WO2022051927A1 - Methods and apparatus for activation of joint dl/ul tci states for mdci - Google Patents

Methods and apparatus for activation of joint dl/ul tci states for mdci Download PDF

Info

Publication number
WO2022051927A1
WO2022051927A1 PCT/CN2020/114177 CN2020114177W WO2022051927A1 WO 2022051927 A1 WO2022051927 A1 WO 2022051927A1 CN 2020114177 W CN2020114177 W CN 2020114177W WO 2022051927 A1 WO2022051927 A1 WO 2022051927A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
tci
joint
scheduled
resources
Prior art date
Application number
PCT/CN2020/114177
Other languages
French (fr)
Inventor
Yan Zhou
Fang Yuan
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/114177 priority Critical patent/WO2022051927A1/en
Priority to PCT/CN2021/117220 priority patent/WO2022052954A1/en
Priority to US18/019,236 priority patent/US20230291525A1/en
Priority to CN202180054129.9A priority patent/CN116134776A/en
Priority to EP21866007.4A priority patent/EP4211858A1/en
Publication of WO2022051927A1 publication Critical patent/WO2022051927A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to activation of joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states using a media access control (MAC) control element (CE) (MAC-CE) in wireless communication systems.
  • DL downlink
  • UL uplink
  • TCI transmission configuration indicator
  • MAC-CE media access control control element
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced (pc) mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • the apparatus may be a user equipment (UE) .
  • the apparatus may receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs.
  • TRP transmission reception point
  • MAC-CE media access control element
  • TCI transmission configuration indicator
  • the apparatus may also receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  • the apparatus may also receive downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID. Additionally, the apparatus may receive an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication.
  • DCI downlink control information
  • the apparatus may also determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID.
  • the apparatus may also communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • the apparatus may be a transmission reception point (TRP) or a base station.
  • the apparatus may transmit, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs.
  • MAC media access control
  • CE control element
  • TCI transmission configuration indicator
  • the apparatus may also transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  • the apparatus may also transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID. Further, the apparatus may transmit an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication. The apparatus may also communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • DCI downlink control information
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating an example MAC-CE in accordance with one or more techniques of the present disclosure.
  • FIG. 5 is a diagram illustrating example communication between a UE and a base station in accordance with one or more techniques of the present disclosure.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packet
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may include a reception component 198 configured to receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs.
  • TRP transmission reception point
  • MAC-CE media access control element
  • TCI transmission configuration indicator
  • Reception component 198 may also be configured to receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  • Reception component 198 may also be configured to receive downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  • DCI downlink control information
  • Reception component 198 may also be configured to receive an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication.
  • Reception component 198 may also be configured to determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID.
  • Reception component 198 may also be configured to communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • the base station 180 may include a transmission component 199 configured to transmit, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs.
  • UE user equipment
  • MAC-CE media access control element
  • TCI transmission configuration indicator
  • Transmission component 199 may also be configured to transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  • Transmission component 199 may also be configured to transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  • DCI downlink control information
  • Transmission component 199 may also be configured to transmit an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication.
  • Transmission component 199 may also be configured to communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1.
  • multi-beam multiple beam
  • features may be identified and specified to facilitate a more efficient, i.e., lower latency and overhead, DL/UL beam management to support higher intra-cell mobility and inter-cell mobility, e.g., layer 1 (L1) /layer 2 (L2) -centric inter-cell mobility, and/or a larger number of configured TCI states.
  • a common beam for data and control transmission or reception for DL and UL, such as for intra-band carrier aggregation (CA) may be specified in order to provide a unified TCI framework for DL and UL beam indication.
  • CA intra-band carrier aggregation
  • enhancement on signaling mechanisms for the aforementioned features may be provided in order to improve latency and efficiency with more usage of dynamic control signaling, such as opposed to RRC signaling.
  • features may be identified and specified to facilitate UL beam selection for UEs equipped with multiple panels, considering UL coverage loss mitigation due to a maximum permissible exposure (MPE) , based on an UL beam indication with the unified TCI framework for an UL fast panel selection.
  • MPE maximum permissible exposure
  • a unified TCI framework for DL and UL beam indication may be beneficial.
  • signaling a common beam for multiple DL and UL resources may help to save both beam indication and overhead latency.
  • the common beam indication may be signaled via a joint DL/UL TCI state. The activation of the joint DL/UL TCI state using a MAC-CE is described herein.
  • a joint DL/UL TCI state may jointly indicate a common beam or a set of common beams applied to each of multiple DL or UL resources.
  • the joint DL/UL TCI state may include a set of information including a variety of information or parameters.
  • each of the joint DL/UL TCI states may include a TCI state identification (ID) .
  • ID may be included in a dedicated ID space for a common beam indication, or in a common ID space shared for a common DL/UL beam indication, a DL beam indication, and/or an UL beam indication.
  • the joint DL/UL TCI state may include IDs of one or more source reference signals (RSs) that provide at least one DL quasi co-location (QCL) assumption and/or UL spatial relation information.
  • the one or more source RSs may include a serving cell ID and a BWP ID, which can include where the one or more source RSs are located. If the serving cell ID is absent, the serving cell in which the TCI state is configured may be selected.
  • the one or more source RSs may include a number of RS types, including a synchronization signal block (SSB) , CSI-RS, a PRS, a PRACH, dedicated demodulation reference signals (DM-RS) of a PDSCH, a PDCCH, a PUCCH, or a PUSCH.
  • SSB synchronization signal block
  • CSI-RS CSI-RS
  • PRS PRS
  • PRACH dedicated demodulation reference signals
  • DM-RS dedicated demodulation reference signals
  • the one or more source RSs may also provide various QCL assumptions and/or spatial relation information, including characteristics on delay, Doppler, and/or spatial Rx/Tx parameters.
  • the QCL may include a certain QCL type, e.g., a QCL-TypeA, including a Doppler shift, a Doppler spread, an average delay, and a delay spread.
  • the QCL may also include a QCL-TypeB including the Doppler shift and the Doppler spread, as well as a QCL-TypeC including the Doppler shift and the average delay, and a QCL-TypeD including a spatial Rx parameter.
  • the one or more source RSs may have different combinations based on provided QCL or spatial assumptions.
  • the joint DL/UL TCI state may include an ID of one source RS for QCL-TypeA, QCL-TypeB, and/or QCL-TypeC.
  • three source RSs may include a first RS for QCL-TypeA/TypeB/TypeC, a second RS for QCL-Type D, and a third RS for spatial relation information.
  • each of the joint DL/UL TCI states may include UL power control (PC) parameters indicating the UE to configure the UL transmission power.
  • the UL power control parameters may include a pathloss RS ID, a P0, an Alpha, a close-loop index, and a PC group ID.
  • each of the joint DL/UL TCI states may include UL timing advance (TA) parameters indicating the UE to configure the TA for the UL transmission, e.g., TA group ID and/or TA value.
  • PC power control
  • UL power control parameters may include a pathloss RS ID, a P0, an Alpha, a close-loop index, and a PC group ID.
  • each of the joint DL/UL TCI states may include UL timing advance (TA) parameters indicating the UE to configure the TA for the UL transmission, e.g., TA group ID and/or TA value.
  • TA timing advance
  • Each of the joint DL/UL TCI states may also include one or more parameters for codebook and/or non-codebook based PUSCH transmission, such as an SRS resource indicator (SRI) , a transmit precoding matrix indicator (TPMI) , or a combination thereof.
  • SRI SRS resource indicator
  • TPMI transmit precoding matrix indicator
  • each of the joint DL/UL TCI states may include UE panel IDs or similar IDs, e.g., an antenna port group ID or a beam group ID.
  • the UE panel ID (s) associated with the common DL/UL beam may include two separate panel IDs for DL and UL or a single panel ID for both DL and UL.
  • a TRP or base station may provide a MAC-CE to a UE to activate one or more configured joint DL/UL TCI states.
  • the DCI and/or MAC-CE may activate subsets of configured joint DL/UL TCI states, where each joint DL/UL TCI state may indicate a common beam for DL reception/UL transmission.
  • a set of joint DL/UL states may be configured, and the base station may transmit a MAC-CE to the UE in order to indicate to the UE to activate one or more subsets of the configured joint DL/UL TCI states.
  • each DCI may schedule UL transmissions or DL receptions associated with a TRP.
  • aspects of the present disclosure may provide for an activation of joint DL/UL TCI states.
  • aspects of the present disclosure may be applicable to mDCI based mTRP communication.
  • aspects of the present disclosure may activate joint DL/UL TCI states in mDCI based mTRP communication.
  • each TRP may individually schedule DL reception or UL transmission by sending its own DCI.
  • a TRP ID e.g., a CORESET pool ID
  • the joint DL/UL TCI state (s) activated by the MAC-CE may be applied for the DL reception or UL transmission scheduled by a DCI in CORESET (s) with a CORESET pool ID equal to the CORESET pool ID indicated in the MAC-CE.
  • the CORESET pool ID is used as an example for TRP ID, the TRP ID can have other similar IDs, such as an antenna port group ID, a panel ID, a beam ID or a beam group ID, etc.
  • the DL receptions and the UL transmissions may be associated with a number of different channels.
  • the DL receptions may include a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning reference signals (PRS) .
  • the UL transmissions may include a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) .
  • PUCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signals
  • PRACH physical random access channel
  • FIG. 4 is a diagram illustrating MAC-CE 400.
  • MAC-CE includes CORESET pool ID 410, serving cell ID 420, and BWP ID 430, as well as a number of octets (Oct) , e.g., Oct 401, Oct 402, Oct 403, and Oct N.
  • the MAC-CE 400 may include a bitmap indicating which configured joint DL/UL TCI state (s) are activated, a serving cell ID, e.g., serving cell ID 420, and a BWP ID, e.g., BWP ID 430, for which the MAC-CE 400 applies. As depicted in FIG.
  • the MAC-CE 400 may include a variable sized bitmap including a CORESET pool ID, a serving cell ID field, a BWP ID field, and a number of TCI state fields.
  • a first octet (Oct) of the bitmap of MAC-CE 400 e.g., Oct 401, may include the CORESET pool ID 410, the serving cell ID 420, and the BWP ID 430.
  • the CORESET pool ID may indicate whether a mapping between the activated TCI states and a codepoint of the DCI is preconfigured or based on a predefined rule.
  • the length of the CORESET pool ID 410 may be a number of bits, e.g., one (1) bit, which can be used to indicate the TCI states for one of two TRPs.
  • the serving cell ID 420 may indicate the identity of the serving cell for which the MAC-CE 400 applies.
  • the length of the serving cell ID 420 may also be a number of bits, e.g., five (5) bits.
  • the BWP ID 430 may indicate a DL BWP for which the MAC-CE 400 applies as the codepoint.
  • the length of the BWP ID field may be a number of bits, e.g., two (2) bits.
  • the remaining octets may be a bitmap of the joint DL/UL TCI states, where each bit corresponds to each joint DL/UL TCI state.
  • the bitmap may include a first TCI state, e.g., T 0 , up through a last TCI state, e.g., T (N-2) x8+7 . If a bit is set to a certain value, e.g., one (1) , then the corresponding joint DL/UL TCI state may be activated. If a bit is set to another value, e.g., zero (0) , then the corresponding joint DL/UL TCI state may not be activated.
  • the base station may configure up to a certain number of joint DL/UL TCI states, e.g., 128 joint DL/UL TCI states, and the bitmap may have a bit length of a certain number of bits, e.g., 128 bits.
  • the MAC-CE 400 may select up to a certain amount of bits, e.g., eight (8) bits. As such, the bitmap may have up to this amount of bits, e.g., eight (8) bits, set to a certain value, e.g., one (1) , in order to activate a corresponding joint DL/UL TCI state.
  • Some aspects of the present disclosure may include an applicable DL/UL channel type or resource per activated joint DL/UL TCI state associated with a CORESET pool ID.
  • This applicable DL/UL channel type or resource can be determined based on a number of different options or aspects.
  • the applicable DL/UL channel types or resources may be preconfigured or predefined in a specification.
  • the activated joint DL/UL TCI state can be applied to each DL/UL channel type or resource scheduled by the DCI in CORESET (s) with a same CORESET pool ID as the joint DL/UL TCI state in the component carrier (CC) where the MAC-CE is applied.
  • the applicable DL/UL channel types or resources may be configured or indicated by a base station or TRP.
  • the applicable DL/UL channel types or resources may be configured or indicated via RRC signaling, a MAC-CE, or DCI.
  • a base station or TRP may indicate that one activated joint DL/UL TCI state can be applied to all or a subset of DL/UL channel types or resources.
  • These DL/UL channel types or resources may be scheduled by a DCI in CORESET (s) with the same CORESET pool ID as the joint DL/UL TCI state in the CC where the MAC-CE is applied.
  • a DCI may further indicate a TCI codepoint mapped to one activated joint DL/UL TCI state.
  • the joint DL/UL TCI state (s) activated by the MAC-CE may be sequentially mapped to candidate TCI codepoint (s) associated with the same CORESET pool ID.
  • the activated joint DL/UL TCI state (s) may be dynamically indicated by a DCI in a CORESET with a same CORESET pool ID.
  • the MAC-CE may activate certain joint DL/UL TCI state ID (s) , e.g., joint DL/UL TCI state IDs 5, 7, and 9 corresponding to T 5 , T 7 , and T 9 in the MAC-CE, for a certain CORESET pool ID, e.g., a CORESET pool ID of zero (0) .
  • These joint DL/UL TCI state IDs may be sequentially mapped to candidate TCI codepoints with certain values, e.g., values of 0, 1, and/or 2, for the DCI in CORESET (s) with a same CORESET pool ID.
  • the indicated TCI codepoint may be used for DL receptions/UL transmissions scheduled by the same DCI.
  • the applicable DL reception/UL transmission may be indicated or predefined in a specification or indicated by a base station or TRP, e.g., via RRC signaling, a MAC-CE, or DCI.
  • a specification may describe that the TCI codepoint indicated by a DCI is applied to all DL receptions or UL transmissions scheduled by CORESET (s) with a CORESET pool ID which is the same as the CORESET pool ID indicated in the MAC-CE for activating the corresponding TCI codepoint.
  • the base station or TRP may indicate, e.g., through RRC, MAC-CE signaling or DCI, that the TCI codepoint indicated by the DCI is applied to a subset of DL receptions or UL transmissions scheduled by CORESET (s) with a CORESET pool ID which is the same as the CORESET pool ID indicated in the MAC-CE for activating the corresponding TCI codepoint.
  • FIG. 5 is a diagram 500 illustrating example communication between a UE 502 and a TRP or base station 504.
  • TRP 504 may transmit, to a UE, e.g., UE 502, a MAC-CE activating a subset of configured joint DL and UL TCI states, e.g., MAC-CE 514, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs.
  • a MAC-CE activating a subset of configured joint DL and UL TCI states e.g., MAC-CE 514
  • each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL
  • the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs.
  • UE 502 may receive, from a TRP, e.g., TRP 504, a MAC-CE activating a subset of configured joint DL and UL TCI states, e.g., MAC-CE 514, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs.
  • a TRP e.g., TRP 504
  • a MAC-CE activating a subset of configured joint DL and UL TCI states e.g., MAC-CE 514
  • each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL
  • the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs.
  • the MAC-CE may comprise a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  • each activated joint DL and UL TCI state may be associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signals
  • PRACH physical random access channel
  • each activated joint DL and UL TCI state may be associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  • TRP 504 may transmit a configuration, e.g., configuration 524, indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  • configuration 524 e.g., configuration 524
  • UE 502 may receive a configuration, e.g., configuration 524, indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  • the configuration may be received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  • RRC radio resource control
  • DCI downlink control information
  • TRP 504 may transmit DCI, e.g., DCI 534, in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  • UE 502 may receive DCI, e.g., DCI 534, in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  • the joint DL and UL TCI states activated in the MAC-CE may be mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  • the received DCI may schedule the communication through DL or UL, and the communication through DL or UL scheduled through the DCI may be based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  • TRP 504 may transmit an indication, e.g., indication 544, of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication.
  • UE 502 may receive an indication, e.g., indication 544, of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication.
  • the indication may be received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  • RRC radio resource control
  • DCI downlink control information
  • UE 502 may determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID.
  • the DL resources and UL resources for the communication may be preconfigured or predetermined.
  • UE 502 may communicate with the TRP, e.g., TRP 504, through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • TRP 504 may communicate with the UE, e.g., UE 502, through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • FIG. 6 is a flowchart 600 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502; the apparatus 802; a processing system, which may include the memory 360 and which may be the entire UE or a component of the UE, such as the TX processor 368, the controller/processor 359, transmitter 354TX, antenna (s) 352, and/or the like) .
  • a processing system which may include the memory 360 and which may be the entire UE or a component of the UE, such as the TX processor 368, the controller/processor 359, transmitter 354TX, antenna (s) 352, and/or the like.
  • Optional aspects are illustrated with a dashed line.
  • the methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
  • the apparatus may receive, from a TRP, a MAC-CE activating a subset of configured joint DL and UL TCI states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs, as described in connection with the examples in FIGs. 4 and 5.
  • 602 may be performed by determination component 840.
  • the MAC-CE may comprise a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • each activated joint DL and UL TCI state may be associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL, as described in connection with the examples in FIGs.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • CSI-RS channel state information reference signals
  • PRS positioning RS
  • PUCCH physical uplink control channel
  • each activated joint DL and UL TCI state may be associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • the apparatus may receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5.
  • 604 may be performed by determination component 840.
  • the configuration may be received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
  • RRC radio resource control
  • DCI downlink control information
  • the apparatus may receive DCI in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • 606 may be performed by determination component 840.
  • the joint DL and UL TCI states activated in the MAC-CE may be mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • the received DCI may schedule the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI, as described in connection with the examples in FIGs. 4 and 5.
  • the apparatus may receive an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication, as described in connection with the examples in FIGs. 4 and 5. For example, 608 may be performed by determination component 840. Also, the indication may be received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
  • RRC radio resource control
  • DCI downlink control information
  • the apparatus may determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • 610 may be performed by determination component 840.
  • the DL resources and UL resources for the communication may be preconfigured or predetermined, as described in connection with the examples in FIGs. 4 and 5.
  • the apparatus may communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5.
  • 612 may be performed by determination component 840.
  • FIG. 7 is a flowchart 700 of a method of wireless communication.
  • the method may be performed by a TRP or a base station or a component of a TRP or a base station (e.g., the base station 102, 180, 310, 504; the apparatus 902; a processing system, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the antenna (s) 320, receiver 318RX, the RX processor 370, the controller/processor 375, and/or the like) .
  • Optional aspects are illustrated with a dashed line.
  • the methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
  • the apparatus may transmit, to a UE, a MAC-CE activating a subset of configured joint DL and UL TCI states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs, as described in connection with the examples in FIGs. 4 and 5.
  • 702 may be performed by determination component 940.
  • the MAC-CE may comprise a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • each activated joint DL and UL TCI state may be associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL, as described in connection with the examples in FIGs.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • CSI-RS channel state information reference signals
  • PRS positioning RS
  • PUCCH physical uplink control channel
  • each activated joint DL and UL TCI state may be associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • the apparatus may transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5.
  • 704 may be performed by determination component 940.
  • the configuration may be transmitted through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
  • RRC radio resource control
  • DCI downlink control information
  • the apparatus may transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • DCI downlink control information
  • the apparatus may transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • DCI downlink control information
  • the joint DL and UL TCI states activated in the MAC-CE may be mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
  • the transmitted DCI may schedule the communication through DL or UL, and the communication through DL or UL scheduled through the DCI may be based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI, as described in connection with the examples in FIGs. 4 and 5.
  • DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies may be scheduled by the one or more CORESETs associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. Further, the DL resources and UL resources for the communication may be preconfigured or predetermined, as described in connection with the examples in FIGs. 4 and 5.
  • the apparatus may transmit an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication, as described in connection with the examples in FIGs. 4 and 5.
  • 708 may be performed by determination component 940.
  • the indication may be transmitted through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
  • RRC radio resource control
  • DCI downlink control information
  • the apparatus may communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5.
  • 710 may be performed by determination component 940.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818.
  • the cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 804 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software.
  • the cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804.
  • the cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
  • the communication manager 832 includes a determination component 840 that is configured to receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs, e.g., as described in connection with step 602 above.
  • TRP transmission reception point
  • MAC-CE media access control element
  • TCI transmission configuration indicator
  • Determination component 840 can also be configured to communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, e.g., as described in connection with step 612 above.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 5 and 6. As such, each block in the aforementioned flowcharts of FIGs. 5 and 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for receiving, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs.
  • TRP transmission reception point
  • MAC-CE media access control element
  • TCI transmission configuration indicator
  • the apparatus 802 can also include means for communicating with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902.
  • the apparatus 902 is a base station and includes a baseband unit 904.
  • the baseband unit 904 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 904 may include a computer-readable medium /memory.
  • the baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software.
  • the baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934.
  • the communication manager 932 includes the one or more illustrated components.
  • the components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904.
  • the baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 932 includes a determination component 940 that is configured to transmit, to a UE, a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs, e.g., as described in connection with step 702 above.
  • MAC media access control
  • CE control element
  • TCI transmission configuration indicator
  • Determination component 940 can also be configured to communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, e.g., as described in connection with step 710 above.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 5 and 7. As such, each block in the aforementioned flowcharts of FIGs. 5 and 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 902 includes means for transmitting, to a UE, a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs.
  • MAC media access control
  • CE control element
  • TCI transmission configuration indicator
  • the apparatus 902 can also include means for communicating with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means.
  • the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to methods and devices for wireless communication including an apparatus, e.g., a UE and/or a TRP or base station. In one aspect, the apparatus may receive, from a TRP, a MAC-CE activating a subset of configured joint DL and UL TCI states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs. Additionally, the apparatus may communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.

Description

METHODS AND APPARATUS FOR ACTIVATION OF JOINT DL/UL TCI STATES FOR MDCI BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to activation of joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states using a media access control (MAC) control element (CE) (MAC-CE) in wireless communication systems.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced (pc) mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G  NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment (UE) . The apparatus may receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs. The apparatus may also receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states. The apparatus may also receive downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID. Additionally, the apparatus may receive an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication. The apparatus may also determine DL resources and UL  resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID. The apparatus may also communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
In another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a transmission reception point (TRP) or a base station. The apparatus may transmit, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs. The apparatus may also transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states. The apparatus may also transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID. Further, the apparatus may transmit an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication. The apparatus may also communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the  claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating an example MAC-CE in accordance with one or more techniques of the present disclosure.
FIG. 5 is a diagram illustrating example communication between a UE and a base station in accordance with one or more techniques of the present disclosure.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a flowchart of a method of wireless communication.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190)  with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia,  Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base  station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS  transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may include a reception component 198 configured to receive, from a transmission reception point (TRP) , a  media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs. Reception component 198 may also be configured to receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states. Reception component 198 may also be configured to receive downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID. Reception component 198 may also be configured to receive an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication. Reception component 198 may also be configured to determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID. Reception component 198 may also be configured to communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
Referring again to FIG. 1, in certain aspects, the base station 180 may include a transmission component 199 configured to transmit, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for  communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs. Transmission component 199 may also be configured to transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states. Transmission component 199 may also be configured to transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID. Transmission component 199 may also be configured to transmit an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication. Transmission component 199 may also be configured to communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A,  2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier  spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as  SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement  reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX. Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368  and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1.
In some aspects of wireless communications, it may be beneficial to include an enhancement on multiple beam (multi-beam) operation, such as targeting a certain frequency range, e.g., frequency range 2 (FR2) , while also applicable to other frequency ranges, e.g., frequency range 1 (FR1) . In order to enhance multi-beam operation, features may be identified and specified to facilitate a more efficient, i.e., lower latency and overhead, DL/UL beam management to support higher intra-cell mobility and inter-cell mobility, e.g., layer 1 (L1) /layer 2 (L2) -centric inter-cell mobility, and/or a larger number of configured TCI states. A common beam for data and control transmission or reception for DL and UL, such as for intra-band carrier  aggregation (CA) , may be specified in order to provide a unified TCI framework for DL and UL beam indication.
Also, enhancement on signaling mechanisms for the aforementioned features may be provided in order to improve latency and efficiency with more usage of dynamic control signaling, such as opposed to RRC signaling. Moreover, features may be identified and specified to facilitate UL beam selection for UEs equipped with multiple panels, considering UL coverage loss mitigation due to a maximum permissible exposure (MPE) , based on an UL beam indication with the unified TCI framework for an UL fast panel selection.
In some aspects, a unified TCI framework for DL and UL beam indication may be beneficial. In some instances, signaling a common beam for multiple DL and UL resources may help to save both beam indication and overhead latency. The common beam indication may be signaled via a joint DL/UL TCI state. The activation of the joint DL/UL TCI state using a MAC-CE is described herein.
Additionally, a joint DL/UL TCI state may jointly indicate a common beam or a set of common beams applied to each of multiple DL or UL resources. The joint DL/UL TCI state may include a set of information including a variety of information or parameters. For example, each of the joint DL/UL TCI states may include a TCI state identification (ID) . The TCI state ID may be included in a dedicated ID space for a common beam indication, or in a common ID space shared for a common DL/UL beam indication, a DL beam indication, and/or an UL beam indication.
Further, the joint DL/UL TCI state may include IDs of one or more source reference signals (RSs) that provide at least one DL quasi co-location (QCL) assumption and/or UL spatial relation information. The one or more source RSs may include a serving cell ID and a BWP ID, which can include where the one or more source RSs are located. If the serving cell ID is absent, the serving cell in which the TCI state is configured may be selected. The one or more source RSs may include a number of RS types, including a synchronization signal block (SSB) , CSI-RS, a PRS, a PRACH, dedicated demodulation reference signals (DM-RS) of a PDSCH, a PDCCH, a PUCCH, or a PUSCH.
The one or more source RSs may also provide various QCL assumptions and/or spatial relation information, including characteristics on delay, Doppler, and/or spatial Rx/Tx parameters. For example, the QCL may include a certain QCL type, e.g., a QCL-TypeA, including a Doppler shift, a Doppler spread, an average delay, and a  delay spread. The QCL may also include a QCL-TypeB including the Doppler shift and the Doppler spread, as well as a QCL-TypeC including the Doppler shift and the average delay, and a QCL-TypeD including a spatial Rx parameter. The one or more source RSs may have different combinations based on provided QCL or spatial assumptions. For instance, the joint DL/UL TCI state may include an ID of one source RS for QCL-TypeA, QCL-TypeB, and/or QCL-TypeC. For example, three source RSs may include a first RS for QCL-TypeA/TypeB/TypeC, a second RS for QCL-Type D, and a third RS for spatial relation information.
Additionally, each of the joint DL/UL TCI states may include UL power control (PC) parameters indicating the UE to configure the UL transmission power. For example, the UL power control parameters may include a pathloss RS ID, a P0, an Alpha, a close-loop index, and a PC group ID. Also, each of the joint DL/UL TCI states may include UL timing advance (TA) parameters indicating the UE to configure the TA for the UL transmission, e.g., TA group ID and/or TA value. Each of the joint DL/UL TCI states may also include one or more parameters for codebook and/or non-codebook based PUSCH transmission, such as an SRS resource indicator (SRI) , a transmit precoding matrix indicator (TPMI) , or a combination thereof. Moreover, each of the joint DL/UL TCI states may include UE panel IDs or similar IDs, e.g., an antenna port group ID or a beam group ID. For example, the UE panel ID (s) associated with the common DL/UL beam may include two separate panel IDs for DL and UL or a single panel ID for both DL and UL.
In aspects of wireless communication utilizing a single TRP, a TRP or base station may provide a MAC-CE to a UE to activate one or more configured joint DL/UL TCI states. In some aspects, the DCI and/or MAC-CE may activate subsets of configured joint DL/UL TCI states, where each joint DL/UL TCI state may indicate a common beam for DL reception/UL transmission. Accordingly, a set of joint DL/UL states may be configured, and the base station may transmit a MAC-CE to the UE in order to indicate to the UE to activate one or more subsets of the configured joint DL/UL TCI states. Based on the above, it may be beneficial to activate joint DL/UL TCI states in multiple DCI or multi-DCI (mDCI) based multiple TRP or multi-TRP (mTRP) communication, where each DCI may schedule UL transmissions or DL receptions associated with a TRP.
Aspects of the present disclosure may provide for an activation of joint DL/UL TCI states. In some instances, aspects of the present disclosure may be applicable to mDCI  based mTRP communication. For instance, aspects of the present disclosure may activate joint DL/UL TCI states in mDCI based mTRP communication.
In aspects utilizing multi-DCI based multi-TRP communication, each TRP may individually schedule DL reception or UL transmission by sending its own DCI. In this case, a TRP ID, e.g., a CORESET pool ID, can be introduced in the MAC-CE activating the joint DL/UL TCI state (s) . The joint DL/UL TCI state (s) activated by the MAC-CE may be applied for the DL reception or UL transmission scheduled by a DCI in CORESET (s) with a CORESET pool ID equal to the CORESET pool ID indicated in the MAC-CE. Although the CORESET pool ID is used as an example for TRP ID, the TRP ID can have other similar IDs, such as an antenna port group ID, a panel ID, a beam ID or a beam group ID, etc.
In some aspects of the present disclosure, the DL receptions and the UL transmissions may be associated with a number of different channels. In some instances, the DL receptions may include a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning reference signals (PRS) . Additionally, the UL transmissions may include a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) .
FIG. 4 is a diagram illustrating MAC-CE 400. As shown in FIG. 4, MAC-CE includes CORESET pool ID 410, serving cell ID 420, and BWP ID 430, as well as a number of octets (Oct) , e.g., Oct 401, Oct 402, Oct 403, and Oct N. The MAC-CE 400 may include a bitmap indicating which configured joint DL/UL TCI state (s) are activated, a serving cell ID, e.g., serving cell ID 420, and a BWP ID, e.g., BWP ID 430, for which the MAC-CE 400 applies. As depicted in FIG. 4, the MAC-CE 400 may include a variable sized bitmap including a CORESET pool ID, a serving cell ID field, a BWP ID field, and a number of TCI state fields. For example, a first octet (Oct) of the bitmap of MAC-CE 400, e.g., Oct 401, may include the CORESET pool ID 410, the serving cell ID 420, and the BWP ID 430.
In some aspects, the CORESET pool ID, e.g., CORESET pool ID 410, may indicate whether a mapping between the activated TCI states and a codepoint of the DCI is preconfigured or based on a predefined rule. For example, the length of the CORESET pool ID 410 may be a number of bits, e.g., one (1) bit, which can be used to indicate the TCI states for one of two TRPs. The serving cell ID 420 may indicate  the identity of the serving cell for which the MAC-CE 400 applies. For example, the length of the serving cell ID 420 may also be a number of bits, e.g., five (5) bits. The BWP ID 430 may indicate a DL BWP for which the MAC-CE 400 applies as the codepoint. For example, the length of the BWP ID field may be a number of bits, e.g., two (2) bits.
Outside of the first octet, the remaining octets may be a bitmap of the joint DL/UL TCI states, where each bit corresponds to each joint DL/UL TCI state. As shown in FIG. 4, the bitmap may include a first TCI state, e.g., T 0, up through a last TCI state, e.g., T  (N-2) x8+7. If a bit is set to a certain value, e.g., one (1) , then the corresponding joint DL/UL TCI state may be activated. If a bit is set to another value, e.g., zero (0) , then the corresponding joint DL/UL TCI state may not be activated. The base station may configure up to a certain number of joint DL/UL TCI states, e.g., 128 joint DL/UL TCI states, and the bitmap may have a bit length of a certain number of bits, e.g., 128 bits. The MAC-CE 400 may select up to a certain amount of bits, e.g., eight (8) bits. As such, the bitmap may have up to this amount of bits, e.g., eight (8) bits, set to a certain value, e.g., one (1) , in order to activate a corresponding joint DL/UL TCI state.
Some aspects of the present disclosure may include an applicable DL/UL channel type or resource per activated joint DL/UL TCI state associated with a CORESET pool ID. This applicable DL/UL channel type or resource can be determined based on a number of different options or aspects. In one aspect, the applicable DL/UL channel types or resources may be preconfigured or predefined in a specification. For example, the activated joint DL/UL TCI state can be applied to each DL/UL channel type or resource scheduled by the DCI in CORESET (s) with a same CORESET pool ID as the joint DL/UL TCI state in the component carrier (CC) where the MAC-CE is applied.
In another aspect of the present disclosure, the applicable DL/UL channel types or resources may be configured or indicated by a base station or TRP. For example, the applicable DL/UL channel types or resources may be configured or indicated via RRC signaling, a MAC-CE, or DCI. Additionally, a base station or TRP may indicate that one activated joint DL/UL TCI state can be applied to all or a subset of DL/UL channel types or resources. These DL/UL channel types or resources may be scheduled by a DCI in CORESET (s) with the same CORESET pool ID as the joint DL/UL TCI state in the CC where the MAC-CE is applied.
In some aspects, if multiple joint DL/UL TCI states are activated by the MAC-CE for a CORESET pool ID, a DCI may further indicate a TCI codepoint mapped to one activated joint DL/UL TCI state. The joint DL/UL TCI state (s) activated by the MAC-CE may be sequentially mapped to candidate TCI codepoint (s) associated with the same CORESET pool ID. In some instances, the activated joint DL/UL TCI state (s) may be dynamically indicated by a DCI in a CORESET with a same CORESET pool ID. For example, the MAC-CE may activate certain joint DL/UL TCI state ID (s) , e.g., joint DL/UL  TCI state IDs  5, 7, and 9 corresponding to T 5, T 7, and T 9 in the MAC-CE, for a certain CORESET pool ID, e.g., a CORESET pool ID of zero (0) . These joint DL/UL TCI state IDs may be sequentially mapped to candidate TCI codepoints with certain values, e.g., values of 0, 1, and/or 2, for the DCI in CORESET (s) with a same CORESET pool ID.
Additionally, in some aspects, the indicated TCI codepoint may be used for DL receptions/UL transmissions scheduled by the same DCI. Also, the applicable DL reception/UL transmission may be indicated or predefined in a specification or indicated by a base station or TRP, e.g., via RRC signaling, a MAC-CE, or DCI. For example, a specification may describe that the TCI codepoint indicated by a DCI is applied to all DL receptions or UL transmissions scheduled by CORESET (s) with a CORESET pool ID which is the same as the CORESET pool ID indicated in the MAC-CE for activating the corresponding TCI codepoint. Moreover, the base station or TRP may indicate, e.g., through RRC, MAC-CE signaling or DCI, that the TCI codepoint indicated by the DCI is applied to a subset of DL receptions or UL transmissions scheduled by CORESET (s) with a CORESET pool ID which is the same as the CORESET pool ID indicated in the MAC-CE for activating the corresponding TCI codepoint.
FIG. 5 is a diagram 500 illustrating example communication between a UE 502 and a TRP or base station 504.
At 510, TRP 504 may transmit, to a UE, e.g., UE 502, a MAC-CE activating a subset of configured joint DL and UL TCI states, e.g., MAC-CE 514, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs. At 512, UE 502 may receive, from a TRP, e.g., TRP 504, a MAC-CE activating a subset of configured joint DL and UL TCI states, e.g., MAC-CE 514, each activated joint DL and UL TCI state indicating a common beam for communication in DL and  UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs.
In some aspects, the MAC-CE may comprise a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID. Also, each activated joint DL and UL TCI state may be associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL. Further, each activated joint DL and UL TCI state may be associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
At 520, TRP 504 may transmit a configuration, e.g., configuration 524, indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states. At 522, UE 502 may receive a configuration, e.g., configuration 524, indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states. In some aspects, the configuration may be received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
At 530, TRP 504 may transmit DCI, e.g., DCI 534, in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the  CORESET pool ID. At 532, UE 502 may receive DCI, e.g., DCI 534, in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
In some instances, the joint DL and UL TCI states activated in the MAC-CE may be mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID. Also, the received DCI may schedule the communication through DL or UL, and the communication through DL or UL scheduled through the DCI may be based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
At 540, TRP 504 may transmit an indication, e.g., indication 544, of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication. At 542, UE 502 may receive an indication, e.g., indication 544, of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication. Also, the indication may be received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
At 550, UE 502 may determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID. In some instances, the DL resources and UL resources for the communication may be preconfigured or predetermined.
At 560, UE 502 may communicate with the TRP, e.g., TRP 504, through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states. At 562, TRP 504 may communicate with the UE, e.g., UE 502, through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502; the apparatus 802; a processing system, which may include the memory 360 and which may be the entire UE or a component of the UE, such as the TX processor 368, the controller/processor 359, transmitter 354TX, antenna (s) 352, and/or the like) . Optional aspects are illustrated with a dashed line. The methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
At 602, the apparatus may receive, from a TRP, a MAC-CE activating a subset of configured joint DL and UL TCI states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs, as described in connection with the examples in FIGs. 4 and 5. For example, 602 may be performed by determination component 840.
In some aspects, the MAC-CE may comprise a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. Also, each activated joint DL and UL TCI state may be associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL, as described in connection with the examples in FIGs. 4 and 5. Further, each activated joint DL and UL TCI state may be associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
At 604, the apparatus may receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a  CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5. For example, 604 may be performed by determination component 840. In some aspects, the configuration may be received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
At 606, the apparatus may receive DCI in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. For example, 606 may be performed by determination component 840.
In some instances, the joint DL and UL TCI states activated in the MAC-CE may be mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. Also, the received DCI may schedule the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI, as described in connection with the examples in FIGs. 4 and 5.
At 608, the apparatus may receive an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication, as described in connection with the examples in FIGs. 4 and 5. For example, 608 may be performed by determination component 840. Also, the indication may be received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
At 610, the apparatus may determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. For example, 610 may be performed by determination component  840. In some instances, the DL resources and UL resources for the communication may be preconfigured or predetermined, as described in connection with the examples in FIGs. 4 and 5.
At 612, the apparatus may communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5. For example, 612 may be performed by determination component 840.
FIG. 7 is a flowchart 700 of a method of wireless communication. The method may be performed by a TRP or a base station or a component of a TRP or a base station (e.g., the  base station  102, 180, 310, 504; the apparatus 902; a processing system, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the antenna (s) 320, receiver 318RX, the RX processor 370, the controller/processor 375, and/or the like) . Optional aspects are illustrated with a dashed line. The methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
At 702, the apparatus may transmit, to a UE, a MAC-CE activating a subset of configured joint DL and UL TCI states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a CORESET pool ID associated with a set of CORESETs, as described in connection with the examples in FIGs. 4 and 5. For example, 702 may be performed by determination component 940.
In some aspects, the MAC-CE may comprise a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. Also, each activated joint DL and UL TCI state may be associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL, as described in connection with the examples in FIGs. 4 and 5. Further, each activated joint DL and UL TCI state may be associated with the at least one of the PDCCH, the PDSCH, the  CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5.
At 704, the apparatus may transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5. For example, 704 may be performed by determination component 940. In some aspects, the configuration may be transmitted through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
At 706, the apparatus may transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. For example, 706 may be performed by determination component 940.
In some instances, the joint DL and UL TCI states activated in the MAC-CE may be mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. Also, the transmitted DCI may schedule the communication through DL or UL, and the communication through DL or UL scheduled through the DCI may be based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI, as described in connection with the examples in FIGs. 4 and 5.
Additionally, DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies may be scheduled by the one or more CORESETs associated with the CORESET pool ID, as described in connection with the examples in FIGs. 4 and 5. Further, the DL resources and UL resources for the communication  may be preconfigured or predetermined, as described in connection with the examples in FIGs. 4 and 5.
At 708, the apparatus may transmit an indication of DL resources and UL resources for communication scheduled by one or more CORESETs associated with the CORESET pool ID, where the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication, as described in connection with the examples in FIGs. 4 and 5. For example, 708 may be performed by determination component 940. The indication may be transmitted through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) , as described in connection with the examples in FIGs. 4 and 5.
At 710, the apparatus may communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, as described in connection with the examples in FIGs. 4 and 5. For example, 710 may be performed by determination component 940.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818. The cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180. The cellular baseband processor 804 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software. The cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. The  communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804. The cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
The communication manager 832 includes a determination component 840 that is configured to receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs, e.g., as described in connection with step 602 above. Determination component 840 can also be configured to communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, e.g., as described in connection with step 612 above.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 5 and 6. As such, each block in the aforementioned flowcharts of FIGs. 5 and 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the cellular baseband processor 804, includes means for receiving, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common  beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs. The apparatus 802 can also include means for communicating with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states. The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902. The apparatus 902 is a base station and includes a baseband unit 904. The baseband unit 904 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 904 may include a computer-readable medium /memory. The baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software. The baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934. The communication manager 932 includes the one or more illustrated components. The components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904. The baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 932 includes a determination component 940 that is configured to transmit, to a UE, a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE  indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs, e.g., as described in connection with step 702 above. Determination component 940 can also be configured to communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states, e.g., as described in connection with step 710 above.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 5 and 7. As such, each block in the aforementioned flowcharts of FIGs. 5 and 7 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 902, and in particular the baseband unit 904, includes means for transmitting, to a UE, a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs. The apparatus 902 can also include means for communicating with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or  omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (80)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    receiving, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    communicating with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  2. The method of claim 1, wherein the MAC-CE comprises a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  3. The method of claim 1, wherein each activated joint DL and UL TCI state is associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  4. The method of claim 3, wherein each activated joint DL and UL TCI state is associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  5. The method of claim 3, further comprising:
    receiving a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with  the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  6. The method of claim 5, wherein the configuration is received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  7. The method of claim 1, further comprising:
    receiving downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  8. The method of claim 7, wherein the joint DL and UL TCI states activated in the MAC-CE are mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  9. The method of claim 7, wherein the received DCI schedules the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  10. The method of claim 7, further comprising:
    determining DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID.
  11. The method of claim 10, wherein the DL resources and UL resources for the communication are preconfigured or predetermined.
  12. The method of claim 10, further comprising:
    receiving an indication of the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID, wherein the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication.
  13. The method of claim 12, wherein the indication is received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  14. An apparatus for wireless communication of a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  15. The apparatus of claim 14, wherein the MAC-CE comprises a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  16. The apparatus of claim 14, wherein each activated joint DL and UL TCI state is associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  17. The apparatus of claim 16, wherein each activated joint DL and UL TCI state is associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  18. The apparatus of claim 16, wherein the at least one processor is further configured to:
    receive a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  19. The apparatus of claim 18, wherein the configuration is received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  20. The apparatus of claim 14, wherein the at least one processor is further configured to:
    receive downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  21. The apparatus of claim 20, wherein the joint DL and UL TCI states activated in the MAC-CE are mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  22. The apparatus of claim 20, wherein the received DCI schedules the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  23. The apparatus of claim 20, wherein the at least one processor is further configured to:
    determine DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID.
  24. The apparatus of claim 23, wherein the DL resources and UL resources for the communication are preconfigured or predetermined.
  25. The apparatus of claim 23, wherein the at least one processor is further configured to:
    receive an indication of the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID, wherein the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication.
  26. The apparatus of claim 25, wherein the indication is received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  27. An apparatus for wireless communication of a user equipment (UE) , comprising:
    means for receiving, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    means for communicating with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  28. The apparatus of claim 27, wherein the MAC-CE comprises a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  29. The apparatus of claim 27, wherein each activated joint DL and UL TCI state is associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  30. The apparatus of claim 29, wherein each activated joint DL and UL TCI state is associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  31. The apparatus of claim 29, further comprising:
    means for receiving a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  32. The apparatus of claim 31, wherein the configuration is received through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  33. The apparatus of claim 27, further comprising:
    means for receiving downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  34. The apparatus of claim 33, wherein the joint DL and UL TCI states activated in the MAC-CE are mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  35. The apparatus of claim 33, wherein the received DCI schedules the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  36. The apparatus of claim 33, further comprising:
    means for determining DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies, the determined DL resources and UL resources being scheduled by the one or more CORESETs associated with the CORESET pool ID.
  37. The apparatus of claim 36, wherein the DL resources and UL resources for the communication are preconfigured or predetermined.
  38. The apparatus of claim 36, further comprising:
    means for receiving an indication of the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID, wherein the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are determined based on the received indication.
  39. The apparatus of claim 38, wherein the indication is received through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  40. A computer-readable medium storing computer executable code for wireless communication of a user equipment (UE) , the code when executed by a processor causes the processor to:
    receive, from a transmission reception point (TRP) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the  MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    communicate with the TRP through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  41. A method of wireless communication of a transmission reception point (TRP) , comprising:
    transmitting, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    communicating with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  42. The method of claim 41, wherein the MAC-CE comprises a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  43. The method of claim 41, wherein each activated joint DL and UL TCI state is associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  44. The method of claim 43, wherein each activated joint DL and UL TCI state is associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is  associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  45. The method of claim 43, further comprising:
    transmitting a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  46. The method of claim 45, wherein the configuration is transmitted through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  47. The method of claim 41, further comprising:
    transmitting downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  48. The method of claim 47, wherein the joint DL and UL TCI states activated in the MAC-CE are mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  49. The method of claim 47, wherein the transmitted DCI schedules the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  50. The method of claim 47, wherein DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies are scheduled by the one or more CORESETs associated with the CORESET pool ID.
  51. The method of claim 50, wherein the DL resources and UL resources for the communication are preconfigured or predetermined.
  52. The method of claim 50, further comprising:
    transmitting an indication of the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID, wherein the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication.
  53. The method of claim 52, wherein the indication is transmitted through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  54. An apparatus for wireless communication of a transmission reception point (TRP) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  55. The apparatus of claim 54, wherein the MAC-CE comprises a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  56. The apparatus of claim 54, wherein each activated joint DL and UL TCI state is associated with at least one of a physical downlink control channel (PDCCH) , a physical  downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  57. The apparatus of claim 56, wherein each activated joint DL and UL TCI state is associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  58. The apparatus of claim 56, wherein the at least one processor is further configured to:
    transmit a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  59. The apparatus of claim 58, wherein the configuration is transmitted through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  60. The apparatus of claim 54, wherein the at least one processor is further configured to:
    transmit downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  61. The apparatus of claim 60, wherein the joint DL and UL TCI states activated in the MAC-CE are mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  62. The apparatus of claim 60, wherein the transmitted DCI schedules the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  63. The apparatus of claim 60, wherein DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies are scheduled by the one or more CORESETs associated with the CORESET pool ID.
  64. The apparatus of claim 63, wherein the DL resources and UL resources for the communication are preconfigured or predetermined.
  65. The apparatus of claim 63, wherein the at least one processor is further configured to:
    transmit an indication of the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID, wherein the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication.
  66. The apparatus of claim 65, wherein the indication is transmitted through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  67. An apparatus for wireless communication of a transmission reception point (TRP) , comprising:
    means for transmitting, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    means for communicating with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
  68. The apparatus of claim 67, wherein the MAC-CE comprises a bitmap indicating the CORESET pool ID and which configured joint DL and UL TCI states are activated in association with the CORESET pool ID.
  69. The apparatus of claim 67, wherein each activated joint DL and UL TCI state is associated with at least one of a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information (CSI) reference signals (RS) (CSI-RS) , or positioning RS (PRS) for DL, and at least one of a physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , sounding reference signals (SRS) , or a physical random access channel (PRACH) for UL.
  70. The apparatus of claim 69, wherein each activated joint DL and UL TCI state is associated with the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID, and is associated with the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID.
  71. The apparatus of claim 69, further comprising:
    means for transmitting a configuration indicating which of the at least one of the PDCCH, the PDSCH, the CSI-RS, or the PRS for DL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states, and indicating which of the at least one of the PUCCH, the PUSCH, the SRS, or the PRACH for UL that is scheduled by a CORESET associated with the CORESET pool ID is applicable to each of the activated joint DL and UL TCI states.
  72. The apparatus of claim 71, wherein the configuration is transmitted through at least one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  73. The apparatus of claim 67, further comprising:
    means for transmitting downlink control information (DCI) in a CORESET associated with the CORESET pool ID, the DCI indicating an index of a TCI codepoint, the index corresponding to one of the activated joint DL and UL TCI states associated with the CORESET pool ID.
  74. The apparatus of claim 73, wherein the joint DL and UL TCI states activated in the MAC-CE are mapped with sequential indexes to the TCI codepoint, the TCI codepoint being associated with the CORESET pool ID.
  75. The apparatus of claim 73, wherein the transmitted DCI schedules the communication through DL or UL, and the communication through DL or UL scheduled through the DCI is based on the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI.
  76. The apparatus of claim 73, wherein DL resources and UL resources for the communication to which the one activated joint DL and UL TCI state corresponding to the index of the TCI codepoint indicated through the DCI applies are scheduled by the one or more CORESETs associated with the CORESET pool ID.
  77. The apparatus of claim 76, wherein the DL resources and UL resources for the communication are preconfigured or predetermined.
  78. The apparatus of claim 76, further comprising:
    means for transmitting an indication of the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID, wherein the DL resources and the UL resources for the communication scheduled by the one or more CORESETs associated with the CORESET pool ID are based on the transmitted indication.
  79. The apparatus of claim 78, wherein the indication is transmitted through one of radio resource control (RRC) signaling, a MAC-CE, or downlink control information (DCI) .
  80. A computer-readable medium storing computer executable code for wireless communication of a transmission reception point (TRP) , the code when executed by a processor causes the processor to:
    transmit, to a user equipment (UE) , a media access control (MAC) control element (CE) (MAC-CE) activating a subset of configured joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) states, each activated joint DL and UL TCI state indicating a common beam for communication in DL and UL, the MAC-CE indicating a control resource set (CORESET) pool identifier (ID) associated with a set of CORESETs; and
    communicate with the UE through DL and UL scheduled through one or more CORESETs of the set of CORESETs associated with the CORESET pool ID based on the activated joint DL and UL TCI states.
PCT/CN2020/114177 2020-09-09 2020-09-09 Methods and apparatus for activation of joint dl/ul tci states for mdci WO2022051927A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/114177 WO2022051927A1 (en) 2020-09-09 2020-09-09 Methods and apparatus for activation of joint dl/ul tci states for mdci
PCT/CN2021/117220 WO2022052954A1 (en) 2020-09-09 2021-09-08 Activation of joint dl/ul tci states for mdci
US18/019,236 US20230291525A1 (en) 2020-09-09 2021-09-08 Activation of joint dl/ul tci states for mdci
CN202180054129.9A CN116134776A (en) 2020-09-09 2021-09-08 Activation of joint DL/UL TCI status for MDCI
EP21866007.4A EP4211858A1 (en) 2020-09-09 2021-09-08 Activation of joint dl/ul tci states for mdci

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114177 WO2022051927A1 (en) 2020-09-09 2020-09-09 Methods and apparatus for activation of joint dl/ul tci states for mdci

Publications (1)

Publication Number Publication Date
WO2022051927A1 true WO2022051927A1 (en) 2022-03-17

Family

ID=80630186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114177 WO2022051927A1 (en) 2020-09-09 2020-09-09 Methods and apparatus for activation of joint dl/ul tci states for mdci

Country Status (1)

Country Link
WO (1) WO2022051927A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220248406A1 (en) * 2021-02-01 2022-08-04 Qualcomm Incorporated Determination of default common beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461004A (en) * 2018-05-08 2019-11-15 维沃移动通信有限公司 Monitor the method, apparatus and terminal device of control resource set CORESET
WO2019244222A1 (en) * 2018-06-18 2019-12-26 株式会社Nttドコモ User terminal and wireless communication method
WO2020030981A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461004A (en) * 2018-05-08 2019-11-15 维沃移动通信有限公司 Monitor the method, apparatus and terminal device of control resource set CORESET
WO2019244222A1 (en) * 2018-06-18 2019-12-26 株式会社Nttドコモ User terminal and wireless communication method
WO2020030981A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Further discussion on TCI state switching requirements", 3GPP DRAFT; R4-1903226 TCI STATE SWITCHING DELAY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Xi’an, China; 20190408 - 20190412, 1 April 2019 (2019-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051713658 *
ERICSSON: "Remaining update for PDSCH TCI state MAC CE", 3GPP DRAFT; R2-2001126, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200224 - 20200306, 13 February 2020 (2020-02-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051848743 *
SAMSUNG: "Multi-beam enhancements", 3GPP DRAFT; R1-2006128, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915186 *
SAMSUNG: "Multi-beam enhancements", 3GPP DRAFT; R1-2006991, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 17 August 2020 (2020-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051921574 *
ZTE , SANECHIPS: "Consideration on TCI state MAC CE for mTRP mPDCCH transmissios", 3GPP DRAFT; R2-2001465, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849767 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220248406A1 (en) * 2021-02-01 2022-08-04 Qualcomm Incorporated Determination of default common beam
US11564233B2 (en) * 2021-02-01 2023-01-24 Qualcomm Incorporated Determination of default common beam

Similar Documents

Publication Publication Date Title
WO2022021335A1 (en) Inter-cell mobility across serving and non-serving cells
US11595921B2 (en) Methods and apparatus for QCL assumptions for cross carrier multiple DCI
WO2022052954A1 (en) Activation of joint dl/ul tci states for mdci
US20210195624A1 (en) Signaling for uplink beam activation
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US11452089B2 (en) Signaling to activate uplink trigger states
WO2021143380A1 (en) Methods and apparatus for updating pucch spatial relation information
WO2022021322A1 (en) Cell identifier for pucch/pusch pathloss reference or beam reference signal
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US20230337208A1 (en) Beam activation based on pci
US20230276420A1 (en) User equipment beam selection based on service demands
US11889464B2 (en) Reliable paging and short message transmission with repetition
US11943740B2 (en) Methods and apparatus for repetition of paging and paging DCI
WO2022051927A1 (en) Methods and apparatus for activation of joint dl/ul tci states for mdci
US20230035459A1 (en) Dynamic switching between tb repetitions and multiple tbs via dci
US11863281B2 (en) Methods and apparatus to facilitate cross-carrier beam association
WO2022183397A1 (en) Antenna ports determination of ul tx switching
US20230239123A1 (en) Associating transmission reception point with control resource set
WO2022051936A1 (en) Methods and apparatus for activation of joint dl/ul tci states
WO2022051923A1 (en) Activation of joint dl/ul tci state for single dci and multiple trps
WO2023272709A1 (en) Power control parameter in unified tci
WO2022051942A1 (en) Enablement relation rule for beam indication schemes
US20240162951A1 (en) Uplink spatial filter and precoder for joint channel estimation across physical uplink shared channels
WO2022051938A1 (en) Cross-component carrier activation of joint dl/ul tci state
US20240147440A1 (en) Methods and apparatus for ul tx switching of multiple tx cases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952715

Country of ref document: EP

Kind code of ref document: A1