WO2022052335A1 - 一种大厚度低碳当量高韧性耐磨钢板及其制造方法 - Google Patents

一种大厚度低碳当量高韧性耐磨钢板及其制造方法 Download PDF

Info

Publication number
WO2022052335A1
WO2022052335A1 PCT/CN2020/133462 CN2020133462W WO2022052335A1 WO 2022052335 A1 WO2022052335 A1 WO 2022052335A1 CN 2020133462 W CN2020133462 W CN 2020133462W WO 2022052335 A1 WO2022052335 A1 WO 2022052335A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
thickness
resistant steel
low
carbon equivalent
Prior art date
Application number
PCT/CN2020/133462
Other languages
English (en)
French (fr)
Inventor
雷晓荣
王新
闫强军
靳建锋
黄彪凯
李庆春
葛昕
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to AU2020467306A priority Critical patent/AU2020467306A1/en
Publication of WO2022052335A1 publication Critical patent/WO2022052335A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the invention relates to the technical field of iron and steel production, in particular to a large-thickness low-carbon equivalent high-toughness wear-resistant steel plate and a manufacturing method thereof.
  • Wear-resistant steel is widely used in the manufacture of machinery and equipment in the fields of construction machinery and coal mining machinery that require high strength and high wear resistance, such as excavators, bulldozers, loaders, dump trucks, scraper conveyors and various grabs, stackers Feeder, feeding bending structure, etc.
  • high strength and high wear resistance such as excavators, bulldozers, loaders, dump trucks, scraper conveyors and various grabs, stackers Feeder, feeding bending structure, etc.
  • the steel plate is required to have high strength and hardness to resist wear, but also good low temperature toughness and good welding performance, etc., in order to achieve the purpose of extending the service life of mechanical equipment.
  • Low-alloy wear-resistant steel usually has low impact toughness and instability in production, which leads to problems such as easy fracture and poor wear resistance of steel plates under impact conditions.
  • high-toughness wear-resistant steel plates with a thickness of more than 60mm at home and abroad due to the large thickness of the products, usually have high alloy content in order to ensure high strength and hardness, and generally have high carbon equivalent, high cracking risk, and high alloy costs. bottleneck.
  • the patent with publication number CN 107299279 A discloses a 100mm thick 410HB grade wear-resistant steel plate and its manufacturing method. Although the thickness specification is large, the carbon equivalent is low, and the low-temperature impact toughness is excellent, the hardness of the thickness section is not evaluated. In addition to the surface hardness required for some construction machinery and equipment, the hardness of the thickness section is also required. Generally, the core hardness is not less than 80% of the surface hardness.
  • the patent of publication number CN 103146997 B discloses a low-alloy high-toughness wear-resistant steel plate and a manufacturing method thereof. Although the surface Brinell hardness is greater than 400HB and the impact energy at -40°C is greater than 60J, the thickness specification is 50mm and below, which does not reach the maximum thickness. Thickness requirements, the hardness of the thickness section is also not evaluated.
  • the patent of publication number CN 109280850 A discloses a 80mm large-thickness high-toughness low-alloy wear-resistant steel plate and its manufacturing method. Although the thickness specification is large, the impact energy at -40°C is greater than 20J, and the core hardness is not lower than the surface hardness. 80%, but the carbon equivalent calculated according to the chemical composition is as high as 0.65 or more, and the welding performance is poor.
  • the present invention overcomes the shortcomings of the prior art, provides a large-thickness low-carbon equivalent high-toughness wear-resistant steel plate, and produces a large-thickness, high-toughness, low-alloy wear-resistant steel plate with higher strength and higher hardness,
  • the core hardness is not less than 80% of the surface hardness, and it also has good low temperature impact performance.
  • the present invention provides a large-thickness low-carbon equivalent high-toughness wear-resistant steel plate, whose chemical composition and mass percentage are as follows: C: 0.15%-0.17%, Si: 0.20%-0.40%, Mn: 0.90% ⁇ 1.10%, P ⁇ 0.012%, S ⁇ 0.002%, Cr: 0.60% ⁇ 0.80%, Mo: 0.30% ⁇ 0.50%, Ni: 0.50% ⁇ 0.70%, Ti: 0.008% ⁇ 0.020%, Nb ⁇ 0.050% , V ⁇ 0.020%, B: 0.0010% ⁇ 0.0020%, Alt: 0.04% ⁇ 0.07%, N ⁇ 0.0040%, H ⁇ 0.0002%, the rest are Fe and inevitable impurities.
  • the mechanical properties of the steel plate prepared by the invention reach the following levels: yield strength ⁇ 1000MPa, tensile strength ⁇ 1100MPa, elongation ⁇ 10%, surface Brinell hardness greater than 400HB, core Brinell hardness greater than 330HB, -40 °C Akv
  • the impact energy value is ⁇ 27J, and the welding performance is good.
  • the aforementioned large-thickness low-carbon equivalent high-toughness wear-resistant steel plate has the following chemical composition and mass percentage: C: 0.15%, Si: 0.40%, Mn: 1.10%, P ⁇ 0.012%, S ⁇ 0.002%, Cr: 0.60%, Mo: 0.50%, Ni: 0.60%, Ti: 0.015%, Nb ⁇ 0.050%, V ⁇ 0.020%, B: 0.0015%, Alt: 0.045%, N ⁇ 0.0040%, H ⁇ 0.0002%, The rest is Fe and inevitable impurities.
  • the aforementioned large-thickness low-carbon equivalent high-toughness wear-resistant steel plate has the following chemical composition and mass percentage: C: 0.16%, Si: 0.30%, Mn: 1.00%, P ⁇ 0.012%, S ⁇ 0.002%, Cr: 0.80%, Mo: 0.30%, Ni: 0.50%, Ti: 0.012%, Nb ⁇ 0.050%, V ⁇ 0.020%, B: 0.0018%, Alt: 0.055%, N ⁇ 0.0040%, H ⁇ 0.0002%, The rest is Fe and inevitable impurities.
  • the aforementioned large-thickness low-carbon equivalent high-toughness wear-resistant steel plate has the following chemical composition and mass percentage: C: 0.17%, Si: 0.25%, Mn: 0.90%, P ⁇ 0.012%, S ⁇ 0.0015%, Cr: 0.70%, Mo: 0.40%, Ni: 0.70%, Ti: 0.018%, Nb ⁇ 0.050%, V ⁇ 0.020%, B: 0.0020%, Alt: 0.065%, N ⁇ 0.0040%, H ⁇ 0.0002%, The rest is Fe and inevitable impurities.
  • the thickness of the steel plate is 70 mm.
  • the microstructure of the steel plate is a tempered martensite structure, and the content of tempered martensite in the core structure is greater than 50%.
  • Another object of the present invention is to provide a method for manufacturing a large-thickness low-carbon equivalent high-toughness wear-resistant steel plate, comprising: molten iron desulfurization pretreatment-converter smelting-LF+RH refining-continuous casting-slab stack cooling-slab acceptance - Billet heating - Phosphorus removal - Rolling - Air cooling - Flaw detection - Shot blasting - Quenching - Tempering - Straightening - Cutting, Sampling - Printing marking - Inspection - Storage, specifically:
  • the molten steel smelted according to the required chemical composition ratio is subjected to RH vacuum treatment and then continuous casting.
  • the thickness of the continuous casting billet is 260mm.
  • the slow cooling pit is used to stack and slowly cool the billet, and the stacking cooling time should be ⁇ 48 hours;
  • the continuous casting billet is heated, the furnace time is 234 ⁇ 312min, the soaking time is 40 ⁇ 50min, and the tapping temperature is between 1200 ⁇ 1220°C; after heating, two-stage weakly controlled rolling is carried out, and the first stage adopts ⁇ 1.75 m/s low-speed high-reduction rolling, the last pass reduction rate ⁇ 25%, the thickness of the slab to be warmed is controlled to be more than 1.40 times the thickness of the finished product, the second stage rolling temperature is ⁇ 950 °C, and the final rolling temperature is 920 ⁇ 940 °C , the final rolling thickness is 70mm, and air-cooled to room temperature after rolling;
  • the quenching temperature is controlled at 900-920°C, the heating rate is 1.55 ⁇ 0.1min/mm, and the holding time is 30-40min; the tempering temperature is controlled at 170-190°C, and the heating rate is 35-45 °C/h, the holding time is 470-490min, and it is air-cooled after tempering.
  • the above-mentioned manufacturing method of a large-thickness low-carbon equivalent high-toughness wear-resistant steel plate adopts a roller hearth heat treatment furnace for quenching, the roller speed of the quenching machine is set to 0.04m/s, and the water pressure of the high-pressure section of the quenching machine is set according to the equipment.
  • the maximum allowable value is performed, and the steel plate is swung five times in the low-pressure section of the quenching machine; the quenched steel plate is tempered in a car-bottom heat treatment furnace.
  • the present invention realizes that the core hardness of the large-thickness wear-resistant steel plate is not less than 80% of the surface hardness through reasonable component design and rolling-heat treatment process optimization, and has good low temperature impact toughness, and good welding performance;
  • the present invention optimizes the quenching process of the large-thickness, high-toughness, wear-resistant steel plate, effectively improves the hardenability, and ensures the hardness of the core;
  • the production method of the present invention is simple and feasible, the production process is short, the production efficiency is improved, and the economic benefit is increased.
  • Fig. 1 is the surface metallographic structure diagram of embodiment 1 steel plate after tempering
  • Fig. 2 is the metallographic structure diagram at 1/4 thickness of the steel sheet of Example 1 after tempering
  • FIG. 3 is a metallographic structure diagram at 1/2 thickness of the steel sheet of Example 1 after tempering.
  • This embodiment provides a large-thickness low-carbon equivalent high-toughness wear-resistant steel plate, the thickness of the steel plate is 70mm, and its chemical composition and mass percentage are as follows: C: 0.15%, Si: 0.40%, Mn: 1.10%, P: 0.008% , S: 0.002%, Cr: 0.60%, Mo: 0.50%, Ni: 0.60%, Ti: 0.015%, Nb: 0.003%, V: 0.004%, B: 0.0015%, Alt: 0.045%, N: 0.0035% , H: 0.00015%, the rest is Fe and inevitable impurities.
  • the production process includes: molten iron desulfurization pretreatment-converter smelting-LF+RH refining-continuous casting-slab stack cooling-slab acceptance-slab heating-phosphorus removal-rolling-air cooling-flaw detection-shot blasting-quenching-tempering - Straightening - cutting, sampling - printing marking - inspection - storage, specifically:
  • the molten steel smelted according to the required chemical composition ratio is subjected to RH vacuum treatment and then continuously casted.
  • the thickness of the continuous casting billet is 260mm. After the continuous casting is completed, the billet is stacked and cooled slowly by the slow cooling pit, and the stacking cooling time takes 60 hours;
  • the continuous casting billet is heated, the furnace time is 240min, the soaking time is 40min, and the tapping temperature is 1200°C; after heating, two-stage weakly controlled rolling is carried out.
  • the final rolling reduction rate is 25%, the thickness of the slab to be warmed is controlled to be more than 1.40h, the starting rolling temperature of the second stage is 950°C, the final rolling temperature is 925°C, the final rolling thickness is 70mm, and air-cooled to room temperature after rolling;
  • Off-line heat treatment is carried out after rolling, and quenching is carried out in a roller hearth heat treatment furnace.
  • the quenching temperature is controlled at 910 ° C, the heating rate is 1.55 min/mm, the holding time is 35 min, the roll speed of the quenching machine is set to 0.04 m/s, and the high pressure of the quenching machine is set.
  • the water pressure of the section is carried out according to the maximum value allowed by the equipment, and the steel plate is swung five times in the low-pressure section of the quenching machine; For 480min, air-cooled after tempering.
  • a kind of large thickness low carbon equivalent high toughness wear-resistant steel plate provided by this embodiment is:
  • the thickness of the steel plate is 70mm, and its chemical composition and mass percentage are as follows: C: 0.16%, Si: 0.30%, Mn: 1.00%, P: 0.010%, S: 0.0016%, Cr: 0.80%, Mo: 0.30%, Ni: 0.50%, Ti: 0.012%, Nb: 0.003%, V: 0005%, B: 0.0018%, Alt: 0.055%, N: 0.0032%, H: 0.00018%, and the rest are Fe and inevitable impurities.
  • the molten steel smelted according to the required chemical composition ratio is subjected to RH vacuum treatment and then continuously casted.
  • the thickness of the continuous casting billet is 260mm. After the continuous casting is completed, the billet is stacked and cooled slowly by the slow cooling pit, and the stacking cooling time takes 60 hours;
  • the continuous casting billet is heated, the furnace time is 270min, the soaking time is 45min, and the tapping temperature is 1210°C; after heating, two-stage weakly controlled rolling is performed, and the first stage is rolled at a low speed of 1.5-1.75m/s and a large reduction. , the final rolling reduction rate is 25%, the thickness of the slab to be warmed is controlled at more than 1.40h, the second stage rolling temperature is 940°C, the final rolling temperature is 920°C, the final rolling thickness is 70mm, and air-cooled to room temperature after rolling;
  • Off-line heat treatment is carried out after rolling, and quenching is carried out in a roller hearth heat treatment furnace.
  • the quenching temperature is controlled at 900 ° C, the heating rate is 1.55 min/mm, the holding time is 40 min, the roll speed of the quenching machine is set to 0.04 m/s, and the high pressure of the quenching machine is set.
  • the water pressure of the section is carried out according to the maximum value allowed by the equipment, and the steel plate is swung five times in the low-pressure section of the quenching machine; For 490min, air-cooled after tempering.
  • a kind of large thickness low carbon equivalent high toughness wear-resistant steel plate provided by this embodiment is:
  • the thickness of the steel plate is 70mm, and its chemical composition and mass percentage are as follows: C: 0.17%, Si: 0.25%, Mn: 0.90%, P: 0.009%, S: 0.0015%, Cr: 0.70%, Mo: 0.40%, Ni: 0.70%, Ti: 0.018%, Nb: 0.003%, V: 0.005%, B: 0.0020%, Alt: 0.065%, N: 0.0030%, H: 0.00016%, and the rest are Fe and inevitable impurities.
  • the molten steel smelted according to the required chemical composition ratio is subjected to RH vacuum treatment and then continuously casted.
  • the thickness of the continuous casting billet is 260mm. After the continuous casting is completed, the billet is stacked and cooled slowly by the slow cooling pit, and the stacking cooling time takes 60 hours;
  • the continuous casting slab is heated, the furnace time is 300min, the soaking time is 50min, and the tapping temperature is 1220°C; after heating, two-stage weakly controlled rolling is carried out, and the first stage is rolled at a low speed of 1.5-1.75m/s and a large reduction. , the reduction rate of the last pass is 25%, the thickness of the slab to be warmed is controlled at more than 1.40h, the starting rolling temperature of the second stage is 950 °C, the final rolling temperature is 935 °C, the final rolling thickness is 70mm, and the rolling is air-cooled to room temperature;
  • Off-line heat treatment is carried out after rolling, and quenching is carried out in a roller hearth heat treatment furnace.
  • the quenching temperature is controlled at 920 ° C, the heating rate is 1.55 min/mm, the holding time is 30 min, the roll speed of the quenching machine is set to 0.04 m/s, and the high pressure of the quenching machine is set.
  • the water pressure of the section is carried out according to the maximum value allowed by the equipment, and the steel plate is swung five times in the low-pressure section of the quenching machine; For 490min, air-cooled after tempering.
  • the yield strength of the wear-resistant steel of the present invention is greater than 1000MPa
  • the tensile strength is greater than 1100MPa
  • the elongation is greater than 10%
  • the surface Brinell hardness is greater than 400HB
  • the core Brinell hardness is greater than 330HB
  • the impact energy at -40°C is greater than 27J.
  • the wear-resistant steel prepared by the present invention has good deformation resistance and wear resistance, and also has good low temperature impact toughness.
  • the metallographic structure of the steel plate is tempered martensite from the surface to 1/4, and the content of tempered martensite at 1/2 thickness is greater than 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种大厚度低碳当量高韧性耐磨钢板及其制造方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.15%~0.17%,Si:0.20%~0.40%,Mn:0.90%~1.10%,P≤0.012%,S≤0.002%,Cr:0.60%~0.80%,Mo:0.30%~0.50%,Ni:0.50%~0.70%,Ti:0.008%~0.020%,Nb≤0.050%,V≤0.020%,B:0.0010%~0.0020%,Alt:0.04%~0.07%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。Ceq≤0.60%,Pcm≤0.32%。钢板力学性能达到以下水平:屈服强度≥1000MPa,抗拉强度≥1100MPa,延伸率≥10%,表面布氏硬度大于400HB,芯部布氏硬度大于330HB,-40℃ Akv冲击功值≥27J,且焊接性能良好,芯部硬度不低于表面硬度的80%,还具有良好的低温冲击性能。

Description

一种大厚度低碳当量高韧性耐磨钢板及其制造方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种大厚度低碳当量高韧性耐磨钢板及其制造方法。
背景技术
耐磨钢广泛应用于要求高强度、高耐磨性能的工程机械、煤矿机械领域的机械装备制造,如挖掘机、推土机、装载机、自卸车、刮板输送机及各种抓斗、堆取料机、输料弯曲结构等。不仅要求钢板具有高的强度和硬度来抵抗磨损,还需要有良好的低温韧性以及良好的焊接性能等,以此来实现延长机械装备使用寿命的目的。
低合金耐磨钢在生产中通常冲击韧性较低且不稳定,从而导致冲击条件下的钢板易断裂、耐磨性能差等问题。近年来,随着装备制造的日益大型化、长寿命化,对低合金耐磨钢厚板的需求量日益增加。目前,国内外厚度大于60mm的高韧性耐磨钢板,由于产品厚度大,为保证较高的强度和硬度,通常合金含量较高,一般都存在着碳当量高、开裂风险大、合金成本高等技术瓶颈。
公开号为CN 107299279 A的专利公开了一种100mm厚410HB级耐磨钢板及其制造方法,虽然厚度规格较大,碳当量较低,低温冲击韧性优异,但并未评价厚度截面的硬度,某些工程机械装备除了要求表面硬度,对厚度截面的硬度同样有要求,一般要求芯部硬度不低于表面硬度的80%。
公开号CN 103146997 B的专利公开了一种低合金高韧性耐磨钢板及其制造方法,虽然表面布氏硬度大于400HB,-40℃冲击功大于60J,但厚度规格为50mm及以下,未达到大厚度的要求,同样未评价厚度截面的硬度。
公开号CN 109280850 A的专利公开了一种80mm大厚度高韧性低合金耐磨钢板及其制造方法,虽然厚度规格较大,-40℃冲击功大于20J,且芯部硬度不低于表面硬度的80%,但根据化学成分计算的碳当量高达0.65以上,焊接性能 较差。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种大厚度低碳当量高韧性耐磨钢板,生产出大厚度高韧性低合金耐磨钢板,具有较高强度和较高的硬度,芯部硬度不低于表面硬度的80%,还具有良好的低温冲击性能。
为了解决以上技术问题,本发明提供一种大厚度低碳当量高韧性耐磨钢板,其化学成分及质量百分比如下:C:0.15%~0.17%,Si:0.20%~0.40%,Mn:0.90%~1.10%,P≤0.012%,S≤0.002%,Cr:0.60%~0.80%,Mo:0.30%~0.50%,Ni:0.50%~0.70%,Ti:0.008%~0.020%,Nb≤0.050%,V≤0.020%,B:0.0010%~0.0020%,Alt:0.04%~0.07%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。
技术效果:本发明制备的钢板力学性能达到以下水平:屈服强度≥1000MPa,抗拉强度≥1100MPa,延伸率≥10%,表面布氏硬度大于400HB,芯部布氏硬度大于330HB,-40℃ Akv冲击功值≥27J,且焊接性能良好。
本发明进一步限定的技术方案是:
前所述的一种大厚度低碳当量高韧性耐磨钢板,其化学成分及质量百分比如下:C:0.15%,Si:0.40%,Mn:1.10%,P≤0.012%,S≤0.002%,Cr:0.60%,Mo:0.50%,Ni:0.60%,Ti:0.015%,Nb≤0.050%,V≤0.020%,B:0.0015%,Alt:0.045%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。
前所述的一种大厚度低碳当量高韧性耐磨钢板,其化学成分及质量百分比如下:C:0.16%,Si:0.30%,Mn:1.00%,P≤0.012%,S≤0.002%,Cr:0.80%,Mo:0.30%,Ni:0.50%,Ti:0.012%,Nb≤0.050%,V≤0.020%,B:0.0018%,Alt:0.055%,N≤0.0040%、H≤0.0002%,其余为Fe和不可避免的杂质。
前所述的一种大厚度低碳当量高韧性耐磨钢板,其化学成分及质量百分比 如下:C:0.17%,Si:0.25%,Mn:0.90%,P≤0.012%,S≤0.0015%,Cr:0.70%,Mo:0.40%,Ni:0.70%,Ti:0.018%,Nb≤0.050%,V≤0.020%,B:0.0020%,Alt:0.065%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。
前所述的一种大厚度低碳当量高韧性耐磨钢板,钢板厚度为70mm。
前所述的一种大厚度低碳当量高韧性耐磨钢板,钢板显微组织为回火马氏体组织,芯部组织中回火马氏体的含量大于50%。
前所述的一种大厚度低碳当量高韧性耐磨钢板,Ceq≤0.60%,Pcm≤0.32%,Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15,Pcm=C+Si/30+(Mn+Cr+Cu)/20+Ni/60+Mo/15+V/10+5B。
本发明的另一目的在于提供一种大厚度低碳当量高韧性耐磨钢板的制造方法,包括:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆冷-铸坯验收-铸坯加热-除磷-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,具体为:
按所需化学成分配比冶炼的钢水经过RH真空处理后进行连铸,连铸坯厚度260mm,连铸完成后利用缓冷坑对铸坯进行堆垛缓冷,堆冷时间需≥48小时;
对连铸坯进行加热,在炉时间为234~312min,均热时间40~50min,出钢温度介于1200~1220℃之间;加热后进行两阶段弱控制轧制,第一阶段采用≤1.75m/s低速大压下轧制,最后一道次压下率≥25%,待温铸坯厚度控制在1.40倍成品厚度以上,第二阶段开轧温度≤950℃,终轧温度920~940℃,最终轧制厚度为70mm,轧后空冷至室温;
轧后进行离线热处理,淬火温度控制在900~920℃之间,升温速率为1.55±0.1min/mm,保温时间为30~40min;回火温度控制在170~190℃,升温速率为35~45℃/h,保温时间为470~490min,回火后出炉空冷。
前所述的一种大厚度低碳当量高韧性耐磨钢板的制造方法,采用辊底式热 处理炉进行淬火,淬火机辊速设定为0.04m/s,淬火机高压段水压力按照设备所允许的最大值执行,钢板在淬火机低压段摆动五次;淬火钢板利用车底式热处理炉进行回火。
本发明的有益效果是:
(1)本发明在碳当量较低的条件下,通过合理的成分设计及轧制-热处理工艺优化,实现大厚度耐磨钢板的芯部硬度不低于表面硬度的80%,同时具有较好的低温冲击韧性,且焊接性能良好;
(2)本发明的大厚度耐磨钢板使用的连铸坯在缓冷坑内进行充分的堆垛缓冷,堆冷时间需≥48小时,保证了铸坯H含量的扩散,有效降低了切割开裂的风险;
(3)本发明对大厚度高韧性耐磨钢板的淬火工艺进行优化,有效提高了淬透性,保证了芯部硬度;
(4)本发明的生产方法简单可行,生产流程短,生产效率提高,经济效益增长。
附图说明
图1为实施例1钢板回火后的表面金相组织图;
图2为实施例1钢板回火后的1/4厚度处金相组织图;
图3为实施例1钢板回火后的1/2厚度处金相组织图。
具体实施方式
实施例1
本实施例提供的一种大厚度低碳当量高韧性耐磨钢板,钢板厚度为70mm,其化学成分及质量百分比如下:C:0.15%,Si:0.40%,Mn:1.10%,P:0.008%,S:0.002%,Cr:0.60%,Mo:0.50%,Ni:0.60%,Ti:0.015%,Nb:0.003%,V:0.004%,B:0.0015%,Alt:0.045%,N:0.0035%,H:0.00015%,其余为Fe和 不可避免的杂质。
生产流程包括:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆冷-铸坯验收-铸坯加热-除磷-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,具体为:
按所需化学成分配比冶炼的钢水经过RH真空处理后进行连铸,连铸坯厚度260mm,连铸完成后利用缓冷坑对铸坯进行堆垛缓冷,堆冷时间需60小时;
对连铸坯进行加热,在炉时间为240min,均热时间40min,出钢温度1200℃;加热后进行两阶段弱控制轧制,第一阶段采用1.5-1.75m/s大压下轧制,最后一道次压下率25%,待温铸坯厚度控制在1.40h以上,第二阶段开轧温度950℃,终轧温度925℃,最终轧制厚度为70mm,轧后空冷至室温;
轧后进行离线热处理,采用辊底式热处理炉进行淬火,淬火温度控制在910℃,升温速率为1.55min/mm,保温时间为35min,淬火机辊速设定为0.04m/s,淬火机高压段水压力按照设备所允许的最大值执行,钢板在淬火机低压段摆动五次;淬火钢板利用车底式热处理炉进行回火,回火温度180℃,升温速率为40℃/h,保温时间为480min,回火后出炉空冷。
实施例2
本实施例提供的一种大厚度低碳当量高韧性耐磨钢板,与实施例1的区别在于:
钢板厚度为70mm,其化学成分及质量百分比如下:C:0.16%,Si:0.30%,Mn:1.00%,P:0.010%,S:0.0016%,Cr:0.80%,Mo:0.30%,Ni:0.50%,Ti:0.012%,Nb:0.003%,V:0005%,B:0.0018%,Alt:0.055%,N:0.0032%,H:0.00018%,其余为Fe和不可避免的杂质。
其生产流程:
按所需化学成分配比冶炼的钢水经过RH真空处理后进行连铸,连铸坯厚度260mm,连铸完成后利用缓冷坑对铸坯进行堆垛缓冷,堆冷时间需60小时;
对连铸坯进行加热,在炉时间为270min,均热时间45min,出钢温度1210℃;加热后进行两阶段弱控制轧制,第一阶段采用1.5-1.75m/s低速大压下轧制,最后一道次压下率25%,待温铸坯厚度控制在1.40h以上,第二阶段开轧温度940℃,终轧温度920℃,最终轧制厚度为70mm,轧后空冷至室温;
轧后进行离线热处理,采用辊底式热处理炉进行淬火,淬火温度控制在900℃,升温速率为1.55min/mm,保温时间为40min,淬火机辊速设定为0.04m/s,淬火机高压段水压力按照设备所允许的最大值执行,钢板在淬火机低压段摆动五次;淬火钢板利用车底式热处理炉进行回火,回火温度185℃,升温速率为40℃/h,保温时间为490min,回火后出炉空冷。
实施例3
本实施例提供的一种大厚度低碳当量高韧性耐磨钢板,与实施例1的区别在于:
钢板厚度为70mm,其化学成分及质量百分比如下:C:0.17%,Si:0.25%,Mn:0.90%,P:0.009%,S:0.0015%,Cr:0.70%,Mo:0.40%,Ni:0.70%,Ti:0.018%,Nb:0.003%,V:0.005%,B:0.0020%,Alt:0.065%,N:0.0030%,H:0.00016%,其余为Fe和不可避免的杂质。
其生产流程:
按所需化学成分配比冶炼的钢水经过RH真空处理后进行连铸,连铸坯厚度260mm,连铸完成后利用缓冷坑对铸坯进行堆垛缓冷,堆冷时间需60小时;
对连铸坯进行加热,在炉时间为300min,均热时间50min,出钢温度1220℃;加热后进行两阶段弱控制轧制,第一阶段采用1.5-1.75m/s低速大压下轧制,最后一道次压下率25%,待温铸坯厚度控制在1.40h以上,第二阶段开轧温度 950℃,终轧温度935℃,最终轧制厚度为70mm,轧后空冷至室温;
轧后进行离线热处理,采用辊底式热处理炉进行淬火,淬火温度控制在920℃,升温速率为1.55min/mm,保温时间为30min,淬火机辊速设定为0.04m/s,淬火机高压段水压力按照设备所允许的最大值执行,钢板在淬火机低压段摆动五次;淬火钢板利用车底式热处理炉进行回火,回火温度190℃,升温速率为40℃/h,保温时间为490min,回火后出炉空冷。
对实施例中的钢板的力学性能进行测试,其中强度按照GB/T228-2002金属材料室温拉伸试验方法进行,低温冲击韧性按GB/T 229-2007金属夏比V型缺口冲击试验方法测定,硬度按照GB/T231.1-2009方法测定,性能测时结果见表1所示:
表1 实施例钢板力学性能
Figure PCTCN2020133462-appb-000001
由表1可知,本发明的耐磨钢的屈服强度大于1000MPa,抗拉强度大于1100MPa,延伸率大于10%,表面布氏硬度大于400HB,芯部布氏硬度大于330HB,-40℃冲击功大于27J。可见,本发明制备的耐磨钢具有良好的抗变形和耐磨性能,同时也具有较好的低温冲击韧性。
由图1-3可见,钢板从表面到1/4处金相组织都为回火马氏体组织,1/2厚度处的回火马氏体组织的含量大于50%。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (9)

  1. 一种大厚度低碳当量高韧性耐磨钢板,其特征在于:其化学成分及质量百分比如下:C:0.15%~0.17%,Si:0.20%~0.40%,Mn:0.90%~1.10%,P≤0.012%,S≤0.002%,Cr:0.60%~0.80%,Mo:0.30%~0.50%,Ni:0.50%~0.70%,Ti:0.008%~0.020%,Nb≤0.050%,V≤0.020%,B:0.0010%~0.0020%,Alt:0.04%~0.07%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种大厚度低碳当量高韧性耐磨钢板,其特征在于:其化学成分及质量百分比如下:C:0.15%,Si:0.40%,Mn:1.10%,P≤0.012%,S≤0.002%,Cr:0.60%,Mo:0.50%,Ni:0.60%,Ti:0.015%,Nb≤0.050%,V≤0.020%,B:0.0015%,Alt:0.045%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种大厚度低碳当量高韧性耐磨钢板,其特征在于:其化学成分及质量百分比如下:C:0.16%,Si:0.30%,Mn:1.00%,P≤0.012%,S≤0.002%,Cr:0.80%,Mo:0.30%,Ni:0.50%,Ti:0.012%,Nb≤0.050%,V≤0.020%,B:0.0018%,Alt:0.055%,N≤0.0040%、H≤0.0002%,其余为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种大厚度低碳当量高韧性耐磨钢板,其特征在于:其化学成分及质量百分比如下:C:0.17%,Si:0.25%,Mn:0.90%,P≤0.012%,S≤0.0015%,Cr:0.70%,Mo:0.40%,Ni:0.70%,Ti:0.018%,Nb≤0.050%,V≤0.020%,B:0.0020%,Alt:0.065%,N≤0.0040%,H≤0.0002%,其余为Fe和不可避免的杂质。
  5. 根据权利要求1所述的一种大厚度低碳当量高韧性耐磨钢板,其特征在于:钢板厚度为70mm。
  6. 根据权利要求1所述的一种大厚度低碳当量高韧性耐磨钢板,其特征在于:钢板显微组织为回火马氏体组织,芯部组织中回火马氏体的含量大于50%。
  7. 根据权利要求1所述的一种大厚度低碳当量高韧性耐磨钢板,其特征在 于:Ceq≤0.60%,Pcm≤0.32%,Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15,Pcm=C+Si/30+(Mn+Cr+Cu)/20+Ni/60+Mo/15+V/10+5B。
  8. 一种大厚度低碳当量高韧性耐磨钢板的制造方法,包括:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆冷-铸坯验收-铸坯加热-除磷-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,其特征在于:应用于权利要求1-7任意一项,具体为:
    按所需化学成分配比冶炼的钢水经过RH真空处理后进行连铸,连铸坯厚度260mm,连铸完成后利用缓冷坑对铸坯进行堆垛缓冷,堆冷时间需≥48小时;
    对连铸坯进行加热,在炉时间为234~312min,均热时间40~50min,出钢温度介于1200~1220℃之间;加热后进行两阶段弱控制轧制,第一阶段采用≤1.75m/s低速大压下轧制,最后一道次压下率≥25%,待温铸坯厚度控制在1.40倍成品厚度以上,第二阶段开轧温度≤950℃,终轧温度920~940℃,最终轧制厚度为70mm,轧后空冷至室温;
    轧后进行离线热处理,淬火温度控制在900~920℃之间,升温速率为1.55±0.1min/mm,保温时间为30~40min;回火温度控制在170~190℃,升温速率为35~45℃/h,保温时间为470~490min,回火后出炉空冷。
  9. 根据权利要求8所述的一种大厚度低碳当量高韧性耐磨钢板的制造方法,其特征在于:采用辊底式热处理炉进行淬火,淬火机辊速设定为0.04m/s,淬火机高压段水压力按照设备所允许的最大值执行,钢板在淬火机低压段摆动五次;淬火钢板利用车底式热处理炉进行回火。
PCT/CN2020/133462 2020-09-11 2020-12-02 一种大厚度低碳当量高韧性耐磨钢板及其制造方法 WO2022052335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020467306A AU2020467306A1 (en) 2020-09-11 2020-12-02 Thick low-carbon-equivalent high-toughness wear-resistant steel plate and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010951095.0A CN112195397A (zh) 2020-09-11 2020-09-11 一种大厚度低碳当量高韧性耐磨钢板及其制造方法
CN202010951095.0 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052335A1 true WO2022052335A1 (zh) 2022-03-17

Family

ID=74016255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133462 WO2022052335A1 (zh) 2020-09-11 2020-12-02 一种大厚度低碳当量高韧性耐磨钢板及其制造方法

Country Status (3)

Country Link
CN (1) CN112195397A (zh)
AU (1) AU2020467306A1 (zh)
WO (1) WO2022052335A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354138A (zh) * 2022-08-19 2022-11-18 河南中原特钢装备制造有限公司 提高20CrNiMo压延辊全截面硬度均匀性的热处理工艺
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法
CN115927967A (zh) * 2022-12-22 2023-04-07 美利林科技(攀枝花)有限公司 一种球磨机用高韧性钢锻及其制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606434A (zh) * 2022-01-26 2022-06-10 南京钢铁股份有限公司 一种低碳当量高韧性耐磨钢板及其制造方法
CN116356202A (zh) * 2023-03-09 2023-06-30 南京钢铁股份有限公司 一种超宽调质耐磨钢板及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775545A (zh) * 2009-01-14 2010-07-14 宝山钢铁股份有限公司 一种低合金高强度高韧性耐磨钢板及其制造方法
CN101748333B (zh) * 2009-12-25 2012-02-01 舞阳钢铁有限责任公司 一种低碳当量高强度耐磨钢板及其生产方法
KR20120071615A (ko) * 2010-12-23 2012-07-03 주식회사 포스코 용접성 및 저온인성이 우수한 내마모용 강판 및 그 제조방법
CN105385951A (zh) * 2015-11-12 2016-03-09 内蒙古包钢钢联股份有限公司 兼具高硬度高韧性的nm500耐磨钢板及其生产方法
CN106756544A (zh) * 2016-12-12 2017-05-31 南京钢铁股份有限公司 一种超低碳当量大厚度q690d高强钢的生产方法
CN107675095A (zh) * 2017-08-21 2018-02-09 舞阳钢铁有限责任公司 一种经济型低碳当量耐磨钢板及其生产方法
WO2018215600A1 (en) * 2017-05-24 2018-11-29 Tata Steel Uk Limited High-strength, hot rolled abrasive wear resistant steel strip
CN109280850A (zh) * 2018-10-29 2019-01-29 南京钢铁股份有限公司 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法
CN110846571A (zh) * 2019-10-28 2020-02-28 南京钢铁股份有限公司 一种高韧性低合金耐磨钢厚板及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322092B1 (ko) * 2013-08-01 2013-10-28 주식회사 포스코 용접성 및 저온인성이 우수한 내마모용 강판 및 그 제조방법
JP6135697B2 (ja) * 2014-03-04 2017-05-31 Jfeスチール株式会社 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐摩耗鋼板およびその製造方法
JP2015193873A (ja) * 2014-03-31 2015-11-05 Jfeスチール株式会社 腐食環境における耐摩耗性に優れた厚鋼板
CN105543669B (zh) * 2016-01-22 2017-06-23 山东钢铁股份有限公司 一种厚规格和窄硬度区间耐磨钢板及其制备方法
CN109957729B (zh) * 2017-12-22 2020-09-01 鞍钢股份有限公司 一种有轨电车道岔用耐磨钢板及其生产方法
CN108486475A (zh) * 2018-05-23 2018-09-04 山东钢铁股份有限公司 一种具有良好心部硬度的厚规格耐磨钢板及其制备方法
CN110643799B (zh) * 2019-10-08 2021-11-16 鞍钢股份有限公司 一种均匀提升耐磨钢板心部硬度的生产方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775545A (zh) * 2009-01-14 2010-07-14 宝山钢铁股份有限公司 一种低合金高强度高韧性耐磨钢板及其制造方法
CN101748333B (zh) * 2009-12-25 2012-02-01 舞阳钢铁有限责任公司 一种低碳当量高强度耐磨钢板及其生产方法
KR20120071615A (ko) * 2010-12-23 2012-07-03 주식회사 포스코 용접성 및 저온인성이 우수한 내마모용 강판 및 그 제조방법
CN105385951A (zh) * 2015-11-12 2016-03-09 内蒙古包钢钢联股份有限公司 兼具高硬度高韧性的nm500耐磨钢板及其生产方法
CN106756544A (zh) * 2016-12-12 2017-05-31 南京钢铁股份有限公司 一种超低碳当量大厚度q690d高强钢的生产方法
WO2018215600A1 (en) * 2017-05-24 2018-11-29 Tata Steel Uk Limited High-strength, hot rolled abrasive wear resistant steel strip
CN107675095A (zh) * 2017-08-21 2018-02-09 舞阳钢铁有限责任公司 一种经济型低碳当量耐磨钢板及其生产方法
CN109280850A (zh) * 2018-10-29 2019-01-29 南京钢铁股份有限公司 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法
CN110846571A (zh) * 2019-10-28 2020-02-28 南京钢铁股份有限公司 一种高韧性低合金耐磨钢厚板及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354138A (zh) * 2022-08-19 2022-11-18 河南中原特钢装备制造有限公司 提高20CrNiMo压延辊全截面硬度均匀性的热处理工艺
CN115354138B (zh) * 2022-08-19 2023-11-21 河南中原特钢装备制造有限公司 提高20CrNiMo压延辊全截面硬度均匀性的热处理工艺
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法
CN115927967A (zh) * 2022-12-22 2023-04-07 美利林科技(攀枝花)有限公司 一种球磨机用高韧性钢锻及其制备工艺

Also Published As

Publication number Publication date
AU2020467306A1 (en) 2023-05-18
CN112195397A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN109280850B (zh) 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法
WO2022052335A1 (zh) 一种大厚度低碳当量高韧性耐磨钢板及其制造方法
WO2020098306A1 (zh) 一种大厚度nm500耐磨钢及生产方法
JP6466582B2 (ja) 降伏強度800MPa級高強度鋼及びその製造方法
CN109023119B (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
WO2016095721A1 (zh) 一种屈服强度900~1000MPa级调质高强钢及制造方法
CN105543669B (zh) 一种厚规格和窄硬度区间耐磨钢板及其制备方法
WO2021098208A1 (zh) 690MPa级高强度低屈强比中锰钢中厚钢及制造方法
CN102400043B (zh) 一种大厚度海洋工程用钢板
JP2014520954A (ja) 超高強度耐摩耗鋼板及びその製造方法
CN1888120A (zh) 具有优良耐蚀性和抗疲劳性的超高强度钢及其制造方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN103352167A (zh) 一种低屈强比高强度桥梁用钢及其制造方法
CN107058882A (zh) 一种特厚规格耐磨钢板及其制备方法
AU2018387506A1 (en) High-grade low-alloy wear-resistant steel plate having brookfield hardness of greater than 550 HB and manufacturing method
CN102234743A (zh) 一种低碳马氏体钢板及其制造方法
CN106282774B (zh) 一种高横纵向冲击比值大厚度q690e高强钢生产方法
CN109207858B (zh) 一种低合金超高强度钢q1100e薄板的生产方法
WO2020098288A1 (zh) 一种超快冷工艺生产q690d厚板及制造方法
CN110358970B (zh) 屈服强度1100MPa级的焊接结构贝氏体高强钢及其制备方法
CN110846571A (zh) 一种高韧性低合金耐磨钢厚板及其制造方法
CN114934156A (zh) 布氏硬度450hbw高强度、高韧性热连轧薄钢板的生产方法
CN114686762A (zh) 布氏硬度500hbw高强度、高韧性热连轧薄钢板的生产方法
CN113388775A (zh) 一种水电工程用1000MPa级高强钢板的生产方法
CN114058960B (zh) 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020467306

Country of ref document: AU

Date of ref document: 20201202

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20953120

Country of ref document: EP

Kind code of ref document: A1