WO2022050221A1 - 顕微鏡 - Google Patents

顕微鏡 Download PDF

Info

Publication number
WO2022050221A1
WO2022050221A1 PCT/JP2021/031749 JP2021031749W WO2022050221A1 WO 2022050221 A1 WO2022050221 A1 WO 2022050221A1 JP 2021031749 W JP2021031749 W JP 2021031749W WO 2022050221 A1 WO2022050221 A1 WO 2022050221A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
detection
wavelength
sample
Prior art date
Application number
PCT/JP2021/031749
Other languages
English (en)
French (fr)
Inventor
勇輝 照井
哲朗 星野
陽輔 藤掛
朝陽 福田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2022050221A1 publication Critical patent/WO2022050221A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to a microscope. This application claims priority based on Japanese Patent Application No. 2020-147642 filed on September 2, 2020, the contents of which are incorporated herein by reference.
  • a scanning microscope (hereinafter, also referred to as "Image Scanning Microscope”, abbreviated as "ISM") is proposed in which the sample is focused and irradiated with illumination light, and the fluorescence generated from the sample is detected by a detector in which a plurality of detection pixels are arranged.
  • Patent Document 1 A scanning microscope (hereinafter, also referred to as "Image Scanning Microscope”, abbreviated as "ISM”) is proposed in which the sample is focused and irradiated with illumination light, and the fluorescence generated from the sample is detected by a detector in which a plurality of detection pixels are arranged.
  • the image due to fluorescence of a plurality of different wavelengths formed on the detector in which a plurality of detection pixels are arranged is received, and the image due to the plurality of fluorescence is separated and detected by mathematical processing.
  • a method has been proposed (Non-Patent Document 1).
  • the microscope has an illumination optical system that collects illumination light to form an illumination region on a sample, a scanning unit that relatively scans the illumination region and the sample, and a detection surface.
  • a detector in which a plurality of detection units are arranged, a first image of light of the first wavelength from the sample in which the illumination region is formed, and the first wavelength from the sample in which the illumination region is formed.
  • the microscope has an illumination optical system that collects illumination light to form an illumination region on a sample, a scanning unit that relatively scans the illumination region and the sample, and a detection surface.
  • a detector in which a plurality of detection units are arranged, a first image of light of the first wavelength from the sample in which the illumination region is formed, and the first wavelength from the sample in which the illumination region is formed.
  • the microscope has an illumination optical system that collects illumination light to form an illumination region on a sample, a scanning unit that relatively scans the illumination region and the sample, and a detection surface.
  • a detector in which a plurality of detection units are arranged, a first image of the first polarized light from the sample in which the illuminated region is formed, and the first polarized light from the sample in which the illuminated region is formed. Includes a detection optical system that forms a second image of different second polarized light on the detection surface of the detector, wherein the detection optical system is at least one of the first image and the second image.
  • One of the first image and the second image, in which the portions are overlapped to form the detection surface and the first image and the second image are relatively rotated in the in-plane direction of the detection surface.
  • FIG. 2A is a diagram showing an example of an image conversion element included in the image conversion unit.
  • FIG. 2B is a diagram showing an example of an image on a detection surface in the microscope of the first embodiment.
  • FIG. 4A is a diagram showing a modification 1 of the image conversion unit.
  • FIG. 4B is a diagram showing an example of an image on the detection surface formed by the modification 1 of the image conversion unit.
  • FIG. 5A is a diagram showing an image conversion element in the modification 2 of the image conversion unit.
  • FIG. 5B is a diagram showing an example of an image on the detection surface formed by the modification 2 of the image conversion unit.
  • FIG. 9A is a diagram showing a modification 6 of the image conversion unit.
  • FIG. 9B is a diagram showing an example of an image on the detection surface formed by the modification 6 of the image conversion unit.
  • FIG. 14A is a diagram showing a modification 11 of the image conversion unit.
  • FIG. 14B is a diagram showing a modification 12 of the image conversion unit. The figure which shows the modification 13 of the image conversion part.
  • FIG. 16A is a diagram showing a modified example 14 of the image conversion unit.
  • FIG. 16B is a diagram showing a modified example 15 of the image conversion unit.
  • FIG. 17 is a diagram showing the entire detector of the modified example.
  • FIG. 1 is a diagram schematically showing the configuration of the microscope 1 of the first embodiment.
  • the structure of the microscope 1 of the first embodiment is the same as that of the conventional image scanning microscope (ISM) described above, except for the image conversion unit 30 and the removal filter 21, which will be described later.
  • ISM image scanning microscope
  • the microscope 1 will be described as being a scanning fluorescence microscope, but the microscope according to the embodiment is not limited to the fluorescence microscope.
  • the XYZ coordinate system in which the downward direction parallel to the optical axis of the objective lens 16 is the + Z direction is appropriately referred to.
  • the microscope 1 includes an objective lens 16, a relay lens 13, a relay lens 15, a deflection unit 12, a branch mirror 11, an image conversion unit 30, a detector 40, and the like.
  • the light source unit 50 has a plurality of light sources 51a and 51b such as lasers that emit light having different wavelengths, and the light emitted from the respective light sources 51a and 51b is shaped and parallelized by the lenses 52a and 52b. Then, it is converged into one light flux by the mirror 54 and the dichroic mirror 53, emitted from the light source unit 50 as illumination light Li, and supplied to the illumination optical system 10 arranged in the region surrounded by the broken line.
  • the light sources 51a and 51b may be either a laser that emits continuously oscillated light or a laser that emits pulsed light. Further, the light sources 51a and 51b may not be lasers, but may be LEDs or emission line lamps. Further, the light source unit 50 does not necessarily have to have a plurality of light sources 51a and 51b, and may have one light source 51a.
  • the illumination light Li incident on the illumination optical system 10 passes through the branch mirror 11 made of a dichroic mirror or the like and is incident on the deflection unit 12.
  • the deflection unit 12 is provided with an X-direction deflection mirror 12a and a Y-direction deflection mirror 12b as an example.
  • the illumination light Li reflected by the X-direction deflection mirror 12a and the Y-direction deflection mirror 12b is focused by the relay lens 13 and focused on the intermediate imaging point 14.
  • the illumination light Li then enters the objective lens 16 via the relay lens 15 and is focused by the objective lens 16 on the sample 18 held on the stage 17. Therefore, on the sample 18, an illumination region 19 in which the illumination light Li is focused to a size of about the resolution limit of the objective lens 16 is formed.
  • the illumination optical system 10 includes a branch mirror 11, a deflection unit 12, relay lenses 13 and 15, and an objective lens 16 arranged along the optical path of the illumination light Li.
  • the X-direction deflection mirror 12a and the Y-direction deflection mirror 12b substantially refer to the conjugate surface of the pupil surface of the objective lens 16 (or the pupil surface of the objective lens 16) with respect to the sample 18 via the objective lens 16 and the relay lenses 13 and 15. ). Then, the X-direction deflection mirror 12a of the deflection unit 12 swings in a predetermined direction, so that the illumination region 19 moves (vibrates) in the X direction on the sample 18. Further, the illumination region 19 moves (vibrates) in the Y direction on the sample 18 due to the Y-direction deflection mirror 12b swinging in a predetermined direction.
  • control unit 60 controls the deflection unit 12 by the control signal S1, that is, by controlling the swing positions of the X-direction deflection mirror 12a and the Y-direction deflection mirror 12b, the illumination region 19 is set in the XY direction on the sample 18. It can be scanned in two dimensions.
  • the X-direction deflection mirror 12a and the Y-direction deflection mirror 12b can be configured by a galvano mirror, a MEMS mirror, a resonant mirror (resonant mirror), or the like.
  • the control unit 60 controls the stage 17 holding the sample 18 by the control signal S2 and moves the stage 17 in the X direction and the Y direction, whereby the illumination region 19 and the sample 18 on the stage 17 are relatively scanned. It may be configured to make it. Further, the configuration may be such that both scanning by the deflection unit 12 and scanning by the stage 17 are performed. It can also be said that at least one of the deflection unit 12 and the stage 17 is a scanning unit that scans the illuminated area 19 and the sample 18 on the stage 17 relative to each other.
  • the control unit 60 including the calculation unit 61 controls the relative positional relationship between the illumination region 19 and the sample 18 by controlling the deflection unit 12 or the stage 17 which is a scanning unit.
  • the sample for example, cells that have been fluorescently stained in advance are used, but the sample is not necessarily limited to a substance that emits fluorescence.
  • a substance that emits fluorescence it is preferable to select a wavelength that excites the fluorescent substance contained in the sample 18 as the wavelength of the light sources 51a and 51b.
  • a wavelength that excites the fluorescent substance contained in the sample 18 by multiple photons may be selected as the wavelength of the light sources 51a and 51b.
  • the light source unit 50 may be provided interchangeably (attachable or removable) with the microscope 1, or may be externally attached to the microscope 1 when observing with the microscope 1.
  • the light (detection light) Ld emitted from the sample 18 by irradiating the illumination region 19 with the illumination light Li is incident on the objective lens 16, is refracted by the objective lens 16, passes through the relay lenses 15 and 13, and is deflected by the deflection portion 12. To. Then, it is reflected by the Y-direction deflection mirror 12b and the X-direction deflection mirror 12a of the deflection unit 12, respectively. Due to the reflection by the Y-direction deflection mirror 12b and the X-direction deflection mirror 12a, the detected light Ld is returned (descanned) to the same optical path as the illumination light Li and reaches the branch mirror 11.
  • the detected light Ld is reflected by the branch mirror 11 and is incident on the image conversion unit 30 arranged in the region surrounded by the broken line.
  • the branch mirror 11 transmits the illumination light Li and reflects the detection light Ld to branch the light, but the branch mirror 11 reflects the illumination light Li and transmits the detection light Ld. It may be a mirror that branches light.
  • the image conversion unit 30 of the microscope of the first embodiment includes a branching element 32 and a merging element 35, which are dichroic mirrors, as an example of transmitting or reflecting the incident light according to the wavelength of the incident light.
  • the detected light Ld the detected light L1 having the first wavelength ⁇ 1 passes through the branching element 32, is reflected by the mirror 33, reaches the merging element 35, and is reflected by the merging element 35.
  • the detection light L2 having a second wavelength ⁇ 2 having a wavelength longer than that of the first wavelength ⁇ 1 is reflected by the branch element 32, reflected by the mirror 34, reaches the merging element 35, and passes through the merging element 35.
  • the detection light L1 of the first wavelength ⁇ 1 and the detection light L2 of the second wavelength ⁇ 2 are merged by the merging element 35 to become emission light Le and are emitted from the image conversion unit 30.
  • the emitted light Le is condensed by the condenser lens 22 after the light of a part of the wavelength is removed by the removal filter 21 described later, and the image 23 of the illumination region 19 in the sample 18 is displayed on the detection surface 41 of the detector 40.
  • the detection light L2 having the second wavelength ⁇ 2 may be light having a shorter wavelength than the detection light L1 having the first wavelength ⁇ 1.
  • a light-shielding plate C1 is provided in the image conversion unit 30 beside the optical path of the detection light L1 so as to be removable from the optical path of the detection light L1, and a light-shielding plate C2 is provided beside the optical path of the detection light L2. It is provided so that it can be removed from the optical path of.
  • the light-shielding plate C1 and the light-shielding plate C2 will be described later.
  • the objective lens 16, the relay lens 15, 13, the deflection unit 12, the branch mirror 11, the image conversion unit 30, the removal filter 21, and the condenser lens 22 arranged along the optical path of the detection light Ld include the detection optical system 20 ( The area surrounded by the dotted line) is composed.
  • the detection optical system 20 superimposes at least a part of the first image of the detection light L1 of the first wavelength ⁇ 1 and the second image of the detection light L2 of the second wavelength ⁇ 2 in the illumination region 19 of the sample 18. It is formed on the detection surface 41 of the detector 40.
  • FIG. 2B shows the first image 23a by the detection light L1 of the first wavelength ⁇ 1 in the illumination region 19 of the sample 18 on the detection surface 41 of the detector 40 in the microscope 1 of the first embodiment, and the detection light L2 of the second wavelength ⁇ 2.
  • the contour of the first image 23a shown by the alternate long and short dash line and the contour of the second image 23b shown by the alternate long and short dash line are, for example, at positions where the light intensity is 15% of the peak intensity of each image (boundary line). ) Is shown.
  • the first image 23a and the second image 23b are single spot images on the detection surface 41, respectively.
  • the detection surface 41 is arranged so as to be parallel to the YZ surface, but the direction of the detection surface 41 is such that the reflection surface (branch mirror 11, branch element 32, etc.) in the detection optical system 20 is arranged. It changes in any way. Therefore, in the present specification and the drawings, the detection surface 41 will be described with reference to the U direction and the V direction indicated by the arrows in FIG. 2B. As for the U direction and the V direction, the X direction and the Y direction on the sample 18 shown in FIG. 1 are projected onto the detection surface 41 by the detection optical system 20 through the optical path of the detection light L1 having the first wavelength ⁇ 1. The direction.
  • 5 detection pixels 42 in the U direction and 5 in the V direction, for a total of 5 ⁇ 5 25, are arranged on the detection surface 41.
  • the widths of one detection pixel 42 in the U direction and the V direction are converted into the length on the sample 18 when the wavelength of the first wavelength ⁇ 1 or the second wavelength ⁇ 2 is ⁇ and the numerical aperture of the objective lens 16 is NA. For example, it is about 0.2 ⁇ ⁇ / NA.
  • the detector 40 for example, an avalanche photodiode array having high sensitivity and high responsiveness can be used.
  • the respective detection pixels 42 do not necessarily have to be arranged in parallel in the U direction and the V direction, and may be arranged in the detection surface 41 along the directions rotated from the U direction and the V direction. Further, each of the detection pixels 42 may not be densely arranged in the detection surface 41, or may be arranged discretely. Further, each of the detection pixels 42 may be arranged one-dimensionally instead of two-dimensionally.
  • the first image 23a and the second image 23b are formed on the detection surface 41 by superimposing at least a part thereof, the first image 23a and the second image 23b are formed.
  • the total area of the detection pixels 42 for imaging can be reduced. Therefore, even if the detector 40 having a small total area of the detection pixels 42, that is, an inexpensive detector 40 is used, a highly accurate two-dimensional image of the sample 18 can be obtained as described later.
  • the total area of the detection pixels 42 may be 1.5 times or less the total area of the first image 23a and the second image 23b in the detection surface 41.
  • the area of each of the first image 23a and the second image 23b is the area inside the contour of each image shown by the alternate long and short dash line in FIG. 2B.
  • the light received by each of the detection pixels 42 arranged on the detection surface 41 is converted into a light amount signal S3 which is an electric signal corresponding to the light amount, and is transmitted to the calculation unit 61 in the control unit 60. Similar to the conventional ISM, the calculation unit 61 determines the relative positional relationship between the light amount signal S3 from each detection pixel 42 and the illumination region 19 and the sample 18 when the light amount signal S3 is detected in the X and Y directions. A two-dimensional image of the sample 18 is generated based on the above.
  • the relationship with the light amount signal S3 detected from the above is one two-dimensional image generated by one detection pixel 42.
  • the detection surface 41 is formed so that the first image 23a by the detection light L1 of the first wavelength ⁇ 1 and the second image 23b by the detection light L2 of the second wavelength ⁇ 2 are substantially overlapped with each other. Therefore, the two-dimensional image for each detection pixel 42 generated above includes a two-dimensional image detected by the detection light L1 of the first wavelength ⁇ 1 and a two-dimensional image detected by the detection light L2 of the second wavelength ⁇ 2. Is a mixture.
  • the calculation unit 61 is generated by detection light (L1, L2) having a plurality of wavelengths detected by each detection pixel 42 of the detector 40 by changing the relative positional relationship between the illumination region 19 and the sample 18.
  • a process of estimating the two-dimensional density distribution of each fluorescent substance of the first wavelength ⁇ 1 and the second wavelength ⁇ 2 is performed from the two-dimensional image (25 because the total number of detected pixels is 25). This estimation process is performed by CLEMENS ROIDER and 3 other authors, "Deconvolution approach for 3D scanning microscopy with helical phase engineering", OPTICS EXPRESS 15456, USA, The Optical Society, Vol. 24, No.
  • the two-dimensional image Im (x, y) generated by the detection light detected by the m-th detection pixel 42 of the detector 40 is expressed by the following equation (1). Will be done.
  • m is a subscript assigned to the detection pixel 42 constituting the detector 40. Since the detector 40 has 25 detection pixels 42, it is an integer value from 1 to 25.
  • x and y are the positions in the X direction and the Y direction in the sample 18, respectively.
  • ⁇ (x, y, ⁇ ) represents the density of the fluorescent substance that generates fluorescence at the wavelength ⁇ in the sample 18.
  • hm (x, y, ⁇ ) represents the point image intensity distribution (PSF) in the two-dimensional image generated by the detection light of the wavelength ⁇ detected by the m-th detection pixel 42 of the detector 40.
  • PSF point image intensity distribution
  • the equation (1) is as shown in the following equation (2). It will be expanded.
  • ⁇ (x, y, ⁇ 1) represents the density of the fluorescent substance that fluoresces at the wavelength ⁇ 1 in the sample 18, and ⁇ (x, y, ⁇ 2) represents the fluorescence substance that fluoresces at the wavelength ⁇ 2 in the sample 18.
  • hm (x, y, ⁇ 1) represents the point image intensity distribution (PSF) in the two-dimensional image generated by the detection light of the wavelength ⁇ 1 detected by the mth detection pixel 42 of the detector 40.
  • hm (x, y, ⁇ 2) represents the point image intensity distribution (PSF) in the two-dimensional image generated by the detection light of the wavelength ⁇ 2 detected by the mth detection pixel 42 of the detector 40.
  • Pixel recitation processing is described in, for example, "Superresolution by image scanning microscopy using pixel reassignment" by C. J. Sheppard, S. B. Mehta, R. Heintzmann, Optics Letters (USA), Volume 38, No. Since it is described in detail in .15, 2889, 2013, the explanation is omitted here.
  • the point image intensity distribution hm (x, y, ⁇ 1) is a point in a two-dimensional image generated by the detection light of the wavelength ⁇ 1 detected by the m-th detection pixel 42 of the detector 40, as described above.
  • Image intensity distribution (PSF) is a point in a two-dimensional image generated by the detection light of the wavelength ⁇ 1 detected by the m-th detection pixel 42 of the detector 40, as described above.
  • the point image intensity distribution hm (x, y, ⁇ 2) is a point image in a two-dimensional image generated by the detection light of the wavelength ⁇ 2 detected by the m-th detection pixel 42 of the detector 40, as described above.
  • Intensity distribution (PSF) is a point image in a two-dimensional image generated by the detection light of the wavelength ⁇ 2 detected by the m-th detection pixel 42 of the detector 40, as described above.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) need only have different distributions corresponding to at least one common subscript m. That is, the point image intensity distribution hm (x, y, ⁇ 1) corresponding to the specific subscript m and the point image intensity distribution hm (x, y, ⁇ 2) may have the same distribution.
  • Differentiation of the point image intensity distribution hm (x, y, ⁇ 1) corresponding to at least one common subscript m from the point image intensity distribution hm (x, y, ⁇ 2) can be described from, for example, from the following (a). It can be realized by any one or more up to (d).
  • (A) The first image 23a by the detection light L1 of the first wavelength ⁇ 1 and the second image 23b by the detection light L2 of the second wavelength ⁇ 2 are relatively rotated in the in-plane direction of the detection surface 41.
  • One of the first image 23a by the detection light L1 of the first wavelength ⁇ 1 or the second image 23b by the detection light L2 of the second wavelength ⁇ 2 is inverted in the plane of the detection surface 41.
  • FIG. 2A is a diagram showing an image rotator 31a as an image conversion element 31 arranged in the image conversion unit 30.
  • the image rotator 31a is arranged such that the long side of the dub prism coincides with the traveling direction (+ X direction) of the detection light L2.
  • Each side surface of the dub prism is arranged in a state of being rotated by 45 ° with respect to the XY plane and the XZ plane with the rotation center in the X direction.
  • each side surface of the dub prism is shown so as to coincide with the XY plane and the XZ plane so that the configuration of the dub prism as the image rotator 31a can be easily understood.
  • the second image 23b by the detection light L2 is mirrored (inverted) with respect to the first image 23a by the detection light L1 on the detection surface 41. And it is rotated by 90 ° in the plane of the detection surface 41.
  • the accuracy of estimation of the density ⁇ 1 (x, y, ⁇ 1) of the fluorescent substance and the density ⁇ 2 (x, y, ⁇ 2) of the fluorescent substance performed by the calculation unit 61 is improved.
  • the first image 23a by the detection light L1 of the first wavelength ⁇ 1 and the second image 23b by the detection light L2 of the second wavelength ⁇ 2 are formed on the detection surface 41 of one detector 40. Also, the two-dimensional density distribution of each fluorescent substance can be estimated with high accuracy. As a result, the number of detectors 40 such as an expensive avalanche photodiode array required for detection can be reduced.
  • an optical member such as a lens that gives rotational asymmetric aberration such as astigmatism or coma to the detected light Ld may be further arranged on the upstream side (the side close to the sample 18). Instead of this, an optical member such as a lens that gives rotational asymmetric aberration such as non-point aberration or coma aberration to the detected light L1 is arranged in the optical path of the detected light L1 in the image conversion unit 30. Alternatively, an optical member such as a lens that gives rotational asymmetric aberration such as non-point aberration or coma aberration to the detected light L2 may be arranged in the optical path of the detected light L2 in the image conversion unit 30. good.
  • the theoretically predicted distribution is used. You may use it. That is, a theoretically predicted distribution is used based on the data of the optical design of the microscope 1 of the embodiment, the theoretical influence of the image rotator 31a on the second image 23b, the position and size of the detection pixels 42, and the like. You may.
  • the point image intensity distribution at each detection wavelength of the microscope 1 of the first embodiment may be measured in advance, and the measured point image intensity distribution may be used.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) are determined based on the light amount distribution in the detection surface 41 of the 23a and the second image 23b. Is also good.
  • the coordinates (x, y) detected by the finite number of detection pixels 42 in the detection surface 41 are obtained by interpolating the measured values of the discrete image intensity distribution or by fitting with a continuous function.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) that are continuous with respect to x, y) may be determined.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) for example, two dimensions with respect to the (x, y) coordinates shown in the equation (3).
  • the Gaussian function p (x, y) of may be used.
  • the coordinates (x0, y0) represent the center position of the two-dimensional Gaussian distribution with respect to the origin (0,0)
  • Wx represents the width of the two-dimensional Gaussian distribution in the X direction
  • Wy is 2.
  • represents the rotation angle in the XY plane centered on the coordinates (x0, y0) of the two-dimensional Gaussian distribution.
  • c is a predetermined constant
  • a is a predetermined proportionality constant.
  • the function used for fitting the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) is not limited to the above-mentioned two-dimensional Gaussian function, but is a two-dimensional Lorentz function. May be used.
  • the point image intensity distribution can be estimated even if a sample that is not a point-like fluorescent object sufficiently smaller than the point image intensity distribution (PSF) is used as the sample 18.
  • PSF point image intensity distribution
  • the light amount distributions of the first image 23a and the second image 23b in the detection surface 41 are measured at a plurality of points of the sample 18, respectively.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can be estimated.
  • the optical path of the detection light L1 or the detection light is used by using the light-shielding plates C1 and C2 in the image conversion unit 30 so that only light of one wavelength is incident on the detector 40.
  • the measurement may be performed with one of the optical paths of L2 shielded from light. Further, with respect to the light source 51a and the light source 51b, the measurement may be performed with only one of them turned on and the other turned off.
  • FIG. 3 is a diagram showing an example of the spectral distribution of fluorescence emitted from the sample 18 and an example of the function of the removal filter 21.
  • the spectral distribution of the generated fluorescence spreads over a predetermined wavelength range centered on the first wavelength ⁇ 1 and the second wavelength ⁇ 2, respectively. It becomes. Then, the spectral distribution of the first fluorescent La centered on the first wavelength ⁇ 1 and the spectral distribution of the second fluorescent Lb centered on the second wavelength ⁇ 2 may partially overlap in a predetermined wavelength region. be.
  • the light having a wavelength longer than the boundary wavelength ⁇ c which is the boundary for transmitting or reflecting the incident light in the branch element 32 (see FIG. 1) which is a dichroic mirror, is reflected by the branch element 32. Therefore, it is mixed with the detection light L2 having the second wavelength ⁇ 2.
  • the second fluorescent Lb light having a wavelength shorter than the boundary wavelength ⁇ c passes through the branching element 32 and is mixed with the detection light L1 having the first wavelength ⁇ 1. Then, due to these contaminations, the accuracy of the two-dimensional image of the sample 18 may decrease.
  • the first wavelength ⁇ 1 and the second wavelength ⁇ 1 and the second wavelength ⁇ 1 and the second wavelength ⁇ 1 and the second wavelength ⁇ 1 pass through the portion of the detection optical system 20 through which the detection light L1 of the first wavelength ⁇ 1 and the detection light L2 of the second wavelength ⁇ 2 pass together.
  • a removal filter 21 for removing light in at least a part of the wavelength range BA between the wavelength ⁇ 2 and the wavelength ⁇ 2 is provided.
  • the removal filter 21 is, for example, a glass substrate on which an interference filter made of a multilayer film is formed, or a colored glass filter.
  • the removal filter 21 may be one that completely removes the light in the wavelength range BA, or may be one that dims the light.
  • the removal filter 21 By removing the light in the wavelength range BA by the removal filter 21, it is possible to prevent the above-mentioned light having an unfavorable wavelength from being mixed in the detector 40. This can prevent the accuracy of the two-dimensional image of the sample 18 from being lowered. Depending on the type of fluorescent substance contained in the sample 18, or if there is a low possibility that the accuracy of the two-dimensional image will deteriorate even if light of an unfavorable wavelength is mixed in, the removal filter 21 may not be provided. good.
  • the degree of contamination of light having an unfavorable wavelength is measured in advance or calculated by calculation, and the degree of contamination is determined by the point image intensity distribution hm (x, y, By reflecting it in ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2), the influence of contamination can be reduced.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can be made different. Therefore, similarly to the first embodiment described above, the two-dimensional density distribution of each fluorescent substance can be estimated with high accuracy by the calculation unit 61.
  • FIG. 4A is a diagram showing the image conversion unit 30a of the modification 1
  • FIG. 4B shows the first image 23a and the first image 23a formed on the detection surface 41 (see FIG. 1) by the image conversion unit 30a shown in FIG. 4A. It is a figure which shows the example of the 1st image 23b.
  • the configuration of the image conversion unit 30a of the first modification is substantially the same as that of the image conversion unit 30 shown in FIG. 1, but the image conversion element 31 is provided with cylindrical lenses 31b and 31c instead of the image rotator 31a. It's different.
  • the cylindrical lens 31b is arranged between the mirror 33 on the optical path of the detection light L1 and the merging element 35, and has an effect of converging the detection light L1 in the Y direction more strongly than in the X direction.
  • the cylindrical lens 31c is arranged between the mirror 34 on the optical path of the detection light L2 and the merging element 35, and has an effect of converging the detection light L2 in the Z direction more strongly than in the Y direction. That is, the cylindrical lenses 31b and 31c can be said to be optical members that add astigmatism to the passing light.
  • the size of the first image 23a on the detection surface 41 is reduced in size in the U direction as compared with the size in the V direction.
  • the size of the second image 23b on the detection surface 41 is reduced in the V direction as compared with the size in the U direction.
  • the shape of the first image 23a and the shape of the second image 23b on the detection surface 41 are made different from each other, so that the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, It can be different from y, ⁇ 2).
  • the cylindrical lenses 31b and 31c may be arranged so as to be rotated by substantially the same angle (for example, 90 °) with the directions along the optical paths of the detection light L1 and the detection light L2 as the rotation centers. Further, if one of the cylindrical lenses 31b and 31c is present, the shape of the first image 23a and the shape of the second image 23b are different from each other, so that the point image intensity distribution hm (x, y, ⁇ 1) and the point image are obtained. Since the intensity distribution hm (x, y, ⁇ 2) can be made different, only one of the cylindrical lenses 31b and 31c may be provided.
  • FIG. 5A is a diagram showing a part of the image conversion unit 30b of the modification 2, and is a diagram showing a portion corresponding to the part between the mirror 34 of the optical path of the detection light L2 in the image conversion unit 30 and the merging element 35. Is. In FIG. 5A, illustration of parts other than the above of the image conversion unit 30b is omitted.
  • the configuration of the image conversion unit 30b of the modification 2 is substantially the same as that of the image conversion unit 30 described above, except that the image conversion element 31 has a masking member 31d instead of the image rotator 31a.
  • the diameter (shape of the cross section) of the optical path of the detection light L2 is limited by the masking member 31d. That is, the diameter of the detection light L2o on the downstream side (merging element 35 side) of the masking member 31d is smaller than the diameter of the detection light L2i on the upstream side (mirror 34 side) of the masking member 31d.
  • FIG. 5B is a diagram showing an example of the first image 23a and the first image 23b formed on the detection surface 41 (see FIG. 1) by the image conversion unit 30b of the modification 2. Since the diameter of the optical path of the detection light L2 is limited by the masking member 31d, the numerical aperture (NA) when the detection light L2 is focused on the detection surface 41 by the condenser lens 22 is also reduced.
  • NA numerical aperture
  • the size of the second image 23b by the detection light L2 on the detection surface 41 is larger than the size of the first image 23a by the detection light L1.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can be made different.
  • the masking member 31d may be provided not on the optical path of the detection light L2 but on the optical path of the detection light L1. Further, the shape of the opening of the masking member 31d may be any shape such as a circle or a polygon. Further, masking members 31d having different openings may be provided on the optical path of the detection light L1 and on the optical path of the detection light L2.
  • FIG. 6 is a diagram showing the image conversion unit 30c of the modification 3, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30c of the modification 3 has a merging element 35a in which the light transmission and reflection characteristics of the merging element 35 of the image conversion unit 30 shown in FIG. 1 are inverted. That is, in the image conversion unit 30c of the modification 3, of the detected light Ld, the detected light L1 having the first wavelength ⁇ 1 passes through the branching element 32, is reflected by the mirror 33, reaches the merging element 35a, and reaches the merging element 35a. Is transmitted and becomes a part of the emitted light Le. On the other hand, the detection light L2 having the second wavelength ⁇ 2 is reflected by the branch element 32, reflected by the mirror 34 to reach the merging element 35a, reflected by the merging element 35a, and becomes a part of the emission light Le.
  • the above-mentioned image rotator 31a (see FIG. 2A) is arranged as an image conversion element 31 on the optical path of the detection light L2.
  • the image rotator 31a may be arranged on the optical path of the detection light L1.
  • the above-mentioned cylindrical lenses 31b and 31c (see FIG. 4A) or the masking member 31d (see FIG. 5A) are arranged on at least one of the optical path of the detection light L1 and the optical path of the detection light L2. May be.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can also be made different by the image conversion unit 30c of the modification 3.
  • the branching element 32 and the merging element 35a may be configured by one integrated dichroic mirror 32a.
  • FIG. 7 is a diagram showing the image conversion unit 30d of the modification 4, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30d of the modification 4 is substantially the same as the image conversion unit 30c of the modification 3 shown in FIG. 6 in which the branching element 32 and the merging element 35a are configured by one integrated dichroic mirror 32a. It has a similar configuration. However, the difference is that the incident angle of the detected light on the dichroic mirror 32a and the mirrors 33 and 34 is not about 45 °.
  • the image conversion element 31 is any of the above-mentioned image rotator 31a, cylindrical lens 31b, 31c, or masking member 31d arranged on the optical path of the detection light L1 or the detection light L2. It may be.
  • FIG. 8 is a diagram showing the image conversion unit 30e of the modification 5, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30e of the modification 5 branches the incident detection light Ld into detection lights L1 to L3 that pass through three different optical paths according to the wavelength, merges them, and outputs the emission light Le. Is.
  • An image rotator 31a as the image conversion element 31 shown in FIG. 2A is provided on the optical path of the detection light L2 and on the optical path of the detection light L3.
  • the detected light L1 having the first wavelength ⁇ 1 passes through the branch element 32 and is reflected by the mirror 33. After that, the detection light L1 passes through the dichroic mirror 36b, becomes a part of the detection light L12, reaches the merging element 35, passes through the merging element 35, and becomes a part of the emission light Le.
  • the detection light L23 of the second wavelength ⁇ 2 and the third wavelength ⁇ 3 having a wavelength longer than the first wavelength ⁇ 1 is reflected by the branch element 32 and reaches the dichroic mirror 36a.
  • the detection light L2 having the second wavelength ⁇ 2 is reflected by the dichroic mirror 36a, passes through the image rotator 31a, is reflected by the dichroic mirror 36b, becomes a part of the detection light L12, reaches the merging element 35, and causes the merging element 35. It is transmitted and becomes a part of the emitted light Le.
  • the detection light L2 of the third wavelength ⁇ 3 having a wavelength longer than the second wavelength ⁇ 2 passes through the dichroic mirror 36a, is reflected by the mirror 34, passes through the image rotator 31a, reaches the merging element 35, and is reflected by the merging element 35. It becomes a part of the emission light Le.
  • the emitted light Le is collected by the condenser lens 22 after passing through the removal filter 21.
  • On the detection surface 41 of the detector 40 an image of an illuminated region 19 with light of each wavelength from the first wavelength ⁇ 1 to the third wavelength ⁇ 3 is formed in a state where at least a part thereof is overlapped.
  • the image rotator 31a on the optical path of the detection light L2 in the image conversion unit 30e of the modification 5 rotates the image of the illumination region 19 on the detection surface 41 by, for example, 120 °.
  • the image rotator 31a on the optical path of the detection light L3 rotates the image of the illumination region 19 on the detection surface 41 by, for example, 240 °.
  • the image conversion unit 30e of the modification 5 detects the images of the respective illumination regions 19 by the detection light L1 of the first wavelength ⁇ 1, the detection light L2 of the second wavelength ⁇ 2, and the detection light L3 of the third wavelength ⁇ 3.
  • the image conversion unit 30e of the modification 5 detects the images of the respective illumination regions 19 by the detection light L1 of the first wavelength ⁇ 1, the detection light L2 of the second wavelength ⁇ 2, and the detection light L3 of the third wavelength ⁇ 3.
  • each point image intensity distribution hm (x, y, ⁇ 1), point image intensity distribution hm (x, y, ⁇ 2), point image intensity distribution hm (x, y, ⁇ 3) is different. Therefore, even when each image of the detection lights L1 to L3 from the detection light of the first wavelength ⁇ 1 to the third wavelength ⁇ 3 of the illumination region 19 is formed on the detection surface 41 of one detector 40. ,
  • the two-dimensional density distribution of each fluorescent substance can be estimated with high accuracy.
  • the third wavelength ⁇ 3 is longer than the second wavelength ⁇ 2 and the second wavelength ⁇ 2 is longer than the first wavelength ⁇ 1, but the third wavelength ⁇ 3 is shorter than the second wavelength ⁇ 2 and the second wavelength.
  • ⁇ 2 may be shorter than the first wavelength ⁇ 1.
  • one of the image rotators 31a arranged on the optical path of the detection light L2 or the optical path of the detection light L3 may be arranged on the optical path of the detection light L1 instead.
  • the above-mentioned cylindrical lenses 31b, 31c and the masking member 31d may be arranged on the optical path of any two or more of the detection light L1 and the detection light L3.
  • FIG. 9A is a diagram showing the image conversion unit 30f of the modification 6, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • FIG. 9B is a diagram showing an example of the first image 23a and the first image 23b formed on the detection surface 41 by the image conversion unit 30f shown in FIG. 9A.
  • the configuration of the image conversion unit 30f of the modification 6 is almost the same as that of the image conversion unit 30 in the above-mentioned first embodiment shown in FIG. 1, but does not have the image conversion element 31. Instead, the mirror 33 included in the image conversion unit 30f is arranged so as to be rotated by a predetermined angle in the direction in the XZ plane.
  • the position of the first image 23a on the detection surface 41 is relative to the position of the second image 23b. Shift in the -V direction. Therefore, the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can be made different.
  • the mirror 33 can be said to be an image shift portion that shifts the positions of the first image 23a and the second image 23b relative to the in-plane direction of the detection surface 41.
  • the direction in which the mirror 33 is rotated is not limited to the above-mentioned direction in the XZ plane, and may be any direction as long as it intersects the direction perpendicular to the reflection plane of the mirror 33. Therefore, the direction in which the first image 23a shifts on the detection surface 41 is not limited to the ⁇ V direction, and may be any direction.
  • FIG. 10 is a diagram showing the image conversion unit 30 g of the modification 7, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the detection light L1 having the first wavelength ⁇ 1 passes through the branch element 32 and is reflected by the mirror 33. After that, the detection light L1 passes through the image conversion element 31, is reflected by the mirror 33a and the mirror 33b, and returns to the branch element 32. Then, it passes through the branch element 32 again and becomes a part of the emitted light Le.
  • the detected light L2 having a second wavelength ⁇ 2 having a wavelength longer than that of the first wavelength ⁇ 1 is reflected by the branching element 32 and becomes a part of the emitted light Le.
  • the image conversion element 31 may be any of the image rotator 31a, the cylindrical lenses 31b, 31c, or the masking member 31d described above.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can be made different by the image conversion unit 30g of the modification 7. Therefore, similarly to the first embodiment described above, the two-dimensional density distribution of each fluorescent substance can be estimated with high accuracy by the calculation unit 61.
  • the branching element 32 also has a function as a merging element 35 in the image conversion unit 30 of the first embodiment shown in FIG. That is, the branching element 32 and the merging element 35 are also used in one branching element 32.
  • FIG. 11 is a diagram showing the image conversion unit 30h of the modification 8, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30h of the modification 8 is obtained by replacing the three mirrors 33, 33a, 33b included in the image conversion unit 30g of the modification 7 with two mirrors 33, 33c. With this configuration, the number of mirrors can be reduced.
  • the image conversion element 31 may be omitted in the image conversion unit 30g of the modification 7 and the image conversion unit 30h of the modification 8.
  • the modified example 7 is detected by rotating the mirrors 33, 33a, 33b in the XZ plane by a predetermined angle in the same manner as the image conversion unit 30f of the modified example 6 described above.
  • the position of the first image 23a on the surface 41 may be shifted with respect to the position of the second image 23b.
  • the detection light L1 having the first wavelength ⁇ 1 of the detection light Ld is transmitted through the branch element 32 and reflected by the mirror 33 and the mirror 33c, that is, reflected twice. Return to the branch element 32.
  • the detected light L2 having the second wavelength ⁇ 2 reflects the branching element 32, that is, reflects once and becomes a part of the emitted light Le. Since the evenness and oddness of the number of reflections in the image conversion unit 30h differs between the detection light L1 and the detection light L2, the first image 23a formed on the detection surface 41 is mirrored with respect to the first image 23b. Since the image is inverted), the mirrors 33 and 33c may or may not be rotated by a predetermined angle in the direction in the XZ plane.
  • FIG. 12 is a diagram showing the image conversion unit 30i of the modification 9, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30i of the modification 9 has a branch element 32 and two mirrors 33 and 33c as one prism 37, whereas the image conversion unit 30h of the modification 8 described above omits the image conversion element 31. It was replaced with.
  • a dichroic mirror is formed on one surface 37a of the prism 37 by a multilayer film or the like, and a highly reflective film is formed on the two surfaces 37b and 37c of the prism 37.
  • FIG. 13 is a diagram showing the image conversion unit 30j of the modification 10, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30j of the modification 10 has a triangular prism 38 and a corner cube mirror 31e.
  • a dichroic mirror is formed on the first surface 38a and the second surface 38b of the triangular prism 38 by a multilayer film or the like.
  • the corner cube mirror 31e is a general mirror having three reflective surfaces orthogonal to each other. Since FIG. 13 is a cross-sectional view, only two of the reflective surfaces are shown.
  • the detection light L1 having the first wavelength ⁇ 1 passes through the first surface 38a and is reflected three times, that is, by the three orthogonal reflection surfaces of the corner cube mirror 31e. ..
  • the detected light L1 is further reflected by the second surface 38b of the triangular prism 38 and becomes a part of the emitted light Le.
  • the detection light L1 is reflected in the image conversion unit 30j a total of four times (even number of times) as described above.
  • the detected light L2 having the second wavelength ⁇ 2 is reflected by the first surface 38a, passes through the second surface 38b of the triangular prism 38, and becomes a part of the emitted light Le. ..
  • the detection light L2 is reflected only once (odd number times) in the image conversion unit 30j.
  • the first image 23a formed on the detection surface 41 is mirrored with respect to the first image 23b. It becomes an inverted image). Therefore, even in the image conversion unit 30j of the modification 10, the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y, ⁇ 2) can be made different.
  • the first surface 38a has a function as a branch element 32 in the image conversion unit 30 of the first embodiment shown in FIG. Further, the second surface 38b has a function as a merging element 35.
  • the image conversion unit 30j of the modified example 10 may also be provided with the various image conversion elements 31 described above in the optical path of the detection light L1. Further, the position of the first image 23a on the detection surface 41 is changed to the position of the second image 23b by slightly shifting the angular relationship of the three reflecting surfaces constituting the corner cube mirror 31e from the directions orthogonal to each other. It may be shifted to. In this case, the corner cube mirror 31e can be said to be an image shift portion that shifts the positions of the first image 23a and the second image 23b relative to the in-plane direction of the detection surface 41.
  • FIG. 14A is a diagram showing the image conversion unit 30k of the modification 11, the detector 40, the removal filters 21a and 21b included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30k of the modification 11 has a branch element 32 and a roof prism (dach prism) 31f.
  • the roof prism 31f has a first reflecting surface 31fb on the back side of the paper surface and a second reflecting surface 31fc on the front side of the paper surface with the ridge line 31fa as a boundary.
  • the detection light L1 having the first wavelength ⁇ 1 passes through the branch element 32 and is incident on the roof prism 31f. Then, the detection light L1 is reflected by the first reflection surface 31fb and the second reflection surface 31fc of the roof prism 31f, then passes through the removal filter 21a, and is condensed by the condenser lens 22 to be condensed on the detection surface.
  • the first image 23a is formed on the 41.
  • the detection light L2 having the first wavelength ⁇ 2 is reflected by the branch element 32, passes through the removal filter 21b, is collected by the condenser lens 22, and is condensed by the condenser lens 22.
  • the second image 23b is formed on the top.
  • the condenser lens 22 also has a function as a merging element 35 in the image conversion unit 30 of the first embodiment shown in FIG.
  • the various image conversion elements 31 described above may be provided in the optical path of the detection light L1 or in the optical path of the detection light L2. Further, the position of the first image 23a on the detection surface 41 may be shifted with respect to the position of the second image 23b by slightly shifting the angle at which the roof prism 31f is arranged. In this case, the roof prism 31f can be said to be an image shift portion that shifts the positions of the first image 23a and the second image 23b relative to the in-plane direction of the detection surface 41.
  • FIG. 14B is a diagram showing the image conversion unit 30l of the modification 12, the detector 40, the removal filters 21a and 21b included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30l of the modification 12 is obtained by adding a so-called parallelogram prism 39 to the detector 40 side of the roof prism 31f of the optical path of the detection light L2 with respect to the image conversion unit 30k of the modification 11. ..
  • the parallelogram prism 39 can reduce the distance between the optical path of the detection light L1 and the optical path of the detection light L2 at the positions of the removal filter 21 and the condenser lens 22. As a result, the sizes of the removal filter 21 and the condenser lens 22 can be reduced, or the removal filter 21 required for the image conversion unit 30k of the modified example 11 can be reduced to one.
  • FIG. 15 is a diagram showing the image conversion unit 30 m of the modification 13, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30m of the modification 13 has a lens 25a, a diffraction grating 32b, a lens 26a, and an image conversion element 31 arranged on the optical path of the detection light L2.
  • the detected light Ld incident on the image conversion unit 30 m is condensed by the lens 25a and irradiated on the diffraction grating 32b.
  • the detection light L1 having the first wavelength ⁇ 1 of the detection light Ld is diffracted by the diffraction grating 32b at a predetermined angle. After that, the light is made substantially parallel by the lens 26a, passes through the removal filter 21, and is condensed by the condenser lens 22 to form the first image 23a on the detection surface 41.
  • the detection light L2 having the first wavelength ⁇ 2 of the detection light Ld is diffracted by the diffraction grating 32b at an angle larger than that of the detection light L1. After that, the detection light L2 is converted into substantially parallel light by the lens 26a, passes through the removal filter 21, is condensed by the condenser lens 22, and forms the second image 23b on the detection surface 41.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y,) are provided by the image conversion element 31 arranged on the optical path of the detection light L2. It can be different from ⁇ 2).
  • the image conversion element 31 the various elements described above can be used.
  • the image conversion element 31 may be arranged on the optical path of the detection light L1 instead of the optical path of the detection light L2.
  • the diffraction grating 32b has a function as a branching element 32 in the image conversion unit 30 of the first embodiment shown in FIG. Further, the condenser lens 22 has a function as a merging element 35.
  • FIG. 16A is a diagram showing an image conversion unit 30n of a modification 14, a detector 40, a removal filter 21 included in the detection optical system 20, and a condenser lens 22.
  • the image conversion unit 30n of the modification 14 is arranged on the optical path of the detection light L2 between the branch element 32, the lens 26b, the lens 26c, the merging element 35, and the branch element 32 and the lens 26b. It has an element 31.
  • the detection light L1 having the first wavelength ⁇ 1 passes through the branch element 32, passes through the lens 26b and the lens 26c, and reaches the merging element 35.
  • the detection light L1 passes through the merging element 35 and becomes a part of the emission light Le.
  • the detected light L2 having the second wavelength ⁇ 2 is reflected by the branching element 32 and is incident on the image conversion element 31. After that, the detection light L2 passes through the lens 26b and the lens 26c and reaches the merging element 35. The detection light L2 is reflected by the merging element 35 and becomes a part of the emission light Le.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y,) are provided by the image conversion element 31 arranged on the optical path of the detection light L2. It can be different from ⁇ 2).
  • the image conversion element 31 the various elements described above can be used.
  • the image conversion element 31 may be arranged on the optical path of the detection light L1 instead of the optical path of the detection light L2.
  • FIG. 16B is a diagram showing the image conversion unit 30o of the modification 15, the detector 40, the removal filter 21 included in the detection optical system 20, and the condenser lens 22.
  • the image conversion unit 30o of the modification 15 has almost the same configuration as the image conversion unit 30n of the modification 14, but the image conversion element 31 is arranged on the optical path of the detection light L2 between the lens 26b and the lens 26c. The point is different from the image conversion unit 30n.
  • the point image intensity distribution hm (x, y, ⁇ 1) and the point image intensity distribution hm (x, y,) are provided by the image conversion element 31 arranged on the optical path of the detection light L2. It can be different from ⁇ 2).
  • the microscope 1 of the first embodiment and each modification has an illumination optical system 10 that collects illumination light to form an illumination region 19 on a sample 18, an illumination region 19 and a sample 18.
  • a detection optical system 20 formed on the detection surface 41 of the detector 40 is provided.
  • the detection optical system 20 forms the detection surface 41 by superimposing at least a part of the first image 23a and the second image 23b on the detection surface 41, and forms the first image 23a and the second image 23b on the surface of the detection surface 41.
  • One of the first image 23a and the second image 23b is inverted in the plane of the detection surface 41, and the shape of the first image 23a and the shape of the second image 23b on the detection surface 41 are rotated relatively in the inner direction.
  • It has an image conversion unit 30 that performs at least one of the above. With this configuration, the first image 23a by the detection light L1 of the first wavelength ⁇ 1 and the second image 23b by the detection light L2 of the second wavelength ⁇ 2 are imaged on the detection surface 41 of one detector 40, respectively.
  • the microscope 1 of the first embodiment and each modification has an illumination optical system 10 that collects illumination light to form an illumination region 19 on a sample 18, and an illumination region 19.
  • 20 is provided with a detection optical system 20 formed on the detection surface 41 of the detector 40.
  • the detection optical system 20 forms the detection surface 41 by superimposing at least a part of the first image 23a and the second image 23b on the detection surface 41, and forms the first image 23a and the second image 23b on the surface of the detection surface 41. It has an image shift portion (mirror 33, corner cube mirror 31e, roof prism 31f) whose position is relatively shifted in the inner direction, and the first image 23a and the second image 23b are each a single spot image.
  • the first image 23a by the detection light L1 of the first wavelength ⁇ 1 and the second image 23b by the detection light L2 of the second wavelength ⁇ 2 are formed on the detection surface 41 of one detector 40, respectively.
  • the two-dimensional density distribution of the fluorescent substance can be estimated with high accuracy. As a result, the number of detectors 40 such as an expensive avalanche photodiode array required for detection can be reduced, and the microscope 1 can be provided at low cost.
  • various embodiments and modifications estimate the density of the fluorescent substance that generates fluorescence at the first wavelength ⁇ 1 and the density of the fluorescent substance that generates fluorescence at the second wavelength ⁇ 2.
  • it can be changed to an apparatus for estimating the density of the fluorescent substance that generates polarization only by changing the configuration of the image conversion unit 30. For example, if the branching element 32 and the merging element 35a in FIG. 6 are changed to a polarizing beam splitter (PBS), the device estimates the density of the fluorescent substance that emits p-polarization and the density of the fluorescent substance that emits s-polarization.
  • PBS polarizing beam splitter
  • the PBS replaced with the branching element 32 is referred to as the first PBS
  • the PBS replaced with the merging element 35a is referred to as the second PBS.
  • the p-polarized light is transmitted through the first PBS and the s-polarized light is reflected by the first PBS. Therefore, of the detected light Ld, the detected light of the p-polarized light is transmitted through the first PBS and is a mirror. It is reflected at 33 to reach the second PBS, passes through the second PBS, and becomes part of the emitted light.
  • the s-polarized detection light is reflected by the first PBS, reflected by the mirror 34, reaches the second PBS, is reflected by the second PBS, and becomes a part of the emitted light.
  • An image rotator 31a (see FIG. 2A) is arranged as an image conversion element 31 on the s-polarized optical path.
  • the image conversion unit of this modification can also make the two point image intensity distributions described later different from each other. Further, by placing a wave plate upstream of the branching element 32, it also serves as a device for estimating the densities of fluorescent substances that emit two arbitrary orthogonal polarizations, such as clockwise circular polarization and counterclockwise circular polarization.
  • Equation (2) When the light to be detected is two arbitrary orthogonal polarizations, the equation (2) is modified as the following equation (2)'.
  • ⁇ (x, y, p1) represents the density of the fluorescent substance that emits the polarization p1 in the sample 18, and ⁇ (x, y, p2) is. It represents the density of the fluorescent substance that emits the polarized light p2 in the sample 18.
  • hm (x, y, p1) represents a point image intensity distribution (PSF) in a two-dimensional image generated by the detection light of the polarized light p1 detected by the m-th detection pixel 42 of the detector 40, and hm (x).
  • PSF point image intensity distribution
  • Y, p2 represent a point image intensity distribution (PSF) in a two-dimensional image generated by the detection light of the polarized light p2 detected by the m-th detection pixel 42 of the detector 40. Since this equation has exactly the same form as the equation (2), it is possible to estimate ⁇ (x, y, p1) and ⁇ (x, y, p2) using the above algorithm.
  • PSF point image intensity distribution
  • the detector 40 is directly arranged at the position of the image 23 in the illumination region 19.
  • one end (incident end) of an optical distribution element such as an optical fiber bundle is arranged at the position of the image 23 in the illumination region 19, and the other end (injection end) of the optical distribution element is arranged.
  • FIG. 17 is a diagram showing the entire detector 200 of the modified example.
  • the detector 200 of the modified example includes a photoelectric detector array 206 arranged one-dimensionally and an optical fiber bundle 201 that supplies light to the photoelectric detector array 206.
  • the optical fiber bundle 201 is formed from a single optical fiber 204.
  • One end (incident end) 202 of the optical fiber bundle 201 is arranged on the surface where the images 23a and 23b of the illumination region 19 are formed, and at one end 202, each single optical fiber 204 is densely arranged. ..
  • the other end (ejection end) of each optical fiber 204 in the optical fiber bundle 201 is arranged along a plug 205 extending in one dimension.
  • the other end (ejection end) 205 of each optical fiber 204 faces each photoelectric conversion surface 208 of the photoelectric detector array 206 arranged one-dimensionally.
  • the optical fiber bundle 201 corresponds to an optical distribution element that distributes light.
  • the optical distribution element is not limited to the optical fiber bundle, and other existing waveguides can be used.
  • the diameter of the incident end of each optical fiber 204 (to be exact, the diameter of the core of the fiber) is on the sample 18 when the wavelength of the first wavelength ⁇ 1 or the second wavelength ⁇ 2 is ⁇ and the numerical aperture of the objective lens 16 is NA. It is desirable that the length is set to, for example, about 0.2 ⁇ ⁇ / NA.
  • a light-collecting element array such as a microlens array may be arranged in front of the incident end of each optical fiber 204. In this case, for example, the incident end of each optical fiber 204 may be arranged at the position of the image formed via the light collecting element array.
  • the degree of freedom in arranging the photoelectric conversion unit is increased, and a larger photoelectric conversion unit can be used.
  • a highly sensitive and highly responsive photoelectric conversion unit such as a PIN photodiode or a photomultiplier tube can be used, and the S / N ratio of the two-dimensional image of the sample 18 can be improved.
  • the incident end of the optical fiber bundle 201 is a portion where the incident ends of the optical fibers that detect (photoelectrically convert) light by the photoelectric conversion unit arranged downstream thereof are two-dimensionally arranged, they are arranged two-dimensionally. It can be interpreted as a plurality of detectors.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

顕微鏡は、照明光を集光して試料に照明領域を形成する照明光学系と、照明領域と試料とを相対的に走査させる走査部と、検出面内に検出部が複数配列されている検出器と、照明領域が形成された試料からの第1波長の光による第1像、および照明領域が形成された試料からの第1波長とは異なる第2波長の光による第2像を、検出器の検出面に形成する検出光学系と、を備え、検出光学系は、第1像と第2像との少なくとも一部を重ね合わせて検出面に形成するとともに、第1像と第2像とを検出面の面内の方向に相対的に回転させる、第1像もしくは第2像の一方を検出面の面内において反転させる、および検出面における第1像の形状と第2像の形状とを異ならせる、のうち少なくとも1つを行う像変換部を有する。

Description

顕微鏡
 本発明は、顕微鏡に関する。
 本願は、2020年9月2日に出願された日本国特願2020-147642号に基づき優先権を主張し、その内容をここに援用する。
 試料に照明光を集光して照射し、試料から生じる蛍光を検出画素が複数配列されている検出器で検出する走査型顕微鏡(以下、Image Scanning Microscope、略して「ISM」とも呼ぶ)が提案されている(特許文献1)。
 また、検出画素が複数配列されている検出器上に形成された、複数の異なる波長の蛍光による像を受光し、数学的な処理により、これらの複数の蛍光による像をそれぞれ分離して検出する方法が提案されている(非特許文献1)。
米国特許第9632296号明細書
FRANZISKA STRASSER、他3名、「Spectral image scanning microscopy」、BIOMEDICAL OPTICS EXPRESS 2513、米国、The Optical Society、第10巻、第5号、[Online]、平成31年4月22日、[令和2年9月1日検索]、インターネット<URL:https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-5-2513&id=409205>
 第1の態様によると、顕微鏡は、照明光を集光して試料に照明領域を形成する照明光学系と、前記照明領域と前記試料とを相対的に走査させる走査部と、検出面内に検出部が複数配列されている検出器と、前記照明領域が形成された前記試料からの第1波長の光による第1像、および前記照明領域が形成された前記試料からの前記第1波長とは異なる第2波長の光による第2像を、前記検出器の前記検出面に形成する検出光学系と、を備え、前記検出光学系は、前記第1像と前記第2像との少なくとも一部を重ね合わせて前記検出面に形成するとともに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に回転させる、前記第1像もしくは前記第2像の一方を前記検出面の面内において反転させる、および前記検出面における前記第1像の形状と前記第2像の形状とを異ならせる、のうち少なくとも1つを行う像変換部を有する。
 第2の態様によると、顕微鏡は、照明光を集光して試料に照明領域を形成する照明光学系と、前記照明領域と前記試料とを相対的に走査させる走査部と、検出面内に検出部が複数配列されている検出器と、前記照明領域が形成された前記試料からの第1波長の光による第1像、および前記照明領域が形成された前記試料からの前記第1波長とは異なる第2波長の光による第2像を、前記検出器の前記検出面に形成する検出光学系と、を備え、前記検出光学系は、前記第1像と前記第2像との少なくとも一部を重ね合わせて前記検出面に形成するとともに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に位置シフトさせる像シフト部を有し、前記第1像および前記第2像が、それぞれ単一のスポット像である。
 第3の態様によると、顕微鏡は、照明光を集光して試料に照明領域を形成する照明光学系と、前記照明領域と前記試料とを相対的に走査させる走査部と、検出面内に検出部が複数配列されている検出器と、前記照明領域が形成された前記試料からの第1偏光の光による第1像、および前記照明領域が形成された前記試料からの前記第1偏光とは異なる第2偏光の光による第2像を、前記検出器の前記検出面に形成する検出光学系と、を備え、前記検出光学系は、前記第1像と前記第2像との少なくとも一部を重ね合わせて前記検出面に形成するとともに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に回転させる、前記第1像もしくは前記第2像の一方を前記検出面の面内において反転させる、および前記検出面における前記第1像の形状と前記第2像の形状とを異ならせる、のうち少なくとも1つを行う像変換部を有する。
第1実施形態の顕微鏡の構成を模式的に示す図。 図2Aは、像変換部に含まれる像変換素子の一例を示す図。 図2Bは、第1実施形態の顕微鏡における検出面上の像の一例を示す図。 試料から発せられる蛍光のスペクトル分布の一例と、除去フィルタの機能の一例を示す図。 図4Aは、像変換部の変形例1を示す図。 図4Bは、像変換部の変形例1により形成される検出面上の像の例を示す図。 図5Aは、像変換部の変形例2における像変換素子を示す図。 図5Bは、像変換部の変形例2により形成される検出面上の像の例を示す図。 像変換部の変形例3を示す図。 像変換部の変形例4を示す図。 像変換部の変形例5を示す図。 図9Aは、像変換部の変形例6を示す図。 図9Bは、像変換部の変形例6により形成される検出面上の像の例を示す図。 像変換部の変形例7を示す図。 像変換部の変形例8を示す図。 像変換部の変形例9を示す図。 像変換部の変形例10を示す図。 図14Aは、像変換部の変形例11を示す図。 図14Bは、像変換部の変形例12を示す図。 像変換部の変形例13を示す図。 図16Aは、像変換部の変形例14を示す図。 図16Bは、像変換部の変形例15を示す図。 図17は、変形例の検出器の全体を示す図。
(第1実施形態の顕微鏡)
 図1は、第1実施形態の顕微鏡1の構成を模式的に示す図である。なお、第1実施形態の顕微鏡1は、後述する像変換部30および除去フィルタ21以外については、その構成は、上述した従来のImage scanning microscope(ISM)と同様である。
 以下の実施形態において、顕微鏡1は走査型の蛍光顕微鏡であるものとして説明するが、実施形態に係る顕微鏡は、蛍光顕微鏡に限定されない。
 以下、説明において、対物レンズ16の光軸に平行な下向き方向を+Z方向とするXYZ座標系を適宜参照する。
 顕微鏡1は、対物レンズ16、リレーレンズ13、リレーレンズ15、偏向部12、分岐ミラー11、像変換部30、検出器40等を備えている。
 光源部50は、それぞれ異なる波長の光を発する複数のレーザー等の光源51a、51bを有し、それぞれの光源51a、51bから発せられた光は、レンズ52a、52bにより整形および平行化される。そして、ミラー54およびダイクロイックミラー53により1つの光束に収束されて、照明光Liとして光源部50から射出され、破線で囲んだ領域内に配置されている照明光学系10に供給される。
 光源51a、51bは、連続発振光を射出するレーザー、もしくはパルス光を射出するレーザーのどちらであってもよい。また、光源51a、51bは、レーザーでなくてもよく、LEDや輝線ランプであってもよい。
 また、光源部50は、光源51a、51bを必ずしも複数有する必要は無く、1つの光源51aを有するものであっても良い。
 照明光学系10に入射した照明光Liは、ダイクロイックミラー等からなる分岐ミラー11を透過して、偏向部12に入射する。偏向部12には、一例としてX方向偏向ミラー12aおよびY方向偏向ミラー12bが設けられている。X方向偏向ミラー12aおよびY方向偏向ミラー12bにより反射された照明光Liは、リレーレンズ13により集光されて、中間結像点14に集光する。
 照明光Liは、その後、リレーレンズ15を経て対物レンズ16に入射し、対物レンズ16により、ステージ17上に保持されている試料18上に集光される。従って、試料18上には、照明光Liが対物レンズ16の解像限界程度の大きさに集光された照明領域19が形成される。
 照明光学系10は、照明光Liの光路に沿って配置されている分岐ミラー11、偏向部12、リレーレンズ13、15、および対物レンズ16を含む。
 X方向偏向ミラー12aおよびY方向偏向ミラー12bは、試料18に対して、対物レンズ16およびリレーレンズ13、15を介して、ほぼ対物レンズ16の瞳面の共役面(または対物レンズ16の瞳面)となる位置に配置されている。そして、偏向部12のX方向偏向ミラー12aが所定方向に揺動することにより、照明領域19は、試料18上をX方向に移動(振動)する。また、Y方向偏向ミラー12bが所定方向に揺動することにより、照明領域19は、試料18上をY方向に移動(振動)する。
 従って、制御部60が制御信号S1により偏向部12を制御する、すなわちX方向偏向ミラー12aおよびY方向偏向ミラー12bの揺動位置を制御することにより、照明領域19を試料18上でXY方向の2次元に走査させることができる。
 X方向偏向ミラー12aおよびY方向偏向ミラー12bは、ガルバノミラー、MEMSミラー、レゾナントミラー(共振型ミラー)等で構成することができる。
 なお、制御部60が、制御信号S2により、試料18を保持するステージ17を制御してX方向およびY方向に移動させることにより、照明領域19とステージ17上の試料18とを相対的に走査させる構成としても良い。また、偏向部12による走査と、ステージ17による走査を、両方行う構成としても良い。
 偏向部12およびステージ17の少なくとも一方を、照明領域19とステージ17上の試料18とを相対的に走査させる走査部であるということもできる。演算部61を含む制御部60は、走査部である偏向部12またはステージ17を制御することにより、照明領域19と試料18との相対位置関係を制御する。
 試料18としては、例えば予め蛍光染色された細胞などを使用するが、必ずしも蛍光を発する物質には限られない。また、試料18としては、蛍光を発する物質を使用する場合には、光源51a、51bの波長として、試料18に含まれる蛍光物質を励起する波長を選択することが好ましい。なお、試料18としては、蛍光を発する物質を使用する場合には、光源51a、51bの波長として、試料18に含まれる蛍光物質を多光子励起する波長を選択してもよい。
 なお、光源部50は、顕微鏡1に交換可能(取り付け可能、取り外し可能)に設けられてもよく、顕微鏡1による観察時などに顕微鏡1に外付けされてもよい。
 照明領域19への照明光Liの照射により試料18から発せられた光(検出光)Ldは、対物レンズ16に入射し、対物レンズ16により屈折され、リレーレンズ15,13を経て、偏向部12に至る。そして、偏向部12のY方向偏向ミラー12bおよびX方向偏向ミラー12aでそれぞれ反射される。Y方向偏向ミラー12bおよびX方向偏向ミラー12aでの反射により、検出光Ldは、照明光Liとほぼ同じ光路に戻されて(デスキャンされて)、分岐ミラー11に至る。
 そして、検出光Ldは、分岐ミラー11で反射されて、破線で囲んだ領域内に配置されている像変換部30に入射する。
 なお、上記においては、分岐ミラー11は照明光Liを透過し、検出光Ldを反射して光を分岐しているが、分岐ミラー11は照明光Liを反射し、検出光Ldを透過して光を分岐するようなミラーであってもよい。
 第1実施形態の顕微鏡の像変換部30は、入射する光の波長に応じて、その光を透過または反射する一例としてダイクロイックミラーである分岐素子32と合流素子35とを備えている。検出光Ldのうち、第1波長λ1の検出光L1は分岐素子32を透過し、ミラー33で反射されて合流素子35に至り、合流素子35で反射される。一方、一例として、第1波長λ1より波長の長い第2波長λ2の検出光L2は分岐素子32で反射され、ミラー34で反射されて合流素子35に至り、合流素子35を透過する。
 第1波長λ1の検出光L1および第2波長λ2の検出光L2は合流素子35により合流されて、射出光Leとなって像変換部30から射出される。射出光Leは、後述する除去フィルタ21により一部の波長の光が除去された後に、集光レンズ22により集光され、検出器40の検出面41に試料18における照明領域19の像23を形成する。
 なお、第2波長λ2の検出光L2は、第1波長λ1の検出光L1よりも波長の短い光であっても良い。
 像変換部30内の検出光L1の光路の傍らには、遮光板C1が検出光L1の光路に装脱可能に設けられ、検出光L2の光路の傍らには、遮光板C2が検出光L2の光路に装脱可能に設けられている。遮光板C1および遮光板C2については後述する。
 検出光Ldの光路に沿って配置されている対物レンズ16、リレーレンズ15、13、偏向部12、分岐ミラー11、像変換部30、除去フィルタ21および集光レンズ22は、検出光学系20(点線で囲った領域)を構成している。検出光学系20は、試料18の照明領域19の第1波長λ1の検出光L1による第1像と、第2波長λ2の検出光L2による第2像とを、それらの少なくとも一部を重ね合わせて検出器40の検出面41に形成する。
 図2Bは、第1実施形態の顕微鏡1における検出器40の検出面41における試料18の照明領域19の第1波長λ1の検出光L1による第1像23aと、第2波長λ2の検出光L2による第2像23bとの一例を示す図である。一点鎖線で示した第1像23aの輪郭、および二点鎖線で示した第2像23bの輪郭は、一例として、光強度がそれぞれの像のピーク強度の15%の値となる位置(境界線)を示している。
 図2Bに示したように、第1像23aおよび第2像23bは、検出面41において、それぞれ単一のスポット像となる。
 図1においては、検出面41はYZ面に平行になるように配置されているが、検出面41の向きは、検出光学系20内の反射面(分岐ミラー11、分岐素子32等)の配置によって如何様にも変化する。そこで、本明細書および図面においては、検出面41については、図2Bに矢印で示したU方向およびV方向を基準として説明する。U方向およびV方向は、図1に示した試料18上でのX方向およびY方向が、検出光学系20により第1波長λ1の検出光L1の光路を通って検出面41にそれぞれ投影される方向である。
 検出面41には、一例としてU方向に5個、V方向に5個の計5×5=25個の検出画素42が配置されている。1つの検出画素42のU方向およびV方向の幅は、第1波長λ1または第2波長λ2の波長をλ、対物レンズ16の開口数をNAとするとき、試料18上の長さに換算して、例えば、0.2×λ/NA程度である。
 検出器40としては、例えば、高感度かつ高応答性を備えるアバランシェフォトダイオードアレイを用いることができる。
 なお、それぞれの検出画素42は、必ずしもU方向およびV方向に平行に配置されている必要はなく、検出面41内においてU方向およびV方向から回転した方向に沿って配置されていても良い。
 また、検出画素42のそれぞれは、検出面41内に密に配置されていなくても良く、離散的に配置されていても良い。また、検出画素42のそれぞれは、2次元的にではなく、1次元に配置されていても良い。
 第1実施形態の顕微鏡1においては、第1像23aと第2像23bとを、少なくとも一部を重ね合わせて検出面41に形成しているため、第1像23aと第2像23bとを撮像するための検出画素42の合計面積を小さくすることができる。従って、検出画素42の合計面積の小さな、すなわち安価な検出器40を用いても、後述するように試料18の高精度な2次元画像を得ることができる。
 検出画素42の合計面積は、一例として、検出面41内における第1像23aおよび第2像23bの合計面積の1.5倍以下とすることもできる。ここで、第1像23aおよび第2像23bのそれぞれの面積は、図2Bに一点鎖線および二点鎖線で示したそれぞれの像の輪郭の内部の面積である。
 検出面41に配置されているそれぞれの検出画素42が受光した光は、その光量に応じた電気信号である光量信号S3に変換され、制御部60の中の演算部61に伝達される。演算部61は、従来のISMと同様に、各検出画素42からの光量信号S3と、その光量信号S3を検出した際の照明領域19と試料18とのX方向およびY方向の相対位置関係とに基づいて、試料18の2次元画像を生成する。
 すなわち、照明領域19と試料18との相対的な位置関係を表すX方向およびY方向の各座標位置(x,y)と、その各座標位置(x,y)において各検出画素42の1つから検出された光量信号S3との関係が、1つの検出画素42が生成した1つの2次元画像である。
 検出面41には、第1波長λ1の検出光L1による第1像23aと第2波長λ2の検出光L2による第2像23bとが概ね重なって形成されている。従って、上記で生成された検出画素42毎の2次元画像は、第1波長λ1の検出光L1により検出された2次元画像と、第2波長λ2の検出光L2により検出された2次元画像とが混合されたものとなっている。
 演算部61は、照明領域19と試料18との相対的な位置関係を変化させることにより検出器40の各検出画素42で検出された複数の波長の検出光(L1、L2)により生成される2次元画像(検出画素は合計25個なので、25枚)から、第1波長λ1、第2波長λ2それぞれの蛍光物質の2次元密度分布を推定する処理を行う。この推定処理は、CLEMENS ROIDER他3名の著作による文献、「Deconvolution approach for 3D scanning microscopy with helical phase engineering」、OPTICS EXPRESS 15456、米国、The Optical Society、第24巻、第4号、[Online]、平成28年6月29日、[令和2年4月2日検索]、インターネット<URL:https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-14-15456&id=345215>に開示される、multi-view Richardson-Lucy algorithm 等の数学的なアルゴリズムを用いて行うことができるため、その詳細についての説明は省略する。
 検出波長が1波長の場合は、検出器40のm番目の検出画素42により検出された検出光により生成される2次元画像Im(x,y)は、以下の式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、mは、検出器40を構成する検出画素42に割り当てられる添え字である。検出器40の検出画素42は25個あるので、1から25までの整数値である。
 ここで、xおよびyは、それぞれ試料18におけるX方向およびY方向の位置である。ρ(x,y,λ)は、試料18における波長λの蛍光を発生する蛍光物質の密度を表す。hm(x,y,λ)は、検出器40のm番目の検出画素42により検出された波長λの検出光により生成される2次元画像における点像強度分布(PSF)を表す。そして、「*」はx、y座標に対するコンボリューション演算を表している。
 第1実施形態の顕微鏡1のように検出する光の波長が2波長(第1波長λ1および第2波長λ2)である場合には、(1)式は、以下の式(2)のように拡張される。
Figure JPOXMLDOC01-appb-M000002
 ここで、ρ(x、y、λ1)は、試料18における波長λ1の蛍光を発する蛍光物質の密度を表し、ρ(x、y、λ2)は、試料18における波長λ2の蛍光を発する蛍光物質の密度を表す。hm(x、y、λ1)は、検出器40のm番目の検出画素42により検出された波長λ1の検出光により生成される2次元画像における点像強度分布(PSF)を表す。hm(x、y、λ2)は、検出器40のm番目の検出画素42により検出された波長λ2の検出光により生成される2次元画像における点像強度分布(PSF)を表す。
 multi-view Richardson-Lucy algorithmにおいては、式(2)の右辺が、検出値である式(2)の左辺に近づくように、ρ(x,y,λ1)およびρ(x,y,λ2)の分布形状を最適化する。これにより、検出する波長毎の蛍光物質の2次元密度分布に相当するρ(x,y,λ1)およびρ(x,y,λ2)が推定される。この最適化の過程で、ピクセルリアサイメント処理と等価な処理も同時に行うことができるため、蛍光物質の2次元密度分布を高い空間分解能で推定することができる。
 なお、ピクセルリアサイメント処理は、例えば文献、C. J. Sheppard, S. B. Mehta, R. Heintzmann著の「Superresolution by image scanning microscopy using pixel reassignment」, Optics Letter(米国), Volume 38, No.15, 2889, 2013年、に詳述されているので、ここでは説明を省略する。
 このとき、高精度に検出波長毎の蛍光物質の密度ρ(x,y,λ)を推定するためには、点像強度分布hm(x、y、λ1)と、点像強度分布hm(x、y、λ2)とが、異なっていることが必要である。ここで、点像強度分布hm(x、y、λ1)とは、上述したとおり、検出器40のm番目の検出画素42により検出された波長λ1の検出光により生成される2次元画像における点像強度分布(PSF)である。また、点像強度分布hm(x、y、λ2)とは、上述したとおり、検出器40のm番目の検出画素42により検出された波長λ2の検出光により生成される2次元画像における点像強度分布(PSF)である。
 なお、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とは、少なくとも1つの共通の添え字mに対応する分布が異なっていればよい。すなわち、特定の添え字mに対応する点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とは、同じ分布であっても良い。
 少なくとも1つの共通の添え字mに対応する点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることは、例えば次の(a)から(d)までのいずれか1つ以上により、実現することができる。
(a)第1波長λ1の検出光L1による第1像23aと第2波長λ2の検出光L2による第2像23bとを検出面41の面内の方向に相対的に回転させる。
(b)第1波長λ1の検出光L1による第1像23aもしくは第2波長λ2の検出光L2による第2像23bの一方を検出面41の面内において反転させる。
(c)検出面41における第1波長λ1の検出光L1による第1像23aの形状と第2波長λ2の検出光L2による第2像23bの形状とを異ならせる。
(d)第1波長λ1の検出光L1による第1像23aと第2波長λ2の検出光L2による第2像23bとを検出面41の面内の方向に相対的に位置シフトさせる。
 上記の(a)から(d)のいずれか1つ以上を行うために、第1実施形態の顕微鏡1においては、像変換部30の中の検出光L2の光路上の、ミラー34と合流素子35との間に、像変換素子31を配置している。
 図2Aは、像変換部30の中に配置されている像変換素子31としてのイメージローテータ31aを示す図である。イメージローテータ31aは、ダブプリズムが、その長辺が検出光L2の進行方向(+X方向)に一致するように配置されたものである。ダブプリズムの各側面は、X方向を回転中心として、XY面およびXZ面に対して、45°回転した状態で配置されている。ただし、図2Aでは、イメージローテータ31aとしてのダブプリズムの構成を理解しやすいように、ダブプリズムの各側面をXY面およびXZ面と一致させて示している。
 図2Bに示したように、イメージローテータ31aの作用により、検出面41において、検出光L2による第2像23bは、検出光L1による第1像23aに対して、鏡写(反転された像)であり、かつ検出面41の面内で90°回転されたものとなる。これにより、演算部61が行う、蛍光物質の密度ρ1(x,y,λ1)と蛍光物質の密度ρ2(x,y,λ2)の推定の精度が向上する。
 従って、第1波長λ1の検出光L1による第1像23aと第2波長λ2の検出光L2による第2像23bとを、1つの検出器40の検出面41に結像させた場合であっても、それぞれの蛍光物質の2次元密度分布を高精度で推定することができる。これにより、検出に必要な高価なアバランシェフォトダイオードアレイ等の検出器40の数を削減することができる。
 なお、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とに明確な違いを与えるために、検出光学系20内の、像変換部30よりも上流側(試料18に近い側)に、検出光Ldに対して、非点収差またはコマ収差等の、回転非対称な収差を与えるレンズ等の光学部材をさらに配置しても良い。これに代えて、検出光L1に対して、非点収差またはコマ収差等の、回転非対称な収差を与えるレンズ等の光学部材を、像変換部30の中の検出光L1の光路に配置してもよいし、検出光L2に対して、非点収差またはコマ収差等の、回転非対称な収差を与えるレンズ等の光学部材を、像変換部30の中の検出光L2の光路に配置してもよい。
 なお、点像強度分布hm(x,y,λ1)、点像強度分布hm(x,y,λ2)については、非特許文献1に開示されているように、理論的に予測される分布を使用しても良い。すなわち、実施形態の顕微鏡1の光学設計のデータ、イメージローテータ31aが第2像23bに及ぼす理論上の影響、検出画素42の位置および大きさ等に基づいて、理論的に予測される分布を使用しても良い。
 あるいは、事前に第1実施形態の顕微鏡1の各検出波長における点像強度分布を計測し、この計測した点像強度分布を使用しても良い。
 従って、例えば、試料18として点像強度分布(PSF)よりも十分小さな点状の蛍光物体(例えば蛍光ビーズ)を使用し、試料18と照明領域19を相対的に走査して得られる第1像23a、および第2像23bの検出面41内での光量分布に基づいて、点像強度分布hm(x,y,λ1)、および点像強度分布hm(x,y,λ2)を決定しても良い。
 なお、検出面41内の有限個の検出画素42により検出された、座標(x,y)について離散的な像強度分布の計測値を補間して、あるいは連続関数によるフィッティングを行って、座標(x,y)に対して連続な、点像強度分布hm(x,y,λ1)および点像強度分布hm(x,y,λ2)を決定しても良い。
 点像強度分布hm(x,y,λ1)および点像強度分布hm(x,y,λ2)のフィッティングに用いる関数として、例えば、式(3)に示した(x,y)座標に対する2次元のガウス関数p(x,y)を用いても良い。
Figure JPOXMLDOC01-appb-M000003
 ここで、座標(x0,y0)は、原点(0,0)を基準とした2次元ガウスの分布の中心位置を表し、Wxは2次元ガウスの分布のX方向の幅を表し、Wyは2次元ガウスの分布のY方向の幅を表す。θは、2次元ガウスの分布の座標(x0,y0)を中心とするXY面内での回転角度を表す。cは所定の定数であり、aは所定の比例定数である。
 なお、点像強度分布hm(x,y,λ1)および点像強度分布hm(x,y,λ2)のフィッティングに用いる関数として、上述の2次元のガウス関数に限らず、2次元のローレンツ関数を用いても良い。
 なお、試料18として点像強度分布(PSF)よりも十分小さな点状の蛍光物体でない試料を使用しても、点像強度分布を推定することができる。この場合には、試料18と照明領域19を相対的に走査しつつ、試料18の複数の箇所において、それぞれ検出面41内での第1像23aおよび第2像23bの光量分布を計測する。そして、それらの複数の第1像23aおよび第2像23bの光量分布をそれぞれ加算し、平均化することで、点像強度分布hm(x,y,λ1)および点像強度分布hm(x,y,λ2)を推定することができる。
 なお、点像強度分布の計測に際しては、検出器40に1つの波長の光のみが入射するように、像変換部30内の遮光板C1、C2を用いて、検出光L1の光路または検出光L2の光路の一方を遮光した状態で計測を行っても良い。
 また、光源51a、光源51bについても、一方のみを点灯し、他方は消灯した状態で計測を行っても良い。
 図3は、試料18から発せられる蛍光のスペクトル分布の一例と、除去フィルタ21の機能の一例を示す図である。
 図3に示したように、試料18に含まれる蛍光物質の種類によっては、発生する蛍光のスペクトル分布は、第1波長λ1および第2波長λ2をそれぞれ中心として所定の波長の範囲に広がったものとなる。そして、第1波長λ1を中心とする第1の蛍光Laのスペクトル分布と、第2波長λ2を中心とする第2の蛍光Lbのスペクトル分布とが、所定の波長領域で一部重複する場合がある。
 この場合、第1の蛍光Laのうち、ダイクロイックミラーである分岐素子32(図1参照)における入射光を透過または反射する境界となる境界波長λcよりも波長の長い光は、分岐素子32で反射され、第2波長λ2の検出光L2に混入してしまう。同様に、第2の蛍光Lbのうち、境界波長λcよりも波長の短い光は、分岐素子32を透過し、第1波長λ1の検出光L1に混入してしまう。そして、これらの混入により、試料18の2次元画像の正確性が低下する恐れがある。
 そこで、第1実施形態の顕微鏡1においては、検出光学系20のうち、第1波長λ1の検出光L1と第2波長λ2の検出光L2とが共に通る部分に、第1波長λ1と第2波長λ2との間の少なくとも一部の波長域BAの光を除去する除去フィルタ21を設けている。除去フィルタ21は、例えば、多層膜による干渉フィルタが形成されたガラス基板や、色ガラスフィルタである。除去フィルタ21は、波長域BAの光を完全に除去するものであっても良く、減光するものであっても良い。
 除去フィルタ21により、波長域BAの光を除去することにより、検出器40において上述した好ましくない波長の光の混入を防止することができる。これにより、試料18の2次元画像の正確性が低下することを防止できる。
 なお、試料18に含まれる蛍光物質の種類によっては、または、好ましくない波長の光が混入しても2次元画像の正確性が低下する恐れが低い場合には、除去フィルタ21を設けなくても良い。除去フィルタ21を設けなかった場合においても、予め好ましくない波長の光の混入の度合いを測定しておく、または計算により算出しておき、その混入の度合いを点像強度分布hm(x、y、λ1)及び点像強度分布hm(x、y、λ2)に反映させることで、混入の影響を低減することもできる。
(像変換部の各種の変形例)
 以下、像変換部30の各種の変形例について説明する。各種の変形例の像変換部30a~30nは、上述の第1実施形態の顕微鏡1の像変換部30に代えて、第1実施形態の顕微鏡1に装填して使用することができる。
 以下で説明する像変換部30の各種の変形例においても、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。従って、上述の第1実施形態と同様に、それぞれの蛍光物質の2次元密度分布を、演算部61により高精度で推定することができる。
(像変換部の変形例1)
 図4Aは、変形例1の像変換部30aを示す図であり、図4Bは、図4Aに示した像変換部30aにより検出面41(図1参照)上に形成される第1像23aおよび第1像23bの例を示す図である。
 変形例1の像変換部30aの構成は、図1に示した像変換部30と概ね同一であるが、像変換素子31として、イメージローテータ31aの代わりに、シリンドリカルレンズ31b、31cを有する点が異なっている。シリンドリカルレンズ31bは、検出光L1の光路上のミラー33と合流素子35との間に配置され、検出光L1をY方向についてX方向よりも強く収束させる作用を有している。シリンドリカルレンズ31cは、検出光L2の光路上のミラー34と合流素子35との間に配置され、検出光L2をZ方向についてY方向よりも強く収束させる作用を有している。すなわち、シリンドリカルレンズ31b、31cは、通過する光に非点収差を付加する光学部材ということができる。
 図4Bに示したように、シリンドリカルレンズ31bの作用により、検出面41(図1参照)上での第1像23aは、U方向の大きさがV方向の大きさに比べて縮小する。一方、シリンドリカルレンズ31cの作用により、検出面41上での第2像23bは、V方向の大きさがU方向の大きさに比べて縮小する。これにより、検出面41上での第1像23aの形状と第2像23bの形状とを異ならせることで、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
 なお、それぞれのシリンドリカルレンズ31b、31cは、検出光L1および検出光L2の光路に沿った方向を回転中心として、それぞれ概ね等しい角度(例えば90°)だけ回転して配置されていても良い。
 また、シリンドリカルレンズ31b、31cのうちの一方があれば、第1像23aの形状と第2像23bの形状とを異なるせることで、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができるので、シリンドリカルレンズ31b、31cの、どちらか一方のみを設けた構成としても良い。
(像変換部の変形例2)
 図5Aは、変形例2の像変換部30bの一部を示す図であり、上述した像変換部30における検出光L2の光路のミラー34から合流素子35までの間に相当する部分を示す図である。図5Aにおいては、像変換部30bの上記以外の部分の図示を省略している。
 変形例2の像変換部30bの構成は、上述した像変換部30と概ね同一であるが、像変換素子31として、イメージローテータ31aの代わりに、マスキング部材31dを有する点が異なっている。マスキング部材31dにより、検出光L2の光路はその径(断面の形状)が制限される。すなわち、マスキング部材31dよりも下流側(合流素子35側)の検出光L2oの径は、マスキング部材31dよりも上流側(ミラー34側)の検出光L2iの径よりも小さくなる。
 図5Bは、変形例2の像変換部30bにより検出面41(図1参照)上に形成される第1像23aおよび第1像23bの例を示す図である。マスキング部材31dにより検出光L2の光路はその径が制限されるため、検出光L2が集光レンズ22により検出面41に集光される際の開口数(NA)も減少する。
 従って、検出面41上での検出光L2による第2像23bの大きさは、検出光L1による第1像23aの大きさよりも大きくなる。これにより、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
 なお、マスキング部材31dは、検出光L2の光路上ではなく、検出光L1の光路上に設けても良い。また、マスキング部材31dの開口部の形状は、円形、多角形等の任意の形状で良い。さらに、検出光L1の光路上と検出光L2の光路上とに、それぞれ開口部の形状の異なるマスキング部材31dを設けても良い。
(像変換部の変形例3)
 図6は、変形例3の像変換部30cと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例3の像変換部30cは、図1に示した像変換部30の合流素子35の光の透過および反射特性を反転させた、合流素子35aを有している。すなわち、変形例3の像変換部30cにおいては、検出光Ldのうち、第1波長λ1の検出光L1は分岐素子32を透過し、ミラー33で反射されて合流素子35aに至り、合流素子35aを透過して、射出光Leの一部となる。
 一方、第2波長λ2の検出光L2は分岐素子32で反射され、ミラー34で反射されて合流素子35aに至り、合流素子35aで反射されて、射出光Leの一部となる。
 一例として、検出光L2の光路上には、像変換素子31として上述のイメージローテータ31a(図2A参照)が配置されている。イメージローテータ31aは、検出光L1の光路上に配置されても良い。また、像変換素子31として上述のシリンドリカルレンズ31b、31c(図4A参照)、またはマスキング部材31d(図5A参照)が、検出光L1の光路上または検出光L2の光路上の少なくとも一方に配置されても良い。
 変形例3の像変換部30cによっても点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
 なお、変形例3の像変換部30cにおいては、分岐素子32と合流素子35aとを、1つの一体的なダイクロイックミラー32aで構成しても良い。
(像変換部の変形例4)
 図7は、変形例4の像変換部30dと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例4の像変換部30dは、図6に示した変形例3の像変換部30cのうち、分岐素子32と合流素子35aとを、1つの一体的なダイクロイックミラー32aで構成したものとほぼ同様の構成を有している。ただし、ダイクロイックミラー32a、およびミラー33、34への検出光の入射角が約45°ではない点が異なっている。
 変形例4の像変換部30dにおいても、像変換素子31は、検出光L1または検出光L2の光路上に配置された、上述のイメージローテータ31a、シリンドリカルレンズ31b、31c、またはマスキング部材31dのいずれであっても良い。
(像変換部の変形例5)
 図8は、変形例5の像変換部30eと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例5の像変換部30eは、入射される検出光Ldを、波長に応じてそれぞれ3つの異なる光路を通る検出光L1~L3に分岐させ、それらを合流させて射出光Leとして出力するものである。そして、検出光L2の光路上および検出光L3の光路上に、図2Aに示した像変換素子31としてのイメージローテータ31aを備えている。
 検出光Ldのうち、第1波長λ1の検出光L1は分岐素子32を透過し、ミラー33で反射される。その後、検出光L1は、ダイクロイックミラー36bを透過して検出光L12の一部となって合流素子35に至り、合流素子35を透過して射出光Leの一部となる。
 第1波長λ1より波長の長い第2波長λ2および第3波長λ3の検出光L23は分岐素子32で反射され、ダイクロイックミラー36aに至る。第2波長λ2の検出光L2はダイクロイックミラー36aで反射され、イメージローテータ31aを透過した後に、ダイクロイックミラー36bで反射されて検出光L12の一部となって合流素子35に至り、合流素子35を透過して射出光Leの一部となる。
 第2波長λ2より波長の長い第3波長λ3の検出光L2はダイクロイックミラー36aを透過して、ミラー34で反射され、イメージローテータ31aを透過した後に合流素子35に至り、合流素子35で反射されて射出光Leの一部となる。
 射出光Leは、除去フィルタ21を透過した後に、集光レンズ22により集光される。検出器40の検出面41には、第1波長λ1から第3波長λ3までの各波長の光による照明領域19の像が、それらの少なくとも一部を重ね合わせた状態で形成される。
 検出光L2の光路上に配置されたイメージローテータ31a、および検出光L3の光路上に配置されたイメージローテータ31aは、いずれも図2Aに示したイメージローテータ31aと同様の構成を有する。ただし、変形例5の像変換部30eにおける検出光L2の光路上のイメージローテータ31aは検出面41における照明領域19の像を例えば120°回転させる。そして、検出光L3の光路上のイメージローテータ31aは検出面41における照明領域19の像を例えば240°回転させる。
 従って、変形例5の像変換部30eにより、第1波長λ1の検出光L1、第2波長λ2の検出光L2、および第3波長λ3の検出光L3によるそれぞれの照明領域19の像は、検出面41において120°ずつ回転し、これにより、それぞれの点像強度分布hm(x、y、λ1)、点像強度分布hm(x、y、λ2)、点像強度分布hm(x、y、λ3)が異なっている。従って、照明領域19の第1波長λ1の検出光から第3波長λ3までの検出光L1~L3によるそれぞれの像を、1つの検出器40の検出面41に結像させた場合であっても、それぞれの蛍光物質の2次元密度分布を高精度で推定することができる。
 なお、以上では、第3波長λ3は第2波長λ2よりも長く、第2波長λ2は第1波長λ1よりも長くとしたが、第3波長λ3は第2波長λ2よりも短く、第2波長λ2は第1波長λ1よりも短くても良い。
 また、検出光L2の光路上または検出光L3の光路上に配置したイメージローテータ31aの1つを、代わりに検出光L1の光路上に配置しても良い。
 また、イメージローテータ31aの代わりに、検出光L1から検出光L3のうちのいずれか2つ以上の光路上に、上述したシリンドリカルレンズ31b、31cやマスキング部材31dを配置しても良い。
(像変換部の変形例6)
 図9Aは、変形例6の像変換部30fと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。図9Bは、図9Aに示した像変換部30fにより検出面41上に形成される第1像23aおよび第1像23bの例を示す図である。
 変形例6の像変換部30fの構成は、図1に示した上述の第1実施形態における像変換部30とほぼ同様であるが、像変換素子31を有していない。その代わりに、像変換部30fに含まれるミラー33が、XZ面内の方向に所定角度だけ回転して配置されている。
 図4Bに示したように、ミラー33をXZ面内の方向に所定角度だけ回転して配置することにより、検出面41上での第1像23aの位置は、第2像23bの位置に対して-V方向にシフトとする。よって、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
 ミラー33を、第1像23aと第2像23bを検出面41の面内の方向に相対的に位置シフトさせる像シフト部ということができる。
 なお、ミラー33を回転させる方向は、上述のXZ面内の方向に限らず、ミラー33の反射面に垂直な方向に対して交差する方向であれば、どのように方向であっても良い。従って検出面41上おいて、第1像23aがシフトする方向も-V方向に限られるものではなく、任意の方向であっても良い。
(像変換部の変形例7)
 図10は、変形例7の像変換部30gと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例7の像変換部30gにおいては、検出光Ldのうち、第1波長λ1の検出光L1は分岐素子32を透過し、ミラー33で反射される。その後、検出光L1は像変換素子31を透過して、ミラー33aおよびミラー33bで反射され、分岐素子32に戻る。そして、分岐素子32を再度透過して、射出光Leの一部となる。
 検出光Ldのうち、第1波長λ1より波長の長い第2波長λ2の検出光L2は、分岐素子32で反射されて、射出光Leの一部となる。
 変形例7の像変換部30gにおいても、像変換素子31は上述したイメージローテータ31a、シリンドリカルレンズ31b、31c、またはマスキング部材31dのいずれであっても良い。
 変形例7の像変換部30gによっても点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。従って、上述の第1実施形態と同様に、それぞれの蛍光物質の2次元密度分布を、演算部61により高精度で推定することができる。
 なお、変形例7の像変換部30gにおいては、分岐素子32は、図1に示した第1実施形態の像変換部30における合流素子35としての機能も有している。すなわち、分岐素子32と合流素子35とが、1つの分岐素子32で兼用されている。
(像変換部の変形例8)
 図11は、変形例8の像変換部30hと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。変形例8の像変換部30hは、変形例7の像変換部30gに含まれる3枚のミラー33、33a、33bを2枚のミラー33、33cで置き換えたものである。この構成により、ミラーの枚数を削減することができる。
 なお、変形例7の像変換部30gおよび変形例8の像変換部30hにおいて、像変換素子31を省略しても良い。この場合には、変形例7については、上述した変形例6の像変換部30fと同様に、ミラー33、33a、33bをXZ面内の方向に所定角度だけ回転して配置することにより、検出面41上での第1像23aの位置を、第2像23bの位置に対してシフトさせれば良い。
 変形例8については、像変換部30hにおいては、検出光Ldのうち、第1波長λ1の検出光L1は分岐素子32を透過し、ミラー33およびミラー33cで反射され、すなわち2回反射され、分岐素子32に戻る。そして、分岐素子32を再度透過して、射出光Leの一部となる。
 検出光Ldのうち、第2波長λ2の検出光L2は分岐素子32を反射し、すなわち1回反射して、射出光Leの一部となる。検出光L1と検出光L2とでは、像変換部30h内での反射回数の偶奇が異なるため、検出面41上に形成される第1像23aは、第1像23bに対して、鏡写(反転された像)となるので、ミラー33、33cをXZ面内の方向に所定角度だけ回転して配置しても、しなくてもよい。
(像変換部の変形例9)
 図12は、変形例9の像変換部30iと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。変形例9の像変換部30iは、上述した変形例8の像変換部30hから像変換素子31を省略したものに対して、分岐素子32と2枚のミラー33、33cとを1つのプリズム37で置き換えたものである。
 プリズム37の1つの面37aには、多層膜等によりダイクロイックミラーが形成されており、プリズム37の2つの面37b、37cには高反射膜が形成されている。
 この構成により、光学部品(ミラー)の枚数を削減することができるとともに、光学部品間の相互の位置調整を簡素化することができる。
(像変換部の変形例10)
 図13は、変形例10の像変換部30jと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例10の像変換部30jは、三角プリズム38と、コーナーキューブミラー31eとを有している。三角プリズム38の第1面38aと第2面38bには、多層膜等によりダイクロイックミラーが形成されている。コーナーキューブミラー31eは、一般的な相互に直交する3面の反射面を有するミラーである。図13は断面図であるので、そのうちの2面の反射面のみを示している。
 三角プリズム38に入射した検出光Ldのうち、第1波長λ1の検出光L1は第1面38aを透過し、コーナーキューブミラー31eの直交する3面の反射面でそれぞれ、すなわち3回反射される。検出光L1は、さらに三角プリズム38の第2面38bで反射されて、射出光Leの一部となる。検出光L1は、像変換部30j内で上記の通り計4回(偶数回)反射される。
 三角プリズム38に入射した検出光Ldのうち、第2波長λ2の検出光L2は第1面38aで反射され、三角プリズム38の第2面38bを透過して、射出光Leの一部となる。検出光L2は、像変換部30j内で1回(奇数回)のみ反射される。
 検出光L1と検出光L2とでは、像変換部30j内での反射回数の偶奇が異なるため、検出面41上に形成される第1像23aは、第1像23bに対して、鏡写(反転された像)となる。従って、変形例10の像変換部30jにおいても、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
 なお、変形例10の像変換部30jにおいては、第1面38aは、図1に示した第1実施形態の像変換部30における分岐素子32としての機能を有している。また、第2面38bは合流素子35としての機能を有している。
 なお、変形例10の像変換部30jにおいても、検出光L1の光路内に上述した各種の像変換素子31を設けても良い。
 また、コーナーキューブミラー31eを構成する3つの反射面の角度関係を、相互に直交する方向から僅かにずらす等により、検出面41上での第1像23aの位置を、第2像23bの位置に対してシフトさせても良い。この場合には、コーナーキューブミラー31eを、第1像23aと第2像23bを検出面41の面内の方向に相対的に位置シフトさせる像シフト部ということができる。
(像変換部の変形例11)
 図14Aは、変形例11の像変換部30kと、検出器40と、検出光学系20に含まれる除去フィルタ21a、21bおよび集光レンズ22を示す図である。
 変形例11の像変換部30kは、分岐素子32と、ルーフプリズム(ダハプリズム)31fとを有している。ルーフプリズム31fは、稜線31faを境界として紙面奥側の第1反射面31fbと紙面手前側の第2反射面31fcとを有している。
 像変換部30kに入射した検出光Ldのうち、第1波長λ1の検出光L1は分岐素子32を透過し、ルーフプリズム31fに入射する。そして、検出光L1は、ルーフプリズム31fの第1反射面31fbと第2反射面31fcとでそれぞれ反射された後、除去フィルタ21aを透過して、集光レンズ22により集光されて、検出面41上に第1像23aを形成する。
 像変換部30kに入射した検出光Ldのうち、第1波長λ2の検出光L2は分岐素子32で反射され、除去フィルタ21bを透過して、集光レンズ22により集光されて、検出面41上に第2像23bを形成する。
 検出光L1と検出光L2とでは、像変換部30k内での反射回数の偶奇が異なるため、検出面41上に形成される第1像23aは、第1像23bに対して、鏡写(反転された像)となる。従って、変形例11の像変換部30kにおいても、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
 なお、変形例11の像変換部30kにおいては、集光レンズ22は、図1に示した第1実施形態の像変換部30における合流素子35としての機能も有している。
 なお、変形例11の像変換部30kにおいても、検出光L1の光路内または検出光L2の光路内に上述した各種の像変換素子31を設けても良い。
 また、ルーフプリズム31fを配置する角度を僅かにずらすこと等により、検出面41上での第1像23aの位置を、第2像23bの位置に対してシフトさせても良い。この場合には、ルーフプリズム31fを、第1像23aと第2像23bを検出面41の面内の方向に相対的に位置シフトさせる像シフト部ということができる。
(像変換部の変形例12)
 図14Bは、変形例12の像変換部30lと、検出器40と、検出光学系20に含まれる除去フィルタ21a、21bおよび集光レンズ22を示す図である。変形例12の像変換部30lは、変形例11の像変換部30kに対して、検出光L2の光路のルーフプリズム31fより検出器40側に、いわゆる平行四辺形プリズム39を加えたものである。
 平行四辺形プリズム39により、除去フィルタ21および集光レンズ22の位置における検出光L1の光路と検出光L2の光路との間隔を縮小することができる。これにより、除去フィルタ21および集光レンズ22の大きさを削減する、または変形例11の像変換部30kでは2枚必要であった除去フィルタ21を1枚で済ませることができる。
(像変換部の変形例13)
 図15は、変形例13の像変換部30mと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例13の像変換部30mは、レンズ25aと、回折格子32bと、レンズ26aと、検出光L2の光路上に配置された像変換素子31とを有している。
 像変換部30mに入射した検出光Ldは、レンズ25aにより集光され、回折格子32bに照射される。検出光Ldのうちの第1波長λ1の検出光L1は回折格子32bにより所定の角度で回折される。その後、レンズ26aにより略平行光とされて除去フィルタ21を透過し、集光レンズ22により集光されて、検出面41上に第1像23aを形成する。
 検出光Ldのうちの第1波長λ2の検出光L2は回折格子32bにより、検出光L1よりも大きな角度で回折される。その後、検出光L2はレンズ26aにより略平行光とされて除去フィルタ21を透過し、集光レンズ22により集光されて、検出面41上に第2像23bを形成する。
 変形例13の像変換部30mにおいても、検出光L2の光路上に配置された像変換素子31により、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。像変換素子31として、上述した各種の素子を使用することができる。像変換素子31を、検出光L2の光路ではなく、検出光L1の光路上に配置しても良い。
 なお、変形例13の像変換部30mにおいては、回折格子32bは、図1に示した第1実施形態の像変換部30における分岐素子32としての機能を有している。また、集光レンズ22は合流素子35としての機能を有している。
(像変換部の変形例14)
 図16Aは、変形例14の像変換部30nと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例14の像変換部30nは、分岐素子32と、レンズ26bと、レンズ26cと、合流素子35と、分岐素子32とレンズ26bとの間の検出光L2の光路上に配置された像変換素子31とを有している。
 像変換部30mに入射した検出光Ldのうち、第1波長λ1の検出光L1は、分岐素子32を透過して、レンズ26bおよびレンズ26cを経て、合流素子35に至る。検出光L1は、合流素子35を透過して射出光Leの一部となる。
 一方、検出光Ldのうち、第2波長λ2の検出光L2は、分岐素子32で反射され、像変換素子31に入射する。その後、検出光L2は、レンズ26bおよびレンズ26cを経て、合流素子35に至る。検出光L2は、合流素子35で反射されて射出光Leの一部となる。
 変形例14の像変換部30nにおいても、検出光L2の光路上に配置された像変換素子31により、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。像変換素子31として、上述した各種の素子を使用することができる。像変換素子31を、検出光L2の光路ではなく、検出光L1の光路上に配置しても良い。
(像変換部の変形例15)
 図16Bは、変形例15の像変換部30oと、検出器40と、検出光学系20に含まれる除去フィルタ21および集光レンズ22を示す図である。
 変形例15の像変換部30oは、変形例14の像変換部30nとほぼ同様の構成を有するが、像変換素子31が、レンズ26bとレンズ26cとの間の検出光L2の光路上に配置される点が、像変換部30nとは異なっている。
 変形例15の像変換部30oにおいても、検出光L2の光路上に配置された像変換素子31により、点像強度分布hm(x、y、λ1)と点像強度分布hm(x、y、λ2)とを異ならせることができる。
(1)第1実施形態および各変形例の顕微鏡1は、1つの観点からは、照明光を集光して試料18に照明領域19を形成する照明光学系10と、照明領域19と試料18とを相対的に走査させる走査部(12、17)と、検出面41内に検出画素42が複数配列されている検出器40と、照明領域19が形成された試料18からの第1波長λ1の光(検出光L1)による第1像23a、および照明領域19が形成された試料18からの第1波長λ1とは異なる第2波長λ2の光(検出光L2)による第2像23bを、検出器40の検出面41に形成する検出光学系20と、を備えている。そして、検出光学系20は、第1像23aと第2像23bとの少なくとも一部を重ね合わせて検出面41に形成するとともに、第1像23aと第2像23bとを検出面41の面内の方向に相対的に回転させる、第1像23aもしくは第2像23bの一方を検出面41の面内において反転させる、および検出面41における第1像23aの形状と第2像23bの形状とを異ならせる、のうち少なくとも1つを行う像変換部30を有する。
 この構成により、第1波長λ1の検出光L1による第1像23aと第2波長λ2の検出光L2による第2像23bとを、1つの検出器40の検出面41に結像させつつ、それぞれの検出光により検出される2次元画像を高精度で分離することができる。これにより、検出に必要な高価なアバランシェフォトダイオードアレイ等の検出器40の数を削減することができ、顕微鏡1を安価で提供することができる。
(2)第1実施形態および各変形例の顕微鏡1は、別の1つの観点からは、照明光を集光して試料18に照明領域19を形成する照明光学系10と、照明領域19と試料18とを相対的に走査させる走査部(12、17)と、検出面41内に検出画素42が複数配列されている検出器40と、照明領域19が形成された試料18からの第1波長λ1の光(検出光L1)による第1像23a、および照明領域19が形成された試料18からの第1波長λ1とは異なる第2波長λ2の光(検出光L2)による第2像23bを、検出器40の検出面41に形成する検出光学系20と、を備えている。そして、検出光学系20は、第1像23aと第2像23bとの少なくとも一部を重ね合わせて検出面41に形成するとともに、第1像23aと第2像23bとを検出面41の面内の方向に相対的に位置シフトさせる像シフト部(ミラー33、コーナーキューブミラー31e、ルーフプリズム31f)を有し、第1像23aおよび第2像23bが、それぞれ単一のスポット像である。
 この構成により、第1波長λ1の検出光L1による第1像23aと第2波長λ2の検出光L2による第2像23bとを、1つの検出器40の検出面41に結像させつつ、それぞれの蛍光物質の2次元密度分布を高精度で推定することができる。これにより、検出に必要な高価なアバランシェフォトダイオードアレイ等の検出器40の数を削減することができ、顕微鏡1を安価で提供することができる。
 上述では、種々の実施形態および変形例は、第1波長λ1の蛍光を発生する蛍光物質の密度と、第2波長λ2の蛍光を発生する蛍光物質の密度とを推定するものである。しかし、像変換部30の構成を変更するだけで、偏光を発生する蛍光物質の密度を推定する装置に変更することができる。例えば、図6の分岐素子32と合流素子35aとをそれぞれ偏光ビームスプリッター(PBS)に変更すると、p偏光を発する蛍光物質の密度とs偏光を発する蛍光物質の密度とを推定する装置となる。分岐素子32と置き換えたPBSを第1のPBSとし、合流素子35aと置き換えたPBSを第2のPBSとする。この装置の場合、p偏光は第1のPBSを透過し、s偏光は第1のPBSによって反射されるので、検出光Ldのうち、p偏光の検出光は第1のPBSを透過し、ミラー33で反射されて第2のPBSに至り、第2のPBSを透過して、射出光の一部となる。
 一方、s偏光の検出光は第1のPBSで反射され、ミラー34で反射されて、第2のPBSに至り、第2のPBSで反射されて、射出光の一部となる。s偏光の光路上には像変換素子31としてイメージローテータ31a(図2A参照)が配置されている。この変形例の像変換部によっても、後述する2つの点像強度分布を互いに異ならせることができる。また、分岐素子32の上流に波長板を置くことにより、右回り円偏光、左回り円偏光のような、任意の直交する2つの偏光を発する蛍光物質の密度をそれぞれ推定する装置にもなる。
 検出する光が任意の直交する2つの偏光である場合、(2)式は、以下の式(2)’のように変更される。
Figure JPOXMLDOC01-appb-M000004
 ここで、任意の直交する偏光をp1, p2とすると、ρ(x, y, p1)は、試料18における偏光p1を発する蛍光物質の密度をと表し、 ρ(x, y, p2)は、試料18における偏光p2を発する蛍光物質の密度を表す。hm(x、y、p1)は、検出器40のm番目の検出画素42により検出された偏光p1の検出光により生成される2次元画像における点像強度分布(PSF)を表し、hm(x、y、p2)は、検出器40のm番目の検出画素42により検出された偏光p2の検出光により生成される2次元画像における点像強度分布(PSF)を表す。
 この式は、数式(2)と全く同じ形をしているため、上述のアルゴリズムを用いてρ(x,y,p1)とρ(x,y,p2)を推定することが可能である。
(変形例)
以上の各実施形態では、検出器40は照明領域19の像23の位置に直接配置するものとしている。しかし、例えば特許文献1に開示されるように、照明領域19の像23の位置には、光ファイバー束等の光分配素子の一端(入射端)を配置し、光分配素子の他端(射出端)に光電変換部を配置する構成とすることもできる。
図17は、変形例の検出器200の全体を示す図である。変形例の検出器200は、1次元に配置される光電検出器アレイ206と、光電検出器アレイ206に光を供給する光ファイバー束201とを含んでいる。光ファイバー束201は単一の光ファイバー204から形成されている。
光ファイバー束201の一端(入射端)202は、照明領域19の像23a、23bが形成される面に配置されるとともに、一端202においては、それぞれの単一光ファイバー204は密集して配列されている。光ファイバー束201内の個々の光ファイバー204の他端(射出端)は、1次元方向に延在するプラグ205に沿って配置されている。そして、各光ファイバー204の他端(射出端)205は、1次元に配列されている光電検出器アレイ206の各光電変換面208と対向している。光ファイバー束201は、光を分配する光分配素子に相当する。なお、光分配素子は、光ファイバー束に限られず、他の既存の導波路を用いることができる。
 各光ファイバー204の入射端の直径(正確にはそのファイバーのコアの直径)は、第1波長λ1または第2波長λ2の波長をλ、対物レンズ16の開口数をNAとするとき、試料18上の長さに換算して、例えば、0.2×λ/NA程度に設定されていることが望ましい。なお、各光ファイバー204への集光効率を高めるため、各光ファイバー204の入射端の前面にマイクロレンズアレイなどの集光素子アレイを配置してもよい。この場合、例えば、集光素子アレイを介して形成される像の位置に各光ファイバー204の入射端が配置されるように構成してもよい。
 光ファイバー束等の光分配素子を使用することにより、光電変換部の配置の自由度が増し、より大きな光電変換部を使用することが可能となる。これにより、PINフォトダイオードや光電子倍増管等の、高感度かつ高応答の光電変換部が使用可能となり、試料18の2次元画像のS/N比を向上させることができる。
光ファイバー束201の入射端は、その下流に配置された光電変換部により光を検出(光電変換)する光ファイバーの入射端が2次元的に配列されている部分であることから、2次元的に配列されている複数の検出部と解釈することができる。
 上述では、種々の実施形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。また、各実施形態および変形例は、それぞれ単独で適用しても良いし、組み合わせて用いても良い。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。また、法令で許容される限りにおいて、上述の各実施形態および変形例で引用した全ての文献(米国特許や論文)の開示を援用して本文の記載の一部とする。
 1:顕微鏡、10:照明光学系、11:分岐ミラー、12:偏向部、13,15:リレーレンズ、16:対物レンズ、17:ステージ、18:試料、19:照明領域、20:検出光学系、21:除去フィルタ、22:集光レンズ、23:像、30,30a~30o:像変換部、31:像変換素子、31a:ダブプリズム、31b,31c:シリンドリカルレンズ、32,32a:分岐素子、35,35a:合流素子、33,34:ミラー、40:検出器、41:検出面、42:検出画素、50:光源部、51a,51b:光源、Li:照明光、Ld:検出光、60:制御部、61:演算部

Claims (13)

  1.  照明光を集光して試料に照明領域を形成する照明光学系と、
     前記照明領域と前記試料とを相対的に走査させる走査部と、
     検出面内に検出部が複数配列されている検出器と、
     前記照明領域が形成された前記試料からの第1波長の光による第1像、および前記照明領域が形成された前記試料からの前記第1波長とは異なる第2波長の光による第2像を、前記検出器の前記検出面に形成する検出光学系と、
    を備え、
     前記検出光学系は、前記第1像と前記第2像との少なくとも一部を重ね合わせて前記検出面に形成するとともに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に回転させる、前記第1像もしくは前記第2像の一方を前記検出面の面内において反転させる、および前記検出面における前記第1像の形状と前記第2像の形状とを異ならせる、のうち少なくとも1つを行う像変換部を有する、顕微鏡。
  2.  請求項1記載の顕微鏡において、
     前記検出光学系は、さらに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に位置シフトさせる像シフト部を有する、顕微鏡。
  3.  請求項1または請求項2に記載の顕微鏡において、
     前記像変換部は、前記第1波長の光と前記第2波長の光とを分岐する分岐素子と、
     前記分岐素子により分岐された前記第1波長の光の光路または前記第2波長の光の光路の少なくとも一方に配置された像変換素子と、
     前記分岐素子により分岐された前記第1波長の光および前記第2波長の光を合流させる合流素子と、を有する顕微鏡。
  4.  請求項3記載の顕微鏡において、
     前記分岐素子および前記合流素子は、1つの素子で兼用されている、顕微鏡。
  5.  請求項3に記載の顕微鏡において、
     前記分岐素子および前記合流素子の少なくとも一方は、ダイクロイックミラーである、顕微鏡。
  6.  請求項3から請求項5までのいずれか一項に記載の顕微鏡において、
     前記検出光学系は、前記第1波長と前記第2波長との間の少なくとも一部の波長域の光を除去する除去フィルタを有する、顕微鏡。
  7.  請求項3から請求項6までのいずれか一項に記載の顕微鏡において、
     前記像変換素子はイメージローテータである、顕微鏡。
  8.  請求項3から請求項6までのいずれか一項に記載の顕微鏡において、
     前記像変換素子は、通過する光に非点収差を付加する光学部材である、顕微鏡。
  9.  請求項3から請求項6までのいずれか一項に記載の顕微鏡において、
     前記像変換素子は、通過する光の形状を制限するマスキング部材である、顕微鏡。
  10.  照明光を集光して試料に照明領域を形成する照明光学系と、
     前記照明領域と前記試料とを相対的に走査させる走査部と、
     検出面内に検出部が複数配列されている検出器と、
     前記照明領域が形成された前記試料からの第1波長の光による第1像、および前記照明領域が形成された前記試料からの前記第1波長とは異なる第2波長の光による第2像を、前記検出器の前記検出面に形成する検出光学系と、
    を備え、
     前記検出光学系は、前記第1像と前記第2像との少なくとも一部を重ね合わせて前記検出面に形成するとともに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に位置シフトさせる像シフト部を有し、
    前記第1像および前記第2像が、それぞれ単一のスポット像である、
    顕微鏡。
  11. 請求項1から請求項10までのいずれか一項に記載の顕微鏡において、
     前記検出面において前記検出部の合計面積は、前記検出面内における前記第1像および前記第2像の合計面積の1.5倍以下である、顕微鏡。
  12.  請求項1から請求項11までのいずれか一項に記載の顕微鏡において、
     前記検出器が検出する前記第1像と前記第2像とが合算された光量信号に基づいて、 前記第1波長の光による前記試料の第1画像と、前記第2波長の光による前記試料の第2画像とをそれぞれ算出する演算部をさらに有する顕微鏡。
  13.  照明光を集光して試料に照明領域を形成する照明光学系と、
     前記照明領域と前記試料とを相対的に走査させる走査部と、
     検出面内に検出部が複数配列されている検出器と、
     前記照明領域が形成された前記試料からの第1偏光の光による第1像、および前記照明領域が形成された前記試料からの前記第1偏光とは異なる第2偏光の光による第2像を、前記検出器の前記検出面に形成する検出光学系と、
    を備え、
     前記検出光学系は、前記第1像と前記第2像との少なくとも一部を重ね合わせて前記検出面に形成するとともに、前記第1像と前記第2像とを前記検出面の面内の方向に相対的に回転させる、前記第1像もしくは前記第2像の一方を前記検出面の面内において反転させる、および前記検出面における前記第1像の形状と前記第2像の形状とを異ならせる、のうち少なくとも1つを行う像変換部を有する、顕微鏡。
PCT/JP2021/031749 2020-09-02 2021-08-30 顕微鏡 WO2022050221A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-147642 2020-09-02
JP2020147642 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022050221A1 true WO2022050221A1 (ja) 2022-03-10

Family

ID=80492230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031749 WO2022050221A1 (ja) 2020-09-02 2021-08-30 顕微鏡

Country Status (1)

Country Link
WO (1) WO2022050221A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177662A (ja) * 2002-11-27 2004-06-24 Inst Of Physical & Chemical Res 顕微鏡の照明装置及びその照明装置を用いた画像処理装置
JP2011095745A (ja) * 2009-10-28 2011-05-12 Carl Zeiss Microimaging Gmbh 分解能の向上した顕微鏡法および顕微鏡
JP2017529559A (ja) * 2014-08-06 2017-10-05 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Microscopy GmbH 少なくとも2つの波長範囲を区別する高解像度走査型顕微鏡検査法
US20200116987A1 (en) * 2017-06-21 2020-04-16 Carl Zeiss Microscopy Gmbh High-resolution scanning microscopy with discrimination between at least two wave-length ranges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177662A (ja) * 2002-11-27 2004-06-24 Inst Of Physical & Chemical Res 顕微鏡の照明装置及びその照明装置を用いた画像処理装置
JP2011095745A (ja) * 2009-10-28 2011-05-12 Carl Zeiss Microimaging Gmbh 分解能の向上した顕微鏡法および顕微鏡
JP2017529559A (ja) * 2014-08-06 2017-10-05 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Microscopy GmbH 少なくとも2つの波長範囲を区別する高解像度走査型顕微鏡検査法
US20200116987A1 (en) * 2017-06-21 2020-04-16 Carl Zeiss Microscopy Gmbh High-resolution scanning microscopy with discrimination between at least two wave-length ranges

Similar Documents

Publication Publication Date Title
EP2093601B1 (en) Microscope device and image processing method
US11409092B2 (en) Parallel multi-region imaging device
US9823457B2 (en) Multiplane optical microscope
US10514533B2 (en) Method for creating a microscope image, microscopy device, and deflecting device
US7550699B1 (en) Removal of unwanted reflections in autofocus systems
US20090174935A1 (en) Scanning microscope having complementary, serial scanners
JP2007279287A (ja) 構造化照明光学系、及びそれを備えた構造化照明顕微鏡
US20160313548A1 (en) Method for capturing image of three-dimensional structure of specimen and microscopic device
JP2001324678A (ja) 光路ズレ検知装置、および共焦点顕微鏡
JP2008033263A (ja) 蛍光検査用の走査型レーザ顕微鏡
JP5592108B2 (ja) 干渉共焦点顕微鏡および光源撮像方法
JP7280941B2 (ja) 顕微鏡装置
US20160054552A1 (en) Confocal laser scanning microscope
JP2004317741A (ja) 顕微鏡およびその光学調整方法
JP2013167654A (ja) 共焦点顕微鏡画像システム
JP2006105835A (ja) 形状測定方法及び形状測定装置
WO2022050221A1 (ja) 顕微鏡
JP5668566B2 (ja) 顕微鏡装置および観察方法
WO2015000764A1 (en) Apparatus for confocal observation of a specimen
JP5472780B2 (ja) 穴形状測定装置及び光学系
US11874450B2 (en) Oblique plane microscope for imaging a sample
JP6759658B2 (ja) デジタルホログラフィ装置
JP7420793B2 (ja) ライン焦点を生成するように構成された共焦点レーザー走査顕微鏡
WO2021199340A1 (ja) 欠陥検査装置及び欠陥検査方法
JP6467160B2 (ja) 結像光学系、照明装置および観察装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP