WO2022050384A1 - Assay system - Google Patents

Assay system Download PDF

Info

Publication number
WO2022050384A1
WO2022050384A1 PCT/JP2021/032467 JP2021032467W WO2022050384A1 WO 2022050384 A1 WO2022050384 A1 WO 2022050384A1 JP 2021032467 W JP2021032467 W JP 2021032467W WO 2022050384 A1 WO2022050384 A1 WO 2022050384A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
assay
liquid
containers
main body
Prior art date
Application number
PCT/JP2021/032467
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 渕脇
正人 田中
昌平 山村
直樹 森下
久美子 神谷
誠一郎 松▲崎▼
Original Assignee
国立研究開発法人産業技術総合研究所
日本ハム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 日本ハム株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2022546985A priority Critical patent/JPWO2022050384A1/ja
Publication of WO2022050384A1 publication Critical patent/WO2022050384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to an assay system comprising an assay apparatus configured to perform an assay using a liquid.
  • ⁇ l (microliter) order that is, trace reagents, treatment agents, and substrates of about 1 ⁇ l or more and less than about 1 ml (milliliter).
  • An operation for accurately supplying a liquid such as a solution to the assay device is required.
  • technologies such as POCT (Point Of Care Testing) that rapidly perform tests, diagnoses, assays, etc. are attracting attention.
  • An operation of accurately and easily supplying liquids such as various kinds of reagents to the assay device is required.
  • pipette operation For example, as an operation of supplying a liquid, an operation of manually supplying a liquid to an assay device using a pipette such as a micropipette (hereinafter referred to as “pipette operation”) can be mentioned.
  • pipette operation requires accuracy, it is difficult and complicated. That is, the handling of the liquid is not easy.
  • Such pipette operations need to be performed by a limited number of skilled technicians, which causes a shortage of personnel in the field.
  • manual pipette operation has problems such as a risk of contamination between reagents and an increase in preparation time.
  • an operation of automatically supplying the liquid an operation of automatically supplying the liquid stored in a container such as a tank to the assay device by using a pump (hereinafter referred to as "pump operation") can also be mentioned.
  • pump operation an operation of automatically supplying the liquid stored in a container such as a tank to the assay device by using a pump
  • a high-performance material such as sterilized plastic for the container and the piping for sending the liquid from this container to the pump, and the liquid is automatically supplied from the tank by the pump.
  • the configuration for this is complicated.
  • the device for performing such a pump operation becomes expensive.
  • such an apparatus becomes complicated because it has a tank, a pump, and the like.
  • a plurality of fluid transport means each having an actuator, a plurality of fluid passages connected to each of the plurality of fluid transport means, and at least one obtained by merging the plurality of fluid passages.
  • a microfluidic cartridge comprising at least one merging passage extending from a merging point, wherein the actuator of each fluid transport means is arranged on the fluid passage connected to the fluid transport means, and reagents and the like in the fluid passage. It has a piston that reciprocates in a pressurable manner so as to send the fluid of There is a microfluidic cartridge.
  • an assay technique is a liquid packaging component with multiple liquid storage sections for packaging liquids such as reagents, and multiple burstable seals each covering each of these multiple liquid storage compartments, and each burstable.
  • An assay system that includes a seal rupture component configured to be able to rupture a single seal and an assay device configured to receive liquid from multiple liquid storage sections, with each seal rupturing component being an assay device. Included is an assay system that includes a plunger that compresses a liquid storage compartment covered by its seal so that it is stripped to rupture. (See, for example, Patent Document 2.)
  • an assay technique is an upper treatment chamber configured to perform a bioassay and a lower treatment chamber located below the upper treatment chamber and configured to perform the bioassay.
  • These upper and lower treatment chambers are arranged so as to be separated in the vertical direction, a plurality of reagent containers that fluidly communicate with the upper treatment chamber by the capillary channel, and fluid communication with the lower treatment chamber by the capillary channel.
  • a cartridge with an additional chamber so that when the difference in pressure applied to the upper and lower treatment chambers exceeds the critical value, the fluid enters the lower treatment chamber from the upper treatment chamber through the porous substrate.
  • Cartridges are configured such that the transport of fluid between chambers that are fluid-communicated by the capillary channels is controlled by applying air pressure that exceeds the capillary pressure resistance between these chambers. (See, for example, Patent Document 3.)
  • the assay technique described above when attempting to increase the number of reagents handled, the number of fluid passages containing the reagents increases, which complicates the arrangement structure of the fluid passages, resulting in a microfluidic cartridge. The structure of is complicated. Also in another example of the assay technique described above, when attempting to increase the number of reagents to be handled, the number of liquid storage sections containing the reagents increases, which complicates the arrangement structure of the liquid storage sections. As a result, the structure of the liquid package component is complicated. This makes it difficult to perform assays for various protocols.
  • the assay system is an assay system including an assay device configured to perform an assay using a liquid, so that the liquid can be dropped onto the assay device.
  • a liquid supply device configured, a moving device configured to allow the assay device to move relative to the liquid supply device in the horizontal direction, a liquid drop by the liquid supply device, and the movement.
  • the liquid supply device comprises a plurality of containers, each configured in the form of an instillation container, comprising a control device configured to control the movement of the assay device by the device, where each container contains a liquid.
  • the liquid supply device includes a main body portion formed so as to be accommodating, and a nozzle portion having a discharge port configured to allow the liquid contained in the main body portion to be dropped.
  • a container mounting mechanism configured to allow the plurality of containers to be mounted in a state where the discharge ports of the containers are oriented downward and spaced apart from each other in the horizontal direction, and a liquid is dropped from the discharge ports of the plurality of containers.
  • the control device includes a container pushing mechanism having at least one movable member configured to be able to push the main body portion of the plurality of containers, and the control device includes the plurality of containers in which the at least one movable member has the plurality of movable members. It is configured to control the container pushing mechanism in order to push the main body of the container in a desired order and timing.
  • a plurality of liquids can be supplied quickly and continuously, a small amount of liquid can be supplied with high accuracy, and the configuration for supplying the liquid can be simplified. It can reduce the risk of contamination.
  • FIG. 1 is a perspective view schematically showing the assay system according to the first embodiment.
  • FIG. 2 is a block diagram of the assay system according to the first embodiment.
  • FIG. 3 is a perspective view schematically showing a liquid supply device, a mobile device, an assay device, and peripheral portions of the assay system according to the first embodiment.
  • FIG. 4 is a perspective view schematically showing a container holder of the container mounting mechanism of the liquid supply device according to the first embodiment and a container housed therein.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 6A schematically shows the container holder of the container mounting mechanism according to the first embodiment, the container housed therein, and the container pushing mechanism in the advanced state so as to be cut along the line BB of FIG.
  • FIG. 6B schematically shows the container holder of the container mounting mechanism according to the first embodiment, the container housed therein, and the container pushing mechanism in the retracted state so as to be cut along the line BB of FIG.
  • FIG. 7 is a side view schematically showing a nozzle portion of a container and a liquid detection device of the assay system according to the first embodiment.
  • FIG. 8 is a plan view schematically showing an assay device of the assay system according to the first embodiment.
  • FIG. 9 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 10 is a perspective view schematically showing a state in which the measuring device of the assay system according to the first embodiment is measuring the assay device.
  • FIG. 11 is a plan view schematically showing the assay system according to the second embodiment.
  • FIG. 12 is a block diagram of the assay system according to the second embodiment.
  • FIG. 13 is a cross-sectional view taken along the line DD of FIG.
  • the assay system according to the first and second embodiments will be described.
  • the assay system according to each embodiment includes an assay device configured to perform an assay using a liquid.
  • the liquid applicable to the assay device according to the present embodiment is not particularly limited as long as it can flow in the assay device.
  • Liquids applicable to such assay devices can include not only chemically pure liquids, but also gases, other liquids or solids dissolved, dispersed or suspended in liquids.
  • the liquid may be hydrophilic, and the hydrophilic liquid may be, for example, human or animal whole blood, serum, plasma, blood cells, urine, fecal diluent, saliva, sweat, tears, nail extract, etc. Examples thereof include a liquid sample derived from a living body such as a skin extract, a hair extract, or a cerebrospinal fluid.
  • the liquid when the liquid is a reagent used at the time of assay, the liquid includes buffer solution, general biochemical reagent, immunochemistry-related reagent, antibody-related reagent, peptide solution, protein / enzyme-related reagent, cell-related reagent, etc.
  • the liquid is not limited to these.
  • an in vitro diagnostic drug for pregnancy test, urine test, stool test, adult disease test, allergy test, infectious disease test, drug test, cancer test, etc. general-purpose test drug, POCT It is possible to measure a sample that is effective for clinical examination, diagnosis, or analysis in a liquid sample for applications such as (Point Of Care Testing), but the application of the assay device is not particularly limited.
  • the hydrophilic liquid is not limited to biological samples, and includes, for example, food suspensions, food extracts, production line wash water, wiping liquid, drinking water, river water, soil suspensions, and the like. Can be mentioned.
  • the assay device may measure pathogens in food or drinking water, or pollutants in river water or soil.
  • These hydrophilic liquids may typically use water as a solvent, and may be any aqueous solution that can be exchanged by an assay device.
  • lateral flow refers to the flow of liquid that moves due to the driving force of gravitational sedimentation.
  • the movement of the liquid based on the lateral flow refers to the movement of the liquid in which the driving force of the liquid due to gravitational sedimentation acts predominantly (dominantly).
  • the movement of the liquid based on the capillary force refers to the movement of the liquid in which the interfacial tension acts predominantly (predominantly).
  • the movement of liquid based on lateral flow is different from the movement of liquid based on capillary force.
  • specimen refers to a compound or composition that is present in a liquid and is detected or measured.
  • the specimen may be a saccharide (eg, glucose), a protein or peptide (eg, a serum protein, a hormone, an enzyme, an immunomodulator, a phosphokine, a monokine, a cytokine, a glycoprotein, a vaccine antigen, an antibody, a growth factor, or a growth factor).
  • a saccharide eg, glucose
  • protein or peptide eg, a serum protein, a hormone, an enzyme, an immunomodulator, a phosphokine, a monokine, a cytokine, a glycoprotein, a vaccine antigen, an antibody, a growth factor, or a growth factor.
  • Fats amino acids, nucleic acids, cells, steroids, vitamins, pathogens or antigens thereof, natural or synthetic chemicals, contaminants, therapeutic drugs or illegal drugs or toxicants, or metabolites or antibodies of these substances. It is good to
  • the "reference substance" is a known substance different from the sample, which is added to the liquid in a known amount for detecting the sample concentration.
  • the reference substance can be selected from the above options in the same manner as the sample, and can be selected in relation to the sample. In particular, it does not interact with the sample and can be selected from stable substances.
  • a "microchannel” is meant to detect or measure a specimen on the order of ⁇ l (microliter), i.e., with a trace amount of liquid greater than or equal to about 0.1 ⁇ l and less than about 1 ml (milliliter).
  • a trace amount of liquid greater than or equal to about 0.1 ⁇ l and less than about 1 ml (milliliter).
  • film refers to a film-like object or a plate-like object having a thickness of about 200 ⁇ m (micrometer) or less
  • sheet refers to a film-like object or a film-like object having a thickness of more than about 200 ⁇ m. Refers to a plate-like object.
  • plastic refers to a polymerizable material or a polymer material polymerized or molded so as to be used as an essential component. Plastics also include polymer alloys that combine two or more polymers.
  • the "porous medium” may be a member having a plurality of and a large number of micropores and capable of sucking and passing a liquid, or a member capable of capturing or concentrating a solid substance, and may be a paper.
  • the porous medium may be hydrophilic when the liquid is hydrophilic, and may be hydrophobic when the liquid is hydrophobic.
  • the porous medium may be hydrophilic and may be paper, cotton wool or the like containing a large number of fibers.
  • the porous medium can be one or more of cellulose, nitrocellulose, cellulose acetate, filter paper, tissue paper, toilet paper, paper towels, fabrics, cotton, or water-permeable hydrophilic porous polymers. ..
  • a liquid content such as a liquid eye drop contained in the main body is dropped drop by drop from the ejection port of the nozzle portion (in the case of the case).
  • the eye drop container is not a so-called single-use type, but a so-called bottle type.
  • the eye drop container is made of an elastically deformable material so that the main body thereof can be returned to its original shape after being pushed.
  • the eye drop container is preferably made of plastic.
  • the assay system includes an assay device 10 configured to perform an assay using liquid L.
  • the assay system includes a liquid supply device 20 configured to allow the liquid L to be dropped onto the assay device 10.
  • the assay system includes a mobile device 30 configured to allow the assay device 10 to move horizontally relative to the liquid supply device 20.
  • the assay system includes a control device 40 configured to be able to control the dropping of the liquid L by the liquid supply device 20 and the movement of the assay device 10 by the moving device 30.
  • the liquid supply device 20 includes a plurality of containers 21 each configured in the form of an eye drop container.
  • Each container 21 includes a main body portion 21a formed so as to be able to accommodate the liquid L.
  • Each container 21 includes a nozzle portion 21b having a discharge port 21c configured to allow the liquid L contained in the main body portion 21a to be dropped.
  • the main body portion 21a and the nozzle portion 21b can be attached to each other by fastening screws.
  • the liquid supply device 20 is configured so that a plurality of containers 21 can be attached with their discharge ports 21c facing downward and horizontally spaced apart from each other.
  • the container mounting mechanism 22 is included.
  • the liquid supply device 20 may push the main body 21a of the plurality of containers 21 in order to drop the liquid L from the discharge ports 21c of the plurality of containers 21.
  • the control device 40 is configured to control the container pushing mechanism 23 so that at least one movable member 23a pushes the main body 21a of the plurality of containers 21 in a desired order and timing.
  • the assay system according to the present embodiment can be roughly configured as follows.
  • the container mounting mechanism 22 has a plurality of container holders 24 for holding a plurality of containers 21, respectively.
  • Each container holder 24 has a main body accommodating portion 24a that receives the main body portion 21a of the container 21 held therein.
  • Each container holder 24 has a nozzle holding portion 24b that holds the nozzle portion 21b of the container 21 held therein.
  • the main body accommodating portion 24a of each container holder 24 has a passage port 24c that opens so as to allow passage of the movable member 23a that pushes the main body portion 21a of the container 21 accommodated therein.
  • the main body accommodating portion 24a of each container holder 24 is formed so as to receive the main body portion 21a of the container 21 pushed by the movable member 23a passing through the passage port 24c. It has a receiving portion 24d.
  • the assay system includes a liquid detection device 50 configured to be able to separately detect the liquid L dropped from the discharge port 21c of the nozzle portion 21b in the plurality of containers 21.
  • the control device 40 pushes the main body 21a of the container 21 when the liquid detection device 50 detects the liquid L dropped from the discharge port 21c of each container 21. It is configured to control the container pushing mechanism 23 in order to return the main body portion 21a from the state to the retracted state in which the main body portion 21a is not pushed.
  • the assay system comprises a measuring device 60 configured to be capable of measuring the reaction obtained in the assay device 10 by the liquid L dropped from the liquid supply device 20.
  • the measuring device 60 is arranged horizontally apart from the liquid supply device 20.
  • the control device 40 feeds the assay device 10 from the drop section (shown in FIG. 3) to the measurement section (shown in FIG. 10). It is configured to control the moving device 30 in order to move it horizontally relative to the device 20 and the measuring device 60.
  • the movement of the assay device 10 can be performed when the container pushing mechanism 23 changes from the advanced state (shown in FIG. 6A) to the retracted state (shown in FIG. 6B).
  • the dropping section is a section in which the liquid L is dropped from the liquid supply device 20 to the assay device 10. In FIG. 3, the dropping section is located below the liquid supply device 20.
  • the measurement section is a section in which the measuring device 60 measures the reaction obtained by the assay device 10 by the liquid L dropped in the dropping section.
  • the assay device 10 has a plurality of assay modules 11 configured to obtain a reaction by the liquid L dropped from the liquid supply device 20.
  • FIG. 8 shows, as an example, an assay device 10 having six assay modules 11.
  • the number of assay modules in the assay device can be 2-5 or 7 or more.
  • the assay device can also have only one assay module.
  • the liquid supply device 20 is configured to allow the liquid L to be dropped onto the plurality of assay modules 11 in a desired order and timing.
  • the measuring device 60 is configured to be capable of measuring the reactions obtained by the plurality of assay modules 11 by the liquid L dropped from the liquid supply device 20 in a desired order and timing.
  • the control device 40 sets the order and timing for measuring the reaction of the plurality of assay modules 11 by the measuring device 60 in the order in which the liquid L is dropped from the liquid supply device 20 to the plurality of assay modules 11.
  • the liquid supply device 20, the moving device 30, and the measuring device 60 are configured to control the liquid supply device 20, the moving device 30, and the measuring device 60 so as to be the same with respect to the timing at regular time intervals.
  • the container pushing mechanism 23 has a plurality of movable members 23a arranged so as to be able to push the main body portions 21a of the plurality of containers 21 respectively.
  • the mobile device 30 is configured to be able to move the assay device 10 along a predetermined movement path, as indicated by the double-sided arrows R.
  • the plurality of containers 21 are arranged so that the discharge ports 21c of the nozzle portions 21b are arranged along the movement path of the assay device 10.
  • control device 40 is electrically connected to the liquid supply device 20, the moving device 30, the liquid detection device 50, and the measuring device 60.
  • the control device 40 is configured to control the container pushing mechanism 23 so that the plurality of movable members 23a push the main body portions 21a of the plurality of containers 21 in a desired order and timing.
  • the assay device 10 can be configured in detail as follows.
  • Each of the plurality of assay modules 11 is configured as follows. As shown in FIG. 9, the assay module 11 has a microchannel 12 formed to allow the liquid L to flow.
  • the assay module 11 has a top 11a and a bottom 11b facing each other in the height direction of the microchannel 12.
  • Each of the top 11a and the bottom 11b can be made of a plastic film or sheet. However, the top and bottom are not limited to this.
  • the micro flow path 12 is defined in the height direction by the top portion 11a and the bottom portion 11b.
  • the flow direction, width direction, and height direction of the micro flow path 12 are substantially orthogonal to each other. Therefore, as shown in FIG. 8, it can be said that the plurality of assay modules 11 are arranged in the width direction of such a microchannel 12.
  • the microchannel 12 has one end side in the flow direction of the liquid L, that is, the end portion on the upstream side (indicated by the arrow F1 on one side) and the other end side in the flow direction of the fluid L, that is, Extends to and from the downstream end (indicated by one-sided arrow F2).
  • the liquid L can flow from the upstream side to the downstream side of the micro flow path 12 based on the lateral flow generated in the micro flow path 12.
  • the assay module 11 has an inlet 13 formed to allow the liquid L to flow into the microchannel 12. As shown in FIG. 9, the injection port 13 is arranged at the upstream end of the microchannel 12. The inlet 13 is formed so as to penetrate the top 11a.
  • the assay module 11 also has an absorbent porous medium 14 located at the downstream end of the microchannel 12. The absorbing porous medium 14 is configured to be able to absorb the liquid L in the microchannel 12.
  • the assay module 11 has an assay region 15 located in the middle of the flow direction of the microchannel 12.
  • a reagent that specifically binds to the sample in the assay is immobilized in the assay region 15.
  • Reagents involved in signal generation derived from specimens and reference substances include immobilization reagents that are used to pre-fix to the microchannel 12 and microcurrents in the assay process. There are additive reagents used to add to path 12.
  • the immobilization reagent provided in the assay region 15 specifically reacts with the sample in the liquid L and, together with the additive reagent, produces a detectable result of the sample.
  • Specimen detectable results can be observably visible to the naked eye, for example based on color changes, etc., or specimen detectable results can only be detected by a spectroscope or other measuring means. It can also appear.
  • the immobilization reagent provided in the assay region 15 is colored by reaction with an enzyme, an antibody, an epitope, a nucleic acid, a cell, an aptamer, a peptide, a molecular imprint polymer, an adsorption polymer, an adsorption gel, or a sample (III). It can be a chemical such as an ion, a color reagent, or any other substance that produces detectable results by reacting with a sample.
  • the immobilization reagent can be an antibody.
  • the immobilization reagent can be immobilized in the assay region 15 by a well-known immobilization technique such as a physical adsorption method or a chemisorption method.
  • Immobilization reagents include radioactive isotopes, enzymes, gold colloids, coloring reagents, quantum dots, colored molecules such as latex, dyes, electrochemical reactants, fluorescent substances, or luminescence to analyze or amplify the detection signal. Any labeling substance such as a substance can be bound. Alternatively, such labeling material can be attached to an additive reagent used to be added to the microchannel 12 in the assay step. Specifically, the immobilization reagent can be immobilized on one or both of the top 11a and the bottom 11b that define the microchannel 12 in its height direction.
  • the assay is performed in a state where the liquid L is fluidized in the microchannel 12 or the liquid L is allowed to stand in the microchannel 12 or is temporarily stopped. Will be done. Typically, the sample concentration in the liquid L can be detected.
  • the assay module 11 has a confirmation region 16 arranged to line up with the assay region 15 in the flow direction.
  • the confirmation region 16 is located downstream of the assay region 15.
  • the assay region 15 and the confirmatory region 16 are separated from each other to the extent that these generated signals are distinguishable and detectable.
  • the confirmation region 16 is configured to generate a known reaction (second reaction) that can be considered to have the same reaction time as the reaction (first reaction) that occurs in the assay region 15.
  • the confirmation region 16 is provided with an immobilization reagent that specifically binds to the reference substance.
  • the immobilization reagent of the confirmation region 16 can also be an antibody or the like, like the immobilization reagent of the assay region 15. Any labeling substance can be bound to this immobilization reagent.
  • This immobilization reagent can also be immobilized on one or both of the top 11a and the bottom 11b that define the microchannel 12 in its height direction.
  • the assay module 11 has an assay window 17 and a confirmation window 18 formed so that the assay region 15 and the confirmation region 16 can be confirmed from the outside, respectively.
  • the assay and confirmation windows 17, 18 are formed on the top 11a of the assay module 11. Each of the assay and confirmation windows 17, 18 is formed to penetrate the top of the assay module. However, at least one of the assay and confirmation windows can be transparent. At least one of the assay and confirmation windows can be translucent.
  • the liquid supply device 20 can be configured as follows in detail. As shown in FIG. 3, the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20 are arranged in the dropping section. As shown in FIGS. 4 to 6B, in the liquid supply device 20, the plurality of containers 21 are detachably attached to the container attachment mechanism 22. Further, the plurality of containers 21 are removably held by the plurality of container holders 24 of the container mounting mechanism 22. The plurality of container holders 24 are also detachably attached to the container attachment mechanism 22 separately.
  • the liquid supply device 20 includes three containers 21 and three container holders 24 for holding them, respectively.
  • the liquid supply device is not limited to a configuration including three containers and three container holders.
  • the liquid feeder may include two containers and two container holders each holding them, or may include four or more containers and four or more container holders each holding them.
  • the capacity of each container 21 can be about 3 ml (milliliter) or more. More preferably, the capacity of each container 21 can be from about 5 ml to about 15 ml. However, the capacity of the container is not limited to these.
  • the plurality of containers 21 and the plurality of container holders 24 in the container mounting mechanism 22 and the plurality of movable members (also referred to as a plurality of push members) 23a in the container pushing mechanism 23 are along the movement path of the assay device 10. They are lined up. As will be described later, when the movement path of the assay device 10 is substantially along a straight line, a plurality of containers 21 and a plurality of container holders 24 in the container mounting mechanism 22 and a plurality of movable members 23a in the container pushing mechanism 23. Means substantially along a straight line. The plurality of container holders 24 are separated from each other.
  • the plurality of containers and the plurality of container holders in the container mounting mechanism and the plurality of movable members in the container pushing mechanism are, for example, a substantially arc line. It can be lined up along a line including a curve such as a wavy line. At least two of the plurality of container holders can be integrated.
  • each of the plurality of containers 21 can be configured as follows. As shown in FIGS. 5, 6A, and 6B, the main body 21a of the container 21 is formed in a substantially tubular shape extending along the container axis 21d passing through the discharge port 21c. Further, the main body portion 21a can be formed into a substantially cylindrical shape centered on the container axis 21d. However, the shape of the main body of the container is not limited to these. For example, the main body portion can be formed into a substantially elliptical cylinder shape, a substantially polygonal cylinder shape, or the like.
  • the main body portion 21a of the container 21 is located on the base end side of the container 21 in the direction along the container axis 21d.
  • the nozzle portion 21b of the container 21 is located on the tip end side of the container 21 in the direction along the container axis 21d.
  • the main body portion 21a and the nozzle portion 21b are detachably attached to each other.
  • the container 21 is arranged so that the discharge port 21c faces downward and the container axis 21d faces the vertical direction.
  • the container can be arranged so that the container axis is oriented in an inclined direction with respect to the vertical direction.
  • each of such a plurality of container holders 24 can be configured as follows. As shown in FIGS. 5, 6A, and 6B, the main body accommodating portion 24a of the container holder 24 has a receiving space 24e formed so as to correspond to the main body portion 21a of the container 21 accommodated therein. The receiving space 24e of the container holder 24 extends along the holder axis 24f. The passage port 24c of the container holder 24 penetrates the main body accommodating portion 24a in a direction intersecting the holder axis 24f, particularly in a direction substantially orthogonal to the holder axis 24f.
  • the main body accommodating portion 24a of the container holder 24 is located on the base end side of the container holder 24 in the direction along the holder axis 24f.
  • the nozzle holding portion 24b of the container holder 24 is located on the tip end side of the container holder 24 in the direction along the holder axis 24f.
  • the main body accommodating portion 24a and the nozzle holding portion 24b are detachably attached to each other.
  • the passage port 24c is located in the distal end side region of the main body accommodating portion 24a. As shown in FIGS.
  • the receiving portion 24d faces the passing port 24c in the receiving space 24e in the advancing / retreating direction (indicated by the arrows W on both sides) of the movable member 23a of the container pushing mechanism 23 described later. It is arranged like this.
  • the nozzle holding portion 24b of the container holder 24 has an insertion hole 24g through which the nozzle portion 21b of the container 21 can be inserted.
  • the nozzle holding portion 24b of the container holder 24 is formed so as to hold the nozzle 21b in a state where the nozzle portion 21b of the container 21 is inserted into the insertion hole 24g and the discharge port 21c of the container 21 is arranged outside the container holder 24. Will be done.
  • the container pushing mechanism 23 has a plurality of fixing members 23b that each support a plurality of movable members 23a.
  • the container pushing mechanism 23 includes a plurality of actuators 23c having a movable member 23a and a fixing member 23b.
  • the container pushing mechanism 23 has three movable members 23a configured to be able to push each of the three containers 21, and the container pushing mechanism 23 also has three movable members 23a.
  • Each includes three actuators 23c having three fixing members 23b and one movable member 23a and one fixing member 23b.
  • the container pushing mechanism can have two movable members and two fixing members, or can have four or more movable members and four or more fixing members each supporting them. Therefore, the container pushing mechanism can include two actuators or four or more actuators.
  • Each of the plurality of actuators 23c can be configured as follows. As shown in FIGS. 6A and 6B, the fixing member 23b is configured to allow the movable member 23a to be driven forward and backward.
  • the movable member 23a is movable between an advanced state (shown in FIG. 6A) advanced from the fixed member 23b and a retracted state (shown in FIG. 6B) retracted into the fixed member 23b.
  • the movable member 23a extends substantially linearly in the advancing / retreating direction.
  • the movable member 23a can be formed in a substantially rod shape. In this case, the width of the movable member 23a in the direction substantially orthogonal to the advancing / retreating direction can be about 3 mm or more and less than about 1 cm.
  • the movable member 23a can be formed into a substantially cylindrical shape.
  • the diameter of the movable member 23a can be about 3 mm or more and less than about 1 cm.
  • the shape of the movable member is not limited to this.
  • the mobile device 30 can be configured in detail as follows. As shown in FIGS. 1 and 2, the mobile device 30 has a stage 31 configured to detachably attach the assay device 10.
  • the moving device 30 has a guide assembly 32 that movably supports the stage 31.
  • the moving device 30 has a driving mechanism 33 that drives the stage 31 to move along the moving path.
  • the stage 31 is configured to support the bottom 10b of the assay device 10 from below with the top 10a of the assay device 10 facing upward.
  • the assay device 10 is arranged on the stage 31 so as to follow the movement path in the width direction thereof.
  • the guide assembly 32 has at least one guide portion 32a extending along the movement path of the assay device 10.
  • the guide assembly 32 has a base portion 32b that supports at least one guide portion 32a.
  • the drive mechanism 33 has a motor 33a.
  • the motor 33a has a drive shaft 33b that can be driven to rotate.
  • the drive mechanism 33 has a driven shaft 33c located distant from the drive shaft 33b on the opposite side of the drive shaft 33b in the direction along the movement path of the assay device 10.
  • the drive mechanism 33 has an endless belt 33d arranged along the movement path of the assay device 10.
  • the endless belt 33d is hung on the drive shaft 33b and the driven shaft 33c.
  • the stage 31 is attached to the endless belt 33d.
  • the rotary drive of the drive shaft 33b of the motor 33a drives the endless belt 33d in a loop shape, whereby the stage 31 moves along the moving path together with the endless belt 33d.
  • the drive mechanism of the mobile device is not limited to this.
  • such a mobile device 30 has a drop section (shown in FIG. 3) and a measurement section (shown in FIG. 10) so that the stage 31 can be equipped with the assay device 10. It can be moved to an installation section away from (shown).
  • the installation section is a section in which the stage 31 is in a state where the assay device 10 can be installed.
  • the dropping section is arranged between the installation section and the measurement section in the movement path of the assay device 10.
  • the moving device 30 can move the stage 31 together with the assay device 10 from the installation section to the measurement section via the dropping section along the moving path.
  • the moving device 30 can move the stage 31 together with the assay device 10 from the measurement section to the installation section via the dropping section.
  • the moving device 30 can repeatedly reciprocate the stage 31 together with the assay device 10 between the dropping section and the measuring section.
  • the stage 31 is configured to be able to move along the travel path with the assay device 10 to be able to receive.
  • the assay region 15 and the confirmation region 16 of each assay module 11 in the assay device 10 are imaged through the lens 61a of the image pickup unit 61 of the measurement device 60 described later.
  • the stage 31 is configured to be able to move along the movement path together with the assay device 10.
  • the liquid detection device 50 can be configured in detail as follows.
  • the liquid detection device 50 has a plurality of liquid detection units 51 configured to be capable of detecting each of the liquids L dropped from the discharge ports 21c of the plurality of containers 21.
  • Each of the plurality of liquid detection units 51 can be configured as follows. As shown in FIG. 7, the liquid detection unit 51 is located directly below the container 21. The liquid detection unit 51 is configured to be able to detect the liquid L dropped from the discharge port 21c of the container 21 in a non-contact manner.
  • the liquid detection unit 51 is a fiber sensor. However, the liquid detection unit is not limited to this.
  • the measuring device 60 can be configured in detail as follows.
  • the measuring device 60 includes electronic components such as a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an input interface, and an output interface, and an electric circuit in which such electronic components are arranged. Can be configured to include.
  • the measuring device 60 has an imaging unit 61 configured to be able to image the assay region 15 and the confirmation region 16 of the assay device 10.
  • the measuring device 60 has a concentration identification unit 62 that can identify the concentrations of the assay and confirmation regions 15 and 16 based on the image captured by the imaging unit 61.
  • the imaging unit 61 has a lens 61a and images the assay region 15 and the confirmation region 16 through the lens 61a.
  • the image pickup unit 61 can be a camera.
  • the lens 61a is arranged in the measurement section.
  • the lens 61a is arranged directly above the movement path of the assay region 15 and the confirmation region 16 in the plurality of assay modules 11 of the assay device 10.
  • the measuring device 60 can be a smartphone (mobile phone, cell phone) with a camera function.
  • the measuring device is not limited to this.
  • the measuring device may be a personal computer or the like to which a camera is connected.
  • the stage 31 of the moving device 30 is moved to the installation section.
  • the assay device 10 is installed on stage 31.
  • the stage 31 on which the assay device 10 is installed is moved from the installation section to the dropping section.
  • the injection port 13 of the first assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20.
  • the stage 31 is moved so as to correspond to the discharge port 21c of the first container 21.
  • the first movable member 23a of the container pushing mechanism 23 corresponding to the first container 21 is advanced, whereby the first movable member 23a pushes the main body portion 21a of the first container 21.
  • the liquid L in the first container 21 is dropped from the discharge port 21c to the injection port 13 of the first assay module 11.
  • the first movable member 23a is retracted, whereby the first movable member 23a is retracted.
  • the first movable member 23a separates from the main body portion 21a of the first container 21.
  • the assay region 15 and the confirmation region 16 of the first assay module 11 are filled with the liquid L from the first container 21.
  • the injection port 13 of the second assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is the first container selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. It is moved so as to correspond to the discharge port 21c of 21.
  • the first movable member 23a of the container pushing mechanism 23 corresponding to the first container 21 is advanced, whereby the first movable member 23a pushes the main body portion 21a of the first container 21.
  • the liquid L in the first container 21 is dropped from the discharge port 21c to the injection port 13 of the second assay module 11.
  • the first movable member 23a When the first liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the first container 21 detects the dropped liquid L, the first movable member 23a is retracted, whereby the first movable member 23a is retracted.
  • the first movable member 23a separates from the main body portion 21a of the first container 21.
  • the assay region 15 and the confirmation region 16 of the second assay module 11 are filled with the liquid L from the first container 21.
  • the injection port 13 of the first assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. It is moved so as to correspond to the discharge port 21c of the container 21 of.
  • the second movable member 23a of the container pushing mechanism 23 corresponding to the second container 21 is advanced, whereby the second movable member 23a pushes the main body portion 21a of the second container 21.
  • the liquid L in the second container 21 is dropped from the discharge port 21c to the injection port 13 of the first assay module 11.
  • the second movable member 23a When the second liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the second container 21 detects the dropped liquid L, the second movable member 23a is retracted, whereby the second movable member 23a is retracted.
  • the second movable member 23a separates from the main body portion 21a of the second container 21.
  • the assay region 15 and the confirmation region 16 of the first assay module 11 are filled with the liquid L from the second container 21.
  • the injection port 13 of the second assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is the second container selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. It is moved so as to correspond to the discharge port 21c of 21.
  • the second movable member 23a of the container pushing mechanism 23 corresponding to the second container 21 is advanced, whereby the second movable member 23a pushes the main body portion 21a of the second container 21.
  • the liquid L in the second container 21 is dropped from the discharge port 21c to the injection port 13 of the second assay module 11.
  • the second movable member 23a When the second liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the second container 21 detects the dropped liquid L, the second movable member 23a is retracted, whereby the second movable member 23a is retracted.
  • the second movable member 23a separates from the main body portion 21a of the second container 21.
  • the assay region 15 and the confirmation region 16 of the second assay module 11 are filled with the liquid L from the second container 21.
  • the stage 31 on which the assay device 10 is installed is moved from the dropping section to the measuring section.
  • the assay and confirmation regions 15 and 16 of the first assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60.
  • the assay unit 61 captures the assay and confirmation regions 15 and 16 of the first assay module 11.
  • the measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the first assay module 11 based on the captured image.
  • the assay and confirmation regions 15 and 16 of the second assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60.
  • the assay unit 61 captures the assay and confirmation regions 15 and 16 of the second assay module 11.
  • the measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the second assay module 11 based on the captured image.
  • the outline of the assay system is an assay system including an assay device 10 configured to perform an assay using a liquid L, so that the liquid L can be dropped onto the assay device 10.
  • the liquid supply device 20 configured in the above, the moving device 30 configured to make the assay device 10 relatively movable in the horizontal direction with respect to the liquid supply device 20, and the liquid by the liquid supply device 20.
  • a plurality of liquid supply devices 20 are configured in the form of an instillation container, including a control device 40 configured to be able to control the dropping of L and the movement of the assay device 10 by the moving device 30.
  • Each container 21 includes a main body portion 21a formed so as to be able to accommodate the liquid L, and a discharge port configured to be capable of dropping the liquid L contained in the main body portion 21a.
  • the liquid supply device 20 includes a nozzle portion 21b having a 21c, and the liquid supply device 20 can attach the plurality of containers 21 in a state where the discharge ports 21c of the plurality of containers 21 are oriented downward and are spaced apart from each other in the horizontal direction. At least one configured to be able to push the main body portion 21a of the plurality of containers 21 in order to drip the liquid L from the container mounting mechanism 22 configured to do so and the discharge ports 21c of the plurality of containers 21.
  • the control device 40 includes a container pushing mechanism 23 having a movable member 23a, in order for the at least one movable member 23a to push the main body portions 21a of the plurality of containers 21 in a desired order and timing. It is configured to control the container pushing mechanism 23.
  • the liquid L is supplied from the discharge port 21c of the container 21 and the main body 21a of the plurality of containers 21 is pushed by at least one movable member 23a. Since the timing can be easily controlled, the timing of supplying the plurality of liquids L can be accurately controlled.
  • the configuration for supplying the liquid L by using a plurality of containers 21 configured in the form of an eye drop container and a container pushing mechanism 23 having at least one movable member 23a for pushing the main body portion 21a of the plurality of containers 21 is simple. be.
  • the operation of putting the liquid L into the container 21 configured in the form of an eye drop container is easy, and since the plurality of liquid Ls are separately housed in the plurality of containers 21, the risk of contamination can be reduced. Therefore, a plurality of liquids L can be supplied quickly and continuously, a small amount of liquid L can be supplied with high accuracy, a configuration for supplying the liquid L can be simplified, and contamination can occur. The risk can be reduced.
  • the container mounting mechanism 22 has a plurality of container holders 24 for holding the plurality of containers 21, and each container holder 24 holds the container 21.
  • the main body housing portion 24a for receiving the main body portion 21a of the container holder 24 and the nozzle holding portion 24b for holding the nozzle portion 21b of the container 21 held by the container holder 24 are provided. It has a passage port 24c that opens so as to allow passage of the movable member 23a that pushes the main body portion 21a of the container 21 housed therein.
  • a plurality of containers 21 can be easily attached to and detached from the container mounting mechanism 22. Therefore, for example, if a plurality of containers 21 each containing a plurality of reagents prepared so as to be different from each other are prepared in advance, a container 21 containing a desired reagent can be attached to the container mounting mechanism from these plurality of containers 21. If installed at 22, the risk of contamination between reagents can be prevented.
  • the container 21 in which the liquid L remains after use can be removed from the container mounting mechanism 22, and the removed container 21 can be stored in a refrigerator or the like, and then the stored container 21 is used again.
  • the container 21 can be attached to the container mounting mechanism 22 again and used. Therefore, the consumption of the liquid L such as the reagent can be reduced, and the container 21 can be used repeatedly.
  • the main body accommodating portion 24a of the container holder 24 is pushed by the movable member 23a to push the main body portion 21a of the container 21. Therefore, a small amount of liquid L can be supplied with high accuracy from the discharge port 21c of the container 21.
  • the main body accommodating portion 24a of each container holder 24 is formed so as to receive the main body portion 21a of the container 21 pushed by the movable member 23a passing through the passage port 24c. It has a receiving portion 24d.
  • the main body accommodating portion 24a of the container holder 24 can stably support the main body portion 21a of the container 21 pushed by the movable member 23a, it is possible to stably support the main body portion 21a of the container 21 from the discharge port 21c of such a container 21.
  • a small amount of liquid L can be supplied with high accuracy.
  • the outline of the assay system includes a liquid detection device 50 configured to be able to separately detect the liquid L dropped from the discharge port 21c of the nozzle portion 21b in the plurality of containers 21, and the control device 40.
  • the liquid detection device 50 detects the liquid L dripping from the discharge port 21c of each container 21, it changes from the advanced state in which the main body 21a of the container 21 is pushed to the retracted state in which the main body 21a is not pushed. It is configured to control the container pushing mechanism 23 in order to return it.
  • the timing of supplying the liquid L from the discharge port 21c of the container 21 can be accurately controlled.
  • the outline of the assay system includes a measuring device 60 configured to be capable of measuring the reaction obtained by the assay device 10 by the liquid L dropped from the liquid supply device 20, and the measuring device 60 is provided.
  • the control device 40 is arranged so as to be horizontally separated from the liquid supply device 20, and the measuring device 60 drops the liquid L from the liquid supply device 20 to the assay device 10.
  • the assay device 10 is horizontally relative to the liquid supply device 20 and the measurement device 60 toward a measurement section in which the reaction obtained by the assay device 10 is measured by the liquid L dropped in the section. It is configured to control the moving device 30 so as to move to.
  • the measuring device 60 measures the reaction obtained by the liquid L in the assay device 10. be able to. Therefore, the timing of supplying the plurality of liquids L can be accurately controlled so that the measuring device 60 appropriately measures the reaction of the assay device 10.
  • the assay device 10 has a plurality of assay modules 11 configured so that a reaction can be obtained by a liquid L dropped from the liquid supply device 20.
  • the supply device 20 is configured to allow the liquid L to be dropped onto the plurality of assay modules 11 in the desired order and timing, and the measuring device 60 is said by the liquid L dropped from the liquid supply device 20.
  • the control device 40 is configured so that the reactions obtained by the plurality of assay modules 11 can be measured in a desired order and timing, and the control device 40 measures the reactions of the plurality of assay modules 11 by the measuring device 60.
  • the liquid supply device 20 and the movement of the liquid supply device 20 so that the timing is the same with respect to the order and timing of dropping the liquid L from the liquid supply device 20 to the plurality of assay modules 11 at regular time intervals. It is configured to control the device 30 and the measuring device 60.
  • the measuring device 60 determines the time required for these assays.
  • the reaction of these assay modules 11 can be appropriately measured in the above order and timing.
  • the timing of supplying the plurality of liquids L can be accurately controlled so that the measuring device 60 appropriately measures the reaction of the assay device 10.
  • the reaction times of the plurality of assay modules 11 can be made uniform.
  • the container pushing mechanism 23 has a plurality of movable members 23a arranged so as to be able to push the main body portions 21a of the plurality of containers 21 respectively.
  • the moving device 30 is configured to be able to move the assay device 10 along a predetermined movement path, and the plurality of containers 21 make the discharge port 21c of these nozzle portions 21b the assay device 10.
  • the control device 40 arranges the container pushing mechanism 23 so that the plurality of movable members 23a push the plurality of containers 21 in the desired order and timing, respectively. It is configured to be controlled.
  • the body portion 21a of the plurality of containers 21 can be pushed more quickly and continuously by the plurality of movable members 23a in a desired order and timing, and as a result, the plurality of containers 21 can be pushed.
  • the liquid L can be supplied more quickly and continuously from the discharge port 21c of the above.
  • FIGS. 11 to 13 An outline of the assay system according to the present embodiment will be described with reference to FIGS. 11 to 13. As shown in FIGS. 11 to 13, the assay system according to the present embodiment is generally configured in the same manner as the assay system according to the first embodiment.
  • the assay system according to the present embodiment is schematically and in detail the same as the assay device 10, the mobile device 30, and the measuring device 60 according to the first embodiment. It has 10, a moving device 30, and a measuring device 60.
  • the assay system according to the present embodiment has a liquid supply device 120 corresponding to the liquid supply device 20 according to the first embodiment.
  • the assay system according to the present embodiment has a control device 140 and a liquid detection device 150 corresponding to the control device 40 and the liquid detection device 50 according to the first embodiment, respectively.
  • the liquid supply device 120 has a plurality of containers 21 according to the first embodiment and a plurality of containers 21 substantially and in detail similarly configured.
  • the liquid supply device 120 has a container mounting mechanism 122 and a container pushing mechanism 123 corresponding to the container mounting mechanism 22 and the container pushing mechanism 23 according to the first embodiment, respectively.
  • the container mounting mechanism 122 has a container holder 124 corresponding to a plurality of container holders 24 according to the first embodiment.
  • the container pushing mechanism 123 has a movable member 123a corresponding to the movable member 23a according to the first embodiment.
  • Each container holder 124 has a main body accommodating portion 24a, a nozzle holding portion 24b, a passing port 24c, and a main body accommodating portion 124a corresponding to a receiving portion 24d, a nozzle holding portion 124b, a passing port 124c, and a receiving portion, respectively, according to the first embodiment. It has a portion 124d.
  • the liquid supply device 120 of the assay system has a container moving mechanism 125 configured to allow a plurality of containers 21 to be moved with respect to the container pushing mechanism 123.
  • the container pushing mechanism 123 has one movable member 123a configured to be able to push a plurality of containers 21 separately.
  • the control device 140 is electrically connected to the liquid supply device 120, the mobile device 30, the liquid detection device 150, and the measuring device 60.
  • the control device 140 is configured to control the container moving mechanism 125 so that the plurality of containers 21 move to the container pushing position corresponding to one movable member 123a in a desired order and timing.
  • the control device 140 is also configured to control the container pushing mechanism 123 so that one movable member 123a pushes the main body 21a of the plurality of containers 21 moved by the container moving mechanism 125 in a desired order and timing. ing.
  • the liquid supply device 120 can be configured as follows in detail. As shown in FIG. 11, the discharge ports 21c of the plurality of containers 21 in the liquid supply device 120 are sequentially arranged one by one in the dropping section. As shown in FIGS. 11 and 13, in the liquid supply device 120, the plurality of containers 21 are detachably attached to the container attachment mechanism 122. Further, the plurality of containers 21 are removably held by the plurality of container holders 124 of the container mounting mechanism 122. The plurality of container holders 124 are integrally formed so as to form a holder assembly 126.
  • the liquid supply device 120 includes four containers 21 and four container holders 124 for holding them, respectively.
  • the liquid feeder may include two containers and two container holders each holding them, three containers and three container holders each holding them, or five or more. It may also include a container and five or more container holders holding each of them.
  • the plurality of containers 21 and the plurality of container holders 124 in the container mounting mechanism 122 are arranged along a substantially arc-shaped holder alignment line 126a.
  • the holder alignment line can have a shape other than the substantially arc shape.
  • the holder alignment line may have a substantially straight line shape or the like.
  • the plurality of container holders 124 are spaced apart from each other in the direction along the holder alignment line 126a (hereinafter referred to as "holder alignment direction").
  • the holder alignment line 126a is also arranged so as to pass through the dropping section.
  • One pushing member 123a in the container pushing mechanism 123 is arranged in the dropping area.
  • Each of such a plurality of container holders 124 can be configured as follows. As shown in FIG. 13, the main body accommodating portion 124a of the container holder 124 has a receiving space 124e formed so as to correspond to the main body portion 21a of the container 21 accommodated therein. The receiving space 124e of the container holder 124 extends along the holder axis 124f. The passage port 124c of the container holder 124 penetrates the main body accommodating portion 124a in a direction intersecting the holder axis 124f, particularly in a direction substantially orthogonal to the holder axis 124f.
  • the main body accommodating portion 124a of the container holder 124 is located on the base end side of the container holder 124 in the direction along the holder axis 124f.
  • the nozzle holding portion 124b of the container holder 124 is located on the tip end side of the container holder 124 in the direction along the holder axis 124f.
  • the main body accommodating portion 124a and the nozzle holding portion 124b are detachably attached to each other.
  • the main body accommodating portion 124a is opened so as to open the receiving space 124e to the outside of the holder 124 on the base end side of the holder 124.
  • the container 21 is accommodated in the receiving space 124e from the base end side of the opening main body accommodating portion 124a.
  • the passage port 124c also opens on the base end side of the main body accommodating portion 124a.
  • the receiving portion 124d is arranged in the receiving space 124e so as to face the passing port 124c in the advancing / retreating direction (indicated by the arrows W on both sides) of the movable member 123a of the container pushing mechanism 123.
  • the nozzle holding portion 124b of the container holder 124 has an insertion hole 124g penetrating so that the nozzle portion 21b of the container 21 can be inserted.
  • the nozzle holding portion 124b of the container holder 124 is formed so as to hold the nozzle 21b in a state where the nozzle portion 21b of the container 21 is inserted into the insertion hole 124g and the discharge port 21c of the container 21 is arranged outside the container holder 124. Will be done.
  • the holder assembly 126 is formed so as to have an outer peripheral edge portion 126b extending substantially following the holder alignment line 126a.
  • the holder assembly 126 can be formed so as to have a substantially arcuate outer peripheral edge portion 126b extending following the substantially arcuate holder alignment line 126a.
  • the holder assembly 126 can be formed so as to have a substantially circular outer peripheral edge portion 126b extending following the substantially circular holder alignment line 126a.
  • the holder assembly 126 is rotatably supported around the central axis 126c located at the substantially center of the substantially circular holder alignment line 126a, as indicated by the arrows Q on both sides.
  • the holder assembly 126 has a driven gear 126d having a plurality of teeth arranged substantially parallel to the holder alignment line 126a.
  • the passage port 124c of each container holder 124 penetrates the main body accommodating portion 124a of the container holder 124 from the receiving space 124e of the container holder 124 toward the outer peripheral edge portion 126b of the holder assembly 126.
  • the container moving mechanism 125 has a motor 125a configured to be rotatable and driveable. As shown by the arrows P on both sides, the container moving mechanism 125 has a drive gear 125b configured to be rotatable about the central axis 125c by rotationally driving the motor 125a.
  • the drive gear 125b has a plurality of teeth arranged along its outer circumference. A plurality of teeth of the drive gear 125b mesh with the driven gear 126d.
  • the drive gear 125b is rotated by the rotational drive of the motor 125a, whereby the driven gear 126d that meshes with the drive gear 125b is moved.
  • the holder assembly 126 is operated so that the plurality of container holders 124 move along the holder alignment line 126a.
  • the plurality of containers 21 can be moved to the container pushing positions corresponding to one movable member 123a in a desired order and timing.
  • the container pushing mechanism 123 has one fixing member 123b that supports one movable member 123a.
  • the container pushing mechanism 123 includes one actuator 123c having one movable member 123a and one fixing member 123b. More specifically, the movable member 123a, the fixing member 123b, and the actuator 123c of the container pushing mechanism 123 are configured in the same manner as the movable member 23a, the fixing member 23b, and the actuator 23c according to the first embodiment.
  • the movable member 123a can move forward and backward as shown by the arrows W on both sides.
  • the liquid detection device 150 can be configured in detail as follows.
  • the liquid detection device 150 has one liquid detection unit 151 configured to be able to detect the liquid L dropped from the discharge port 21c of one container 21 located in the dropping section. More specifically, the liquid detection unit 151 is configured in the same manner as the liquid detection unit 51 according to the first embodiment.
  • stage 31 of the moving device 30 is moved to the installation section.
  • the assay device 10 is installed on stage 31.
  • the container moving mechanism 125 moves the first container 21 selected from the plurality of containers 21 in the liquid supply device 120 so as to correspond to one movable member 123a in the container pushing mechanism 123 in the dropping section.
  • the stage 31 on which the assay device 10 is installed is moved from the installation section to the dropping section.
  • the injection port 13 of the first assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 corresponds to the discharge port 21c of the first container 21. Move the stage 31.
  • the movable member 123a is advanced, whereby the movable member 123a pushes the main body portion 21a of the first container 21.
  • the liquid L in the first container 21 is dropped from the discharge port 21c to the injection port 13 of the first assay module 11.
  • the movable member 123a is retracted, whereby the movable member 123a is separated from the main body portion 21a of the first container 21.
  • the concentrations in the assay region 15 and the confirmation region 16 of the first assay module 11 change.
  • the container moving mechanism 125 moves the second container 21 selected from the plurality of containers 21 in the liquid supply device 120 so as to correspond to one movable member 123a in the container pushing mechanism 123 in the dropping section.
  • the injection port 13 of the second assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 corresponds to the discharge port 21c of the second container 21. Move the stage 31.
  • the movable member 123a is advanced, whereby the movable member 123a pushes the main body portion 21a of the second container 21.
  • the liquid L in the second container 21 is dropped from the discharge port 21c to the injection port 13 of the second assay module 11.
  • the movable member 123a is retracted, whereby the movable member 123a is separated from the main body portion 21a of the second container 21.
  • the concentrations in the assay region 15 and the confirmation region 16 of the second assay module 11 change.
  • the stage 31 on which the assay device 10 is installed is moved from the dropping section to the measuring section.
  • the assay and confirmation regions 15 and 16 of the first assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60.
  • the assay unit 61 captures the assay and confirmation regions 15 and 16 of the first assay module 11.
  • the measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the first assay module 11 based on the captured image.
  • the assay and confirmation regions 15 and 16 of the second assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60.
  • the assay unit 61 captures the assay and confirmation regions 15 and 16 of the second assay module 11.
  • the measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the second assay module 11 based on the captured image.
  • the liquid supply device 120 includes a container moving mechanism 125 configured to make the plurality of containers 21 movable with respect to the container pushing mechanism 123.
  • the container pushing mechanism 123 has one movable member 123a configured so that the main body portions 21a of the plurality of containers 21 can be pushed separately, and the control device 140 has the plurality of.
  • the container 21 is configured to control the container moving mechanism 125 in order to move to the container pushing position corresponding to the one movable member 123a in the desired order and timing, and the one movable member 123a.

Abstract

[Problem] To provide an assay system whereby a plurality of liquids are rapidly and consecutively supplied, a miniscule amount of liquid is supplied at high precision, the configuration for supplying liquid is simplified, the handling of liquid is simplified, and risk of contamination is reduced. [Solution] The present invention pertains to an assay system including an assay device 10 that performs assay by using a liquid L. This assay system comprises: a liquid supply device 20, 120 that drips liquid onto an assay device; a movement device 30 that moves the assay device; and a control device 40, 140 that controls the liquid supply device and the moving device. The liquid supply device includes a plurality of containers 21 respectively formed in the shape of an instillation container, and has at least one movable member 23a, 123a that pushes main bodies of the multiple containers such that liquid is dripped from discharge ports 21c of the multiple containers. The control device controls the at least one movable member so as to push the main bodies of the plurality of containers in a desired order and at a desired timing.

Description

アッセイシステムAssay system
 本発明は、液体を用いてアッセイを行うように構成されるアッセイ装置を含むアッセイシステムに関する。 The present invention relates to an assay system comprising an assay apparatus configured to perform an assay using a liquid.
 主に生物学、化学、医薬等の分野において検査、実験、アッセイ等を行う場合、μl(マイクロリットル)オーダー、すなわち、約1μl以上かつ約1ml(ミリリットル)未満の微量な試薬、処理薬、基質溶液等の液体をアッセイ装置に正確に供給する操作が求められる。特に、近年多様化する臨床検査等の現場において、迅速に検査、診断、アッセイ等を行うPOCT(Point Of Care Testing)等の技術が注目されており、このような技術を用いる場合、現場では、多種類の試薬等の液体をアッセイ装置に正確かつ簡便に供給する操作が求められる。 When conducting tests, experiments, assays, etc. mainly in the fields of biology, chemistry, pharmaceuticals, etc., μl (microliter) order, that is, trace reagents, treatment agents, and substrates of about 1 μl or more and less than about 1 ml (milliliter). An operation for accurately supplying a liquid such as a solution to the assay device is required. In particular, in the field of clinical examinations and the like, which have been diversified in recent years, technologies such as POCT (Point Of Care Testing) that rapidly perform tests, diagnoses, assays, etc. are attracting attention. An operation of accurately and easily supplying liquids such as various kinds of reagents to the assay device is required.
 例えば、液体を供給する操作として、マイクロピペット等のピペットを用いて、液体を手動でアッセイ装置に供給する操作(以下、「ピペット操作」という)が挙げられる。しかしながら、手動のピペット操作は、正確性を要求される一方で、難易度が高く、かつ煩雑である。すなわち、液体の取り扱いが簡便ではない。このようなピペット操作は、一部の限られた熟練の技師によって行われる必要があり、このことは現場の人員不足の要因になる。また、手動のピペット操作には、試薬間の汚染のリスク、調製時間の増大等の問題もある。 For example, as an operation of supplying a liquid, an operation of manually supplying a liquid to an assay device using a pipette such as a micropipette (hereinafter referred to as “pipette operation”) can be mentioned. However, while manual pipette operation requires accuracy, it is difficult and complicated. That is, the handling of the liquid is not easy. Such pipette operations need to be performed by a limited number of skilled technicians, which causes a shortage of personnel in the field. In addition, manual pipette operation has problems such as a risk of contamination between reagents and an increase in preparation time.
 さらに、液体を供給する操作として、タンク等の容器に貯蔵された液体を、ポンプを用いて自動的にアッセイ装置に供給する操作(以下、「ポンプ操作」という)もまた挙げられる。しかしながら、ポンプ操作を行うためは、容器、及びこの容器からポンプに液体を送るための配管に、減菌プラスチック等の高機能素材を用いる必要があり、かつポンプによって自動的に液体をタンクから供給するための構成が複雑になる。このようなポンプ操作を行うための装置は高価になる。また、かかる装置は、タンク、ポンプ等を有するために煩雑になる。 Further, as an operation of supplying the liquid, an operation of automatically supplying the liquid stored in a container such as a tank to the assay device by using a pump (hereinafter referred to as "pump operation") can also be mentioned. However, in order to operate the pump, it is necessary to use a high-performance material such as sterilized plastic for the container and the piping for sending the liquid from this container to the pump, and the liquid is automatically supplied from the tank by the pump. The configuration for this is complicated. The device for performing such a pump operation becomes expensive. In addition, such an apparatus becomes complicated because it has a tank, a pump, and the like.
 そのため、正確かつ簡便に液体を供給可能とする様々なアッセイ技術がさらに提案されている。このようなアッセイ技術の一例としては、アクチュエータをそれぞれ有する複数の流体輸送手段と、これら複数の流体輸送手段にそれぞれ接続される複数の流体通路と、これら複数の流体通路を合流させた少なくとも1つの合流点から延びる少なくとも1つの合流通路とを含むマイクロ流体カートリッジであって、各流体輸送手段のアクチュエータが、この流体輸送手段に接続される流体通路上に配置され、かつこの流体通路内における試薬等の流体を脈動的に送るように加圧可能に往復移動するピストンを有し、複数の流体通路から脈動的に送られた流体が、少なくとも1つの合流通路にて混合かつ反応するように構成されている、マイクロ流体カートリッジが挙げられる。(例えば、特許文献1を参照。) Therefore, various assay techniques that enable accurate and easy supply of liquid have been further proposed. As an example of such an assay technique, a plurality of fluid transport means each having an actuator, a plurality of fluid passages connected to each of the plurality of fluid transport means, and at least one obtained by merging the plurality of fluid passages. A microfluidic cartridge comprising at least one merging passage extending from a merging point, wherein the actuator of each fluid transport means is arranged on the fluid passage connected to the fluid transport means, and reagents and the like in the fluid passage. It has a piston that reciprocates in a pressurable manner so as to send the fluid of There is a microfluidic cartridge. (See, for example, Patent Document 1.)
 アッセイ技術の別の一例としては、試薬等の液体をパッケージングする複数の液体貯蔵区間、及びこれら複数の液体貯蔵区画をそれぞれ被覆する複数の破裂可能なシールを有する液体パッケージコンポーネントと、各破裂可能なシールを破裂させることができるように構成されるシール破裂コンポーネントと、複数の液体貯蔵区間から液体を受け取るように構成されるアッセイ装置とを含むアッセイシステムであって、シール破裂コンポーネントが、各シールを破裂させるべく剥離されるようにそのシールにより被覆される液体貯蔵区画を圧縮するプランジャーを含んでいる、アッセイシステムが挙げられる。(例えば、特許文献2を参照。) Another example of an assay technique is a liquid packaging component with multiple liquid storage sections for packaging liquids such as reagents, and multiple burstable seals each covering each of these multiple liquid storage compartments, and each burstable. An assay system that includes a seal rupture component configured to be able to rupture a single seal and an assay device configured to receive liquid from multiple liquid storage sections, with each seal rupturing component being an assay device. Included is an assay system that includes a plunger that compresses a liquid storage compartment covered by its seal so that it is stripped to rupture. (See, for example, Patent Document 2.)
 アッセイ技術のさらなる別の一例としては、バイオアッセイを実施するように構成される上部処理室と、この上部処理室の下方に配置され、かつバイオアッセイを実施するように構成される下部処理室と、これら上部及び下部処理室を上下方向にて分離するように配置される多孔性基板と、毛細チャネルによって上部処理室と流体連通する複数の試薬容器と、毛細チャネルによって下部処理室と流体連通する追加室とを有するカートリッジであって、上部及び下部処理室に印加される圧力の差が臨界値を超えた場合に、流体が上部処理室から多孔性基板を通って下部処理室に入るように構成され、毛細チャネルにより流体連通される室間における流体の搬送は、これら室間における毛細菅圧抵抗を超える空気圧を加えることによって制御されるようになっている、カートリッジが挙げられる。(例えば、特許文献3を参照。) Yet another example of an assay technique is an upper treatment chamber configured to perform a bioassay and a lower treatment chamber located below the upper treatment chamber and configured to perform the bioassay. , These upper and lower treatment chambers are arranged so as to be separated in the vertical direction, a plurality of reagent containers that fluidly communicate with the upper treatment chamber by the capillary channel, and fluid communication with the lower treatment chamber by the capillary channel. A cartridge with an additional chamber so that when the difference in pressure applied to the upper and lower treatment chambers exceeds the critical value, the fluid enters the lower treatment chamber from the upper treatment chamber through the porous substrate. Cartridges are configured such that the transport of fluid between chambers that are fluid-communicated by the capillary channels is controlled by applying air pressure that exceeds the capillary pressure resistance between these chambers. (See, for example, Patent Document 3.)
特開2019-162623号公報Japanese Unexamined Patent Publication No. 2019-162623 特開2016-173373号公報Japanese Unexamined Patent Publication No. 2016-173373 特開2019-164140号公報Japanese Unexamined Patent Publication No. 2019-164140
 しかしながら、上記アッセイ技術の一例においては、予め秤量された複数の試薬を複数の流体通路にそれぞれ収容するようにそれぞれマイクロ流体カートリッジ内に正確に注入する作業が必要になる。このような注入の作業は煩雑である。また、かかるマイクロ流体カートリッジにおいては、1つの流体通路内に収容された試薬が蒸発すると、この蒸発した試薬が別の1つの流体通路内の試薬、その他の部品等を汚染するおそれがある。 However, in one example of the above assay technique, it is necessary to accurately inject a plurality of pre-weighed reagents into a microfluidic cartridge so as to be accommodated in each of the plurality of fluid passages. The work of such injection is complicated. Further, in such a microfluidic cartridge, when the reagent contained in one fluid passage evaporates, the evaporated reagent may contaminate the reagent in another fluid passage, other parts, and the like.
 上記アッセイ技術の一例において、取り扱う試薬の数を増加させようとする場合、試薬を収容する流体通路の数が増加し、これによって、流体通路の配置構造が複雑になり、その結果、マイクロ流体カートリッジの構造が複雑になる。上記アッセイ技術の別の一例においてもまた、取り扱う試薬の数を増加させようとする場合、試薬を収容する液体貯蔵区間の数が増加し、これによって、液体貯蔵区間の配置構造が複雑になり、その結果、液体パッケージコンポーネントの構造が複雑になる。そのため、多様なプロトコルのアッセイを実施することが困難になっている。 In one example of the assay technique described above, when attempting to increase the number of reagents handled, the number of fluid passages containing the reagents increases, which complicates the arrangement structure of the fluid passages, resulting in a microfluidic cartridge. The structure of is complicated. Also in another example of the assay technique described above, when attempting to increase the number of reagents to be handled, the number of liquid storage sections containing the reagents increases, which complicates the arrangement structure of the liquid storage sections. As a result, the structure of the liquid package component is complicated. This makes it difficult to perform assays for various protocols.
 上記アッセイ技術の一例においては、破裂可能なシートを破裂させてから、その破裂可能なシートによって被覆された液体貯蔵区画から液体がリリースされるまでに暫くの時間を要する。そのため、複数の液体貯蔵区画から液体を迅速かつ連続的に液体を供給することが難しくなっている。 In one example of the above assay technique, it takes a while from the rupture of the ruptureable sheet to the release of the liquid from the liquid storage compartment covered with the ruptureable sheet. Therefore, it is difficult to supply the liquid quickly and continuously from the plurality of liquid storage compartments.
 上記アッセイ技術のさらなる別の一例においては、室間における毛細菅圧抵抗を超える空気圧を加えるために、コンプレッサー等の大掛かりな圧力調節装置をカートリッジの外部に設置することが必要になる。そのため、液体を供給するための構成が煩雑になる。 In yet another example of the above assay technique, it is necessary to install a large-scale pressure regulator such as a compressor outside the cartridge in order to apply an air pressure exceeding the capillary pressure resistance between the chambers. Therefore, the configuration for supplying the liquid becomes complicated.
 このような実情を鑑みると、アッセイシステムにおいては、複数の液体を迅速かつ連続的に供給し、微量な液体を高い精度で供給し、液体を供給するための構成を簡便にし、液体の取り扱いを簡便にし、汚染のリスクを低減することが望まれる。 In view of these circumstances, in the assay system, a plurality of liquids are quickly and continuously supplied, a small amount of liquid is supplied with high accuracy, the configuration for supplying the liquid is simplified, and the handling of the liquid is handled. It is desirable to simplify and reduce the risk of contamination.
 上記課題を解決するために、一態様に係るアッセイシステムは、液体を用いてアッセイを行うように構成されるアッセイ装置を含むアッセイシステムであって、前記アッセイ装置に液体を滴下可能とするように構成される液体供給装置と、前記アッセイ装置を前記液体供給装置に対して水平方向に相対的に移動可能とするように構成される移動装置と、前記液体供給装置による液体の滴下、及び前記移動装置による前記アッセイ装置の移動を制御可能とするように構成される制御装置とを備え、前記液体供給装置が、点眼容器の形態にそれぞれ構成された複数の容器を含み、各容器が、液体を収容可能とするように形成される本体部と、この本体部に収容された液体を滴下可能とするように構成される吐出口を有するノズル部とを含み、前記液体供給装置が、前記複数の容器の吐出口を下方に向けながら水平方向に互いに間隔を空けた状態で前記複数の容器を取り付け可能とするように構成される容器取付機構と、前記複数の容器の吐出口から液体を滴下させるべく前記複数の容器の本体部を押すことができるように構成される少なくとも1つの可動部材を有する容器押し機構とを含んでおり、前記制御装置は、前記少なくとも1つの可動部材が前記複数の容器の本体部を所望の順番及びタイミングで押すために、前記容器押し機構を制御するように構成されている。 In order to solve the above problems, the assay system according to one embodiment is an assay system including an assay device configured to perform an assay using a liquid, so that the liquid can be dropped onto the assay device. A liquid supply device configured, a moving device configured to allow the assay device to move relative to the liquid supply device in the horizontal direction, a liquid drop by the liquid supply device, and the movement. The liquid supply device comprises a plurality of containers, each configured in the form of an instillation container, comprising a control device configured to control the movement of the assay device by the device, where each container contains a liquid. The liquid supply device includes a main body portion formed so as to be accommodating, and a nozzle portion having a discharge port configured to allow the liquid contained in the main body portion to be dropped. A container mounting mechanism configured to allow the plurality of containers to be mounted in a state where the discharge ports of the containers are oriented downward and spaced apart from each other in the horizontal direction, and a liquid is dropped from the discharge ports of the plurality of containers. The control device includes a container pushing mechanism having at least one movable member configured to be able to push the main body portion of the plurality of containers, and the control device includes the plurality of containers in which the at least one movable member has the plurality of movable members. It is configured to control the container pushing mechanism in order to push the main body of the container in a desired order and timing.
 一態様に係るアッセイシステムにおいては、複数の液体を迅速かつ連続的に供給することができ、微量な液体を高い精度で供給することができ、液体を供給するための構成を簡便にすることができ、汚染のリスクを低減することができる。 In the assay system according to one embodiment, a plurality of liquids can be supplied quickly and continuously, a small amount of liquid can be supplied with high accuracy, and the configuration for supplying the liquid can be simplified. It can reduce the risk of contamination.
図1は、第1実施形態に係るアッセイシステムを模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the assay system according to the first embodiment. 図2は、第1実施形態に係るアッセイシステムのブロック図である。FIG. 2 is a block diagram of the assay system according to the first embodiment. 図3は、第1実施形態に係るアッセイシステムの液体供給装置、移動装置、アッセイ装置、並びにこれらの周辺部分を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a liquid supply device, a mobile device, an assay device, and peripheral portions of the assay system according to the first embodiment. 図4は、第1実施形態に係る液体供給装置の容器取付機構の容器ホルダ、及びそれに収容される容器を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a container holder of the container mounting mechanism of the liquid supply device according to the first embodiment and a container housed therein. 図5は、図4のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of FIG. 図6Aは、第1実施形態に係る容器取付機構の容器ホルダ、それに収容される容器、及び進出状態の容器押し機構を、図5のB-B線に沿って切断するように模式的に示す断面図である。FIG. 6A schematically shows the container holder of the container mounting mechanism according to the first embodiment, the container housed therein, and the container pushing mechanism in the advanced state so as to be cut along the line BB of FIG. It is a cross-sectional view. 図6Bは、第1実施形態に係る容器取付機構の容器ホルダ、それに収容される容器、及び後退状態の容器押し機構を、図5のB-B線に沿って切断するように模式的に示す断面図である。FIG. 6B schematically shows the container holder of the container mounting mechanism according to the first embodiment, the container housed therein, and the container pushing mechanism in the retracted state so as to be cut along the line BB of FIG. It is a cross-sectional view. 図7は、第1実施形態に係るアッセイシステムの容器のノズル部及び液体検出装置を模式的に示す側面図である。FIG. 7 is a side view schematically showing a nozzle portion of a container and a liquid detection device of the assay system according to the first embodiment. 図8は、第1実施形態に係るアッセイシステムのアッセイ装置を模式的に示す平面図である。FIG. 8 is a plan view schematically showing an assay device of the assay system according to the first embodiment. 図9は、図8のC-C線断面図である。FIG. 9 is a cross-sectional view taken along the line CC of FIG. 図10は、第1実施形態に係るアッセイシステムの測定装置がアッセイ装置を測定している状態を模式的に示す斜視図である。FIG. 10 is a perspective view schematically showing a state in which the measuring device of the assay system according to the first embodiment is measuring the assay device. 図11は、第2実施形態に係るアッセイシステムを模式的に示す平面図である。FIG. 11 is a plan view schematically showing the assay system according to the second embodiment. 図12は、第2実施形態に係るアッセイシステムのブロック図である。FIG. 12 is a block diagram of the assay system according to the second embodiment. 図13は、図11のD-D線断面図である。FIG. 13 is a cross-sectional view taken along the line DD of FIG.
 第1及び第2実施形態に係るアッセイシステムについて説明する。各実施形態に係るアッセイシステムは、液体を用いてアッセイを行うように構成されるアッセイ装置を含む。本実施形態に係るアッセイ装置に適用し得る液体は、アッセイ装置内を流れることができるものであれば、特に限定されない。かかるアッセイ装置に適用し得る液体は、化学的に純粋な液体のみならず、気体、別の液体又は固体を液体に溶解、分散、又は懸濁したものも含むことができる。 The assay system according to the first and second embodiments will be described. The assay system according to each embodiment includes an assay device configured to perform an assay using a liquid. The liquid applicable to the assay device according to the present embodiment is not particularly limited as long as it can flow in the assay device. Liquids applicable to such assay devices can include not only chemically pure liquids, but also gases, other liquids or solids dissolved, dispersed or suspended in liquids.
 例えば、液体は親水性であるとよく、親水性の液体としては、例えば、ヒト又は動物の全血、血清、血漿、血球、尿、糞便希釈液、唾液、汗、涙、爪の抽出液、皮膚の抽出液、毛髪の抽出液、又は脳脊髄液等の生体由来の液体試料が挙げられる。その他に、液体がアッセイ時に用いられる試薬である場合、この液体としては、緩衝液、生化学一般試薬、免疫化学関連試薬、抗体関連試薬、ペプチド溶液、タンパク質・酵素関連試薬、細胞関連試薬等、脂質関連試薬、天然物・有機化合物関連試薬、糖質関連試薬等が挙げられる。しかしながら、液体は、これらに限定されない。これらの場合、アッセイ装置においては、妊娠検査、尿検査、便検査、成人病検査、アレルギー検査、感染症検査、薬物検査、がん検査等のための体外診断用医薬品、一般用検査薬、POCT(Point Of Care Testing)等の用途にて、液体試料中の臨床検査、診断、又は分析上有効な検体を測定し得るが、アッセイ装置の用途は特に限定されない。また、親水性の液体としては生体試料に限定されず、例えば、食品の懸濁液、食品の抽出液、製造ラインの洗浄水、ふき取り液、飲用水、河川の水、土壌懸濁物等も挙げられる。この場合、アッセイ装置において、食品や飲用水の中の病原体を測定し得るか、又は河川の水の中や土壌中の汚染物質を測定し得る。これら親水性の液体は、典型的には、水を溶媒とするものであってよく、アッセイ装置によって溶液交換が可能である水溶液であれば良い。 For example, the liquid may be hydrophilic, and the hydrophilic liquid may be, for example, human or animal whole blood, serum, plasma, blood cells, urine, fecal diluent, saliva, sweat, tears, nail extract, etc. Examples thereof include a liquid sample derived from a living body such as a skin extract, a hair extract, or a cerebrospinal fluid. In addition, when the liquid is a reagent used at the time of assay, the liquid includes buffer solution, general biochemical reagent, immunochemistry-related reagent, antibody-related reagent, peptide solution, protein / enzyme-related reagent, cell-related reagent, etc. Examples thereof include lipid-related reagents, natural products / organic compound-related reagents, and sugar-related reagents. However, the liquid is not limited to these. In these cases, in the assay device, an in vitro diagnostic drug for pregnancy test, urine test, stool test, adult disease test, allergy test, infectious disease test, drug test, cancer test, etc., general-purpose test drug, POCT It is possible to measure a sample that is effective for clinical examination, diagnosis, or analysis in a liquid sample for applications such as (Point Of Care Testing), but the application of the assay device is not particularly limited. The hydrophilic liquid is not limited to biological samples, and includes, for example, food suspensions, food extracts, production line wash water, wiping liquid, drinking water, river water, soil suspensions, and the like. Can be mentioned. In this case, the assay device may measure pathogens in food or drinking water, or pollutants in river water or soil. These hydrophilic liquids may typically use water as a solvent, and may be any aqueous solution that can be exchanged by an assay device.
 本明細書において、「ラテラルフロー」は、重力沈降が駆動力となることによって移動する液体の流れを指す。ラテラルフローに基づく液体の移動は、重力沈降による液体の駆動力が支配的(優位)に作用する液体の移動を指す。これに対して、毛管力(毛細管現象)に基づく液体の移動は、界面張力が支配的(優位)に作用する液体の移動を指す。ラテラルフローに基づく液体の移動と毛管力に基づく液体の移動とは異なるものである。 In the present specification, "lateral flow" refers to the flow of liquid that moves due to the driving force of gravitational sedimentation. The movement of the liquid based on the lateral flow refers to the movement of the liquid in which the driving force of the liquid due to gravitational sedimentation acts predominantly (dominantly). On the other hand, the movement of the liquid based on the capillary force (capillary phenomenon) refers to the movement of the liquid in which the interfacial tension acts predominantly (predominantly). The movement of liquid based on lateral flow is different from the movement of liquid based on capillary force.
 本明細書において、「検体」は、液体中に存在し、かつ検出又は測定される化合物又は組成物を指す。例えば、検体は、糖類(例えば、グルコース)、タンパク質若しくはペプチド(例えば、血清タンパク質、ホルモン、酵素、免疫調節因子、リンホカイン、モノカイン、サイトカイン、糖タンパク質、ワクチン抗原、抗体、成長因子、若しくは増殖因子)、脂肪、アミノ酸、核酸、細胞、ステロイド、ビタミン、病原体若しくはその抗原、天然物質若しくは合成化学物質、汚染物質、治療目的の薬物若しくは違法な薬物若しくは毒物、又はこれらの物質の代謝物若しくは抗体を含むものであるとよいが、特定の検体には限定されない。なお、液体には、検体が含まれていない場合、あるいは検体が検出可能な量で含まれていない場合もある。 As used herein, "specimen" refers to a compound or composition that is present in a liquid and is detected or measured. For example, the specimen may be a saccharide (eg, glucose), a protein or peptide (eg, a serum protein, a hormone, an enzyme, an immunomodulator, a phosphokine, a monokine, a cytokine, a glycoprotein, a vaccine antigen, an antibody, a growth factor, or a growth factor). , Fats, amino acids, nucleic acids, cells, steroids, vitamins, pathogens or antigens thereof, natural or synthetic chemicals, contaminants, therapeutic drugs or illegal drugs or toxicants, or metabolites or antibodies of these substances. It is good to be a cytokine, but it is not limited to a specific sample. In some cases, the liquid does not contain a sample, or the sample may not be contained in a detectable amount.
 本明細書において、「参照物質」は、検体濃度の検出のために液体に既知の量で添加する、検体とは異なる既知の物質である。参照物質は、検体と同様に、上記の選択肢の中から選択することができ、検体との関係で選択することができる。特には、検体と相互作用することがなく、安定な物質から選択することができる。 In the present specification, the "reference substance" is a known substance different from the sample, which is added to the liquid in a known amount for detecting the sample concentration. The reference substance can be selected from the above options in the same manner as the sample, and can be selected in relation to the sample. In particular, it does not interact with the sample and can be selected from stable substances.
 本明細書において、「マイクロ流路」は、μl(マイクロリットル)オーダー、すなわち、約0.1μl以上かつ約1ml(ミリリットル)未満の微量な液体を用いて検体を検出又は測定するためか、又はかかる微量な液体を秤量するために、アッセイ装置内にて液体を流すように構成される経路を指す。 As used herein, a "microchannel" is meant to detect or measure a specimen on the order of μl (microliter), i.e., with a trace amount of liquid greater than or equal to about 0.1 μl and less than about 1 ml (milliliter). Refers to a pathway configured to flow a liquid within an assay device to weigh such trace amounts of liquid.
 本明細書において、「フィルム」は、約200μm(マイクロメートル)以下の厚さを有する膜状物体又は板状物体を指し、かつ「シート」は、約200μmを超える厚さを有する膜状物体又は板状物体を指す。 In the present specification, "film" refers to a film-like object or a plate-like object having a thickness of about 200 μm (micrometer) or less, and “sheet” refers to a film-like object or a film-like object having a thickness of more than about 200 μm. Refers to a plate-like object.
 本明細書において、「プラスチック」は、重合し得る材料又はポリマー材料を必須成分として使用するように重合又は成形したものを指す。プラスチックは、2種類以上のポリマーを組み合わせたポリマーアロイもまた含む。 In the present specification, "plastic" refers to a polymerizable material or a polymer material polymerized or molded so as to be used as an essential component. Plastics also include polymer alloys that combine two or more polymers.
 本明細書において、「多孔質媒体」は、複数かつ多数の微細孔を有し、かつ液体を吸引かつ通過可能とする部材、又は固形物を捕捉若しくは濃縮できる部材であってもよく、紙、セルロース膜、不織布、ガラスファイバー、高分子ゲル、プラスチック等を含む部材を指す。例えば、多孔質媒体は、液体が親水性である場合には親水性を有するとよく、かつ液体が疎水性である場合には疎水性であるとよい。特に、多孔質媒体は、親水性を有するとよく、かつ多数の繊維を含んで成る紙、脱脂綿等であるとよい。さらに、多孔質媒体は、セルロース、ニトロセルロース、セルロースアセテート、濾紙、ティッシュペーパー、トイレットペーパー、ペーパータオル、布地、綿、又は水を透過する親水性多孔質ポリマーのうちの1つ以上とすることができる。 In the present specification, the "porous medium" may be a member having a plurality of and a large number of micropores and capable of sucking and passing a liquid, or a member capable of capturing or concentrating a solid substance, and may be a paper. Refers to a member containing a cellulose film, non-woven fabric, glass fiber, polymer gel, plastic, etc. For example, the porous medium may be hydrophilic when the liquid is hydrophilic, and may be hydrophobic when the liquid is hydrophobic. In particular, the porous medium may be hydrophilic and may be paper, cotton wool or the like containing a large number of fibers. Further, the porous medium can be one or more of cellulose, nitrocellulose, cellulose acetate, filter paper, tissue paper, toilet paper, paper towels, fabrics, cotton, or water-permeable hydrophilic porous polymers. ..
 本明細書において、「点眼容器」は、その本体部を押すことによって、本体部に収容された液状の点眼剤等のような液状の内容物をそのノズル部の吐出口から1滴ずつ(場合によっては、2滴ずつ)投与可能に構成される容器を指す。点眼容器は、いわゆる使い切りタイプのものではなく、いわゆるボトルタイプのものとする。点眼容器は、その本体部を押された後に元の形状に戻すことができるように弾性変形可能な素材から構成される。特に、点眼容器は、プラスチック製であると好ましい。 In the present specification, by pushing the main body of the "eye drop container", a liquid content such as a liquid eye drop contained in the main body is dropped drop by drop from the ejection port of the nozzle portion (in the case of the case). In some cases, it refers to a container that can be administered (two drops at a time). The eye drop container is not a so-called single-use type, but a so-called bottle type. The eye drop container is made of an elastically deformable material so that the main body thereof can be returned to its original shape after being pushed. In particular, the eye drop container is preferably made of plastic.
 「第1実施形態」
 第1実施形態に係るアッセイシステムについて説明する。
"First embodiment"
The assay system according to the first embodiment will be described.
 「アッセイシステムの概略」
 図1~図10を参照して、本実施形態に係るアッセイシステムの概略について説明する。すなわち、本実施形態に係るアッセイシステムは概略的には次のように構成される。
"Outline of assay system"
An outline of the assay system according to the present embodiment will be described with reference to FIGS. 1 to 10. That is, the assay system according to this embodiment is generally configured as follows.
 図1~図3に示すように、アッセイシステムは、液体Lを用いてアッセイを行うように構成されるアッセイ装置10を含む。アッセイシステムは、アッセイ装置10に液体Lを滴下可能とするように構成される液体供給装置20を含む。アッセイシステムは、アッセイ装置10を液体供給装置20に対して水平方向に相対的に移動可能とするように構成される移動装置30を含む。図2に示すように、アッセイシステムは、液体供給装置20による液体Lの滴下と、移動装置30によるアッセイ装置10の移動とを制御可能とするように構成される制御装置40を含む。 As shown in FIGS. 1 to 3, the assay system includes an assay device 10 configured to perform an assay using liquid L. The assay system includes a liquid supply device 20 configured to allow the liquid L to be dropped onto the assay device 10. The assay system includes a mobile device 30 configured to allow the assay device 10 to move horizontally relative to the liquid supply device 20. As shown in FIG. 2, the assay system includes a control device 40 configured to be able to control the dropping of the liquid L by the liquid supply device 20 and the movement of the assay device 10 by the moving device 30.
 図4~図7に示すように、液体供給装置20は、点眼容器の形態にそれぞれ構成される複数の容器21を含む。各容器21は、液体Lを収容可能とするように形成される本体部21aを含む。各容器21は、その本体部21aに収容された液体Lを滴下可能とするように構成される吐出口21cを有するノズル部21bを含む。各容器21において、本体部21aとノズル部21bとは、ネジ締結によって互いに取り付けることができる。 As shown in FIGS. 4 to 7, the liquid supply device 20 includes a plurality of containers 21 each configured in the form of an eye drop container. Each container 21 includes a main body portion 21a formed so as to be able to accommodate the liquid L. Each container 21 includes a nozzle portion 21b having a discharge port 21c configured to allow the liquid L contained in the main body portion 21a to be dropped. In each container 21, the main body portion 21a and the nozzle portion 21b can be attached to each other by fastening screws.
 図1~図6Bに示すように、液体供給装置20は、複数の容器21を、これらの吐出口21cを下方に向けながら水平方向に互いに間隔を空けた状態で取り付け可能とするように構成される容器取付機構22を含む。図2、図3、図6A、及び図6Bに示すように、液体供給装置20は、複数の容器21の吐出口21cから液体Lを滴下させるべく複数の容器21の本体部21aを押すことができるように構成される少なくとも1つの可動部材23aを有する容器押し機構23を含む。制御装置40は、少なくとも1つの可動部材23aが複数の容器21の本体部21aを所望の順番及びタイミングで押すために、容器押し機構23を制御するように構成されている。 As shown in FIGS. 1 to 6B, the liquid supply device 20 is configured so that a plurality of containers 21 can be attached with their discharge ports 21c facing downward and horizontally spaced apart from each other. The container mounting mechanism 22 is included. As shown in FIGS. 2, 3, 6A, and 6B, the liquid supply device 20 may push the main body 21a of the plurality of containers 21 in order to drop the liquid L from the discharge ports 21c of the plurality of containers 21. Includes a container pushing mechanism 23 with at least one movable member 23a configured to allow it. The control device 40 is configured to control the container pushing mechanism 23 so that at least one movable member 23a pushes the main body 21a of the plurality of containers 21 in a desired order and timing.
 さらに、本実施形態に係るアッセイシステムは概略的には次のように構成することができる。図3~図6Bに示すように、容器取付機構22は、複数の容器21をそれぞれ保持する複数の容器ホルダ24を有する。各容器ホルダ24は、それに保持される容器21の本体部21aを受け入れる本体収容部24aを有する。各容器ホルダ24は、それに保持される容器21のノズル部21bを保持するノズル保持部24bを有する。 Further, the assay system according to the present embodiment can be roughly configured as follows. As shown in FIGS. 3 to 6B, the container mounting mechanism 22 has a plurality of container holders 24 for holding a plurality of containers 21, respectively. Each container holder 24 has a main body accommodating portion 24a that receives the main body portion 21a of the container 21 held therein. Each container holder 24 has a nozzle holding portion 24b that holds the nozzle portion 21b of the container 21 held therein.
 各容器ホルダ24の本体収容部24aは、それに収容される容器21の本体部21aを押す可動部材23aを通過可能とするように開口する通過口24cを有する。図5、図6A、及び図6Bに示すように、各容器ホルダ24の本体収容部24aは、その通過口24cを通る可動部材23aに押された容器21の本体部21aを受け止めるように形成される受け止め部24dを有する。 The main body accommodating portion 24a of each container holder 24 has a passage port 24c that opens so as to allow passage of the movable member 23a that pushes the main body portion 21a of the container 21 accommodated therein. As shown in FIGS. 5, 6A, and 6B, the main body accommodating portion 24a of each container holder 24 is formed so as to receive the main body portion 21a of the container 21 pushed by the movable member 23a passing through the passage port 24c. It has a receiving portion 24d.
 図2及び図7に示すように、アッセイシステムは、複数の容器21におけるノズル部21bの吐出口21cから滴下される液体Lを各別に検出可能に構成される液体検出装置50を含む。図6A及び図6Bを参照すると、制御装置40は、この液体検出装置50が各容器21の吐出口21cから滴下される液体Lを検出したときに、この容器21の本体部21aを押した進出状態から同本体部21aを押していない後退状態に戻すために、容器押し機構23を制御するように構成されている。 As shown in FIGS. 2 and 7, the assay system includes a liquid detection device 50 configured to be able to separately detect the liquid L dropped from the discharge port 21c of the nozzle portion 21b in the plurality of containers 21. Referring to FIGS. 6A and 6B, the control device 40 pushes the main body 21a of the container 21 when the liquid detection device 50 detects the liquid L dropped from the discharge port 21c of each container 21. It is configured to control the container pushing mechanism 23 in order to return the main body portion 21a from the state to the retracted state in which the main body portion 21a is not pushed.
 図1、図2、及び図8~図10を参照すると、アッセイシステムは、液体供給装置20から滴下された液体Lによってアッセイ装置10にて得られる反応を測定可能に構成される測定装置60を含む。測定装置60は、液体供給装置20に対して水平方向に離れて配置されている。 Referring to FIGS. 1, 2 and 8-10, the assay system comprises a measuring device 60 configured to be capable of measuring the reaction obtained in the assay device 10 by the liquid L dropped from the liquid supply device 20. include. The measuring device 60 is arranged horizontally apart from the liquid supply device 20.
 図1、図3、図6A、図6B、及び図10を参照すると、制御装置40は、アッセイ装置10を滴下区間(図3に示す)から測定区間(図10に示す)に向けて液体供給装置20及び測定装置60に対して水平方向に相対的に移動させるために、移動装置30を制御するように構成されている。このアッセイ装置10の移動は、容器押し機構23が進出状態(図6Aに示す)から後退状態(図6Bに示す)になったときに行うことができる。なお、図1及び図3に示すように、滴下区間は、液体供給装置20からアッセイ装置10に液体Lを滴下する区間である。図3において、滴下区間は液体供給装置20の下方に位置する。図10に示すように、測定区間は、測定装置60が滴下区間にて滴下された液体Lによってアッセイ装置10にて得られる反応を測定する区間である。 Referring to FIGS. 1, 6, 6A, 6B, and 10, the control device 40 feeds the assay device 10 from the drop section (shown in FIG. 3) to the measurement section (shown in FIG. 10). It is configured to control the moving device 30 in order to move it horizontally relative to the device 20 and the measuring device 60. The movement of the assay device 10 can be performed when the container pushing mechanism 23 changes from the advanced state (shown in FIG. 6A) to the retracted state (shown in FIG. 6B). As shown in FIGS. 1 and 3, the dropping section is a section in which the liquid L is dropped from the liquid supply device 20 to the assay device 10. In FIG. 3, the dropping section is located below the liquid supply device 20. As shown in FIG. 10, the measurement section is a section in which the measuring device 60 measures the reaction obtained by the assay device 10 by the liquid L dropped in the dropping section.
 図8に示すように、アッセイ装置10は、液体供給装置20から滴下された液体Lによって反応を得られるように構成される複数のアッセイモジュール11を有する。図8は、一例として、6つのアッセイモジュール11を有するアッセイ装置10を示す。しかしながら、アッセイ装置は、これに限定されない。アッセイ装置におけるアッセイモジュールの数は、2~5又は7以上とすることができる。アッセイ装置はまた、1つのアッセイモジュールのみを有することもできる。 As shown in FIG. 8, the assay device 10 has a plurality of assay modules 11 configured to obtain a reaction by the liquid L dropped from the liquid supply device 20. FIG. 8 shows, as an example, an assay device 10 having six assay modules 11. However, the assay device is not limited to this. The number of assay modules in the assay device can be 2-5 or 7 or more. The assay device can also have only one assay module.
 図3を参照すると、液体供給装置20は、複数のアッセイモジュール11に所望の順番及びタイミングで液体Lを滴下可能とするように構成される。図10を参照すると、測定装置60は、液体供給装置20から滴下された液体Lによって複数のアッセイモジュール11にて得られる反応を所望の順番及びタイミングで測定可能とするように構成される。図3及び図10を参照すると、制御装置40は、測定装置60によって複数のアッセイモジュール11の反応を測定する順番及びタイミングを、液体供給装置20から複数のアッセイモジュール11に液体Lを滴下する順番及びタイミングに対して、一定の時間間隔を空けた状態で同じにすべく、液体供給装置20、移動装置30、及び測定装置60を制御するように構成されている。 Referring to FIG. 3, the liquid supply device 20 is configured to allow the liquid L to be dropped onto the plurality of assay modules 11 in a desired order and timing. Referring to FIG. 10, the measuring device 60 is configured to be capable of measuring the reactions obtained by the plurality of assay modules 11 by the liquid L dropped from the liquid supply device 20 in a desired order and timing. Referring to FIGS. 3 and 10, the control device 40 sets the order and timing for measuring the reaction of the plurality of assay modules 11 by the measuring device 60 in the order in which the liquid L is dropped from the liquid supply device 20 to the plurality of assay modules 11. The liquid supply device 20, the moving device 30, and the measuring device 60 are configured to control the liquid supply device 20, the moving device 30, and the measuring device 60 so as to be the same with respect to the timing at regular time intervals.
 「アッセイシステムの詳細」
 図1~図3を参照して、本実施形態に係るアッセイシステムの詳細について説明する。すなわち、本実施形態に係るアッセイシステムは詳細には次のように構成することができる。
"Details of the assay system"
The details of the assay system according to the present embodiment will be described with reference to FIGS. 1 to 3. That is, the assay system according to the present embodiment can be configured in detail as follows.
 アッセイシステムの液体供給装置20において、容器押し機構23は、複数の容器21の本体部21aをそれぞれ押すことができるように配置される複数の可動部材23aを有する。図1に示すように、移動装置30は、両側矢印Rにより示すように、アッセイ装置10を所定の移動経路に沿って移動させることができるように構成される。複数の容器21は、これらのノズル部21bの吐出口21cをアッセイ装置10の移動経路に沿って並べるように配置されている。 In the liquid supply device 20 of the assay system, the container pushing mechanism 23 has a plurality of movable members 23a arranged so as to be able to push the main body portions 21a of the plurality of containers 21 respectively. As shown in FIG. 1, the mobile device 30 is configured to be able to move the assay device 10 along a predetermined movement path, as indicated by the double-sided arrows R. The plurality of containers 21 are arranged so that the discharge ports 21c of the nozzle portions 21b are arranged along the movement path of the assay device 10.
 図2に示すように、制御装置40は、液体供給装置20、移動装置30、液体検出装置50、及び測定装置60と電気的に接続されている。制御装置40は、複数の可動部材23aが所望の順番及びタイミングで複数の容器21の本体部21aをそれぞれ押すために、容器押し機構23を制御するように構成されている。 As shown in FIG. 2, the control device 40 is electrically connected to the liquid supply device 20, the moving device 30, the liquid detection device 50, and the measuring device 60. The control device 40 is configured to control the container pushing mechanism 23 so that the plurality of movable members 23a push the main body portions 21a of the plurality of containers 21 in a desired order and timing.
 「アッセイ装置の詳細」
 図8及び図9を参照すると、アッセイ装置10は詳細には次のように構成することができる。複数のアッセイモジュール11の1つずつは次のように構成される。図9に示すように、アッセイモジュール11は、液体Lを流すことができるように形成されるマイクロ流路12を有する。アッセイモジュール11は、マイクロ流路12の高さ方向にて対向する頂部11a及び底部11bを有する。頂部11a及び底部11bのそれぞれは、プラスチック製のフィルム又はシートから構成することができる。しかしながら、頂部及び底部はこれに限定されない。
"Details of the assay device"
With reference to FIGS. 8 and 9, the assay device 10 can be configured in detail as follows. Each of the plurality of assay modules 11 is configured as follows. As shown in FIG. 9, the assay module 11 has a microchannel 12 formed to allow the liquid L to flow. The assay module 11 has a top 11a and a bottom 11b facing each other in the height direction of the microchannel 12. Each of the top 11a and the bottom 11b can be made of a plastic film or sheet. However, the top and bottom are not limited to this.
 マイクロ流路12は、これら頂部11a及び底部11bによってその高さ方向に画定される。なお、マイクロ流路12の流れ方向、幅方向、及び高さ方向は互いに対して略直交する。そのため、図8に示すように、複数のアッセイモジュール11は、このようなマイクロ流路12の幅方向に並ぶということができる。 The micro flow path 12 is defined in the height direction by the top portion 11a and the bottom portion 11b. The flow direction, width direction, and height direction of the micro flow path 12 are substantially orthogonal to each other. Therefore, as shown in FIG. 8, it can be said that the plurality of assay modules 11 are arranged in the width direction of such a microchannel 12.
 図9に示すように、マイクロ流路12は、液体Lの流れ方向の一端側、すなわち、上流側(片側矢印F1により示す)の端部と、流体Lの流れ方向の他端側、すなわち、下流側(片側矢印F2により示す)の端部との間で延びる。液体Lは、マイクロ流路12内に生じるラテラルフローに基づいてマイクロ流路12の上流側から下流側に流れることができる。 As shown in FIG. 9, the microchannel 12 has one end side in the flow direction of the liquid L, that is, the end portion on the upstream side (indicated by the arrow F1 on one side) and the other end side in the flow direction of the fluid L, that is, Extends to and from the downstream end (indicated by one-sided arrow F2). The liquid L can flow from the upstream side to the downstream side of the micro flow path 12 based on the lateral flow generated in the micro flow path 12.
 図8及び図9に示すように、アッセイモジュール11は、液体Lをマイクロ流路12に流入させるように形成される注入口13を有する。図9に示すように、注入口13は、マイクロ流路12の上流側の端部に配置される。注入口13は、頂部11aを貫通するように形成される。アッセイモジュール11はまた、マイクロ流路12の下流側の端部に配置される吸収用多孔質媒体14を有する。吸収用多孔質媒体14は、マイクロ流路12内の液体Lを吸収可能とするように構成されている。 As shown in FIGS. 8 and 9, the assay module 11 has an inlet 13 formed to allow the liquid L to flow into the microchannel 12. As shown in FIG. 9, the injection port 13 is arranged at the upstream end of the microchannel 12. The inlet 13 is formed so as to penetrate the top 11a. The assay module 11 also has an absorbent porous medium 14 located at the downstream end of the microchannel 12. The absorbing porous medium 14 is configured to be able to absorb the liquid L in the microchannel 12.
 図8及び図9に示すように、アッセイモジュール11は、マイクロ流路12の流れ方向の中間部に位置するアッセイ領域15を有する。アッセイ領域15には、アッセイにおいて検体に特異的に結合する試薬が固定されている。検体及び参照物質に由来するシグナル発生に関与する試薬(「アッセイ試薬」と呼ぶこともできる)には、マイクロ流路12に予め固定するように用いられる固定化試薬と、アッセイの工程においてマイクロ流路12に添加するように用いられる添加試薬とがある。 As shown in FIGS. 8 and 9, the assay module 11 has an assay region 15 located in the middle of the flow direction of the microchannel 12. A reagent that specifically binds to the sample in the assay is immobilized in the assay region 15. Reagents involved in signal generation derived from specimens and reference substances (also referred to as "assay reagents") include immobilization reagents that are used to pre-fix to the microchannel 12 and microcurrents in the assay process. There are additive reagents used to add to path 12.
 アッセイ領域15に設けられる固定化試薬は、液体L中の検体と特異的に反応し、かつ添加試薬とともに当該検体を検出可能な結果を生じさせるものである。検体を検出可能な結果は、例えば、色の変化等に基づいて、肉眼により観察可能に表れることができるし、又は検体を検出可能な結果は、分光計又は他の測定手段のみによって検出可能に表れることもできる。 The immobilization reagent provided in the assay region 15 specifically reacts with the sample in the liquid L and, together with the additive reagent, produces a detectable result of the sample. Specimen detectable results can be observably visible to the naked eye, for example based on color changes, etc., or specimen detectable results can only be detected by a spectroscope or other measuring means. It can also appear.
 さらに、アッセイ領域15に設けられる固定化試薬は、酵素、抗体、エピトープ、核酸、細胞、アプタマー、ペプチド、分子インプリントポリマー、吸着ポリマー、吸着ゲル、検体との反応により呈色する鉄(III)イオン等の化学物質、呈色試薬、又は検体と反応することによって検出可能な結果を生じさせる任意の他の物質とすることができる。典型的には、固定化試薬は抗体とすることができる。固定化試薬は、物理吸着法、化学吸着法等の周知の固定化技術によってアッセイ領域15に固定することができる。 Further, the immobilization reagent provided in the assay region 15 is colored by reaction with an enzyme, an antibody, an epitope, a nucleic acid, a cell, an aptamer, a peptide, a molecular imprint polymer, an adsorption polymer, an adsorption gel, or a sample (III). It can be a chemical such as an ion, a color reagent, or any other substance that produces detectable results by reacting with a sample. Typically, the immobilization reagent can be an antibody. The immobilization reagent can be immobilized in the assay region 15 by a well-known immobilization technique such as a physical adsorption method or a chemisorption method.
 固定化試薬には、検出シグナルを分析又は増幅させるために、放射性同位元素、酵素、金コロイド、呈色試薬、量子ドット、ラテックス等の着色分子、色素、電気化学反応物質、蛍光物質、又は発光物質等の任意の標識物質を結合することができる。代替的には、このような標識物質は、アッセイの工程においてマイクロ流路12に添加するように用いられる添加試薬に結合することができる。具体的には、この固定化試薬は、マイクロ流路12をその高さ方向にて画定する頂部11a及び底部11bの一方又は両方に固定することができる。 Immobilization reagents include radioactive isotopes, enzymes, gold colloids, coloring reagents, quantum dots, colored molecules such as latex, dyes, electrochemical reactants, fluorescent substances, or luminescence to analyze or amplify the detection signal. Any labeling substance such as a substance can be bound. Alternatively, such labeling material can be attached to an additive reagent used to be added to the microchannel 12 in the assay step. Specifically, the immobilization reagent can be immobilized on one or both of the top 11a and the bottom 11b that define the microchannel 12 in its height direction.
 このようなアッセイモジュール11においては、液体Lがマイクロ流路12内にて流動した状態、又は液体Lがマイクロ流路12内にて静置されるか又は一時的に停止した状態で、アッセイが行われる。典型的には、液体L中の検体濃度が検出可能となる。 In such an assay module 11, the assay is performed in a state where the liquid L is fluidized in the microchannel 12 or the liquid L is allowed to stand in the microchannel 12 or is temporarily stopped. Will be done. Typically, the sample concentration in the liquid L can be detected.
 さらに、図8及び図9に示すように、アッセイモジュール11は、アッセイ領域15と流れ方向にて並ぶように配置される確認領域16を有する。確認領域16は、アッセイ領域15に対して下流側に位置する。アッセイ領域15と確認領域16とは、これら発生するシグナルを区別可能かつ検出可能な程度に互いに離れている。確認領域16は、アッセイ領域15にて生じる反応(第1反応)と反応時間が同じであるとみなすことができる既知の反応(第2反応)が生じるように構成されている。 Further, as shown in FIGS. 8 and 9, the assay module 11 has a confirmation region 16 arranged to line up with the assay region 15 in the flow direction. The confirmation region 16 is located downstream of the assay region 15. The assay region 15 and the confirmatory region 16 are separated from each other to the extent that these generated signals are distinguishable and detectable. The confirmation region 16 is configured to generate a known reaction (second reaction) that can be considered to have the same reaction time as the reaction (first reaction) that occurs in the assay region 15.
 確認領域16には、参照物質に特異的に結合する固定化試薬が設けられる。確認領域16の固定化試薬もまた、アッセイ領域15の固定化試薬と同様に、抗体等とすることができる。この固定化試薬には、任意の標識物質が結合することができる。この固定化試薬もまた、マイクロ流路12をその高さ方向にて画定する頂部11a及び底部11bの一方又は両方に固定することができる。 The confirmation region 16 is provided with an immobilization reagent that specifically binds to the reference substance. The immobilization reagent of the confirmation region 16 can also be an antibody or the like, like the immobilization reagent of the assay region 15. Any labeling substance can be bound to this immobilization reagent. This immobilization reagent can also be immobilized on one or both of the top 11a and the bottom 11b that define the microchannel 12 in its height direction.
 アッセイモジュール11は、その外部からアッセイ領域15及び確認領域16をそれぞれ確認可能とするように形成されるアッセイ用窓部17及び確認用窓部18を有する。アッセイ用及び確認用窓部17,18は、アッセイモジュール11の頂部11aに形成されている。アッセイ用及び確認用窓部17,18のそれぞれは、アッセイモジュールの頂部を貫通するように形成される。しかしながら、アッセイ用及び確認用窓部の少なくとも一方を、透明とすることができる。アッセイ用及び確認用窓部の少なくとも一方を、透光性とすることができる。 The assay module 11 has an assay window 17 and a confirmation window 18 formed so that the assay region 15 and the confirmation region 16 can be confirmed from the outside, respectively. The assay and confirmation windows 17, 18 are formed on the top 11a of the assay module 11. Each of the assay and confirmation windows 17, 18 is formed to penetrate the top of the assay module. However, at least one of the assay and confirmation windows can be transparent. At least one of the assay and confirmation windows can be translucent.
 「液体供給装置の詳細」
 図1~図6Bを参照すると、液体供給装置20は詳細には次のように構成することができる。図3に示すように、液体供給装置20における複数の容器21の吐出口21cは、滴下区間内に配置される。図4~図6Bに示すように、液体供給装置20において、複数の容器21は容器取付機構22に離脱可能に取り付けられる。さらに、複数の容器21は、容器取付機構22の複数の容器ホルダ24にそれぞれ離脱可能に保持される。複数の容器ホルダ24もまた、容器取付機構22に各別に離脱可能に取り付けられる。
"Details of liquid supply device"
With reference to FIGS. 1 to 6B, the liquid supply device 20 can be configured as follows in detail. As shown in FIG. 3, the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20 are arranged in the dropping section. As shown in FIGS. 4 to 6B, in the liquid supply device 20, the plurality of containers 21 are detachably attached to the container attachment mechanism 22. Further, the plurality of containers 21 are removably held by the plurality of container holders 24 of the container mounting mechanism 22. The plurality of container holders 24 are also detachably attached to the container attachment mechanism 22 separately.
 図1~図3においては、液体供給装置20は、3つの容器21と、これらをそれぞれ保持する3つの容器ホルダ24とを含む。しかしながら、液体供給装置は、3つの容器と、3つの容器ホルダとを含む構成に限定されない。液体供給装置は、2つの容器と、これらをそれぞれ保持する2つの容器ホルダとを含むか、又は4つ以上の容器と、これらをそれぞれ保持する4つ以上の容器ホルダとを含むこともできる。 In FIGS. 1 to 3, the liquid supply device 20 includes three containers 21 and three container holders 24 for holding them, respectively. However, the liquid supply device is not limited to a configuration including three containers and three container holders. The liquid feeder may include two containers and two container holders each holding them, or may include four or more containers and four or more container holders each holding them.
 各容器21の容量は、約3ml(ミリリットル)以上とすることができる。さらに好ましくは、各容器21の容量は、約5ml~約15mlとすることができる。しかしながら、容器の容量はこれらに限定されない。 The capacity of each container 21 can be about 3 ml (milliliter) or more. More preferably, the capacity of each container 21 can be from about 5 ml to about 15 ml. However, the capacity of the container is not limited to these.
 容器取付機構22における複数の容器21及び複数の容器ホルダ24と、容器押し機構23における複数の可動部材(複数の押し部材と呼ぶこともできる)23aとは、アッセイ装置10の移動経路に沿って並んでいる。後述するように、アッセイ装置10の移動経路が実質的に直線に沿っている場合において、容器取付機構22における複数の容器21及び複数の容器ホルダ24と、容器押し機構23における複数の可動部材23aとは、実質的に直線に沿って並ぶ。複数の容器ホルダ24は互いに切り離されている。しかしながら、アッセイ装置の移動経路が湾曲を含む線に沿っている場合は、容器取付機構における複数の容器及び複数の容器ホルダと、容器押し機構における複数の可動部材とは、例えば、略円弧線、略波線等のように湾曲を含む線に沿って並ぶことができる。複数の容器ホルダのうち少なくとも2つを一体にすることもできる。 The plurality of containers 21 and the plurality of container holders 24 in the container mounting mechanism 22 and the plurality of movable members (also referred to as a plurality of push members) 23a in the container pushing mechanism 23 are along the movement path of the assay device 10. They are lined up. As will be described later, when the movement path of the assay device 10 is substantially along a straight line, a plurality of containers 21 and a plurality of container holders 24 in the container mounting mechanism 22 and a plurality of movable members 23a in the container pushing mechanism 23. Means substantially along a straight line. The plurality of container holders 24 are separated from each other. However, when the movement path of the assay device is along a line including a curve, the plurality of containers and the plurality of container holders in the container mounting mechanism and the plurality of movable members in the container pushing mechanism are, for example, a substantially arc line. It can be lined up along a line including a curve such as a wavy line. At least two of the plurality of container holders can be integrated.
 また、複数の容器21の1つずつは次のように構成することができる。図5、図6A、及び図6Bに示すように、容器21の本体部21aは、その吐出口21cを通る容器軸線21dに沿って延びる略筒形状に形成される。さらに、本体部21aは、容器軸線21dを中心とする略円筒形状に形成することができる。しかしながら、容器の本体部の形状は、これらに限定されない。例えば、本体部は、略楕円筒形状、略多角筒形状等に形成することもできる。 Further, each of the plurality of containers 21 can be configured as follows. As shown in FIGS. 5, 6A, and 6B, the main body 21a of the container 21 is formed in a substantially tubular shape extending along the container axis 21d passing through the discharge port 21c. Further, the main body portion 21a can be formed into a substantially cylindrical shape centered on the container axis 21d. However, the shape of the main body of the container is not limited to these. For example, the main body portion can be formed into a substantially elliptical cylinder shape, a substantially polygonal cylinder shape, or the like.
 図5に示すように、容器21の本体部21aは、容器軸線21dに沿った方向にて容器21の基端側に位置する。容器21のノズル部21bは、容器軸線21dに沿った方向にて容器21の先端側に位置する。本体部21aとノズル部21bとは、互いに離脱可能に取り付けられている。容器21は、吐出口21cを下方に向け、かつ容器軸線21dを鉛直方向に向けるように配置される。しかしながら、容器は、容器軸線を鉛直方向に対して傾斜した方向に向けるように配置することができる。 As shown in FIG. 5, the main body portion 21a of the container 21 is located on the base end side of the container 21 in the direction along the container axis 21d. The nozzle portion 21b of the container 21 is located on the tip end side of the container 21 in the direction along the container axis 21d. The main body portion 21a and the nozzle portion 21b are detachably attached to each other. The container 21 is arranged so that the discharge port 21c faces downward and the container axis 21d faces the vertical direction. However, the container can be arranged so that the container axis is oriented in an inclined direction with respect to the vertical direction.
 このような複数の容器ホルダ24の1つずつは次のように構成することができる。図5、図6A、及び図6Bに示すように、容器ホルダ24の本体収容部24aは、それに収容される容器21の本体部21aに対応するように形成される受入空間24eを有する。容器ホルダ24の受入空間24eは、そのホルダ軸線24fに沿って延びる。容器ホルダ24の通過口24cは、ホルダ軸線24fに交差する方向、特に、ホルダ軸線24fに略直交する方向にて本体収容部24aを貫通する。 Each of such a plurality of container holders 24 can be configured as follows. As shown in FIGS. 5, 6A, and 6B, the main body accommodating portion 24a of the container holder 24 has a receiving space 24e formed so as to correspond to the main body portion 21a of the container 21 accommodated therein. The receiving space 24e of the container holder 24 extends along the holder axis 24f. The passage port 24c of the container holder 24 penetrates the main body accommodating portion 24a in a direction intersecting the holder axis 24f, particularly in a direction substantially orthogonal to the holder axis 24f.
 図5に示すように、容器ホルダ24の本体収容部24aは、ホルダ軸線24fに沿った方向にて容器ホルダ24の基端側に位置する。容器ホルダ24のノズル保持部24bは、ホルダ軸線24fに沿った方向にて容器ホルダ24の先端側に位置する。本体収容部24aとノズル保持部24bとは、互いに離脱可能に取り付けられる。通過口24cは、本体収容部24aの先端側領域に位置する。図6A、及び図6Bに示すように、受け止め部24dは、受入空間24e内において、後述する容器押し機構23の可動部材23aの進退方向(両側矢印Wにより示す)にて通過口24cと対向するように配置されている。 As shown in FIG. 5, the main body accommodating portion 24a of the container holder 24 is located on the base end side of the container holder 24 in the direction along the holder axis 24f. The nozzle holding portion 24b of the container holder 24 is located on the tip end side of the container holder 24 in the direction along the holder axis 24f. The main body accommodating portion 24a and the nozzle holding portion 24b are detachably attached to each other. The passage port 24c is located in the distal end side region of the main body accommodating portion 24a. As shown in FIGS. 6A and 6B, the receiving portion 24d faces the passing port 24c in the receiving space 24e in the advancing / retreating direction (indicated by the arrows W on both sides) of the movable member 23a of the container pushing mechanism 23 described later. It is arranged like this.
 図4及び図5に示すように、容器ホルダ24のノズル保持部24bは、容器21のノズル部21bを挿入可能とするように貫通する挿入孔24gを有する。容器ホルダ24のノズル保持部24bは、容器21のノズル部21bを挿入孔24gに挿入し、かつ容器21の吐出口21cを容器ホルダ24の外部に配置した状態でノズル21bを保持するように形成される。 As shown in FIGS. 4 and 5, the nozzle holding portion 24b of the container holder 24 has an insertion hole 24g through which the nozzle portion 21b of the container 21 can be inserted. The nozzle holding portion 24b of the container holder 24 is formed so as to hold the nozzle 21b in a state where the nozzle portion 21b of the container 21 is inserted into the insertion hole 24g and the discharge port 21c of the container 21 is arranged outside the container holder 24. Will be done.
 図1、図2、図3、図6A、及び図6Bに示すように、容器押し機構23は、複数の可動部材23aをそれぞれ支持する複数の固定部材23bを有する。容器押し機構23は、可動部材23a及び固定部材23bを有する複数のアクチュエータ23cを含む。図1及び図3においては、容器押し機構23は、3つの容器21をそれぞれ押すことができるように構成される3つの可動部材23aを有し、容器押し機構23はまた、3つの可動部材23aをそれぞれ支持する3つの固定部材23bを有し、かつ1つの可動部材23a及び1つの固定部材23bを有する3つのアクチュエータ23cを含む。 As shown in FIGS. 1, 2, 3, 6A, and 6B, the container pushing mechanism 23 has a plurality of fixing members 23b that each support a plurality of movable members 23a. The container pushing mechanism 23 includes a plurality of actuators 23c having a movable member 23a and a fixing member 23b. In FIGS. 1 and 3, the container pushing mechanism 23 has three movable members 23a configured to be able to push each of the three containers 21, and the container pushing mechanism 23 also has three movable members 23a. Each includes three actuators 23c having three fixing members 23b and one movable member 23a and one fixing member 23b.
 しかしながら、容器押し機構の可動部材の数、固定部材の数、及びアクチュエータの数は、これらに限定されない。容器押し機構は、2つの可動部材と、2つの固定部材とを有することができ、又は4つ以上の可動部材と、これらをそれぞれ支持する4つ以上の固定部材とを有することができる。そのため、容器押し機構は、2つのアクチュエータ又は4つ以上のアクチュエータを含むことができる。 However, the number of movable members, the number of fixing members, and the number of actuators of the container pushing mechanism are not limited to these. The container pushing mechanism can have two movable members and two fixing members, or can have four or more movable members and four or more fixing members each supporting them. Therefore, the container pushing mechanism can include two actuators or four or more actuators.
 複数のアクチュエータ23cの1つずつは次のように構成することができる。図6A及び図6Bに示すように、固定部材23bは、可動部材23aを進退駆動可能とするように構成されている。可動部材23aは、固定部材23bから進出した進出状態(図6Aに示す)と、固定部材23b内に後退した後退状態(図6Bに示す)との間で移動可能となっている。可動部材23aは、その進退方向に略直線状に延びている。可動部材23aは、略棒形状に形成することができる。この場合、進退方向に略直交する方向における可動部材23aの幅は、約3mm以上かつ約1cm未満とすることができる。 Each of the plurality of actuators 23c can be configured as follows. As shown in FIGS. 6A and 6B, the fixing member 23b is configured to allow the movable member 23a to be driven forward and backward. The movable member 23a is movable between an advanced state (shown in FIG. 6A) advanced from the fixed member 23b and a retracted state (shown in FIG. 6B) retracted into the fixed member 23b. The movable member 23a extends substantially linearly in the advancing / retreating direction. The movable member 23a can be formed in a substantially rod shape. In this case, the width of the movable member 23a in the direction substantially orthogonal to the advancing / retreating direction can be about 3 mm or more and less than about 1 cm.
 さらに、可動部材23aは、略円柱形状に形成することができる。この場合、可動部材23aの直径は、約3mm以上かつ約1cm未満とすることができる。しかしながら、可動部材の形状は、これに限定されない。 Further, the movable member 23a can be formed into a substantially cylindrical shape. In this case, the diameter of the movable member 23a can be about 3 mm or more and less than about 1 cm. However, the shape of the movable member is not limited to this.
 「移動装置の詳細」
 図1~図3及び図10を参照すると、移動装置30は詳細には次のように構成することができる。図1及び図2に示すように、移動装置30は、アッセイ装置10を離脱可能に取り付けるように構成されるステージ31を有する。移動装置30は、ステージ31を移動可能に支持するガイド組立体32を有する。移動装置30は、ステージ31を移動経路に沿って移動させるように駆動する駆動機構33を有する。
"Details of mobile device"
With reference to FIGS. 1 to 3 and 10, the mobile device 30 can be configured in detail as follows. As shown in FIGS. 1 and 2, the mobile device 30 has a stage 31 configured to detachably attach the assay device 10. The moving device 30 has a guide assembly 32 that movably supports the stage 31. The moving device 30 has a driving mechanism 33 that drives the stage 31 to move along the moving path.
 ステージ31は、アッセイ装置10の頂部10aを上方に向けた状態でアッセイ装置10の底部10bを下方から支持するように構成されている。アッセイ装置10は、その幅方向を移動経路に沿わせるようにステージ31に配置される。 The stage 31 is configured to support the bottom 10b of the assay device 10 from below with the top 10a of the assay device 10 facing upward. The assay device 10 is arranged on the stage 31 so as to follow the movement path in the width direction thereof.
 ガイド組立体32は、アッセイ装置10の移動経路に沿って延びる少なくとも1つのガイド部32aを有する。ガイド組立体32は、少なくとも1つのガイド部32aを支持するベース部32bを有する。 The guide assembly 32 has at least one guide portion 32a extending along the movement path of the assay device 10. The guide assembly 32 has a base portion 32b that supports at least one guide portion 32a.
 駆動機構33は、モータ33aを有する。モータ33aは、回転駆動可能な駆動シャフト33bを有する。駆動機構33は、アッセイ装置10の移動経路に沿った方向にて、駆動シャフト33bとは反対側にて駆動シャフト33bと離れて位置する従動シャフト33cを有する。駆動機構33は、アッセイ装置10の移動経路に沿って配置されるエンドレスベルト33dを有する。 The drive mechanism 33 has a motor 33a. The motor 33a has a drive shaft 33b that can be driven to rotate. The drive mechanism 33 has a driven shaft 33c located distant from the drive shaft 33b on the opposite side of the drive shaft 33b in the direction along the movement path of the assay device 10. The drive mechanism 33 has an endless belt 33d arranged along the movement path of the assay device 10.
 エンドレスベルト33dは、駆動シャフト33b及び従動シャフト33cに掛けられる。ステージ31は、エンドレスベルト33dに取り付けられている。かかる移動装置30においては、モータ33aの駆動シャフト33bの回転駆動によって、エンドレスベルト33dがループ状に駆動し、これによって、エンドレスベルト33dと一緒にステージ31が移動経路に沿って移動する。しかしながら、移動装置の駆動機構は、これに限定されない。 The endless belt 33d is hung on the drive shaft 33b and the driven shaft 33c. The stage 31 is attached to the endless belt 33d. In such a moving device 30, the rotary drive of the drive shaft 33b of the motor 33a drives the endless belt 33d in a loop shape, whereby the stage 31 moves along the moving path together with the endless belt 33d. However, the drive mechanism of the mobile device is not limited to this.
 図1、図3、及び図10を参照すると、このような移動装置30は、ステージ31を、アッセイ装置10を設置可能とするように滴下区間(図3に示す)及び測定区間(図10に示す)から離れた設置区間に移動させることができる。設置区間は、ステージ31がアッセイ装置10を設置可能な状態となっている区間である。滴下区間は、アッセイ装置10の移動経路にて設置区間及び測定区間の間に配置されている。 Referring to FIGS. 1, 3 and 10, such a mobile device 30 has a drop section (shown in FIG. 3) and a measurement section (shown in FIG. 10) so that the stage 31 can be equipped with the assay device 10. It can be moved to an installation section away from (shown). The installation section is a section in which the stage 31 is in a state where the assay device 10 can be installed. The dropping section is arranged between the installation section and the measurement section in the movement path of the assay device 10.
 そのため、移動装置30は、ステージ31をアッセイ装置10と一緒に、移動経路に沿って設置区間から滴下区間を経て測定区間に移動させることができる。この逆に、移動装置30は、ステージ31をアッセイ装置10と一緒に、測定区間から滴下区間を経て設置区間に移動させることができる。移動装置30は、ステージ31をアッセイ装置10と一緒に、滴下区間及び測定区間の間にて繰り返して往復移動させることができる。 Therefore, the moving device 30 can move the stage 31 together with the assay device 10 from the installation section to the measurement section via the dropping section along the moving path. On the contrary, the moving device 30 can move the stage 31 together with the assay device 10 from the measurement section to the installation section via the dropping section. The moving device 30 can repeatedly reciprocate the stage 31 together with the assay device 10 between the dropping section and the measuring section.
 さらに、図3を参照すると、移動装置30は、滴下区間内において、アッセイ装置10における各アッセイモジュール11の注入口13が、液体供給装置20における各容器21の吐出口21cから滴下される液体Lを受け取ることを可能とするために、ステージ31をアッセイ装置10と一緒に移動経路に沿って移動させることができるように構成されている。図10を参照すると、移動装置30は、測定区間内において、アッセイ装置10における各アッセイモジュール11のアッセイ領域15及び確認領域16が、後述する測定装置60の撮像部61のレンズ61aを通して撮像することを可能とするために、ステージ31をアッセイ装置10と一緒に移動経路に沿って移動させることができるように構成されている。 Further, referring to FIG. 3, in the moving device 30, the liquid L in which the injection port 13 of each assay module 11 in the assay device 10 is dropped from the discharge port 21c of each container 21 in the liquid supply device 20 in the dropping section. The stage 31 is configured to be able to move along the travel path with the assay device 10 to be able to receive. Referring to FIG. 10, in the measurement section, the assay region 15 and the confirmation region 16 of each assay module 11 in the assay device 10 are imaged through the lens 61a of the image pickup unit 61 of the measurement device 60 described later. In order to enable this, the stage 31 is configured to be able to move along the movement path together with the assay device 10.
 「液体検出装置の詳細」
 図2及び図7を参照すると、液体検出装置50は詳細には次のように構成することができる。液体検出装置50は、複数の容器21の吐出口21cから滴下される液体Lをそれぞれ検出可能に構成される複数の液体検出部51を有する。
"Details of liquid detector"
With reference to FIGS. 2 and 7, the liquid detection device 50 can be configured in detail as follows. The liquid detection device 50 has a plurality of liquid detection units 51 configured to be capable of detecting each of the liquids L dropped from the discharge ports 21c of the plurality of containers 21.
 複数の液体検出部51の1つずつは次のように構成することができる。図7に示すように、液体検出部51は、容器21の真下に位置する。液体検出部51は、容器21の吐出口21cから滴下される液体Lを非接触式で検出可能に構成される。液体検出部51は、ファイバーセンサとなっている。しかしながら、液体検出部は、これに限定されない。 Each of the plurality of liquid detection units 51 can be configured as follows. As shown in FIG. 7, the liquid detection unit 51 is located directly below the container 21. The liquid detection unit 51 is configured to be able to detect the liquid L dropped from the discharge port 21c of the container 21 in a non-contact manner. The liquid detection unit 51 is a fiber sensor. However, the liquid detection unit is not limited to this.
 「測定装置の詳細」
 図1、図2、及び図10を参照すると、測定装置60は詳細には次のように構成することができる。測定装置60は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、入力インターフェース、出力インターフェース等の電子部品と、かかる電子部品を配置した電気回路とを含むように構成することができる。
"Details of measuring device"
With reference to FIGS. 1, 2, and 10, the measuring device 60 can be configured in detail as follows. The measuring device 60 includes electronic components such as a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an input interface, and an output interface, and an electric circuit in which such electronic components are arranged. Can be configured to include.
 図2に示すように、測定装置60は、アッセイ装置10のアッセイ領域15及び確認領域16を撮像可能に構成される撮像部61を有する。測定装置60は、撮像部61により撮像された画像に基づいて、アッセイ及び確認領域15,16の濃度を識別可能とする濃度識別部62を有する。 As shown in FIG. 2, the measuring device 60 has an imaging unit 61 configured to be able to image the assay region 15 and the confirmation region 16 of the assay device 10. The measuring device 60 has a concentration identification unit 62 that can identify the concentrations of the assay and confirmation regions 15 and 16 based on the image captured by the imaging unit 61.
 図2及び図10に示すように、撮像部61は、レンズ61aを有し、かつこのレンズ61aを通してアッセイ領域15及び確認領域16を撮像する。撮像部61はカメラとすることができる。図10に示すように、レンズ61aは測定区間内に配置される。レンズ61aは、アッセイ装置10の複数のアッセイモジュール11におけるアッセイ領域15及び確認領域16の移動経路の真上に配置される。 As shown in FIGS. 2 and 10, the imaging unit 61 has a lens 61a and images the assay region 15 and the confirmation region 16 through the lens 61a. The image pickup unit 61 can be a camera. As shown in FIG. 10, the lens 61a is arranged in the measurement section. The lens 61a is arranged directly above the movement path of the assay region 15 and the confirmation region 16 in the plurality of assay modules 11 of the assay device 10.
 例えば、測定装置60は、カメラ機能付きのスマートフォン(モバイルフォン、セルフォン)とすることができる。しかしながら、測定装置は、これに限定されない。例えば、測定装置は、カメラを接続したパーソナルコンピュータ等とすることもできる。 For example, the measuring device 60 can be a smartphone (mobile phone, cell phone) with a camera function. However, the measuring device is not limited to this. For example, the measuring device may be a personal computer or the like to which a camera is connected.
 「アッセイシステムの操作方法」
 本実施形態に係るアッセイシステムの操作方法の一例について説明する。最初に、移動装置30のステージ31を設置区間に移動させる。アッセイ装置10をステージ31に設置する。アッセイ装置10を設置したステージ31を設置区間から滴下区間に移動させる。滴下区間内にて、アッセイ装置10における複数のアッセイモジュール11の注入口13から選択された第1のアッセイモジュール11の注入口13を、液体供給装置20における複数の容器21の吐出口21cから選択された第1の容器21の吐出口21cに対応するように、ステージ31を移動させる。
"How to operate the assay system"
An example of the operation method of the assay system according to this embodiment will be described. First, the stage 31 of the moving device 30 is moved to the installation section. The assay device 10 is installed on stage 31. The stage 31 on which the assay device 10 is installed is moved from the installation section to the dropping section. Within the dripping section, the injection port 13 of the first assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. The stage 31 is moved so as to correspond to the discharge port 21c of the first container 21.
 第1の容器21に対応する容器押し機構23の第1の可動部材23aを進出させ、これによって、第1の可動部材23aが第1の容器21の本体部21aを押す。第1の容器21内の液体Lが、その吐出口21cから第1のアッセイモジュール11の注入口13に滴下される。第1の容器21の吐出口21cに対応する液体検出装置50の第1の液体検出部51が、滴下された液体Lを検出したときに、第1の可動部材23aを後退させ、これによって、第1の可動部材23aが第1の容器21の本体部21aから離れる。第1のアッセイモジュール11のアッセイ領域15及び確認領域16が、第1の容器21からの液体Lによって満たされる。 The first movable member 23a of the container pushing mechanism 23 corresponding to the first container 21 is advanced, whereby the first movable member 23a pushes the main body portion 21a of the first container 21. The liquid L in the first container 21 is dropped from the discharge port 21c to the injection port 13 of the first assay module 11. When the first liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the first container 21 detects the dropped liquid L, the first movable member 23a is retracted, whereby the first movable member 23a is retracted. The first movable member 23a separates from the main body portion 21a of the first container 21. The assay region 15 and the confirmation region 16 of the first assay module 11 are filled with the liquid L from the first container 21.
 アッセイ装置10における複数のアッセイモジュール11の注入口13から選択された第2のアッセイモジュール11の注入口13を、液体供給装置20における複数の容器21の吐出口21cから選択された第1の容器21の吐出口21cに対応するように移動させる。第1の容器21に対応する容器押し機構23の第1の可動部材23aを進出させ、これによって、第1の可動部材23aが第1の容器21の本体部21aを押す。第1の容器21内の液体Lが、その吐出口21cから第2のアッセイモジュール11の注入口13に滴下される。 The injection port 13 of the second assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is the first container selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. It is moved so as to correspond to the discharge port 21c of 21. The first movable member 23a of the container pushing mechanism 23 corresponding to the first container 21 is advanced, whereby the first movable member 23a pushes the main body portion 21a of the first container 21. The liquid L in the first container 21 is dropped from the discharge port 21c to the injection port 13 of the second assay module 11.
 第1の容器21の吐出口21cに対応する液体検出装置50の第1の液体検出部51が、滴下された液体Lを検出したときに、第1の可動部材23aを後退させ、これによって、第1の可動部材23aが第1の容器21の本体部21aから離れる。第2のアッセイモジュール11のアッセイ領域15及び確認領域16が、第1の容器21からの液体Lによって満たされる。 When the first liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the first container 21 detects the dropped liquid L, the first movable member 23a is retracted, whereby the first movable member 23a is retracted. The first movable member 23a separates from the main body portion 21a of the first container 21. The assay region 15 and the confirmation region 16 of the second assay module 11 are filled with the liquid L from the first container 21.
 さらに、アッセイ装置10における複数のアッセイモジュール11の注入口13から選択された第1のアッセイモジュール11の注入口13を、液体供給装置20における複数の容器21の吐出口21cから選択された第2の容器21の吐出口21cに対応するように移動させる。第2の容器21に対応する容器押し機構23の第2の可動部材23aを進出させ、これによって、第2の可動部材23aが第2の容器21の本体部21aを押す。第2の容器21内の液体Lが、その吐出口21cから第1のアッセイモジュール11の注入口13に滴下される。 Further, the injection port 13 of the first assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. It is moved so as to correspond to the discharge port 21c of the container 21 of. The second movable member 23a of the container pushing mechanism 23 corresponding to the second container 21 is advanced, whereby the second movable member 23a pushes the main body portion 21a of the second container 21. The liquid L in the second container 21 is dropped from the discharge port 21c to the injection port 13 of the first assay module 11.
 第2の容器21の吐出口21cに対応する液体検出装置50の第2の液体検出部51が、滴下された液体Lを検出したときに、第2の可動部材23aを後退させ、これによって、第2の可動部材23aが第2の容器21の本体部21aから離れる。第1のアッセイモジュール11のアッセイ領域15及び確認領域16が、第2の容器21からの液体Lによって満たされる。 When the second liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the second container 21 detects the dropped liquid L, the second movable member 23a is retracted, whereby the second movable member 23a is retracted. The second movable member 23a separates from the main body portion 21a of the second container 21. The assay region 15 and the confirmation region 16 of the first assay module 11 are filled with the liquid L from the second container 21.
 アッセイ装置10における複数のアッセイモジュール11の注入口13から選択された第2のアッセイモジュール11の注入口13を、液体供給装置20における複数の容器21の吐出口21cから選択された第2の容器21の吐出口21cに対応するように移動させる。第2の容器21に対応する容器押し機構23の第2の可動部材23aを進出させ、これによって、第2の可動部材23aが第2の容器21の本体部21aを押す。第2の容器21内の液体Lが、その吐出口21cから第2のアッセイモジュール11の注入口13に滴下される。 The injection port 13 of the second assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 is the second container selected from the discharge ports 21c of the plurality of containers 21 in the liquid supply device 20. It is moved so as to correspond to the discharge port 21c of 21. The second movable member 23a of the container pushing mechanism 23 corresponding to the second container 21 is advanced, whereby the second movable member 23a pushes the main body portion 21a of the second container 21. The liquid L in the second container 21 is dropped from the discharge port 21c to the injection port 13 of the second assay module 11.
 第2の容器21の吐出口21cに対応する液体検出装置50の第2の液体検出部51が、滴下された液体Lを検出したときに、第2の可動部材23aを後退させ、これによって、第2の可動部材23aが第2の容器21の本体部21aから離れる。第2のアッセイモジュール11のアッセイ領域15及び確認領域16が、第2の容器21からの液体Lによって満たされる。 When the second liquid detection unit 51 of the liquid detection device 50 corresponding to the discharge port 21c of the second container 21 detects the dropped liquid L, the second movable member 23a is retracted, whereby the second movable member 23a is retracted. The second movable member 23a separates from the main body portion 21a of the second container 21. The assay region 15 and the confirmation region 16 of the second assay module 11 are filled with the liquid L from the second container 21.
 アッセイ装置10を設置したステージ31を滴下区間から測定区間に移動させる。測定区間にて、第1のアッセイモジュール11のアッセイ及び確認領域15,16を、測定装置60の撮像部61のレンズ61aに対応させるように移動させる。撮像部61によって、第1のアッセイモジュール11のアッセイ及び確認領域15,16を撮像する。測定装置60が、撮像された画像に基づいて、第1のアッセイモジュール11のアッセイ及び確認領域15,16における濃度を識別する。 The stage 31 on which the assay device 10 is installed is moved from the dropping section to the measuring section. In the measurement section, the assay and confirmation regions 15 and 16 of the first assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60. The assay unit 61 captures the assay and confirmation regions 15 and 16 of the first assay module 11. The measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the first assay module 11 based on the captured image.
 第2のアッセイモジュール11のアッセイ及び確認領域15,16を、測定装置60の撮像部61のレンズ61aに対応させるように移動させる。撮像部61によって、第2のアッセイモジュール11のアッセイ及び確認領域15,16を撮像する。測定装置60が、撮像された画像に基づいて、第2のアッセイモジュール11のアッセイ及び確認領域15,16における濃度を識別する。 The assay and confirmation regions 15 and 16 of the second assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60. The assay unit 61 captures the assay and confirmation regions 15 and 16 of the second assay module 11. The measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the second assay module 11 based on the captured image.
 以上、本実施形態に係るアッセイシステムの概略は、液体Lを用いてアッセイを行うように構成されるアッセイ装置10を含むアッセイシステムであって、前記アッセイ装置10に液体Lを滴下可能とするように構成される液体供給装置20と、前記アッセイ装置10を前記液体供給装置20に対して水平方向に相対的に移動可能とするように構成される移動装置30と、前記液体供給装置20による液体Lの滴下、及び前記移動装置30による前記アッセイ装置10の移動を制御可能とするように構成される制御装置40とを備え、前記液体供給装置20が、点眼容器の形態にそれぞれ構成された複数の容器21を含み、各容器21が、液体Lを収容可能とするように形成される本体部21aと、この本体部21aに収容された液体Lを滴下可能とするように構成される吐出口21cを有するノズル部21bとを含み、前記液体供給装置20が、前記複数の容器21の吐出口21cを下方に向けながら水平方向に互いに間隔を空けた状態で前記複数の容器21を取り付け可能とするように構成される容器取付機構22と、前記複数の容器21の吐出口21cから液体Lを滴下させるべく前記複数の容器21の本体部21aを押すことができるように構成される少なくとも1つの可動部材23aを有する容器押し機構23とを含んでおり、前記制御装置40は、前記少なくとも1つの可動部材23aが前記複数の容器21の本体部21aを所望の順番及びタイミングで押すために、前記容器押し機構23を制御するように構成されている。 As described above, the outline of the assay system according to the present embodiment is an assay system including an assay device 10 configured to perform an assay using a liquid L, so that the liquid L can be dropped onto the assay device 10. The liquid supply device 20 configured in the above, the moving device 30 configured to make the assay device 10 relatively movable in the horizontal direction with respect to the liquid supply device 20, and the liquid by the liquid supply device 20. A plurality of liquid supply devices 20 are configured in the form of an instillation container, including a control device 40 configured to be able to control the dropping of L and the movement of the assay device 10 by the moving device 30. Each container 21 includes a main body portion 21a formed so as to be able to accommodate the liquid L, and a discharge port configured to be capable of dropping the liquid L contained in the main body portion 21a. The liquid supply device 20 includes a nozzle portion 21b having a 21c, and the liquid supply device 20 can attach the plurality of containers 21 in a state where the discharge ports 21c of the plurality of containers 21 are oriented downward and are spaced apart from each other in the horizontal direction. At least one configured to be able to push the main body portion 21a of the plurality of containers 21 in order to drip the liquid L from the container mounting mechanism 22 configured to do so and the discharge ports 21c of the plurality of containers 21. The control device 40 includes a container pushing mechanism 23 having a movable member 23a, in order for the at least one movable member 23a to push the main body portions 21a of the plurality of containers 21 in a desired order and timing. It is configured to control the container pushing mechanism 23.
 このようなアッセイシステムの概略においては、点眼容器の形態に構成された容器21の本体部21aを容器押し機構23の可動部材23aによって1回ずつ押せば、容器21の吐出口21cから微量な液体Lを1滴ずつ高い精度で供給することができる。また、このように液体Lを1滴ずつ供給するにあたって、1滴の液体Lの量を高い精度で管理できる。さらに、可動部材23aによって容器21の本体部21aを押す回数を調節すれば、容器21の吐出口21cから供給される液体Lの総量を高い精度で調節することができる。複数の容器21の本体部21aを少なくとも1つの可動部材23aによって所望の順番及びタイミングで押せば、複数の容器21の吐出口21cから液体Lを迅速かつ連続的に供給することができる。 In the outline of such an assay system, if the main body 21a of the container 21 configured in the form of an eye drop container is pushed once by the movable member 23a of the container pushing mechanism 23, a small amount of liquid is discharged from the discharge port 21c of the container 21. L can be supplied drop by drop with high accuracy. Further, when supplying the liquid L drop by drop in this way, the amount of the liquid L of one drop can be controlled with high accuracy. Further, by adjusting the number of times the main body portion 21a of the container 21 is pushed by the movable member 23a, the total amount of the liquid L supplied from the discharge port 21c of the container 21 can be adjusted with high accuracy. If the main body 21a of the plurality of containers 21 is pushed by at least one movable member 23a in a desired order and timing, the liquid L can be quickly and continuously supplied from the discharge ports 21c of the plurality of containers 21.
 また、容器21の本体部21aを可動部材23aによって押した直後に、この容器21の吐出口21cから液体Lが供給され、かつ複数の容器21の本体部21aを少なくとも1つの可動部材23aによって押すタイミングの管理は容易であるので、複数の液体Lを供給するタイミングを正確に管理できる。点眼容器の形態に構成された複数の容器21と、これら複数の容器21の本体部21aを押す少なくとも1つの可動部材23aを有する容器押し機構23とを用いて液体Lを供給する構成は簡便である。点眼容器の形態に構成された容器21に液体Lを入れる操作は容易であり、かつ複数の液体Lをそれぞれ複数の容器21に別個に収容するので、汚染のリスクを低減することができる。よって、複数の液体Lを迅速かつ連続的に供給することができ、微量な液体Lを高い精度で供給することができ、液体Lを供給するための構成を簡便にすることができ、汚染のリスクを低減することができる。 Immediately after the main body 21a of the container 21 is pushed by the movable member 23a, the liquid L is supplied from the discharge port 21c of the container 21 and the main body 21a of the plurality of containers 21 is pushed by at least one movable member 23a. Since the timing can be easily controlled, the timing of supplying the plurality of liquids L can be accurately controlled. The configuration for supplying the liquid L by using a plurality of containers 21 configured in the form of an eye drop container and a container pushing mechanism 23 having at least one movable member 23a for pushing the main body portion 21a of the plurality of containers 21 is simple. be. The operation of putting the liquid L into the container 21 configured in the form of an eye drop container is easy, and since the plurality of liquid Ls are separately housed in the plurality of containers 21, the risk of contamination can be reduced. Therefore, a plurality of liquids L can be supplied quickly and continuously, a small amount of liquid L can be supplied with high accuracy, a configuration for supplying the liquid L can be simplified, and contamination can occur. The risk can be reduced.
 本実施形態に係るアッセイシステムの概略においては、前記容器取付機構22が、前記複数の容器21をそれぞれ保持する複数の容器ホルダ24を有し、各容器ホルダ24が、それに保持される前記容器21の本体部21aを受け入れる本体収容部24aと、この容器ホルダ24に保持される前記容器21のノズル部21bを保持するノズル保持部24bとを有し、各容器ホルダ24の本体収容部24aが、それに収容される前記容器21の本体部21aを押す前記可動部材23aを通過可能とするように開口する通過口24cを有している。 In the outline of the assay system according to the present embodiment, the container mounting mechanism 22 has a plurality of container holders 24 for holding the plurality of containers 21, and each container holder 24 holds the container 21. The main body housing portion 24a for receiving the main body portion 21a of the container holder 24 and the nozzle holding portion 24b for holding the nozzle portion 21b of the container 21 held by the container holder 24 are provided. It has a passage port 24c that opens so as to allow passage of the movable member 23a that pushes the main body portion 21a of the container 21 housed therein.
 このようなアッセイシステムの概略においては、複数の容器21を容器取付機構22に対して容易に着脱することができる。そのため、例えば、互いに異なるように調製された複数の試薬をそれぞれ収容する複数の容器21を予め準備しておけば、これらの複数の容器21から、所望の試薬を収容する容器21を容器取付機構22に設置すれば、試薬間の汚染のリスクを防ぐことができる。 In the outline of such an assay system, a plurality of containers 21 can be easily attached to and detached from the container mounting mechanism 22. Therefore, for example, if a plurality of containers 21 each containing a plurality of reagents prepared so as to be different from each other are prepared in advance, a container 21 containing a desired reagent can be attached to the container mounting mechanism from these plurality of containers 21. If installed at 22, the risk of contamination between reagents can be prevented.
 また、例えば、使用後に液体Lが残存する容器21を容器取付機構22から取り外し、さらに、取り外した容器21を冷蔵庫等で保存しておくこともできて、その後、保存した容器21を再び使用する場合は、容器21を再び容器取付機構22に取り付けて使用することができる。そのため、試薬等の液体Lの消費量を削減することができ、かつ容器21を繰り返し使用することもできる。 Further, for example, the container 21 in which the liquid L remains after use can be removed from the container mounting mechanism 22, and the removed container 21 can be stored in a refrigerator or the like, and then the stored container 21 is used again. In this case, the container 21 can be attached to the container mounting mechanism 22 again and used. Therefore, the consumption of the liquid L such as the reagent can be reduced, and the container 21 can be used repeatedly.
 さらに、容器ホルダ24のノズル保持部24bが容器21のノズル部21bを確実に保持した状態で、容器ホルダ24の本体収容部24aが、可動部材23aによって容器21の本体部21aが押されることを促すので、容器21の吐出口21cから微量な液体Lを高い精度で供給することができる。 Further, in a state where the nozzle holding portion 24b of the container holder 24 securely holds the nozzle portion 21b of the container 21, the main body accommodating portion 24a of the container holder 24 is pushed by the movable member 23a to push the main body portion 21a of the container 21. Therefore, a small amount of liquid L can be supplied with high accuracy from the discharge port 21c of the container 21.
 本実施形態に係るアッセイシステムの概略においては、各容器ホルダ24の本体収容部24aは、その通過口24cを通る前記可動部材23aに押された前記容器21の本体部21aを受け止めるように形成される受け止め部24dを有している。このようなアッセイシステムの概略においては、容器ホルダ24の本体収容部24aが、可動部材23aによって押される容器21の本体部21aを安定的に支持できるので、このような容器21の吐出口21cから微量な液体Lを高い精度で供給することができる。 In the schematic of the assay system according to the present embodiment, the main body accommodating portion 24a of each container holder 24 is formed so as to receive the main body portion 21a of the container 21 pushed by the movable member 23a passing through the passage port 24c. It has a receiving portion 24d. In the outline of such an assay system, since the main body accommodating portion 24a of the container holder 24 can stably support the main body portion 21a of the container 21 pushed by the movable member 23a, it is possible to stably support the main body portion 21a of the container 21 from the discharge port 21c of such a container 21. A small amount of liquid L can be supplied with high accuracy.
 本実施形態に係るアッセイシステムの概略は、前記複数の容器21におけるノズル部21bの吐出口21cから滴下される液体Lを各別に検出可能に構成される液体検出装置50を備え、前記制御装置40は、前記液体検出装置50が各容器21の吐出口21cから滴下される液体Lを検出したときに、その容器21の本体部21aを押した進出状態から同本体部21aを押していない後退状態に戻すために、前記容器押し機構23を制御するように構成されている。このようなアッセイシステムにおいては、容器21の吐出口21cから液体Lを供給するタイミングを正確に管理することができる。 The outline of the assay system according to the present embodiment includes a liquid detection device 50 configured to be able to separately detect the liquid L dropped from the discharge port 21c of the nozzle portion 21b in the plurality of containers 21, and the control device 40. When the liquid detection device 50 detects the liquid L dripping from the discharge port 21c of each container 21, it changes from the advanced state in which the main body 21a of the container 21 is pushed to the retracted state in which the main body 21a is not pushed. It is configured to control the container pushing mechanism 23 in order to return it. In such an assay system, the timing of supplying the liquid L from the discharge port 21c of the container 21 can be accurately controlled.
 本実施形態に係るアッセイシステムの概略は、前記液体供給装置20から滴下された液体Lによって前記アッセイ装置10にて得られる反応を測定可能に構成される測定装置60を備え、前記測定装置60は、前記液体供給装置20に対して水平方向に離れて配置され、前記制御装置40は、前記液体供給装置20から前記アッセイ装置10に液体Lを滴下する滴下区間から、前記測定装置60が前記滴下区間にて滴下された液体Lによって前記アッセイ装置10にて得られる反応を測定する測定区間に向けて、前記アッセイ装置10を前記液体供給装置20及び前記測定装置60に対して水平方向に相対的に移動させるべく、前記移動装置30を制御するように構成されている。 The outline of the assay system according to the present embodiment includes a measuring device 60 configured to be capable of measuring the reaction obtained by the assay device 10 by the liquid L dropped from the liquid supply device 20, and the measuring device 60 is provided. , The control device 40 is arranged so as to be horizontally separated from the liquid supply device 20, and the measuring device 60 drops the liquid L from the liquid supply device 20 to the assay device 10. The assay device 10 is horizontally relative to the liquid supply device 20 and the measurement device 60 toward a measurement section in which the reaction obtained by the assay device 10 is measured by the liquid L dropped in the section. It is configured to control the moving device 30 so as to move to.
 このようなアッセイシステムの概略においては、例えば、液体供給装置20がアッセイ装置10に液体Lを供給した後、直ちに、測定装置60が、この液体Lによってアッセイ装置10にて得られる反応を測定することができる。そのため、測定装置60がアッセイ装置10の反応を測定するタイミングを適切にするように、複数の液体Lを供給するタイミングを正確に管理できる。 In the outline of such an assay system, for example, immediately after the liquid supply device 20 supplies the liquid L to the assay device 10, the measuring device 60 measures the reaction obtained by the liquid L in the assay device 10. be able to. Therefore, the timing of supplying the plurality of liquids L can be accurately controlled so that the measuring device 60 appropriately measures the reaction of the assay device 10.
 本実施形態に係るアッセイシステムの概略においては、前記アッセイ装置10が、前記液体供給装置20から滴下された液体Lによって反応を得られるように構成される複数のアッセイモジュール11を有し、前記液体供給装置20が、前記複数のアッセイモジュール11に前記所望の順番及びタイミングで液体Lを滴下可能とするように構成され、前記測定装置60が、前記液体供給装置20から滴下された液体Lによって前記複数のアッセイモジュール11にて得られる反応を所望の順番及びタイミングで測定可能とするように構成され、前記制御装置40は、前記測定装置60によって前記複数のアッセイモジュール11の反応を測定する順番及びタイミングを、前記液体供給装置20から前記複数のアッセイモジュール11に液体Lを滴下する順番及びタイミングに対して、一定の時間間隔を空けた状態で同じにすべく、前記液体供給装置20、前記移動装置30、及び前記測定装置60を制御するように構成されている。 In the schematic of the assay system according to the present embodiment, the assay device 10 has a plurality of assay modules 11 configured so that a reaction can be obtained by a liquid L dropped from the liquid supply device 20. The supply device 20 is configured to allow the liquid L to be dropped onto the plurality of assay modules 11 in the desired order and timing, and the measuring device 60 is said by the liquid L dropped from the liquid supply device 20. The control device 40 is configured so that the reactions obtained by the plurality of assay modules 11 can be measured in a desired order and timing, and the control device 40 measures the reactions of the plurality of assay modules 11 by the measuring device 60. The liquid supply device 20 and the movement of the liquid supply device 20 so that the timing is the same with respect to the order and timing of dropping the liquid L from the liquid supply device 20 to the plurality of assay modules 11 at regular time intervals. It is configured to control the device 30 and the measuring device 60.
 このようなアッセイシステムの概略においては、液体供給装置20が、複数のアッセイモジュール11に液体Lを上記順番及びタイミングにて滴下した後、測定装置60が、これらのアッセイに掛かる時間を見計らって、これらのアッセイモジュール11の反応を上記順番及びタイミングにて適切に測定することができる。言い換えれば、測定装置60がアッセイ装置10の反応を測定するタイミングを適切にするように、複数の液体Lを供給するタイミングを正確に管理できる。特に、液体Lを供給するタイミングを正確に管理できる結果、複数のアッセイモジュール11の反応時間を均一に揃えることができる。 In the outline of such an assay system, after the liquid supply device 20 drops the liquid L into the plurality of assay modules 11 in the above order and timing, the measuring device 60 determines the time required for these assays. The reaction of these assay modules 11 can be appropriately measured in the above order and timing. In other words, the timing of supplying the plurality of liquids L can be accurately controlled so that the measuring device 60 appropriately measures the reaction of the assay device 10. In particular, as a result of being able to accurately control the timing of supplying the liquid L, the reaction times of the plurality of assay modules 11 can be made uniform.
 本実施形態に係るアッセイシステムの詳細においては、前記容器押し機構23が、前記複数の容器21の本体部21aをそれぞれ押すことができるように配置される複数の前記可動部材23aを有しており、前記移動装置30が、前記アッセイ装置10を所定の移動経路に沿って移動させることができるように構成され、前記複数の容器21が、これらのノズル部21bの吐出口21cを前記アッセイ装置10の移動経路に沿って並べるように配置されており、前記制御装置40は、前記複数の可動部材23aが前記所望の順番及びタイミングで前記複数の容器21をそれぞれ押すように前記容器押し機構23を制御する構成となっている。 In the details of the assay system according to the present embodiment, the container pushing mechanism 23 has a plurality of movable members 23a arranged so as to be able to push the main body portions 21a of the plurality of containers 21 respectively. The moving device 30 is configured to be able to move the assay device 10 along a predetermined movement path, and the plurality of containers 21 make the discharge port 21c of these nozzle portions 21b the assay device 10. The control device 40 arranges the container pushing mechanism 23 so that the plurality of movable members 23a push the plurality of containers 21 in the desired order and timing, respectively. It is configured to be controlled.
 このようなアッセイシステムの詳細においては、複数の容器21の本体部21aをそれぞれ複数の可動部材23aによって所望の順番及びタイミングでより迅速かつ連続的に押すことができ、その結果、複数の容器21の吐出口21cから液体Lをより迅速かつ連続的に供給することができる。 In the details of such an assay system, the body portion 21a of the plurality of containers 21 can be pushed more quickly and continuously by the plurality of movable members 23a in a desired order and timing, and as a result, the plurality of containers 21 can be pushed. The liquid L can be supplied more quickly and continuously from the discharge port 21c of the above.
 「第2実施形態」
 第2実施形態に係るアッセイシステムについて説明する。
"Second embodiment"
The assay system according to the second embodiment will be described.
 「アッセイシステムの概略」
 図11~図13を参照して、本実施形態に係るアッセイシステムの概略について説明する。図11~図13に示すように、本実施形態に係るアッセイシステムは、概略的には第1実施形態に係るアッセイシステムと同様に構成されている。
"Outline of assay system"
An outline of the assay system according to the present embodiment will be described with reference to FIGS. 11 to 13. As shown in FIGS. 11 to 13, the assay system according to the present embodiment is generally configured in the same manner as the assay system according to the first embodiment.
 図11及び図12に示すように、本実施形態に係るアッセイシステムは、第1実施形態に係るアッセイ装置10、移動装置30、及び測定装置60と概略的かつ詳細に同様に構成されるアッセイ装置10、移動装置30、及び測定装置60を有する。本実施形態に係るアッセイシステムは、第1実施形態に係る液体供給装置20に相当する液体供給装置120を有する。図12に示すように、本実施形態に係るアッセイシステムは、第1実施形態に係る制御装置40及び液体検出装置50にそれぞれ相当する制御装置140及び液体検出装置150を有する。 As shown in FIGS. 11 and 12, the assay system according to the present embodiment is schematically and in detail the same as the assay device 10, the mobile device 30, and the measuring device 60 according to the first embodiment. It has 10, a moving device 30, and a measuring device 60. The assay system according to the present embodiment has a liquid supply device 120 corresponding to the liquid supply device 20 according to the first embodiment. As shown in FIG. 12, the assay system according to the present embodiment has a control device 140 and a liquid detection device 150 corresponding to the control device 40 and the liquid detection device 50 according to the first embodiment, respectively.
 図11~図13に示すように、液体供給装置120は、第1実施形態に係る複数の容器21と概略的かつ詳細に同様に構成される複数の容器21を有する。液体供給装置120は、第1実施形態に係る容器取付機構22及び容器押し機構23にそれぞれ相当する容器取付機構122及び容器押し機構123を有する。 As shown in FIGS. 11 to 13, the liquid supply device 120 has a plurality of containers 21 according to the first embodiment and a plurality of containers 21 substantially and in detail similarly configured. The liquid supply device 120 has a container mounting mechanism 122 and a container pushing mechanism 123 corresponding to the container mounting mechanism 22 and the container pushing mechanism 23 according to the first embodiment, respectively.
 容器取付機構122は、第1実施形態に係る複数の容器ホルダ24に相当する容器ホルダ124を有する。容器押し機構123は、第1実施形態に係る可動部材23aに相当する可動部材123aを有する。各容器ホルダ124は、第1実施形態に係る本体収容部24a、ノズル保持部24b、通過口24c、及び受け止め部24dにそれぞれ相当する本体収容部124a、ノズル保持部124b、通過口124c、及び受け止め部124dを有する。 The container mounting mechanism 122 has a container holder 124 corresponding to a plurality of container holders 24 according to the first embodiment. The container pushing mechanism 123 has a movable member 123a corresponding to the movable member 23a according to the first embodiment. Each container holder 124 has a main body accommodating portion 24a, a nozzle holding portion 24b, a passing port 24c, and a main body accommodating portion 124a corresponding to a receiving portion 24d, a nozzle holding portion 124b, a passing port 124c, and a receiving portion, respectively, according to the first embodiment. It has a portion 124d.
 「アッセイシステムの詳細」
 図11~図13を参照して、本実施形態に係るアッセイシステムの詳細について説明する。すなわち、本実施形態に係るアッセイシステムは詳細には次のように構成することができる。
"Details of the assay system"
The details of the assay system according to the present embodiment will be described with reference to FIGS. 11 to 13. That is, the assay system according to the present embodiment can be configured in detail as follows.
 アッセイシステムの液体供給装置120は、複数の容器21を容器押し機構123に対して移動可能とするように構成される容器移動機構125を有する。容器押し機構123は、複数の容器21を各別に押すことができるように構成される1つの可動部材123aを有する。 The liquid supply device 120 of the assay system has a container moving mechanism 125 configured to allow a plurality of containers 21 to be moved with respect to the container pushing mechanism 123. The container pushing mechanism 123 has one movable member 123a configured to be able to push a plurality of containers 21 separately.
 制御装置140は、液体供給装置120、移動装置30、液体検出装置150、及び測定装置60と電気的に接続されている。制御装置140は、複数の容器21が1つの可動部材123aに対応する容器押し位置に所望の順番及びタイミングで移動するために、容器移動機構125を制御するように構成されている。制御装置140はまた、1つの可動部材123aが容器移動機構125によって移動される複数の容器21の本体部21aを所望の順番及びタイミングで押すために、容器押し機構123を制御するように構成されている。 The control device 140 is electrically connected to the liquid supply device 120, the mobile device 30, the liquid detection device 150, and the measuring device 60. The control device 140 is configured to control the container moving mechanism 125 so that the plurality of containers 21 move to the container pushing position corresponding to one movable member 123a in a desired order and timing. The control device 140 is also configured to control the container pushing mechanism 123 so that one movable member 123a pushes the main body 21a of the plurality of containers 21 moved by the container moving mechanism 125 in a desired order and timing. ing.
 「液体供給装置の詳細」
 図11~図13を参照すると、液体供給装置120は詳細には次のように構成することができる。図11に示すように、液体供給装置120における複数の容器21の吐出口21cは、1つずつ順次滴下区間内に配置される。図11及び図13に示すように、液体供給装置120において、複数の容器21は容器取付機構122に離脱可能に取り付けられる。さらに、複数の容器21は、容器取付機構122の複数の容器ホルダ124にそれぞれ離脱可能に保持される。複数の容器ホルダ124は、ホルダ集合体126を成すように一体に形成されている。
"Details of liquid supply device"
With reference to FIGS. 11 to 13, the liquid supply device 120 can be configured as follows in detail. As shown in FIG. 11, the discharge ports 21c of the plurality of containers 21 in the liquid supply device 120 are sequentially arranged one by one in the dropping section. As shown in FIGS. 11 and 13, in the liquid supply device 120, the plurality of containers 21 are detachably attached to the container attachment mechanism 122. Further, the plurality of containers 21 are removably held by the plurality of container holders 124 of the container mounting mechanism 122. The plurality of container holders 124 are integrally formed so as to form a holder assembly 126.
 図11及び図12において、液体供給装置120は、4つの容器21と、これらをそれぞれ保持する4つの容器ホルダ124とを含む。しかしながら、液体供給装置は、2つの容器と、これらをそれぞれ保持する2つの容器ホルダとを含むか、3つの容器と、これらをそれぞれ保持する3つの容器ホルダとを含むか、又は5つ以上の容器と、これらをそれぞれ保持する5つ以上の容器ホルダとを含むこともできる。 In FIGS. 11 and 12, the liquid supply device 120 includes four containers 21 and four container holders 124 for holding them, respectively. However, the liquid feeder may include two containers and two container holders each holding them, three containers and three container holders each holding them, or five or more. It may also include a container and five or more container holders holding each of them.
 図11に示すように、容器取付機構122における複数の容器21及び複数の容器ホルダ124は、略円弧形状のホルダ整列線126aに沿って並んでいる。しかしながら、ホルダ整列線は、略円弧形状以外の形状とすることができる。例えば、ホルダ整列線は、略直線形状等とすることもできる。 As shown in FIG. 11, the plurality of containers 21 and the plurality of container holders 124 in the container mounting mechanism 122 are arranged along a substantially arc-shaped holder alignment line 126a. However, the holder alignment line can have a shape other than the substantially arc shape. For example, the holder alignment line may have a substantially straight line shape or the like.
 複数の容器ホルダ124は、ホルダ整列線126aに沿った方向(以下、「ホルダ整列方向」という)にて互いに間隔を空けている。ホルダ整列線126aはまた、滴下区間を通過するように配置される。容器押し機構123における1つの押し部材123aは、滴下区域に配置される。 The plurality of container holders 124 are spaced apart from each other in the direction along the holder alignment line 126a (hereinafter referred to as "holder alignment direction"). The holder alignment line 126a is also arranged so as to pass through the dropping section. One pushing member 123a in the container pushing mechanism 123 is arranged in the dropping area.
 このような複数の容器ホルダ124の1つずつは次のように構成することができる。図13に示すように、容器ホルダ124の本体収容部124aは、それに収容される容器21の本体部21aに対応するように形成される受入空間124eを有する。容器ホルダ124の受入空間124eは、そのホルダ軸線124fに沿って延びる。容器ホルダ124の通過口124cは、ホルダ軸線124fに交差する方向、特に、ホルダ軸線124fに略直交する方向にて本体収容部124aを貫通する。 Each of such a plurality of container holders 124 can be configured as follows. As shown in FIG. 13, the main body accommodating portion 124a of the container holder 124 has a receiving space 124e formed so as to correspond to the main body portion 21a of the container 21 accommodated therein. The receiving space 124e of the container holder 124 extends along the holder axis 124f. The passage port 124c of the container holder 124 penetrates the main body accommodating portion 124a in a direction intersecting the holder axis 124f, particularly in a direction substantially orthogonal to the holder axis 124f.
 容器ホルダ124の本体収容部124aは、ホルダ軸線124fに沿った方向にて容器ホルダ124の基端側に位置する。容器ホルダ124のノズル保持部124bは、ホルダ軸線124fに沿った方向にて容器ホルダ124の先端側に位置する。本体収容部124aとノズル保持部124bとは、互いに離脱可能に取り付けられる。本体収容部124aは、受入空間124eをホルダ124の基端側でホルダ124の外部に開放するように開口する。容器21は、開口する本体収容部124aの基端側から受入空間124eに収容される。 The main body accommodating portion 124a of the container holder 124 is located on the base end side of the container holder 124 in the direction along the holder axis 124f. The nozzle holding portion 124b of the container holder 124 is located on the tip end side of the container holder 124 in the direction along the holder axis 124f. The main body accommodating portion 124a and the nozzle holding portion 124b are detachably attached to each other. The main body accommodating portion 124a is opened so as to open the receiving space 124e to the outside of the holder 124 on the base end side of the holder 124. The container 21 is accommodated in the receiving space 124e from the base end side of the opening main body accommodating portion 124a.
 通過口124cもまた、本体収容部124aの基端側で開口する。受け止め部124dは、受入空間124eにおいて、容器押し機構123の可動部材123aの進退方向(両側矢印Wにより示す)にて通過口124cと対向するように配置されている。 The passage port 124c also opens on the base end side of the main body accommodating portion 124a. The receiving portion 124d is arranged in the receiving space 124e so as to face the passing port 124c in the advancing / retreating direction (indicated by the arrows W on both sides) of the movable member 123a of the container pushing mechanism 123.
 容器ホルダ124のノズル保持部124bは、容器21のノズル部21bを挿入可能とするように貫通する挿入孔124gを有する。容器ホルダ124のノズル保持部124bは、容器21のノズル部21bを挿入孔124gに挿入し、かつ容器21の吐出口21cを容器ホルダ124の外部に配置した状態でノズル21bを保持するように形成される。 The nozzle holding portion 124b of the container holder 124 has an insertion hole 124g penetrating so that the nozzle portion 21b of the container 21 can be inserted. The nozzle holding portion 124b of the container holder 124 is formed so as to hold the nozzle 21b in a state where the nozzle portion 21b of the container 21 is inserted into the insertion hole 124g and the discharge port 21c of the container 21 is arranged outside the container holder 124. Will be done.
 ホルダ集合体126は、実質的にホルダ整列線126aに倣って延びる外周縁部126bを有するように形成される。ホルダ集合体126は、略円弧形状のホルダ整列線126aに倣って延びる略円弧形状の外周縁部126bを有するように形成することができる。ホルダ集合体126は、略円形状のホルダ整列線126aに倣って延びる略円形状の外周縁部126bを有するように形成することができる。この場合、ホルダ集合体126は、両側矢印Qにより示すように、略円形状のホルダ整列線126aの略中心に位置する中心軸線126cを中心に回転可能に支持される。 The holder assembly 126 is formed so as to have an outer peripheral edge portion 126b extending substantially following the holder alignment line 126a. The holder assembly 126 can be formed so as to have a substantially arcuate outer peripheral edge portion 126b extending following the substantially arcuate holder alignment line 126a. The holder assembly 126 can be formed so as to have a substantially circular outer peripheral edge portion 126b extending following the substantially circular holder alignment line 126a. In this case, the holder assembly 126 is rotatably supported around the central axis 126c located at the substantially center of the substantially circular holder alignment line 126a, as indicated by the arrows Q on both sides.
 ホルダ集合体126は、ホルダ整列線126aに対して略平行に並ぶ複数の歯を有する従動ギア126dを有する。各容器ホルダ124の通過口124cは、この容器ホルダ124の受入空間124eからホルダ集合体126の外周縁部126bに向かって、この容器ホルダ124の本体収容部124aを貫通する。 The holder assembly 126 has a driven gear 126d having a plurality of teeth arranged substantially parallel to the holder alignment line 126a. The passage port 124c of each container holder 124 penetrates the main body accommodating portion 124a of the container holder 124 from the receiving space 124e of the container holder 124 toward the outer peripheral edge portion 126b of the holder assembly 126.
 容器移動機構125は、回転駆動可能に構成されるモータ125aを有する。容器移動機構125は、両側矢印Pにより示すように、モータ125aの回転駆動によって、中心軸線125cを中心として回転可能に構成される駆動ギア125bを有する。駆動ギア125bは、その外周に沿って並ぶ複数の歯を有する。駆動ギア125bの複数の歯が、従動ギア126dと噛み合っている。 The container moving mechanism 125 has a motor 125a configured to be rotatable and driveable. As shown by the arrows P on both sides, the container moving mechanism 125 has a drive gear 125b configured to be rotatable about the central axis 125c by rotationally driving the motor 125a. The drive gear 125b has a plurality of teeth arranged along its outer circumference. A plurality of teeth of the drive gear 125b mesh with the driven gear 126d.
 図11に示すように、このような液体供給装置120において、モータ125aの回転駆動によって駆動ギア125bが回転し、これによって、駆動ギア125bと噛み合う従動ギア126dが移動する。その結果、複数の容器ホルダ124がホルダ整列線126aに沿って移動するように、ホルダ集合体126が作動することとなる。このようなホルダ集合体126の作動によって、複数の容器21が1つの可動部材123aに対応する容器押し位置に所望の順番及びタイミングで移動できる。 As shown in FIG. 11, in such a liquid supply device 120, the drive gear 125b is rotated by the rotational drive of the motor 125a, whereby the driven gear 126d that meshes with the drive gear 125b is moved. As a result, the holder assembly 126 is operated so that the plurality of container holders 124 move along the holder alignment line 126a. By operating the holder assembly 126 in this way, the plurality of containers 21 can be moved to the container pushing positions corresponding to one movable member 123a in a desired order and timing.
 容器押し機構123は、1つの可動部材123aを支持する1つの固定部材123bを有する。容器押し機構123は、1つの可動部材123a及び1つの固定部材123bを有する1つのアクチュエータ123cを含む。容器押し機構123の可動部材123a、固定部材123b、及びアクチュエータ123cは、さらに詳細には、第1実施形態に係る可動部材23a、固定部材23b、及びアクチュエータ23cとそれぞれ同様に構成される。可動部材123aは、両側矢印Wにより示すように進退可能である。 The container pushing mechanism 123 has one fixing member 123b that supports one movable member 123a. The container pushing mechanism 123 includes one actuator 123c having one movable member 123a and one fixing member 123b. More specifically, the movable member 123a, the fixing member 123b, and the actuator 123c of the container pushing mechanism 123 are configured in the same manner as the movable member 23a, the fixing member 23b, and the actuator 23c according to the first embodiment. The movable member 123a can move forward and backward as shown by the arrows W on both sides.
 「液体検出装置の詳細」
 図12を参照すると、液体検出装置150は詳細には次のように構成することができる。液体検出装置150は、滴下区間に位置する1つの容器21の吐出口21cから滴下される液体Lを検出可能に構成される1つの液体検出部151を有する。この液体検出部151は、さらに詳細には、第1実施形態に係る液体検出部51と同様に構成される。
"Details of liquid detector"
With reference to FIG. 12, the liquid detection device 150 can be configured in detail as follows. The liquid detection device 150 has one liquid detection unit 151 configured to be able to detect the liquid L dropped from the discharge port 21c of one container 21 located in the dropping section. More specifically, the liquid detection unit 151 is configured in the same manner as the liquid detection unit 51 according to the first embodiment.
 「アッセイシステムの操作方法」
 本実施形態に係るアッセイシステムの操作方法の一例について説明する。最初に、移動装置30のステージ31を設置区間に移動させる。アッセイ装置10をステージ31に設置する。容器移動機構125が、液体供給装置120における複数の容器21から選択された第1の容器21を、滴下区間にて容器押し機構123における1つの可動部材123aに対応させるように移動させる。
"How to operate the assay system"
An example of the operation method of the assay system according to this embodiment will be described. First, the stage 31 of the moving device 30 is moved to the installation section. The assay device 10 is installed on stage 31. The container moving mechanism 125 moves the first container 21 selected from the plurality of containers 21 in the liquid supply device 120 so as to correspond to one movable member 123a in the container pushing mechanism 123 in the dropping section.
 アッセイ装置10を設置したステージ31を設置区間から滴下区間に移動させる。滴下区間内にて、アッセイ装置10における複数のアッセイモジュール11の注入口13から選択された第1のアッセイモジュール11の注入口13を、第1の容器21の吐出口21cに対応するように、ステージ31を移動させる。 The stage 31 on which the assay device 10 is installed is moved from the installation section to the dropping section. Within the drop section, the injection port 13 of the first assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 corresponds to the discharge port 21c of the first container 21. Move the stage 31.
 可動部材123aを進出させ、これによって、可動部材123aが第1の容器21の本体部21aを押す。第1の容器21内の液体Lが、その吐出口21cから第1のアッセイモジュール11の注入口13に滴下される。液体検出装置150の1つの液体検出部151が滴下された液体Lを検出したときに、可動部材123aを後退させ、これによって、可動部材123aが第1の容器21の本体部21aから離れる。第1のアッセイモジュール11のアッセイ領域15及び確認領域16における濃度が変化する。 The movable member 123a is advanced, whereby the movable member 123a pushes the main body portion 21a of the first container 21. The liquid L in the first container 21 is dropped from the discharge port 21c to the injection port 13 of the first assay module 11. When one liquid detection unit 151 of the liquid detection device 150 detects the dropped liquid L, the movable member 123a is retracted, whereby the movable member 123a is separated from the main body portion 21a of the first container 21. The concentrations in the assay region 15 and the confirmation region 16 of the first assay module 11 change.
 容器移動機構125が、液体供給装置120における複数の容器21から選択された第2の容器21を、滴下区間にて容器押し機構123における1つの可動部材123aに対応させるように移動させる。滴下区間内にて、アッセイ装置10における複数のアッセイモジュール11の注入口13から選択された第2のアッセイモジュール11の注入口13を、第2の容器21の吐出口21cに対応するように、ステージ31を移動させる。 The container moving mechanism 125 moves the second container 21 selected from the plurality of containers 21 in the liquid supply device 120 so as to correspond to one movable member 123a in the container pushing mechanism 123 in the dropping section. Within the drop section, the injection port 13 of the second assay module 11 selected from the injection ports 13 of the plurality of assay modules 11 in the assay device 10 corresponds to the discharge port 21c of the second container 21. Move the stage 31.
 可動部材123aを進出させ、これによって、可動部材123aが第2の容器21の本体部21aを押す。第2の容器21内の液体Lが、その吐出口21cから第2のアッセイモジュール11の注入口13に滴下される。液体検出装置150の1つの液体検出部151が滴下された液体Lを検出したときに、可動部材123aを後退させ、これによって、可動部材123aが第2の容器21の本体部21aから離れる。第2のアッセイモジュール11のアッセイ領域15及び確認領域16における濃度が変化する。 The movable member 123a is advanced, whereby the movable member 123a pushes the main body portion 21a of the second container 21. The liquid L in the second container 21 is dropped from the discharge port 21c to the injection port 13 of the second assay module 11. When one liquid detection unit 151 of the liquid detection device 150 detects the dropped liquid L, the movable member 123a is retracted, whereby the movable member 123a is separated from the main body portion 21a of the second container 21. The concentrations in the assay region 15 and the confirmation region 16 of the second assay module 11 change.
 アッセイ装置10を設置したステージ31を滴下区間から測定区間に移動させる。測定区間にて、第1のアッセイモジュール11のアッセイ及び確認領域15,16を、測定装置60の撮像部61のレンズ61aに対応させるように移動させる。撮像部61によって、第1のアッセイモジュール11のアッセイ及び確認領域15,16を撮像する。測定装置60が、撮像された画像に基づいて、第1のアッセイモジュール11のアッセイ及び確認領域15,16における濃度を識別する。 The stage 31 on which the assay device 10 is installed is moved from the dropping section to the measuring section. In the measurement section, the assay and confirmation regions 15 and 16 of the first assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60. The assay unit 61 captures the assay and confirmation regions 15 and 16 of the first assay module 11. The measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the first assay module 11 based on the captured image.
 第2のアッセイモジュール11のアッセイ及び確認領域15,16を、測定装置60の撮像部61のレンズ61aに対応させるように移動させる。撮像部61によって、第2のアッセイモジュール11のアッセイ及び確認領域15,16を撮像する。測定装置60が、撮像された画像に基づいて、第2のアッセイモジュール11のアッセイ及び確認領域15,16における濃度を識別する。 The assay and confirmation regions 15 and 16 of the second assay module 11 are moved so as to correspond to the lens 61a of the imaging unit 61 of the measuring device 60. The assay unit 61 captures the assay and confirmation regions 15 and 16 of the second assay module 11. The measuring device 60 identifies the concentration in the assay and confirmation regions 15 and 16 of the second assay module 11 based on the captured image.
 以上、本実施形態に係るアッセイシステムの概略においては、第1実施形態に係るアッセイシステムの概略と同様の効果を得ることができる。 As described above, in the outline of the assay system according to the present embodiment, the same effect as the outline of the assay system according to the first embodiment can be obtained.
 さらに、本実施形態に係るアッセイシステムの詳細においては、前記液体供給装置120が、前記複数の容器21を前記容器押し機構123に対して移動可能とするように構成される容器移動機構125を含み、前記容器押し機構123が、前記複数の容器21の本体部21aを各別に押すことができるように構成される1つの前記可動部材123aを有しており、前記制御装置140は、前記複数の容器21が前記1つの可動部材123aに対応する容器押し位置に前記所望の順番及びタイミングで移動するために、前記容器移動機構125を制御するように構成されており、かつ前記1つの可動部材123aが前記容器移動機構125によって移動される前記複数の容器21の本体部21aを前記所望の順番及びタイミングで押すために、前記容器押し機構123を制御するように構成されている。そのため、1つの可動部材123aによって複数の容器21を押すので、液体Lを供給する構成を簡便にすることができる。 Further, in the details of the assay system according to the present embodiment, the liquid supply device 120 includes a container moving mechanism 125 configured to make the plurality of containers 21 movable with respect to the container pushing mechanism 123. The container pushing mechanism 123 has one movable member 123a configured so that the main body portions 21a of the plurality of containers 21 can be pushed separately, and the control device 140 has the plurality of. The container 21 is configured to control the container moving mechanism 125 in order to move to the container pushing position corresponding to the one movable member 123a in the desired order and timing, and the one movable member 123a. Is configured to control the container pushing mechanism 123 in order to push the main body portions 21a of the plurality of containers 21 moved by the container moving mechanism 125 in the desired order and timing. Therefore, since the plurality of containers 21 are pushed by one movable member 123a, the configuration for supplying the liquid L can be simplified.
 ここまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明は、その技術的思想に基づいて変形及び変更可能である。 Although the embodiments of the present invention have been described so far, the present invention is not limited to the above-described embodiments, and the present invention can be modified and modified based on the technical idea thereof.
 10…アッセイ装置、11…アッセイモジュール
 20,120…液体供給装置
 21…容器、21a…本体部、21b…ノズル部、21c…吐出口
 22,122…容器取付機構
 23,123…容器押し機構、23a,123a…可動部材
 24,124…容器ホルダ、24a,124a…本体収容部、24b,124b…ノズル保持部、24c,124c…通過口、24d,124d…受け止め部
 30…移動装置
 40,140…制御装置
 50,150…液体検出装置
 60…測定装置
 125…容器移動機構
 L…液体
 
 
10 ... Assay device, 11 ... Assay module 20, 120 ... Liquid supply device 21 ... Container, 21a ... Main body, 21b ... Nozzle, 21c ... Discharge port 22,122 ... Container mounting mechanism 23,123 ... Container pushing mechanism, 23a , 123a ... Movable member 24,124 ... Container holder, 24a, 124a ... Main body accommodating part, 24b, 124b ... Nozzle holding part, 24c, 124c ... Passing port, 24d, 124d ... Receiving part 30 ... Moving device 40, 140 ... Control Equipment 50, 150 ... Liquid detection device 60 ... Measuring device 125 ... Container movement mechanism L ... Liquid

Claims (8)

  1.  液体を用いてアッセイを行うように構成されるアッセイ装置を含むアッセイシステムであって、
     前記アッセイ装置に液体を滴下可能とするように構成される液体供給装置と、
     前記アッセイ装置を前記液体供給装置に対して水平方向に相対的に移動可能とするように構成される移動装置と、
     前記液体供給装置による液体の滴下、及び前記移動装置による前記アッセイ装置の移動を制御可能とするように構成される制御装置と
     を備え、
     前記液体供給装置が、点眼容器の形態にそれぞれ構成された複数の容器を含み、
     各容器が、液体を収容可能とするように形成される本体部と、この本体部に収容された液体を滴下可能とするように構成される吐出口を有するノズル部とを含み、
     前記液体供給装置が、前記複数の容器の吐出口を下方に向けながら水平方向に互いに間隔を空けた状態で前記複数の容器を取り付け可能とするように構成される容器取付機構と、前記複数の容器の吐出口から液体を滴下させるべく前記複数の容器の本体部を押すことができるように構成される少なくとも1つの可動部材を有する容器押し機構とを含んでおり、
     前記制御装置は、前記少なくとも1つの可動部材が前記複数の容器の本体部を所望の順番及びタイミングで押すために、前記容器押し機構を制御するように構成されている、アッセイシステム。
    An assay system that includes an assay device that is configured to perform an assay using a liquid.
    A liquid supply device configured to allow liquid to be dropped onto the assay device,
    A mobile device configured to allow the assay device to move horizontally relative to the liquid supply device.
    It comprises a control device configured to be able to control the dropping of liquid by the liquid supply device and the movement of the assay device by the moving device.
    The liquid supply device includes a plurality of containers each configured in the form of an eye drop container.
    Each container includes a main body portion formed so as to be able to contain a liquid, and a nozzle portion having a discharge port configured to be able to drip the liquid contained in the main body portion.
    A container mounting mechanism configured so that the liquid supply device can mount the plurality of containers in a state of being horizontally spaced from each other while pointing the discharge ports of the plurality of containers downward, and the plurality of containers. It includes a container pushing mechanism having at least one movable member configured to be able to push the main body portions of the plurality of containers so that liquid can be dropped from the discharge port of the container.
    The control device is an assay system configured to control the container pushing mechanism so that the at least one movable member pushes the body of the plurality of containers in a desired order and timing.
  2.  前記容器取付機構が、前記複数の容器をそれぞれ保持する複数の容器ホルダを有し、
     各容器ホルダが、それに保持される前記容器の本体部を受け入れる本体収容部と、この容器ホルダに保持される前記容器のノズル部を保持するノズル保持部とを有し、
     各容器ホルダの本体収容部が、それに収容される前記容器の本体部を押す前記可動部材を通過可能とするように開口する通過口を有している、請求項1に記載のアッセイシステム。
    The container mounting mechanism has a plurality of container holders for each of the plurality of containers.
    Each container holder has a main body accommodating portion that receives the main body portion of the container held by the container holder, and a nozzle holding portion that holds the nozzle portion of the container held by the container holder.
    The assay system of claim 1, wherein the body accommodating portion of each container holder has a passageway that opens to allow passage of the movable member that pushes the body portion of the container contained therein.
  3.  各容器ホルダの本体収容部は、その通過口を通る前記可動部材に押された前記容器の本体部を受け止めるように形成される受け止め部を有している、請求項2に記載のアッセイシステム。 The assay system according to claim 2, wherein the main body accommodating portion of each container holder has a receiving portion formed so as to receive the main body portion of the container pushed by the movable member passing through the passage port.
  4.  前記複数の容器におけるノズル部の吐出口から滴下される液体を各別に検出可能に構成される液体検出装置を備え、
     前記制御装置は、前記液体検出装置が各容器の吐出口から滴下される液体を検出したときに、その容器の本体部を押した進出状態から同本体部を押していない後退状態に戻すために、前記容器押し機構を制御するように構成されている、請求項1に記載のアッセイシステム。
    A liquid detection device configured to be able to separately detect the liquid dripping from the discharge port of the nozzle portion in the plurality of containers is provided.
    When the liquid detection device detects the liquid dripping from the discharge port of each container, the control device returns from the advanced state in which the main body of the container is pushed to the retracted state in which the main body is not pushed. The assay system according to claim 1, which is configured to control the container pushing mechanism.
  5.  前記液体供給装置から滴下された液体によって前記アッセイ装置にて得られる反応を測定可能に構成される測定装置を備え、
     前記測定装置は、前記液体供給装置に対して水平方向に離れて配置され、
     前記制御装置は、前記液体供給装置から前記アッセイ装置に液体を滴下する滴下区間から、前記測定装置が前記滴下区間にて滴下された液体によって前記アッセイ装置にて得られる反応を測定する測定区間に向けて、前記アッセイ装置を前記液体供給装置及び前記測定装置に対して水平方向に相対的に移動させるべく、前記移動装置を制御するように構成されている、請求項4に記載のアッセイシステム。
    A measuring device configured to be capable of measuring the reaction obtained by the assay device by the liquid dropped from the liquid supply device is provided.
    The measuring device is arranged horizontally apart from the liquid supply device.
    The control device changes from a dropping section in which a liquid is dropped from the liquid supply device to the assay device to a measurement section in which the measuring device measures the reaction obtained by the assay device by the liquid dropped in the dropping section. The assay system according to claim 4, wherein the assay device is configured to control the moving device so as to move the assay device in a horizontal direction relative to the liquid supply device and the measuring device.
  6.  前記アッセイ装置が、前記液体供給装置から滴下された液体によって反応を得られるように構成される複数のアッセイモジュールを有し、
     前記液体供給装置が、前記複数のアッセイモジュールに前記所望の順番及びタイミングで液体を滴下可能とするように構成され、
     前記測定装置が、前記液体供給装置から滴下された液体によって前記複数のアッセイモジュールにて得られる反応を所望の順番及びタイミングで測定可能とするように構成され、
     前記制御装置は、前記測定装置によって前記複数のアッセイモジュールの反応を測定する前記順番及びタイミングを、前記液体供給装置から前記複数のアッセイモジュールに液体を滴下する前記順番及びタイミングに対して、一定の時間間隔を空けた状態で同じにすべく、前記液体供給装置、前記移動装置、及び前記測定装置を制御するように構成されている、請求項5に記載のアッセイシステム。
    The assay device has a plurality of assay modules configured such that a reaction can be obtained by a liquid dropped from the liquid supply device.
    The liquid feeder is configured to allow the liquid to be dropped onto the plurality of assay modules in the desired order and timing.
    The measuring device is configured to be capable of measuring the reactions obtained by the plurality of assay modules by the liquid dropped from the liquid supply device in a desired order and timing.
    The control device has a constant order and timing for measuring the reaction of the plurality of assay modules by the measuring device with respect to the order and timing for dropping the liquid from the liquid supply device to the plurality of assay modules. The assay system of claim 5, wherein the assay system is configured to control the liquid supply device, the mobile device, and the measuring device so that they are the same at intervals.
  7.  前記容器押し機構が、前記複数の容器の本体部をそれぞれ押すことができるように配置される複数の前記可動部材を有しており、
     前記移動装置が、前記アッセイ装置を所定の移動経路に沿って移動させることができるように構成され、
     前記複数の容器が、これらのノズル部の吐出口を前記アッセイ装置の移動経路に沿って並べるように配置されており、
     前記制御装置は、前記複数の可動部材が前記所望の順番及びタイミングで前記複数の容器の本体部をそれぞれ押すために、前記容器押し機構を制御するように構成されている、請求項1に記載のアッセイシステム。
    The container pushing mechanism has a plurality of the movable members arranged so as to be able to push the main body portions of the plurality of containers, respectively.
    The mobile device is configured to allow the assay device to move along a predetermined travel path.
    The plurality of containers are arranged so that the discharge ports of these nozzles are arranged along the movement path of the assay device.
    The first aspect of the present invention, wherein the control device is configured to control the container pushing mechanism so that the plurality of movable members each push the main body portions of the plurality of containers in the desired order and timing. Assay system.
  8.  前記液体供給装置が、前記複数の容器を前記容器押し機構に対して移動可能とするように構成される容器移動機構を含み、
     前記容器押し機構が、前記複数の容器の本体部を各別に押すことができるように構成される1つの前記可動部材を有しており、
     前記制御装置は、前記複数の容器が前記1つの可動部材に対応する容器押し位置に前記所望の順番及びタイミングで移動するために、前記容器移動機構を制御するように構成されており、かつ前記1つの可動部材が前記容器移動機構によって移動される前記複数の容器の本体部を前記所望の順番及びタイミングで押すために、前記容器押し機構を制御するように構成されている、請求項1に記載のアッセイシステム。
     
     
    The liquid supply device includes a container moving mechanism configured to allow the plurality of containers to be moved with respect to the container pushing mechanism.
    The container pushing mechanism has one movable member configured to be able to push the main body portions of the plurality of containers separately.
    The control device is configured to control the container moving mechanism so that the plurality of containers move to the container pushing position corresponding to the one movable member in the desired order and timing. According to claim 1, one movable member is configured to control the container pushing mechanism in order to push the main body portions of the plurality of containers moved by the container moving mechanism in the desired order and timing. The assay system described.

PCT/JP2021/032467 2020-09-07 2021-09-03 Assay system WO2022050384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546985A JPWO2022050384A1 (en) 2020-09-07 2021-09-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-149810 2020-09-07
JP2020149810 2020-09-07

Publications (1)

Publication Number Publication Date
WO2022050384A1 true WO2022050384A1 (en) 2022-03-10

Family

ID=80491090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032467 WO2022050384A1 (en) 2020-09-07 2021-09-03 Assay system

Country Status (2)

Country Link
JP (1) JPWO2022050384A1 (en)
WO (1) WO2022050384A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130224A (en) * 1976-10-08 1978-12-19 Envair, Inc. Viscous liquid dispenser
US4515294A (en) * 1982-03-31 1985-05-07 Southern Chemical Products Company Liquid dispenser, valve therefor and process of producing the valve
JPS6393373A (en) * 1986-10-09 1988-04-23 Showa Denko Kk Liquid droplet forming apparatus
JPH0562253U (en) * 1991-06-04 1993-08-20 株式会社アルメックス Drip rate monitor
JPH0737051A (en) * 1993-07-22 1995-02-07 Brother Ind Ltd Device for notiying of updating time of solution
US6092695A (en) * 1992-05-11 2000-07-25 Cytologix Corporation Interchangeable liquid dispensing cartridge pump
US20150048119A1 (en) * 2012-05-08 2015-02-19 Roche Diagnostics Operations, Inc. Microfluidic dispenser, cartridge and analysis system for analyzing a biological sample
WO2019045118A1 (en) * 2017-09-04 2019-03-07 国立研究開発法人産業技術総合研究所 Liquid packaging container and liquid ejecting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130224A (en) * 1976-10-08 1978-12-19 Envair, Inc. Viscous liquid dispenser
US4515294A (en) * 1982-03-31 1985-05-07 Southern Chemical Products Company Liquid dispenser, valve therefor and process of producing the valve
JPS6393373A (en) * 1986-10-09 1988-04-23 Showa Denko Kk Liquid droplet forming apparatus
JPH0562253U (en) * 1991-06-04 1993-08-20 株式会社アルメックス Drip rate monitor
US6092695A (en) * 1992-05-11 2000-07-25 Cytologix Corporation Interchangeable liquid dispensing cartridge pump
JPH0737051A (en) * 1993-07-22 1995-02-07 Brother Ind Ltd Device for notiying of updating time of solution
US20150048119A1 (en) * 2012-05-08 2015-02-19 Roche Diagnostics Operations, Inc. Microfluidic dispenser, cartridge and analysis system for analyzing a biological sample
WO2019045118A1 (en) * 2017-09-04 2019-03-07 国立研究開発法人産業技術総合研究所 Liquid packaging container and liquid ejecting device

Also Published As

Publication number Publication date
JPWO2022050384A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US20230120417A1 (en) Kits And Devices For Detecting Analytes
EP3385713B1 (en) Lateral flow assay device
US6398956B1 (en) Method and apparatus for directly sampling a fluid for microfiltration
US20240081791A1 (en) Cartridges for oral fluid analysis and methods of use
JP4230816B2 (en) Plate that automatically stores part of the sample
US11940454B2 (en) Optical reader for analyte testing
JP5504690B2 (en) Analysis chip
JP6823051B2 (en) Fluid sample analysis system
US20030082632A1 (en) Assay method and apparatus
WO2004062804A1 (en) Microfluidic biochip with breakable seal
CN108139418B (en) Subject processing chip, subject processing apparatus, and subject processing method
CZ20033357A3 (en) Testing system
JP2009517650A (en) Microfluidic device with porous membrane and unbranched channel
US7318359B2 (en) Sampling means and system for testing a sample liquid
US11185827B2 (en) Modified filter membrane and the use thereof
JP2006284323A (en) Micro total analysis system
WO2022050384A1 (en) Assay system
WO2015062715A1 (en) Improved device and method for reactions between a solid and a liquid phase
US8785178B2 (en) Perifusion device
WO2010042355A1 (en) Sample preparation device
JP6190472B2 (en) Novel PoC inspection system and method
WO2022149518A1 (en) Assay device
US11622724B2 (en) Surface analysis patch
KR101614333B1 (en) A mixer of microfluidic
KR20190014449A (en) Immunodiagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864436

Country of ref document: EP

Kind code of ref document: A1