WO2022049692A1 - 固体レーザシステム、位相整合方法及び電子デバイスの製造方法 - Google Patents

固体レーザシステム、位相整合方法及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2022049692A1
WO2022049692A1 PCT/JP2020/033415 JP2020033415W WO2022049692A1 WO 2022049692 A1 WO2022049692 A1 WO 2022049692A1 JP 2020033415 W JP2020033415 W JP 2020033415W WO 2022049692 A1 WO2022049692 A1 WO 2022049692A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
wavelength conversion
crystal
solid
Prior art date
Application number
PCT/JP2020/033415
Other languages
English (en)
French (fr)
Inventor
洋平 田中
晨 曲
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2022546793A priority Critical patent/JPWO2022049692A1/ja
Priority to PCT/JP2020/033415 priority patent/WO2022049692A1/ja
Priority to CN202080104254.1A priority patent/CN116018730A/zh
Publication of WO2022049692A1 publication Critical patent/WO2022049692A1/ja
Priority to US18/164,376 priority patent/US20230178957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3525Optical damage
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to a solid-state laser system, a phase matching method, and a method for manufacturing an electronic device.
  • a KrF excimer laser apparatus that outputs a laser beam having a wavelength of about 248 nm and an ArF excimer laser apparatus that outputs a laser beam having a wavelength of about 193 nm are used.
  • the spectral line width of the naturally oscillated light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet rays such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolving power may decrease. Therefore, it is necessary to narrow the spectral line width of the laser beam output from the gas laser device to a extent that chromatic aberration can be ignored.
  • the laser resonator of the gas laser apparatus is provided with a narrow band module (Line Narrow Module: LNM) including a narrow band element (etalon, grating, etc.) in order to narrow the spectral line width.
  • LNM Line Narrow Module
  • the gas laser device in which the spectral line width is narrowed is referred to as a narrow band gas laser device.
  • the solid-state laser system is based on a first laser device that outputs a first laser beam, a second laser device that outputs a second laser beam, and a first laser beam.
  • the first adjusting unit that phase-matches the first wavelength-converted light in the crystal of the first nonlinear crystal, and the first wavelength-converted light.
  • a second non-linear crystal that is placed on the optical path and produces a second wavelength-converted light based on the first wavelength-converted light and the second laser light, and a second within the crystal of the second non-linear crystal.
  • a second adjusting unit that phase-matches the wavelength-converted light, a wavelength-selecting element arranged on the optical path of the light output from the second nonlinear crystal, and light having a wavelength selected by passing through the wavelength-selecting element.
  • a light detection unit that detects light, and a first adjustment unit based on at least one intensity of the first wavelength conversion light and the first laser light that have passed through the second nonlinear crystal and are detected by the light detection unit.
  • a second based on the intensity of at least one of the controlled and first wavelength-converted light detected by the light detector through the second nonlinear crystal and the second wavelength-converted light detected by the light detector. It is equipped with a processor that controls the adjustment unit.
  • the phase matching method is a first non-linear crystal that generates a first wavelength conversion light based on a first laser light, and a first non-linear crystal output from the first non-linear crystal. It is a phase matching method of a wavelength conversion system including a second non-linear crystal that generates a second wavelength conversion light based on the wavelength conversion light of the above and the second laser light, and passes through the second non-linear crystal.
  • the first is based on the step of detecting at least one of the first wavelength conversion light and the first laser light, and the intensity of at least one of the detected first wavelength conversion light and the first laser light.
  • a step of detecting at least one of the output second wavelength conversion light and the first wavelength conversion light that has passed through the second nonlinear crystal, and the detected second wavelength conversion light and the first wavelength conversion light. Includes a step of phase matching the second wavelength-converted light within the crystal of the second nonlinear crystal based on at least one intensity of.
  • a method for manufacturing an electronic device includes a first laser device that outputs a first laser beam, a second laser device that outputs a second laser beam, and a first.
  • a first nonlinear crystal that generates a first wavelength-converted light based on laser light, a first adjusting unit that phase-matches the first wavelength-converted light within the crystal of the first nonlinear crystal, and a first.
  • the adjustment unit of 1 is controlled so that the intensity of at least one of the second wavelength-converted light detected by the light detection unit and the second laser light detected by the light detection unit is transmitted through the second nonlinear crystal.
  • a solid-state laser system comprising a processor that controls a second regulator is used to generate a third laser beam and output the third laser beam to an exposure apparatus to manufacture an electronic device. It involves exposing a third laser beam onto a photosensitive substrate in an exposure apparatus.
  • FIG. 1 is a diagram schematically showing the configuration of a solid-state laser system.
  • FIG. 2 schematically shows a configuration example of a wavelength conversion system according to a comparative example.
  • FIG. 3 schematically shows the configuration of a wavelength conversion system applied to the solid-state laser system according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between the angle of incidence on the nonlinear crystal and the converted wavelength output.
  • FIG. 5 is a flowchart showing an example of the main routine of initial alignment.
  • FIG. 6 is a flowchart showing an example of the conversion light discovery routine.
  • FIG. 7 is a graph showing an operation image of the conversion light discovery routine.
  • FIG. 1 is a diagram schematically showing the configuration of a solid-state laser system.
  • FIG. 2 schematically shows a configuration example of a wavelength conversion system according to a comparative example.
  • FIG. 3 schematically shows the configuration of a wavelength conversion system applied to the solid-state laser system according to the first embodiment.
  • FIG. 4 is
  • FIG. 8 is a flowchart showing an example of a peak value search routine for the converted light.
  • FIG. 9 is a graph showing an operation image of the peak value search routine of the converted light.
  • FIG. 10 schematically shows the configuration of a wavelength measuring unit applied to the wavelength conversion system according to the second embodiment.
  • FIG. 11 schematically shows the configuration of the wavelength conversion system according to the third embodiment.
  • FIG. 12 schematically shows the configuration of the wavelength conversion system according to the fourth embodiment.
  • FIG. 13 schematically shows the configuration of the wavelength conversion system according to the fifth embodiment.
  • FIG. 14 is a graph schematically showing the relationship between the output of the unconverted light and the converted light.
  • FIG. 15 is a flowchart showing an example of the main routine of initial alignment applied to the fifth embodiment.
  • FIG. 16 is a graph schematically showing the relationship between the angle of incidence on the third CLBO crystal and the output of the first sum frequency light (unconverted light).
  • FIG. 17 is a flowchart showing an example of a second sum frequency light discovery routine based on the first sum frequency light output measurement of the third CLBO crystal.
  • FIG. 18 is a graph showing an operation image of a second sum frequency light discovery routine based on the first sum frequency light output measurement.
  • FIG. 19 is a flowchart showing an example of a bottom value search routine for the first sum frequency light (unconverted light).
  • FIG. 20 is a graph showing an operation image of a bottom value search routine for unconverted light.
  • FIG. 21 schematically shows the configuration of a wavelength conversion system applied to the solid-state laser system according to the sixth embodiment.
  • FIG. 21 schematically shows the configuration of a wavelength conversion system applied to the solid-state laser system according to the sixth embodiment.
  • FIG. 22 is a conceptual diagram of an arithmetic process for predicting a peak position by a fitting process from a plurality of measurement results.
  • FIG. 23 is a flowchart showing an example of the peak value search routine of the converted light applied to the sixth embodiment.
  • FIG. 24 schematically shows the configuration of the wavelength conversion system according to the seventh embodiment.
  • FIG. 25 schematically shows the configuration of the wavelength conversion system according to the eighth embodiment.
  • FIG. 26 schematically shows the configuration of the exposure apparatus.
  • Embodiment 5 7.1 Configuration 7.2 Operation 7.3
  • Initial alignment control example 2 7.3.1 Initial alignment main routine 7.3.2 Second sum frequency light discovery routine 7.3.3 Bottom value search routine for unconverted light 7.4 Action / effect 7.5 Modification example 8.
  • Embodiment 6 8.1 Configuration 8.2 Operation 8.3 Peak value search routine for converted light 8.4 Action / effect 8.5 Modification example 9.
  • Embodiment 7 9.1 Configuration 9.2 Operation 9.3 Action / Effect 10. 8th embodiment 10.1 Configuration 10.2 Operation 10.3 Action / Effect 11. Phase matching of nonlinear crystals 12. Manufacturing method of electronic device 13. Others
  • embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below show some examples of the present disclosure and are not intended to limit the content of the present disclosure. Moreover, not all of the configurations and operations described in each embodiment are essential as the configurations and operations of the present disclosure. The same components are designated by the same reference numerals, and duplicate description will be omitted.
  • the solid-state laser system 1 includes a first solid-state laser device 10 that outputs a first pulsed laser beam, a second solid-state laser device 20 that outputs a second pulsed laser beam, and a wavelength. It includes a conversion system 30, a first high-reflection mirror 41, a dichroic mirror 51, a second high-reflection mirror 42, a third high-reflection mirror 43, and a solid-state laser system control unit 60.
  • the first high-reflection mirror 41 is a mirror that highly reflects the second pulsed laser light output from the second solid-state laser device 20.
  • the first high-reflection mirror 41 is arranged so as to highly reflect the second pulse laser light and make it incident on the dichroic mirror 51.
  • the dichroic mirror 51 is arranged on an optical path between the first solid-state laser device 10 and the wavelength conversion system 30, so that the optical path of the first pulsed laser beam and the optical path of the second pulsed laser beam coincide with each other. Be placed.
  • the dichroic mirror 51 is coated with a film that highly transmits the first pulse laser light having a wavelength of about 515 nm and highly reflects the second pulse laser light having a wavelength of about 1554 nm.
  • the dichroic mirror 51 is arranged so that the first pulse laser light and the second pulse laser light are incident on the wavelength conversion system 30 in a state where the optical path axes of the first pulse laser light and the second pulse laser light are aligned with each other.
  • the wavelength conversion system 30 transmits the first pulse laser light and the dichroic mirror through the dichroic mirror 51 so as to output the third pulse laser light based on the first pulse laser light and the second pulse laser light. It is arranged on the optical path with the second pulsed laser beam reflected by 51.
  • the second high-reflection mirror 42 and the third high-reflection mirror 43 are coated with a film that highly reflects a third pulsed laser beam having a wavelength of about 193.4 nm output from the wavelength conversion system 30.
  • the substrate constituting the second high-reflection mirror 42 and the third high-reflection mirror 43 may be, for example, quartz or CaF 2 .
  • the first solid-state laser apparatus 10 is a laser apparatus that outputs a first pulsed laser beam having a wavelength of about 515 nm, and is a first semiconductor laser 101 and a first semiconductor optical amplifier (SOA) 111. , A Yb fiber amplifier 120, a solid state amplifier 124, and an LBO (LiB 3O 5 ) crystal 126.
  • SOA semiconductor optical amplifier
  • FIG. 1 and subsequent drawings for example, notations with numerical values such as "semiconductor laser 1" and "SOA # 1" represent a first semiconductor laser, a first semiconductor optical amplifier (SOA), and the like, respectively. ..
  • the first semiconductor laser 101 is a distributed feedback type (DFB) semiconductor laser that oscillates a single longitudinal mode laser beam CW (Continuous Wave) at a wavelength of about 1030 nm.
  • the distribution feedback type semiconductor laser is called "DFB laser”.
  • the DFB laser can change the oscillation wavelength by current control and / or temperature control.
  • the CW laser beam output from the first semiconductor laser 101 is referred to as "first CW laser beam”.
  • the first semiconductor optical amplifier 111 is an amplifier that is arranged on the downstream side of the first semiconductor laser 101 and that pulse-amplifies the first CW laser beam by passing a pulse current through the semiconductor element.
  • the amplified pulsed laser light output from the first semiconductor optical amplifier 111 is referred to as "first amplified pulsed laser light”.
  • the Yb fiber amplifier 120 is an optical fiber amplifier arranged on the downstream side of the first semiconductor optical amplifier 111.
  • the Yb fiber amplifier 120 further pulse-amplifies the first amplification pulse laser beam by inputting excitation light from a CW excitation semiconductor laser (not shown) into the Yb-doped optical fiber.
  • the amplified pulsed laser light output from the Yb fiber amplifier 120 is referred to as "first fiber amplified pulsed laser light".
  • the solid state amplifier 124 is arranged on the downstream side of the Yb fiber amplifier 120.
  • the solid-state amplifier 124 is, for example, a solid-state amplifier in which YAG (Yttrium Aluminum Garnet) crystal is doped with Yb, and the first fiber amplification pulse laser beam is further pulse-amplified by excitation light from an excitation light source (not shown). It is an amplifier.
  • the amplified pulsed laser light output from the solid-state amplifier 124 is referred to as "first solid-state amplified pulsed laser light".
  • the LBO crystal 126 is a non-linear crystal that is arranged on the downstream side of the solid-state amplifier 124 and generates a second harmonic light having a wavelength of about 515 nm from a first solid-state amplified pulsed laser light having a wavelength of about 1030 nm.
  • the term "non-linear crystal” is synonymous with "non-linear optical crystal”.
  • a first pulsed laser beam having a wavelength of about 515 nm is output from the LBO crystal 126.
  • the second solid-state laser device 20 is a laser device that outputs a second pulsed laser beam having a wavelength of about 1554 nm, and includes a second semiconductor laser 202, a second semiconductor optical amplifier 212, and an Er fiber amplifier 220. including.
  • the second semiconductor laser 202 is a DFB laser that CW oscillates a single longitudinal mode laser beam at a wavelength of about 1554 nm.
  • the CW laser beam output from the second semiconductor laser 202 is referred to as "second CW laser beam”.
  • the second semiconductor optical amplifier 212 is an amplifier that is arranged on the downstream side of the second semiconductor laser 202 and pulse-amplifies the second CW laser beam by passing a pulse current through the semiconductor element.
  • the amplified pulsed laser light output from the second semiconductor optical amplifier 212 is referred to as "second amplified pulsed laser light”.
  • the Er fiber amplifier 220 is an optical fiber amplifier arranged on the downstream side of the second semiconductor optical amplifier 212.
  • the Er fiber amplifier 220 further pulse-amplifies the second amplification pulse laser beam by inputting excitation light from a CW excitation semiconductor laser (not shown) into the Er-doped optical fiber.
  • a second pulsed laser beam having a wavelength of about 1554 nm is output from the Er fiber amplifier 220.
  • the wavelength conversion system 30 includes a first CLBO ( CsLiB 6O 10 ) crystal 301, a second CLBO crystal 302, a third CLBO crystal 303, a first beam splitter 311 and a second beam splitter, which are nonlinear crystals.
  • the beam splitter 312 and the third beam splitter 313 are included.
  • the wavelength conversion system 30 includes a first optical sensor 321 and a second optical sensor 322, a third optical sensor 323, a first rotation stage 331, a second rotation stage 332, and a third.
  • the rotation stage 333 and the wavelength conversion system control unit 340 are included.
  • the first CLBO crystal 301, the first beam splitter 311 and the second CLBO crystal 302, the second beam splitter 312, the third CLBO crystal 303 and the third beam splitter 313 are coaxial with each other by the dichroic mirror 51. They are arranged in this order on the laser path of the first pulse laser beam and the second pulse laser beam coupled in this way.
  • the first CLBO crystal 301 is arranged on the first rotating stage 331 so as to generate a second harmonic light (wavelength about 257.5 nm) of light having a wavelength of about 515 nm.
  • the first beam splitter 311 is arranged on the optical path between the first CLBO crystal 301 and the second CLBO crystal 302, and the light reflected by the first beam splitter 311 is incident on the first optical sensor 321. Arranged like this.
  • the first beam splitter 311 highly transmits the second pulse laser light to a substrate that highly transmits the second pulse laser light and the second harmonic light having a wavelength of about 257.5 nm, and has a wavelength of about 257.5 nm.
  • a film that reflects a part of the second harmonic light of the above is coated.
  • the second CLBO crystal 302 is arranged on the second rotation stage 332 and is a first sum frequency light (a first sum frequency light which is a sum frequency light of the first pulse laser light having a wavelength of about 515 nm and the second pulse laser light). Arranged to generate a wavelength of about 220.9 nm).
  • the second beam splitter 312 is arranged on the optical path between the second CLBO crystal 302 and the third CLBO crystal 303, and the first sum frequency light reflected by the second beam splitter 312 is second. It is arranged so as to be incident on the optical sensor 322 of the above.
  • the second beam splitter 312 highly transmits the second pulsed laser light to a substrate that highly transmits the first sum frequency light having a wavelength of about 220.9 nm, and the wavelength of the second beam splitter 312 is high.
  • a film that reflects a portion of the first sum frequency light of about 220.9 nm is coated.
  • the third CLBO crystal 303 is arranged on the third rotation stage 333, and is a second sum frequency light which is a sum frequency light of the first sum frequency light having a wavelength of about 220.9 nm and the second pulse laser light. Arranged to generate light (wavelength about 193.4 nm).
  • the third beam splitter 313 is arranged on the optical path downstream of the third CLBO crystal 303, and is arranged so that the third reflected second sum frequency light is incident on the optical sensor 3.
  • the third beam splitter 313 highly transmits the second sum frequency light having a wavelength of about 193.4 nm to a substrate that highly transmits the second sum frequency light having a wavelength of about 193.4 nm, and has a wavelength of about 193.4 nm.
  • a film that reflects a part of the second sum frequency light is coated.
  • Each of the first optical sensor 321 and the second optical sensor 322 and the third optical sensor 323 may be a sensor capable of detecting pulse energy, for example, a photodiode or phototube that responds at high speed, or an average power. It may be a calorimeter to measure.
  • the temperature is controlled to about 120 ° C. in an active gas (for example, Ar gas) atmosphere.
  • each of the first CLBO crystal 301, the second CLBO crystal 302, and the third CLBO crystal 303 is fixed to a crystal holder including a heater and a temperature sensor (not shown), and the first beam splitter 311 and the second are Beam splitter 312 and third beam splitter 313, first rotation stage 331, second rotation stage 332 and third rotation stage 333, first optical sensor 321 and second optical sensor 322 and second. Together with the optical sensor 323 of 3, it is arranged in a gas cell in which an inert gas is purged.
  • the gas cell may be referred to as a "CLBO cell box", a "CLBO cell” or simply a "cell".
  • Each of the first rotary stage 331, the second rotary stage 332, and the third rotary stage 333 includes an actuator (not shown) for rotating the stage.
  • Each of the solid-state laser system control unit 60 and the wavelength conversion system control unit 340 is configured by using a processor.
  • the processor of the present disclosure is a processing device including a storage device in which a control program is stored and a CPU (Central Processing Unit) that executes the control program.
  • the processor is specially configured or programmed to perform the various processes contained in this disclosure.
  • Each of the solid-state laser system control unit 60 and the wavelength conversion system control unit 340 can be realized by a combination of hardware and software of one or a plurality of computers.
  • Software is synonymous with program.
  • Programmable controllers are part of the computer concept.
  • the computer may be configured to include, for example, a CPU and a storage device.
  • the storage device is a non-temporary computer-readable medium that is a tangible object, and includes, for example, a memory that is a main storage device and a storage that is an auxiliary storage device.
  • the computer-readable medium may be, for example, a semiconductor memory, a hard disk drive (HDD) device, a solid state drive (SSD) device, or a combination thereof.
  • the program executed by the processor is stored in a computer-readable medium.
  • control devices and processing devices such as the solid-state laser system control unit 60 and the wavelength conversion system control unit 340 are represented by FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit). It may be realized by using an integrated circuit.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the solid-state laser system control unit 60 transmits a wavelength conversion preparation signal to the wavelength conversion system control unit 340.
  • the wavelength conversion system control unit 340 controls the purging of the inert gas, and each crystal of the first CLBO crystal 301, the second CLBO crystal 302, and the third CLBO crystal 303.
  • the heater of each crystal holder is controlled so that the temperature of the crystal holder becomes about 120 ° C.
  • the solid-state laser system control unit 60 causes the first semiconductor laser 101 to CW oscillate a laser beam having an oscillation wavelength ⁇ c1 (1030 nm), and the second semiconductor laser 202 oscillates a laser beam having an oscillation wavelength ⁇ c2 (1554 nm) CW. Let me.
  • the solid-state laser system control unit 60 When the solid-state laser system control unit 60 receives the wavelength OK signal from both the first semiconductor laser 101 and the second semiconductor laser 202, the solid-state laser system control unit 60 outputs from the first solid-state laser device 10.
  • the first semiconductor optical amplifier so that the first pulsed laser beam to be generated and the second pulsed laser beam output from the second solid-state laser apparatus 20 are incident on the first CLBO crystal 301 at the same timing.
  • the trigger timing is set for each of the 111 and the second semiconductor optical amplifier 212.
  • the target center wavelength ⁇ ct of the solid-state laser system 1 is 193.4 nm
  • the target center wavelength ⁇ 1ct of the first solid-state laser device 10 is 515 nm
  • the target center wavelength ⁇ 2ct of the second solid-state laser device 20 is 1554 nm. A specific case will be described.
  • CW-oscillated laser light (first CW laser light) having a center wavelength of 1030 nm is output from the first semiconductor laser 101.
  • the first CW laser beam is pulse-amplified by the first semiconductor optical amplifier 111 to generate the first amplified pulsed laser beam.
  • the first amplified pulsed laser light emitted from the first semiconductor optical amplifier 111 is amplified by the Yb fiber amplifier 120 and the solid-state amplifier 124, and is incident on the LBO crystal 126.
  • the incident pulsed laser light is wavelength-converted to the first pulsed laser light which is the second harmonic light (wavelength 515 nm) of the light having a wavelength of 1030 nm.
  • the first pulsed laser beam wavelength-converted by the LBO crystal 126 is incident on the wavelength conversion system 30 via the dichroic mirror 51.
  • CW-oscillated laser light (second CW laser light) having a center wavelength of 1554 nm is output from the second semiconductor laser 202.
  • the second CW laser beam is pulse-amplified by the second semiconductor optical amplifier 212 to generate pulsed laser beam (second amplified pulsed laser beam).
  • the second amplified pulsed laser light is amplified by the Er fiber amplifier 220 and output as the second pulsed laser light.
  • the second pulse laser light is coupled to the wavelength conversion system 30 in the same optical path as the first pulse laser light via the first high reflection mirror 41 and the dichroic mirror 51.
  • the solid-state laser system control unit 60 controls the Yb fiber amplifier 120 and the solid-state amplifier 124 of the first solid-state laser apparatus 10 so that the first pulse laser light has a constant pulse energy.
  • the solid-state laser system control unit 60 controls the Er fiber amplifier 220 of the second solid-state laser device 20 so that the second pulse laser light has a constant pulse energy.
  • the solid-state laser system control unit 60 transmits a control command to the wavelength conversion system control unit 340.
  • the first pulsed laser beam (515 nm) is converted into the second harmonic light by the first CLBO crystal 301 to generate a pulsed laser beam having a wavelength of 257.5 nm.
  • a part of the pulsed laser light having a wavelength of 257.5 nm is sampled and incident on the first optical sensor 321 to detect the pulse energy of the pulsed laser light having a wavelength of 257.5 nm.
  • the wavelength conversion system control unit 340 operates the first rotation stage 331 to control the angle of incidence on the first CLBO crystal 301 so that the detection value of the first optical sensor 321 is maximized.
  • the second harmonic light having a wavelength of 257.5 nm and the second pulsed laser light having a wavelength of 1554 nm are incident on the second CLBO crystal 302 via the first beam splitter 311.
  • a first sum frequency light having a wavelength of 220.9 nm which is the sum frequency of the second harmonic light having a wavelength of 257.5 nm and the second pulse laser light having a wavelength of 1554 nm, is generated.
  • a part of the first sum frequency light having a wavelength of 220.9.nm is sampled and incident on the second optical sensor 322 to enter the first sum frequency light having a wavelength of 220.9 nm. Pulse energy is detected.
  • the wavelength conversion system control unit 340 operates the second rotation stage 332 to control the angle of incidence on the second CLBO crystal 302 so that the detection value of the second optical sensor 322 is maximized.
  • a second sum frequency light having a wavelength of 193.4 nm which is the sum frequency of the first sum frequency light having a wavelength of 220.9 nm and the second pulse laser light having a wavelength of 1554 nm, is generated. ..
  • the third beam splitter 313 a part of the second sum frequency light having a wavelength of 193.4 nm is sampled and incident on the third photosensor 323 to pulse the second sum frequency light having a wavelength of 193.4 nm. Energy is detected. Further, the second sum frequency light transmitted through the third beam splitter 313 is output from the solid-state laser system 1 as the third pulse laser light.
  • the wavelength conversion system control unit 340 operates the third rotation stage 333 to control the angle of incidence on the third CLBO crystal 303 so that the detection value of the third optical sensor 323 is maximized.
  • the wavelength conversion system control unit 340 causes the solid-state laser system control unit 60 to control the detection values.
  • a signal of wavelength conversion system control OK is transmitted.
  • FIG. 2 schematically shows a configuration example of a wavelength conversion system 30 according to a comparative example.
  • the comparative example of the present disclosure is a form recognized by the applicant as known only by the applicant, and is not a publicly known example that the applicant self-identifies.
  • the wavelength conversion system 30 includes a CLBO cell box 350.
  • the CLBO cell box 350 includes a container 364 with an incident window 361 and an exit window 362, in which the first CLBO crystal 301, the second CLBO crystal 302 and the third CLBO crystal 303, and the first CLBO crystal 303 are included.
  • Beam splitter 311, second beam splitter 312 and third beam splitter 313, first rotation stage 331, second rotation stage 332 and third rotation stage 333, first optical sensor 321, first The 2nd optical sensor 322 and the 3rd optical sensor 323 are accommodated.
  • the first rotation stage 331, the second rotation stage 332, and the third rotation stage 333, and the first optical sensor 321 and the second optical sensor 322 and the third optical sensor 323 are respectively.
  • a part may be outside the container 364.
  • CLBO crystals are hygroscopic and need to be heated to about 120 ° C inside the cell and used in a state where the temperature is maintained.
  • the angle of each crystal so that wavelength conversion occurs and the conversion efficiency is maximized. It is necessary to control the incident angle of the light.
  • FIG. 3 schematically shows the configuration of the wavelength conversion system 31 applied to the solid-state laser system 1 according to the first embodiment.
  • the wavelength conversion system 31 shown in FIG. 3 is applied instead of the wavelength conversion system 30 shown in FIG.
  • the configuration shown in FIG. 3 will be described as different from that of FIG.
  • the wavelength conversion system 31 includes a CLBO cell box 351 instead of the CLBO cell box 350.
  • the CLBO cell box 351 includes the first beam splitter 311 described in FIG. 2, the second beam splitter 312 and the third beam splitter 313, and the first optical sensor 321 and the second optical sensor 322 and the third.
  • the first CLBO crystal 301, the second CLBO crystal 302, and the third CLBO crystal 303 are arranged side by side in this order in the container 364 without the optical sensor 323, and each crystal is arranged.
  • a first rotation stage 331, a second rotation stage 332, and a third rotation stage 333 corresponding to the above are arranged.
  • An inert gas is supplied into the container 364 from a gas supply port (not shown).
  • the wavelength conversion system 31 includes a first beam splitter 311, a second beam splitter 312 and a third beam splitter 313 in FIG. 2, a first optical sensor 321 and a second optical sensor 322 and a third optical sensor.
  • the distribution optical element 370, the lens 372, and the wavelength measuring unit 374 are provided.
  • the wavelength measuring unit 374 includes a wavelength dispersion element 375 and a photodetector 376.
  • the distribution optical element 370 may be a distribution mirror such as a beam splitter.
  • a distribution optical element 370 for example, a beam sampler splitter, a dichroic mirror, or the like can be used.
  • the wavelength dispersion element 375 may use a grating, a diffraction grating, or the like for wavelength dispersion, or may use a filter or the like.
  • the photodetector 376 includes a light receiving sensor that detects the light intensity of each wavelength dispersed wavelength.
  • the photodetector 376 may be used in combination with a line sensor, a CCD element, a filter and a sensing type element having different sensitivities depending on the wavelength.
  • the first pulsed laser light having a wavelength of about 515 nm is an example of the "first laser light” in the present disclosure.
  • the first solid-state laser device 10 is an example of the "first laser device” in the present disclosure.
  • the second pulsed laser light having a wavelength of about 1554 nm is an example of the “second laser light” in the present disclosure.
  • the second solid-state laser device 20 is an example of the "second laser device” in the present disclosure.
  • the first CLBO crystal 301 is an example of the "first nonlinear crystal” in the present disclosure.
  • the first rotation stage 331 is an example of the "first adjustment unit” and the "first angle adjustment mechanism” in the present disclosure.
  • the second CLBO crystal 302 is an example of the "second nonlinear crystal” in the present disclosure.
  • the second rotation stage 332 is an example of the “second adjustment unit” and the “second angle adjustment mechanism” in the present disclosure.
  • the third CLBO crystal 303 is an example of the "third nonlinear crystal” in the present disclosure.
  • the third rotary stage 333 is an example of the “third adjusting unit” in the present disclosure.
  • the wavelength dispersion element 375 is an example of the "wavelength selection element” in the present disclosure.
  • the photodetector 376 is an example of the "photodetector” in the present disclosure.
  • the line sensor applied to the photodetector 376 is an example of the "plurality of photodetectors” in the present disclosure.
  • the wavelength conversion system control unit 340 is an example of the "processor” in the present disclosure.
  • the pulsed laser light having a wavelength of about 193.4 nm output from the wavelength conversion system 31 is an example of the “third laser light” in the present disclosure.
  • Wavelength conversion is performed by the first CLBO crystal 301, the second CLBO crystal 302 and the third CLBO crystal 303 arranged inside the CLBO cell box 351, and the light output through the exit window 362 is used.
  • a part is distributed by the distribution optical element 370.
  • the operation of wavelength conversion is as described in FIG.
  • the sample light distributed by the distribution optical element 370 is incident on the wavelength measurement unit 374 via the lens 372.
  • the wavelength measuring unit 374 the wavelength is dispersed by the wavelength dispersion element 375, and the intensity of each wavelength is measured by using a photodetector 376 such as a line sensor.
  • the measurement of the first pulse laser light (515 nm) is necessary for confirming the stability of the output of the first pulse laser light and confirming the conversion amount of the second harmonic light.
  • the output of the second harmonic light fluctuates by measuring the output of the first pulse laser light, whether the cause is derived from the first pulse laser light or the first CLBO crystal 301. Can be sorted.
  • the wavelength conversion system control unit 340 has a first rotation stage 331 corresponding to each of the first CLBO crystal 301, the second CLBO crystal 302, and the third CLBO crystal 303 in order to optimize the intensity of each wavelength.
  • the second rotation stage 332 and the third rotation stage 333 are operated to change the rotation angle to adjust (align) each CLBO crystal.
  • the wavelength conversion system control unit 340 performs initial adjustment (initial alignment) of the crystal angle position by maximizing the optical output of the wavelength after conversion by each crystal.
  • the light output of the converted wavelength generated by the wavelength conversion is called “converted wavelength output", and the light of the converted wavelength is called “converted light”.
  • FIG. 4 is a graph showing the relationship between the angle of incidence on a nonlinear crystal and the converted wavelength output. As shown in FIG. 4, the angle of each CLBO crystal is adjusted so as to have an incident angle that maximizes the conversion wavelength output.
  • each CLBO crystal is adjusted in each order in which light is incident. That is, first, the angle of the first CLBO crystal 301 is adjusted, the angle of the first CLBO crystal 301 is adjusted to an appropriate angle, and then the angle of the second CLBO crystal 302 is adjusted. With the CLBO crystal 301 of 1 and the CLBO crystal 302 of the second being adjusted to appropriate angles, finally, the angle of the third CLBO crystal 303 is adjusted.
  • FIG. 5 is a flowchart showing an example of the main routine of initial alignment. The processing of each step shown in FIG. 5 is realized, for example, by the processor functioning as the wavelength conversion system control unit 340 executing the instruction of the program.
  • step S11 the wavelength conversion system control unit 340 executes the second harmonic light discovery routine of the first CLBO crystal 301.
  • the first is until an angular position where the light intensity of the second harmonic light (257.5 nm) generated by the first CLBO crystal 301 is equal to or higher than the threshold value is found.
  • the operation of changing the angle of the CLBO crystal 301 is performed.
  • the step S11 is an example of the "step of discovering the first wavelength conversion light" in the present disclosure.
  • the wavelength conversion system control unit 340 proceeds to step S12 when an angular position where the light intensity of the second harmonic light is equal to or higher than the threshold value is found.
  • step S12 the wavelength conversion system control unit 340 executes the second harmonic optical peak value search routine of the first CLBO crystal 301.
  • the angle of the first CLBO crystal 301 is adjusted so that the light intensity of the second harmonic light becomes the maximum value.
  • step S13 the wavelength conversion system control unit 340 implements the first sum frequency light discovery routine of the second CLBO crystal 302.
  • the first sum frequency light discovery routine of the second CLBO crystal 302 an angular position where the light intensity of the first sum frequency light (220.9 nm) generated by the second CLBO crystal 302 is equal to or higher than the threshold value is found.
  • the operation of changing the angle of the second CLBO crystal 302 is performed up to.
  • the step S13 is an example of the "step of discovering the second wavelength conversion light" in the present disclosure.
  • the wavelength conversion system control unit 340 finds an angular position where the light intensity of the first sum frequency light is equal to or higher than the threshold value, the wavelength conversion system control unit 340 proceeds to step S14.
  • step S14 the wavelength conversion system control unit 340 carries out the first sum frequency optical peak value search routine of the second CLBO crystal 302.
  • the angle of the second CLBO crystal 302 is adjusted so that the light intensity of the first sum frequency light becomes the maximum value.
  • step S15 the wavelength conversion system control unit 340 implements the second sum frequency light discovery routine of the third CLBO crystal 303.
  • the second sum frequency light discovery routine of the third CLBO crystal 303 an angular position where the light intensity of the second sum frequency light (193.4 nm) generated by the third CLBO crystal 303 is equal to or higher than the threshold value is found. Up to, the operation of changing the angle of the third CLBO crystal 303 is performed.
  • the wavelength conversion system control unit 340 finds an angular position where the light intensity of the second sum frequency light is equal to or higher than the threshold value, the wavelength conversion system control unit 340 proceeds to step S16.
  • step S16 the wavelength conversion system control unit 340 implements the second sum frequency optical peak value search routine of the third CLBO crystal 303.
  • the angle of the third CLBO crystal 303 is adjusted so that the light intensity of the second sum frequency light becomes the maximum value.
  • FIG. 6 is a flowchart showing an example of the converted light discovery routine. The flowchart shown in FIG. 6 is applied to step S11, step S13 and step S15 of FIG.
  • the wavelength conversion system control unit 340 measures the output of the converted light in step S21.
  • the wavelength conversion system control unit 340 acquires the light intensity information of the target wavelength from the photodetector 376.
  • step S22 the wavelength conversion system control unit 340 compares the output measured value of the converted light with the threshold value for determining the occurrence of wavelength conversion. As a result of the comparison in step S22, if the output measured value does not reach the threshold value, the wavelength conversion system control unit 340 proceeds to step S23.
  • step S23 the wavelength conversion system control unit 340 determines whether or not the crystal angle has reached the movement range limit. If the determination result in step S23 is No, that is, if the crystal angle has not reached the movement range limit, the wavelength conversion system control unit 340 proceeds to step S25.
  • step S25 the wavelength conversion system control unit 340 changes the angle of the target CLBO crystal, and returns to step S21.
  • step S23 determines whether the crystal angle has reached the movement range limit.
  • step S24 the wavelength conversion system control unit 340 changes parameters such as the movement range, then proceeds to step S25 and returns to step S21. Steps S21 to S25 are repeated until the output measured value of the converted light satisfies the threshold value.
  • step S22 when the output measured value becomes equal to or higher than the threshold value, the flowchart of FIG. 6 is terminated and the process returns to the main routine of FIG.
  • FIG. 7 is a graph showing an operation image of the conversion light discovery routine.
  • the horizontal axis of FIG. 7 represents the angle of incidence on the nonlinear crystal, and the vertical axis represents the conversion wavelength output.
  • the light intensity of the converted light after wavelength conversion changes in a sinc function (zinc function) with respect to the angle of incidence on the nonlinear crystal.
  • the converted light discovery routine is performed to carry out the wavelength conversion. It is necessary to search for an angle at which the output of the converted light due to the conversion is equal to or higher than a predetermined threshold value.
  • the output (intensity) of the converted light is measured, and it is compared whether the target wavelength satisfies the threshold value corresponding to the intensity considered to be generated by the wavelength conversion.
  • the intensity corresponding to this threshold value needs to be sufficient for the conversion light peak value search routine performed after the conversion light discovery routine to function without problems.
  • the crystal angle is changed by a large width within the set movement range limit, the output of the converted light is measured, and the angle change movement is repeated until the threshold value is satisfied. If an angle that satisfies the threshold is not found within the movement range limit, change the parameters such as the range again and continue. This change may be manual or semi-automatic processing by coefficient processing.
  • the system adopts the measured value after the static time until the output of the converted light stabilizes, or the average value of the measured values obtained by measuring multiple times at a predetermined time interval. It is preferable to remove noise from the measurement system.
  • 3.3.3 Converted light peak value search routine After confirming the occurrence of wavelength conversion by the converted light discovery routine, shift to the "converted light peak value search routine" to maximize the wavelength intensity of the converted light. ..
  • FIG. 8 is a flowchart showing an example of a peak value search routine for the converted light. The flowchart shown in FIG. 8 is applied to step S12, step S14 and step S16 of FIG.
  • step S31 the wavelength conversion system control unit 340 performs the output measurement 1 (first output measurement step) of the converted light.
  • the first output measuring step the light intensity of the converted light before the angle change (before moving) is measured.
  • step S32 the wavelength conversion system control unit 340 changes the angle of the target CLBO crystal by a predetermined angle change amount.
  • step S33 the wavelength conversion system control unit 340 performs the output measurement 2 (second output measurement step) of the converted light.
  • the step S33 is an example of the "step of detecting the first wavelength conversion light", the “step of detecting the second wavelength conversion light”, and the “step of detecting the third wavelength conversion light” in the present disclosure. .. Further, the measurement result in step S33 is an example of the “detection result of the first wavelength conversion light” and the “detection result of the second wavelength conversion light” in the present disclosure.
  • step S34 the wavelength conversion system control unit 340 determines whether or not the intensity measurement value of the converted light has updated the maximum value.
  • the "maximum value” here is a provisional maximum value recorded in the memory of the wavelength conversion system control unit 340 as the largest value among the intensity measurement values measured during the execution of the peak value search routine of the converted light. Is. At the start of the flowchart of FIG. 8, the recording of the maximum value is reset, and then the value recorded as the maximum value in step S35 is updated based on the measurement result in step S33.
  • step S34 If the intensity measurement value exceeds the maximum value as a result of the determination in step S34, the wavelength conversion system control unit 340 proceeds to step S35, updates the maximum value, and then proceeds to step S36.
  • step S34 determines whether the determined intensity in step S34 exceeds the maximum value. If the determined intensity in step S34 does not exceed the maximum value, the wavelength conversion system control unit 340 proceeds to step S36.
  • step S36 the wavelength conversion system control unit 340 compares the increase / decrease of the intensity measurement result of the converted light before and after the angle change. When the intensity measurement value of the converted light increases before and after the angle change, the wavelength conversion system control unit 340 returns to step S32 and repeats steps S32 to S36.
  • step S36 when the measured value of the intensity of the converted light decreases before and after the angle change, the wavelength conversion system control unit 340 proceeds to step S37 and determines the number of turns.
  • the number of folds is the number of times the angle movement direction is changed (reversed).
  • a determination reference value is set in advance for the number of folds, and the number of folds and the determination reference value are compared. If the number of turns is less than the determination reference value, the wavelength conversion system control unit 340 proceeds to step S38.
  • step S38 the wavelength conversion system control unit 340 changes the moving direction, reduces the width of the angle change (angle change amount), and returns to step S32.
  • step S40 the wavelength conversion system control unit 340 moves the angle to the vicinity of the coordinates (angle position) where the maximum value is recorded, and measures the output of the converted light.
  • the steps of steps S35 and S40 are examples of the "step of specifying the maximum value of the intensity of the first wavelength conversion light" and the "step of specifying the maximum value of the intensity of the second wavelength conversion light" in the present disclosure. ..
  • step S41 the wavelength conversion system control unit 340 determines whether or not the output of the converted light satisfies the set threshold value. When the intensity measurement value of the converted light is compared with the set threshold value and the intensity measurement value is equal to or greater than the set threshold value, it is determined that the set threshold value is satisfied. When the output of the converted light satisfies the set threshold value, the wavelength conversion system control unit 340 ends the flowchart of FIG. 8 and returns to the main routine of FIG.
  • step S41 if the output of the converted light does not satisfy the set threshold value, the wavelength conversion system control unit 340 proceeds to step S42, changes the parameters, returns to step S31, and returns to the peak value search routine of the converted light. repeat.
  • FIG. 9 is a graph showing an operation image of the peak value search routine of the converted light.
  • the search routine is started from the angle position indicated by the point C and moves to the point D by changing the angle four times (first scan).
  • the moving direction is reversed at the point D, the width of the angle change is reduced, and the second scan is performed.
  • the second scan it moves from point D to point E by changing the angle four times.
  • the moving direction is reversed again at the point E, the width of the angle change is further reduced, and the third scan is performed.
  • the third scan it moves from point E to point F by changing the angle three times.
  • the allowable upper limit of the number of turns is reached, so that the fourth scan is not performed and the point F is moved to the vicinity of the maximum value (point G).
  • the conversion light peak value search routine performs the output measurement of the conversion light and the angle change of the CLBO crystal, and inverts the moving direction based on the result of the increase / decrease determination of the intensity of the target wavelength, and the angle. Scanning is repeated a predetermined number of turns while narrowing the change interval (angle change amount). At that time, the maximum value and the coordinates (angle position) where the maximum value is recorded are recorded in association with each other, and after the angle change is repeated, the maximum value is moved to the vicinity of the recorded coordinates. If the measured intensity of the optical output of the converted light near the coordinates where the maximum value is recorded satisfies the set threshold value, the adjustment is completed. If not, the parameter is changed again and the routine is repeated.
  • the strength increase / decrease judgment is made by comparing the measured strength before moving with the measured strength after moving, but it may also be judged from multiple measurement results such as before moving. For example, it may be a two-point comparison or a multi-point comparison of three or more points.
  • the wavelength conversion system 31 according to the first embodiment a measurement system for measuring the light intensity of the converted light is provided only in the final stage of the arrangement of the three CLBO crystals, and FIG. Compared with the comparative example shown in No. 1, there is no optical element such as a dichroic mirror between CLBO crystals, and the light transmission loss is small. Therefore, according to the wavelength conversion system 31 according to the first embodiment, the wavelength conversion efficiency can be improved as compared with the comparative example shown in FIG.
  • the first CLBO crystal 301, the second CLBO crystal 302 and the third CLBO crystal are compared with the comparative example shown in FIG.
  • the size of the CLBO cell box 351 accommodating the CLBO crystal 303 can be reduced.
  • FIG. 10 schematically shows the configuration of the wavelength measuring unit 380 applied to the wavelength conversion system according to the second embodiment. Instead of the wavelength measuring unit 374 described with reference to FIG. 3, the wavelength measuring unit 380 shown in FIG. 10 may be applied.
  • the wavelength measuring unit 380 includes a Zernitana type spectroscope 381 and a line sensor 386.
  • the Zernitana spectroscope 381 includes an incident slit 382, a first concave mirror 383, a grating 384, and a second concave mirror 385.
  • the line sensor 386 includes a photodiode array element 387. The received light signal of the line sensor 386 is sent to the wavelength conversion system control unit 340.
  • the sample light distributed by the distribution optical element 370 (see FIG. 3) is collected by the lens 372, incident from the incident slit 382, and converged by the first concave mirror 383 which is a collimator mirror.
  • the converged light hits the grating 384 and is laterally dispersed for each wavelength (color).
  • the dispersed light is imaged by the line sensor 386 by the second concave mirror 385 that serves as the focus mirror.
  • the grating 384 is an example of the "wavelength selection element" in the present disclosure.
  • the wavelength measurement unit 380 in the second embodiment acquires the output measurement values of a plurality of wavelengths at once, although the system construction is complicated and expensive as compared with the wavelength measurement unit 374 in the first embodiment. It is possible. Further, according to the wavelength measuring unit 380, the spectral shape of each wavelength can also be acquired.
  • FIG. 11 schematically shows the configuration of the wavelength conversion system 33 according to the third embodiment.
  • the wavelength conversion system 33 shown in FIG. 11 is applied instead of the wavelength conversion system 31 shown in FIG.
  • the configuration shown in FIG. 11 will be described as being different from that of FIG.
  • the wavelength conversion system 33 includes a wavelength measurement unit 390 instead of the wavelength measurement unit 374 in FIG.
  • the wavelength measuring unit 390 includes a plurality of dichroic mirrors 391, 392, 393, a plurality of intensity sensors 401, 402, 403 for detecting the light intensity, and a damper 406. That is, as a measurement system for measuring the light intensity for each wavelength, a plurality of dichroic mirrors 391, 392, 393 and a plurality of intensity sensors 401, 402, 403 for detecting the light intensity may be used in combination. ..
  • the wavelength measuring unit 390 reflects or transmits a wavelength other than the target wavelength in each of the dichroic mirrors 391, 392, and 393, and detects the output of the target wavelength by the intensity sensors 401, 402, and 403.
  • the dichroic mirror 391 is arranged on the optical path between the distribution optical element 370 and the damper 406.
  • the dichroic mirror 391 highly transmits the first pulse laser light having a wavelength of about 515 nm, and has a second harmonic light having a wavelength of about 257.5 nm, a first sum frequency light having a wavelength of about 220.9 nm, and a wavelength of about 193.4 nm.
  • a film that highly reflects the second sum frequency light of the above is coated.
  • the dichroic mirror 392 is arranged on the optical path between the dichroic mirror 391 and the intensity sensor 401.
  • the dichroic mirror 392 highly transmits the second harmonic light having a wavelength of about 257.5 nm, and highly reflects the first sum frequency light having a wavelength of about 220.9 nm and the second sum frequency light having a wavelength of about 193.4 nm.
  • the membrane is coated.
  • the dichroic mirror 393 is arranged on the optical path between the dichroic mirror 392 and the intensity sensor 403.
  • the dichroic mirror 393 is coated with a film that highly transmits the first sum frequency light having a wavelength of about 220.9 nm and highly reflects the second sum frequency light having a wavelength of about 193.4 nm.
  • the dichroic mirror 393 is arranged so that the second sum frequency light having a wavelength of about 193.4 nm reflected by the dichroic mirror 393 is incident on the intensity sensor 402.
  • the intensity sensors 401, 402, 403 are connected to the wavelength conversion system control unit 340.
  • the plurality of intensity sensors 401, 402, and 403 are examples of the "photodetector” in the present disclosure.
  • the dichroic mirrors 391, 392, and 393 are examples of the "wavelength selection element" in the present disclosure.
  • the sample light distributed by the distribution optical element 370 is incident on the dichroic mirror 391.
  • the first pulsed laser beam having a wavelength of about 515 nm transmitted through the dichroic mirror 391 is absorbed by the damper 406.
  • the second harmonic light having a wavelength of about 257.5 nm, which is reflected by the dichroic mirror 391 and transmitted through the dichroic mirror 392, is incident on the intensity sensor 401.
  • the intensity sensor 401 measures the output of the second harmonic light with a wavelength of about 257.5 nm.
  • the intensity sensor 403 measures the output of the first sum frequency light with a wavelength of about 220.9 nm.
  • the second sum frequency light with a wavelength of about 193.4 nm reflected by the dichroic mirrors 391, 392, and 393, respectively, is incident on the intensity sensor 402.
  • the intensity sensor 402 measures the output of the second sum frequency light with a wavelength of about 193.4 nm.
  • the light intensity information detected by each of the intensity sensors 401, 402, and 403 is sent to the wavelength conversion system control unit 340.
  • the wavelength measuring unit 390 in the third embodiment is composed of a combination of a single intensity sensor 401, 402, 403 and a dichroic mirror 391, 392, 393, and thus can be easily constructed. Further, since light having a separated wavelength is incident on each sensor, the wavelength can be detected with high accuracy and easily as compared with the case where light having an unseparated wavelength is incident on one sensor. The angle of the CLBO crystal can be adjusted with high accuracy and easily.
  • FIG. 12 schematically shows the configuration of the wavelength conversion system 34 according to the fourth embodiment.
  • the wavelength conversion system 34 shown in FIG. 12 is applied instead of the wavelength conversion system 31 shown in FIG.
  • the configuration shown in FIG. 12 will be described as being different from that of FIG.
  • the wavelength conversion system 34 includes a wavelength measurement unit 410 instead of the wavelength measurement unit 374 in FIG.
  • the wavelength measuring unit 410 includes a plurality of distribution optical elements 411 and 421, a plurality of wavelength filters 421, 422, and 423, and a plurality of intensity sensors 431, 432, and 433. That is, as a measurement system for measuring the light intensity for each wavelength, a combination of the distribution optical elements 411 and 421 and the wavelength filters 421, 422, and 423 may be used.
  • the wavelength measuring unit 410 distributes a plurality of mixed wavelength lights by a plurality of distribution optical elements 411 and 421, separates the light other than the target wavelength by the wavelength filters 421, 422, and 423, and outputs the output of each target wavelength as an intensity sensor. It is detected by 431, 432, and 433.
  • the distribution optical element 411, the distribution optical element 412, and the wavelength filter 423 are arranged in this order on the optical path between the distribution optical element 370 and the intensity sensor 433.
  • the distribution optical element 411 reflects a part of the sample light reflected by the distribution optical element 370, and the reflected light is arranged so as to be incident on the wavelength filter 421.
  • the wavelength filter 421 is arranged on the optical path between the distribution optical element 411 and the intensity sensor 431.
  • the wavelength filter 421 selectively transmits the second harmonic light having a wavelength of about 257.5 nm among the incident mixed wavelength light.
  • the intensity sensor 431 is arranged so as to receive the second harmonic light transmitted through the wavelength filter 421.
  • the distribution optical element 412 is arranged so as to reflect a part of the mixed wavelength light transmitted through the distribution optical element 411 so that the reflected light is incident on the wavelength filter 422.
  • the wavelength filter 422 is arranged on the optical path between the distribution optical element 412 and the intensity sensor 432.
  • the wavelength filter 422 selectively transmits the first sum frequency having a wavelength of about 220.9 nm among the incident mixed wavelength light.
  • the intensity sensor 432 is arranged so as to receive the first sum frequency light transmitted through the wavelength filter 422.
  • the wavelength filter 423 selectively transmits the second sum frequency light having a wavelength of about 193.4 nm among the mixed wavelength light transmitted through the distribution optical element 412.
  • the intensity sensor 433 is arranged so as to receive the second sum frequency light transmitted through the wavelength filter 423.
  • the intensity sensors 431, 432, and 433 are connected to the wavelength conversion system control unit 340.
  • the sample light distributed by the distribution optical element 370 is incident on the distribution optical element 411.
  • the sample light reflected by the distribution optical element 411 is incident on the wavelength filter 421.
  • the second harmonic light having a wavelength of about 257.5 nm transmitted through the wavelength filter 421 is incident on the intensity sensor 431.
  • the intensity sensor 431 measures the output of the second harmonic light with a wavelength of about 257.5 nm.
  • the sample light transmitted through the distribution optical element 411 and reflected by the distribution optical element 412 is incident on the wavelength filter 422.
  • the first sum frequency light having a wavelength of about 220.9 nm transmitted through the wavelength filter 422 is incident on the intensity sensor 432.
  • the intensity sensor 432 measures the output of the first sum frequency light with a wavelength of about 220.9 nm.
  • the sample light transmitted through the distribution optical elements 411 and 412 is incident on the wavelength filter 423.
  • the second sum frequency light having a wavelength of about 193.4 nm transmitted through the wavelength filter 423 is incident on the intensity sensor 433.
  • the intensity sensor 433 measures the output of the second sum frequency light with a wavelength of about 193.4 nm.
  • the light intensity information detected by each of the intensity sensors 431, 432, and 433 is sent to the wavelength conversion system control unit 340.
  • the wavelength measuring unit 410 in the fourth embodiment is composed of a combination of a single intensity sensor 431, 432, 433 and a wavelength filter 421, 422, 423, so that a system can be easily constructed. .. Further, since light having a separated wavelength is incident on each sensor, the wavelength can be detected with high accuracy and easily as compared with the case where light having an unseparated wavelength is incident on one sensor. The angle of the CLBO crystal can be adjusted with high accuracy and easily.
  • FIG. 13 schematically shows the configuration of the wavelength conversion system 35 according to the fifth embodiment.
  • the configuration shown in FIG. 13 will be described as being different from that of FIG.
  • an example in which the intensity of the converted light is measured and the angle of the CLBO crystal is adjusted based on the measured intensity of the converted light has been described. It is also possible to measure the intensity and adjust the angle of the CLBO crystal based on the measured intensity of the unconverted light.
  • the wavelength conversion system 35 according to the fifth embodiment is provided with a dichroic mirror 371 instead of the distribution optical element 370 of FIG. 3, in order to minimize the loss of the second sum frequency light (wavelength of about 193.4 nm).
  • the dichroic mirror 371 transmits only wavelengths other than the second sum frequency light, and the intensity ratio of the unconverted first sum frequency light (wavelength of about 220.9 nm) is used to transmit the third CLBO.
  • the configuration is such that the angle of the crystal 303 is adjusted.
  • FIG. 13 illustrates a configuration in which the dichroic mirror 371 transmits only wavelengths other than the second sum frequency light, but instead of such a configuration, the dichroic mirror 371 uses the dichroic mirror 371 other than the second sum frequency light.
  • a configuration that reflects only other wavelengths may be adopted.
  • the dichroic mirror 371 shown in FIG. 13 is coated with a film that highly reflects the second sum frequency light (wavelength of about 193.4 nm) and highly transmits other wavelengths.
  • the third high reflection mirror 43 in the wavelength conversion system 35 is arranged so as to reflect the second sum frequency light reflected by the dichroic mirror 371.
  • the wavelength conversion system 35 includes a wavelength measurement unit 450 instead of the wavelength measurement unit 374 in FIG.
  • the wavelength measuring unit 450 includes a wavelength dispersion element 452 and a line sensor 454, and is arranged so that the transmitted light of the dichroic mirror 371 is incident on the wavelength dispersion element 452.
  • the light transmitted through the dichroic mirror 371 is incident on the wavelength dispersion element 452 of the wavelength measurement unit 450.
  • the wavelength is dispersed by the wavelength dispersion element 452, and the intensity of each wavelength is measured by using the line sensor 454.
  • the intensity of each wavelength of the first pulse laser light (wavelength about 515 nm), the second harmonic light (wavelength about 257.5 nm), and the first sum frequency light (wavelength about 220.9 nm) is measured using the line sensor 454.
  • the points to be performed are the same as those in the first embodiment, and the angle adjustment operation for the first CLBO crystal 301 and the second CLBO crystal 302 is the same as that in the first embodiment.
  • the intensity of the unconverted light of the first sum frequency light is used.
  • FIG. 14 is a graph schematically showing the relationship between the output of the unconverted light and the converted light.
  • the horizontal axis of FIG. 14 represents the angle of incidence on the CLBO crystal, and the vertical axis represents the intensity of the light output.
  • the output of the unconverted light decreases accordingly. Therefore, when the output of the converted light cannot be referred to due to the measurement optical path, loss, or sensitivity, it is possible to adjust the angle of the CLBO crystal by referring to the intensity and behavior of the unconverted light.
  • the angles of the first CLBO crystal 301 and the second CLBO crystal 302 are adjusted respectively. Measures the output of the converted light to maximize the converted light, but when adjusting the angle of the third CLBO crystal 303, the output of the first sum frequency light having a wavelength of about 220.9 nm (unconverted). Adjust the angle so that the output of light) is minimized.
  • FIG. 15 is a flowchart showing an example of the initial alignment main routine applied to the fifth embodiment. The flowchart shown in FIG. 15 will be described as different from the flowchart of FIG.
  • the flowchart shown in FIG. 15 includes steps S17 and S18 instead of step S15 and step S16 in FIG. That is, the alignment to the second CLBO crystal 302 (steps S11 to S14) is the same as that of the first embodiment.
  • the alignment of the third CLBO crystal 303 will be described.
  • the alignment of the third CLBO crystal 303 is performed based on the intensity of the first sum frequency light which is unconverted light.
  • step S17 the wavelength conversion system control unit 340 performs a second sum frequency light discovery routine based on the first sum frequency light output measurement of the third CLBO crystal 303.
  • the wavelength conversion system control unit 340 adjusts the third CLBO crystal 303 until the intensity of the first sum frequency light (unconverted light) becomes equal to or less than the threshold value.
  • the fact that the intensity of the first sum frequency light, which is unconverted light, is equal to or less than the threshold value corresponds to the fact that the intensity of the second sum frequency light, which is the converted light, is equal to or higher than a certain threshold value.
  • the threshold value for determining the intensity of the first sum frequency light is determined from the relationship with the threshold value for determining the intensity of the second sum frequency light.
  • the step S17 is an example of the "step of detecting the second wavelength conversion light that has passed through the third nonlinear crystal" in the present disclosure.
  • step S18 the wavelength conversion system control unit 340 performs a bottom value search routine for the first sum frequency light output from the third CLBO crystal 303. ..
  • the wavelength conversion system control unit 340 adjusts the third CLBO crystal 303 until the bottom value of the intensity of the first sum frequency light is detected.
  • step S18 the wavelength conversion system control unit 340 ends the flowchart of FIG.
  • the bottom value search routine is applied to the first pulsed laser light (wavelength about 515 nm) and the second harmonic light (wavelength about 257.5 nm) in the first CLBO crystal 301 and the second CLBO crystal 302. May be good.
  • FIG. 16 is a graph schematically showing the relationship between the angle of incidence on the third CLBO crystal 303 and the output of the first sum frequency light (unconverted light). As shown in FIG. 16, the angle of the third CLBO crystal 303 is adjusted so that the output of the first sum frequency light (unconverted light) becomes the minimum value.
  • FIG. 17 is a flowchart showing an example of a second sum frequency light discovery routine based on the first sum frequency light output measurement of the third CLBO crystal 303. The flowchart shown in FIG. 17 is applied to step S17 of FIG.
  • the wavelength conversion system control unit 340 in step S51 receives the first sum frequency light (unconverted). Light) output is measured.
  • the wavelength conversion system control unit 340 acquires light intensity information of a target wavelength (wavelength of about 220.9 nm) from the line sensor 454.
  • step S52 the wavelength conversion system control unit 340 compares the output measurement value of the unconverted light with the threshold value for determining the occurrence of wavelength conversion. As a result of the comparison in step S22, when the output measured value exceeds the threshold value, the wavelength conversion system control unit 340 proceeds to step S53.
  • step S53 the wavelength conversion system control unit 340 determines whether or not the crystal angle has reached the movement range limit. If the determination result in step S53 is No, that is, if the crystal angle has not reached the movement range limit, the wavelength conversion system control unit 340 proceeds to step S55.
  • step S55 the wavelength conversion system control unit 340 changes the angle of the third CLBO crystal 303, and returns to step S51.
  • step S53 determines whether the crystal angle has reached the movement range limit.
  • step S54 the wavelength conversion system control unit 340 changes parameters such as the movement range, then proceeds to step S55, and then returns to step S51. Steps S51 to S55 are repeated until the output measured value of the unconverted light becomes equal to or less than the threshold value.
  • step S52 when the output measured value becomes equal to or less than the threshold value, the flowchart of FIG. 17 is terminated and the process returns to the main routine of FIG.
  • FIG. 18 is a graph showing an operation image of the second sum frequency light discovery routine based on the first sum frequency light output measurement.
  • the horizontal axis of FIG. 18 represents the angle of incidence on the nonlinear crystal, and the vertical axis represents the intensity of the first sum frequency light (unconverted light).
  • wavelength conversion does not occur in the third CLBO crystal 303, so the first sum frequency light is output from the third CLBO crystal 303 without being consumed.
  • the output intensity of the first sum frequency light is measured while adjusting the third CLBO crystal 303, and the presence or absence of wavelength conversion is determined.
  • the second sum frequency light discovery routine has not been carried out. Search for an angle at which the output of the converted light is equal to or less than a predetermined threshold value.
  • the light intensity (output) of unconverted light is measured and the threshold corresponding to the light intensity that the target wavelength is considered to be generated by wavelength conversion is satisfied. Is compared.
  • the next step (first step). Move to the sum frequency optical bottom value search routine).
  • FIG. 19 is a flowchart showing an example of a bottom value search routine for the first sum frequency light (unconverted light). The flowchart shown in FIG. 19 is applied to step S18 of FIG.
  • step S61 the wavelength conversion system control unit 340 performs output measurement 1 (first output measurement step) of the first sum frequency light which is unconverted light.
  • first output measuring step the light intensity of the unconverted light before the angle change (before the movement) is measured.
  • step S62 the wavelength conversion system control unit 340 changes the angle of the third CLBO crystal 303 by a predetermined angle change amount.
  • step S63 the wavelength conversion system control unit 340 performs the output measurement 2 (second output measurement) of the first sum frequency light.
  • the second output measurement the light intensity of the unconverted light after the angle is changed (after moving) is measured.
  • step S64 the wavelength conversion system control unit 340 determines whether or not the intensity measurement value of the unconverted light has updated the minimum value.
  • the "minimum value” here is a provisional minimum value recorded in the memory of the wavelength conversion system control unit 340 as the smallest value among the intensity measurement values measured during the execution of the bottom value search routine for unconverted light.
  • the value. "Minimum value” is synonymous with bottom value.
  • step S64 If the intensity measurement value falls below the minimum value as a result of the determination in step S64, the wavelength conversion system control unit 340 proceeds to step S65, performs the minimum value update process, and then proceeds to step S66.
  • step S64 if the intensity measurement value does not fall below the minimum value as a result of the determination in step S64, the wavelength conversion system control unit 340 proceeds to step S66.
  • step S66 the wavelength conversion system control unit 340 compares the increase / decrease of the intensity measurement result of the unconverted light before and after the angle change. When the intensity measurement value of the unconverted light decreases before and after the angle change, the wavelength conversion system control unit 340 returns to step S62 and repeats steps S62 to S66.
  • step S66 determines the number of turns.
  • step S67 determines the number of turns.
  • the wavelength conversion system control unit 340 proceeds to step S68.
  • step S68 the wavelength conversion system control unit 340 changes the moving direction, reduces the width of the angle change (angle change amount), and returns to step S62.
  • step S67 the wavelength conversion system control unit 340 proceeds to step S70.
  • step S70 the wavelength conversion system control unit 340 moves the angle to the vicinity of the coordinates (angle position) where the minimum value is recorded, and measures the output of the unconverted light.
  • step S71 the wavelength conversion system control unit 340 determines whether or not the output of the unconverted light satisfies the set threshold value.
  • the intensity measurement value of the unconverted light is compared with the set threshold value and the intensity measurement value is equal to or less than the set threshold value, it is determined that the set threshold value is satisfied.
  • the wavelength conversion system control unit 340 ends the flowchart of FIG. 19 and returns to the main routine of FIG.
  • step S71 if the output of the unconverted light does not satisfy the set threshold value, the wavelength conversion system control unit 340 proceeds to step S72, changes the parameter and returns to step S61, and the bottom value of the unconverted light. Repeat the search routine.
  • FIG. 20 is a graph showing an operation image of the bottom value search routine of unconverted light.
  • the search routine is started from the angle position indicated by the point J and moves to the point K by changing the angle four times (first scan).
  • the moving direction is reversed at the point K, the width of the angle change is reduced, and the second scan is performed.
  • the second scan it moves from the point K to the point L by changing the angle four times.
  • the moving direction is reversed again at the point L, the width of the angle change is further reduced, and the third scan is performed.
  • the third scan it moves from the point L to the point M by changing the angle three times.
  • the allowable upper limit of the number of folds is reached, so that the fourth scan is not performed and the point M is moved to the vicinity of the minimum value (point N).
  • the bottom value search routine for the unconverted light performs the output measurement of the first sum frequency light and the angle change of the third CLBO crystal 303, and determines whether or not the output intensity of the first sum frequency light is increased or decreased.
  • the movement direction is reversed and the interval of angle change (angle change amount) is narrowed, and the process is repeated a predetermined number of times.
  • the bottom value and the coordinates (angle position) at which the bottom value is recorded are recorded in association with each other, and after the angle change is repeated, the angle is moved to the vicinity of the coordinates where the bottom value is recorded. If the output intensity of the unconverted light meets the set threshold value near the coordinates where the bottom value is recorded, the adjustment is completed. If not, the parameter is changed again and the routine is repeated.
  • the bottom value (minimum value) in the fifth embodiment is an example of the "minimum intensity of the second wavelength conversion light" in the present disclosure.
  • the strength increase / decrease judgment is made by comparing the measured strength before moving with the measured strength after moving, but it may also be judged from multiple measurement results such as before moving. For example, it may be a two-point comparison or a multi-point comparison of three or more points.
  • the loss of the second sum frequency light (193.4 nm) can be minimized, and the conversion efficiency is improved.
  • the angle of the third CLBO crystal 303 was adjusted by using the measurement result of the unconverted light, but each of the first CLBO crystal 301 and the second CLBO crystal 302 was adjusted.
  • the angle may be adjusted by using the measurement result of the unconverted light. Further, the angle may be adjusted by using both the measurement result of the converted light and the measurement result of the unconverted light.
  • FIG. 21 schematically shows the configuration of the wavelength conversion system 36 applied to the solid-state laser system 1 according to the sixth embodiment.
  • the wavelength conversion system 36 shown in FIG. 21 is applied instead of the wavelength conversion system 31 shown in FIG.
  • the configuration shown in FIG. 21 will be described as being different from that of FIG.
  • the angle of the CLBO crystal is adjusted by actually measuring the wavelength conversion state of each CLBO crystal at multiple points.
  • the angle position information of the CLBO crystal that is, the output of the rotation position information of the rotation stage and the rotation position control of the rotation stage are controlled. It is shorter by using an actuator with an encoder function capable of the above, and a wavelength conversion system control unit 340G having a function of fitting a plurality of position information obtained from the encoder and a function of controlling the actuator based on the result of the fitting process. It can be adjusted by the adjustment time.
  • Each of the first rotation stage 331, the second rotation stage 332, and the third rotation stage 333 includes a first encoder 461, a second encoder 462, and a third encoder 433.
  • Each of the first encoder 461, the second encoder 462, and the third encoder 463 is connected to the wavelength conversion system control unit 340G.
  • Each of the first encoder 461, the second encoder 462, and the third encoder 463 has coordinate information of each current CLBO crystal based on the state of the corresponding rotation stage based on the command from the wavelength conversion system control unit 340G. Etc. are output to the wavelength conversion system control unit 340G.
  • the wavelength conversion system control unit 340G includes a fitting processing unit 342.
  • the fitting processing unit 342 performs fitting processing on data in which the outputs of the first encoder 461, the second encoder 462, and the third encoder 461 are associated with the intensity of each wavelength.
  • FIG. 22 is a conceptual diagram of an arithmetic process for predicting a peak position by a fitting process from a plurality of measurement results.
  • the horizontal axis of FIG. 22 represents the angular position of the CLBO crystal, and the vertical axis represents the light intensity of the converted light.
  • Points x1, x2, and x3 in FIG. 22 are points where the measurement results are plotted. For example, after measuring multiple points with changes in increase / decrease, the increase / decrease curve is calculated by fitting from the measurement results, and the coordinate angle position that becomes the apex (peak) is calculated to reduce the number of measurements and the number of movements at the initial stage. It is possible to perform alignment.
  • the wavelength conversion system control unit 340G can determine not only the peak position but also the stable positional relationship of the desired output position, it is possible to stabilize the system.
  • FIG. 23 is a flowchart showing an example of the conversion light peak value search routine applied to the sixth embodiment. Instead of the flowchart described in FIG. 8, the flowchart shown in FIG. 23 is applied.
  • step S81 the wavelength conversion system control unit 340G performs the output measurement 1 of the converted light.
  • step S81 the light intensity of the converted light before changing the angle (before moving) is measured.
  • step S82 the wavelength conversion system control unit 340G changes the angle of the target CLBO crystal by a predetermined angle change amount.
  • step S83 the wavelength conversion system control unit 340G measures the output of the converted light.
  • step S81 the light intensity of the converted light after the angle is changed (after moving) is measured.
  • step S82 and step S83 n times measurement is performed at a plurality of (n points) measurement points.
  • n is preferably an integer of 3 or more. It is preferable to set n to a value as small as possible within the range in which the accuracy of fitting can be ensured. For example, n may be 3 or more and 6 or less.
  • the wavelength conversion system control unit 340G repeats steps S82 and S83 n times, and then proceeds to step S84.
  • step S84 the wavelength conversion system control unit 340G performs fitting calculation processing from the output fluctuation and the moving coordinate amount based on the measurement results of n measurement points.
  • Step S84 includes an operation for specifying an angular position (coordinates) corresponding to the peak value based on the fitting of the increase / decrease curve.
  • step S85 the wavelength conversion system control unit 340G moves the angle of the CLBO crystal to the coordinates of the peak position of the calculation result in step S84.
  • step S86 the wavelength conversion system control unit 340G measures the output of the converted light at the coordinates of the peak position.
  • step S87 the wavelength conversion system control unit 340 determines whether or not the output of the converted light satisfies the set threshold value.
  • the wavelength conversion system control unit 340G ends the flowchart of FIG. Then, the process returns to the main routine of FIG.
  • step S87 if the output of the converted light does not satisfy the set threshold value, the wavelength conversion system control unit 340G proceeds to step S88, changes the parameters, returns to step S81, and returns to the peak value search routine of the converted light. repeat.
  • a fitting calculation is performed from the coordinates of the angular position and the measured values, and the light intensity is moved to the coordinates of the predicted peak value. If the value of the light intensity measured at that coordinate is equal to or greater than the set threshold value, the alignment is completed.
  • FIGS. 22 and 23 have described an example of measuring the output of converted light, but as described in the fifth embodiment, the fitting process is also used when measuring the output of unconverted light. Then, the position corresponding to the bottom value may be predicted.
  • FIG. 24 schematically shows the configuration of the wavelength conversion system 37 according to the seventh embodiment.
  • the wavelength conversion system 37 shown in FIG. 24 is applied instead of the wavelength conversion system 30 shown in FIG.
  • the configuration shown in FIG. 24 will be described as being different from that of FIG.
  • a first pulsed laser beam having a wavelength of about 515 nm and a second pulsed laser beam having a wavelength of about 1554 nm are incident on the CLBO cell box 351 from the same direction, which is shown in FIG. 24.
  • the first pulse laser light having a wavelength of about 515 nm and the second pulse laser light having a wavelength of about 1554 nm are incident on the CLBO cell box 357 from different directions. ..
  • the wavelength conversion system 37 includes a CLBO cell box 357 instead of the CLBO cell box 351 in FIG.
  • the CLBO cell box 357 includes a container 365 including a first incident window 361A, a second incident window 361B, and an exit window 362, and in the container 365, a first CLBO crystal 301, a dichroic mirror 470, A second CLBO crystal 302 and a third CLBO crystal 303 are arranged.
  • the first incident window 361A is a window for incident a pulsed laser beam having a wavelength of about 515 nm.
  • the first CLBO crystal 301 is arranged so that the first pulsed laser beam transmitted through the first incident window 361A is incident.
  • the second incident window 361B is a window for incident a second pulsed laser beam having a wavelength of about 1554 nm.
  • the dichroic mirror 470 is arranged on the optical path between the first CLBO crystal 301 and the second CLBO crystal 302.
  • the dichroic mirror 470 is coated with a film that highly reflects the second pulse laser light having a wavelength of about 1554 nm and highly transmits the first pulse laser light having a wavelength of about 515 nm and the second harmonic light having a wavelength of about 257.5 nm. ing.
  • the second pulsed laser beam transmitted through the second incident window 361B, the first pulsed laser beam emitted from the first CLBO crystal 301, and the second harmonic light intersect each other's optical path axes. They are arranged so as to be incident on the second CLBO crystal 302 in a matched state.
  • the configuration is the same as that shown in FIG.
  • the pulsed laser light having a wavelength of about 257.5 nm output from the first CLBO crystal 301 in the seventh embodiment is an example of the "first laser light” in the present disclosure, and is an example of the first solid-state laser apparatus 10 and the first.
  • the combination with CLBO crystal 301 is an example of the "first laser apparatus" in the present disclosure.
  • the second CLBO crystal 302 shown in FIG. 24 is an example of the "first nonlinear crystal” in the present disclosure
  • the third CLBO crystal 303 is an example of the "second nonlinear crystal” in the present disclosure.
  • the first sum frequency light (wavelength of about 220.9 nm) output from the second CLBO crystal 302 is an example of the “first wavelength conversion light” in the present disclosure, and is output from the third CLBO crystal 303.
  • the second sum frequency light (wavelength of about 193.4 nm) is an example of the "second wavelength conversion light” in the present disclosure.
  • the wavelength conversion system 37 according to the seventh embodiment can be used when there are layout restrictions on the device structure. According to the seventh embodiment, as in the first embodiment, there are fewer optical elements between CLBO crystals and less light transmission loss as compared with the configuration of FIG.
  • the size of the CLBO cell box 357 can be reduced as compared with the comparative example shown in FIG.
  • FIG. 25 schematically shows the configuration of the wavelength conversion system 38 according to the eighth embodiment.
  • the wavelength conversion system 38 shown in FIG. 25 may be applied.
  • the configuration shown in FIG. 25 will be described as being different from that of FIG. 24.
  • the wavelength conversion system 38 includes a CLBO cell box 358 instead of the CLBO cell box 357 shown in FIG. 24.
  • the CLBO cell box 358 includes a container 366 including a first incident window 361C, a second incident window 361D, and an exit window 362, and in the container 366, a first CLBO crystal 301, a dichroic mirror 472, and a container 366.
  • a second CLBO crystal 302 and a third CLBO crystal 303 are arranged.
  • the first incident window 361C is a window for incident a pulsed laser beam having a wavelength of about 515 nm.
  • the first CLBO crystal 301 is arranged so that the first pulsed laser beam transmitted through the first incident window 361C is incident.
  • the second incident window 361B is a window for incident a second pulsed laser beam having a wavelength of about 1554 nm.
  • the dichroic mirror 472 is arranged on the optical path between the second incident window 361D and the second CLBO crystal 302.
  • the dichroic mirror 472 is coated with a film that highly transmits the second pulse laser light having a wavelength of about 1554 nm and highly reflects the first pulse laser light having a wavelength of about 515 nm and the second harmonic light having a wavelength of about 257.5 nm. ing.
  • the second pulsed laser beam transmitted through the second incident window 361D and the first pulsed laser beam and the second harmonic light emitted from the first CLBO crystal 301 have an optical path axis of each other. They are arranged so as to be incident on the second CLBO crystal 302 in a matched state. Other configurations are the same as those shown in FIG. 24.
  • the pulsed laser light having a wavelength of about 257.5 nm output from the first CLBO crystal 301 in the eighth embodiment is an example of the “first laser light” in the present disclosure, and is an example of the first solid-state laser apparatus 10 and the first.
  • the combination with CLBO crystal 301 is an example of the "first laser apparatus" in the present disclosure.
  • the second CLBO crystal 302 shown in FIG. 25 is an example of the "first nonlinear crystal” in the present disclosure
  • the third CLBO crystal 303 is an example of the "second nonlinear crystal” in the present disclosure.
  • the wavelength conversion system 38 according to the eighth embodiment can be used when there are layout restrictions on the device structure. According to the eighth embodiment, as in the first embodiment, there are fewer optical elements between CLBO crystals and less light transmission loss as compared with the configuration of FIG.
  • the size of the CLBO cell box 358 can be reduced as compared with the comparative example shown in FIG.
  • phase matching of non-linear crystals When the light of the fundamental wave is input to a non-linear crystal such as a CLBO crystal, the phases of the harmonics generated by wavelength conversion from the fundamental wave are usually not aligned at various points in the crystal. The harmonics generated inside cancel each other out. As described above, the phase shift of the harmonics generated in various places in the crystal causes a difference in the traveling speed between the fundamental wave and the harmonic and a difference in the refractive index between the fundamental wave and the harmonic.
  • phase matching In order to generate harmonics efficiently, it is necessary to align the phases of the harmonics generated at various points in the crystal. If the refractive index of the fundamental wave and the harmonic are the same, the phase shift will be eliminated. Specifically, the phase is aligned by adjusting the temperature of the nonlinear crystal and the angle of incidence on the nonlinear crystal and changing the refractive index. Matching the phases of the converted light generated in the crystal of a nonlinear crystal in this way is called phase matching.
  • the refractive index differs depending on the deflection direction. Matching the refractive indexes of the normal rays of the fundamental wave and the abnormal rays of the harmonics is called angular phase matching.
  • phase matching may be realized by adjusting the angle of incidence on the nonlinear crystal, or phase matching may be realized by combining these.
  • phase matching by controlling the temperature of the nonlinear crystal
  • a configuration in which the temperature of each nonlinear crystal is individually controlled may be adopted.
  • a temperature control device including a heater for individually controlling the temperature of the first CLBO crystal 301, the second CLBO crystal 302, and the third CLBO crystal 303 is the "first adjusting unit" in the present disclosure.
  • an individual temperature control device for each crystal and a rotation stage for adjusting the angle may be used in combination.
  • FIG. 26 schematically shows a configuration example of an exposure apparatus 600.
  • the method for manufacturing an electronic device is carried out using a solid-state laser system 1, an excimer amplifier 500, and an exposure apparatus 600. It is also possible to omit the excimer amplifier 500.
  • the excimer amplifier 500 may be, for example, an ArF excimer laser device that amplifies the pulsed laser light output from the solid-state laser system 1.
  • the combination of the solid-state laser system 1 and the excimer amplifier 500 constitutes a hybrid laser apparatus.
  • the pulsed laser light amplified by the excimer amplifier 500 is input to the exposure apparatus 600 and used as the exposure light.
  • the exposure apparatus 600 includes an illumination optical system 604 and a projection optical system 606.
  • the illumination optical system 604 illuminates the reticle pattern of the reticle stage RT with the excimer laser light incident from the excimer amplifier 500.
  • the projection optical system 606 reduces-projects the laser beam transmitted through the reticle and forms an image on a workpiece (not shown) arranged on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a photoresist.
  • the exposure apparatus 600 exposes the laser beam reflecting the reticle pattern on the workpiece by synchronously moving the reticle stage RT and the workpiece table WT in parallel. After transferring the reticle pattern to the semiconductor wafer by the exposure process as described above, the semiconductor device can be manufactured by going through a plurality of steps.
  • the semiconductor device is an example of the "electronic device" in the present disclosure.
  • the solid-state laser system 1 may be configured to include any of the wavelength conversion systems 31, 33 to 38 described in the respective embodiments 1 to 8.
  • the pulsed laser beam amplified by the excimer amplifier 500 is an example of the "third laser beam" in the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本開示の一観点に係る固体レーザシステムは、第1のレーザ装置から出力された第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、第1の非線形結晶の結晶内で第1の波長変換光を位相整合させる第1の調整部と、第2のレーザ装置から出力された第2のレーザ光と第1の波長変換光とに基づいて第2の波長変換光を生成する第2の非線形結晶と、第2の非線形結晶の結晶内で第2の波長変換光を位相整合させる第2の調整部と、第2の非線形結晶から出力される光の光路上に配置された波長選択素子で選択された波長の光を検出する光検出部と、光検出部で検出された第1の波長変換光及び第1のレーザ光の少なくとも1つの強度に基づいて第1の調整部を制御し、光検出部で検出された第2の波長変換光及び第1の波長変換光の少なくとも1つの強度に基づいて第2の調整部を制御するプロセッサとを備える。

Description

固体レーザシステム、位相整合方法及び電子デバイスの製造方法
 本開示は、固体レーザシステム、位相整合方法及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、並びに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
特開2006-30594号公報 特開2015-155933号公報
概要
 本開示の1つの観点に係る固体レーザシステムは、第1のレーザ光を出力する第1のレーザ装置と、第2のレーザ光を出力する第2のレーザ装置と、第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、第1の非線形結晶の結晶内で第1の波長変換光を位相整合させる第1の調整部と、第1の波長変換光の光路上に配置され、第1の波長変換光と第2のレーザ光とに基づいて第2の波長変換光を生成する第2の非線形結晶と、第2の非線形結晶の結晶内で第2の波長変換光を位相整合させる第2の調整部と、第2の非線形結晶から出力される光の光路上に配置される波長選択素子と、波長選択素子を通過することにより選択された波長の光を検出する光検出部と、第2の非線形結晶を通過して光検出部で検出された第1の波長変換光及び第1のレーザ光の少なくとも1つの強度に基づいて第1の調整部を制御し、光検出部で検出された第2の波長変換光及び第2の非線形結晶を通過して光検出部で検出された第1の波長変換光の少なくとも1つの強度に基づいて第2の調整部を制御するプロセッサとを備える。
 本開示の他の1つの観点に係る位相整合方法は、第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、第1の非線形結晶から出力された第1の波長変換光と第2のレーザ光とに基づいて第2の波長変換光を生成する第2の非線形結晶とを備えた波長変換システムの位相整合方法であって、第2の非線形結晶を通過した第1の波長変換光及び第1のレーザ光の少なくとも1つを検出する工程と、検出された第1の波長変換光及び第1のレーザ光の少なくとも1つの強度に基づいて、第1の非線形結晶の結晶内で第1の波長変換光を位相整合させる工程と、第1の非線形結晶の結晶内で第1の波長変換光を位相整合させる調整を実施した後に、第2の非線形結晶から出力された第2の波長変換光及び第2の非線形結晶を通過した第1の波長変換光の少なくとも1つを検出する工程と、検出された第2の波長変換光及び第1の波長変換光の少なくとも1つの強度に基づいて、第2の非線形結晶の結晶内で第2の波長変換光を位相整合させる工程とを含む。
 本開示の他の1つの観点に係る電子デバイスの製造方法は、第1のレーザ光を出力する第1のレーザ装置と、第2のレーザ光を出力する第2のレーザ装置と、第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、第1の非線形結晶の結晶内で第1の波長変換光を位相整合させる第1の調整部と、第1の波長変換光の光路上に配置され、第1の波長変換光と第2のレーザ光とに基づいて第2の波長変換光を生成する第2の非線形結晶と、第2の非線形結晶の結晶内で第2の波長変換光を位相整合させる第2の調整部と、第2の非線形結晶から出力される光の光路上に配置される波長選択素子と、波長選択素子を通過することにより選択された波長の光を検出する光検出部と、第2の非線形結晶を透過して光検出部で検出された第1の波長変換光及び第1のレーザ光のうち少なくとも1つの強度に基づいて第1の調整部を制御し、光検出部で検出された第2の波長変換光及び第2の非線形結晶を透過して光検出部で検出された第2のレーザ光のうち少なくとも1つの強度に基づいて第2の調整部を制御するプロセッサと、を備える固体レーザシステムを用いて第3のレーザ光を生成し、第3のレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上に第3のレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、固体レーザシステムの構成を概略的に示す図である。 図2は、比較例に係る波長変換システムの構成例を概略的に示す。 図3は、実施形態1に係る固体レーザシステムに適用される波長変換システムの構成を概略的に示す。 図4は、非線形結晶への入射角度と変換波長出力との関係を示すグラフである。 図5は、初期アライメントのメインルーチンの例を示すフローチャートである。 図6は、変換光発見ルーチンの例を示すフローチャートである。 図7は、変換光発見ルーチンの動作イメージを示すグラフである。 図8は、変換光のピーク値探索ルーチンの例を示すフローチャートである。 図9は、変換光のピーク値探索ルーチンの動作イメージを示すグラフである。 図10は、実施形態2に係る波長変換システムに適用される波長測定部の構成を概略的に示す。 図11は、実施形態3に係る波長変換システムの構成を概略的に示す。 図12は、実施形態4に係る波長変換システムの構成を概略的に示す。 図13は、実施形態5に係る波長変換システムの構成を概略的に示す。 図14は、未変換光と変換光との出力の関係を模式的に示すグラフである。 図15は、実施形態5に適用される初期アライメントのメインルーチンの例を示すフローチャートである。 図16は、第3のCLBO結晶への入射角度と第1の和周波光(未変換光)出力との関係を模式的に示すグラフである。 図17は、第3のCLBO結晶の第1の和周波光出力測定に基づく第2の和周波光発見ルーチンの例を示すフローチャートである。 図18は、第1の和周波光出力測定に基づく第2の和周波光発見ルーチンの動作イメージを示すグラフである。 図19は、第1の和周波光(未変換光)のボトム値探索ルーチンの例を示すフローチャートである。 図20は、未変換光のボトム値探索ルーチンの動作イメージを示すグラフである。 図21は、実施形態6に係る固体レーザシステムに適用される波長変換システムの構成を概略的に示す。 図22は、複数の測定結果からフィッティング処理によってピーク位置を予測する演算処理の概念図である。 図23は、実施形態6に適用される変換光のピーク値探索ルーチンの例を示すフローチャートである。 図24は、実施形態7に係る波長変換システムの構成を概略的に示す。 図25は、実施形態8に係る波長変換システムの構成を概略的に示す。 図26は、露光装置の構成を概略的に示す。
実施形態
 -目次-
1.固体レーザシステムの概要
 1.1 構成
 1.2 動作
2.課題
3.実施形態1
 3.1 構成
 3.2 動作
 3.3 初期アライメントの制御例1
  3.3.1 初期アライメントメインルーチン
  3.3.2 変換光発見ルーチン
  3.3.3 変換光のピーク値探索ルーチン
 3.4 作用・効果
4.実施形態2
 4.1 構成
 4.2 動作
 4.3 作用・効果
5.実施形態3
 5.1 構成
 5.2 動作
 5.3 作用・効果
6.実施形態4
 6.1 構成
 6.2 動作
 6.3 作用・効果
7.実施形態5
 7.1 構成
 7.2 動作
 7.3 初期アライメントの制御例2
  7.3.1 初期アライメントメインルーチン
  7.3.2 第2の和周波光発見ルーチン
  7.3.3 未変換光のボトム値探索ルーチン
 7.4 作用・効果
 7.5 変形例
8.実施形態6
 8.1 構成
 8.2 動作
 8.3 変換光のピーク値探索ルーチン
 8.4 作用・効果
 8.5 変形例
9.実施形態7
 9.1 構成
 9.2 動作
 9.3 作用・効果
10.実施形態8
 10.1 構成
 10.2 動作
 10.3 作用・効果
11.非線形結晶の位相整合について
12.電子デバイスの製造方法
13.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.固体レーザシステムの概要
 1.1 構成
 図1は、固体レーザシステム1の構成を概略的に示す図である。図1に示すように、固体レーザシステム1は、第1のパルスレーザ光を出力する第1の固体レーザ装置10と、第2のパルスレーザ光を出力する第2の固体レーザ装置20と、波長変換システム30と、第1の高反射ミラー41と、ダイクロイックミラー51と、第2の高反射ミラー42と、第3の高反射ミラー43と、固体レーザシステム制御部60とを含む。
 第1の高反射ミラー41は、第2の固体レーザ装置20から出力される第2のパルスレーザ光を高反射するミラーである。第1の高反射ミラー41は、第2のパルスレーザ光を高反射して、ダイクロイックミラー51に入射させるように配置される。
 ダイクロイックミラー51は、第1の固体レーザ装置10と波長変換システム30との間の光路上に配置され、第1のパルスレーザ光の光路と第2のパルスレーザ光の光路とが一致するように配置される。ダイクロイックミラー51は、波長約515nmの第1のパルスレーザ光を高透過し、かつ波長約1554nmの第2のパルスレーザ光を高反射する膜がコートされている。ダイクロイックミラー51は、第1のパルスレーザ光と第2のパルスレーザ光とが互いの光路軸を一致させた状態で波長変換システム30に入射するように配置される。
 波長変換システム30は、第1のパルスレーザ光と第2のパルスレーザ光とに基づいて第3のパルスレーザ光を出力するように、ダイクロイックミラー51を透過した第1のパルスレーザ光とダイクロイックミラー51で反射された第2のパルスレーザ光との光路上に配置される。
 第2の高反射ミラー42及び第3の高反射ミラー43は、波長変換システム30から出力される波長約193.4nmの第3のパルスレーザ光を高反射する膜が基板にコートされている。第2の高反射ミラー42及び第3の高反射ミラー43を構成する基板は、例えば石英であってもよいし、CaFであってもよい。
 第1の固体レーザ装置10は、波長約515nmの第1のパルスレーザ光を出力するレーザ装置であって、第1の半導体レーザ101と、第1の半導体光増幅器(Semiconductor Optical Amplifier:SOA)111と、Ybファイバ増幅器120と、固体増幅器124と、LBO(LiB)結晶126とを含む。なお、図1及び以降の図面において、例えば「半導体レーザ1」や「SOA#1」等の数値を付した表記は、それぞれ第1の半導体レーザ、第1の半導体光増幅器(SOA)等を表す。
 第1の半導体レーザ101は、波長約1030nmでシングル縦モードのレーザ光をCW(Continuous Wave)発振する分布帰還型(Distributed Feedback:DFB)の半導体レーザである。分布帰還型半導体レーザを「DFBレーザ」という。DFBレーザは、電流制御及び/又は温度制御により発振波長を変更することができる。第1の半導体レーザ101から出力されるCWレーザ光を「第1のCWレーザ光」という。
 第1の半導体光増幅器111は、第1の半導体レーザ101の下流側に配置され、半導体素子にパルス電流を流すことによって、第1のCWレーザ光をパルス増幅する増幅器である。第1の半導体光増幅器111から出力される増幅パルスレーザ光を「第1の増幅パルスレーザ光」という。
 Ybファイバ増幅器120は、第1の半導体光増幅器111の下流側に配置される光ファイバ増幅器である。Ybファイバ増幅器120は、Ybがドープされた光ファイバに、図示しないCW励起半導体レーザから励起光を入力することによって、第1の増幅パルスレーザ光をさらにパルス増幅する。Ybファイバ増幅器120から出力される増幅パルスレーザ光を「第1のファイバ増幅パルスレーザ光」という。
 固体増幅器124は、Ybファイバ増幅器120の下流側に配置される。固体増幅器124は、例えば、YAG(Yttrium Aluminum Garnet)結晶に、Ybがドープされた固体増幅器であり、図示しない励起光源からの励起光によって、第1のファイバ増幅パルスレーザ光をさらに、パルス増幅する増幅器である。固体増幅器124から出力される増幅パルスレーザ光を「第1の固体増幅パルスレーザ光」という。
 LBO結晶126は、固体増幅器124の下流側に配置され、波長約1030nmの第1の固体増幅パルスレーザ光から波長約515nmの第2高調波光を生成する非線形結晶である。「非線形結晶」という用語は「非線形光学結晶」と同義である。LBO結晶126から波長約515nmの第1のパルスレーザ光が出力される。
 第2の固体レーザ装置20は、波長約1554nmの第2のパルスレーザ光を出力するレーザ装置であって、第2の半導体レーザ202と、第2の半導体光増幅器212と、Erファイバ増幅器220とを含む。
 第2の半導体レーザ202は、波長約1554nmでシングル縦モードのレーザ光をCW発振するDFBレーザである。第2の半導体レーザ202から出力されるCWレーザ光を「第2のCWレーザ光」という。
 第2の半導体光増幅器212は、第2の半導体レーザ202の下流側に配置され、半導体素子にパルス電流を流すことによって、第2のCWレーザ光をパルス増幅する増幅器である。第2の半導体光増幅器212から出力される増幅パルスレーザ光を「第2の増幅パルスレーザ光」という。
 Erファイバ増幅器220は、第2の半導体光増幅器212の下流側に配置される光ファイバ増幅器である。Erファイバ増幅器220は、Erがドープされた光ファイバに、図示しないCW励起半導体レーザから励起光を入力することによって、第2の増幅パルスレーザ光をさらにパルス増幅する。Erファイバ増幅器220から波長約1554nmの第2のパルスレーザ光が出力される。
 波長変換システム30は、非線形結晶である第1のCLBO(CsLiB10)結晶301と、第2のCLBO結晶302と、第3のCLBO結晶303と、第1のビームスプリッタ311と、第2のビームスプリッタ312と、第3のビームスプリッタ313とを含む。また、波長変換システム30は、第1の光センサ321と、第2の光センサ322と、第3の光センサ323と、第1の回転ステージ331と、第2の回転ステージ332と、第3の回転ステージ333と、波長変換システム制御部340とを含む。
 第1のCLBO結晶301、第1のビームスプリッタ311、第2のCLBO結晶302、第2のビームスプリッタ312、第3のCLBO結晶303及び第3のビームスプリッタ313は、ダイクロイックミラー51によって同軸となるように結合された第1のパルスレーザ光及び第2のパルスレーザ光のレーザ光路上に、この順番で配置される。
 第1のCLBO結晶301は、第1の回転ステージ331上に配置され、波長約515nmの光の第2高調波光(波長約257.5nm)を生成するように配置される。
 第1のビームスプリッタ311は、第1のCLBO結晶301と第2のCLBO結晶302との間の光路上に配置され、第1のビームスプリッタ311による反射光が第1の光センサ321に入射するように配置される。
 第1のビームスプリッタ311は、第2のパルスレーザ光と、波長約257.5nmの第2高調波光とを高透過する基板に、第2のパルスレーザ光を高透過し、波長約257.5nmの第2高調波光の一部を反射する膜がコートされている。
 第2のCLBO結晶302は、第2の回転ステージ332上に配置され、波長約515nmの第1のパルスレーザ光と第2のパルスレーザ光との和周波光である第1の和周波光(波長約220.9nm)を生成するように配置される。
 第2のビームスプリッタ312は、第2のCLBO結晶302と第3のCLBO結晶303との間の光路上に配置され、第2のビームスプリッタ312により反射された第1の和周波光が第2の光センサ322に入射するように配置される。
 第2のビームスプリッタ312は、第2のパルスレーザ光を高透過し、波長約220.9nmの第1の和周波光を高透過する基板に、第2のパルスレーザ光を高透過し、波長約220.9nmの第1の和周波光の一部を反射する膜がコートされている。
 第3のCLBO結晶303は、第3の回転ステージ333上に配置され、波長約220.9nmの第1の和周波光と第2のパルスレーザ光との和周波光である第2の和周波光(波長約193.4nm)を生成するように配置される。
 第3のビームスプリッタ313は、第3のCLBO結晶303の下流の光路上に配置され、第3の反射した第2の和周波光が光センサ3に入射するように配置される。
 第3のビームスプリッタ313は、波長約193.4nmの第2の和周波光を高透過する基板に、波長約193.4nmの第2の和周波光を高透過し、波長約193.4nmの第2の和周波光の一部を反射する膜がコートされている。
 第1の光センサ321、第2の光センサ322及び第3の光センサ323のそれぞれは、パルスエネルギを検出できるセンサであればよく、例えば、高速に応答するフォトダイオードや光電管や、平均パワーを測定するカロリーメータであってもよい。
 CLBO結晶は、大気中に配置すると空気中の水分を吸収して劣化するため、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303は、CLBO結晶と反応しにくい不活性ガス(例えば、Arガス)雰囲気中で、約120℃に温度制御されている。
 すなわち、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303のそれぞれは、図示しないヒータと温度センサとを含む結晶ホルダに固定され、第1のビームスプリッタ311、第2のビームスプリッタ312及び第3のビームスプリッタ313と、第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333と、第1の光センサ321、第2の光センサ322及び第3の光センサ323と共に、不活性ガスをパージしたガスセル内に配置される。ガスセルは、「CLBOセルボックス」、「CLBOセル」又は単に「セル」と呼ばれる場合がある。
 第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333のそれぞれはステージを回転させる図示しないアクチュエータを含む。
 固体レーザシステム制御部60と波長変換システム制御部340とのそれぞれは、プロセッサを用いて構成される。本開示のプロセッサとは、制御プログラムが記憶された記憶装置と、制御プログラムを実行するCPU(Central Processing Unit)とを含む処理装置である。プロセッサは本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
 固体レーザシステム制御部60と波長変換システム制御部340とのそれぞれは、1台又は複数台のコンピュータのハードウェア及びソフトウェアの組み合わせによって実現することが可能である。ソフトウェアはプログラムと同義である。プログラマブルコントローラはコンピュータの概念に含まれる。
 コンピュータは、例えば、CPU及び記憶装置を含んで構成され得る。記憶装置は、有体物たる非一時的なコンピュータ可読媒体であり、例えば、主記憶装置であるメモリ及び補助記憶装置であるストレージを含む。コンピュータ可読媒体は、例えば、半導体メモリ、ハードディスクドライブ(Hard Disk Drive:HDD)装置、若しくはソリッドステートドライブ(Solid State Drive:SSD)装置又はこれらの複数の組み合わせであってよい。プロセッサが実行するプログラムはコンピュータ可読媒体に記憶されている。
 また、固体レーザシステム制御部60と波長変換システム制御部340などの各種の制御装置や処理装置の機能の一部又は全部は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)に代表される集積回路を用いて実現してもよい。
 1.2 動作
 固体レーザシステム制御部60は、波長変換システム制御部340に、波長変換準備信号を送信する。波長変換システム制御部340は、波長変換準備信号を受信すると、不活性ガスのパージを制御し、かつ、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303の各結晶の温度が約120℃となるように各結晶ホルダのヒータを制御する。
 固体レーザシステム制御部60は、第1の半導体レーザ101に発振波長λc1(1030nm)のレーザ光をCW発振させ、かつ、第2の半導体レーザ202に発振波長λc2(1554nm)のレーザ光をCW発振させる。
 固体レーザシステム制御部60は、第1の半導体レーザ101及び第2の半導体レーザ202の両方から波長OK信号を受信した場合に、固体レーザシステム制御部60は、第1の固体レーザ装置10から出力される第1のパルスレーザ光と第2の固体レーザ装置20から出力される第2のパルスレーザ光とが第1のCLBO結晶301において、同じタイミングで入射するように、第1の半導体光増幅器111及び第2の半導体光増幅器212のそれぞれにトリガタイミングを設定する。
 ここで、固体レーザシステム1の目標中心波長λctが193.4nmであって、第1の固体レーザ装置10の目標中心波長λ1ctが515nm、第2の固体レーザ装置20の目標中心波長λ2ctが1554nmである場合について具体的に説明する。
 第1の固体レーザ装置10においては、第1の半導体レーザ101から中心波長1030nmのCW発振のレーザ光(第1のCWレーザ光)が出力される。
 第1のCWレーザ光は、第1の半導体光増幅器111によってパルス増幅されて、第1の増幅パルスレーザ光が生成される。
 第1の半導体光増幅器111から出射された第1の増幅パルスレーザ光は、Ybファイバ増幅器120と固体増幅器124とによって増幅されて、LBO結晶126に入射する。
 LBO結晶126では、入射したパルスレーザ光が波長1030nmの光の第2高調波光(波長515nm)である第1のパルスレーザ光に波長変換される。LBO結晶126によって波長変換された第1のパルスレーザ光は、ダイクロイックミラー51を介して波長変換システム30に入射する。
 一方、第2の固体レーザ装置20においては、第2の半導体レーザ202から中心波長1554nmのCW発振のレーザ光(第2のCWレーザ光)が出力される。
 第2のCWレーザ光は、第2の半導体光増幅器212によってパルス増幅されて、パルスレーザ光(第2の増幅パルスレーザ光)を生成する。
 第2の増幅パルスレーザ光は、Erファイバ増幅器220によって増幅され、第2のパルスレーザ光として出力される。
 第2のパルスレーザ光は、第1の高反射ミラー41とダイクロイックミラー51とを介して、第1のパルスレーザ光と空間的に同じ光路に結合されて波長変換システム30に入射する。
 固体レーザシステム制御部60は、第1のパルスレーザ光が一定のパルスエネルギとなるように、第1の固体レーザ装置10のYbファイバ増幅器120と固体増幅器124とを制御する。
 固体レーザシステム制御部60は、第2のパルスレーザ光が一定のパルスエネルギとなるように、第2の固体レーザ装置20のErファイバ増幅器220を制御する。
 固体レーザシステム制御部60は、波長変換システム制御部340に制御命令を送信する。
 波長変換システム30においては、第1のパルスレーザ光(515nm)は、第1のCLBO結晶301によって、第2高調波光に変換されて波長257.5nmのパルスレーザ光を生成する。
 第1のビームスプリッタ311では、波長257.5nmのパルスレーザ光の一部はサンプルされ、第1の光センサ321に入射して、波長257.5nmのパルスレーザ光のパルスエネルギが検出される。
 波長変換システム制御部340は、第1の光センサ321での検出値が最大となるように、第1の回転ステージ331を操作して第1のCLBO結晶301への入射角度を制御する。
 次に、波長257.5nmの第2高調波光と波長1554nmの第2のパルスレーザ光とは、第1のビームスプリッタ311を介して第2のCLBO結晶302に入射する。
 第2のCLBO結晶302においては、波長257.5nmの第2高調波光と波長1554nmの第2のパルスレーザ光との和周波である波長220.9nmの第1の和周波光を生成する。
 第2のビームスプリッタ312では、波長220.9.nmの第1の和周波光の一部はサンプルされ、第2の光センサ322に入射して、波長220.9nmの第1の和周波光のパルスエネルギが検出される。
 波長変換システム制御部340は、第2の光センサ322での検出値が最大となるように、第2の回転ステージ332を操作して第2のCLBO結晶302への入射角度を制御する。
 第3のCLBO結晶303においては、波長220.9nmの第1の和周波光と波長1554nmの第2のパルスレーザ光との和周波である波長193.4nmの第2の和周波光を生成する。
 第3のビームスプリッタ313では、波長193.4nmの第2の和周波光の一部はサンプルされ、第3の光センサ323に入射して、波長193.4nmの第2の和周波光のパルスエネルギが検出される。また、第3のビームスプリッタ313を透過した第2の和周波光は第3のパルスレーザ光として固体レーザシステム1から出力される。
 波長変換システム制御部340は、第3の光センサ323での検出値が最大となるように、第3の回転ステージ333を操作して第3のCLBO結晶303への入射角度を制御する。
 波長変換システム制御部340は、第1の光センサ321、第2の光センサ322及び第3の光センサ323のそれぞれの検出値が最大値付近に制御されると、固体レーザシステム制御部60に波長変換システム制御OKの信号を送信する。
 2.課題
 図2は、比較例に係る波長変換システム30の構成例を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 波長変換システム30は、CLBOセルボックス350を含む。CLBOセルボックス350は、入射ウインドウ361と出射ウインドウ362とを備えた容器364を含み、容器364内に第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303と、第1のビームスプリッタ311、第2のビームスプリッタ312及び第3のビームスプリッタ313と、第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333と、第1の光センサ321、第2の光センサ322及び第3の光センサ323とが収容される。なお、第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333と、第1の光センサ321、第2の光センサ322及び第3の光センサ323とについては、それぞれの一部が容器364の外側に出ていてもよい。
 CLBO結晶は、吸湿性があり、セル内部で120℃程度に加熱して、温度を維持した状態で使用する必要がある。
 そのため、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303は、1つのセル中に配置し、波長変換効率を改善するために、結晶間の距離をできるだけ小さくする必要がある。
 また、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303は、波長変換が発生し、かつその変換効率が最大となるように、各結晶の角度(それぞれの結晶への光の入射角度)を制御する必要がある。
 3.実施形態1
 3.1 構成
 図3は、実施形態1に係る固体レーザシステム1に適用される波長変換システム31の構成を概略的に示す。実施形態1では、図2に示した波長変換システム30の代わりに、図3に示す波長変換システム31が適用される。図3に示す構成について、図2と異なる点を説明する。
 波長変換システム31は、CLBOセルボックス350に代えて、CLBOセルボックス351を備える。CLBOセルボックス351は、図2で説明した第1のビームスプリッタ311、第2のビームスプリッタ312及び第3のビームスプリッタ313と、第1の光センサ321、第2の光センサ322及び第3の光センサ323とを備えておらず、容器364内において、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303がこの順で一列に並んで配置されており、各結晶に対応する第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333が配置されている。容器364内には、図示しないガス供給口から不活性ガスが供給される。
 波長変換システム31は、図2における第1のビームスプリッタ311、第2のビームスプリッタ312及び第3のビームスプリッタ313と、第1の光センサ321、第2の光センサ322及び第3の光センサ323との代わりに、分配光学素子370と、レンズ372と、波長測定部374とを備える。波長測定部374は、波長分散素子375と光検出器376とを含む。
 分配光学素子370は、ビームスプリッタなどの分配ミラーであってよい。分配光学素子370として、例えば、ビームサンプラースプリッタやダイクロイックミラーなどを用いることができる。
 波長分散素子375は、波長分散するためのグレーティングや回折格子等を用いてもよいし、フィルタ等を用いてもよい。
 光検出器376は、波長分散された各波長の光強度を検出する受光センサを含む。光検出器376は、波長によって感度が異なるラインセンサやCCD素子、フィルタと感知型の素子とを組み合わせて用いてもよい。
 波長約515nmの第1のパルスレーザ光は本開示における「第1のレーザ光」の一例である。第1の固体レーザ装置10は本開示における「第1のレーザ装置」の一例である。波長約1554nmの第2のパルスレーザ光は本開示における「第2のレーザ光」の一例である。第2の固体レーザ装置20は本開示における「第2のレーザ装置」の一例である。第1のCLBO結晶301は本開示における「第1の非線形結晶」の一例である。第1の回転ステージ331は本開示における「第1の調整部」及び「第1の角度調整機構」の一例である。第2のCLBO結晶302は本開示における「第2の非線形結晶」の一例である。第2の回転ステージ332は本開示における「第2の調整部」及び「第2の角度調整機構」の一例である。第3のCLBO結晶303は本開示における「第3の非線形結晶」の一例である。第3の回転ステージ333は本開示における「第3の調整部」の一例である。波長分散素子375は本開示における「波長選択素子」の一例である。光検出器376は本開示における「光検出部」の一例である。光検出器376に適用されるラインセンサは本開示における「複数の光検出素子」の一例である。波長変換システム制御部340は本開示における「プロセッサ」の一例である。波長変換システム31から出力される波長約193.4nmのパルスレーザ光は本開示における「第3のレーザ光」の一例である。
 3.2 動作
 CLBOセルボックス351の内部に並べた第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303によって波長変換を行い、出射ウインドウ362を介して出力された光の一部を分配光学素子370で分配する。波長変換の動作は図1で説明したとおりである。分配光学素子370によって分配されたサンプル光は、レンズ372を介して波長測定部374に入射する。波長測定部374では波長分散素子375によって波長分散し、ラインセンサ等の光検出器376を用いて各波長の強度を測定する。
 第1のパルスレーザ光(515nm)の測定は、第1のパルスレーザ光の出力の安定性の確認や第2高調波光の変換量を確認するために必要である。第1のパルスレーザ光の出力を測定しておくことにより、第2高調波光の出力が変動した場合に、その原因が第1のパルスレーザ光由来なのか、第1のCLBO結晶301由来なのかを分別することができる。
 第2のパルスレーザ光(1554nm)についても同様に出力を測定することが可能であるが、測定結果を利用していない場合は光検出器376において検出しなくてもよい。一部未変換光は、CLBOセルボックス351を透過しているので検出は可能である。
 波長変換システム制御部340は、各波長の強度を最適化するため、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303のそれぞれに対応する第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333を操作して、回転角度を変化させることにより各CLBO結晶の調整(アライメント)を行う。波長変換システム制御部340は、それぞれの結晶による変換後の波長の光出力を最大化することで結晶角度位置の初期調整(初期アライメント)を行う。波長変換によって発生する変換後の波長の光出力を「変換波長出力」といい、変換後の波長の光を「変換光」という。
 3.3 初期アライメントの制御例1
 3.3.1 初期アライメントメインルーチン
 実施形態1に係る波長変換システム31に適用される位相整合方法の例を説明する。CLBO結晶の初期アライメントでは、各CLBO結晶の角度を、発生する各変換光(第2高調波光、第1の和周波光及び第2の和周波光)の出力増減から判断し、最適な結晶角度に調整する。
 図4は、非線形結晶への入射角度と変換波長出力との関係を示すグラフである。図4のように、変換波長出力が最大となる入射角度となるように各CLBO結晶の角度調整が行われる。
 各CLBO結晶の角度調整は、光が入射する順番ごとに行う。つまり、最初に、第1のCLBO結晶301について角度調整を行い、第1のCLBO結晶301が適正な角度に調整された状態で、次に、第2のCLBO結晶302について角度調整を行い、第1のCLBO結晶301及び第2のCLBO結晶302が適正な角度に調整された状態で、最後に、第3のCLBO結晶303について角度調整を行う。
 それぞれのCLBO結晶について、角度を変更しながら対象波長の強度を測定し、変換光の発生までを探索する変換光発見ルーチンを実施後、変換波長出力の最大値を探索するピーク値探索ルーチンを実施することにより、最適な角度に調整する。
 図5は、初期アライメントのメインルーチンの例を示すフローチャートである。図5に示す各ステップの処理は、例えば、波長変換システム制御部340として機能するプロセッサがプログラムの命令を実行することにより実現される。
 初期アライメントが開始されると、ステップS11において、波長変換システム制御部340は第1のCLBO結晶301の第2高調波光発見ルーチンを実施する。第1のCLBO結晶301の第2高調波光発見ルーチンでは、第1のCLBO結晶301により生成される第2高調波光(257.5nm)の光強度が閾値以上となる角度位置が見つかるまで第1のCLBO結晶301についての角度変更の操作が行われる。ステップS11の工程は、本開示における「第1の波長変換光を発見する工程」の一例である。
 波長変換システム制御部340は、第2高調波光の光強度が閾値以上となる角度位置が見つかるとステップS12に進む。
 ステップS12において、波長変換システム制御部340は第1のCLBO結晶301の第2高調波光ピーク値探索ルーチンを実施する。第1のCLBO結晶301の第2高調波光ピーク値探索ルーチンでは、第2高調波光の光強度が最大値となるように第1のCLBO結晶301の角度調整が行われる。
 次いで、ステップS13において、波長変換システム制御部340は第2のCLBO結晶302の第1の和周波光発見ルーチンを実施する。第2のCLBO結晶302の第1の和周波光発見ルーチンでは、第2のCLBO結晶302により生成される第1の和周波光(220.9nm)の光強度が閾値以上となる角度位置が見つかるまで第2のCLBO結晶302についての角度変更の操作が行われる。ステップS13の工程は、本開示における「第2の波長変換光を発見する工程」の一例である。
 波長変換システム制御部340は、第1の和周波光の光強度が閾値以上となる角度位置が見つかるとステップS14に進む。
 ステップS14において、波長変換システム制御部340は第2のCLBO結晶302の第1の和周波光ピーク値探索ルーチンを実施する。第2のCLBO結晶302の第1の和周波光ピーク値探索ルーチンでは、第1の和周波光の光強度が最大値となるように第2のCLBO結晶302の角度調整が行われる。
 次いで、ステップS15において、波長変換システム制御部340は第3のCLBO結晶303の第2の和周波光発見ルーチンを実施する。第3のCLBO結晶303の第2の和周波光発見ルーチンでは、第3のCLBO結晶303により生成される第2の和周波光(193.4nm)の光強度が閾値以上となる角度位置が見つかるまで第3のCLBO結晶303についての角度変更の操作が行われる。波長変換システム制御部340は、第2の和周波光の光強度が閾値以上となる角度位置が見つかるとステップS16に進む。
 ステップS16において、波長変換システム制御部340は第3のCLBO結晶303の第2の和周波光ピーク値探索ルーチンを実施する。第3のCLBO結晶303の第2の和周波光ピーク値探索ルーチンでは、第2の和周波光の光強度が最大値となるように第3のCLBO結晶303の角度調整が行われる。ステップS16の処理が終わると、図5のフローチャートを終了する。
 3.3.2 変換光発見ルーチン
 図6は、変換光発見ルーチンの例を示すフローチャートである。図6に示すフローチャートは、図5のステップS11、ステップS13及びステップS15に適用される。
 変換光発見ルーチンが開始されると、ステップS21において波長変換システム制御部340は変換光の出力を測定する。波長変換システム制御部340は、光検出器376から対象波長の光強度情報を取得する。
 次いで、ステップS22において、波長変換システム制御部340は変換光の出力測定値と、波長変換発生判定用の閾値とを比較する。ステップS22における比較の結果、出力測定値が閾値に満たない場合、波長変換システム制御部340はステップS23に進む。
 ステップS23において、波長変換システム制御部340は結晶角度が移動範囲限界に達したかどうかを判定する。ステップS23の判定結果がNo判定である場合、つまり、結晶角度が移動範囲限界に達していない場合、波長変換システム制御部340はステップS25に進む。
 ステップS25において、波長変換システム制御部340は対象とするCLBO結晶の角度を変更し、ステップS21に戻る。
 その一方、ステップS23の判定結果がYes判定である場合、つまり、結晶角度が移動範囲限界に達している場合、波長変換システム制御部340はステップS24に進む。
 ステップS24において、波長変換システム制御部340は、移動範囲などのパラメータを変更した後、ステップS25に進み、ステップS21に戻る。変換光の出力測定値が閾値を満たすまで、ステップS21~ステップS25が繰り返される。
 ステップS22における比較の結果、出力測定値が閾値以上になると、図6のフローチャートを終了し、図5のメインルーチンに復帰する。
 図7は、変換光発見ルーチンの動作イメージを示すグラフである。図7の横軸は非線形結晶への入射角度、縦軸は変換波長出力を表す。波長変換後の変換光の光強度は、非線形結晶への入射角度に対してsinc関数(ジンク関数)的に変化する。その一方で、図7においてパターンAスタート地点やパターンBスタート地点で示すように、波長変換が発生していない入射角度では変換光の光出力がないため、変換光発見ルーチンを実施して、波長変換による変換光の出力が所定の閾値以上となる角度を探索する必要がある。
 変換光発見ルーチンでは、変換光の出力(強度)を測定し、対象波長が波長変換によって発生したとみなす強度に対応する閾値を満たしているか比較される。この閾値に対応する強度は、変換光発見ルーチンの後に実施される変換光のピーク値探索ルーチンが問題なく機能するために十分な強度である必要がある。
 変換光の強度が閾値を満たしていない場合は、設定された移動範囲限界内で結晶の角度を大きな幅で変更して変換光の出力を測定し、閾値を満たすまで角度変更の移動を繰り返す。移動範囲限界内で閾値を満たす角度が見つからない場合は、再度範囲などのパラメータを変更して継続する。この変更は手動や係数処理による半自動処理でもよい。
 変換光の出力が安定するまでの静定時間を経過した後の測定値を採用したり、所定の時間間隔で複数回測定して得られた測定値の平均値を採用したりすることでシステムや測定系のノイズ除去を行うことが好ましい。
 3.3.3 変換光のピーク値探索ルーチン
 変換光発見ルーチンによって波長変換の発生を確認した後、変換光の波長の強度を最大化するための「変換光のピーク値探索ルーチン」に移行する。
 図8は、変換光のピーク値探索ルーチンの例を示すフローチャートである。図8に示すフローチャートは、図5のステップS12、ステップS14及びステップS16に適用される。
 ステップS31において、波長変換システム制御部340は変換光の出力測定1(第1の出力測定工程)を行う。この第1の出力測定工程により、角度変更前(移動前)の変換光の光強度が測定される。
 次いで、ステップS32において、波長変換システム制御部340は対象のCLBO結晶について所定の角度変更量で角度変更を行う。
 ステップS33において、波長変換システム制御部340は変換光の出力測定2(第2の出力測定工程)を行う。この第2の出力測定工程により、角度変更後(移動後)の変換光の光強度が測定される。ステップS33の工程は本開示における「第1の波長変換光を検出する工程」、「第2の波長変換光を検出する工程」及び「第3の波長変換光を検出する工程」の一例である。また、ステップS33による測定結果は本開示における「第1の波長変換光の検出結果」及び「第2の波長変換光の検出結果」の一例である。
 次いで、ステップS34において、波長変換システム制御部340は変換光の強度測定値が最大値を更新したか否かを判定する。ここでいう「最大値」は、変換光のピーク値探索ルーチンの実行中に測定された強度測定値の中で最も大きな値として波長変換システム制御部340のメモリに記録される暫定的な最大値である。図8のフローチャートを開始する際に、最大値の記録はリセットされ、その後、ステップS33における測定結果に基づき、ステップS35において最大値として記録される値が更新処理される。
 ステップS34の判定の結果、強度測定値が最大値を超えた場合、波長変換システム制御部340はステップS35に進み、最大値の更新処理を行ってから、ステップS36に進む。
 一方、ステップS34の判定の結果、強度測定値が最大値を超えない場合、波長変換システム制御部340はステップS36に進む。
 ステップS36において、波長変換システム制御部340は角度変更の前後における変換光の強度測定結果の増減比較を行う。角度変更の前後で変換光の強度測定値が増加した場合、波長変換システム制御部340はステップS32に戻り、ステップS32~S36を繰り返す。
 その一方で、ステップS36の判定の結果、角度変更の前後で変換光の強度測定値が減少した場合、波長変換システム制御部340はステップS37に進み、折り返し数判定を行う。折り返し数は、角度の移動方向を変更(反転)した回数である。折り返し数について、予め判定基準値が定められており、折り返し数と判定基準値とが比較される。折り返し数が判定基準値未満である場合、波長変換システム制御部340はステップS38に進む。
 ステップS38において、波長変換システム制御部340は移動方向を変更し角度変更の幅(角度変更量)を減少させて、ステップS32に戻る。
 その一方、ステップS37の判定の結果、折り返し数が判定基準値以上である場合、波長変換システム制御部340はステップS40に進む。ステップS40において、波長変換システム制御部340は最大値を記録した座標(角度位置)付近まで角度を移動させ、変換光の出力測定を行う。ステップS35及びステップS40の工程は本開示における「第1の波長変換光の強度の最大値を特定する工程」及び「第2の波長変換光の強度の最大値を特定する工程」の一例である。
 次いで、ステップS41において、波長変換システム制御部340は変換光の出力が設定閾値を満たしているか否かを判定する。変換光の強度測定値と設定閾値とを比較して強度測定値が設定閾値以上である場合は、設定閾値を満たすと判定される。変換光の出力が設定閾値を満たす場合、波長変換システム制御部340は図8のフローチャートを終了して図5のメインルーチンに復帰する。
 一方、ステップS41の判定の結果、変換光の出力が設定閾値を満たさない場合、波長変換システム制御部340はステップS42に進み、パラメータを変更してステップS31に戻り、変換光のピーク値探索ルーチンを繰り返す。
 図9は、変換光のピーク値探索ルーチンの動作イメージを示すグラフである。ここでは折り返し動作が3回まで許容されている例が示されている。横軸は、結晶への入射角度を表し、縦軸は変換波長出力を表す。図9の例では、点Cで示す角度位置から探索ルーチンが開始され、4回の角度変更で点Dまで移動する(1回目の走査)。点Dにて移動方向が反転され、角度変更の幅を小さくして2回目の走査が行われる。2回目の走査において、点Dから点Eまで4回の角度変更により移動する。点Eにて移動方向が再び反転され、角度変更の幅をさらに小さくして3回目の走査が行われる。3回目の走査において、点Eから点Fまで、3回の角度変更で移動する。点Fに到来すると、折り返し数の許容上限に達したため、4回目の走査は実施せずに、点Fから最大値付近(点G)に移動させる。
 このように、変換光のピーク値探索ルーチンは、変換光の出力測定と、CLBO結晶の角度変更とを行い、その対象波長の強度の増減判定の結果に基づいて、移動方向を反転させ、角度変更の間隔(角度変更量)を狭めながら、所定の折り返し回数だけ走査を繰り返す。その際に最大値と、最大値を記録した座標(角度位置)とを関連付けて記録しておき、角度変更の繰り返し後に、最大値を記録した座標付近に移動させる。最大値を記録した座標付近での変換光の光出力の測定強度が設定閾値を満たす場合は調整完了とし、満たしていない場合は再度パラメータを変更し、ルーチンを繰り返す。
 強度の増減判定は移動前の測定強度と移動後の測定強度を比較するが、さらに移動前々などの複数の測定結果から判定することもある。例えば、2点比較や3点以上の多点比較であってもよい。
 3.4 作用・効果
 実施形態1に係る波長変換システム31によれば、変換光の光強度を測定するための測定系が3つのCLBO結晶の配列における最終段のみに設けられており、図2に示す比較例に比べて、CLBO結晶間にダイクロイックミラーなどの光学素子がなく、光の透過ロスが少ない。よって、実施形態1に係る波長変換システム31によれば、図2に示す比較例に比べて、波長変換効率を高めることができる。
 また、実施形態1によれば、CLBO結晶間に光学素子を配置する必要がないことから、図2に示す比較例に比べて、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303を収容するCLBOセルボックス351の大きさを小型化することができる。
 4.実施形態2
 4.1 構成
 図10は、実施形態2に係る波長変換システムに適用される波長測定部380の構成を概略的に示す。図3で説明した波長測定部374に代えて、図10に示す波長測定部380が適用されてもよい。
 波長測定部380は、ツェルニターナ型分光器381と、ラインセンサ386とを含む。ツェルニターナ型分光器381は、入射スリット382と、第1の凹面ミラー383と、グレーティング384と、第2の凹面ミラー385とを含む。ラインセンサ386はフォトダイオードアレイ素子387を含む。ラインセンサ386の受光信号は波長変換システム制御部340に送られる。
 4.2 動作
 分配光学素子370(図3参照)によって分配されたサンプル光はレンズ372によって集光されて入射スリット382から入射され、コリメータミラーとなる第1の凹面ミラー383によって収束される。収束された光はグレーティング384に当たり、個々の波長(色)毎に、横方向に分散される。分散された光は、フォーカスミラーとなる第2の凹面ミラー385によってラインセンサ386で結像される。グレーティング384は本開示における「波長選択素子」の一例である。
 4.3 作用・効果
 実施形態2における波長測定部380は、実施形態1における波長測定部374に比べてシステムの構築は複雑で高価になるものの、複数の波長の出力測定値を一度に取得することが可能である。また、波長測定部380によれば、各波長のスペクトル形状も取得可能である。
 5.実施形態3
 5.1 構成
 図11は、実施形態3に係る波長変換システム33の構成を概略的に示す。実施形態3では、図3に示した波長変換システム31の代わりに、図11に示す波長変換システム33が適用される。図11に示す構成について、図3と異なる点を説明する。
 波長変換システム33は、図3における波長測定部374に代えて、波長測定部390を含む。波長測定部390は、複数のダイクロイックミラー391、392、393と、光強度を検出する複数の強度センサ401、402、403と、ダンパー406とを含む。すなわち、波長ごとの光強度を測定するための測定系として、複数のダイクロイックミラー391、392、393と、光強度を検出する複数の強度センサ401、402、403とを組み合わせて使用してもよい。波長測定部390は、ダイクロイックミラー391、392、393のそれぞれにおいて、対象波長以外を反射若しくは透過させ、対象波長の出力を強度センサ401、402、403にて感知する。
 ダイクロイックミラー391は、分配光学素子370とダンパー406との間の光路上に配置される。ダイクロイックミラー391は、波長約515nmの第1のパルスレーザ光を高透過し、かつ波長約257.5nmの第2高調波光、波長約220.9nmの第1の和周波光及び波長約193.4nmの第2の和周波光を高反射する膜がコートされている。
 ダイクロイックミラー392は、ダイクロイックミラー391と強度センサ401との間の光路上に配置される。ダイクロイックミラー392は、波長約257.5nmの第2高調波光を高透過し、かつ波長約220.9nmの第1の和周波光及び波長約193.4nmの第2の和周波光を高反射する膜がコートされている。
 ダイクロイックミラー393は、ダイクロイックミラー392と強度センサ403との間の光路上に配置される。ダイクロイックミラー393は、波長約220.9nmの第1の和周波光を高透過し、かつ波長約193.4nmの第2の和周波光を高反射する膜がコートされている。
 ダイクロイックミラー393は、ダイクロイックミラー393で反射した波長約193.4nmの第2の和周波光が強度センサ402に入射するように配置される。
 強度センサ401、402、403は、波長変換システム制御部340と接続される。複数の強度センサ401、402、403は、本開示における「光検出部」の一例である。ダイクロイックミラー391、392、393は本開示における「波長選択素子」の一例である。
 5.2 動作
 分配光学素子370によって分配されたサンプル光は、ダイクロイックミラー391に入射する。ダイクロイックミラー391を透過した波長約515nmの第1のパルスレーザ光は、ダンパー406に吸収される。ダイクロイックミラー391で反射され、ダイクロイックミラー392を透過した波長約257.5nmの第2高調波光は、強度センサ401に入射する。強度センサ401によって波長約257.5nmの第2高調波光の出力が測定される。
 ダイクロイックミラー391、392でそれぞれ反射され、ダイクロイックミラー393を透過した波長約220.9nmの第1の和周波光は、強度センサ403に入射する。強度センサ403によって波長約220.9nmの第1の和周波光の出力が測定される。
 ダイクロイックミラー391、392、393でそれぞれ反射された波長約193.4nmの第2の和周波光は、強度センサ402に入射する。強度センサ402によって波長約193.4nmの第2の和周波光の出力が測定される。
 強度センサ401、402、403のそれぞれが検出した光強度情報は、波長変換システム制御部340に送られる。
 5.3 作用・効果
 実施形態3における波長測定部390は、単体の強度センサ401、402、403と、ダイクロイックミラー391、392、393との組み合わせで構成されるため、構築が簡単にできる。また、各センサには分離された波長の光が入射するため、分離されていない波長の光を1つのセンサに入射させる場合と比べて、高精度かつ容易に波長を検出することができるため、CLBO結晶の角度調整を高精度かつ容易にできる。
 6.実施形態4
 6.1 構成
 図12は、実施形態4に係る波長変換システム34の構成を概略的に示す。実施形態4では、図3に示した波長変換システム31の代わりに、図12に示す波長変換システム34が適用される。図12に示す構成について、図3と異なる点を説明する。
 波長変換システム34は、図3における波長測定部374に代えて、波長測定部410を含む。波長測定部410は、複数の分配光学素子411、412と、複数の波長フィルタ421、422、423と、複数の強度センサ431、432、433とを含む。すなわち、波長ごとの光強度を測定するための測定系として、分配光学素子411、412と、波長フィルタ421、422、423との組み合わせを使用してもよい。
 波長測定部410は、複数の分配光学素子411、412にて、複数の混合波長光を分配し、対象波長以外は波長フィルタ421、422、423で分離し、それぞれの対象波長の出力を強度センサ431、432、433にて感知する。
 分配光学素子411と、分配光学素子412と、波長フィルタ423とは、この順番で、分配光学素子370と強度センサ433との間の光路上に配置される。
 分配光学素子411は、分配光学素子370によって反射されたサンプル光の一部を反射して、その反射光が波長フィルタ421に入射するように配置される。
 波長フィルタ421は、分配光学素子411と強度センサ431との間の光路上に配置される。波長フィルタ421は、入射する混合波長光のうち波長約257.5nmの第2高調波光を選択的に透過する。強度センサ431は、波長フィルタ421を透過した第2高調波光を受光するように配置される。
 分配光学素子412は、分配光学素子411を透過した混合波長光の一部を反射してその反射光が波長フィルタ422に入射するように配置される。
 波長フィルタ422は、分配光学素子412と強度センサ432との間の光路上に配置される。波長フィルタ422は、入射する混合波長光のうち波長約220.9nmの第1の和周波を選択的に透過する。強度センサ432は、波長フィルタ422を透過した第1の和周波光を受光するように配置される。
 波長フィルタ423は、分配光学素子412を透過した混合波長光のうち波長約193.4nmの第2の和周波光を選択的に透過する。強度センサ433は、波長フィルタ423を透過した第2の和周波光を受光するように配置される。
 強度センサ431、432、433は、波長変換システム制御部340と接続される。
 6.2 動作
 分配光学素子370によって分配されたサンプル光は、分配光学素子411に入射する。分配光学素子411で反射されたサンプル光は波長フィルタ421に入射する。波長フィルタ421を透過した波長約257.5nmの第2高調波光は、強度センサ431に入射する。強度センサ431によって波長約257.5nmの第2高調波光の出力が測定される。
 分配光学素子411を透過して分配光学素子412で反射されたサンプル光は波長フィルタ422に入射する。波長フィルタ422を透過した波長約220.9nmの第1の和周波光は強度センサ432に入射する。強度センサ432によって波長約220.9nmの第1の和周波光の出力が測定される。
 分配光学素子411、412を透過したサンプル光は波長フィルタ423に入射する。波長フィルタ423を透過した波長約193.4nmの第2の和周波光は、強度センサ433に入射する。強度センサ433によって波長約193.4nmの第2の和周波光の出力が測定される。
 強度センサ431、432、433のそれぞれが検出した光強度情報は、波長変換システム制御部340に送られる。
 6.3 作用・効果
 実施形態4における波長測定部410は、単体の強度センサ431、432、433と、波長フィルタ421、422、423との組み合わせで構成されるため、システムの構築が簡単にできる。また、各センサには分離された波長の光が入射するため、分離されていない波長の光を1つのセンサに入射させる場合と比べて、高精度かつ容易に波長を検出することができるため、CLBO結晶の角度調整を高精度かつ容易にできる。
 7.実施形態5
 7.1 構成
 図13は、実施形態5に係る波長変換システム35の構成を概略的に示す。図13に示す構成について、図3と異なる点を説明する。実施形態1~4では、変換光の強度を測定し、測定された変換光の強度に基づいてCLBO結晶の角度を調整する例を説明したが、このような構成に限らず、未変換光の強度を測定し、測定された未変換光の強度に基づいてCLBO結晶の角度を調整することも可能である。
 実施形態5に係る波長変換システム35は、図3の分配光学素子370に代えて、ダイクロイックミラー371を備え、第2の和周波光(波長約193.4nm)の損失を最小限にするため、ダイクロイックミラー371にて第2の和周波光以外の他の波長だけを透過させ、このうち未変換分の第1の和周波光(波長約220.9nm)の強度比を用いて第3のCLBO結晶303の角度を調整する構成となっている。
 なお、図13では、ダイクロイックミラー371にて第2の和周波光以外の他の波長だけを透過させる構成を例示するが、かかる構成に代えて、ダイクロイックミラー371にて第2の和周波光以外の他の波長だけを反射する構成を採用してもよい。
 図13に示すダイクロイックミラー371は、第2の和周波光(波長約193.4nm)を高反射し、他の波長を高透過する膜がコートされている。波長変換システム35における第3の高反射ミラー43は、ダイクロイックミラー371で反射された第2の和周波光を反射するように配置される。
 波長変換システム35は、図3の波長測定部374に代えて、波長測定部450を含む。波長測定部450は、波長分散素子452とラインセンサ454とを含み、ダイクロイックミラー371の透過光が波長分散素子452に入射するように配置される。
 7.2 動作
 ダイクロイックミラー371を透過した光は、波長測定部450の波長分散素子452に入射する。波長測定部450では波長分散素子452によって波長分散し、ラインセンサ454を用いて各波長の強度を測定する。
 ラインセンサ454を用いて第1のパルスレーザ光(波長約515nm)、第2高調波光(波長約257.5nm)及び第1の和周波光(波長約220.9nm)の各波長の強度を測定する点は実施形態1と同様であり、第1のCLBO結晶301及び第2のCLBO結晶302についての角度の調整動作は、実施形態1と同様である。
 波長変換システム35では、第3のCLBO結晶303の角度を調整する際に、第1の和周波光の未変換光の強度を利用する。
 図14は、未変換光と変換光との出力の関係を模式的に示すグラフである。図14の横軸はCLBO結晶への入射角度を表し、縦軸は光出力の強度を表す。CLBO結晶での変換光が増大すると、その分未変換光の出力は減少する。そのため、測定光路や損失又は感度の関係で変換光の出力を参照できない場合に、未変換光の強度や挙動を参照することでCLBO結晶の角度を調整することも可能である。
 例えば、実施形態5では、波長約193.4nmの第2の和周波光の出力を直接的に測定できない構造のため、第1のCLBO結晶301と第2のCLBO結晶302とのそれぞれの角度調整は変換光の出力を測定して、変換光の最大化を行うが、第3のCLBO結晶303の角度調整を行う場合は、波長約220.9nmの第1の和周波光の出力(未変換光の出力)が最小化するように角度を調整する。
 この場合、波長変換の発見ルーチンとピーク値探索ルーチンの判定などの符号を逆転させて用いる。
 7.3 初期アライメントの制御例2
 7.3.1 初期アライメントメインルーチン
 図15は、実施形態5に適用される初期アライメントのメインルーチンの例を示すフローチャートである。図15示すフローチャートについて、図5のフローチャートと異なる点を説明する。
 図15に示すフローチャートは、図5のステップS15及びステップS16に代えて、ステップS17及びステップS18を含む。すなわち、第2のCLBO結晶302までのアライメント(ステップS11~ステップS14)は実施形態1と同じである。ここでは第3のCLBO結晶303のアライメントについて説明する。第3のCLBO結晶303のアライメントは未変換光である第1の和周波光の強度に基づいて行われる。
 ステップS14の後、ステップS17において、波長変換システム制御部340は第3のCLBO結晶303の第1の和周波光出力測定に基づく第2の和周波光発見ルーチンを行う。波長変換システム制御部340は、第1の和周波光(未変換光)の強度が閾値以下になるまで第3のCLBO結晶303を調整する。未変換光である第1の和周波光の強度が閾値以下になることは、変換光である第2の和周波光の強度がある閾値以上であることに相当する。第1の和周波光の強度を判定するための閾値は、第2の和周波光の強度を判定するための閾値との関係から定められる。ステップS17の工程は、本開示における「第3の非線形結晶を通過した第2の波長変換光を検出する工程」の一例である。
 第1の和周波光の強度が閾値以下となった場合、ステップS18において、波長変換システム制御部340は第3のCLBO結晶303から出力される第1の和周波光のボトム値探索ルーチンを行う。波長変換システム制御部340は、第1の和周波光の強度のボトム値が検出されるまで第3のCLBO結晶303を調整する。
 ステップS18の後、波長変換システム制御部340は図15のフローチャートを終了する。
 なお、ボトム値探索ルーチンは、第1のCLBO結晶301や第2のCLBO結晶302での第1のパルスレーザ光(波長約515nm)や第2高調波光(波長約257.5nm)で適用してもよい。
 図16は、第3のCLBO結晶303への入射角度と第1の和周波光(未変換光)出力との関係を模式的に示すグラフである。図16に示すように、第1の和周波光(未変換光)の出力が最小値となるように第3のCLBO結晶303の角度調整が行われる。
 7.3.2 第2の和周波光発見ルーチン
 図17は、第3のCLBO結晶303の第1の和周波光出力測定に基づく第2の和周波光発見ルーチンの例を示すフローチャートである。図17に示すフローチャートは、図15のステップS17に適用される。
 第3のCLBO結晶303の第1の和周波光出力測定に基づく第2の和周波光発見ルーチンが開始されると、ステップS51において波長変換システム制御部340は第1の和周波光(未変換光)の出力を測定する。波長変換システム制御部340は、ラインセンサ454から対象波長(波長約220.9nm)の光強度情報を取得する。
 次いで、ステップS52において、波長変換システム制御部340は未変換光の出力測定値と、波長変換発生判定用の閾値とを比較する。ステップS22における比較の結果、出力測定値が閾値を超えている場合、波長変換システム制御部340はステップS53に進む。
 ステップS53において、波長変換システム制御部340は結晶角度が移動範囲限界に達したかどうかを判定する。ステップS53の判定結果がNo判定である場合、つまり、結晶角度が移動範囲限界に達していない場合、波長変換システム制御部340はステップS55に進む。
 ステップS55において、波長変換システム制御部340は第3のCLBO結晶303の角度を変更し、ステップS51に戻る。
 その一方、ステップS53の判定結果がYes判定である場合、つまり、結晶角度が移動範囲限界に達している場合、波長変換システム制御部340はステップS54に進む。
 ステップS54において、波長変換システム制御部340は、移動範囲などのパラメータを変更した後、ステップS55に進み、その後ステップS51に戻る。未変換光の出力測定値が閾値以下になるまで、ステップS51~ステップS55が繰り返される。
 ステップS52における比較の結果、出力測定値が閾値以下になったら、図17のフローチャートを終了し、図15のメインルーチンに復帰する。
 図18は、第1の和周波光出力測定に基づく第2の和周波光発見ルーチンの動作イメージを示すグラフである。図18の横軸は非線形結晶への入射角度、縦軸は第1の和周波光(未変換光)の強度を表す。
 初期の配置では第3のCLBO結晶303で波長変換が発生しないため、第1の和周波光は消費されないまま第3のCLBO結晶303から出力される。この特性を利用して、先ずは第3のCLBO結晶303を調整しながら第1の和周波光の出力強度を測定して波長変換の発生有無を判定する。
 図18においてパターンAスタート地点やパターンBスタート地点で示すように、波長変換が発生していない入射角度では変換光の光出力がないため、第2の和周波光発見ルーチンを実施して、未変換光の出力が所定の閾値以下となる角度を探索する。
 未変換光の強度測定に基づく第2の和周波光発見ルーチンでは、未変換光の光強度(出力)を測定し、対象波長が波長変換によって発生したとみなす光強度に対応する閾値を満たしているか比較される。
 未変換光の光強度が閾値よりも大きい場合は、設定された移動範囲限界内で結晶の角度を大きな幅で変更して未変換光の出力を測定し、閾値以下になるまで角度変更の移動を繰り返す。移動範囲限界内で閾値を満たす角度が見つからない場合は、範囲などのパラメータを変更して継続する。
 そして、未変換光(第1の和周波光)の出力が閾値以下になったら波長変換が発生して第2の和周波光が出力されていると仮定して、次のステップ(第1の和周波光ボトム値探索ルーチン)に移行する。
 7.3.3 未変換光のボトム値探索ルーチン
 第2の和周波光発見ルーチンによって波長変換の発生を確認した後、第1の和周波光(未変換光)の強度を最小値にするための第1の和周波光(未変換光)のボトム値探索ルーチンに移行する。
 図19は、第1の和周波光(未変換光)のボトム値探索ルーチンの例を示すフローチャートである。図19に示すフローチャートは、図15のステップS18に適用される。
 ステップS61において、波長変換システム制御部340は未変換光である第1の和周波光の出力測定1(第1の出力測定工程)を行う。第1の出力測定工程により、角度変更前(移動前)の未変換光の光強度が測定される。
 次いで、ステップS62において、波長変換システム制御部340は第3のCLBO結晶303について所定の角度変更量で角度変更を行う。
 ステップS63において、波長変換システム制御部340は第1の和周波光の出力測定2(第2の出力測定)を行う。第2の出力測定により、角度変更後(移動後)の未変換光の光強度が測定される。
 次いで、ステップS64において、波長変換システム制御部340は未変換光の強度測定値が最小値を更新したか否かを判定する。ここでいう「最小値」は、未変換光のボトム値探索ルーチンの実行中に測定された強度測定値の中で最も小さな値として波長変換システム制御部340のメモリに記録される暫定的な最小値である。「最小値」はボトム値と同義である。図19のフローチャートを開始する際に、最小値の記録はリセットされ、その後、ステップS63における測定結果に基づき、ステップS65において最小値として記録される値が更新処理される。
 ステップS64の判定の結果、強度測定値が最小値を下回った場合、波長変換システム制御部340はステップS65に進み、最小値の更新処理を行ってから、ステップS66に進む。
 一方、ステップS64の判定の結果、強度測定値が最小値を下回らない場合、波長変換システム制御部340はステップS66に進む。
 ステップS66において、波長変換システム制御部340は角度変更の前後で未変換光の強度測定結果の増減比較を行う。角度変更の前後で未変換光の強度測定値が減少した場合、波長変換システム制御部340はステップS62に戻り、ステップS62~S66を繰り返す。
 その一方で、ステップS66の判定の結果、角度変更の前後で未変換光の強度測定値が増加した場合、波長変換システム制御部340はステップS67に進み、折り返し数判定を行う。ステップS67の判定の結果、折り返し数が判定基準値未満である場合、波長変換システム制御部340はステップS68に進む。
 ステップS68において、波長変換システム制御部340は移動方向を変更し角度変更の幅(角度変更量)を減少させて、ステップS62に戻る。
 その一方、ステップS67の判定の結果、折り返し数が判定基準値以上である場合、波長変換システム制御部340はステップS70に進む。ステップS70において、波長変換システム制御部340は最小値を記録した座標(角度位置)付近まで角度を移動させ、未変換光の出力測定を行う。
 次いで、ステップS71において、波長変換システム制御部340は未変換光の出力が設定閾値を満たしているか否かを判定する。未変換光の強度測定値と設定閾値とを比較して強度測定値が設定閾値以下である場合は、設定閾値を満たすと判定される。未変換光の出力が設定閾値を満たす場合、波長変換システム制御部340は図19のフローチャートを終了して図15のメインルーチンに復帰する。
 一方、ステップS71の判定の結果、未変換光の出力が設定閾値を満たさない場合、波長変換システム制御部340はステップS72に進み、パラメータを変更してステップS61に戻り、未変換光のボトム値探索ルーチンを繰り返す。
 図20は、未変換光のボトム値探索ルーチンの動作イメージを示すグラフである。ここでは折り返し動作が3回まで許容されている例が示されている。横軸は、結晶への入射角度を表し、縦軸は変換波長出力を表す。図20の例では、点Jで示す角度位置から探索ルーチンが開始され、4回の角度変更で点Kまで移動する(1回目の走査)。点Kにて移動方向が反転され、角度変更の幅を小さくして2回目の走査が行われる。2回目の走査において、点Kから点Lまで4回の角度変更により移動する。点Lにて移動方向が再び反転され、角度変更の幅をさらに小さくして3回目の走査が行われる。3回目の走査において、点Lから点Mまで、3回の角度変更で移動する。点Mに到来すると、折り返し数の許容上限に達したため、4回目の走査は実施せずに、点Mから最小値付近(点N)に移動させる。
 このように、未変換光のボトム値探索ルーチンは、第1の和周波光の出力測定と、第3のCLBO結晶303の角度変更とを行い、第1の和周波光の出力強度の増減判定を経て移動方向の反転と、角度変更の間隔(角度変更量)を狭めながら所定の折り返し回数だけ繰り返す。その際にボトム値と、そのボトム値を記録した座標(角度位置)とを関連付けて記録しておき、角度変更の繰り返し後に、ボトム値を記録した座標付近に角度を移動させる。ボトム値を記録した座標付近で未変換光の出力強度が設定閾値を満たす場合は調整完了とし、満たしていない場合は再度パラメータを変更し、ルーチンを繰り返す。実施形態5におけるボトム値(最小値)は本開示における「第2の波長変換光の最低強度」の一例である。
 強度の増減判定は移動前の測定強度と移動後の測定強度を比較するが、さらに移動前々などの複数の測定結果から判定することもある。例えば、2点比較や3点以上の多点比較であってもよい。
 7.4 作用・効果
 実施形態5に係る波長変換システム35によれば、第2の和周波光(193.4nm)の損失を最小限にすることができ、変換効率が向上する。
 7.5 変形例
 実施形態5では、第3のCLBO結晶303について未変換光の測定結果を利用して角度調整を実施したが、第1のCLBO結晶301及び第2のCLBO結晶302のそれぞれについても未変換光の測定結果を利用して角度調整を実施してもよい。また、変換光の測定結果と未変換光の測定結果とを両方使用して角度調整を実施してもよい。
 8.実施形態6
 8.1 構成
 図21は、実施形態6に係る固体レーザシステム1に適用される波長変換システム36の構成を概略的に示す。実施形態6では、図3に示した波長変換システム31の代わりに、図21に示す波長変換システム36が適用される。図21に示す構成について、図3と異なる点を説明する。
 実施形態1~5では各CLBO結晶の波長変換の状態を多点実測することで、CLBO結晶の角度調整を行っている。しかしながら、CLBO結晶への入射角度と波長変換の変換効率は理論上sinc関数の関係であるため、CLBO結晶の角度位置情報、すなわち、回転ステージの回転位置情報の出力と、回転ステージの回転位置制御が可能なエンコーダ機能付きのアクチュエータと、エンコーダから得られる複数の位置情報をフィッティング処理する機能及びフィッティング処理の結果に基づいてアクチュエータを制御する機能を備える波長変換システム制御部340Gとを用いてより短い調整時間で調整可能である。
 第1の回転ステージ331、第2の回転ステージ332及び第3の回転ステージ333のそれぞれは、第1のエンコーダ461、第2のエンコーダ462及び第3のエンコーダ463を備える。
 第1のエンコーダ461、第2のエンコーダ462及び第3のエンコーダ463のそれぞれは、波長変換システム制御部340Gに接続されている。第1のエンコーダ461、第2のエンコーダ462及び第3のエンコーダ463のそれぞれは、波長変換システム制御部340Gからの指令に基づいて、対応する回転ステージの状態に基づく現在の各CLBO結晶の座標情報等の位置情報を波長変換システム制御部340Gに出力する。
 波長変換システム制御部340Gは、フィッティング処理部342を備える。フィッティング処理部342は、第1のエンコーダ461、第2のエンコーダ462及び第3のエンコーダ463のそれぞれの出力と各波長の強度とを関連付けたデータをフィッティング処理する。
 8.2 動作
 図22は、複数の測定結果からフィッティング処理によってピーク位置を予測する演算処理の概念図である。図22の横軸はCLBO結晶の角度位置を表し、縦軸は変換光の光強度を表す。図22中の点x1、x2及びx3は、それぞれ測定結果をプロットした点である。例えば、増減変化のある複数点を測定した後に、測定結果から増減カーブをフィッティングで計算処理して、頂点(ピーク)となる座標角度位置を割り出すことにより、測定回数や移動回数を少なくして初期アライメントを行うことが可能である。
 また、波長変換システム制御部340Gは、ピーク位置だけでなく、安定した所望の出力位置の位置関係も割り出すことが可能なため、システムの安定化を図ることが可能である。
 8.3 変換光のピーク値探索ルーチン
 図23は、実施形態6に適用される変換光のピーク値探索ルーチンの例を示すフローチャートである。図8で説明したフローチャートに代えて、図23に示すフローチャートが適用される。
 ステップS81において、波長変換システム制御部340Gは変換光の出力測定1を行う。ステップS81では、角度変更前(移動前)の変換光の光強度が測定される。
 次いで、ステップS82において、波長変換システム制御部340Gは対象のCLBO結晶について所定の角度変更量で角度変更を行う。
 ステップS83において、波長変換システム制御部340Gは変換光の出力測定を行う。ステップS81では、角度変更後(移動後)の変換光の光強度が測定される。ステップS82とステップS83とをn回繰り返すことにより、複数の(n点の)測定点で測定を行う。nは3以上の整数であることが好ましい。nはフィッティングの精度を確保できる範囲でなるべく小さい値に設定することが好ましい。例えば、nは3以上6以下であってもよい。
 波長変換システム制御部340Gは、ステップS82及びステップS83をn回繰り返した後、ステップS84に進む。
 ステップS84において、波長変換システム制御部340Gはn個の測定点の測定結果を基に、出力変動と移動座標量とからフィッティングの演算処理を行う。ステップS84は、増減カーブのフィッティングに基づき、ピーク値に対応する角度位置(座標)を特定する演算を含む。
 次いで、ステップS85において、波長変換システム制御部340GはステップS84の演算結果のピーク位置の座標にCLBO結晶の角度を移動させる。
 次いで、ステップS86において、波長変換システム制御部340Gは、ピーク位置の座標で変換光の出力測定を行う。
 次いで、ステップS87において、波長変換システム制御部340は変換光の出力が設定閾値を満たしているか否かを判定する。変換光の強度測定値と設定閾値とを比較して強度測定値が設定閾値以上である場合(変換光の出力が設定閾値を満たす場合)、波長変換システム制御部340Gは図23のフローチャートを終了して図5のメインルーチンに復帰する。
 一方、ステップS87の判定の結果、変換光の出力が設定閾値を満たさない場合、波長変換システム制御部340GはステップS88に進み、パラメータを変更してステップS81に戻り、変換光のピーク値探索ルーチンを繰り返す。
 以上のように、実施形態6では、複数の測定点で変換光の光強度を測定後、角度位置の座標と測定値からフィッティング演算を行い、予測されるピーク値の座標に移動させる。その座標にて測定された光強度の値が設定閾値以上であればアライメントが完了する。
 8.4 作用・効果
 エンコーダ非搭載の構成ではCLBO結晶の角度を示す位置座標系の数値が参照できないため、CLBO結晶の角度を変化させながら光強度の増減判定を行い、移動方向と角度変更量を変えて、移動範囲を何度も行き来して最適な位置を絞っていたが、実施形態6のようにエンコーダ搭載の構成では数点の測定点の位置座標系の数値と、光強度の測定値とからピークの位置を演算して予測できるため、測定や移動の回数を大幅に省略できる。
 8.5 変形例
 図22及び図23では変換光の出力を測定する例を説明したが、実施形態5で説明したように、未変換光の出力を測定する場合についても同様にフィッティング処理を利用してボトム値に対応する位置を予測してもよい。
 9.実施形態7
 9.1 構成
 図24は、実施形態7に係る波長変換システム37の構成を概略的に示す。実施形態7では、図3に示した波長変換システム30の代わりに、図24に示す波長変換システム37が適用される。図24に示す構成について、図3と異なる点を説明する。
 図3では、CLBOセルボックス351に対して、波長約515nmの第1のパルスレーザ光と、波長約1554nmの第2のパルスレーザ光とを同じ方向から入射させる構成としたが、図24に示す波長変換システム37では、CLBOセルボックス357に対して、波長約515nmの第1のパルスレーザ光と、波長約1554nmの第2のパルスレーザ光とをそれぞれ別の方向から入射させる構成となっている。
 すなわち、波長変換システム37は、図3のCLBOセルボックス351に代えて、CLBOセルボックス357を含む。CLBOセルボックス357は、第1の入射ウインドウ361Aと、第2の入射ウインドウ361Bと、出射ウインドウ362とを備えた容器365を含み、容器365内に、第1のCLBO結晶301、ダイクロイックミラー470、第2のCLBO結晶302及び第3のCLBO結晶303が配置される。
 第1の入射ウインドウ361Aは、波長約515nmのパルスレーザ光を入射させるウインドウである。第1のCLBO結晶301は、第1の入射ウインドウ361Aを透過した第1のパルスレーザ光が入射するように配置される。
 第2の入射ウインドウ361Bは、波長約1554nmの第2のパルスレーザ光を入射させるウインドウである。ダイクロイックミラー470は、第1のCLBO結晶301と第2のCLBO結晶302との間の光路上に配置される。ダイクロイックミラー470は、波長約1554nmの第2のパルスレーザ光を高反射し、波長約515nmの第1のパルスレーザ光と波長約257.5nmの第2高調波光とを高透過する膜がコートされている。ダイクロイックミラー470は、第2の入射ウインドウ361Bを透過した第2のパルスレーザ光と、第1のCLBO結晶301から出射された第1のパルスレーザ光及び第2高調波光とが互いの光路軸を一致させた状態で第2のCLBO結晶302に入射するように配置される。図3に示す構成と同様である。
 9.2 動作
 CLBOセルボックス357の内部に配置された第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303のそれぞれの角度調整の方法は、実施形態1と同様である。
 実施形態7において第1のCLBO結晶301から出力される波長約257.5nmのパルスレーザ光は本開示における「第1のレーザ光」の一例であり、第1の固体レーザ装置10と第1のCLBO結晶301との組み合わせが本開示における「第1のレーザ装置」の一例である。また、図24に示す第2のCLBO結晶302は本開示における「第1の非線形結晶」の一例であり、第3のCLBO結晶303は本開示における「第2の非線形結晶」の一例である。第2のCLBO結晶302から出力される第1の和周波光(波長約220.9nm)は本開示における「第1の波長変換光」の一例であり、第3のCLBO結晶303から出力される第2の和周波光(波長約193.4nm)は本開示における「第2の波長変換光」の一例である。
 9.3 作用・効果
 実施形態7に係る波長変換システム37は、装置構造上にレイアウト制限がある場合などに使用することができる。実施形態7によれば、実施形態1と同様に、図2の構成と比較して、CLBO結晶間における光学素子が少なく、光の透過ロスが少ない。
 また、図2に示す比較例に比べて、CLBOセルボックス357の大きさを小型化することができる。
 10.実施形態8
 10.1 構成
 図25は、実施形態8に係る波長変換システム38の構成を概略的に示す。図24に示した実施形態7に係る波長変換システム37の代わりに、図25に示す波長変換システム38が適用されもよい。図25に示す構成について、図24と異なる点を説明する。
 波長変換システム38は、図24に示すCLBOセルボックス357に代えて、CLBOセルボックス358を含む。CLBOセルボックス358は、第1の入射ウインドウ361Cと、第2の入射ウインドウ361Dと、出射ウインドウ362とを備えた容器366を含み、容器366内に、第1のCLBO結晶301、ダイクロイックミラー472、第2のCLBO結晶302及び第3のCLBO結晶303が配置される。
 第1の入射ウインドウ361Cは、波長約515nmのパルスレーザ光を入射させるウインドウである。第1のCLBO結晶301は、第1の入射ウインドウ361Cを透過した第1のパルスレーザ光が入射するように配置される。
 第2の入射ウインドウ361Bは、波長約1554nmの第2のパルスレーザ光を入射させるウインドウである。ダイクロイックミラー472は、第2の入射ウインドウ361Dと第2のCLBO結晶302との間の光路上に配置される。ダイクロイックミラー472は、波長約1554nmの第2のパルスレーザ光を高透過し、波長約515nmの第1のパルスレーザ光と波長約257.5nmの第2高調波光とを高反射する膜がコートされている。ダイクロイックミラー472は、第2の入射ウインドウ361Dを透過した第2のパルスレーザ光と、第1のCLBO結晶301から出射された第1のパルスレーザ光及び第2高調波光とが互いの光路軸を一致させた状態で第2のCLBO結晶302に入射するように配置される。その他の構成は、図24に示す構成と同様である。
 10.2 動作
 CLBOセルボックス358の内部に配置された第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303のそれぞれの角度調整の方法は、実施形態1と同様である。
 実施形態8において第1のCLBO結晶301から出力される波長約257.5nmのパルスレーザ光は本開示における「第1のレーザ光」の一例であり、第1の固体レーザ装置10と第1のCLBO結晶301との組み合わせが本開示における「第1のレーザ装置」の一例である。また、図25に示す第2のCLBO結晶302は本開示における「第1の非線形結晶」の一例であり、第3のCLBO結晶303は本開示における「第2の非線形結晶」の一例である。
 10.3 作用・効果
 実施形態8に係る波長変換システム38は、装置構造上にレイアウト制限がある場合などに使用することができる。実施形態8によれば、実施形態1と同様に、図2の構成と比較して、CLBO結晶間における光学素子が少なく、光の透過ロスが少ない。
 また、図2に示す比較例に比べて、CLBOセルボックス358の大きさを小型化することができる。
 11.非線形結晶の位相整合について
 CLBO結晶などの非線形結晶に基本波の光を入力した場合、結晶内の各所で基本波から波長変換されて発生する高調波の位相は、通常は揃っていないため、結晶内において発生した高調波同士で相殺されてしまう。このように、結晶内の各所で発生する高調波の位相がずれていることで、基本波と高調波との進む速度の違いと、基本波と高調波との屈折率の違いが生じる。
 高調波を効率的に発生させるには、結晶内の各所で発生する高調波の位相を揃える必要がある。基本波と高調波とで屈折率を同じにすれば位相ずれは解消される。具体的には非線形結晶の温度や非線形結晶への入射角度を調整して、屈折率を変化させることで位相を揃える。このように、非線形結晶の結晶内で発生する変換光の位相を整合させることを位相整合という。
 非線形結晶は複屈折であるため、偏向方向によって屈折率が異なる。基本波の常光線と高調波の異常光線との屈折率を合わせることを角度位相整合という。
 非線形結晶への入射角度を調整することによって位相整合を実現する場合に限らず、非線形結晶の温度を調整によって位相整合を実現してもよく、これらを組み合わせて位相整合を実現してもよい。
 上記の説明は、高調波発生に限らず、和周波発生の場合についても同様であり、結晶内の各所で発生する和周波(変換光)の位相を整合させることにより、波長変換効率を高めることができる。非線形結晶の温度制御によって位相整合させる場合には、それぞれの非線形結晶を個別に温調する構成を採用すればよい。例えば、第1のCLBO結晶301、第2のCLBO結晶302及び第3のCLBO結晶303をそれぞれ個別に温度制御するためのヒータ等を含む温調装置は、本開示における「第1の調整部」、「第2の調整部」及び「第3の調整部」の一例である。また、各結晶についての個別の温調装置と、角度調整用の回転ステージとを併用してもよい。
 12.電子デバイスの製造方法
 図26は、露光装置600の構成例を概略的に示す。電子デバイスの製造方法は、固体レーザシステム1、エキシマ増幅器500及び露光装置600を用いて実施される。なお、エキシマ増幅器500を省略した構成も可能である。
 エキシマ増幅器500は、例えば固体レーザシステム1から出力されたパルスレーザ光を増幅するArFエキシマレーザ装置であってよい。固体レーザシステム1とエキシマ増幅器500との組み合わせにより、ハイブリッドレーザ装置が構成される。エキシマ増幅器500によって増幅されたパルスレーザ光は、露光装置600に入力され、露光光として用いられる。
 露光装置600は、照明光学系604と投影光学系606とを含む。照明光学系604は、エキシマ増幅器500から入射したエキシマレーザ光によって、レチクルステージRTのレチクルパターンを照明する。投影光学系606は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
 露光装置600は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したレーザ光をワークピース上に露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。固体レーザシステム1は、各実施形態1~8で説明した波長変換システム31、33~38のいずれかを含む構成であってよい。エキシマ増幅器500によって増幅されたパルスレーザ光は本開示における「第3のレーザ光」の一例である。
 13.その他
 上記の説明は、制限ではなく単なる例示を意図している。したがって、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態や変形例を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。例えば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  第1のレーザ光を出力する第1のレーザ装置と、
     第2のレーザ光を出力する第2のレーザ装置と、
     前記第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、
     前記第1の非線形結晶の結晶内で前記第1の波長変換光を位相整合させる第1の調整部と、
     前記第1の波長変換光の光路上に配置され、前記第1の波長変換光と前記第2のレーザ光とに基づいて第2の波長変換光を生成する第2の非線形結晶と、
     前記第2の非線形結晶の結晶内で前記第2の波長変換光を位相整合させる第2の調整部と、
     前記第2の非線形結晶から出力される光の光路上に配置される波長選択素子と、
     前記波長選択素子を通過することにより選択された波長の光を検出する光検出部と、
     前記第2の非線形結晶を通過して前記光検出部で検出された前記第1の波長変換光及び前記第1のレーザ光の少なくとも1つの強度に基づいて前記第1の調整部を制御し、前記光検出部で検出された前記第2の波長変換光及び前記第2の非線形結晶を通過して前記光検出部で検出された前記第1の波長変換光の少なくとも1つの強度に基づいて前記第2の調整部を制御するプロセッサと、
     を備える固体レーザシステム。
  2.  請求項1に記載の固体レーザシステムであって、
     前記第1の波長変換光は、前記第1のレーザ光の第2高調波光であり、
     前記第2の波長変換光は、前記第2高調波光と前記第2のレーザ光との和周波である波長の第1の和周波光である、
     固体レーザシステム。
  3.  請求項1に記載の固体レーザシステムであって、
     さらに、
     前記第2の非線形結晶と前記波長選択素子との間の光路上に配置され、前記第2の波長変換光と前記第2のレーザ光とに基づいて第3の波長変換光を生成する第3の非線形結晶と、
     前記第3の非線形結晶の結晶内で前記第3の波長変換光を位相整合させる第3の調整部と、を備え、
     前記第3の非線形結晶から出力された光が前記波長選択素子を介して前記光検出部に入射され、
     前記プロセッサは、
     前記光検出部で検出された前記第3の波長変換光及び前記第3の非線形結晶を透過して前記光検出部で検出された前記第2の波長変換光の少なくとも1つの強度に基づいて前記第3の調整部を制御する、
     固体レーザシステム。
  4.  請求項3に記載の固体レーザシステムであって、
     前記第3の波長変換光は、前記第2の波長変換光と前記第2のレーザ光との和周波である波長の第2の和周波光である、
     固体レーザシステム。
  5.  請求項3に記載の固体レーザシステムであって、
     前記光検出部は、前記第3の非線形結晶を透過した前記第2の波長変換光を検出し、
     前記プロセッサは、前記第2の波長変換光の最低強度に基づいて前記第3の調整部を制御する、
     固体レーザシステム。
  6.  請求項3に記載の固体レーザシステムであって、
     さらに、前記第3の非線形結晶と前記波長選択素子との間の光路上に配置され、前記第3の非線形結晶を透過した光の一部を前記光検出部に導く分配光学素子を備える、
    固体レーザシステム。
  7.  請求項6に記載の固体レーザシステムであって、
     前記分配光学素子は、ビームスプリッタ及びダイクロイックミラーの少なくとも1つを含む、
     固体レーザシステム。
  8.  請求項1に記載の固体レーザシステムであって、
     前記第1の調整部は、前記第1の非線形結晶への光の入射角度を変更する第1の角度調整機構を含み、
     前記第2の調整部は、前記第2の非線形結晶への光の入射角度を変更する第2の角度調整機構を含む、
     固体レーザシステム。
  9.  請求項8に記載の固体レーザシステムであって、
     さらに、
     前記第1の角度調整機構及び前記第2の角度調整機構のそれぞれの角度位置を検出するエンコーダを備え、
     前記プロセッサは、
     前記エンコーダによって検出される角度位置と前記光検出部によって検出される強度の測定値とを関連付けて記録した複数の測定結果を基に、光強度が最大となる角度位置及び光強度が最小となる角度位置の少なくとも1つを特定する演算を行う、
     固体レーザシステム。
  10.  請求項1に記載の固体レーザシステムであって、
     前記波長選択素子は、グレーティング、ダイクロイックミラー及び波長フィルタの少なくとも1つを含む、
     固体レーザシステム。
  11.  請求項1に記載の固体レーザシステムであって、
     前記光検出部は、前記波長選択素子を用いて選択する複数の波長に対応する複数の光検出素子を含む、
     固体レーザシステム。
  12.  請求項1に記載の固体レーザシステムであって、
     さらに、前記第1の非線形結晶と前記第2の非線形結晶とを含む複数の非線形結晶を収容する容器を備え、前記容器内に不活性ガスが供給される、
     固体レーザシステム。
  13.  請求項1に記載の固体レーザシステムであって、
     前記第1の波長変換光は、前記第1のレーザ光と前記第2のレーザ光との和周波である波長の第1の和周波光であり、
     前記第2の波長変換光は、前記第1の和周波光と前記第2のレーザ光との和周波である波長の第2の和周波光である、
     固体レーザシステム。
  14.  第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、前記第1の非線形結晶から出力された前記第1の波長変換光と第2のレーザ光とに基づいて第2の波長変換光を生成する第2の非線形結晶とを備えた波長変換システムの位相整合方法であって、
     前記第2の非線形結晶を通過した前記第1の波長変換光及び前記第1のレーザ光の少なくとも1つを検出する工程と、
     検出された前記第1の波長変換光及び前記第1のレーザ光の少なくとも1つの強度に基づいて、前記第1の非線形結晶の結晶内で第1の波長変換光を位相整合させる工程と、
     前記第1の非線形結晶の結晶内で前記第1の波長変換光を位相整合させる調整を実施した後に、前記第2の非線形結晶から出力された前記第2の波長変換光及び前記第2の非線形結晶を通過した前記第1の波長変換光の少なくとも1つを検出する工程と、
     検出された前記第2の波長変換光及び前記第1の波長変換光の少なくとも1つの強度に基づいて、前記第2の非線形結晶の結晶内で第2の波長変換光を位相整合させる工程と、
     を含む位相整合方法。
  15.  請求項14に記載の位相整合方法であって、
     前記第1の波長変換光及び前記第1のレーザ光の少なくとも1つを検出する工程は、
     前記第2の非線形結晶を通過した前記第1の波長変換光を検出する工程と、
     前記第1の波長変換光の検出結果から、前記第1の波長変換光の強度の最大値を特定する工程と、を含む、
     位相整合方法。
  16.  請求項14に記載の位相整合方法であって、
     前記第2の波長変換光及び前記第2の非線形結晶を通過した前記第1の波長変換光の少なくとも1つを検出する工程は、
     前記第2の非線形結晶から出力された前記第2の波長変換光を検出する工程と、
     前記第2の波長変換光の検出結果から、前記第2の波長変換光の強度の最大値を特定する工程と、を含む、
     位相整合方法。
  17.  請求項14に記載の位相整合方法であって、
     前記波長変換システムは、さらに、
     前記第2の波長変換光と前記第2のレーザ光とに基づいて第3の波長変換光を生成する第3の非線形結晶を含み、
     前記第2の非線形結晶の結晶内で前記第2の波長変換光を位相整合させる調整を実施した後に、前記第3の非線形結晶から出力された前記第3の波長変換光及び前記第3の非線形結晶を通過した前記第2の波長変換光の少なくとも1つを検出する工程と、
     検出された前記第3の波長変換光及び前記第2の波長変換光の少なくとも1つの強度に基づいて、前記第3の非線形結晶の結晶内で第3の波長変換光を位相整合させる工程と、
     をさらに含む、
     位相整合方法。
  18.  請求項17に記載の位相整合方法であって、
     前記第3の波長変換光及び前記第3の非線形結晶を通過した前記第2の波長変換光の少なくとも1つを検出する工程は、
     前記第3の非線形結晶を通過した前記第2の波長変換光を検出する工程と、
     前記第2の波長変換光の検出結果から、前記第2の波長変換光の強度の最小値を特定する工程と、を含む、
     位相整合方法。
  19.  請求項14に記載の位相整合方法であって、
     前記第1の波長変換光及び前記第1のレーザ光の少なくとも1つを検出する工程の前に、前記第1の波長変換光を発見する工程をさらに含み、
     前記第2の波長変換光及び前記第2の非線形結晶を通過した前記第1の波長変換光の少なくとも1つを検出する工程の前に、前記第2の波長変換光を発見する工程をさらに含む、
     位相整合方法。
  20.  電子デバイスの製造方法であって、
     第1のレーザ光を出力する第1のレーザ装置と、
     第2のレーザ光を出力する第2のレーザ装置と、
     前記第1のレーザ光に基づいて第1の波長変換光を生成する第1の非線形結晶と、
     前記第1の非線形結晶の結晶内で前記第1の波長変換光を位相整合させる第1の調整部と、
     前記第1の波長変換光の光路上に配置され、前記第1の波長変換光と前記第2のレーザ光とに基づいて第2の波長変換光を生成する第2の非線形結晶と、
     前記第2の非線形結晶の結晶内で前記第2の波長変換光を位相整合させる第2の調整部と、
     前記第2の非線形結晶から出力される光の光路上に配置される波長選択素子と、
     前記波長選択素子を通過することにより選択された波長の光を検出する光検出部と、
     前記第2の非線形結晶を透過して前記光検出部で検出された前記第1の波長変換光及び前記第1のレーザ光のうち少なくとも1つの強度に基づいて前記第1の調整部を制御し、前記光検出部で検出された前記第2の波長変換光及び前記第2の非線形結晶を透過して前記光検出部で検出された前記第2のレーザ光のうち少なくとも1つの強度に基づいて前記第2の調整部を制御するプロセッサと、
     を備える固体レーザシステムを用いて第3のレーザ光を生成し、
     前記第3のレーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記第3のレーザ光を露光すること
     を含む電子デバイスの製造方法。
PCT/JP2020/033415 2020-09-03 2020-09-03 固体レーザシステム、位相整合方法及び電子デバイスの製造方法 WO2022049692A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022546793A JPWO2022049692A1 (ja) 2020-09-03 2020-09-03
PCT/JP2020/033415 WO2022049692A1 (ja) 2020-09-03 2020-09-03 固体レーザシステム、位相整合方法及び電子デバイスの製造方法
CN202080104254.1A CN116018730A (zh) 2020-09-03 2020-09-03 固体激光器***、相位匹配方法和电子器件的制造方法
US18/164,376 US20230178957A1 (en) 2020-09-03 2023-02-03 Solid-state laser system, phase matching method, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033415 WO2022049692A1 (ja) 2020-09-03 2020-09-03 固体レーザシステム、位相整合方法及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,376 Continuation US20230178957A1 (en) 2020-09-03 2023-02-03 Solid-state laser system, phase matching method, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2022049692A1 true WO2022049692A1 (ja) 2022-03-10

Family

ID=80491893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033415 WO2022049692A1 (ja) 2020-09-03 2020-09-03 固体レーザシステム、位相整合方法及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20230178957A1 (ja)
JP (1) JPWO2022049692A1 (ja)
CN (1) CN116018730A (ja)
WO (1) WO2022049692A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252186A (ja) * 1990-03-01 1991-11-11 Nikon Corp 高調波発生装置及び半導体露光装置
JPH08211433A (ja) * 1994-09-14 1996-08-20 Matsushita Electric Ind Co Ltd 高調波出力安定化方法及びそれを利用する短波長レーザ光源
JP2003315859A (ja) * 2002-04-23 2003-11-06 Shimadzu Corp 波長変換レーザ装置
US20070286248A1 (en) * 2006-06-12 2007-12-13 Samsung Electronics Co., Ltd. Nonlinear optical modulator
JP2010256784A (ja) * 2009-04-28 2010-11-11 Lasertec Corp 波長変換装置及び波長変換方法並びに半導体装置の製造方法
JP2011059324A (ja) * 2009-09-09 2011-03-24 Nikon Corp 波長変換装置、レーザ装置及び波長変換方法
WO2016142996A1 (ja) * 2015-03-06 2016-09-15 ギガフォトン株式会社 固体レーザシステム、及び露光装置用レーザ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252186A (ja) * 1990-03-01 1991-11-11 Nikon Corp 高調波発生装置及び半導体露光装置
JPH08211433A (ja) * 1994-09-14 1996-08-20 Matsushita Electric Ind Co Ltd 高調波出力安定化方法及びそれを利用する短波長レーザ光源
JP2003315859A (ja) * 2002-04-23 2003-11-06 Shimadzu Corp 波長変換レーザ装置
US20070286248A1 (en) * 2006-06-12 2007-12-13 Samsung Electronics Co., Ltd. Nonlinear optical modulator
JP2010256784A (ja) * 2009-04-28 2010-11-11 Lasertec Corp 波長変換装置及び波長変換方法並びに半導体装置の製造方法
JP2011059324A (ja) * 2009-09-09 2011-03-24 Nikon Corp 波長変換装置、レーザ装置及び波長変換方法
WO2016142996A1 (ja) * 2015-03-06 2016-09-15 ギガフォトン株式会社 固体レーザシステム、及び露光装置用レーザ装置

Also Published As

Publication number Publication date
US20230178957A1 (en) 2023-06-08
CN116018730A (zh) 2023-04-25
JPWO2022049692A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP2657487B2 (ja) レーザの波長制御装置および方法
JP4911558B2 (ja) 狭帯域化レーザ装置
TWI427878B (zh) 光源之主動光譜控制技術
WO2016142996A1 (ja) 固体レーザシステム、及び露光装置用レーザ装置
CN112771444B (zh) 激光***和电子器件的制造方法
WO2021186696A1 (ja) 露光システム、レーザ制御パラメータの作成方法、及び電子デバイスの製造方法
JP2017228646A (ja) レーザ光調整方法、及びレーザ光源装置
US20220390851A1 (en) Exposure method, exposure system, and method for manufacturing electronic devices
JPH03155691A (ja) レーザ光の安定化方法及びレーザ装置
WO2022049692A1 (ja) 固体レーザシステム、位相整合方法及び電子デバイスの製造方法
JP5557601B2 (ja) レーザ光源の調整システム
CN112640230B (zh) 激光***和电子器件的制造方法
US6628682B1 (en) Wavelength detection device for line-narrowed laser apparatus and ultra line-narrowed fluorine laser apparatus
KR102301338B1 (ko) 펄스형 광빔 스펙트럼 특징 제어 방법
US20220385022A1 (en) Line narrowing gas laser device, control method thereof, and electronic device manufacturing method
JP5178047B2 (ja) 露光用放電励起レーザ装置
JP2011249400A (ja) レーザ光源の調整システム、及びレーザ光源の調整方法
US10630046B2 (en) Laser light source device and laser light adjusting method
CN118202533A (zh) 激光***、脉冲激光的生成方法以及电子器件的制造方法
JP2610151B2 (ja) 狭帯域発振エキシマレーザの異常処理装置
WO2022003901A1 (ja) 露光システム、露光方法、及び電子デバイスの製造方法
WO2022064594A1 (ja) 電子デバイスの製造方法
JP5425251B2 (ja) 露光用放電励起レーザ装置
CN109490206B (zh) 一种光谱稳定的线宽调整装置及***
JPS6329758A (ja) 露光装置用光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546793

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952431

Country of ref document: EP

Kind code of ref document: A1