great influence on crystallinity. It is also a component for adjusting the coefficient of thermal expansion and the refractive index of the crystallized glass.
  • the ZnO content is 0-10%, 0-8%, 0-6%, 0-5%, 0-4.5%, 0-4%, 0-3.5%, 0-3%, 0. It is preferably about 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, 0 to 1.5%, and particularly preferably 0-1%. If the ZnO content is too high, the crystallinity becomes too strong and the glass is easily devitrified, and the glass is easily broken.
  • the lower limit of the ZnO content is preferably 0.0001% or more, 0.0003% or more, and particularly preferably 0.0005% or more.
  • Li cation, Mg cation, and Zn cation are components that are easily dissolved in ⁇ -quartz solid solution, and these cations charge-compensate for Al cation. It dissolves in crystals. Specifically, it is considered that it is solid-solved in the form of Si 4+ ⁇ Al 3+ + (Li + , 1/2 ⁇ Mg 2+ , 1/2 ⁇ Zn 2+ ), and it is considered to be a solid solution with Al cation.
  • the ratio of Li cation, Mg cation and Zn cation affects the stability of ⁇ -quartz solid solution.
  • Al 2 O 3 / (Li 2 O + (1/2 ⁇ (MgO + ZnO)) ) Is the mass ratio, 3.0 to 8.0, 3.2 to 7.8, 3.4 to 7.6, 3.5 to 7.5, 3.7 to 7.5, 4.0 to 4.0. 7.5-4.3-7.5, 4.5-7.5, 4.8-7.5, 5.0-7.5, 5.5-7.3, 5.5-7.5. It is preferably 1, 5.5 to 7.0, 5.5 to 6.8, 5.5 to 6.7, 5.5 to 6.6, and particularly preferably 5.5 to 6.5.
  • Y 2 O 3 is a component that lowers the viscosity of the glass and improves the meltability and moldability of the glass. It is also a component for improving the Young's modulus of the crystallized glass and adjusting the coefficient of thermal expansion and the refractive index.
  • the content of Y 2 O 3 is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0 to 3 %, 0 to 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, 0 to 1.5%, and particularly preferably 0-1%.
  • the content of Y 2 O 3 is too large, crystals containing Y are deposited and the glass is liable to be devitrified, and the crystallized glass is liable to be damaged. Further, since the ionic radius of the Y cation is larger than that of the Li cation or Mg cation which is a constituent component of the main crystal and is difficult to be incorporated into the crystal, the Y cation after crystallization tends to remain in the residual glass. Therefore, if the content of Y 2 O 3 is too large, a difference in refractive index between the crystalline phase and the residual glass tends to occur, and the crystallized glass tends to become cloudy.
  • the lower limit of the content of Y2O3 is preferably 0.0001% or more , 0.0003% or more, and particularly preferably 0.0005% or more.
  • Li cation, Mg cation, and Zn cation are components that are easily dissolved in ⁇ -quartz solid solution, and after crystallization as compared with Ba cation and the like. It is considered that the contribution of the residual glass to the increase in the refractive index is small. Further, since Li 2O , MgO, and ZnO function as flux when vitrifying the raw material, it can be said that these are important components for producing colorless and transparent crystallized glass at a low temperature. Li 2 O is an essential component for achieving low expansion, and must be contained in an amount of 1% or more.
  • the required amount of Li 2 O must be contained in order to achieve the desired coefficient of thermal expansion, etc.
  • the content of MgO and ZnO is increased together accordingly, the viscosity of the glass may decrease too much. .. If the low-temperature viscosity is too low, the softening fluidity of the glass becomes too large during firing, and it may be difficult to crystallize into a desired shape. Further, if the high-temperature viscosity is lowered too much, the thermal load on the manufacturing equipment is lowered, but the convection speed at the time of heating becomes high, and there is a possibility that refractories and the like are easily physically eroded.
  • (MgO + ZnO) / Li 2O is reduced in mass ratio to 0.394 or less, 0.393 or less, 0.392 or less, 0.391 or less, especially 0.390 or less, or 0.755 or more, 0. It is preferable to increase the size to .756 or more, 0.757 or more, 0.758 or more, and particularly 0.759 or more.
  • B 2 O 3 is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. It is also a component that can contribute to the likelihood of phase separation during crystal nucleation.
  • the content of B 2 O 3 is 0 to 10%, 0 to 8%, 0 to 6%, 0 to 5%, 0 to 4.5%, 0 to 4%, 0 to 3.5%, 0 to 3 %, 0 to 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, and particularly preferably 0 to 1.5%. If the content of B 2 O 3 is too large, the amount of evaporation of B 2 O 3 at the time of melting becomes large, and the environmental load becomes high.
  • B 2 O 3 is easily mixed as an impurity, if an attempt is made to completely remove B 2 O 3 , the raw material batch becomes expensive and the manufacturing cost tends to increase.
  • B 2 O 3 may be contained in an amount of 0.0001% or more, 0.0003% or more, particularly 0.0005% or more.
  • phase-dividing region is formed in the glass before crystal nucleation is formed, and then the phase-dividing region is composed of TiO 2 or ZrO 2 . It is known that crystal nuclei are formed. Since SnO 2 , ZrO 2 , P 2 O 5 , TiO 2 and B 2 O 3 are strongly involved in the phase separation formation, SnO 2 + ZrO 2 + P 2 O 5 + TiO 2 + B 2 O 3 is 1.5.
  • SnO 2 / (SnO 2 + ZrO 2 + P 2 O 5 + TiO 2 + B 2 O 3 ) Is 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.1 or more, 0.103 or more, 0.106 or more, 0.11 or more, 0.112 or more, It is preferably 0.115 or more, 0.118 or more, 0.121 or more, 0.124 or more, 0.127 or more, 0.128 or more, and particularly preferably 0.13 or more.
  • Fe 2 O 3 is also a component that strengthens the coloring of glass, particularly a component that remarkably strengthens the coloring by interacting with TiO 2 and SnO 2 .
  • the content of Fe 2 O 3 is 0.10% or less, 0.08% or less, 0.06% or less, 0.05% or less, 0.04% or less, 0.035% or less, 0.03% or less, 0.02% or less, 0.015% or less, 0.013% or less, 0.012% or less, 0.011% or less, 0.01% or less, 0.009% or less, 0.008% or less, 0. It is preferably 007% or less, 0.006% or less, 0.005% or less, 0.004% or less, 0.003% or less, and particularly preferably 0.002% or less.
  • the lower limit of the content of Fe 2 O 3 is 0.0001% or more, 0.0002% or more, 0.0003% or more, 0.0005% or more, especially 0.001% or more. Is preferable.
  • TiO 2 and Fe 2 O 3 may be contained in the above-mentioned range, and in order to reduce the manufacturing cost, both of them are allowed in the range where coloring is allowed. Ingredients may be contained.
  • TiO 2 / (TiO 2 + Fe 2 O 3 ) is 0.001 to 0.999, 0.003 to 0.997, 0.005 to 0.995, 0.007 to 0.993 in mass ratio. , 0.009 to 0.991, 0.01 to 0.99, 0.1 to 0.9, 0.15 to 0.85, 0.2 to 0.8, 0.25 to 0.25, 0 It is preferably 0.3 to 0.7, 0.35 to 0.65, and particularly preferably 0.4 to 0.6. By doing so, it becomes easy to obtain crystallized glass having high colorless transparency at low cost.
  • Pt is a component that can be mixed in glass in the form of ions, colloids, metals, etc., and develops yellow to brown coloring. In addition, this tendency becomes remarkable after crystallization. Furthermore, as a result of diligent studies, it was found that when Pt is mixed in, the nucleation and crystallization behavior of the crystallized glass are affected, and cloudiness may easily occur. Therefore, the content of Pt is 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1.6 ppm or less, 1.4 ppm or less, 1.2 ppm or less, 1 ppm or less, 0.9 ppm or less, 0.
  • It is preferably 0.8 ppm or less, 0.7 ppm or less, 0.6 ppm or less, 0.5 ppm or less, 0.45 ppm or less, 0.40 ppm or less, 0.35 ppm or less, and particularly preferably 0.30 ppm or less.
  • Mixing of Pt should be avoided as much as possible, but when a general melting facility is used, it may be necessary to use a Pt member in order to obtain a homogeneous glass. Therefore, when trying to completely remove Pt, the manufacturing cost tends to increase.
  • the lower limit of the Pt content is 0.0001 ppm or more, 0.001 ppm or more, 0.005 ppm or more, 0.01 ppm or more, 0.02 ppm in order to suppress the increase in manufacturing cost. As mentioned above, it is preferably 0.03 ppm or more, 0.04 ppm or more, 0.05 ppm or more, 0.06 ppm or more, and particularly preferably 0.07 ppm or more.
  • Pt may be used as a nucleating agent that promotes the precipitation of the main crystal, similarly to ZrO 2 and TiO 2 . At that time, Pt alone may be used as a nucleating agent, or may be combined with other components as a nucleating agent. When Pt is used as a nucleating agent, the form is not particularly limited (colloid, metal crystal, etc.).
  • Rh is a component that can be mixed in glass in the form of ions, colloids, metals, etc., and like Pt, it develops a yellow to brown color and tends to make the crystallized glass cloudy. Therefore, the Rh content is 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1.6 ppm or less, 1.4 ppm or less, 1.2 ppm or less, 1 ppm or less, 0.9 ppm or less, 0.
  • It is preferably 0.8 ppm or less, 0.7 ppm or less, 0.6 ppm or less, 0.5 ppm or less, 0.45 ppm or less, 0.40 ppm or less, 0.35 ppm or less, and particularly preferably 0.30 ppm or less.
  • Mixing of Rh should be avoided as much as possible, but when a general melting facility is used, it may be necessary to use a Rh member in order to obtain a homogeneous glass. Therefore, when trying to completely remove Rh, the manufacturing cost tends to increase.
  • the lower limit of the Rh content is 0.0001 ppm or more, 0.001 ppm or more, 0.005 ppm or more, 0.01 ppm or more, 0.02 ppm in order to suppress the increase in manufacturing cost. As mentioned above, it is preferably 0.03 ppm or more, 0.04 ppm or more, 0.05 ppm or more, 0.06 ppm or more, and particularly preferably 0.07 ppm or more.
  • Rh may be used as a nucleating agent in the same manner as ZrO 2 and TiO 2 . At that time, Rh alone may be used as a nucleating agent, or may be combined with other components as a nucleating agent. Further, when Rh is used as a nucleation agent that promotes the precipitation of the main crystal, the form is not particularly limited (colloid, metal crystal, etc.).
  • Pt + Rh is 9 ppm or less, 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4.75 ppm or less, 4.5 ppm or less, 4.25 ppm or less, 4 ppm or less, 3.75 ppm or less, 3.5 ppm or less, 3.25 ppm.
  • the lower limit of Pt + Rh is 0.0001 ppm or more, 0.001 ppm or more, 0.005 ppm or more, 0.01 ppm or more, 0.02 ppm or more, 0 in order to suppress the increase in manufacturing cost. It is preferably 0.03 ppm or more, 0.04 ppm or more, 0.05 ppm or more, 0.06 ppm or more, and particularly preferably 0.07 ppm or more.
  • MoO 3 is a component that can be mixed from raw materials, melting members, and the like, and is a component that promotes crystallization.
  • the content of MoO 3 is 0-10%, 0-8%, 0-6%, 0-5%, 0-4.5%, 0-4%, 0-3.5%, 0-3%, 0 to 2.7%, 0 to 2.4%, 0 to 2.1%, 0 to 1.8%, 0 to 1.5%, 0-1%, 0 to 0.5%, 0 to 0 .1%, 0 to 0.05%, 0 to 0.01%, particularly preferably 0 to 0.005%.
  • the content of MoO 3 is too large, crystals containing Mo are deposited and the glass is liable to be devitrified, and the crystallized glass is liable to be damaged. Further, since the ionic radius of the Mo cation is larger than that of the Li cation or Mg cation which is a constituent component of the main crystal and is difficult to be incorporated into the crystal, the Mo cation after crystallization tends to remain in the residual glass. Therefore, if the content of MoO 3 is too large, a difference in refractive index between the crystalline phase and the residual glass tends to occur, and the crystallized glass tends to become cloudy. Furthermore, if the MoO 3 content is too high, it may be colored yellow.
  • the lower limit of the content of MoO 3 is preferably more than 0%, 0.0001% or more, 0.0003% or more, and particularly preferably 0.0005% or more.
  • Sb 2 O 3 + As 2 O 3 is 2% or less, 1% or less, 0.7% or less, less than 0.7%, 0.65% or less, 0.6% or less, 0.55% or less, 0.5% or less, 0.45% or less, 0.4% or less, 0.35% or less, 0.3% or less, 0.25% or less, 0.2% or less, 0.15% or less, 0. It is preferably 1% or less, 0.05% or less, and particularly preferably substantially free (specifically, less than 0.01% by mass). When As 2 O 3 or Sb 2 O 3 is contained, these components may function as a clarifying agent or a nucleating agent.
  • the Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass of the present invention has, for example, H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, in addition to the above components, as long as there is no adverse effect on coloring.
  • N 2 and the like may be contained up to 0.1%, respectively.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention is SO 3 , MnO, Cl 2 , La 2 O 3 , WO 3 , HfO 2 , Ta 2 O. 5 , Nd 2 O 3 , Nb 2 O 5 , RfO 2 , etc. may be contained up to 10% in total.
  • HfO 2 has a high raw material cost
  • Ta 2 O 5 may become a conflict mineral.
  • the total amount of these components is 5% or less, 4% or less, 3% or less, 2% or less, 1% in mass%. Below, 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, 0.1% or less, 0.05% or less, less than 0.05%, 0.049% or less, It is preferably 0.048% or less, 0.047% or less, 0.046% or less, and particularly preferably 0.045% or less.
  • the preferable composition range is SiO 2 50 to 75%, Al 2 O 3 10 to 30%, Li 2 O 1 to 1. 8%, SnO 20 to 5%, ZrO 2 1 to 5%, MgO 0 to 10%, P 2 O 50 to 5 %, TiO 20 to less than 1.5%, (Li 2 O + Na 2 O + K 2 O) ) / ZrO 20 to 1.5, TiO 2 / (TiO 2 + Fe 2 O 3 ) 0.01 to 0.99, (MgO + ZnO) / Li 2 O 0 to 0.8, ⁇ -OH value 0.001 It is ⁇ 2 / mm, preferably SiO 2 50 ⁇ 75%, Al 2 O 3 10 ⁇ 30%, Li 2 O 1 ⁇ 8%, SnO 20 over ⁇ 5%, ZrO 2 1 ⁇ 5%, MgO.
  • the Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass of the present invention having the above composition tends to be colorless and transparent in appearance.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a ⁇ -OH value of 0.001 to 2 / mm, 0.01 to 1.5 / mm, and 0.02 to 0.02. 1.5 / mm, 0.03 to 1.2 / mm, 0.04 to 1.5 / mm, 0.05 to 1 / mm, 0.06 to 1 / mm, 0.07 to 1 / mm, 0.08 to 0.9 / mm, 0.08 to 0.85 / mm, 0.08 to 0.8 / mm, 0.08 to 0.75 / mm, 0.08 to 0.7 / mm, 0.08 to 0.65 / mm, 0.08 to 0.6 / mm, 0.08 to 0.55 / mm, 0.08 to 0.54 / mm, 0.08 to 0.53 / mm, It is preferably 0.08 to 0.52 / mm, 0.08 to 0.51 / mm, and particularly preferably 0.08 to 0.5 / mm.
  • the rate of crystal nucleation in the crystallization step becomes slow, and the amount of crystal nuclei produced tends to decrease. As a result, the number of coarse crystals increases, the crystallized glass becomes cloudy, and the transparency tends to be impaired.
  • the reason why crystallization proceeds due to the large ⁇ -OH value is not completely clear, but one reason is that the ⁇ -OH group weakens the bond of the glass skeleton and reduces the viscosity of the glass. It is expected to be.
  • the presence of ⁇ -OH groups in the glass facilitates the movement of components that can function as crystal nuclei such as Zr.
  • the ⁇ -OH value changes depending on the raw material used, the melting atmosphere, the melting temperature, the melting time, and the like, and these conditions can be changed as necessary to adjust the ⁇ -OH value.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 0% or more, 2.5% or more, 5% or more, 10% or more, 12% at a thickness of 3 mm and a wavelength of 200 nm. 14% or more, 16% or more, 18% or more, 20% or more, 22% or more, 24% or more, 26% or more, 28% or more, 30% or more, 32% or more, 34% or more, 36% or more, 38% or more, 40% or more, 40.5% or more, 41% or more, 41.5% or more, 42% or more, 42.5% or more, 43% or more, 43.5% or more, 44% or more, 44.
  • the transmittance at a wavelength of 200 nm is too low, the desired transmittance may not be obtained.
  • the transmittance at a wavelength of 200 nm is high.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 0% or more, 1% or more, 2% or more, 3% or more, 4% or more at a thickness of 3 mm and a wavelength of 250 nm. 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 10.5% or more, 11% or more, 11.5% or more, 12% or more, 12.5% or more, It is preferably 13% or more, 13.5% or more, 14% or more, 14.5% or more, 15% or more, 15.5% or more, and particularly preferably 16% or more.
  • the transmittance at a wavelength of 250 nm is too low, the desired transmittance may not be obtained.
  • the transmittance at a wavelength of 250 nm is high.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 0% or more, 2.5% or more, 5% or more, 10% or more, 12% at a thickness of 3 mm and a wavelength of 300 nm. 14% or more, 16% or more, 18% or more, 20% or more, 22% or more, 24% or more, 26% or more, 28% or more, 30% or more, 32% or more, 34% or more, 36% or more, 38% or more, 40% or more, 40.5% or more, 41% or more, 41.5% or more, 42% or more, 42.5% or more, 43% or more, 43.5% or more, 44% or more, 44.
  • the transmittance at a wavelength of 300 nm is high.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 0% or more, 2.5% or more, 5% or more, 10% or more, 12% at a thickness of 3 mm and a wavelength of 325 nm.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 0% or more, 5% or more, 10% or more, 15% or more, 20% or more at a thickness of 3 mm and a wavelength of 350 nm. 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 71% or more, 72% or more, 73% It is preferably 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 80% or more, 81% or more, 82% or more, 83% or more, and particularly preferably 84% or more.
  • the transmittance at a wavelength of 350 nm is high.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 50% or more, 55% or more, 60% or more, 65% or more, 70% or more at a thickness of 3 mm and a wavelength of 380 nm. It is preferably 75% or more, 78% or more, 80% or more, 81% or more, 82% or more, 83% or more, and particularly preferably 84% or more. If the transmittance at a wavelength of 380 nm is too low, the yellow coloration becomes strong, and the transparency of the crystallized glass may decrease, making it impossible to obtain the desired transmittance.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 50% or more, 55% or more, 60% or more, 65% or more, 70% or more at a thickness of 3 mm and a wavelength of 800 nm. It is preferably 75% or more, 78% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84%% or more, 85% or more, 86% or more, 87% or more, particularly 88% or more. .. If the transmittance at a wavelength of 800 nm is too low, it tends to turn green. In particular, when used for medical purposes such as vein authentication, it is preferable that the transmittance at a wavelength of 800 nm is high.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance of 50% or more, 55% or more, 60% or more, 65% or more, 70% or more at a thickness of 3 mm and a wavelength of 1200 nm. 72% or more, 74% or more, 76% or more, 78% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88 % Or more, particularly preferably 89% or more. If the transmittance at a wavelength of 1200 nm is too low, it tends to turn green. In particular, when used in infrared communication applications such as infrared cameras and remote controls, it is preferable that the transmittance at a wavelength of 1200 nm is high.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a transmittance change rate of 50% or less, 48% or less, 46% or less, 44% or less before and after crystallization at a thickness of 3 mm and a wavelength of 300 nm. , 42% or less, 40% or less, 38% or less, 37.5% or less, 37% or less, 36.5% or less, 36% or less, 35.5% or less, particularly preferably 35% or less.
  • the transmittance change rate before and after crystallization is not limited to a wavelength of 300 nm but is small in the entire wavelength range.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a brightness L * of 50 or more, 60 or more, 65 or more, 70% or more, 75 or more, 80 or more, 85 or more, 90 at a thickness of 3 mm. It is preferably 91 or more, 92 or more, 93 or more, 94 or more, 95 or more, 96 or more, 96.1 or more, 96.3 or more, and particularly preferably 96.5 or more. If the lightness L * is too small, it tends to appear grayish and dark regardless of the magnitude of the chromaticity.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a chromaticity a * of ⁇ 5.0 or less, ⁇ 4.5 or less, ⁇ 4 or less, ⁇ 3.6 or less at a thickness of 3 mm.
  • a * of ⁇ 5.0 or less, ⁇ 4.5 or less, ⁇ 4 or less, ⁇ 3.6 or less at a thickness of 3 mm.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a chromaticity b * at a thickness of 3 mm within ⁇ 5.0, within ⁇ 4.5, within ⁇ 4, and within ⁇ 3.6.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a strain point (a temperature corresponding to a viscosity of glass of about 10 14.5 dPa ⁇ s) in the state of the glass before crystallization. It is preferably 600 ° C. or higher, 605 ° C. or higher, 610 ° C. or higher, 615 ° C. or higher, 620 ° C. or higher, 630 ° C. or higher, 635 ° C. or higher, 640 ° C. or higher, 645 ° C. or higher, 650 ° C. or higher, particularly 655 ° C. or higher. If the strain point is too low, it will easily break when the pre-crystallized glass is molded.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a slow cooling point (a temperature corresponding to a viscosity of about 10 13 dPa ⁇ s) of 680 in the state of the glass before crystallization. ° C. or higher, 685 ° C. or higher, 690 ° C. or higher, 695 ° C. or higher, 700 ° C. or higher, 705 ° C. or higher, 710 ° C. or higher, 715 ° C. or higher, 720 ° C. or higher, particularly 725 ° C. or higher. If the cooling point is too low, the glass before crystallization is easily broken when it is molded.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention is easily crystallized by heat treatment, it has a softening point (the viscosity of the glass is about 107 ) like general glass such as soda lime glass. It is not easy to measure (the temperature corresponding to 6 dPa ⁇ s). Therefore, in the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention, the temperature at which the inclination of the thermal expansion curve of the glass before crystallization changes is set as the glass transition temperature and treated as a substitute for the softening point. ..
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a glass transition temperature of 680 ° C or higher, 685 ° C or higher, 690 ° C or higher, 695 ° C or higher, 700 in the state of glass before crystallization. It is preferably °C or higher, 705 ° C or higher, 710 ° C or higher, 715 ° C or higher, 720 ° C or higher, and particularly preferably 725 ° C or higher. If the glass transition temperature is too low, the glass will flow too much during crystallization, making it difficult to form the desired shape.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a liquid phase temperature of 1540 ° C or lower, 1535 ° C or lower, 1530 ° C or lower, 1525 ° C or lower, 1520 ° C or lower, 1515 ° C or lower, 1510 ° C.
  • the liquidus temperature is too high, devitrification is likely to occur during manufacturing.
  • the temperature is 1480 ° C or lower, the production by the roll method or the like becomes easy, if the temperature is 1450 ° C or less, the production by the casting method or the like becomes easy, and if the temperature is 1410 ° C or less, the fusion method or the like is used. Easy to manufacture.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a liquid phase viscosity (a logarithmic value of the viscosity corresponding to the liquid phase temperature) of 2.70 or more and 2.75 or more and 2.80 or more. 2.85 or higher, 2.90 or higher, 2.95 or higher, 3.00 or higher, 3.05 or higher, 3.10 or higher, 3.15 or higher, 3.20 or higher, 3.25 or higher, 3.30 or higher It is preferably 3.35 or more, 3.40 or more, 3.45 or more, 3.50 or more, 3.55 or more, 3.60 or more, 3.65 or more, and particularly 3.70 or more. If the liquidus viscosity is too low, it tends to devitrify during manufacturing.
  • a ⁇ -quartz solid solution is precipitated as a main crystal. If the ⁇ -quartz solid solution is precipitated as the main crystal, the crystal grain size tends to be small, so that the crystallized glass easily transmits visible light and the transparency tends to increase. It also facilitates the coefficient of thermal expansion of glass to approach zero.
  • the ⁇ -spodium solid solution is precipitated by heat treatment at a higher temperature than the crystallization conditions for precipitating the ⁇ -quartz solid solution.
  • the crystal grain size of the ⁇ -spojumen solid solution tends to be larger than that of the ⁇ -quartz solid solution, and generally tends to become cloudy when made into crystallized glass.
  • the difference in refractive index between the crystal phase containing the solid solution and the residual glass phase may be small, and in this case, the crystallized glass is less likely to become cloudy.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention may contain crystals such as ⁇ -spodium solid solution as long as there is no adverse effect on coloring and the like.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention has a coefficient of thermal expansion at 30 to 380 ° C. of 30 ⁇ 10 -7 / ° C or less, 25 ⁇ 10 -7 / ° C or less, 20 ⁇ .
  • 10-7 / ° C or less 18 ⁇ 10-7 / ° C or less, 16 ⁇ 10-7 / ° C or less, 14 ⁇ 10-7 / ° C or less, 13 ⁇ 10-7 / ° C or less, 12 ⁇ 10-7 / ° C Below, 11 ⁇ 10-7 / ° C or less, 10 ⁇ 10-7 / ° C or less, 9 ⁇ 10-7 / ° C or less, 8 ⁇ 10-7 / ° C or less, 7 ⁇ 10-7 / ° C or less, 6 ⁇ 10 It is preferably -7 / ° C. or lower, 5 ⁇ 10 -7 / ° C. or lower, 4 ⁇ 10 -7 / ° C.
  • ⁇ 10 -7 / ° C. or lower 3 ⁇ 10 -7 / ° C. or lower, and particularly preferably 2 ⁇ 10 -7 / ° C. or lower.
  • dimensional stability and / or heat impact resistance is particularly required, -5 x 10-7 / ° C to 5 x 10-7 / ° C, -3 x 10-7 / ° C to 3 x 10 -7 / ° C, -2.5 x 10-7 / ° C to 2.5 x 10-7 / ° C, -2 x 10-7 / ° C to 2 x 10-7 / ° C, -1.5 x 10- 7 / ° C to 1.5 x 10-7 / ° C, -1 x 10-7 / ° C to 1 x 10-7 / ° C, especially -0.5 x 10-7 / ° C to 0.5 x 10-7 It is preferably / ° C.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention has a coefficient of thermal expansion at 30 to 750 ° C. of 30 ⁇ 10 -7 / ° C or less, 25 ⁇ 10 -7 / ° C or less, 20 ⁇ .
  • 10-7 / ° C or less 18 ⁇ 10-7 / ° C or less, 16 ⁇ 10-7 / ° C or less, 14 ⁇ 10-7 / ° C or less, 13 ⁇ 10-7 / ° C or less, 12 ⁇ 10-7 / ° C Below, 11 ⁇ 10-7 / ° C or less, 10 ⁇ 10-7 / ° C or less, 9 ⁇ 10-7 / ° C or less, 8 ⁇ 10-7 / ° C or less, 7 ⁇ 10-7 / ° C or less, 6 ⁇ 10 It is preferably -7 / ° C. or lower, 5 ⁇ 10 -7 / ° C. or lower, 4 ⁇ 10 -7 / ° C.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a Young's modulus of 60 to 120 GPa, 70 to 110 GPa, 75 to 110 GPa, 75 to 105 GPa, 80 to 105 GPa, and particularly 80 to 100 GPa. Is preferable. If the Young's modulus is too low or too high, the crystallized glass is liable to break.
  • the Li 2 O—Al 2 O 3 -SiO 2 system crystallized glass of the present invention preferably has a rigidity of 25 to 50 GPa, 27 to 48 GPa, 29 to 46 GPa, and particularly preferably 30 to 45 GPa. If the rigidity is too low or too high, the crystallized glass is easily damaged.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention has a Poisson's ratio of 0.35 or less, 0.32 or less, 0.3 or less, 0.28 or less, 0.26 or less, especially 0. It is preferably .25 or less. If the Poisson's ratio is too large, the crystallized glass is liable to break.
  • the density of the crystalline glass before crystallization of the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention is 2.30 to 2.60 g / cm 3 , 2.32 to 2.58 g /. cm 3 , 2.34 to 2.56 g / cm 3 , 2.36 to 2.54 g / cm 3 , 2.38 to 2.52 g / cm 3 , 2.39 to 2.51 g / cm 3 , especially 2. It is preferably 40 to 2.50 g / cm 3 . If the density of the crystalline glass is too low, the gas permeability before crystallization deteriorates and the glass may be contaminated during the storage period. On the other hand, if the density of the crystalline glass is too high, the weight per unit area becomes large and it becomes difficult to handle.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass (after crystallization) of the present invention has a density of 2.40 to 2.80 g / cm 3 , 2.42 to 2.78 g / cm 3 , It is preferably 2.44 to 2.76 g / cm 3 , 2.46 to 2.74 g / cm 3 , and particularly preferably 2.47 to 2.73 g / cm 3 . If the density of the crystallized glass is too low, the gas permeability of the crystallized glass may deteriorate. On the other hand, if the density of the crystallized glass is too high, the weight per unit area becomes large and it becomes difficult to handle.
  • the density of crystallized glass (after crystallization) is an index for determining whether or not the glass is sufficiently crystallized. Specifically, if the glass is the same, the higher the density (the larger the density difference between the raw glass and the crystallized glass), the more the crystallization is progressing.
  • the density change rate of the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention is ⁇ (density after crystallization (g / cm 3 ) -density before crystallization (g / cm 3 )). / Density before crystallization (g / cm 3 ) ⁇ ⁇ 100 (%), and the density before crystallization holds the molten glass at 700 ° C for 30 minutes and keeps it at room temperature at 3 ° C / min. It is the density after cooling to, and the density after crystallization is the density after the crystallization treatment is performed under predetermined conditions.
  • the density change rates are 0.01 to 10%, 0.05 to 8%, 0.1 to 8%, 0.3 to 8%, 0.5 to 8%, 0.9 to 8%, 1 to 7. 8%, 1-7.4%, 1-7%, 1.2-7%, 1.6-7%, 2-7%, 2-6.8%, 2-6.5%, 2- 6.3%, 2-6.2%, 2-6.1%, 2-6%, 2.5-5%, 2.6-4.5%, 2.8-3.8%. Is preferable.
  • By reducing the rate of change in density before and after crystallization it is possible to reduce the rate of breakage after crystallization, and the scattering of glass and glass matrix is reduced, making it possible to obtain crystallized glass with high permeability. It will be possible.
  • the TiO 2 content is less than 0.5% (particularly 0.05% or less)
  • it is possible to significantly reduce scattering in order to reduce coloring factors other than absorption such as TiO 2 , and transmission is possible. Contributes to improving the rate.
  • the Li 2 O—Al 2 O 3 ⁇ SiO 2 system crystallized glass of the present invention may be chemically strengthened or the like.
  • the treatment conditions for the chemical strengthening treatment the treatment time and the treatment temperature may be appropriately selected in consideration of the glass composition, crystallinity, type of molten salt and the like.
  • a glass composition containing a large amount of Na 2 O that can be contained in the residual glass may be selected so that the chemical strengthening can be easily performed after crystallization, or the crystallinity may be intentionally lowered.
  • the molten salt may contain an alkali metal such as Li, Na, or K alone, or may contain a plurality of alkali metals.
  • multi-step chemical strengthening may be selected.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention is treated by chemical strengthening or the like before crystallization to make the Li 2 O content on the sample surface higher than that inside the sample. Can be reduced.
  • the crystallinity of the sample surface becomes lower than that inside the sample, the coefficient of thermal expansion of the sample surface becomes relatively high, and compressive stress due to the difference in thermal expansion is applied to the sample surface. Can be done.
  • the crystallinity of the sample surface is low, the glass phase is increased on the surface, and the chemical resistance and the gas barrier property can be improved depending on the selection of the glass composition.
  • a raw material batch prepared so as to have a glass having the above composition is put into a glass melting furnace, melted at 1500 to 1750 ° C., and then molded.
  • a flame melting method using a burner or the like an electric melting method by electric heating, or the like may be used. It is also possible to melt by laser irradiation or by plasma.
  • the sample shape can be plate-shaped, fibrous, film-shaped, powder-shaped, spherical, hollow-shaped, or the like, and there is no particular limitation.
  • the obtained crystalline glass (glass that can be crystallized before crystallization) is heat-treated to be crystallized.
  • first nucleation is performed at 700 to 950 ° C. (preferably 750 to 900 ° C.) for 0.1 to 100 hours (preferably 1 to 60 hours), and then crystal growth is carried out at 800 to 1050 ° C. (preferably 1 to 1050 ° C.). Is performed at 800 to 1000 ° C. for 0.1 to 50 hours (preferably 0.2 to 10 hours).
  • the heat treatment may be performed only at a specific temperature, may be maintained at a temperature of two levels or more and heat-treated stepwise, or may be heated while giving a temperature gradient.
  • crystallization may be promoted by applying and irradiating sound waves or electromagnetic waves.
  • the cooling rate of the crystallized glass heated to a high temperature may be performed at a specific temperature gradient, or may be performed at a temperature gradient of two levels or more.
  • the average cooling rate from 800 ° C. to 25 ° C. is 3000 ° C./min, 1000 ° C./min or less, 500 ° C./min or less, 400 ° C./min or less, 300 in the inner part of the wall thickness farthest from the surface of the crystallized glass.
  • °C / min or less 200 ° C / min or less, 100 ° C / min or less, 50 ° C / min or less, 25 ° C / min or less, 10 ° C / min or less, particularly 5 ° C / min or less. If you want to obtain dimensional stability over a long period of time, further 2.5 ° C / min or less, 1 ° C / min or less, 0.5 ° C / min or less, 0.1 ° C or less / min or less, 0.05 ° C.
  • the cooling rate of the crystallized glass is close to the cooling rate of the glass surface and the cooling rate of the thickest interior farthest from the glass surface.
  • the values obtained by dividing the cooling rate in the inner part of the wall thickness farthest from the surface by the cooling rate of the surface are 0.0001 to 1, 0.001 to 1, 0.01 to 1, 0.1 to 1, 0.5.
  • the cooling rate of the surface can be estimated by contact type temperature measurement or radiation thermometer, and the internal temperature is measured by placing crystallized glass in a high temperature state in the cooling medium and measuring the heat quantity and heat quantity change rate of the cooling medium. It can be estimated from the numerical data and the specific heat, thermal conductivity, etc. of the crystallized glass and the cooling medium.
  • Tables 1 to 42 show examples of the present invention (samples No. 1-131).
  • each raw material was mixed in the form of oxide, hydroxide, carbonate, nitrate, etc. so as to obtain a glass having the composition shown in each table, and a glass batch was obtained (the composition shown in each table is actually made). Analytical value of glass).
  • the obtained glass batch is placed in a crucible containing platinum and rhodium, a reinforced platinum crucible containing no rhodium, a refractory crucible, or a quartz crucible, melted at 1600 ° C. for 4 to 100 hours, and then heated to 1650 to 1680 ° C.
  • the crystalline glass is melted for 0.5 to 20 hours, rolled into a thickness of 5 mm, heat-treated at 700 ° C. for 30 minutes using a slow cooling furnace, and the temperature of the slow cooling furnace is lowered to room temperature at 100 ° C./h to obtain crystalline glass. Obtained.
  • the melting was performed by an electric melting method widely used for the development of glass materials.
  • sample No. It was confirmed that 15 glass compositions could be formed into a thin plate, a tubular shape, or a bulb shape by an up-draw method, a down-draw method, a slit method, an overflow (fusion) method, a hand-blown method, or the like.
  • sample No. Using 59 glass compositions, sample No. It was confirmed that the glass melt could be poured into a liquid having a specific density higher than 59, and the glass composition could be solidified into a plate by subsequent cooling. The glass produced by either method could be crystallized under the conditions shown in the table.
  • the Pt and Rh contents of the sample were analyzed using an ICP-MS apparatus (Agilent 8800 manufactured by AGILEINT TECHNOLOGY). First, the prepared glass sample was crushed and moistened with pure water, and then perchloric acid, nitric acid, sulfuric acid, hydrofluoric acid and the like were added and melted. Then, the Pt and Rh contents of the sample were measured by ICP-MS. The Pt and Rh contents of each measurement sample were determined based on a calibration curve prepared in advance using a Pt and Rh solution having a known concentration. The measurement modes were Pt: He gas / HMI (low mode) and Rh: HEHe gas / HMI (medium mode), and the mass numbers were Pt: 198 and Rh: 103.
  • the Li 2 O content of the prepared sample was analyzed using an atomic absorption spectrophotometer (ControlAA600 manufactured by Analytical Quiena).
  • the melting flow of the glass sample, the points using the calibration curve, etc. are basically the same as in the Pt and Rh analysis.
  • measurement is performed by ICP-MS or atomic absorption spectrometry as in Pt, Rh, and Li 2O , or a glass sample having a known concentration examined in advance using ICP-MS or an atomic absorption spectrometer is calibrated.
  • a calibration curve was prepared using an XRF analyzer (ZSX Primus IV manufactured by RIGAKU) as a line sample, and then the actual content of each component was determined from the XRF analysis value of the measurement sample based on the calibration curve. During the XRF analysis, the tube voltage, tube current, exposure time, etc. were adjusted as needed according to the analysis components.
  • the crystalline glass shown in each table is heat-treated at 750 to 900 ° C. for 0.75 to 60 hours to form nuclei, and then further heat-treated at 800 to 1000 ° C. for 0.25 to 3 hours to crystallize. I let you. Then, it was heat-treated at 700 ° C. for 30 minutes, and the temperature was lowered to room temperature at 100 ° C./h.
  • the obtained crystallized glass was evaluated for transmittance, diffusion transmittance, lightness, chromaticity, precipitated crystals, average crystallite size, thermal expansion coefficient, density, Young's modulus, rigidity, Poisson's ratio and appearance.
  • the transmittance, lightness, chromaticity and the like were measured by the same method as for the crystalline glass.
  • ⁇ -OH value, viscosity and liquid phase temperature were measured.
  • the transmittance, brightness and chromaticity were evaluated by measuring a crystallized glass plate optically polished on both sides to a wall thickness of 3 mm using a spectrophotometer.
  • a spectrophotometer V-670 manufactured by JASCO Corporation was used for the measurement.
  • the V-670 is equipped with an integrating sphere unit "ISN-723", and the measured transmittance corresponds to the total light transmittance.
  • the measurement wavelength range was 200 to 1500 nm
  • the scan speed was 200 nm / min
  • the sampling pitch was 1 nm
  • the bandwidth was 5 nm in the wavelength range of 200 to 800 nm
  • 20 nm in the other wavelength ranges were performed before the measurement.
  • baseline correction (100% adjustment) and dark measurement (0% adjustment) were performed before the measurement.
  • the dark measurement was performed with the barium sulfate plate attached to ISN-723 removed.
  • the tristimulus value XYZ was calculated based on JISZ8781-4203 and the corresponding international standard, and the brightness and chromaticity were calculated from each stimulus value (light source C / 10 °).
  • the diffusion transmittance of the crystallized glass was the same as that described above, and the measurement sample was placed and measured with the barium sulfate plate attached to ISN-723 removed.
  • Precipitated crystals were evaluated using an X-ray diffractometer (Rigaku's fully automatic multipurpose horizontal X-ray diffractometer Smart Lab).
  • Scan mode is 2 ⁇ / ⁇ measurement
  • scan type is continuous scan
  • scattering and divergence slit width is 1 °
  • light receiving slit width is 0.2 °
  • measurement range is 10-60 °
  • measurement step is 0.1 °
  • scan speed. was set to 5 ° / min
  • the main crystal and crystal grain size were evaluated using the analysis software installed in the same model package.
  • ⁇ -quartz solid solution is shown in the table as “ ⁇ -Q”.
  • the average crystallite size of the main crystal was calculated using the measured X-ray diffraction peaks based on the Ebeye-Sherrer method. In the measurement for calculating the average crystallite size, the scanning speed was set to 1 ° / min.
  • the coefficient of thermal expansion was evaluated by the average coefficient of linear thermal expansion measured in the temperature range of 30 to 380 ° C. and 30 to 750 ° C. using a crystallized glass sample processed to 20 mm ⁇ 3.8 mm ⁇ .
  • a NETZSCH Diratometer was used for the measurement. Further, the same measuring instrument was used to measure the thermal expansion curve in the temperature range of 30 to 750 ° C., and the inflection point was calculated to evaluate the glass transition point of the crystalline glass before crystallization.
  • Young's modulus, rigidity, and Poisson's ratio are the free resonance elastic modulus measuring device (manufactured by Nippon Techno Plus) for a plate-shaped sample (40 mm x 20 mm x 20 mm) whose surface is polished with a polishing solution in which 1200 alumina powder is dispersed. It was measured in a room temperature environment using JE-RT3).
  • the strain point and the slow cooling point were evaluated by the fiber elongation method.
  • a fiber sample was prepared from crystalline glass by a guide method.
  • the ⁇ -OH value was determined by measuring the transmittance of glass using an FT-IR Frontier (manufactured by PerkinElmer) and using the following formula.
  • the scan speed was 100 ⁇ m / min, the sampling pitch was 1 cm -1 , and the number of scans was 10 per measurement.
  • ⁇ -OH value (1 / X) log10 (T 1 / T 2 )
  • X Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm -1
  • T 2 Minimum transmittance (%) near hydroxyl group absorption wavelength 3600 cm -1
  • the high temperature viscosity was evaluated by the platinum ball pulling method.
  • the lumpy glass sample was crushed to an appropriate size and put into an alumina crucible with as little air bubbles as possible.
  • the alumina crucible is heated to put the sample in a melted state, the measured values of the viscosity of the glass at multiple temperatures are obtained, the constant of the Vogel-Fulcher equation is calculated, a viscosity curve is created, and the temperature at each viscosity is calculated. Calculated.
  • the liquidus temperature was evaluated by the following method. First, a platinum boat having a size of about 120 ⁇ 20 ⁇ 10 mm was filled with glass powder having a size of 300 to 500 micrometers, placed in an electric furnace, and melted at 1600 ° C. for 30 minutes. Then, it was transferred to an electric furnace having a linear temperature gradient and charged for 20 hours to precipitate devitrification. After air-cooling the measurement sample to room temperature, the devitrification deposited at the interface between the platinum boat and the glass was observed, and the temperature at the de-dialysis discharge point was calculated from the temperature gradient graph of the electric furnace and used as the liquidus temperature.
  • the obtained liquid phase temperature was inserted into the high temperature viscosity curve of the glass, and the viscosity corresponding to the liquid phase temperature was taken as the liquid phase viscosity. From the results of X-ray diffraction, composition analysis, etc. (Hitachi scanning electron microscope Hitachi S3400N TyPE2, Horiba EMAX ENERGY EX250X), it was found that the primary phase of the glass shown in each table was mainly ZrO2.
  • the appearance was evaluated by visually confirming the color tone of the crystallized glass. Visually check on a white background and a black background, and under indoor light and sunlight (January, April, July, October, on sunny and cloudy days at 8:00, 12:00, and 16:00, respectively. (Implementation) was observed. The color tone was judged comprehensively from the results of each visual inspection.
  • the sample No. which is an example. It was found that the crystallized glasses of 1-131 had a colorless and transparent appearance, a high transmittance, a coefficient of thermal expansion of almost 0, and were sufficiently crystallized. In addition, the rate of change in transmittance before and after crystallization was small.
  • FIG. 1 shows the sample No. The transmittance curve of 27 before crystallization
  • FIG. 2 shows the sample No. The transmittance curve after crystallization of 27 is shown. It is clear from FIGS. 1 and 2 that the rate of change in transmittance before and after crystallization is small.
  • Tables 43 and 44 show examples (samples A to J) of the present invention.
  • Table 45 shows comparative examples (samples KM) of the present invention.
  • Samples A to M shown in Tables 31, 32 and 33 were prepared in the same manner as in Example 1, and the ⁇ -OH value before crystallization and the density after crystallization were measured.
  • the relationship between the ⁇ -OH value and density of samples A to E is shown in FIG. 3, the relationship between the ⁇ -OH value and density of samples F to J is shown in FIG. 4, and the relationship between the ⁇ -OH value and density of samples K to M is shown. It is shown in FIG.
  • Tables 31 and 32 are shown as typical examples of the present invention this time, the same effect has been confirmed for other examples described in the present patent. Further, in the examples shown in Tables 31 and 32, the crystallization temperature is fixed in a certain combination, but it has been confirmed that the same effect can be obtained by other combinations of crystallization temperatures. The crystallization temperature may be changed in any way depending on the desired firing time and the characteristics of the crystallized glass.
  • the Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass of the present invention includes front windows such as oil stoves and wood stoves, substrates for high-tech products such as substrates for color filters and image sensors, and setters for firing electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

透明性を確保しつつ、TiOやFe等に起因する黄色の着色を抑制したLiO-Al-SiO系結晶化ガラスを提供する。 質量%で、TiO 0.5%未満を含有し、β-OH値が0.001~2/mmであることを特徴とするLiO-Al-SiO系結晶化ガラス。

Description

Li2O-Al2O3-SiO2系結晶化ガラス
 本発明はLiO-Al-SiO系結晶化ガラスに関する。詳細には、例えば石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、光拡散板、半導体製造用炉心管、半導体製造用マスク、光学レンズ、寸法測定用部材、通信用部材、建築用部材、化学反応用容器、電磁調理用トッププレート、耐熱食器、耐熱カバー、防火戸用窓ガラス、天体望遠鏡用部材、宇宙光学用部材等の材料として好適なLiO-Al-SiO系結晶化ガラスに関する。
 従来、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、光拡散板、半導体製造用炉心管、半導体製造用マスク、光学レンズ、寸法測定用部材、通信用部材、建築用部材、化学反応用容器、電磁調理用トッププレート、耐熱食器、耐熱カバー、防火戸用窓ガラス、天体望遠鏡用部材、宇宙光学用部材等の材料として、LiO-Al-SiO系結晶化ガラスが用いられている。例えば特許文献1~3には、主結晶としてβ-石英固溶体(LiO・Al・nSiO[ただし2≦n≦4])やβ-スポジュメン固溶体(LiO・Al・nSiO[ただしn≧4])等のLiO-Al-SiO系結晶を析出してなるLiO-Al-SiO系結晶化ガラスが開示されている。
 LiO-Al-SiO系結晶化ガラスは、熱膨張係数が低く、機械的強度も高いため、優れた熱的特性を有している。また結晶化工程において熱処理条件を適宜調整することにより、析出結晶の種類を制御することが可能であり、透明な結晶化ガラス(β-石英固溶体が析出)を容易に作製することができる。
 ところで、この種の結晶化ガラスを製造する場合、1400℃を超える高温で溶融する必要がある。このため、ガラスバッチに添加される清澄剤には、高温での溶融時に清澄ガスを多量に発生させるAsやSbが使用されている。しかしながら、AsやSbは毒性が強く、ガラスの製造工程や廃ガラスの処理時等に環境を汚染する可能性がある。
 そこで、AsやSbの代替清澄剤として、SnOやClが提案されている(例えば、特許文献4および5参照)。ただし、Clは、ガラス成形時に金型や金属ロールを腐食させやすく、結果として、ガラスの表面品位を劣化させるおそれがある。
特公昭39-21049号公報 特公昭40-20182号公報 特開平1-308845号号公報 特開平11-228180号公報 特開平11-228181号公報
 さらに、LiO-Al-SiO系結晶化ガラスには、TiOやFe等に起因する着色があり、黄色味があり、外観上好ましくないという問題がある。透明結晶化ガラスの黄色い着色を改善する場合、TiOの含有量を低減すればよいが、TiOの含有量を少なくすると、結晶化工程における結晶核形成速度が遅くなり、結晶核の生成量が少なくなり易い。その結果、粗大結晶が多くなって、結晶化ガラスが白濁し、透明性を損ないやすくなる。
 本発明の目的は、透明性を確保しつつ、TiOやFe等に起因する黄色の着色を抑制したLiO-Al-SiO系結晶化ガラスを提供することである。
 本発明者等は、TiOの含有量低減に伴う結晶核生成量の不足は、水分を多く含有させることにより補うことができることを見出した。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、TiO 0~0.5%未満を含有し、β-OH値が0.001~2/mmであることを特徴とする。黄色い着色を改善するためにTiOの含有量を0.5%未満と少なくしても、β-OH値を0.001/mm以上にすることにより、ガラスを十分に結晶化することが可能である。「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
 β-OH値 = (1/X)log(T/T
 X:ガラス肉厚(mm)
 T:参照波長3846cm-1における透過率(%)
 T:水酸基吸収波長3600cm-1付近における最小透過率(%)
 本発明のLiO-Al-SiO系結晶化ガラスは、さらに、質量%で、SiO 40~90%、Al 5~30%、LiO 1~10%、SnO 0~20%、ZrO 1~20%、MgO 0~10%、P 0~10%、Sb+As 0~2%未満を含有することが好ましい。
 上記のように、清澄剤であるSb及びAsの合量を2%未満と少なくしても、β-OH値を2/mm未満とすることにより、ガラスを十分に清澄することが出来る。なお、「Sb3 +As」は、Sb及びAsの合量を意味する。
 本発明のLiO-Al-SiO系結晶化ガラスは、さらに、質量%で、NaO 0~10%、KO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~10%、ZnO 0~10%、B 0~10%を含有することが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、さらに、質量%で、Fe 0.1%以下を含有することが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、SnO/(SnO+ZrO+P+TiO+B)が0.06以上であることが好ましい。ここで、「SnO/(SnO+ZrO+P+TiO+B)」とは、SnOの含有量をSnO、ZrO、P、TiO、及びBの合量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、Al/(SnO+ZrO)が7.1以下であることが好ましい。ここで、「Al/(SnO+ZrO)」とは、Alの含有量をSnO、及びZrOの合量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、SnO/(SnO+ZrO)が0.01~0.99であることが好ましい。ここで、「SnO/(SnO+ZrO)」とは、SnOの含有量をSnO、及びZrOの合量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、NaO+KO+CaO+SrO+BaO 8%以下を含有することが好ましい。ここで、「NaO+KO+CaO+SrO+BaO」とは、NaO、KO、CaO、SrO、及びBaOの合量である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、(SiO+Al)/LiOが20以上であることが好ましい。ここで、「(SiO+Al)/LiO」とは、SiO、及びAlの合量をLiOの含有量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、(SiO+Al)/SnOが44以上であることが好ましい。ここで、「(SiO+Al)/SnO」とは、SiO、及びAlの合量をSnOの含有量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、(MgO+ZnO)/LiOが0.395未満、又は0.754超であることが好ましい。ここで、「MgO+ZnO)/LiO」とは、MgO及びZnOの合量をLiOの含有量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、(LiO+NaO+KO)/ZrOが2.0以下であることが好ましい。ここで、「(LiO+NaO+KO)/ZrO」とは、LiO、NaO及びKOの合量をZrOの含有量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、TiO/ZrOが0.0001~5.0であることが好ましい。ここで、「TiO/ZrO」とは、TiOの含有量をZrOの含有量で除した値である。
本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、TiO/TiO+Feが0.001~0.999であることが好ましい。ここで、「TiO/(TiO+Fe)」とは、TiOの含有量をTiO及びFeの合量で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、HfO+Ta 0.05%未満を含有することが好ましい。ここで、「HfO+Ta」とは、HfO及びTaの合量である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、Pt 7ppm以下を含有することが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、Rh 7ppm以下を含有することが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、Pt+Rh 9ppm以下を含有することが好ましい。ここで、「Pt+Rh」とは、Pt及びRhの合量である。
 本発明のLiO-Al-SiO系結晶化ガラスは、外観が無色透明であることが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長300nmにおける透過率が10%以上であることが好ましい。このようにすれば、紫外透過性を求める各種の用途に好適に使用することができる。
 本発明のLiO-Al-SiO系結晶化ガラスにおいては、主結晶としてβ-石英固溶体が析出していることが好ましい。このようにすれば、熱膨張係数の低い結晶化ガラスを得ることが容易になる。
 本発明のLiO-Al-SiO系結晶化ガラスにおいては、30~380℃における熱膨張係数が、30×10-7/℃以下であることが好ましい。このようにすれば、低膨張性を求める各種の用途に好適に使用することができる。
 本発明のLiO-Al-SiO系結晶化ガラスにおいては、30~750℃における熱膨張係数が、30×10-7/℃以下であることが好ましい。このようにすれば、広い温度域にて低膨張性を求める各種の用途に好適に使用することができる。
 本発明のLiO-Al-SiO系結晶化ガラスにおいては、厚み3mm、波長300nmにおける結晶化前後の透過率変化率が50%以下であることが好ましい。ここで、「結晶化前後の透過率変化率」とは、{(結晶化前の透過率(%)-結晶化後の透過率(%))/結晶化前の透過率(%)}×100(%)を意味する。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量比で、Al/(LiO+(1/2×(MgO+ZnO))が3.0~8.0であることが好ましい。ここで、「Al/(LiO+(1/2×(MgO+ZnO)」とは、Alの含有量をLiOの含有量とMgO及びZnOの合量を2で除した値との和で除した値である。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、MoO 0%超を含有し、β-OH値が0.001~0.5/mmであることを特徴とする。
 本発明によれば、透明性を確保しつつ、TiOやFe等に起因する黄色の着色を抑制したLiO-Al-SiO系結晶化ガラスを提供することができる。
試料No.27の結晶化前の透過率曲線である。 試料No.27の結晶化後の透過率曲線である。 試料A~Eのβ-OH値と密度の関係を示すグラフである。 試料F~Jのβ-OH値と密度の関係を示すグラフである。 試料K~Mのβ-OH値と密度の関係を示すグラフである。
 本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、TiO 0.5%未満を含有し、β-OH値が0.001~2/mmであることを特徴とする。
 まず、本発明のLiO-Al-SiO系結晶化ガラスのガラス組成について説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「質量%」を意味する。
 TiOは結晶化工程で結晶を析出させるための核形成成分である。一方で、多量に含有するとガラスの着色を著しく強める。特にZrOとTiOを含むジルコニアチタネート系の結晶は結晶核として作用するが、配位子である酸素の価電子帯から中心金属であるジルコニアおよびチタンの伝導帯へと電子が遷移し(LMCT遷移)、結晶化ガラスの着色に関与する。また、残存ガラス相にチタンが残っている場合、SiO骨格の価電子帯から残存ガラス相の4価のチタンの伝導帯へとLMCT遷移が起こりうる。また、残存ガラス相の3価のチタンではd-d遷移が起こり、結晶化ガラスの着色に関与する。更に、チタンと鉄が共存する場合はイルメナイト(FeTiO)様の着色が発現する。また、チタンと錫が共存する場合は黄色が強まることが知られている。このため、TiOの含有量は0~0.5%未満、0~0.48%、0~0.46%、0~0.44%、0~0.42%、0~0.4%、0~0.38%、0~0.36%、0~0.34%、0~0.32%、0~0.3%、0~0.28%、0~0.26%、0~0.24%、0~0.22%、0~0.2%、0~0.18%、0~0.16%、0~0.14%、0~0.12%、特に0~0.1%であることが好ましい。ただし、TiOは不純物として混入し易いため、TiOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、TiOの含有量の下限は、0.0003%以上、0.0005%以上、0.001%以上、0.005%以上、0.01%以上、特に0.02%以上であることが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。
 SiOはガラスの骨格を形成するとともに、LiO-Al-SiO系結晶を構成する成分である。SiOの含有量は40~90%、52~80%、55~75%、56~70%、59~70%、60~70%、60~69.5%、60.5~69.5%、61~69.5%、61.5~69.5%、62~69.5%、62.5~69.5%、63~69.5%、特に63.5~69.5%であることが好ましい。SiOの含有量が少なすぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向がある。一方、SiOの含有量が多すぎると、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなって生産性が低下しやすくなる。また、結晶化に要する時間が長くなり、生産性が低下しやすくなる。
 Alはガラスの骨格を形成するとともに、LiO-Al-SiO系結晶を構成する成分である。また、Alは結晶核の周囲に配位し、コア-シェル構造を形成する成分である。コア-シェル構造が存在することで、シェル外部から結晶核成分が供給されにくくなるため、結晶核が肥大化しにくくなり、多数の微小な結晶核が形成されやすくなる。Alの含有量は5~30%、8~30%、9~28%、10~27%、12~27%、14~27%、16~27%、17~27%、18~27%、18~26.5%、18.1~26.5%、19~26.5%、19.5~26.5%、20~26.5%、20.5~26.5%、特に20.8~25.8%であることが好ましい。Alの含有量が少なすぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向がある。さらに、結晶核が大きくなり、結晶化ガラスが白濁しやすくなる。一方、Alの含有量が多すぎると、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって清澄しにくくなったり、ガラスの成形が難しくなって生産性が低下しやすくなる。また、ムライトの結晶が析出してガラスが失透する傾向があり、結晶化ガラスが破損しやすくなる。
 LiOはLiO-Al-SiO系結晶を構成する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。LiOの含有量は1~10%、2~10%、2~8%、2.5~6%、2.8~5.5%、2.8~5%、3~5%、3~4.5%、3~4.2%、特に3.2~4%であることが好ましい。LiOの含有量が少なすぎると、ムライトの結晶が析出してガラスが失透する傾向がある。また、ガラスを結晶化させる際に、LiO-Al-SiO系結晶が析出しにくくなり、耐熱衝撃性に優れた結晶化ガラスを得ることが困難になる。さらに、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなって生産性が低下しやすくなる。一方、LiOの含有量が多すぎると、結晶性が強くなりすぎて、ガラスが失透しやすくなる傾向があり、結晶化ガラスが破損しやすくなる。
 SiO、Al、LiOは主結晶であるβ-石英固溶体の主な構成成分であり、LiOとAlは互いの電荷を補償しあうことで、SiO骨格に固溶する。これら三成分を好適な比率で含有することで効率的に結晶化が進行し、低コストでの製造が可能となる。(SiO+Al)/LiOは質量比で、20以上、20.2以上、20.4以上、20.6以上、20.8以上、特に21以上であることが好ましい。
 SnOは清澄剤として作用する成分である。また、結晶化工程で効率的に結晶を析出させるために必要な成分でもある。一方で、多量に含有するとガラスの着色を著しく強める成分でもある。SnOの含有量は0~20%、0超~20%、0.05~20%、0.1~10%、0.1~5%、0.1~4%、0.1~3%、0.15~3%、0.2~3%、0.2~2.7%、0.2~2.4%、0.25~2.4%、0.3~2.4%、0.35~2.4%、0.4~2.4%、0.45~2.4%、0.5~2.4%、0.5~2.35%、0.5~2.3%、0.5~2.2%、0.5~2.1%、0.5~2.05%、0.5~2%、0.5~1.95%、0.5~1.93%、0.5~1.91%、0.5~1.9%、0.5~1.88%、0.5~1.85%、0.5~1.83%、0.5~1.81%、特に0.5~1.8%であることが好ましい。SnOの含有量が少なすぎると、ガラスの清澄が困難となり、生産性が低下しやすくなる。また、結晶核が十分に形成されず、粗大な結晶が析出してガラスが白濁したり、破損したりするおそれがある。一方、SnOの含有量が多すぎると、結晶化ガラスの着色が強くなる恐れがある。また、溶融時のSnO蒸発量が増え、環境負荷が高くなる傾向がある。
 ZrOは結晶化工程で結晶を析出させるための核形成成分である。ZrOの含有量は、1~20%、1~15%、1~10%、1~5%、1.5~5%、1.75~4.5%、1.75~4.4%、1.75~4.3%、1.75~4.2%、1.75~4.1%、1.75~4%、1.8~4%、1.85~4%、1.9~4%、1.95~4%、2~4%、2.05~4%、2.1~4%、2.15~4%、2.2~4%、2.25~4%、2.3~4%、2.3~3.95%、2.3~3.9%、2.3~3.95%、2.3~3.9%、2.3~3.85%、2.3~3.8%、2.7超~3.8%、2.8~3.8%、2.9~3.8%、特に3~3.8%であることが好ましい。ZrOの含有量が少なすぎると、結晶核が十分に形成されず、粗大な結晶が析出して結晶化ガラスが白濁したり、破損したりするおそれがある。一方、ZrOの含有量が多すぎると、粗大なZrO結晶が析出しガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。
 TiOとZrOはそれぞれ結晶核として機能しうる成分である。TiとZrは同族元素であり、電気陰性度やイオン半径等が似ている。このため、酸化物として似たような分子配座を取りやすく、TiOとZrOの共存下で、結晶化初期の分相が発生しやすくなることが判っている。このため、着色が許容される範囲において、TiO/ZrOは質量比で、0.0001~5.0、0.0001~4.0、0.0001~3.0、0.0001~2.5、0.0001~2.0、0.0001~1.5、0.0001~1.0、0.0001~0.5、0.0001~0.4、特に0.0001~0.3であることが好ましい。TiO/ZrOが小さすぎると、原料バッチが高価になり製造コストが増加する傾向がある。一方、TiO/ZrOが大きすぎると、結晶核形成速度が遅くなり、製造コストが増加しうる。
 SnO+ZrOは、1~30%、1.1~30%、1.1~27%、1.1~24%、1.1~21%、1.1~20%、1.1~17%、1.1~14%、1.1~11%、1.1~9%、1.1~7.5%、1.4~7.5%、1.8~7.5%、2.0~7.5%、2.2~7%、2.2~6.4%、2.2~6.2%、2.2~6%、2.3~6%、2.4~6%、2.5~6%、特に2.8~6%であることが好ましい。SnO+ZrOが少なすぎると結晶核が析出しにくくなり、結晶化しにくくなる。一方、SnO+ZrOが多すぎると結晶核が大きくなり、結晶化ガラスが白濁しやすくなる。
 SnOはガラス中の分相を助長する効果がある。液相温度を低く抑えながら(初相析出による失透のリスクを抑えながら)、効率的に分相を発生させ、後の工程における核形成、結晶成長を迅速に行うために、SnO/(SnO+ZrO)は質量比で、0.01~0.99、0.01~0.98、0.01~0.94、0.01~0.90、0.01~0.86、0.01~0.82、0.01~0.78、0.01~0.74、0.01~0.70、0.03~0.70、特に0.05~0.70であることが好ましい。
 また、SnOは高温化でSnO→SnO+1/2Oの反応を起こし、ガラス融液中にOガスを放出する。この反応はSnOの清澄機構として知られているが、反応時に放出されたOガスはガラス融液中に存在する微塵な泡を大きくし、ガラス系外に放出させる「脱泡作用」の他に、ガラス融液を混ぜ合わせる「攪拌作用」を有する。本発明のLiO-Al-SiO系結晶化ガラスにおいては、SiOとAlの含有量が過半数を占めており、これら成分は難溶性であることから、効率的に均質なガラス融液を形成するためには、これら三成分を好適な比率で含有させる必要がある。(SiO+Al)/SnOは質量比で、44以上、44.3以上、44.7以上、45以上、45.2以上。45.4以上、45.6以上、45.8以上、特に46以上であることが好ましい。
 Al/(SnO+ZrO)は質量比で、7.1以下、7.05以下、7.0以下、6.95以下、66.9以下、6.85以下、6.8以下、6.75以下、6.7以下、6.65以下、6.6以下、6.55以下、6.5以下、6.45以下、6.4以下、6.35以下、6.3以下、6.25以下、6.2以下、6.15以下、6.1以下、6.05以下、6.0以下、5.98以下、5.95以下、5.92以下、5.9以下、5.8以下、5.7以下、5.6以下、特に5.5以下であることが好ましい。Al/(SnO+ZrO)が大きすぎると、核形成が効率的に進まず、効率的に結晶化し難くなる。一方、Al/(SnO+ZrO)が小さすぎると、結晶核が大きくなり、結晶化ガラスが白濁しやすくなる。このため、Al/(SnO+ZrO)の下限は0.01以上であることが好ましい。
 MgOはLiO-Al-SiO系結晶に固溶し、LiO-Al-SiO系結晶の熱膨張係数を高くする成分である。MgOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0.02~3.5%、0.05~3.5%、0.08~3.5%、0.1~3.5%、0.1~3.3%、0.1~3%、0.13~3%、0.15~3%、0.17~3%、0.19~3%、0.2~2.9%、0.2~2.7%、0.2~2.5%、0.2~2.3%、0.2~2.2%、0.2~2.1%、特に0.2~2%であることが好ましい。MgOの含有量が少なすぎると、熱膨張係数が低くなり過ぎる傾向がある。また、結晶析出時には体積収縮が起こるが、その体積収縮の量が大きくなりすぎる場合がある。また、結晶化後の結晶相と残存ガラス相との熱膨張係数差が大きくなるため、結晶化ガラスが破損しやすくなる場合がある。MgOの含有量が多すぎると、結晶性が強くなりすぎて失透しやすくなり、結晶化ガラスが破損しやすくなる。また、熱膨張係数が高くなり過ぎる傾向がある。
 Pは粗大なZrO結晶の析出を抑制する成分である。Pの含有量は0~10%、0~8%、0~6%、0~5%、0~4%、0~3.5%、0.02~3.5%、0.05~3.5%、0.08~3.5%、0.1~3.5%、0.1~3.3%、0.1~3%、0.13~3%、0.15~3%、0.17~3%、0.19~3%、0.2~2.9%、0.2~2.7%、0.2~2.5%、0.2~2.3%、0.2~2.2%、0.2~2.1%、0.2~2%、特に0.3~1.8%であることが好ましい。Pの含有量が少なすぎると、粗大なZrO結晶が析出しガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる場合がある。一方、Pの含有量が多すぎると、LiO-Al-SiO系結晶の析出量が少なくなり、熱膨張係数が高くなる傾向がある。
 NaOはLiO-Al-SiO系結晶に固溶しうる成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶化ガラスの熱膨張係数および屈折率を調整するための成分でもある。NaOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、特に0~1.5%であることが好ましい。NaOの含有量が多すぎると、結晶性が強くなりすぎて、ガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Naカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のNaカチオンは残存ガラス(ガラスマトリックス)に残りやすい。このため、NaOの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。ただし、NaOは不純物として混入し易いため、NaOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、NaOの含有量の下限は、0.0003%以上、0.0005%以上、特に0.001%以上であることが好ましい。
 KOはLiO-Al-SiO系結晶に固溶しうる成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶化ガラスの熱膨張係数および屈折率を調整するための成分でもある。KOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、0~1.5%、0~1.4%、0~1.3%、0~1.2%。0~1.1%、0~1%、0~0.9%、特に0.1~0.8%であることが好ましい。KOの含有量が多すぎると、結晶性が強くなりすぎて、ガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Kカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のKカチオンは残存ガラスに残りやすい。このため、KOの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。ただし、KOは不純物として混入し易いため、KOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、KOの含有量の下限は、0.0003%以上、0.0005%以上、特に0.001%以上であることが好ましい。
 LiO、NaO、KOはガラスの溶融性および成形性を向上させる成分であるが、これら成分の含有量が多すぎると低温粘度が下がりすぎ、結晶化時にガラスが流動しすぎてしまう恐れがある。また、LiO、NaO、KOは結晶化前のガラスの耐候性、耐水性、耐薬品性等を悪化させうる成分である。結晶化前のガラスが水分等により改悪されると、所望の結晶化挙動、ひいては所望の特性を得られなくなる恐れがある。一方、ZrOは核形成剤として機能する成分であり、結晶化初期に優先的に結晶化し、残存ガラスの流動を抑える効果がある。また、ZrOはSiO骨格を主とするガラスネットワークの空隙部分を効率的に充填し、プロトンや各種薬品成分等のガラスネットワーク内での拡散を阻害する効果を持ち、結晶化前のガラスの耐候性、耐水性、耐薬品性等を向上させる。所望の形状、特性の結晶化ガラスを得るためには、(LiO+NaO+KO)/ZrOは好適に制御されるべきである。(LiO+NaO+KO)/ZrOは質量比で、2.0以下、1.98以下、1.96以下、1.94以下、1.92以下、特に1.90以下であることが好ましい。
 CaOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶化ガラスの熱膨張係数および屈折率を調整するための成分でもある。CaOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、特に0~1.5%であることが好ましい。CaOの含有量が多すぎると、ガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Caカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のCaカチオンは残存ガラスに残りやすい。このため、CaOの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。ただし、CaOは不純物として混入し易いため、CaOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、CaOの含有量の下限は0.0001%以上、0.0003%以上、特に0.0005%以上であることが好ましい。
 SrOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶化ガラスの熱膨張係数および屈折率を調整するための成分でもある。SrOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、0~1.5%、特に0~1%であることが好ましい。SrOの含有量が多すぎると、ガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Srカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のSrカチオンは残存ガラスに残りやすい。このため、SrOの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。ただし、SrOは不純物として混入し易いため、SrOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、SrOの含有量の下限は0.0001%以上、0.0003%以上、特に0.0005%以上であることが好ましい。
 BaOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶化ガラスの熱膨張係数および屈折率を調整するための成分でもある。BaOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、0~1.5%、特に0~1%であることが好ましい。BaOの含有量が多すぎると、Baを含む結晶が析出しガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Baカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のBaカチオンは残存ガラスに残りやすい。このため、BaOの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。ただし、BaOは不純物として混入し易いため、BaOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、BaOの含有量の下限は0.0001%以上、0.0003%以上、特に0.0005%以上であることが好ましい。
 MgO、CaO、SrO、BaOはガラスの溶融性および成形性を向上させる成分であるが、これら成分の含有量が多すぎると低温粘度が下がりすぎ、結晶化時にガラスが流動しすぎてしまう恐れがある。一方、ZrOは核形成剤として機能する成分であり、結晶化初期に優先的に結晶化し、残存ガラスの流動を抑える効果がある。所望の形状、特性の結晶化ガラスを得るためには、(MgO+CaO+SrO+BaO)/ZrOは好適に制御されるべきである。(MgO+CaO+SrO+BaO)/ZrOは質量比で、0~3、0~2.8、0~2.6、0~2.4、0~2.2、0~2.1、0~2、0~1.8、0~1.7、0~1.6、特に0~1.5であることが好ましい。
 NaO、KO、CaO、SrO、BaOは、結晶化後の残存ガラスに残りやすい。このため、これらの合量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる。このため、NaO+KO+CaO+SrO+BaOは8%以下、7%以下、6%以下、5%以下、4.5%以下、4%以下、3.5%以下、3%以下、2.7%以下、2.42%以下、2.415%以下、2.410%以下、2.405%以下、特に2.4%以下であることが好ましい。
 LiO、NaO、KO、MgO、CaO、SrO、BaOはガラスの溶融性および成形性を向上させる成分である。また、MgO、CaO、SrO、BaOを多く含むガラス融液は、温度に対する粘度(粘度カーブ)の変化が緩やかになりやすく、LiO、NaO、KOを多く含むガラス融液は変化が急になりやすい。粘度カーブの変化が緩やかすぎると成形して所定の形状にした後もガラスが流動してしまい、所望の形状を得にくくなる。一方、粘度カーブの変化が急すぎると成形途中にガラス融液が固化してしまい、所望の形状を得にくくなる。このため、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)は好適に制御されるべきである。(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)は質量比で、0~2、0~1.8、0~1.5、0~1.2、0~1、0~0.9、0~0.8、0~0.7、0~0.6、0~0.5、特に0~0.45であることが好ましい。
 ZnOはLiO-Al-SiO系結晶に固溶し、結晶性に大きな影響を与える成分である。また、結晶化ガラスの熱膨張係数および屈折率を調整するための成分でもある。ZnOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、0~1.5%、特に0~1%であることが好ましい。ZnOの含有量が多すぎると、結晶性が強くなりすぎて失透しやすくなり、ガラスが破損しやすくなる。ただし、ZnOは不純物として混入し易いため、ZnOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、ZnOの含有量の下限は0.0001%以上、0.0003%以上、特に0.0005%以上であることが好ましい。
 LiO-Al-SiO系結晶化ガラスにおいて、Liカチオン、Mgカチオン、Znカチオンはβ―石英固溶体に固溶しやすい成分であり、これらのカチオンはAlカチオンを電荷補償する形で結晶に固溶する。具体的には、Si4+ ⇔ Al3+ + (Li+、1/2×Mg2+、1/2×Zn2+)のような形で固溶していると考えられ、AlカチオンとLiカチオン、Mgカチオン、Znカチオンの比率がβ―石英固溶体の安定性に影響している。本願記載の組成物においては、安定的に結晶化ガラスが得られ、かつこの結晶化ガラスを無色透明かつゼロ膨張に近づけるために、Al/(LiO+(1/2×(MgO+ZnO)は質量比で、3.0~8.0、3.2~7.8、3.4~7.6、3.5~7.5、3.7~7.5,4.0~7.5、4.3~7.5、4.5~7.5、4.8~7.5、5.0~7.5、5.5~7.3、5.5~7.1、5.5~7.0、5.5~6.8、5.5~6.7、5.5~6.6、特に5.5~6.5であることが好ましい。
 Yはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶化ガラスのヤング率を向上させ、熱膨張係数および屈折率を調整するための成分でもある。Yの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、0~1.5%、特に0~1%であることが好ましい。Yの含有量が多すぎると、Yを含む結晶が析出しガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Yカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のYカチオンは残存ガラスに残りやすい。このため、Yの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。ただし、Yは不純物として混入することがあるため、Yを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、Yの含有量の下限は0.0001%以上、0.0003%以上、特に0.0005%以上であることが好ましい。
 LiO-Al-SiO系結晶化ガラスにおいて、Liカチオン、Mgカチオン、Znカチオンはβ―石英固溶体に固溶しやすい成分であり、Baカチオン等と比較して、結晶化後の残存ガラスの屈折率上昇への寄与が小さい成分と考えられる。また、LiO、MgO、ZnOは原料をガラス化する際のフラックスとして機能するため、これらは無色透明な結晶化ガラスを低温で製造するうえで、大切な成分であると言える。LiOは低膨張を達成するうえで必須の成分であり、1%以上含有させる必要がある。所望する熱膨張係数等を達成するためにLiOを必要量含有させなければならないが、これに応じて、MgOとZnOも一緒に含有量を増やすと、ガラスの粘性が下がりすぎる恐れがある。低温粘度が下がりすぎると、焼成時にガラスの軟化流動性が大きくなりすぎ、所望の形状に結晶化することが困難になる場合がある。また、高温粘度が下がりすぎると、製造設備への熱的負荷は下がるものの、加熱時の対流速度が速くなり、耐火物等を物理的に侵食しやすくなる恐れがある。そこで、LiO、MgO、ZnOの含有比を制御するのが好ましく、特に、フラックスとしての機能が高いLiOに対して、MgOとZnOの合量を制御することが好ましい。そこで、(MgO+ZnO)/LiOは質量比で、0.394以下、0.393以下、0.392以下、0.391以下、特に0.390以下と小さくする、又は0.755以上、0.756以上、0.757以上、0.758以上、特に0.759以上と大きくすることが好ましい。
 Bはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、結晶核形成時の分相の起こりやすさに関与しうる成分でもある。Bの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、特に0~1.5%であることが好ましい。Bの含有量が多すぎると、溶融時のBの蒸発量が多くなり、環境負荷が高くなる。ただし、Bは不純物として混入し易いため、Bを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、Bは0.0001%以上、0.0003%以上、特に0.0005%以上含有しても良い。
 LiO-Al-SiO系結晶化ガラスにおいては、結晶核形成前にガラス内に分相領域が形成された後、その分相領域内でTiOやZrOなどで構成される結晶核が形成されることが知られている。分相形成にはSnO、ZrO、P、TiO、Bが強く関与していることから、SnO+ZrO+P+TiO+Bは1.5~30%、1.5~26%、1.5~22%、1.5~20%、1.5~18%、1.5~16%、1.5~15%、1.8~15%、2.1~15%、2.4~15%、2.5~15%、2.8~15%、2.8~13%、2.8~12%、2.8~11%、2.8~10%、3~9.5%、3~9.2%、特に3~9%が好ましく、SnO/(SnO+ZrO+P+TiO+B)は質量比で、0.06以上、0.07以上、0.08以上、0.09以上、0.1以上、0.103以上、0.106以上、0.11以上、0.112以上、0.115以上、0.118以上、0.121以上、0.124以上、0.127以上、0.128以上、特に0.13以上であることが好ましい。P+B+SnO+TiO+ZrOが少なすぎると分相領域が形成されにくくなり、結晶化しにくくなる。一方、P+B+SnO+TiO+ZrOが多すぎる、及び/又はSnO/(SnO+ZrO+P+TiO+B)が小さすぎると、分相領域が大きくなり、結晶化ガラスが白濁しやすくなる。なお、SnO/(SnO+ZrO+P+TiO+B)の上限は特に限定されないが、現実的には0.9以下である。
 Feはガラスの着色を強める成分、特にTiOやSnOとの相互作用により着色を著しく強める成分でもある。Feの含有量は0.10%以下、0.08%以下、0.06%以下、0.05%以下、0.04%以下、0.035%以下、0.03%以下、0.02%以下、0.015%以下、0.013%以下、0.012%以下、0.011%以下、0.01%以下、0.009%以下、0.008%以下、0.007%以下、0.006%以下、0.005%以下、0.004%以下、0.003%以下、特に0.002%以下であることが好ましい。ただし、Feは不純物として混入し易いため、Feを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、Feの含有量の下限は0.0001%以上、0.0002%以上、0.0003%以上、0.0005%以上、特に0.001%以上であることが好ましい。
 チタンと鉄が共存する場合はイルメナイト(FeTiO)様の着色が発現することがある。特に、LiO-Al-SiO系結晶化ガラスにおいては、結晶化後に結晶核や主結晶として析出しなかったチタンと鉄の成分が残存ガラスに残り、上記着色の発現が促進されうる。組成設計上、これら成分を減量することがありえるが、TiOとFeは不純物として混入し易いため、完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。このため、製造コストを抑制するためには、前述した範囲においてTiOとFeを含有しても良く、製造コストをより安価にするためには着色が許容される範囲において、両方の成分を含有しても良い。そうした場合、TiO/(TiO+Fe)は質量比で、0.001~0.999、0.003~0.997、0.005~0.995、0.007~0.993、0.009~0.991、0.01~0.99、0.1~0.9、0.15~0.85、0.2~0.8、0.25~0.25、0.3~0.7、0.35~0.65、特に0.4~0.6であることが好ましい。こうすることで、安価に無色透明度の高い結晶化ガラスを得やすくなる。
 Ptはイオンやコロイド、金属等の状態でガラスに混入しうる成分であり、黄色~茶褐色の着色を発現させる。また、この傾向は結晶化後に顕著になる。さらに、鋭意検討した所、Ptが混入すると、結晶化ガラスの核形成および結晶化挙動が影響を受け、白濁しやすくなる場合があることが判明した。このため、Ptの含有量は7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1.6ppm以下、1.4ppm以下、1.2ppm以下、1ppm以下、0.9ppm以下、0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下、0.45ppm以下、0.40ppm以下、0.35ppm以下、特に0.30ppm以下であることが好ましい。極力Ptの混入は避けるべきであるが、一般的な溶融設備を用いた場合、均質なガラスを得るためにPt部材の使用が必要になることがある。このため、Ptを完全に除去しようとすると、製造コストが増加する傾向にある。着色に悪影響を及ぼさない場合においては、製造コストの増加を抑制するために、Ptの含有量の下限は0.0001ppm以上、0.001ppm以上、0.005ppm以上、0.01ppm以上、0.02ppm以上、0.03ppm以上、0.04ppm以上、0.05ppm以上、0.06ppm以上、特に0.07ppm以上であることが好ましい。また、着色が許容される場合においては、PtをZrOやTiOと同様に、主結晶の析出を促進させる核形成剤としても良い。その際、Pt単独で核形成剤としても良く、他の成分と複合で核形成剤としても良い。また、Ptを核形成剤とする場合、特に形態は問わない(コロイド、金属結晶など)。
 Rhはイオンやコロイド、金属等の状態でガラスに混入しうる成分であり、Ptと同様に黄色~茶褐色の着色を発現させ、結晶化ガラスを白濁させる傾向がある。このため、Rhの含有量は7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1.6ppm以下、1.4ppm以下、1.2ppm以下、1ppm以下、0.9ppm以下、0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下、0.45ppm以下、0.40ppm以下、0.35ppm以下、特に0.30ppm以下であることが好ましい。極力Rhの混入は避けるべきであるが、一般的な溶融設備を用いた場合、均質なガラスを得るためにRh部材の使用が必要になることがある。このため、Rhを完全に除去しようとすると、製造コストが増加する傾向にある。着色に悪影響を及ぼさない場合においては、製造コストの増加を抑制するために、Rhの含有量の下限は0.0001ppm以上、0.001ppm以上、0.005ppm以上、0.01ppm以上、0.02ppm以上、0.03ppm以上、0.04ppm以上、0.05ppm以上、0.06ppm以上、特に0.07ppm以上であることが好ましい。また、着色が許容される場合においては、RhをZrOやTiOと同様に核形成剤としても良い。その際、Rh単独で核形成剤としても良く、他の成分と複合で核形成剤としても良い。また、Rhを主結晶の析出を促進させる核形成剤とする場合、特に形態は問わない(コロイド、金属結晶など)。
 また、Pt+Rhは9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4.75ppm以下、4.5ppm以下、4.25ppm以下、4ppm以下、3.75ppm以下、3.5ppm以下、3.25ppm以下、3ppm以下、2.75ppm以下、2.5ppm以下、2.25ppm以下、2ppm以下、1.75ppm以下、1.5ppm以下、1.25ppm以下、1ppm以下、0.95ppm以下、0.9ppm以下、0.85ppm以下、0.8ppm以下、0.75ppm以下、0.7ppm以下、0.65ppm以下、0.60ppm以下、0.55ppm以下、0.50ppm以下、0.45ppm以下、0.40ppm以下、0.35ppm以下、特に0.30ppm以下であることが好ましい。なお、極力PtとRhの混入は避けるべきであるが、一般的な溶融設備を用いた場合、均質なガラスを得るためにPtとRh部材の使用が必要になることがある。このため、PtとRhを完全に除去しようとすると、製造コストが増加する傾向にある。着色に悪影響を及ぼさない場合においては、製造コストの増加を抑制するために、Pt+Rhの下限は0.0001ppm以上、0.001ppm以上、0.005ppm以上、0.01ppm以上、0.02ppm以上、0.03ppm以上、0.04ppm以上、0.05ppm以上、0.06ppm以上、特に0.07ppm以上であることが好ましい。
 なお、ガラス素材を開発するにあたり、様々な組成のガラスを様々な坩堝を用いて作製することは一般的である。このため、溶融に使用する電気炉内部には坩堝から蒸発した白金とロジウムが存在することが多々ある。電気炉内部に存在するPtとRhがガラスに混入することを確認しており、PtとRhの混入量を制御するために、使用する原料や坩堝の材質を選定するだけでなく、石英製の蓋を坩堝に装着する他、溶融温度の低温化や短時間化等を施すことにより、ガラス中のPt、Rhの含有量を制御することが可能である。
 MoOは原料や溶融用部材などから混入しうる成分であり、結晶化を促進する成分である。MoOの含有量は0~10%、0~8%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.7%、0~2.4%、0~2.1%、0~1.8%、0~1.5%、0~1%、0~0.5%、0~0.1%、0~0.05%、0~0.01%、特に0~0.005%であることが好ましい。MoOの含有量が多すぎると、Moを含む結晶が析出しガラスが失透しやすくなり、結晶化ガラスが破損しやすくなる。また、Moカチオンのイオン半径は、主結晶の構成成分であるLiカチオンやMgカチオンなどよりも大きく、結晶に取り込まれにくいため、結晶化後のMoカチオンは残存ガラスに残りやすい。このため、MoOの含有量が多すぎると、結晶相と残存ガラスの屈折率差が生じやすくなり、結晶化ガラスが白濁しやすくなる傾向にある。更に、MoOの含有量が多すぎると、黄色く着色する恐れがある。ただし、MoOは不純物として混入することがあるため、MoOを完全に除去しようとすると、原料バッチが高価になり製造コストが増加する傾向にある。製造コストの増加を抑制するために、MoOの含有量の下限は0%超、0.0001%以上、0.0003%以上、特に0.0005%以上であることが好ましい。
 AsやSbは毒性が強く、ガラスの製造工程や廃ガラスの処理時等に環境を汚染する可能性がある。このため、Sb+Asは2%以下、1%以下、0.7%以下、0.7%未満、0.65%以下、0.6%以下、0.55%以下、0.5%以下、0.45%以下、0.4%以下、0.35%以下、0.3%以下、0.25%以下、0.2%以下、0.15%以下、0.1%以下、0.05%以下、特に実質的に含有しない(具体的には、0.01質量%未満)ことが好ましい。なお、AsやSbを含有させる場合、これらの成分を清澄剤や核形成剤として機能させて良い。
 本発明のLiO-Al-SiO系結晶化ガラスは着色に悪影響が無い限り、上記成分以外にも、例えばH、CO、CO、HO、He、Ne、Ar、N等の微量成分をそれぞれ0.1%まで含有してもよい。また、ガラス中にAg、Au、Pd、Ir、V、Cr、Sc、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、U等は意図的に添加すると原料コストが高くなり、製造コストが高くなる傾向にある。一方、AgやAuなどを含有させたガラスに光照射や熱処理を行うと、これら成分の凝集体が形成され、それを起点に結晶化を促進することが出来る。また、Pdなどには種々の触媒作用があり、これら含有させることで、ガラスないし結晶化ガラスに特異な機能を付与することが可能となる。こうした事情を鑑みて、結晶化促進やその他の機能の付与を目的とする場合、上記成分をそれぞれ1%以下、0.5%以下、0.3%以下、0.1%以下含有してもよく、そうでない場合は500ppm以下、300ppm以下、100ppm以下、特に10ppm以下であることが好ましい。
 さらに着色に悪影響が無い限り、本発明のLiO-Al-SiO系結晶化ガラスは、SO、MnO、Cl、La、WO、HfO、Ta、Nd、Nb、RfO等を合量で10%まで含有してもよい。ただし、上記成分の原料バッチは高価であり製造コストが増加する傾向にあるため、特段の事情が無い場合は添加しなくても良い。特にHfOは原料費が高く、Taは紛争鉱物になることがあるため、これら成分の合量は質量%で5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.05%以下、0.05%未満、0.049%以下、0.048%以下、0.047%以下、0.046%以下、特に0.045%以下であることが好ましい。
 すなわち、本発明のLiO-Al-SiO系結晶化ガラスを実施するにあたり好ましい組成範囲は、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe) 0.01~0.99、(MgO+ZnO)/LiO 0~0.8、β-OH値が0.001~2/mmであり、好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.8、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、β-OH値が0.001~2/mmであり、より好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.8、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、(MgO+CaO+SrO+BaO)/ZrO 0~2、β-OH値が0.001~2/mmであり、さらに好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.8、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、(MgO+CaO+SrO+BaO)/ZrO 0~2、SnO/(SnO+ZrO+P+TiO+B) 0.06~0.9、β-OH値が0.001~2/mmであり、さらに好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.8、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、(MgO+CaO+SrO+BaO)/ZrO 0~2、SnO/(SnO+ZrO+P+TiO+B) 0.06~0.9、Pt+Rh 0~5ppm、β-OH値が0.001~2/mmであり、さらに好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.394、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、(MgO+CaO+SrO+BaO)/ZrO 0~2、SnO/(SnO+ZrO+P+TiO+B) 0.06~0.9、Pt+Rh 0~5ppm、β-OH値が0.001~2/mmであり、さらに好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.394、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、(MgO+CaO+SrO+BaO)/ZrO 0~2、SnO/(SnO+ZrO+P+TiO+B) 0.06~0.9、Pt+Rh 0~5ppm、HfO+Ta 0~0.05%未満、β-OH値が0.001~2/mm、Sb3 +As 0.7%未満、特に好ましくは、SiO 50~75%、Al 10~30%、LiO 1~8%、SnO 0超~5%、ZrO 1~5%、MgO 0~10%、P 0~5%、TiO 0~1.5%未満、(LiO+NaO+KO)/ZrO 0~1.5、TiO/(TiO+Fe)0.01~0.99、(MgO+ZnO)/LiO 0~0.394、(MgO+CaO+SrO+BaO)/(LiO+NaO+KO) 0~0.5、(MgO+CaO+SrO+BaO)/ZrO 0~2、SnO/(SnO+ZrO+P+TiO+B) 0.06~0.9、Pt+Rh 0~5ppm、HfO+Ta 0~0.05%未満、β-OH値が0.001~2/mm、Sb3 +As 0.7%未満、Al /(LiO+(1/2×(MgO+ZnO))) 5.0~7.5である。
 上記組成を有する本発明のLiO-Al-SiO系結晶化ガラスは、外観が無色透明になりやすい。
 本発明のLiO-Al-SiO系結晶化ガラスは、β-OH値が、0.001~2/mmであり、0.01~1.5/mm、0.02~1.5/mm、0.03~1.2/mm、0.04~1.5/mm、0.05~1/mm、0.06~1/mm、0.07~1/mm、0.08~0.9/mm、0.08~0.85/mm、0.08~0.8/mm、0.08~0.75/mm、0.08~0.7/mm、0.08~0.65/mm、0.08~0.6/mm、0.08~0.55/mm、0.08~0.54/mm、0.08~0.53/mm、0.08~0.52/mm、0.08~0.51/mm、特に0.08~0.5/mmであることが好ましい。β-OH値が小さすぎると、結晶化工程における結晶核形成速度が遅くなり、結晶核の生成量が少なくなり易い。その結果、粗大結晶が多くなって、結晶化ガラスが白濁し、透明性を損ないやすくなる。β-OH値が大きいことで結晶化が進行する理由は完全には明らかとなっていないが、β-OH基がガラス骨格の結合を弱め、ガラスの粘度を低下させたことが一因であると予想される。また、β-OH基がガラス中に存在することで、Zr等の結晶核として機能しうる成分が動きやすくなっていることも一因と予想される。一方、β-OH値が大きすぎると、Pt等を含有する金属製のガラス製造炉部材や耐火物からなるガラス製造炉部材等とガラスの界面で泡が発生しやすくなり、ガラス製品の品質を低下させやすくなる。また、β-石英固溶体結晶がβ-スポジュメン固溶体結晶等に転移しやすくなり、結晶粒径が大きくなりやすくなるほか、結晶化ガラス内部で屈折率差が生じやすくなり、結果として結晶化ガラスが白濁しやすくなる。尚、β-OH値は使用する原料、溶融雰囲気、溶融温度、溶融時間などによって変化し、必要に応じてこれらの条件を変更し、β-OH値を調整できる。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長200nmにおける透過率が、0%以上、2.5%以上、5%以上、10%以上、12%以上、14%以上、16%以上、18%以上、20%以上、22%以上、24%以上、26%以上、28%以上、30%以上、32%以上、34%以上、36%以上、38%以上、40%以上、40.5%以上、41%以上、41.5%以上、42%以上、42.5%以上、43%以上、43.5%以上、44%以上、44.5%以上、特に45%以上であることが好ましい。紫外光を透過する必要のある用途の場合、波長200nmにおける透過率が低すぎると、所望の透過能を得られなくなる恐れがある。特にオゾンランプ等を用いた光洗浄やエキシマーレーザーを用いた医療用途、露光用途などで使用する場合、波長200nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長250nmにおける透過率が、0%以上、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、10.5%以上、11%以上、11.5%以上、12%以上、12.5%以上、13%以上、13.5%以上、14%以上、14.5%以上、15%以上、15.5%以上、特に16%以上であることが好ましい。紫外光を透過する必要のある用途の場合、波長250nmにおける透過率が低すぎると、所望の透過能を得られなくなる恐れがある。特に低圧水銀灯等を用いた殺菌用途やYAGレーザー等を用いた加工用途などで使用する場合、波長250nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長300nmにおける透過率が、0%以上、2.5%以上、5%以上、10%以上、12%以上、14%以上、16%以上、18%以上、20%以上、22%以上、24%以上、26%以上、28%以上、30%以上、32%以上、34%以上、36%以上、38%以上、40%以上、40.5%以上、41%以上、41.5%以上、42%以上、42.5%以上、43%以上、43.5%以上、44%以上、44.5%以上、特に45%以上であることが好ましい。特にUV硬化・接着・乾燥(UVキュアリング)、印刷物の蛍光検出、誘虫用途などで使用する場合、波長300nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長325nmにおける透過率が、0%以上、2.5%以上、5%以上、10%以上、12%以上、14%以上、16%以上、18%以上、20%以上、22%以上、24%以上、26%以上、28%以上、30%以上、32%以上、34%以上、36%以上、38%以上、40%以上、42%以上、44%以上、46%以上、48%以上、50%以上、52%以上、54%以上、56%以上、57%以上、58%以上、59%以上、60%以上、61%以上、62%以上、63%以上、64%以上、特に65%以上であることが好ましい。特にUV硬化・接着・乾燥(UVキュアリング)、印刷物の蛍光検出、誘虫用途などで使用する場合、波長325nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長350nmにおける透過率が、0%以上、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、71%以上、72%以上、73%以上、74%以上、75%以上、76%以上、77%以上、78%以上、80%以上、81%以上、82%以上、83%以上、特に84%以上であることが好ましい。特にYAGレーザー等を用いた加工などで使用する場合、波長350nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長380nmにおける透過率が、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、78%以上、80%以上、81%以上、82%以上、83%以上、特に84%以上であることが好ましい。波長380nmにおける透過率が低すぎると、黄色の着色が強くなるとともに、結晶化ガラスの透明性が低下し所望の透過能を得られなくなる恐れがある。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長800nmにおける透過率が、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、78%以上、80%以上、81%以上、82%以上、83%以上、84%%以上、85%以上、86%以上、87%以上、特に88%以上であることが好ましい。波長800nmにおける透過率が低すぎると、緑色になりやすくなる。特に静脈認証等の医療用途などで使用する場合、波長800nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長1200nmにおける透過率が、50%以上、55%以上、60%以上、65%以上、70%以上、72%以上、74%以上、76%以上、78%以上、80%以上、81%以上、82%以上、83%以上、84%%以上、85%以上、86%以上、87%以上、88%以上、特に89%以上であることが好ましい。波長1200nmにおける透過率が低すぎると、緑色になりやすくなる。特に赤外カメラやリモコン等の赤外通信用途などで使用する場合、波長1200nmにおける透過率は高い方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mm、波長300nmにおける結晶化前後の透過率変化率が50%以下、48%以下、46%以下、44%以下、42%以下、40%以下、38%以下、37.5%以下、37%以下、36.5%以下、36%以下、35.5%以下、特に35%以下であることが好ましい。結晶化前後の透過率変化率を小さくすれば、結晶化する前に結晶化後の透過率を予測し制御することが可能になり、結晶化後に所望の透過能を得られやすくなる。なお、結晶化前後の透過率変化率は波長300nmのみならず、全波長域において小さい方が好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mmにおける明度L*が50以上、60以上、65以上、70%以上、75以上、80以上、85以上、90以上、91以上、92以上、93以上、94以上、95以上、96以上、96.1以上、96.3以上、特に96.5以上であることが好ましい。明度L*が小さすぎると、色度の大きさに関わらず灰色がかり暗く見える傾向がある。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mmにおける色度a*が±5.0以内、±4.5以内、±4以内、±3.6以内、±3.2以内、±2.8以内、±2.4以内、±2以内、±1.8以内、±1.6以内、±1.4以内、±1.2以内、±1以内、±0.9以内、±0.8以内、±0.7以内、±0.6以内、特に±0.5以内であることが好ましい。明度a*がマイナス方向に大きすぎると緑色に、プラス方向に大きすぎると赤色に見える傾向がある。
 本発明のLiO-Al-SiO系結晶化ガラスは、厚み3mmにおける色度b*が±5.0以内、±4.5以内、±4以内、±3.6以内、±3.2以内、±2.8以内、±2.4以内、±2以内、±1.8以内、±1.6以内、±1.4以内、±1.2以内、±1以内、±0.9以内、±0.8以内、±0.7以内、±0.6以内、特に±0.5以内であることが好ましい。明度b*がマイナス方向に大きすぎると青色に、プラス方向に大きすぎると黄色に見える傾向がある。
 本発明のLiO-Al-SiO系結晶化ガラスは、結晶化前のガラスの状態で、歪点(ガラスの粘度が約1014.5dPa・sに相当する温度)が600℃以上、605℃以上、610℃以上、615℃以上、620℃以上、630℃以上、635℃以上、640℃以上、645℃以上、650℃以上、特に655℃以上であることが好ましい。歪点が低すぎると、結晶化前のガラスを成形した際に割れやすくなる。
 本発明のLiO-Al-SiO系結晶化ガラスは、結晶化前のガラスの状態で、徐冷点(ガラスの粘度が約1013dPa・sに相当する温度)が680℃以上、685℃以上、690℃以上、695℃以上、700℃以上、705℃以上、710℃以上、715℃以上、720℃以上、特に725℃以上であることが好ましい。徐冷点が低すぎると、結晶化前のガラスを成形した際に割れやすくなる。
 本発明のLiO-Al-SiO系結晶化ガラスは、熱処理によって結晶化しやすいため、ソーダライムガラスのような一般的なガラスのように軟化点(ガラスの粘度が約107.6dPa・sに相当する温度)を測定することが容易でない。そこで、本発明のLiO-Al-SiO系結晶化ガラスにおいては、結晶化前のガラスの熱膨張曲線の傾きが変化する温度をガラス転移温度とし、軟化点の代替として取り扱う。本発明のLiO-Al-SiO系結晶化ガラスは、結晶化前のガラスの状態で、ガラス転移温度が680℃以上、685℃以上、690℃以上、695℃以上、700℃以上、705℃以上、710℃以上、715℃以上、720℃以上、特に725℃以上であることが好ましい。ガラス転移温度が低すぎると、結晶化の際にガラスが流動しすぎてしまい、所望の形状に成形することが難しくなる。
 本発明のLiO-Al-SiO系結晶化ガラスは、液相温度が1540℃以下、1535℃以下、1530℃以下、1525℃以下、1520℃以下、1515℃以下、1510℃以下、1505℃以下、1500℃以下、1495℃以下、1490℃以下、1485℃以下、1480℃以下、1475℃以下、1470℃以下、1465℃以下、1460℃以下、1455℃以下、1450℃以下、1445℃以下、1440℃以下、1435℃以下、1430℃以下、1425℃以下、1420℃以下、1415℃以下、特に1410℃以下であることが好ましい。液相温度が高すぎると製造時に失透しやすくなる。一方、1480℃以下であれば、ロール法などでの製造が容易になり、1450℃以下であれば、鋳込み法などでの製造が容易になり、1410℃以下であれば、フュージョン法などでの製造が容易になる。
 本発明のLiO-Al-SiO系結晶化ガラスは、液相粘度(液相温度に対応する粘度の対数値)が2.70以上、2.75以上、2.80以上、2.85以上、2.90以上、2.95以上、3.00以上、3.05以上、3.10以上、3.15以上、3.20以上、3.25以上、3.30以上、3.35以上、3.40以上、3.45以上、3.50以上、3.55以上、3.60以上、3.65以上、特に3.70以上であることが好ましい。液相粘度が低すぎると製造時に失透しやすくなる。一方、3.40以上であれば、ロール法などでの製造が容易になり、3.50以上であれば、鋳込み法などでの製造が容易になり、3.70以上であれば、フュージョン法などでの製造が容易になる。
 本発明のLiO-Al-SiO系結晶化ガラスは、主結晶としてβ-石英固溶体が析出していることが好ましい。β─石英固溶体を主結晶として析出させれば、結晶粒径が小さくなりやすいため結晶化ガラスが可視光を透過しやすく、透明性が高まりやすい。またガラスの熱膨張係数をゼロに近付けることが容易になる。なお、本発明のLiO-Al-SiO系結晶化ガラスは、β-石英固溶体を析出させる結晶化条件よりも高温で熱処理することでβ-スポジュメン固溶体が析出する。β-スポジュメン固溶体の結晶粒径はβ-石英固溶体よりも大きくなりやすく、一般に結晶化ガラスにした際に白濁する傾向があるが、ガラス組成や焼成条件を好適に調整することで、β-スポジュメン固溶体を含む結晶相と残存ガラス相の屈折率差が小さくなることがあり、この場合においては結晶化ガラスが白濁しにくくなる。本発明のLiO-Al-SiO系結晶化ガラスにおいては、着色等に悪影響が無い限り、β-スポジュメン固溶体等の結晶が含まれても構わない。
 本発明のLiO-Al-SiO系結晶化ガラスは、30~380℃における熱膨張係数が、30×10-7/℃以下、25×10-7/℃以下、20×10-7/℃以下、18×10-7/℃以下、16×10-7/℃以下、14×10-7/℃以下、13×10-7/℃以下、12×10-7/℃以下、11×10-7/℃以下、10×10-7/℃以下、9×10-7/℃以下、8×10-7/℃以下、7×10-7/℃以下、6×10-7/℃以下、5×10-7/℃以下、4×10-7/℃以下、3×10-7/℃以下、特に2×10-7/℃以下であることが好ましい。なお、寸法安定性、及び/又は耐熱衝撃性が特に必要とされる場合は、-5×10-7/℃~5×10-7/℃、-3×10-7/℃~3×10-7/℃、-2.5×10-7/℃~2.5×10-7/℃、-2×10-7/℃~2×10-7/℃、-1.5×10-7/℃~1.5×10-7/℃、-1×10-7/℃~1×10-7/℃、特に-0.5×10-7/℃~0.5×10-7/℃であることが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、30~750℃における熱膨張係数が、30×10-7/℃以下、25×10-7/℃以下、20×10-7/℃以下、18×10-7/℃以下、16×10-7/℃以下、14×10-7/℃以下、13×10-7/℃以下、12×10-7/℃以下、11×10-7/℃以下、10×10-7/℃以下、9×10-7/℃以下、8×10-7/℃以下、7×10-7/℃以下、6×10-7/℃以下、5×10-7/℃以下、4×10-7/℃以下、特に3×10-7/℃以下であることが好ましい。なお、寸法安定性、及び/又は耐熱衝撃性が特に必要とされる場合は、-15×10-7/℃~15×10-7/℃、-12×10-7/℃~12×10-7/℃、-10×10-7/℃~10×10-7/℃、-8×10-7/℃~8×10-7/℃、-6×10-7/℃~6×10-7/℃、-5×10-7/℃~5×10-7/℃、-4.5×10-7/℃~4.5×10-7/℃、-4×10-7/℃~4×10-7/℃、-3.5×10-7/℃~3.5×10-7/℃、-3×10-7/℃~3×10-7/℃、-2.5×10-7/℃~2.5×10-7/℃、-2×10-7/℃~2×10-7/℃、-1.5×10-7/℃~1.5×10-7/℃、-1×10-7/℃~1×10-7/℃、特に-0.5×10-7/℃~0.5×10-7/℃であることが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、ヤング率が60~120GPa、70~110GPa、75~110GPa、75~105GPa、80~105GPa、特に80~100GPaであることが好ましい。ヤング率が低すぎても高すぎても、結晶化ガラスが破損しやすくなる。
 本発明のLiO-Al-SiO系結晶化ガラスは、剛性率が25~50GPa、27~48GPa、29~46GPa、特に30~45GPaであることが好ましい。剛性率が低すぎても高すぎても、結晶化ガラスが破損しやすくなる。
 本発明のLiO-Al-SiO系結晶化ガラスは、ポアソン比が0.35以下、0.32以下、0.3以下、0.28以下、0.26以下、特に0.25以下であることが好ましい。ポアソン比が大きすぎると、結晶化ガラスが破損しやすくなる。
 本発明のLiO-Al-SiO系結晶化ガラスの結晶化前の結晶性ガラスについては、密度が2.30~2.60g/cm、2.32~2.58g/cm、2.34~2.56g/cm、2.36~2.54g/cm、2.38~2.52g/cm、2.39~2.51g/cm、特に2.40~2.50g/cmであることが好ましい。結晶性ガラスの密度が小さすぎると、結晶化前のガス透過性が悪化し、保管期間中にガラスが汚染される恐れがある。一方、結晶性ガラスの密度が大きすぎると単位面積当たりの重量が大きくなり、取り扱いが困難になる。
 本発明のLiO-Al-SiO系結晶化ガラス(結晶化後)については、密度が2.40~2.80g/cm、2.42~2.78g/cm、2.44~2.76g/cm、2.46~2.74g/cm、特に2.47~2.73g/cmであることが好ましい。結晶化ガラスの密度が小さすぎると、結晶化ガラスのガス透過性が悪化する恐れがある。一方、結晶化ガラスの密度が大きすぎると単位面積当たりの重量が大きくなり、取り扱いが困難になる。また、結晶化ガラス(結晶化後)の密度は、ガラスが十分に結晶化しているかどうかを判断する指標になる。具体的には、同一のガラスであれば密度が大きいほど(原ガラスと結晶化ガラスの密度差が大きいほど)結晶化が進行しているということになる。
 本発明のLiO-Al-SiO系結晶化ガラスの密度変化率は、{(結晶化後の密度(g/cm)-結晶化前の密度(g/cm))/結晶化前の密度(g/cm)}×100(%)で定義されるものであり、結晶化前の密度は溶融後のガラスを700℃で30分保持し3℃/分で室温まで冷却した後の密度であり、結晶化後の密度とは、所定の条件で結晶化処理を行った後の密度である。密度変化率は0.01~10%、0.05~8%、0.1~8%、0.3~8%、0.5~8%、0.9~8%、1~7.8%、1~7.4%、1~7%、1.2~7%、1.6~7%、2~7%、2~6.8%、2~6.5%、2~6.3%、2~6.2%、2~6.1%、2~6%、2.5~5%、2.6~4.5%、2.8~3.8%であることが好ましい。結晶化前後の密度変化率を小さくすれば、結晶化後での破損率を低減することが可能であり、またガラスとガラスマトリクスの散乱が低減され、透過率の高い結晶化ガラスを得ることが可能になる。特にTiO含有量が0.5%未満(特に0.05%以下)の領域で、TiO等の吸収以外の着色要因を低減させるうえで、散乱が顕著に低減させることが可能となり、透過率を向上させることに寄与する。
 本発明のLiO-Al-SiO系結晶化ガラスは、化学強化等を施しても良い。化学強化処理の処理条件はガラス組成、結晶化度、溶融塩の種類などを考慮して、処理時間や処理温度を適切に選択すればよい。例えば、結晶化後に化学強化しやすくなるように、残存ガラスに含まれうるNaOを多く含んだガラス組成を選択しても良く、結晶化度を意図的に下げても良い。また、溶融塩はLi、Na、K等のアルカリ金属を単独で含んでも良いし、複数含んでも良い。さらに、通常の一段階強化だけでなく、多段階での化学強化を選択しても良い。この他に、本発明のLiO-Al-SiO系結晶化ガラスは、結晶化前に化学強化等で処理することで、試料表面のLiO含有量を試料内部よりも減らすことができる。こうしたガラスを結晶化させると、試料表面の結晶化度が試料内部よりも低くなり、相対的に試料表面の熱膨張係数が高くなり、熱熱膨張差に起因する圧縮応力を試料表面に入れることができる。また、試料表面の結晶化度が低い場合、表面にガラス相が多くなり、ガラス組成の選択によっては耐薬品性やガスバリア性を向上させることが出来る。
 次に本発明のLiO-Al-SiO系結晶化ガラスを製造する方法を説明する。
 まず、上記組成のガラスとなるように調製した原料バッチを、ガラス溶融炉に投入し、1500~1750℃で溶融した後、成形する。なお、ガラス溶融時はバーナー等を用いた火炎溶融法、電気加熱による電気溶融法などを用いて良い。また、レーザー照射による溶融やプラズマによる溶融も可能である。また、試料形状は板状、繊維状、フィルム状、粉末状、球状、中空状等にすることができ、特段制限はない。
 次に得られた結晶性ガラス(結晶化前の結晶化可能なガラス)を熱処理して結晶化させる。結晶化条件としては、まず核形成を700~950℃(好ましくは750~900℃)で0.1~100時間(好ましくは1~60時間)行い、続いて結晶成長を800~1050℃(好ましくは800~1000℃)で0.1~50時間(好ましくは0.2~10時間)行う。このようにしてβ-石英固溶体結晶が主結晶として析出した透明なLiO-Al-SiO系結晶化ガラスを得ることができる。なお、熱処理はある特定の温度のみで行って良く、二水準以上の温度に保持し段階的に熱処理しても良く、温度勾配を与えながら加熱しても良い。
 また、音波や電磁波を印加、照射することで結晶化を促進しても良い。さらに、高温にした結晶化ガラスの冷却速度はある特定の温度勾配で行って良く、二水準以上の温度勾配で行っても良い。耐熱衝撃性を十分に得たい場合、冷却速度を制御して残存ガラス相の構造緩和を十分に行うことが望まれる。800℃から25℃までの平均冷却速度は、結晶化ガラスの最も表面から遠い肉厚内部の部分において3000℃/分、1000℃/分以下、500℃/分以下、400℃/分以下、300℃/分以下、200℃/分以下、100℃/分以下、50℃/分以下、25℃/分以下、10℃/分以下、特に5℃/分以下であることが好ましい。また、長期間にわたる寸法安定性を得たい場合は、さらに2.5℃/分以下、1℃/分以下、0.5℃/分以下、0.1℃以下/分以下、0.05℃/分以下、0.01℃/分以下、0.005℃/分以下、0.001℃/分以下、0.0005℃/分以下、特に0.0001℃/分以下であることが好ましい。風冷、水冷等による物理強化処理を行う場合を除き、結晶化ガラスの冷却速度はガラス表面の冷却速度とガラス表面から最も遠い肉厚内部との冷却速度が近いことが望ましい。表面から最も遠い肉厚内部の部分における冷却速度を表面の冷却速度で除した値は、0.0001~1、0.001~1、0.01~1、0.1~1、0.5~1、0.8~1、0.9~1、特に1であることが好ましい。1に近いことで、結晶化ガラス試料の全位置において、残留歪が生じにくく、長期の寸法安定性を得やすくなる。なお、表面の冷却速度は接触式測温や放射温度計で見積もることができ、内部の温度は高温状態の結晶化ガラスを冷却媒体中に置き、冷却媒体の熱量および熱量変化率を計測し、その数値データと結晶化ガラスと冷却媒体の比熱、熱伝導度等から見積もることができる。
 以下、実施例に基づいて本発明を説明するが、本発明は以下の実施例に限定されるものではない。表1~42には本発明の実施例(試料No.1~131)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 まず各表記載の組成を有するガラスとなるように、各原料を酸化物、水酸化物、炭酸塩、硝酸塩等の形態で調合し、ガラスバッチを得た(各表記載の組成は実際に作ったガラスの分析値)。得られたガラスバッチを白金とロジウムを含有する坩堝、ロジウムを含有しない強化白金坩堝、耐火物坩堝、又は石英坩堝に入れ、1600℃で4~100時間溶融後、1650~1680℃に昇温して0.5~20時間溶融し、5mmの厚さにロール成形し、さらに徐冷炉を用いて700℃で30分間熱処理し、徐冷炉を室温まで100℃/hで降温することにより、結晶性ガラスを得た。なお、前記溶融はガラス素材の開発に広く使用される電気溶融法で行った。
 なお、試料No.27のガラス組成物を用いて、液体ないし固体に接触させた状態のガラス組成物をレーザー照射により溶融できることを確認している。また、ガラス試料の周囲から気体を送り、ガラス試料を浮遊させながら、気体にのみ接触した状態のガラス組成物をレーザー溶融できることも確認した。さらに、電気炉等で予め融液にしてから、プレス法、リドロー法、スプレー法などにより半球状、球状、ファイバー状、粉末状などに成形できることを確認した。さらに、試料No.28~49のガラス組成物を用いて、バーナー加熱および通電加熱を組み合わせた連続炉での溶融が可能であることを確認し、ロール法、フィルム法、誘電加熱を用いたロット法などによりブロック状、剥片状、中空状などに成形できることを確認した。また、試料No.15のガラス組成物を用いて、アップドロー法、ダウンドロー法、スリット法、オーバーフロー(フュージョン)法、手吹き法などにより、薄板状、管状、バルブ状にできることを確認した。さらに、試料No.59のガラス組成物を用いて、試料No.59よりも比重の大きい液体上にガラス融液を流し出し、引き続く冷却によりガラス組成物を板状に固化できることを確認した。なお、いずれの方法で作製したガラスも、表に記載の条件で結晶化できた。
 試料のPt、Rh含有量はICP-MS装置(AGILEINT TECHNOLOGY製 Agilent8800)を用いて分析した。まず、作製したガラス試料を粉砕し純水で湿潤した後、過塩素酸、硝酸、硫酸、フッ酸などを添加して融解させた。その後、試料のPt、Rh含有量をICP-MSで測定した。予め準備しておいた濃度既知のPt、Rh溶液を用いて作成した検量線に基づき、各測定試料のPt、Rh含有量を求めた。測定モードはPt:Heガス/HMI(低モード)、Rh:HEHeガス/HMI(中モード)とし、質量数はPt:198、Rh:103とした。なお、作製試料のLiO含有量は原子吸光分析装置(アナリティクイエナ製 ContrAA600)を用いて分析した。ガラス試料の融解の流れ、検量線を用いた点などは基本的にPt、Rh分析と同様である。また、その他成分に関しては、Pt、Rh、LiOと同様にICP-MSないし原子吸光分析で測定するか、予めICP-MSもしくは原子吸光分析装置を用いて調べた濃度既知のガラス試料を検量線用試料とし、XRF分析装置(RIGAKU製ZSX PrimusIV)で検量線を作成した後、その検量線に基づき、測定試料のXRF分析値から実際の各成分の含有量を求めた。XRF分析の際、管電圧や管電流、露光時間等は分析成分に応じて随時調整した。
 各表記載の結晶性ガラスに対して、750~900℃で0.75~60時間熱処理して核形成を行った後、さらに800~1000℃で0.25~3時間の熱処理を行い結晶化させた。その後、700℃で30分間熱処理し、室温まで100℃/hで降温した。得られた結晶化ガラスについて、透過率、拡散透過率、明度、色度、析出結晶、平均結晶子サイズ、熱膨張係数、密度、ヤング率、剛性率、ポアソン比及び外観を評価した。また、結晶化前の結晶性ガラスについては透過率、明度、色度等は結晶化ガラスと同様の方法で測定した。また、結晶性ガラスについてはβ-OH値、粘度、液相温度を測定した。
 透過率、明度及び色度は、肉厚3mmに両面光学研磨した結晶化ガラス板について、分光光度計を用いた測定により評価した。測定には日本分光製分光光度計 V-670を用いた。なお、V-670には積分球ユニットである「ISN-723」を装着しおり、測定した透過率は全光透過率に相当する。また、測定波長域は200~1500nm、スキャンスピードは200nm/分、サンプリングピッチは1nm、バンド幅は200~800nmの波長域で5nm、それ以外の波長域で20nmとした。測定前にはベースライン補正(100%合わせ)とダーク測定(0%合わせ)を行った。ダーク測定時はISN-723に付属された硫酸バリウム板を取った状態で行った。測定した透過率を用い、JISZ8781-42013およびそれに対応する国際規格に基づいて三刺激値XYZを算出し、各刺激値から明度及び色度を算出した(光源C/10°)。また、結晶化ガラスの拡散透過率は上記と同一機種を用い、ISN-723に付属された硫酸バリウム板を取った状態で測定試料を設置し、測定を行った。
 析出結晶はX線回折装置(リガク製 全自動多目的水平型X線回折装置 Smart Lab)を用いて評価した。スキャンモードは2θ/θ測定、スキャンタイプは連続スキャン、散乱および発散スリット幅は1°、受光スリット幅は0.2°、測定範囲は10~60°、測定ステップは0.1°、スキャン速度は5°/分とし、同機種パッケージに搭載された解析ソフトを用いて主結晶および結晶粒径の評価を行った。主結晶として同定された析出結晶種として、β―石英固溶体を「β―Q」として表中に示した。また、主結晶の平均結晶子サイズはデバイ・シェラー(ebeye-Sherrer)法に基づいて、測定したX線回折ピークを用いて算出した。なお、平均結晶子サイズ算出用の測定では、スキャン速度は1°/分とした。
 熱膨張係数は、20mm×3.8mmφに加工した結晶化ガラス試料を用いて、30~380℃、及び30~750℃の温度域で測定した平均線熱膨張係数により評価した。測定にはNETZSCH製Dilatometerを用いた。また、同一測定器を用いて、30~750℃の温度域の熱膨張曲線を計測し、その変曲点を算出することで結晶化前の結晶性ガラスのガラス転移点を評価した。
 ヤング率、剛性率、及びポアソン比は、1200番アルミナ粉末を分散させた研磨液で表面を研磨した板状試料(40mm×20mm×20mm)について、自由共振式弾性率測定装置(日本テクノプラス製JE-RT3)を用いて室温環境下にて測定した。
 密度はアルキメデス法で評価した。
 歪点、徐冷点はファイバーエロンゲーション法で評価した。なお、結晶性ガラスを手引き法にてファイバー試料を作製した。
 β-OH値は、FT-IR Frontier (Perkin Elmer社製)を用いてガラスの透過率を測定し、下記の式を用いて求めた。尚、スキャンスピードは100μm/min、サンプリングピッチは1cm-1、スキャン回数は1測定あたり10回とした。
   β-OH値 = (1/X)log10(T1/T2
    X :ガラス肉厚(mm)
    T1:参照波長3846cm-1における透過率(%)
    T2:水酸基吸収波長3600cm-1付近における最小透過率(%)
 高温粘度は白金球引き上げ法で評価した。評価の際は塊状のガラス試料を適正な寸法に破砕し、なるべく気泡が巻き込まれないようにしてアルミナ製坩堝に投入した。続いてアルミナ坩堝を加熱して、試料を融液状態とし、複数の温度におけるガラスの粘度の計測値を求め、Vogel-Fulcher式の定数を算出して粘度曲線を作成し、各粘度における温度を算出した。
 液相温度は次の方法で評価した。まず、約120×20×10mmの白金ボートに300~500マイクロメートルに揃えたガラス粉末を充填し、電気炉に投入し1600℃で30分間溶融した。その後、線形の温度勾配を有する電気炉に移し替え、20時間投入し、失透を析出させた。測定試料を室温まで空冷した後、白金ボートとガラスの界面に析出した失透を観察し、失透析出箇所の温度を電気炉の温度勾配グラフから算出して液相温度とした。また、得られた液相温度をガラスの高温粘度曲線に内挿し、液相温度に相当する粘度を液相粘度とした。なお、各表記載のガラスの初相はX線回折、組成分析等(日立製走査電子顕微鏡日立製S3400N TyPE2、堀場製 EMAX ENERGY EX250X)の結果から、主にZrOであることが分かった。
 外観は、目視にて結晶化ガラスの色調を確認することにより評価した。なお、白背景と黒背景で目視を行い、それぞれ室内光下、日光下(1月、4月、7月、10月の快晴日および曇り日の8:00、12:00、16:00に実施)で観察を行った。各目視の結果から総合的に色調の判断をした。
 表1~42から明らかなように、実施例である試料No.1~131の結晶化ガラスは外観が無色透明であり透過率が高く、熱膨張係数がほぼ0であり、十分に結晶化していることが分かった。また、結晶化前後の透過率変化率が小さかった。
 図1は試料No.27の結晶化前の透過率曲線、図2は試料No.27の結晶化後の透過率曲線を示している。図1、2からも結晶化前後の透過率変化率が小さいことが明らかである。
 また、試料No.27の結晶化ガラスを、KNO融液に475℃で7時間浸漬させたところ、試料表面に圧縮応力層が形成された(圧縮応力:110MPa、圧縮深さ:10マイクロメートル)。
 表43、44は、本発明の実施例(試料A~J)を示している。表45は、本発明の比較例(試料K~M)を示している。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
 表31、32、33に記載の試料A~Mを実施例1と同様にして作製し、結晶化前のβ-OH値、結晶化後の密度を測定した。試料A~Eのβ-OH値と密度の関係を図3に、試料F~Jのβ-OH値と密度の関係を図4に、試料K~Mのβ-OH値と密度の関係を図5に示す。
 図3、4より明らかなように、TiO含有量が少なく、無色透明になりやすい結晶化ガラスに関してはβ-OH値が大きい程、密度が高くなり結晶化が進行していた。一方、図5より明らかなように、TiO含有量が多く、黄色に着色し易い結晶化ガラスに関しては、β-OH値に関わらず、同程度結晶化が進行していた。本結果は、透明性を確保しつつ、TiOやFe等に起因する黄色の着色を抑制したLiO-Al-SiO系結晶化ガラスを効率的に提供するという、本発明の効果を端的に表すものである。尚、今回は本発明の代表的な実施例として表31、32を記載したが、本特許記載の他の実施例に関しても同様の効果を確認している。また、表31、32に記載の実施例では結晶化温度がある一定の組み合わせで固定されているが、他の結晶化温度の組み合わせでも同様の効果が得られることを確認している。所望の焼成時間、結晶化ガラスの特性に応じて、結晶化温度は如何に変更しても良い。
 本発明のLiO-Al-SiO系結晶化ガラスは、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、光拡散板、半導体製造用炉心管、半導体製造用マスク、光学レンズ、寸法測定用部材、通信用部材、建築用部材、化学反応用容器、電磁調理用トッププレート、耐熱食器、耐熱カバー、防火戸用窓ガラス、天体望遠鏡用部材、宇宙光学用部材等に好適である。

Claims (26)

  1.  質量%で、TiO 0~0.5%未満を含有し、β-OH値が0.001~2/mmであることを特徴とするLiO-Al-SiO系結晶化ガラス。
  2.  さらに、質量%で、SiO 40~90%、Al 5~30%、LiO 1~10%、SnO 0~20%、ZrO 1~20%、MgO 0~10%、P 0~10%、Sb+As 0~2%未満を含有することを特徴とする請求項1に記載のLiO-Al-SiO系結晶化ガラス。
  3.  さらに、質量%で、NaO 0~10%、KO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~10%、ZnO 0~10%、B 0~10%を含有することを特徴とする請求項1又は2に記載のLiO-Al-SiO系結晶化ガラス。
  4.  さらに、質量%で、Fe 0.1%以下を含有することを特徴とする請求項1~3のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  5.  質量比で、SnO/(SnO+ZrO+P+TiO+B)が0.06以上であることを特徴とする請求項1~4のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  6.  質量比で、Al/(SnO+ZrO)が7.1以下であることを特徴とする請求項1~5のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  7.  質量比で、SnO/(SnO+ZrO)が0.01~0.99であることを特徴とする請求項1~6のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  8.  質量%で、NaO+KO+CaO+SrO+BaO 8%以下を含有することを特徴とする請求項1~7のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  9.  質量比で、(SiO+Al)/LiOが20以上であることを特徴とする請求項1~8のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  10.  質量比で、(SiO+Al)/SnOが44以上であることを特徴とする請求項1~9のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  11.  質量比で、(MgO+ZnO)/LiOが0.395未満、又は0.754超であることを特徴とする請求項1~10のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  12.  質量比で、(LiO+NaO+KO)/ZrOが2.0以下であることを特徴とする請求項1~11のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  13.  質量比で、TiO/ZrOが0.0001~5.0であることを特徴とする請求項1~12のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  14.  質量比で、TiO/(TiO+Fe)が0.001~0.999であることを特徴とする請求項1~13のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  15.  質量%で、HfO+Ta 0.05%未満を含有することを特徴とする請求項1~14のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  16.  質量%で、Pt 7ppm以下を含有することを特徴とする請求項1~15のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  17.  質量%で、Rh 7ppm以下を含有することを特徴とする請求項1~16のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  18.  質量%で、Pt+Rh 9ppm以下を含有することを特徴とする請求項1~17のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  19.  外観が無色透明であることを特徴とする請求項1~18のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  20.  厚み3mm、波長300nmにおける透過率が10%以上であることを特徴とする請求項1~19のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  21.  主結晶としてβ─石英固溶体が析出していることを特徴とする請求項1~20のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  22.  30~380℃における熱膨張係数が、30×10-7/℃以下であることを特徴とする請求項1~21のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  23.  30~750℃における熱膨張係数が、30×10-7/℃以下であることを特徴とする請求項1~22のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  24.  厚み3mm、波長300nmにおける結晶化前後の透過率変化率が50%以下であることを特徴とする請求項1~23のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  25.  質量比で、Al/(LiO+(1/2×(MgO+ZnO))が3.0~8.0であることを特徴とする請求項1~24のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  26.  質量%で、MoO 0%超を含有し、β-OH値が0.001~0.5/mmであることを特徴とするLiO-Al-SiO系結晶化ガラス。
PCT/JP2021/032579 2020-09-11 2021-09-06 Li2O-Al2O3-SiO2系結晶化ガラス WO2022054739A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022547570A JPWO2022054739A1 (ja) 2020-09-11 2021-09-06
US18/024,158 US20230382787A1 (en) 2020-09-11 2021-09-06 Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
KR1020227038526A KR20230066267A (ko) 2020-09-11 2021-09-06 Li2O-Al2O3-SiO2계 결정화 유리
CN202180062339.2A CN116057023A (zh) 2020-09-11 2021-09-06 Li2O-Al2O3-SiO2 系结晶化玻璃
EP21866698.0A EP4212490A1 (en) 2020-09-11 2021-09-06 Li2o-al2o3-sio2-based crystallized glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153032 2020-09-11
JP2020-153032 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022054739A1 true WO2022054739A1 (ja) 2022-03-17

Family

ID=80631853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032579 WO2022054739A1 (ja) 2020-09-11 2021-09-06 Li2O-Al2O3-SiO2系結晶化ガラス

Country Status (6)

Country Link
US (1) US20230382787A1 (ja)
EP (1) EP4212490A1 (ja)
JP (1) JPWO2022054739A1 (ja)
KR (1) KR20230066267A (ja)
CN (1) CN116057023A (ja)
WO (1) WO2022054739A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243505A1 (ja) * 2022-06-13 2023-12-21 日本電気硝子株式会社 結晶化ガラス及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308845A (ja) 1988-06-07 1989-12-13 Nippon Electric Glass Co Ltd 燃焼装置窓用Li↓2O−A1↓2O↓3−SiO↓2系透明結晶化ガラス
JPH05193985A (ja) * 1991-07-26 1993-08-03 Asahi Glass Co Ltd 耐火・防火透明結晶化ガラス
JPH11228180A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2001048583A (ja) * 1999-08-02 2001-02-20 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及び結晶性ガラス
JP2010510952A (ja) * 2006-11-30 2010-04-08 ユーロケラ 透明、無色の、チタニアを含まない、ベータ・石英・ガラス・セラミック材料
JP2012041260A (ja) * 2010-07-22 2012-03-01 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
JP2015074596A (ja) * 2013-10-11 2015-04-20 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス
JP2016020303A (ja) * 2006-11-30 2016-02-04 ユーロケラ 透明で無色の、チタニア含量の低いベータ・石英・ガラス・セラミック材料
JP2019112299A (ja) * 2017-12-22 2019-07-11 ショット アクチエンゲゼルシャフトSchott AG 中立色の透過特性を有する着色された暖炉覗き窓
WO2020100490A1 (ja) * 2018-11-12 2020-05-22 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4020182Y1 (ja) 1964-05-22 1965-07-14
ATE312906T1 (de) 1997-11-14 2005-12-15 Morinaga Milk Industry Co Ltd Verfahren zur herstellung von sofort-agarmedium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308845A (ja) 1988-06-07 1989-12-13 Nippon Electric Glass Co Ltd 燃焼装置窓用Li↓2O−A1↓2O↓3−SiO↓2系透明結晶化ガラス
JPH05193985A (ja) * 1991-07-26 1993-08-03 Asahi Glass Co Ltd 耐火・防火透明結晶化ガラス
JPH11228180A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2001048583A (ja) * 1999-08-02 2001-02-20 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及び結晶性ガラス
JP2010510952A (ja) * 2006-11-30 2010-04-08 ユーロケラ 透明、無色の、チタニアを含まない、ベータ・石英・ガラス・セラミック材料
JP2016020303A (ja) * 2006-11-30 2016-02-04 ユーロケラ 透明で無色の、チタニア含量の低いベータ・石英・ガラス・セラミック材料
JP2012041260A (ja) * 2010-07-22 2012-03-01 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
JP2015074596A (ja) * 2013-10-11 2015-04-20 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス
JP2019112299A (ja) * 2017-12-22 2019-07-11 ショット アクチエンゲゼルシャフトSchott AG 中立色の透過特性を有する着色された暖炉覗き窓
WO2020100490A1 (ja) * 2018-11-12 2020-05-22 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243505A1 (ja) * 2022-06-13 2023-12-21 日本電気硝子株式会社 結晶化ガラス及びその製造方法

Also Published As

Publication number Publication date
US20230382787A1 (en) 2023-11-30
CN116057023A (zh) 2023-05-02
JPWO2022054739A1 (ja) 2022-03-17
KR20230066267A (ko) 2023-05-15
EP4212490A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2020196171A1 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
US9604874B2 (en) Photoformable glass-ceramics comprising nepheline crystal phases
WO2020217792A1 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
WO2022054739A1 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
JP7410462B2 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
WO2022059532A1 (ja) ガラス物品
WO2023243505A1 (ja) 結晶化ガラス及びその製造方法
WO2023119775A1 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
WO2023084935A1 (ja) Li2O-Al2O3-SiO2系結晶化ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866698

Country of ref document: EP

Effective date: 20230411