WO2022049857A1 - Ultrasonic testing device, support body testing method, and support body testing program - Google Patents

Ultrasonic testing device, support body testing method, and support body testing program Download PDF

Info

Publication number
WO2022049857A1
WO2022049857A1 PCT/JP2021/022630 JP2021022630W WO2022049857A1 WO 2022049857 A1 WO2022049857 A1 WO 2022049857A1 JP 2021022630 W JP2021022630 W JP 2021022630W WO 2022049857 A1 WO2022049857 A1 WO 2022049857A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
ultrasonic
image
metal support
tomographic image
Prior art date
Application number
PCT/JP2021/022630
Other languages
French (fr)
Japanese (ja)
Inventor
颯史 壬生
亨 森藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020237003276A priority Critical patent/KR20230027306A/en
Priority to JP2022546897A priority patent/JPWO2022049857A1/ja
Priority to CN202180053982.9A priority patent/CN116018517A/en
Publication of WO2022049857A1 publication Critical patent/WO2022049857A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Definitions

  • This disclosure relates to an ultrasonic inspection device, a support inspection method, and a support inspection program.
  • a metal support such as a belt or a drum for supporting the film (hereinafter referred to as "metal support") is used.
  • metal support For example, when manufacturing polymer films widely used for polarizing plates and electronic displays (for example, solution film forming method), belts and drums for supporting raw materials are used in the initial drying step of the film. Further, a transport roll is used for post-drying and transporting the film.
  • defects such as scratches, stains, or pinholes (that is, holes) on the surface of the metal support causes deterioration of the quality of the produced film.
  • the polymer solution is cast from a slit die onto a support such as a drum, a belt, and a carrier film to form a sheet, and the solvent is dried from the obtained sheet-like film to produce a film.
  • the film method pinhole defects are likely to occur on the surface of the film due to the defects existing on the surface of the metal support (here, the drum and the belt).
  • the surface of the metal support is regularly inspected, and if a defect is detected on the surface of the metal support in the inspection, polishing or the like is performed. Is in the process of repairing the metal support.
  • the film manufacturing line is stopped during inspection and repair of the metal support, so from the viewpoint of improving productivity, the inspection step to the repair step can be completed in a short time.
  • the problem is that if voids (that is, holes) or foreign substances are present inside the metal support, new defects will occur on the surface of the metal support when the metal support is being repaired. It has become. This is because if a new defect occurs on the surface of the metal support while the metal support is being repaired, the repair step will be prolonged or the repair step will be repeated, resulting in a decrease in productivity. This is because it leads to.
  • this type of metal support is arranged under a large pressure due to bending during the production of the metal support, its internal structure (for example, crystal structure) changes with time. Eventually, it will contain many voids and foreign substances. Therefore, at the time of inspection of the metal support or before incorporating the metal support into the film manufacturing equipment, the internal state of the metal support is evaluated with high accuracy to the extent that the life of the metal support can be predicted. It is preferable that it can be done.
  • the present disclosure has been made in view of the above problems, and is an ultrasonic inspection device capable of evaluating the internal state of a support used for manufacturing a film with high accuracy, a support inspection method, and a support inspection method. ,
  • the purpose is to provide a support inspection program.
  • An ultrasonic inspection device used to manufacture a film that inspects a support that is at least partially made of a metal member.
  • a transmission / reception unit that transmits ultrasonic waves into the support via a contact medium and receives ultrasonic echoes from the inside of the support using an ultrasonic probe.
  • a tomographic image generation unit that generates a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned by the ultrasonic probe.
  • the tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support.
  • Based on the evaluation unit that evaluates the internal state of the support It is an ultrasonic inspection device equipped with.
  • An inspection method for inspecting a support used to manufacture a film Using an ultrasonic probe, ultrasonic waves are transmitted into the support via a contact medium, and ultrasonic echoes are received from the inside of the support.
  • the tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the process of evaluating the internal state of the support, It is an inspection method having.
  • An inspection program that inspects the supports used to make films.
  • ultrasonic waves are transmitted into the support via a contact medium, and ultrasonic echoes are received from the inside of the support.
  • the tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the process of evaluating the internal state of the support, It is an inspection program having.
  • the ultrasonic inspection apparatus According to the ultrasonic inspection apparatus according to the present disclosure, it is possible to evaluate the internal state of the support used for manufacturing the film with high accuracy.
  • Tomographic image observed when the internal structure of the metal support is highly uniform Tomographic image observed when the uniformity of the internal structure of the metal support becomes low due to the change over time of the metal support.
  • 4 and 5 are views showing how the brightness values of the layered images change in the depth direction.
  • 4 and 5 are diagrams showing changes in the luminance value in the lateral direction (that is, the in-plane direction of the metal support) of each of the layered images.
  • the ultrasonic inspection apparatus according to the present embodiment is used for inspecting the internal state of the support used in the film manufacturing equipment, particularly the uniformity of the internal structure of the support.
  • FIG. 1 is a diagram showing an example of the appearance of the ultrasonic inspection device A.
  • FIG. 2 is a diagram showing an example of the configuration of the ultrasonic inspection device A.
  • FIG. 3 is a diagram showing an example of the arrangement state of the ultrasonic probe 2 included in the ultrasonic inspection device A.
  • the ultrasonic inspection device A is, for example, an inspection device for inspecting a metal belt (hereinafter referred to as “metal support C”) used in a film manufacturing facility by a solution film forming method.
  • the metal support C is formed of, for example, a metal plate made of stainless steel having a first surface Ca and a second surface Cb which are in a front-to-back relationship with each other.
  • the first surface Ca of the metal support C is the surface of the ultrasonic probe 2 facing the ultrasonic transmission / reception surface.
  • the second surface Cb of the metal support C is a surface on the side that conveys the film (the side that comes into contact with the film) when the metal support C is incorporated into the film manufacturing equipment.
  • the support to be inspected by the ultrasonic inspection device A is not limited to a support made entirely of a metal material such as a metal plate, and the surface of the support made of an insulating material is plated or the like.
  • a metal member may be formed by the metal member.
  • the inspection target by the ultrasonic inspection device A is the internal structure of the metal member formed on the surface of the support made of the insulating material.
  • the ultrasonic inspection device A is configured by attaching the ultrasonic probe 2 to the ultrasonic inspection device main body 1.
  • the main body 1 and the ultrasonic probe 2 are electrically connected via a cable.
  • the ultrasonic inspection apparatus A visualizes the internal state of the metal support C by using ultrasonic waves, thereby evaluating the internal state of the metal support C.
  • the ultrasonic probe 2 turns on / off the drive state of each of the plurality of piezoelectric vibrators (here, 256 piezoelectric vibrators) 21 that perform mutual conversion between ultrasonic waves and electric signals, and the plurality of piezoelectric vibrators 21. It includes a channel switching unit (not shown) for individual switching control. Then, the plurality of piezoelectric vibrators 21 individually convert the voltage pulse generated by the ultrasonic inspection device main body 1 (transmission / reception unit 11) into an ultrasonic beam and transmit it into the metal support body, and at the same time, the ultrasonic beam. The ultrasonic beam receives the ultrasonic echo generated by being reflected in the metal support, converts it into an electric signal, and outputs it to the ultrasonic inspection device main body 1 (transmission / reception unit 11).
  • the plurality of piezoelectric vibrators 21 are arranged in an array shape, for example, along the scanning direction.
  • the on / off of the drive state of the plurality of piezoelectric vibrators 21 is controlled to be switched individually or in block units in order along the scanning direction.
  • the ultrasonic probe 2 transmits and receives ultrasonic waves so as to scan the inside of the metal support C.
  • the ultrasonic probe 2 is arranged so that the ultrasonic transmission / reception surface is in contact with the first surface Ca of the metal support C via the contact medium B.
  • the contact medium B enables transmission focus by providing a space between the ultrasonic transmission / reception surface of the ultrasonic probe 2 and the first surface Ca of the metal support C, and an air layer is interposed. It is a member arranged for prevention, and here, as the contact medium B, the echo gel pad B1 attached to the ultrasonic transmission / reception surface of the ultrasonic probe 2, the echo gel pad B1 and the metal support C are the first.
  • Gel B2 which is interposed between the one surface Ca and the gel B2, is arranged.
  • the contact medium B may be omitted depending on the degree of influence of disturbance when transmitted from the ultrasonic probe 2 to the metal support C.
  • the ultrasonic inspection device main body 1 includes a transmission / reception unit 11, a tomographic image generation unit 12, an evaluation unit 13, and a notification unit 14.
  • the transmission / reception unit 11 is a transmission / reception circuit that causes the piezoelectric vibrator 21 of the ultrasonic probe 2 to transmit / receive ultrasonic waves.
  • the transmission / reception unit 11 has a transmission unit 11a that generates a voltage pulse (hereinafter referred to as a “drive signal”) and sends it to the piezoelectric vibrator 21, and an electric signal (an electric signal related to a reception beam generated by the piezoelectric vibrator 21).
  • a driving signal a voltage pulse
  • an electric signal an electric signal related to a reception beam generated by the piezoelectric vibrator 21.
  • a receiving unit 11b for receiving and processing a "received signal”).
  • the transmission unit 11a includes, for example, a pulse oscillator and a pulse setting unit provided for each channel connected to the piezoelectric vibrator 21.
  • the transmission unit 11a adjusts the voltage pulse generated by the pulse oscillator to the voltage amplitude, pulse width and timing set in the pulse setting unit, and transmits the voltage pulse to the piezoelectric vibrator 21.
  • the transmission unit 11a sends a drive signal to the piezoelectric vibrator 21 so that the ultrasonic beam is transmitted from the piezoelectric vibrator 21 of the ultrasonic probe 2.
  • the ultrasonic beam transmitted by the transmission unit 11a preferably contains a plurality of frequency components (for example, 1 MHz to 20 MHz). This enables transmission and reception of wideband signals, and makes it possible to generate high-definition images.
  • the receiving unit 11b includes, for example, a preamplifier, an AD converter, and a receiving beam former.
  • the preamplifier and the AD converter are provided for each channel connected to the piezoelectric vibrator 21 to amplify a weak received signal and convert the amplified received signal (analog signal) into a digital signal.
  • the reception beam former collects the received signals of the plurality of piezoelectric vibrators 21 into one by phasing and adding the received signals (digital signals) of the piezoelectric vibrators 21, and outputs the received signals of the plurality of piezoelectric vibrators 21 to the tomographic image generation unit 12.
  • the tomographic image generation unit 12 acquires the reception signal at each scanning position output from the transmission / reception unit 11, sequentially stores the reception signal in the line memory, and generates two-dimensional data in frame units.
  • the two-dimensional data is composed of signal intensity information and the like at each position in the cross section of the metal support along the scanning direction and the depth direction. Then, the tomographic image generation unit 12 generates image data related to the tomographic image based on the two-dimensional data.
  • the tomographic image generation unit 12 converts, for example, sampling data (for example, the signal strength of the received signal) at each position in the cross section along the scanning direction and the depth direction into pixel values to generate a one-frame tomographic image. ..
  • the evaluation unit 13 analyzes the tomographic image generated by the tomographic image generation unit 12, and between the front and back surfaces of the metal support C of the ultrasonic waves transmitted from the ultrasonic probe 2 (here, the first surface Ca and the first surface Ca).
  • the internal state of the metal support C is evaluated based on the aspect of the layered image that appears in the tomographic image due to the multiple reflections (between the two planes Cb).
  • the notification unit 14 is, for example, a monitor and outputs the evaluation result by the evaluation unit 13. For example, when the evaluation result of the evaluation unit 13 indicates that the internal structure of the metal support C is defective, the notification unit 14 notifies the user to that effect.
  • FIG. 4 and 5 are tomographic images observed when ultrasonic scanning was performed on the same metal support C.
  • FIG. 4 is a tomographic image observed when the internal structure of the metal support C has high uniformity
  • FIG. 5 shows the internal structure of the metal support C due to the change over time of the metal support C. It is a tomographic image observed when the uniformity of the metal becomes low.
  • FIG. 6 is an enlarged view of the layered image region R1 of FIG.
  • the region with high brightness in FIGS. 4 and 5 represents the region with high signal intensity of ultrasonic echo.
  • P1 in FIGS. 4 and 5 is a layered image expressed in the tomographic image due to multiple reflections between the first surface Ca and the second surface Cb of the metal support C, and here, about. A layered image drawn so that 15 layers are stacked is displayed.
  • the ultrasonic waves transmitted from the ultrasonic probe 2 are reflected by the first surface Ca of the metal support C, respectively, and are ultrasonic waves. It is a brightness component caused by the surface reflected wave returning to the ultrasonic transmission / reception surface of the probe 2.
  • the high-luminance region P2a is a luminance component caused by the first observed surface reflected wave (hereinafter referred to as “first surface reflected wave”)
  • the high-luminance region P2b is the first surface reflection.
  • the wave After the wave is reflected by the ultrasonic transmission / reception surface of the ultrasonic probe 2, it is reflected again by the first surface Ca of the metal support C and returned to the ultrasonic transmission / reception surface of the ultrasonic probe 2 (hereinafter, "2"). It is a luminance component caused by the "second surface reflected wave").
  • FIG. 7 is a diagram illustrating the principle of the layered image appearing in the tomographic image.
  • the ultrasonic waves transmitted from the ultrasonic probe 2 and invading the inside of the metal support C travel from the first surface Ca of the metal support C toward the second surface Cb. Then, the ultrasonic wave is reflected by the second surface Cb of the metal support C and again directed to the first surface Ca of the metal support C. Then, when the ultrasonic wave reaches the first surface Ca of the metal support C, a part of the ultrasonic wave advances into the contact medium B and returns to the ultrasonic probe 2, and the other part of the ultrasonic wave is of the metal support C. It is reflected again by the first surface Ca and proceeds from the first surface Ca of the metal support C toward the second surface Cb.
  • the ultrasonic waves that have entered the inside of the metal support C are repeatedly reflected between the first surface Ca and the second surface Cb of the metal support C, so that the ultrasonic waves are reflected with the first surface Ca of the metal support C.
  • a part of the metal support C is detected by the ultrasonic probe 2 every time it reaches the first surface Ca of the metal support C.
  • the ultrasonic echoes that are repeatedly detected become a layered image drawn so as to be stacked along the depth direction, and are displayed in the tomographic image (Rall in the lower figure of FIG. 7).
  • the thickness of each layer in this layered image (d1 in the lower figure of FIG.
  • 7) corresponds to the propagation time of ultrasonic waves between the first surface Ca and the second surface Cb of the metal support C. That is, it corresponds to the distance between the first surface Ca and the second surface Cb of the metal support C (d1 in the upper figure of FIG. 7).
  • the image of the layer appearing on the lower layer side of the layered image P1 in the tomographic image is an ultrasonic echo (that is, multiplex) after repeated multiple reflections between the first surface Ca and the second surface Cb of the metal support C. Since the ultrasonic echo) attenuated in the metal support C was detected in the process of reflection, the brightness is smaller than that of the image of the layer appearing on the upper layer side of the layered image P1 in the tomographic image. ing. In addition, multiple reflections of ultrasonic waves that have penetrated into the metal support C in the metal support C occur several hundred times in many cases.
  • the evaluation unit 13 multiple-reflects the ultrasonic waves transmitted from the ultrasonic probe between the first surface Ca and the second surface Cb of the metal support C.
  • the signal components detected in the process only the signal components detected between the detection of the first surface reflected wave and the detection of the second surface reflected wave (in FIGS. 4 and 5).
  • the layered image P1) of about 15 layers expressed between P2a and P2b is the analysis target. This suppresses the situation where the signal component caused by the surface reflected wave is superimposed on the signal component of the ultrasonic echo from the inside of the metal support C.
  • Equation (1) represents the number of times of multiple reflections generated between the first surface Ca and the second surface Cb of the metal support C while the surface reflected wave reciprocates once in the contact medium B.
  • the evaluation unit 13 has a layered shape having the number of layers or less calculated by the above equation (1) in the depth direction from the high-luminance region P2a expressed due to the surface reflected wave. Extract the image as an analysis target.
  • the number of layers of the layered image to be analyzed by the evaluation unit 13 is, for example, 3 or more and less than 200.
  • the thickness of the contact medium B is set between the first surface Ca and the second surface Cb of the metal support C while the surface reflected wave reciprocates once in the contact medium B based on the above equation (1).
  • the number of multiple reflections generated in the above is set to be 5 or more and less than 200.
  • the evaluation unit 13 is configured to be able to evaluate the uniformity of the internal structure of the metal support C from the layered image in the tomographic image.
  • the uniformity of the internal structure of the metal support C evaluated by the evaluation unit 13 means not only the absence of voids and foreign substances inside the metal support C, but also the crystal structure of the metal support C (for example, chemistry). Also includes uniformity of composition and crystal grain size). This is because, as described above, if voids or foreign substances are present inside the metal support C, new defects will occur on the surface of the metal support C when the metal support C is being repaired. be. In addition, it is also possible to evaluate the remaining life of the metal support C by evaluating the uniformity of the crystal structure (for example, the chemical composition and the crystal grain size) of the metal support C.
  • FIG. 8 is a diagram showing a change mode of the luminance value in the depth direction of the layered image P1. Note that FIG. 8 shows a mode of change in the luminance value in the depth direction at the same position T1-T1'of the layered images P1 in FIGS. 4 and 5, respectively. It was
  • FIG. 9 is a diagram showing a change mode of the luminance value in the lateral direction (that is, the in-plane direction of the metal support C) of the layered image P1. Note that FIG. 9 shows a change mode of the luminance value in the lateral direction (that is, the in-plane direction of the metal support C) at the same position T2-T2'of the layered images P1 in FIGS. 4 and 5. There is.
  • the solid line graph shows the change mode of the luminance value in the depth direction of the layered image P1 of FIG. 4 (that is, the state where the internal structure of the metal support C has high uniformity), and is a dotted line graph. 1 represents the change mode of the luminance value in the depth direction of the layered image P1 of FIG. 5 (that is, the state in which the uniformity of the internal structure of the metal support C is low).
  • the layered image P1 of FIG. 5 has a larger attenuation of the luminance value in the depth direction than the layered image P1 of FIG. Further, as can be seen with reference to FIG. 9, in the layered image P1 of FIG. 5, the unevenness of the luminance value in the lateral direction is larger than that of the layered image P1 of FIG.
  • the evaluation unit 13 evaluates the uniformity of the internal structure of the metal support C in the thickness direction based on the change mode of the luminance value in the depth direction of the layered image P1 to be analyzed determined as described above.
  • the evaluation unit 13 has a peak value of the luminance value of the first layer P1a (for example, the uppermost layer in the layered image P1) on the upper layer side in the layered image P1 and the second layer P1b (for example) on the lower layer side. For example, based on the degree of attenuation of the luminance value when compared with the peak value of the luminance value of the layered image P1 (the lowest layer in the layered image P1) (for example, the luminance value of the first layer P1a-the luminance value of the second layer P1b). Then, the uniformity of the internal structure of the metal support C in the thickness direction is evaluated. For example, in the layered image P1 of FIG.
  • the degree of attenuation L1 of the luminance value between the first layer P1a and the second layer P1b is 100, whereas in the layered image P1 of FIG.
  • the degree of attenuation L2 of the luminance value between the first layer P1a and the second layer P1b is 180.
  • the evaluation unit 13 compares the degree of change in the degree of attenuation detected in this way with a predetermined reference value, and determines whether or not the metal support C has deteriorated in the portion.
  • the evaluation unit 13 evaluates the uniformity of the internal structure of the metal support C in the thickness direction at each scanning position of the tomographic image, for example. As a result, the uniformity of the internal structure of the metal support C in the thickness direction is evaluated at each position of the metal support C.
  • the peak value of the brightness value of the first layer P1a on the upper layer side and the peak value of the brightness value of the second layer P1b on the lower layer side in the layered image P1 are compared. It may be an aspect of comparing the luminance values of the portions other than the above.
  • the evaluation unit 13 evaluates the in-plane uniformity of the internal structure of the metal support C based on the change mode of the lateral luminance value of the layered image P1 to be analyzed determined as described above. do.
  • the evaluation unit 13 acquires the peak value of the brightness value of the third layer P1c (for example, the uppermost layer in the layered image P1) in the layered image P1 at each position in the lateral direction of the layered image P1. Then, the degree of variation (for example, standard deviation) is calculated. Then, the evaluation unit 13 evaluates the uniformity of the internal structure of the metal support C in the in-plane direction based on the degree of variation. The evaluation unit 13 compares, for example, the degree of change in the standard deviation of the luminance value of the third layer P1c with a predetermined reference value, and determines whether or not the metal support C has deteriorated in the portion. Is determined.
  • the degree of variation for example, standard deviation
  • the evaluation unit 13 may refer only to the change mode of the lateral luminance value for one layer of the layered image P1. Then, the change mode of the luminance value in the lateral direction in each of the plurality of layers of the layered image P1 may be referred to. It was
  • the evaluation unit 13 calculates the standard deviation of the luminance value in the thickness direction at any two or more points in the lateral direction of the layered image P1, and uses the standard deviation to obtain the internal structure of the metal support C. In-plane uniformity may be evaluated. In this case, for example, by calculating the difference of the standard deviation at the adjacent points and calculating the standard deviation or the average of the calculated difference, the uniformity of the internal structure of the metal support C in the in-plane direction can be obtained. You may evaluate it.
  • the evaluation unit 13 may also refer to the lateral luminance value of the portion other than the peak value of the luminance value in the layer. .. Further, the evaluation unit 13 may refer only to the luminance value of only a part of the layered image P1 in the lateral direction depending on the region to be evaluated for the in-plane uniformity of the internal structure of the metal support C.
  • the evaluation unit 13 When the evaluation of the same metal support C is performed periodically, the evaluation unit 13 preferably shows the change over time in the evaluation value of the internal structure of the metal support C. As a result, the user can more easily grasp the remaining life of the metal support C.
  • FIG. 10 is a flowchart showing an example of the operation of the ultrasonic inspection device A.
  • the flowchart shown in FIG. 10 is, for example, a process that the ultrasonic inspection apparatus A sequentially executes according to a computer program.
  • step S1 the ultrasonic inspection apparatus A ultrasonically scans the inside of the metal support C using the ultrasonic probe 2 and images the inside of the metal support C. This produces a tomographic image of the inside of the metal support C.
  • step S2 the ultrasonic inspection device A extracts a layered image from the tomographic image.
  • the ultrasonic inspection device A detects, for example, a high-luminance region of the first surface reflected wave from the tomographic image, and from the high-luminance region, the above equation (1) is used in the depth direction. Extract the layered images for the calculated number of layers.
  • step S3 the ultrasonic inspection device A calculates an evaluation value in the thickness direction of the internal structure of the metal support C based on the change in the brightness value in the depth direction of the extracted layered image. At this time, the ultrasonic inspection device A calculates, for example, an evaluation value in the thickness direction of the internal structure of the metal support C at each scanning position of the tomographic image.
  • step S4 the ultrasonic inspection device A calculates an in-plane evaluation value of the internal structure of the metal support C based on the change in the lateral brightness value of the extracted layered image. At this time, the ultrasonic inspection device A calculates, for example, a lateral evaluation value of the internal structure of the metal support C at each depth position of the tomographic image.
  • the ultrasonic inspection apparatus A according to the present embodiment it is possible to evaluate the internal state of the metal support C in a short time by a simple method.
  • the ultrasonic inspection apparatus A according to the present embodiment is a layered image that appears in the tomographic image due to the multiple reflected waves between the first surface Ca and the second surface Cb of the metal support C.
  • a belt is shown as an example of a support (metal support C) to be inspected by the ultrasonic inspection device A.
  • the support to be inspected by the ultrasonic inspection device A may be a drum or a roll in addition to the belt.
  • the support to be inspected by the ultrasonic inspection device A is not limited to a support made entirely of a metal material such as a metal plate, but can be applied to the surface of a support made of an insulating material. It may be configured by forming a metal member by plating or the like. In that case, the metal member of the support is to be inspected by the ultrasonic inspection device A.
  • the evaluation unit 13 may analyze the ultrasonic image generated by the tomographic image generation unit 12 by performing a filter process such as a smoothing filter or a feature extraction filter.
  • the mode of the evaluation output of the evaluation unit 13 may indicate the internal state of the metal support C in terms of level, or may be used for each index (for example, the uniformity of the internal structure of the metal support C in the thickness direction).
  • the in-plane uniformity of the internal structure of the metal support C, the distribution state of voids inside the metal support C, etc. may be an evaluation value. In addition, it may indicate the remaining life of the metal support C.
  • the ultrasonic inspection device for the metal support According to the ultrasonic inspection device for the metal support according to the present disclosure, it is possible to evaluate the internal state of the metal support with high accuracy.
  • a Ultrasonic inspection device 1 Ultrasonic inspection device body 11 Transmission / reception unit 12 Tomography image generation unit 13 Evaluation unit 14 Notification unit 2 Ultrasonic probe 21 Piezoelectric oscillator B Contact medium B1 Echo gel pad B2 gel C Metal support Ca First surface of metal support Cb Second surface of metal support

Abstract

 An ultrasonic testing device (A) that tests a support body, said support body being used for manufacturing a film and being at least partially formed from a metal member, said ultrasonic testing device (A) comprising: a transmission/reception unit (11) that uses an ultrasonic probe (2) to transmit ultrasonic waves within the metal support body via a contact medium, and to receive ultrasonic wave echoes from the interior of the support body; a cross-sectional image generation unit (12) that generates a cross-sectional image of the interior of the support body, on the basis of the ultrasonic wave echoes detected in each scan location when the interior of the support body is ultrasonically scanned with the ultrasonic probe (2); and an evaluation unit (13) that subjects the cross-sectional image to an image analysis, and evaluates the status of the interior of the support body on the basis of the condition of a layer-shaped image appearing in the cross-sectional image due to multiple reflection, between front and rear surfaces of the metal member of the support body, of the ultrasonic waves transmitted from the ultrasonic probe (2).

Description

超音波式検査装置、支持体の検査方法、及び、支持体の検査プログラムUltrasonic inspection equipment, support inspection method, and support inspection program
 本開示は、超音波式検査装置、支持体の検査方法、及び、支持体の検査プログラムに関する。 This disclosure relates to an ultrasonic inspection device, a support inspection method, and a support inspection program.
 フィルムを製造する際には、フィルムを支持するためのベルトやドラム等の金属製の支持体(以下、「金属支持体」と称する)が用いられている。例えば、偏光板や電子ディスプレイに広く用いられているポリマーフィルムを製造する際には(例えば、溶液製膜法)、フィルムの初期乾燥工程では原材料を支持するためのベルトやドラムが用いられており、また、後乾燥やフィルムの搬送などのためには搬送ロールが用いられている。 When manufacturing a film, a metal support such as a belt or a drum for supporting the film (hereinafter referred to as "metal support") is used. For example, when manufacturing polymer films widely used for polarizing plates and electronic displays (for example, solution film forming method), belts and drums for supporting raw materials are used in the initial drying step of the film. Further, a transport roll is used for post-drying and transporting the film.
特表2016-517494号公報Special Table 2016-517494A 特開2007-083451号公報JP-A-2007-083451 特開平11-051910号公報Japanese Unexamined Patent Publication No. 11-051910
 ところで、金属支持体の表面に、キズ、汚れ、又はピンホール(即ち、穴)等の欠陥(以下、「欠陥」と称する)が存在すると、製造されるフィルムの品質低下を招くことが知られている(例えば、特許文献1及び特許文献2)。特に、ポリマ溶液をスリットダイからドラム、ベルト、及びキャリアフィルム等の支持体上に流延させてシート状にし、得られたシート状の膜から溶媒を乾燥させることにより、フィルムを製造する溶液製膜法においては、金属支持体(ここでは、ドラム及びベルト)の表面に存在する欠陥に起因して、フィルムの表面にピンホール欠点が生じやすい。 By the way, it is known that the presence of defects (hereinafter referred to as "defects") such as scratches, stains, or pinholes (that is, holes) on the surface of the metal support causes deterioration of the quality of the produced film. (For example, Patent Document 1 and Patent Document 2). In particular, the polymer solution is cast from a slit die onto a support such as a drum, a belt, and a carrier film to form a sheet, and the solvent is dried from the obtained sheet-like film to produce a film. In the film method, pinhole defects are likely to occur on the surface of the film due to the defects existing on the surface of the metal support (here, the drum and the belt).
 このような背景から、従来、この種のフィルムの製造設備においては、定期的に金属支持体の表面を検査し、当該検査において金属支持体の表面に欠陥が検出された場合には、研磨等により金属支持体を修理するプロセスが行われている。 Against this background, in the conventional film manufacturing equipment of this type, the surface of the metal support is regularly inspected, and if a defect is detected on the surface of the metal support in the inspection, polishing or the like is performed. Is in the process of repairing the metal support.
 この種のフィルムの製造設備においては、金属支持体の検査時及び修理時には、フィルムの製造ラインを止めることになるため、生産性向上の観点から、検査ステップから修理ステップまでを短時間で終わらせる必要がある。この点、金属支持体の内部にボイド(即ち、空孔)や異物が存在すると、金属支持体を修理している際に、金属支持体の表面に新たな欠陥が生じてしまうことが課題となっている。これは、金属支持体を修理している際に、金属支持体の表面に新たな欠陥が生じてしまうと、修理ステップが長期化したり、繰り返し修理ステップを行う状態が発生し、生産性の低下に繋がったりするためである。 In this type of film manufacturing equipment, the film manufacturing line is stopped during inspection and repair of the metal support, so from the viewpoint of improving productivity, the inspection step to the repair step can be completed in a short time. There is a need. In this regard, the problem is that if voids (that is, holes) or foreign substances are present inside the metal support, new defects will occur on the surface of the metal support when the metal support is being repaired. It has become. This is because if a new defect occurs on the surface of the metal support while the metal support is being repaired, the repair step will be prolonged or the repair step will be repeated, resulting in a decrease in productivity. This is because it leads to.
 そのため、フィルム品質の低下、及び生産性の低下を防ぐには、欠陥の発現性が低い金属支持体を導入する必要がある。又、事前に修理ステップ後の状態を予測できることが必要不可欠である。特に、この種の金属支持体は、当該金属支持体製造時の曲げ加工等に伴って大きな圧力を受けた状態で配されるため、その内部構造(例えば、結晶構造)は、経時的に変化し、やがては、多くのボイドや異物を含むものとなる。それ故、金属支持体の検査時、又は、金属支持体をフィルムの製造設備に組み込む前に、当該金属支持体の寿命を予測し得る程度まで、金属支持体の内部の状態を高精度に評価し得ることが好ましい。 Therefore, in order to prevent deterioration of film quality and productivity, it is necessary to introduce a metal support with low defect development. It is also essential to be able to predict the condition after the repair step in advance. In particular, since this type of metal support is arranged under a large pressure due to bending during the production of the metal support, its internal structure (for example, crystal structure) changes with time. Eventually, it will contain many voids and foreign substances. Therefore, at the time of inspection of the metal support or before incorporating the metal support into the film manufacturing equipment, the internal state of the metal support is evaluated with high accuracy to the extent that the life of the metal support can be predicted. It is preferable that it can be done.
 本開示は、上記問題点に鑑みてなされたもので、フィルムの製造に用いられる支持体の内部の状態を高精度に評価することが可能な超音波式検査装置、支持体の検査方法、及び、支持体の検査プログラムを提供することを目的とする。 The present disclosure has been made in view of the above problems, and is an ultrasonic inspection device capable of evaluating the internal state of a support used for manufacturing a film with high accuracy, a support inspection method, and a support inspection method. , The purpose is to provide a support inspection program.
 前述した課題を解決する主たる本開示は、
 フィルムを製造するために用いられる、少なくとも一部が金属部材で形成された支持体を検査する超音波式検査装置であって、
 超音波プローブを用いて、接触媒質を介して前記支持体内に超音波を送信するとともに、前記支持体の内部からの超音波エコーを受信する送受信部と、
 前記超音波プローブにて前記支持体内を超音波走査した際に各走査位置で検出される前記超音波エコーに基づいて、前記支持体の断層画像を生成する断層画像生成部と、
 前記断層画像を画像解析し、前記超音波プローブから送出された超音波の前記支持体の金属部の表裏面間における多重反射に起因して、前記断層画像内に表出する層状画像の態様に基づいて、前記支持体の内部の状態を評価する評価部と、
 を備える超音波式検査装置である。
The main disclosure that solves the above-mentioned problems is
An ultrasonic inspection device used to manufacture a film that inspects a support that is at least partially made of a metal member.
A transmission / reception unit that transmits ultrasonic waves into the support via a contact medium and receives ultrasonic echoes from the inside of the support using an ultrasonic probe.
A tomographic image generation unit that generates a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned by the ultrasonic probe.
The tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the evaluation unit that evaluates the internal state of the support,
It is an ultrasonic inspection device equipped with.
 又、他の局面では、
 フィルムを製造するために用いられる支持体を検査する検査方法であって、
 超音波プローブを用いて、接触媒質を介して前記支持体内に超音波を送信するとともに、前記支持体の内部からの超音波エコーを受信する処理と、
 前記超音波プローブにて前記支持体内を超音波走査した際に各走査位置で検出される前記超音波エコーに基づいて、前記支持体の断層画像を生成する処理と、
 前記断層画像を画像解析し、前記超音波プローブから送出された超音波の前記支持体の金属部の表裏面間における多重反射に起因して、前記断層画像内に表出する層状画像の態様に基づいて、前記支持体の内部の状態を評価する処理と、
 を有する検査方法である。
Also, in other aspects,
An inspection method for inspecting a support used to manufacture a film.
Using an ultrasonic probe, ultrasonic waves are transmitted into the support via a contact medium, and ultrasonic echoes are received from the inside of the support.
A process of generating a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned with the ultrasonic probe.
The tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the process of evaluating the internal state of the support,
It is an inspection method having.
 又、他の局面では、
 フィルムを製造するために用いられる支持体を検査する検査プログラムであって、
 超音波プローブを用いて、接触媒質を介して前記支持体内に超音波を送信するとともに、前記支持体の内部からの超音波エコーを受信する処理と、
 前記超音波プローブにて前記支持体内を超音波走査した際に各走査位置で検出される前記超音波エコーに基づいて、前記支持体の断層画像を生成する処理と、
 前記断層画像を画像解析し、前記超音波プローブから送出された超音波の前記支持体の金属部の表裏面間における多重反射に起因して、前記断層画像内に表出する層状画像の態様に基づいて、前記支持体の内部の状態を評価する処理と、
 を有する検査プログラムである。
Also, in other aspects,
An inspection program that inspects the supports used to make films.
Using an ultrasonic probe, ultrasonic waves are transmitted into the support via a contact medium, and ultrasonic echoes are received from the inside of the support.
A process of generating a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned with the ultrasonic probe.
The tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the process of evaluating the internal state of the support,
It is an inspection program having.
 本開示に係る超音波式検査装置によれば、フィルムの製造に用いられる支持体の内部の状態を高精度に評価することが可能である。 According to the ultrasonic inspection apparatus according to the present disclosure, it is possible to evaluate the internal state of the support used for manufacturing the film with high accuracy.
一実施形態に係る超音波式検査装置の外観の一例を示す図The figure which shows an example of the appearance of the ultrasonic type inspection apparatus which concerns on one Embodiment. 一実施形態に係る超音波式検査装置の構成の一例を示す図The figure which shows an example of the structure of the ultrasonic type inspection apparatus which concerns on one Embodiment. 一実施形態に係る超音波式検査装置が有する超音波プローブの配設状態の一例を示す図The figure which shows an example of the arrangement state of the ultrasonic probe which the ultrasonic type inspection apparatus which concerns on one Embodiment has. 金属支持体の内部構造の均一性が高い状態のときに観察された断層画像Tomographic image observed when the internal structure of the metal support is highly uniform 金属支持体の経時変化により、金属支持体の内部構造の均一性が低くなったときに観察された断層画像Tomographic image observed when the uniformity of the internal structure of the metal support becomes low due to the change over time of the metal support. 図5の層状画像領域の拡大図Enlarged view of the layered image area of FIG. 断層画像内に層状画像が表出する原理について、説明する図A diagram explaining the principle of the layered image appearing in the tomographic image. 図4と図5ぞれぞれの層状画像の深度方向の輝度値の変化態様を示す図4 and 5 are views showing how the brightness values of the layered images change in the depth direction. 図4と図5ぞれぞれの層状画像の横方向(即ち、金属支持体の面内方向)の輝度値の変化態様を示す図4 and 5 are diagrams showing changes in the luminance value in the lateral direction (that is, the in-plane direction of the metal support) of each of the layered images. 超音波式検査装置の動作の一例を示すフローチャートFlow chart showing an example of the operation of the ultrasonic inspection device
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings below. In the present specification and the drawings, components having substantially the same function are designated by the same reference numerals, so that duplicate description will be omitted.
[金属支持体の超音波式検査装置の構成]
 以下、図1~図4を参照して、一実施形態に係る超音波式検査装置の構成について説明する。尚、本実施形態に係る超音波式検査装置は、フィルムの製造設備で使用される支持体の内部の状態、特に支持体の内部構造の均一性を検査するために用いられる。
[Structure of ultrasonic inspection device for metal support]
Hereinafter, the configuration of the ultrasonic inspection apparatus according to the embodiment will be described with reference to FIGS. 1 to 4. The ultrasonic inspection apparatus according to the present embodiment is used for inspecting the internal state of the support used in the film manufacturing equipment, particularly the uniformity of the internal structure of the support.
 図1は、超音波式検査装置Aの外観の一例を示す図である。図2は、超音波式検査装置Aの構成の一例を示す図である。図3は、超音波式検査装置Aが有する超音波プローブ2の配設状態の一例を示す図である。 FIG. 1 is a diagram showing an example of the appearance of the ultrasonic inspection device A. FIG. 2 is a diagram showing an example of the configuration of the ultrasonic inspection device A. FIG. 3 is a diagram showing an example of the arrangement state of the ultrasonic probe 2 included in the ultrasonic inspection device A.
 本実施形態に係る超音波式検査装置Aは、例えば、溶液製膜法によるフィルムの製造設備で使用される金属製のベルト(以下、「金属支持体C」と称する)を検査する検査装置である。金属支持体Cは、例えば、互いに表裏関係にある第1面Caと第2面Cbとを有するステンレス鋼製の金属板によって形成されている。尚、図3では、金属支持体Cの第1面Caが、超音波プローブ2の超音波送受信面と対向する側の面である。又、金属支持体Cの第2面Cbが、当該金属支持体Cがフィルムの製造設備に組み込まれた際に、フィルムを搬送する側(フィルムと当接する側)の面である。 The ultrasonic inspection device A according to the present embodiment is, for example, an inspection device for inspecting a metal belt (hereinafter referred to as “metal support C”) used in a film manufacturing facility by a solution film forming method. be. The metal support C is formed of, for example, a metal plate made of stainless steel having a first surface Ca and a second surface Cb which are in a front-to-back relationship with each other. In FIG. 3, the first surface Ca of the metal support C is the surface of the ultrasonic probe 2 facing the ultrasonic transmission / reception surface. Further, the second surface Cb of the metal support C is a surface on the side that conveys the film (the side that comes into contact with the film) when the metal support C is incorporated into the film manufacturing equipment.
 但し、超音波式検査装置Aによる検査対象の支持体としては、金属板のように、全部が金属材料で構成されているものに限らず、絶縁材料で構成された支持体の表面にメッキ等により金属部材が形成されたものであってもよい。その場合、超音波式検査装置Aによる検査対象は、絶縁材料で構成された支持体の表面に形成された金属部材の内部構造となる。 However, the support to be inspected by the ultrasonic inspection device A is not limited to a support made entirely of a metal material such as a metal plate, and the surface of the support made of an insulating material is plated or the like. A metal member may be formed by the metal member. In that case, the inspection target by the ultrasonic inspection device A is the internal structure of the metal member formed on the surface of the support made of the insulating material.
 超音波式検査装置Aは、超音波式検査装置本体1に超音波プローブ2が取り付けられて構成されている。尚、本体1と超音波プローブ2とは、ケーブルを介して電気的に接続されている。超音波式検査装置Aは、超音波を用いて、金属支持体Cの内部の状態を可視化し、これにより、金属支持体Cの内部の状態を評価する。 The ultrasonic inspection device A is configured by attaching the ultrasonic probe 2 to the ultrasonic inspection device main body 1. The main body 1 and the ultrasonic probe 2 are electrically connected via a cable. The ultrasonic inspection apparatus A visualizes the internal state of the metal support C by using ultrasonic waves, thereby evaluating the internal state of the metal support C.
 超音波プローブ2は、超音波と電気信号との相互変換を行う複数の圧電振動子(ここでは、256個の圧電振動子)21、及び、複数の圧電振動子21それぞれの駆動状態のオンオフを個別に切替制御するためのチャンネル切替部(図示せず)を含んで構成される。そして、当該複数の圧電振動子21が、個別に、超音波式検査装置本体1(送受信部11)で発生された電圧パルスを超音波ビームに変換して金属支持体内へ送信すると共に、当該超音波ビームが金属支持体内で反射して発生する超音波エコーを受信して電気信号に変換して超音波式検査装置本体1(送受信部11)へ出力する。 The ultrasonic probe 2 turns on / off the drive state of each of the plurality of piezoelectric vibrators (here, 256 piezoelectric vibrators) 21 that perform mutual conversion between ultrasonic waves and electric signals, and the plurality of piezoelectric vibrators 21. It includes a channel switching unit (not shown) for individual switching control. Then, the plurality of piezoelectric vibrators 21 individually convert the voltage pulse generated by the ultrasonic inspection device main body 1 (transmission / reception unit 11) into an ultrasonic beam and transmit it into the metal support body, and at the same time, the ultrasonic beam. The ultrasonic beam receives the ultrasonic echo generated by being reflected in the metal support, converts it into an electric signal, and outputs it to the ultrasonic inspection device main body 1 (transmission / reception unit 11).
 複数の圧電振動子21は、例えば、走査方向に沿って、アレー状に配設されている。尚、複数の圧電振動子21の駆動状態のオンオフは、個別に又はブロック単位で、走査方向に沿って順番に切り替え制御される。これによって、超音波プローブ2において、金属支持体C内を走査するように、超音波の送受信が実行される。 The plurality of piezoelectric vibrators 21 are arranged in an array shape, for example, along the scanning direction. The on / off of the drive state of the plurality of piezoelectric vibrators 21 is controlled to be switched individually or in block units in order along the scanning direction. As a result, the ultrasonic probe 2 transmits and receives ultrasonic waves so as to scan the inside of the metal support C.
 超音波プローブ2は、超音波送受信面が、接触媒質Bを介して、金属支持体Cの第1面Caと接するように配設されている。接触媒質Bは、超音波プローブ2の超音波送受信面と、金属支持体Cの第1面Caと、の間に、空間を設けることで送信フォーカスを可能にし、かつ空気層が介在することを防止するために配設された部材であり、ここでは、接触媒質Bとして、超音波プローブ2の超音波送受信面に取り付けられたエコージェルパッドB1と、エコージェルパッドB1と金属支持体Cの第1面Caとの間に介在するジェルB2と、が配設されている。尚、超音波プローブ2から金属支持体Cに送信した際の外乱の影響度合いによっては、接触媒質Bは、省略されてもよい。 The ultrasonic probe 2 is arranged so that the ultrasonic transmission / reception surface is in contact with the first surface Ca of the metal support C via the contact medium B. The contact medium B enables transmission focus by providing a space between the ultrasonic transmission / reception surface of the ultrasonic probe 2 and the first surface Ca of the metal support C, and an air layer is interposed. It is a member arranged for prevention, and here, as the contact medium B, the echo gel pad B1 attached to the ultrasonic transmission / reception surface of the ultrasonic probe 2, the echo gel pad B1 and the metal support C are the first. Gel B2, which is interposed between the one surface Ca and the gel B2, is arranged. The contact medium B may be omitted depending on the degree of influence of disturbance when transmitted from the ultrasonic probe 2 to the metal support C.
 超音波式検査装置本体1は、送受信部11、断層画像生成部12、評価部13、及び、報知部14を備えている。 The ultrasonic inspection device main body 1 includes a transmission / reception unit 11, a tomographic image generation unit 12, an evaluation unit 13, and a notification unit 14.
 送受信部11は、超音波プローブ2の圧電振動子21に対して、超音波の送受信を実行させる送受信回路である。 The transmission / reception unit 11 is a transmission / reception circuit that causes the piezoelectric vibrator 21 of the ultrasonic probe 2 to transmit / receive ultrasonic waves.
 送受信部11は、電圧パルス(以下、「駆動信号」と称する)を生成して圧電振動子21に対して送出する送信部11aと、圧電振動子21で生成された受信ビームに係る電気信号(以下、「受信信号」と称する)を受信処理する受信部11bとを有している。 The transmission / reception unit 11 has a transmission unit 11a that generates a voltage pulse (hereinafter referred to as a “drive signal”) and sends it to the piezoelectric vibrator 21, and an electric signal (an electric signal related to a reception beam generated by the piezoelectric vibrator 21). Hereinafter, it has a receiving unit 11b for receiving and processing a "received signal").
 送信部11aは、例えば、圧電振動子21に接続するチャンネル毎に設けられたパルス発振器及びパルス設定部等を含んで構成される。当該送信部11aは、パルス発振器が生成した電圧パルスを、パルス設定部に設定された電圧振幅、パルス幅及びタイミングに調整して、圧電振動子21に送出する。 The transmission unit 11a includes, for example, a pulse oscillator and a pulse setting unit provided for each channel connected to the piezoelectric vibrator 21. The transmission unit 11a adjusts the voltage pulse generated by the pulse oscillator to the voltage amplitude, pulse width and timing set in the pulse setting unit, and transmits the voltage pulse to the piezoelectric vibrator 21.
 尚、送信部11aは、超音波プローブ2の圧電振動子21から、超音波ビームが送信されるように、圧電振動子21に対して駆動信号を送出する。送信部11aが送信する超音波ビームは、好ましくは、複数の周波数成分(例えば、1MHz~20MHz)を含む。これによって、広帯域信号での送受信が可能になり、高精細な画像を生成することが可能になる。 The transmission unit 11a sends a drive signal to the piezoelectric vibrator 21 so that the ultrasonic beam is transmitted from the piezoelectric vibrator 21 of the ultrasonic probe 2. The ultrasonic beam transmitted by the transmission unit 11a preferably contains a plurality of frequency components (for example, 1 MHz to 20 MHz). This enables transmission and reception of wideband signals, and makes it possible to generate high-definition images.
 受信部11bは、例えば、プリアンプ、ADコンバータ、及び、受信ビームフォーマを含んで構成される。プリアンプとADコンバータは、圧電振動子21に接続するチャンネル毎に設けられ、微弱な受信信号を増幅すると共に、増幅した受信信号(アナログ信号)を、デジタル信号に変換する。受信ビームフォーマは、各圧電振動子21の受信信号(デジタル信号)を整相加算することで複数の圧電振動子21の受信信号を1つにまとめて、断層画像生成部12に出力する。 The receiving unit 11b includes, for example, a preamplifier, an AD converter, and a receiving beam former. The preamplifier and the AD converter are provided for each channel connected to the piezoelectric vibrator 21 to amplify a weak received signal and convert the amplified received signal (analog signal) into a digital signal. The reception beam former collects the received signals of the plurality of piezoelectric vibrators 21 into one by phasing and adding the received signals (digital signals) of the piezoelectric vibrators 21, and outputs the received signals of the plurality of piezoelectric vibrators 21 to the tomographic image generation unit 12.
 断層画像生成部12は、送受信部11から出力される各走査位置における受信信号を取得して、受信信号をラインメモリに順次蓄積し、フレーム単位となる二次元データを生成する。尚、当該二次元データは、走査方向と深度方向に沿った金属支持体の断面内の各位置における信号強度情報等によって構成される。そして、断層画像生成部12は、当該二次元データに基づいて、断層画像に係る画像データを生成する。断層画像生成部12は、例えば、走査方向と深度方向に沿った断面内の各位置におけるサンプリングデータ(例えば、受信信号の信号強度)を画素値に変換して、1フレームの断層画像を生成する。 The tomographic image generation unit 12 acquires the reception signal at each scanning position output from the transmission / reception unit 11, sequentially stores the reception signal in the line memory, and generates two-dimensional data in frame units. The two-dimensional data is composed of signal intensity information and the like at each position in the cross section of the metal support along the scanning direction and the depth direction. Then, the tomographic image generation unit 12 generates image data related to the tomographic image based on the two-dimensional data. The tomographic image generation unit 12 converts, for example, sampling data (for example, the signal strength of the received signal) at each position in the cross section along the scanning direction and the depth direction into pixel values to generate a one-frame tomographic image. ..
 評価部13は、断層画像生成部12により生成された断層画像を画像解析し、超音波プローブ2から送出された超音波の金属支持体Cの表裏面間(ここでは、第1面Caと第2面Cbとの間)における多重反射に起因して断層画像内に表出する層状画像の態様に基づいて、金属支持体Cの内部の状態を評価する。 The evaluation unit 13 analyzes the tomographic image generated by the tomographic image generation unit 12, and between the front and back surfaces of the metal support C of the ultrasonic waves transmitted from the ultrasonic probe 2 (here, the first surface Ca and the first surface Ca). The internal state of the metal support C is evaluated based on the aspect of the layered image that appears in the tomographic image due to the multiple reflections (between the two planes Cb).
 報知部14は、例えば、モニタであって、評価部13による評価結果を出力する。報知部14は、例えば、評価部13の評価結果が、金属支持体Cの内部構造が不良であることを示す場合、その旨をユーザに報知する。 The notification unit 14 is, for example, a monitor and outputs the evaluation result by the evaluation unit 13. For example, when the evaluation result of the evaluation unit 13 indicates that the internal structure of the metal support C is defective, the notification unit 14 notifies the user to that effect.
 [評価部の詳細構成]
 ここで、評価部13の構成の詳細について、説明する。
[Detailed configuration of evaluation unit]
Here, the details of the configuration of the evaluation unit 13 will be described.
 図4、図5は、同一の金属支持体Cに対して超音波走査を行った際に観察された断層画像である。図4は、金属支持体Cの内部構造の均一性が高い状態のときに観察された断層画像であり、図5は、その後、金属支持体Cの経時変化により、金属支持体Cの内部構造の均一性が低くなったときに観察された断層画像である。図6は、図5の層状画像領域R1の拡大図である。 4 and 5 are tomographic images observed when ultrasonic scanning was performed on the same metal support C. FIG. 4 is a tomographic image observed when the internal structure of the metal support C has high uniformity, and FIG. 5 shows the internal structure of the metal support C due to the change over time of the metal support C. It is a tomographic image observed when the uniformity of the metal becomes low. FIG. 6 is an enlarged view of the layered image region R1 of FIG.
 図4、図5の輝度の大きい領域が、超音波エコーの信号強度が大きい領域を表す。図4、図5中のP1は、金属支持体Cの第1面Caと第2面Cbとの間の多重反射に起因して断層画像内に表出した層状画像であり、ここでは、約15層が積層するように描画された層状画像が表出している。 The region with high brightness in FIGS. 4 and 5 represents the region with high signal intensity of ultrasonic echo. P1 in FIGS. 4 and 5 is a layered image expressed in the tomographic image due to multiple reflections between the first surface Ca and the second surface Cb of the metal support C, and here, about. A layered image drawn so that 15 layers are stacked is displayed.
 又、図4、図5中の線状の高輝度領域P2a、P2bは、それぞれ、超音波プローブ2から送信された超音波が、金属支持体Cの第1面Caで反射して、超音波プローブ2の超音波送受信面に戻ってきた表面反射波に起因した輝度成分である。ここでは、高輝度領域P2aは、最初に観察された表面反射波(以下、「一回目の表面反射波」と称する)に起因した輝度成分であり、高輝度領域P2bは、一回目の表面反射波が超音波プローブ2の超音波送受信面で反射した後、再度、金属支持体Cの第1面Caで反射して超音波プローブ2の超音波送受信面に戻ってきたもの(以下、「二回目の表面反射波」と称する)に起因した輝度成分である。 Further, in the linear high-brightness regions P2a and P2b in FIGS. 4 and 5, the ultrasonic waves transmitted from the ultrasonic probe 2 are reflected by the first surface Ca of the metal support C, respectively, and are ultrasonic waves. It is a brightness component caused by the surface reflected wave returning to the ultrasonic transmission / reception surface of the probe 2. Here, the high-luminance region P2a is a luminance component caused by the first observed surface reflected wave (hereinafter referred to as “first surface reflected wave”), and the high-luminance region P2b is the first surface reflection. After the wave is reflected by the ultrasonic transmission / reception surface of the ultrasonic probe 2, it is reflected again by the first surface Ca of the metal support C and returned to the ultrasonic transmission / reception surface of the ultrasonic probe 2 (hereinafter, "2"). It is a luminance component caused by the "second surface reflected wave").
 図7は、断層画像内に層状画像が表出する原理について、説明する図である。 FIG. 7 is a diagram illustrating the principle of the layered image appearing in the tomographic image.
 超音波プローブ2から送信され、金属支持体Cの内部に侵入した超音波は、金属支持体Cの第1面Caから第2面Cbに向かって進行する。そして、当該超音波は、金属支持体Cの第2面Cbで反射して、再度、金属支持体Cの第1面Caに向かう。そして、当該超音波は、金属支持体Cの第1面Caに到達した際、その一部は接触媒質B内に進行して超音波プローブ2まで戻り、他の一部は金属支持体Cの第1面Caで再度反射して金属支持体Cの第1面Caから第2面Cbに向かって進行する。 The ultrasonic waves transmitted from the ultrasonic probe 2 and invading the inside of the metal support C travel from the first surface Ca of the metal support C toward the second surface Cb. Then, the ultrasonic wave is reflected by the second surface Cb of the metal support C and again directed to the first surface Ca of the metal support C. Then, when the ultrasonic wave reaches the first surface Ca of the metal support C, a part of the ultrasonic wave advances into the contact medium B and returns to the ultrasonic probe 2, and the other part of the ultrasonic wave is of the metal support C. It is reflected again by the first surface Ca and proceeds from the first surface Ca of the metal support C toward the second surface Cb.
 金属支持体Cの内部に侵入した超音波は、金属支持体Cの第1面Caと第2面Cbとの間で多重反射するため、当該超音波が金属支持体Cの第1面Caと第2面Cbとの間で多重反射する過程で、金属支持体Cの第1面Caまで到来する毎に、その一部が超音波プローブ2にて検出されることになる。このとき、繰り返し検出される超音波エコーが、深度方向に沿って積層するように描画された層状画像となって、断層画像(図7の下図のRall)内に表出する。尚、この層状画像内における各層の厚み(図7の下図のd1)は、金属支持体Cの第1面Caと第2面Cbとの間の超音波の伝搬時間に相当するものであり、即ち、金属支持体Cの第1面Caと第2面Cbとの間の距離(図7の上図のd1)に相当する。 The ultrasonic waves that have entered the inside of the metal support C are repeatedly reflected between the first surface Ca and the second surface Cb of the metal support C, so that the ultrasonic waves are reflected with the first surface Ca of the metal support C. In the process of multiple reflection with the second surface Cb, a part of the metal support C is detected by the ultrasonic probe 2 every time it reaches the first surface Ca of the metal support C. At this time, the ultrasonic echoes that are repeatedly detected become a layered image drawn so as to be stacked along the depth direction, and are displayed in the tomographic image (Rall in the lower figure of FIG. 7). The thickness of each layer in this layered image (d1 in the lower figure of FIG. 7) corresponds to the propagation time of ultrasonic waves between the first surface Ca and the second surface Cb of the metal support C. That is, it corresponds to the distance between the first surface Ca and the second surface Cb of the metal support C (d1 in the upper figure of FIG. 7).
 又、断層画像内の層状画像P1の下層側に表れる層の画像は、金属支持体Cの第1面Caと第2面Cbとの間で繰り返し多重反射した後の超音波エコー(即ち、多重反射する過程で、金属支持体C内で減衰した超音波エコー)が検出されたものであるため、断層画像内の層状画像P1の上層側に表れる層の画像と比較して、輝度が小さくなっている。尚、金属支持体Cの内部に侵入した超音波の金属支持体C内における多重反射は、多い場合には、数百回程度も起こる。 Further, the image of the layer appearing on the lower layer side of the layered image P1 in the tomographic image is an ultrasonic echo (that is, multiplex) after repeated multiple reflections between the first surface Ca and the second surface Cb of the metal support C. Since the ultrasonic echo) attenuated in the metal support C was detected in the process of reflection, the brightness is smaller than that of the image of the layer appearing on the upper layer side of the layered image P1 in the tomographic image. ing. In addition, multiple reflections of ultrasonic waves that have penetrated into the metal support C in the metal support C occur several hundred times in many cases.
 ここで、評価部13が解析対象とする断層画像内の層状画像について、説明する。 Here, the layered image in the tomographic image to be analyzed by the evaluation unit 13 will be described.
 評価部13は、金属支持体Cの内部の状態を評価するに当たっては、例えば、超音波プローブから送出された超音波が金属支持体Cの第1面Caと第2面Cbの間で多重反射する過程で検出される信号成分のうち、一回目の表面反射波が検出された後、二回目の表面反射波が検出されるまでの間に検出された信号成分のみ(図4、図5では、P2aとP2bとの間に表出している約15層の層状画像P1)を、解析対象としている。これによって、表面反射波に起因した信号成分が、金属支持体Cの内部からの超音波エコーの信号成分に重畳する事態を抑制している。 In evaluating the internal state of the metal support C, for example, the evaluation unit 13 multiple-reflects the ultrasonic waves transmitted from the ultrasonic probe between the first surface Ca and the second surface Cb of the metal support C. Of the signal components detected in the process, only the signal components detected between the detection of the first surface reflected wave and the detection of the second surface reflected wave (in FIGS. 4 and 5). , The layered image P1) of about 15 layers expressed between P2a and P2b is the analysis target. This suppresses the situation where the signal component caused by the surface reflected wave is superimposed on the signal component of the ultrasonic echo from the inside of the metal support C.
 超音波の音速は、一般に、伝搬媒体に依拠し(音速=√(弾性率/密度))、例えば、ステンレス鋼中を伝搬する超音波の音速は、水中を伝搬する超音波の音速の約4倍となる。そのため、一回目の表面反射波(即ち、図4、図5のP2a)が検出された後、二回目の表面反射波(即ち、図4、図5のP2b)が検出されるまでの間には、金属支持体Cの第1面Caと第2面Cbとの間で発生する多重反射波に起因する金属支持体Cの内部からの超音波エコーが複数回検出されることになる。 The speed of sound of ultrasonic waves generally depends on the propagation medium (sound velocity = √ (modulus / density)), for example, the speed of sound of ultrasonic waves propagating in stainless steel is about 4 of the speed of sound of ultrasonic waves propagating in water. Double. Therefore, after the first surface reflected wave (that is, P2a in FIGS. 4 and 5) is detected, before the second surface reflected wave (that is, P2b in FIGS. 4 and 5) is detected. Is to detect ultrasonic echoes from the inside of the metal support C a plurality of times due to the multiple reflected waves generated between the first surface Ca and the second surface Cb of the metal support C.
 このとき、断層画像内においては、一回目の表面反射波に起因して表出する高輝度領域P2aから、二回目の表面反射波に起因した表出する高輝度領域P2bまでの間には、下式(1)で算出される層数の層状画像P1(ここでは、約15層の層状画像)が観察される。式(1)は、表面反射波が接触媒質Bを1回往復する間に、金属支持体Cの第1面Caと第2面Cbとの間で発生する多重反射の回数を表している。
Figure JPOXMLDOC01-appb-M000002
(但し、d1:金属支持体Cの厚み、d2:接触媒質Bの厚み、v1:金属支持体C中の音速、v2:接触媒質B中の音速)
At this time, in the tomographic image, between the high-intensity region P2a expressed by the first surface reflected wave and the high-intensity region P2b expressed by the second surface reflected wave, A layered image P1 (here, a layered image of about 15 layers) having the number of layers calculated by the following formula (1) is observed. Equation (1) represents the number of times of multiple reflections generated between the first surface Ca and the second surface Cb of the metal support C while the surface reflected wave reciprocates once in the contact medium B.
Figure JPOXMLDOC01-appb-M000002
(However, d1: the thickness of the metal support C, d2: the thickness of the contact medium B, v1: the speed of sound in the metal support C, v2: the speed of sound in the contact medium B)
 かかる観点から、評価部13は、例えば、断層画像内において、表面反射波に起因して表出する高輝度領域P2aから、深度方向に、上式(1)で算出される層数以下の層状画像を解析対象として抽出する。評価部13が解析対象とする層状画像の層数は、例えば、3以上で且つ200未満である。 From this point of view, for example, in the tomographic image, the evaluation unit 13 has a layered shape having the number of layers or less calculated by the above equation (1) in the depth direction from the high-luminance region P2a expressed due to the surface reflected wave. Extract the image as an analysis target. The number of layers of the layered image to be analyzed by the evaluation unit 13 is, for example, 3 or more and less than 200.
 尚、接触媒質Bの厚みは、上式(1)を基準に、表面反射波が接触媒質Bを1回往復する間に、金属支持体Cの第1面Caと第2面Cbとの間で発生する多重反射の回数が、5回以上で且つ200回未満となるように設定されている。 The thickness of the contact medium B is set between the first surface Ca and the second surface Cb of the metal support C while the surface reflected wave reciprocates once in the contact medium B based on the above equation (1). The number of multiple reflections generated in the above is set to be 5 or more and less than 200.
 次に、評価部13による金属支持体Cの内部状態の評価方法について、説明する。 Next, the method of evaluating the internal state of the metal support C by the evaluation unit 13 will be described.
 本実施形態に係る評価部13は、断層画像内の層状画像から、金属支持体Cの内部構造の均一性について評価可能に構成されている。ここで、評価部13が評価する金属支持体Cの内部構造の均一性とは、金属支持体Cの内部におけるボイドや異物の不存在のみならず、金属支持体Cの結晶構造(例えば、化学組成及び結晶粒度)の均一性をも含む。これは、上記したように、金属支持体Cの内部にボイドや異物が存在すると、金属支持体Cを修理している際に、金属支持体Cの表面に新たな欠陥が生じてしまうためである。加えて、金属支持体Cの結晶構造(例えば、化学組成及び結晶粒度)の均一性を評価することで、金属支持体Cの余寿命を評価することも可能である。 The evaluation unit 13 according to the present embodiment is configured to be able to evaluate the uniformity of the internal structure of the metal support C from the layered image in the tomographic image. Here, the uniformity of the internal structure of the metal support C evaluated by the evaluation unit 13 means not only the absence of voids and foreign substances inside the metal support C, but also the crystal structure of the metal support C (for example, chemistry). Also includes uniformity of composition and crystal grain size). This is because, as described above, if voids or foreign substances are present inside the metal support C, new defects will occur on the surface of the metal support C when the metal support C is being repaired. be. In addition, it is also possible to evaluate the remaining life of the metal support C by evaluating the uniformity of the crystal structure (for example, the chemical composition and the crystal grain size) of the metal support C.
 本願の発明者らは、鋭意検討の結果、金属支持体Cの内部の結晶構造の変化は、金属支持体Cの内部に存在するボイドと異なり、金属支持体Cの内部からの直接的な超音波エコーとして検出することは困難であるが、超音波が金属支持体Cの内部を多重反射している際の減衰度合いの変化として検出可能である、という知見を得た。つまり、金属支持体Cの内部に結晶構造が変化した領域が存在する場合、その周囲の領域と音響インピーダンスが異なるため、当該変化した領域とその周囲の領域との間で、超音波の散乱や反射が生じる。その結果、金属支持体Cの内部に結晶構造が変化した領域が存在する場合、金属支持体Cの内部を多重反射している超音波は、多重反射する過程で大きく減衰することになる。 As a result of diligent studies, the inventors of the present application have found that changes in the crystal structure inside the metal support C are different from the voids existing inside the metal support C, and are directly ultrasound from the inside of the metal support C. Although it is difficult to detect it as an ultrasonic echo, it has been found that it can be detected as a change in the degree of attenuation when ultrasonic waves are repeatedly reflected inside the metal support C. That is, when there is a region where the crystal structure has changed inside the metal support C, the acoustic impedance is different from the region around it, so that ultrasonic waves are scattered between the changed region and the surrounding region. Reflections occur. As a result, when there is a region where the crystal structure has changed inside the metal support C, the ultrasonic waves that are multiple-reflected inside the metal support C are greatly attenuated in the process of multiple reflection.
 尚、従来、金属の内部状態を検査する超音波探傷器として、特許文献3のように、超音波の多重反射の態様を利用するものも知られている。しかしながら、従来技術に係る超音波探傷器では、あくまで亀裂やボイドの有無を検査するにすぎず、金属支持体の内部構造の均一性を評価することはできなかった。そのため、従来技術に係る超音波探傷器では、金属支持体Cの余寿命を適切に判断することができない。 It should be noted that conventionally, as an ultrasonic flaw detector for inspecting the internal state of a metal, a device that uses an aspect of multiple reflection of ultrasonic waves, as in Patent Document 3, is also known. However, the ultrasonic flaw detector according to the prior art only inspects the presence or absence of cracks and voids, and cannot evaluate the uniformity of the internal structure of the metal support. Therefore, the ultrasonic flaw detector according to the prior art cannot appropriately determine the remaining life of the metal support C.
 図8は、層状画像P1の深度方向の輝度値の変化態様を示す図である。尚、図8は、図4と図5ぞれぞれの層状画像P1の同一位置T1-T1’における深度方向の輝度値の変化態様を示している。  FIG. 8 is a diagram showing a change mode of the luminance value in the depth direction of the layered image P1. Note that FIG. 8 shows a mode of change in the luminance value in the depth direction at the same position T1-T1'of the layered images P1 in FIGS. 4 and 5, respectively. It was
 図9は、層状画像P1の横方向(即ち、金属支持体Cの面内方向)の輝度値の変化態様を示す図である。尚、図9は、図4と図5ぞれぞれの層状画像P1の同一位置T2-T2’における横方向(即ち、金属支持体Cの面内方向)の輝度値の変化態様を示している。 FIG. 9 is a diagram showing a change mode of the luminance value in the lateral direction (that is, the in-plane direction of the metal support C) of the layered image P1. Note that FIG. 9 shows a change mode of the luminance value in the lateral direction (that is, the in-plane direction of the metal support C) at the same position T2-T2'of the layered images P1 in FIGS. 4 and 5. There is.
 尚、図8及び図9において、実線グラフが、図4の層状画像P1(即ち、金属支持体Cの内部構造の均一性が高い状態)の深度方向の輝度値の変化態様を表し、点線グラフが、図5の層状画像P1(即ち、金属支持体Cの内部構造の均一性が低い状態)の深度方向の輝度値の変化態様を表している。 In FIGS. 8 and 9, the solid line graph shows the change mode of the luminance value in the depth direction of the layered image P1 of FIG. 4 (that is, the state where the internal structure of the metal support C has high uniformity), and is a dotted line graph. 1 represents the change mode of the luminance value in the depth direction of the layered image P1 of FIG. 5 (that is, the state in which the uniformity of the internal structure of the metal support C is low).
 図8を参照すると分かるように、図5の層状画像P1は、図4の層状画像P1に比べて、深度方向への輝度値の減衰が大きくなっている。又、図9を参照すると分かるように、図5の層状画像P1は、図4の層状画像P1に比べて、横方向の輝度値のムラが大きくなっている。 As can be seen with reference to FIG. 8, the layered image P1 of FIG. 5 has a larger attenuation of the luminance value in the depth direction than the layered image P1 of FIG. Further, as can be seen with reference to FIG. 9, in the layered image P1 of FIG. 5, the unevenness of the luminance value in the lateral direction is larger than that of the layered image P1 of FIG.
 これは、金属支持体Cの劣化に伴って、金属支持体Cの内部構造が不均一な状態となったためである。金属支持体Cの内部構造が不均一になると、上記したように、超音波が金属支持体Cの内部で散乱や反射することになり、超音波が金属支持体Cの内部を進行する過程での減衰度合いが大きくなる。換言すると、層状画像P1の深度方向の輝度値の減衰、及び、層状画像P1の横方向の輝度値のバラツキ度合いを解析することで、金属支持体Cの内部状態を評価することが可能である。 This is because the internal structure of the metal support C became non-uniform due to the deterioration of the metal support C. When the internal structure of the metal support C becomes non-uniform, as described above, ultrasonic waves are scattered or reflected inside the metal support C, and in the process of the ultrasonic waves traveling inside the metal support C. The degree of attenuation increases. In other words, it is possible to evaluate the internal state of the metal support C by analyzing the attenuation of the luminance value in the depth direction of the layered image P1 and the degree of variation in the luminance value in the lateral direction of the layered image P1. ..
 評価部13は、上記のようにして決定された解析対象の層状画像P1の深度方向の輝度値の変化態様に基づいて、金属支持体Cの内部構造の厚み方向の均一性を評価する。 The evaluation unit 13 evaluates the uniformity of the internal structure of the metal support C in the thickness direction based on the change mode of the luminance value in the depth direction of the layered image P1 to be analyzed determined as described above.
 具体的には、評価部13は、層状画像P1内の上層側の第1の層P1a(例えば、層状画像P1内の最上層)の輝度値のピーク値と下層側の第2の層P1b(例えば、層状画像P1内の最下層)の輝度値のピーク値とを比較したときの輝度値の減衰度合い(例えば、第1の層P1aの輝度値-第2の層P1bの輝度値)に基づいて、金属支持体Cの内部構造の厚み方向の均一性を評価する。例えば、図4の層状画像P1では、第1の層P1aと第2の層P1bとの間の輝度値の減衰度合いL1は、100であるのに対して、図5の層状画像P1では、第1の層P1aと第2の層P1bとの間の輝度値の減衰度合いL2は、180となっている。評価部13は、このようにして検出される減衰度合いの変化度合いを、予め規定された基準値と比較することで、当該部分において、金属支持体Cが劣化しているか否かを判定する。 Specifically, the evaluation unit 13 has a peak value of the luminance value of the first layer P1a (for example, the uppermost layer in the layered image P1) on the upper layer side in the layered image P1 and the second layer P1b (for example) on the lower layer side. For example, based on the degree of attenuation of the luminance value when compared with the peak value of the luminance value of the layered image P1 (the lowest layer in the layered image P1) (for example, the luminance value of the first layer P1a-the luminance value of the second layer P1b). Then, the uniformity of the internal structure of the metal support C in the thickness direction is evaluated. For example, in the layered image P1 of FIG. 4, the degree of attenuation L1 of the luminance value between the first layer P1a and the second layer P1b is 100, whereas in the layered image P1 of FIG. The degree of attenuation L2 of the luminance value between the first layer P1a and the second layer P1b is 180. The evaluation unit 13 compares the degree of change in the degree of attenuation detected in this way with a predetermined reference value, and determines whether or not the metal support C has deteriorated in the portion.
 そして、評価部13は、例えば、断層画像の各走査位置において、金属支持体Cの内部構造の厚み方向の均一性を評価する。これによって、金属支持体Cの各位置で、金属支持体Cの内部構造の厚み方向の均一性が評価されることになる。 Then, the evaluation unit 13 evaluates the uniformity of the internal structure of the metal support C in the thickness direction at each scanning position of the tomographic image, for example. As a result, the uniformity of the internal structure of the metal support C in the thickness direction is evaluated at each position of the metal support C.
 尚、ここでは、層状画像P1内の上層側の第1の層P1aの輝度値のピーク値と下層側の第2の層P1bの輝度値のピーク値とを比較する態様としているが、ピーク値以外の部分の輝度値を比較する態様としてもよい。 Here, the peak value of the brightness value of the first layer P1a on the upper layer side and the peak value of the brightness value of the second layer P1b on the lower layer side in the layered image P1 are compared. It may be an aspect of comparing the luminance values of the portions other than the above.
 又、評価部13は、上記のようにして決定された解析対象の層状画像P1の横方向の輝度値の変化態様に基づいて、金属支持体Cの内部構造の面内方向の均一性を評価する。 Further, the evaluation unit 13 evaluates the in-plane uniformity of the internal structure of the metal support C based on the change mode of the lateral luminance value of the layered image P1 to be analyzed determined as described above. do.
 具体的には、評価部13は、層状画像P1の横方向の各位置における、層状画像P1内の第3の層P1c(例えば、層状画像P1内の最上層)の輝度値のピーク値を取得し、そのバラツキ度合い(例えば、標準偏差)を算出する。そして、評価部13は、当該バラツキ度合いに基づいて、金属支持体Cの内部構造の面内方向の均一性を評価する。評価部13は、例えば、第3の層P1cの輝度値の標準偏差の変化度合いを、予め規定された基準値と比較することで、当該部分において、金属支持体Cが劣化しているか否かを判定する。 Specifically, the evaluation unit 13 acquires the peak value of the brightness value of the third layer P1c (for example, the uppermost layer in the layered image P1) in the layered image P1 at each position in the lateral direction of the layered image P1. Then, the degree of variation (for example, standard deviation) is calculated. Then, the evaluation unit 13 evaluates the uniformity of the internal structure of the metal support C in the in-plane direction based on the degree of variation. The evaluation unit 13 compares, for example, the degree of change in the standard deviation of the luminance value of the third layer P1c with a predetermined reference value, and determines whether or not the metal support C has deteriorated in the portion. Is determined.
 尚、評価部13は、金属支持体Cの内部構造の面内方向の均一性を評価する際には、層状画像P1の一層分の横方向の輝度値の変化態様のみを参照してもよいし、層状画像P1の複数層それぞれにおける横方向の輝度値の変化態様を参照してもよい。  When evaluating the in-plane uniformity of the internal structure of the metal support C, the evaluation unit 13 may refer only to the change mode of the lateral luminance value for one layer of the layered image P1. Then, the change mode of the luminance value in the lateral direction in each of the plurality of layers of the layered image P1 may be referred to. It was
 又、その他、評価部13は、層状画像P1の横方向の任意の2点以上の位置で厚み方向の輝度値の標準偏差を算出し、当該標準偏差を用いて、金属支持体Cの内部構造の面内方向の均一性を評価してもよい。この場合、例えば、隣接する点での当該標準偏差の差分を算出し、算出された上記差分の標準偏差もしくは平均を算出することによって、金属支持体Cの内部構造の面内方向の均一性を評価してもよい。 In addition, the evaluation unit 13 calculates the standard deviation of the luminance value in the thickness direction at any two or more points in the lateral direction of the layered image P1, and uses the standard deviation to obtain the internal structure of the metal support C. In-plane uniformity may be evaluated. In this case, for example, by calculating the difference of the standard deviation at the adjacent points and calculating the standard deviation or the average of the calculated difference, the uniformity of the internal structure of the metal support C in the in-plane direction can be obtained. You may evaluate it.
 又、評価部13は、層状画像P1の一層分の横方向の輝度値を参照する際にも、当該一層内の輝度値のピーク値以外の部分の横方向の輝度値を参照してもよい。又、評価部13は、金属支持体Cの内部構造の面内方向の均一性の評価対象の領域に応じて、層状画像P1の横方向の一部分のみの輝度値のみを参照してもよい。 Further, when the evaluation unit 13 refers to the lateral luminance value of one layer of the layered image P1, the evaluation unit 13 may also refer to the lateral luminance value of the portion other than the peak value of the luminance value in the layer. .. Further, the evaluation unit 13 may refer only to the luminance value of only a part of the layered image P1 in the lateral direction depending on the region to be evaluated for the in-plane uniformity of the internal structure of the metal support C.
 尚、同一の金属支持体Cの評価が定期的に実行される場合、評価部13は、好ましくは、金属支持体Cの内部構造の評価値の経時変化を示すものとする。これによって、ユーザは、金属支持体Cの余寿命をより簡易に把握することが可能となる。 When the evaluation of the same metal support C is performed periodically, the evaluation unit 13 preferably shows the change over time in the evaluation value of the internal structure of the metal support C. As a result, the user can more easily grasp the remaining life of the metal support C.
 [超音波式検査装置の動作]
 次に、超音波式検査装置Aの動作の一例について、説明する。
[Operation of ultrasonic inspection equipment]
Next, an example of the operation of the ultrasonic inspection device A will be described.
 図10は、超音波式検査装置Aの動作の一例を示すフローチャートである。尚、図10に示すフローチャートは、例えば、超音波式検査装置Aがコンピュータプログラムに従って、順番に実行する処理である。 FIG. 10 is a flowchart showing an example of the operation of the ultrasonic inspection device A. The flowchart shown in FIG. 10 is, for example, a process that the ultrasonic inspection apparatus A sequentially executes according to a computer program.
 ステップS1において、超音波式検査装置Aは、超音波プローブ2を用いて、金属支持体Cの内部を超音波走査し、金属支持体Cの内部を撮像する。これによって、金属支持体Cの内部の断層画像が生成される。 In step S1, the ultrasonic inspection apparatus A ultrasonically scans the inside of the metal support C using the ultrasonic probe 2 and images the inside of the metal support C. This produces a tomographic image of the inside of the metal support C.
 ステップS2において、超音波式検査装置Aは、断層画像内から層状画像を抽出する。尚、この際、超音波式検査装置Aは、例えば、断層画像内から、一回目の表面反射波の高輝度領域を検出し、当該高輝度領域から、深度方向に、上式(1)で算出される層数分の層状画像を抽出する。 In step S2, the ultrasonic inspection device A extracts a layered image from the tomographic image. At this time, the ultrasonic inspection device A detects, for example, a high-luminance region of the first surface reflected wave from the tomographic image, and from the high-luminance region, the above equation (1) is used in the depth direction. Extract the layered images for the calculated number of layers.
 ステップS3において、超音波式検査装置Aは、抽出した層状画像の深度方向の輝度値の変化に基づいて、金属支持体Cの内部構造の厚み方向の評価値を算出する。尚、この際、超音波式検査装置Aは、例えば、断層画像の各走査位置において、金属支持体Cの内部構造の厚み方向の評価値を算出する。 In step S3, the ultrasonic inspection device A calculates an evaluation value in the thickness direction of the internal structure of the metal support C based on the change in the brightness value in the depth direction of the extracted layered image. At this time, the ultrasonic inspection device A calculates, for example, an evaluation value in the thickness direction of the internal structure of the metal support C at each scanning position of the tomographic image.
 ステップS4において、超音波式検査装置Aは、抽出した層状画像の横方向の輝度値の変化に基づいて、金属支持体Cの内部構造の面内方向の評価値を算出する。尚、この際、超音波式検査装置Aは、例えば、断層画像の各深度位置において、金属支持体Cの内部構造の横方向の評価値を算出する。 In step S4, the ultrasonic inspection device A calculates an in-plane evaluation value of the internal structure of the metal support C based on the change in the lateral brightness value of the extracted layered image. At this time, the ultrasonic inspection device A calculates, for example, a lateral evaluation value of the internal structure of the metal support C at each depth position of the tomographic image.
 [効果]
 以上のように、本実施形態に係る超音波式検査装置Aによれば、簡易な手法で、短時間で、金属支持体Cの内部の状態を評価することが可能である。特に、本実施形態に係る超音波式検査装置Aは、金属支持体Cの第1面Caと第2面Cbとの間の多重反射波に起因して断層画像内に表出する層状画像の態様に基づいて、金属支持体Cの内部の状態を評価するため、金属支持体Cの内部に存在するボイドや異物を検出できるだけでなく、金属支持体Cの内部構造(例えば、結晶構造)の均一性を評価できる点で、有用である。
[effect]
As described above, according to the ultrasonic inspection apparatus A according to the present embodiment, it is possible to evaluate the internal state of the metal support C in a short time by a simple method. In particular, the ultrasonic inspection apparatus A according to the present embodiment is a layered image that appears in the tomographic image due to the multiple reflected waves between the first surface Ca and the second surface Cb of the metal support C. In order to evaluate the internal state of the metal support C based on the embodiment, it is possible not only to detect voids and foreign substances existing inside the metal support C, but also to detect the internal structure of the metal support C (for example, a crystal structure). It is useful in that the uniformity can be evaluated.
 これによって、金属支持体Cの内部の状態をより高精度に把握することが可能となり、例えば、金属支持体Cの寿命を適切に判断することができる。 This makes it possible to grasp the internal state of the metal support C with higher accuracy, and for example, it is possible to appropriately determine the life of the metal support C.
(その他の実施形態)
 本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
(Other embodiments)
The present invention is not limited to the above embodiment, and various modifications can be considered.
 例えば、上記実施形態では、超音波式検査装置Aによる検査対象の支持体(金属支持体C)の一例として、ベルトを示した。しかしながら、超音波式検査装置Aによる検査対象の支持体としては、ベルト以外にも、ドラムやロールであってもよい。 For example, in the above embodiment, a belt is shown as an example of a support (metal support C) to be inspected by the ultrasonic inspection device A. However, the support to be inspected by the ultrasonic inspection device A may be a drum or a roll in addition to the belt.
 又、その他、超音波式検査装置Aによる検査対象の支持体としては、金属板のように、全部が金属材料で構成されているものに限らず、絶縁材料で構成された支持体の表面にメッキ等により金属部材が形成されて構成されたものであってもよい。尚、その場合、支持体の金属部材が、超音波式検査装置Aによる検査対象となる。 In addition, the support to be inspected by the ultrasonic inspection device A is not limited to a support made entirely of a metal material such as a metal plate, but can be applied to the surface of a support made of an insulating material. It may be configured by forming a metal member by plating or the like. In that case, the metal member of the support is to be inspected by the ultrasonic inspection device A.
 又、上記実施形態では、評価部13の一例として、断層画像生成部12により生成された超音波画像から、直接、解析対象の層状画像P1を抽出する態様を示した。しかしながら、評価部13は、断層画像生成部12により生成された超音波画像に対して、平滑フィルタや特徴抽出フィルタ等のフィルタ処理を行った画像を解析対象としてもよい。 Further, in the above embodiment, as an example of the evaluation unit 13, an embodiment in which the layered image P1 to be analyzed is directly extracted from the ultrasonic image generated by the tomographic image generation unit 12 is shown. However, the evaluation unit 13 may analyze the ultrasonic image generated by the tomographic image generation unit 12 by performing a filter process such as a smoothing filter or a feature extraction filter.
 又、上記実施形態では、評価部13の一例として、金属支持体Cが良好か不良かのみを示す態様を示したが、評価部13の評価出力の態様は、任意である。評価部13の評価出力の態様は、は、金属支持体Cの内部の状態をレベルで示すものであってもよいし、指標毎(例えば、金属支持体Cの内部構造の厚み方向の均一性、金属支持体Cの内部構造の面内方向の均一性、及び、金属支持体Cの内部におけるボイドの分布状態等)の評価値であってもよい。又、その他、金属支持体Cの余寿命を示すものであってもよい。 Further, in the above embodiment, as an example of the evaluation unit 13, only the mode showing whether the metal support C is good or bad is shown, but the mode of the evaluation output of the evaluation unit 13 is arbitrary. The mode of the evaluation output of the evaluation unit 13 may indicate the internal state of the metal support C in terms of level, or may be used for each index (for example, the uniformity of the internal structure of the metal support C in the thickness direction). , The in-plane uniformity of the internal structure of the metal support C, the distribution state of voids inside the metal support C, etc.) may be an evaluation value. In addition, it may indicate the remaining life of the metal support C.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above.
 2020年9月3日出願の特願2020-148156の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 All disclosures of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2020-148156 filed on September 3, 2020 are incorporated herein by reference.
 本開示に係る金属支持体の超音波式検査装置によれば、金属支持体の内部の状態を高精度に評価することが可能である。 According to the ultrasonic inspection device for the metal support according to the present disclosure, it is possible to evaluate the internal state of the metal support with high accuracy.
 A 超音波式検査装置
 1 超音波式検査装置本体
 11 送受信部
 12 断層画像生成部
 13 評価部
 14 報知部
 2 超音波プローブ
 21 圧電振動子
 B 接触媒質
 B1 エコージェルパッド 
 B2 ジェル 
 C 金属支持体
 Ca 金属支持体の第1面
 Cb 金属支持体の第2面
A Ultrasonic inspection device 1 Ultrasonic inspection device body 11 Transmission / reception unit 12 Tomography image generation unit 13 Evaluation unit 14 Notification unit 2 Ultrasonic probe 21 Piezoelectric oscillator B Contact medium B1 Echo gel pad
B2 gel
C Metal support Ca First surface of metal support Cb Second surface of metal support

Claims (10)

  1.  フィルムを製造するために用いられる、少なくとも一部が金属部材で形成された支持体を検査する超音波式検査装置であって、
     超音波プローブを用いて、接触媒質を介して前記支持体内に超音波を送信するとともに、前記支持体の内部からの超音波エコーを受信する送受信部と、
     前記超音波プローブにて前記支持体内を超音波走査した際に各走査位置で検出される前記超音波エコーに基づいて、前記支持体の断層画像を生成する断層画像生成部と、
     前記断層画像を画像解析し、前記超音波プローブから送出された超音波の前記支持体の金属部の表裏面間における多重反射に起因して、前記断層画像内に表出する層状画像の態様に基づいて、前記支持体の内部の状態を評価する評価部と、
     を備える超音波式検査装置。
    An ultrasonic inspection device used to manufacture a film that inspects a support that is at least partially made of a metal member.
    A transmission / reception unit that transmits ultrasonic waves into the support via a contact medium and receives ultrasonic echoes from the inside of the support using an ultrasonic probe.
    A tomographic image generation unit that generates a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned by the ultrasonic probe.
    The tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the evaluation unit that evaluates the internal state of the support,
    An ultrasonic inspection device equipped with.
  2.  前記評価部は、前記支持体の前記超音波プローブの送受信面が対向する側の表面からの表面反射波の信号成分が、前記支持体内からの前記超音波エコーの信号成分に重畳しないように、前記断層画像内において、以下の式(1)で算出される層数以下の前記層状画像を解析対象として抽出する、
     請求項1に記載の超音波式検査装置。
    Figure JPOXMLDOC01-appb-M000001
    (但し、d1:前記支持体の厚み、d2:前記接触媒質の厚み、v1:前記支持体中の音速、v2:前記接触媒質中の音速)
    In the evaluation unit, the signal component of the surface reflected wave from the surface of the support on which the transmission / reception surface of the ultrasonic probe faces is not superimposed on the signal component of the ultrasonic echo from the support. In the tomographic image, the layered image having the number of layers or less calculated by the following equation (1) is extracted as an analysis target.
    The ultrasonic inspection apparatus according to claim 1.
    Figure JPOXMLDOC01-appb-M000001
    (However, d1: the thickness of the support, d2: the thickness of the contact medium, v1: the speed of sound in the support, v2: the speed of sound in the contact medium).
  3.  前記評価部は、前記層状画像の深度方向の輝度値の変化に基づいて、前記支持体の内部構造の厚み方向の均一性を評価する、
     請求項1又は2に記載の超音波式検査装置。
    The evaluation unit evaluates the uniformity of the internal structure of the support in the thickness direction based on the change in the brightness value in the depth direction of the layered image.
    The ultrasonic inspection apparatus according to claim 1 or 2.
  4.  前記評価部は、前記層状画像内の上層側の第1の層の画像と下層側の第2の層の画像とを比較したときの輝度値の減衰率に基づいて、前記支持体の内部構造の厚み方向の均一性を評価する、
     請求項3に記載の超音波式検査装置。
    The evaluation unit has an internal structure of the support based on the attenuation rate of the luminance value when the image of the first layer on the upper layer side and the image of the second layer on the lower layer side in the layered image are compared. To evaluate the uniformity in the thickness direction of
    The ultrasonic inspection apparatus according to claim 3.
  5.  前記評価部は、前記層状画像の横方向の輝度値の変化に基づいて、前記支持体の内部構造の面内方向の均一性を評価する、
     請求項1乃至4のいずれか一項に記載の超音波式検査装置。
    The evaluation unit evaluates the in-plane uniformity of the internal structure of the support based on the change in the luminance value in the lateral direction of the layered image.
    The ultrasonic inspection apparatus according to any one of claims 1 to 4.
  6.  前記評価部は、前記層状画像の横方向の輝度値のバラツキ度合いに基づいて、前記支持体の内部構造の面内方向の均一性を評価する、
     請求項5に記載の超音波式検査装置。
    The evaluation unit evaluates the in-plane uniformity of the internal structure of the support based on the degree of variation in the luminance value in the lateral direction of the layered image.
    The ultrasonic inspection apparatus according to claim 5.
  7.  前記支持体は、ベルト、ドラム、又はロールである、
     請求項1乃至6のいずれか一項に記載の超音波式検査装置。
    The support is a belt, drum, or roll.
    The ultrasonic inspection apparatus according to any one of claims 1 to 6.
  8.  前記支持体は、溶液製膜法によるフィルムの製造工程で用いられる支持体である、
     請求項1乃至7のいずれか一項に記載の超音波式検査装置。
    The support is a support used in a film manufacturing process by a solution film forming method.
    The ultrasonic inspection apparatus according to any one of claims 1 to 7.
  9.  フィルムを製造するために用いられる支持体を検査する検査方法であって、
     超音波プローブを用いて、接触媒質を介して前記支持体内に超音波を送信するとともに、前記支持体の内部からの超音波エコーを受信する処理と、
     前記超音波プローブにて前記支持体内を超音波走査した際に各走査位置で検出される前記超音波エコーに基づいて、前記支持体の断層画像を生成する処理と、
     前記断層画像を画像解析し、前記超音波プローブから送出された超音波の前記支持体の金属部の表裏面間における多重反射に起因して、前記断層画像内に表出する層状画像の態様に基づいて、前記支持体の内部の状態を評価する処理と、
     を有する検査方法。
    An inspection method for inspecting a support used to manufacture a film.
    Using an ultrasonic probe, ultrasonic waves are transmitted into the support via a contact medium, and ultrasonic echoes are received from the inside of the support.
    A process of generating a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned with the ultrasonic probe.
    The tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the process of evaluating the internal state of the support,
    Inspection method with.
  10.  フィルムを製造するために用いられる支持体を検査する検査プログラムであって、
     超音波プローブを用いて、接触媒質を介して前記支持体内に超音波を送信するとともに、前記支持体の内部からの超音波エコーを受信する処理と、
     前記超音波プローブにて前記支持体内を超音波走査した際に各走査位置で検出される前記超音波エコーに基づいて、前記支持体の断層画像を生成する処理と、
     前記断層画像を画像解析し、前記超音波プローブから送出された超音波の前記支持体の金属部の表裏面間における多重反射に起因して、前記断層画像内に表出する層状画像の態様に基づいて、前記支持体の内部の状態を評価する処理と、
     を有する検査プログラム。
    An inspection program that inspects the supports used to make films.
    Using an ultrasonic probe, ultrasonic waves are transmitted into the support via a contact medium, and ultrasonic echoes are received from the inside of the support.
    A process of generating a tomographic image of the support based on the ultrasonic echo detected at each scanning position when the support is ultrasonically scanned with the ultrasonic probe.
    The tomographic image is image-analyzed to form a layered image that appears in the tomographic image due to multiple reflections of the ultrasonic waves transmitted from the ultrasonic probe between the front and back surfaces of the metal portion of the support. Based on the process of evaluating the internal state of the support,
    Inspection program with.
PCT/JP2021/022630 2020-09-03 2021-06-15 Ultrasonic testing device, support body testing method, and support body testing program WO2022049857A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237003276A KR20230027306A (en) 2020-09-03 2021-06-15 Ultrasonic inspection device, support inspection method, and support inspection program
JP2022546897A JPWO2022049857A1 (en) 2020-09-03 2021-06-15
CN202180053982.9A CN116018517A (en) 2020-09-03 2021-06-15 Ultrasonic inspection device, inspection method for support, and inspection program for support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148156 2020-09-03
JP2020148156 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022049857A1 true WO2022049857A1 (en) 2022-03-10

Family

ID=80491070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022630 WO2022049857A1 (en) 2020-09-03 2021-06-15 Ultrasonic testing device, support body testing method, and support body testing program

Country Status (5)

Country Link
JP (1) JPWO2022049857A1 (en)
KR (1) KR20230027306A (en)
CN (1) CN116018517A (en)
TW (1) TWI809492B (en)
WO (1) WO2022049857A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333000A (en) * 1992-05-28 1993-12-17 Nippon Steel Corp Ultrasonic flaw detector
JPH08320311A (en) * 1995-05-26 1996-12-03 Kawasaki Steel Corp Measuring method of secondary recrystallization behavior of oriented steel plate as well as method and apparatus for measurement of crystal grain distribution and secondary recrystallized grain orientation distribution
WO2008035415A1 (en) * 2006-09-20 2008-03-27 Shimadzu Corporation Ultrasonographic device
JP2009082449A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Medical imaging apparatus
WO2013161834A1 (en) * 2012-04-24 2013-10-31 非破壊検査株式会社 Layered-body detachment-testing method and detachment-testing device
JP2020038218A (en) * 2019-11-21 2020-03-12 株式会社東芝 Control method, inspection system, program and storage medium
US20200088687A1 (en) * 2018-09-13 2020-03-19 Riverside Research Institute Autoregressive signal processing applied to high-frequency acoustic microscopy of soft tissues

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151910A (en) 1997-07-30 1999-02-26 Nkk Corp Crack detection method and measuring method for cracked part plate thickness
JP4528231B2 (en) 2005-09-20 2010-08-18 富士フイルム株式会社 Solution casting equipment and method
JP5887964B2 (en) * 2011-02-04 2016-03-16 Jfeスチール株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe material manufacturing method
EP2964975B1 (en) 2013-03-07 2017-04-19 Berndorf Band GmbH Endless belt having a belt body made of metal and method for checking the pore size in the belt surface of the outer belt side
JP6182236B1 (en) * 2016-04-25 2017-08-16 非破壊検査株式会社 Lamination peel test method and peel inspection apparatus
JP7042149B2 (en) * 2018-04-12 2022-03-25 株式会社日立パワーソリューションズ Ultrasonic inspection equipment and ultrasonic inspection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333000A (en) * 1992-05-28 1993-12-17 Nippon Steel Corp Ultrasonic flaw detector
JPH08320311A (en) * 1995-05-26 1996-12-03 Kawasaki Steel Corp Measuring method of secondary recrystallization behavior of oriented steel plate as well as method and apparatus for measurement of crystal grain distribution and secondary recrystallized grain orientation distribution
WO2008035415A1 (en) * 2006-09-20 2008-03-27 Shimadzu Corporation Ultrasonographic device
JP2009082449A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Medical imaging apparatus
WO2013161834A1 (en) * 2012-04-24 2013-10-31 非破壊検査株式会社 Layered-body detachment-testing method and detachment-testing device
US20200088687A1 (en) * 2018-09-13 2020-03-19 Riverside Research Institute Autoregressive signal processing applied to high-frequency acoustic microscopy of soft tissues
JP2020038218A (en) * 2019-11-21 2020-03-12 株式会社東芝 Control method, inspection system, program and storage medium

Also Published As

Publication number Publication date
KR20230027306A (en) 2023-02-27
CN116018517A (en) 2023-04-25
TW202210829A (en) 2022-03-16
JPWO2022049857A1 (en) 2022-03-10
TWI809492B (en) 2023-07-21

Similar Documents

Publication Publication Date Title
US8020445B2 (en) Three-dimensional ultrasonic imaging device
US7698944B2 (en) Ultrasonic method and apparatus for evaluating spot weld zone
CN111812206A (en) Multilayer diffusion welding phased array ultrasonic detection method
WO2009119539A1 (en) Ultrasonic flaw detection method and device
US8904872B2 (en) Detection of channel saturation in phase-array ultrasonic non-destructive testing
JP2011257384A (en) Method for imaging structure shape in welded part and device therefor
JP4679319B2 (en) Method and apparatus for detecting tissue change by ultrasound
WO2022049857A1 (en) Ultrasonic testing device, support body testing method, and support body testing program
JP2018084416A (en) Ultrasonic inspection device and ultrasonic inspection method
JPH08210953A (en) Standard sample for ultrasonic inspection device evaluation, and its manufacture
RU2532587C1 (en) Ultrasonic separate-and-combined wide-coverage converter
KR101942792B1 (en) Steel material quality evaluation method and quality evaluation device
KR101877769B1 (en) Apparatus for hybrid multi-frequency ultrasound phased array imaging
Zanelli et al. Schlieren metrology for high frequency medical ultrasound
JP5742513B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2012068209A (en) Material diagnostic method and apparatus using ultrasonic wave
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
CN111047547B (en) Combined defect quantification method based on multi-view TFM
KR20160129782A (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
Padungsriborworn et al. A study on automatic flaw detection using MSSIM in ultrasound imaging of steel plate
JP3603804B2 (en) Internal defect detection method
Higuti Ultrasonic image compounding method based on the instantaneous phase image
WO2023032597A1 (en) Ultrasonic inspection method, ultrasonic inspection device, and program
JP2000129434A (en) Testing method of target for sputtering
JPH0658917A (en) Ultrasonic inspection method and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863916

Country of ref document: EP

Kind code of ref document: A1