WO2022049686A1 - Method for manufacturing color filter pigment - Google Patents

Method for manufacturing color filter pigment Download PDF

Info

Publication number
WO2022049686A1
WO2022049686A1 PCT/JP2020/033338 JP2020033338W WO2022049686A1 WO 2022049686 A1 WO2022049686 A1 WO 2022049686A1 JP 2020033338 W JP2020033338 W JP 2020033338W WO 2022049686 A1 WO2022049686 A1 WO 2022049686A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
kneading
group
crude pigment
mixture
Prior art date
Application number
PCT/JP2020/033338
Other languages
French (fr)
Japanese (ja)
Inventor
圭亮 坂本
健太郎 大石
望 清水
亮介 浅見
健悟 安井
真由美 徳岡
勝徳 嶋田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021514648A priority Critical patent/JP6923106B1/en
Priority to CN202080007257.3A priority patent/CN113272389A/en
Priority to KR1020217025012A priority patent/KR20230057909A/en
Priority to PCT/JP2020/033338 priority patent/WO2022049686A1/en
Priority to TW110123851A priority patent/TW202210589A/en
Publication of WO2022049686A1 publication Critical patent/WO2022049686A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0032Treatment of phthalocyanine pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0014Influencing the physical properties by treatment with a liquid, e.g. solvents
    • C09B67/0016Influencing the physical properties by treatment with a liquid, e.g. solvents of phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/10Obtaining compounds having halogen atoms directly bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0091Process features in the making of dispersions, e.g. ultrasonics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to a method for producing a pigment for a color filter.
  • coloring compositions are used in various fields, and specific uses of coloring compositions include printing inks, paints, colorants for resins, colorants for fibers, and color materials for IT information recording (color filters). , Toner, inkjet) and the like.
  • the dyes used in the coloring composition are mainly classified into pigments and dyes, but organic pigments, which are predominant in terms of coloring power, are attracting attention.
  • Organic pigments are known to be useful as pigments for color filters. Phthalocyanine-based pigments are attracting attention as organic pigments for color filters, and are used for green pixel portions and the like of color filters (see, for example, Patent Document 1).
  • An object of the present invention is to provide a method for manufacturing a pigment for a color filter, which can improve the brightness of a pixel portion.
  • the organic compounds constituting the organic pigment exist in the state of aggregates called crudo, in which fine particles aggregate with each other after synthesis. Therefore, usually, the synthesized organic compound cannot be used as a pigment as it is, and a pigmentation step for adjusting the particle size is performed.
  • the aggregate (crude) of the organic compound pigmented in the pigmentation step is called a crude pigment, and the crude pigment is ground by kneading or the like to obtain a fine organic pigment.
  • Pigmentization of a crude pigment for producing an organic pigment is usually carried out by kneading a mixture containing the crude pigment, an inorganic salt and an organic solvent, but during kneading, crystallization proceeds at the same time as the crude pigment is refined. do. If the amount of energy input to the kneading of the mixture (the amount of electric power consumed for kneading) becomes too large, the above crystallization becomes predominant. Therefore, the amount of energy input to obtain a fine pigment does not become too large. (For example, the power consumption is 8.0 kWh or less per 1 kg of crude pigment).
  • the phthalocyanine pigment is a pigment that can improve the brightness of the pixel portion but is easily crystallized, and suppresses the crystallization during the kneading in the production of the phthalocyanine pigment. If this is possible, even when kneaded with a larger amount of energy than usual, the micronization of the crude pigment becomes predominant, the phthalocyanine pigment can be further miniaturized, and as a result, the brightness of the pixel portion can be further improved. I got the idea that it would be possible to obtain a color filter pigment that can be produced. The present inventors have completed the present invention as a result of diligent studies based on the above idea.
  • one aspect of the present invention has a kneading step of kneading a mixture containing a crude pigment, an inorganic salt and an organic solvent at a maximum shear rate exceeding 800s -1 , and the crude pigment is zinc, iron, aluminum, and the like.
  • the present invention relates to a method for producing a pigment for a color filter, which is composed of a metal halide phthalocyanine having magnesium, silicon or vanadium as a central metal, and the amount of power consumed for kneading the mixture in the kneading step is greater than 10.0 kWh per 1 kg of crude pigment. ..
  • Halogenated metal phthalocyanine is a compound in which at least a part of hydrogen atoms on the aromatic ring in metal phthalocyanine is halogenated, and the phthalocyanine ring tends to have a distorted structure due to the halogenation of the aromatic ring. , Tends to be difficult to crystallize. Therefore, by using a crude pigment composed of metal halide phthalocyanine as the crude pigment, it is presumed that crystallization is difficult to proceed even when the amount of energy input during kneading (the amount of power consumed for kneading) is increased. To.
  • the crude pigment composed of the metal halide phthalocyanine is used. Even if it is used, if the maximum shear rate at the time of kneading is 800s -1 or less, aggregation of the crude pigment will proceed. Therefore, the maximum shear rate during kneading needs to be larger than 800s -1 .
  • the pH of the crude pigment may be less than 5.
  • the central metal of the crude pigment may be zinc, iron or magnesium.
  • the method for producing a pigment for a color filter may further include a washing step of washing the mixture after kneading obtained in the kneading step with an aqueous solution having a pH higher than 8 at 25 ° C.
  • the average number of halogen atoms in one molecule of metal halide phthalocyanine in the crude pigment may be 9 or more.
  • the mixture in the kneading step, may be kneaded at a temperature lower than 110 ° C.
  • the amount of the inorganic salt used in the kneading step may be 30 parts by mass or more with respect to 1 part by mass of the crude pigment.
  • FIG. 1 is a schematic cross-sectional view showing the internal structure of the kneading device used in the manufacturing method of one embodiment.
  • FIG. 2 is a schematic plan view showing the internal structure of the kneading device used in the manufacturing method of another embodiment.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the method for producing a pigment for a color filter includes, for example, a first step of preparing a crude pigment and a second step of pigmenting the crude pigment.
  • the crude pigment prepared in the first step is composed of metal halide phthalocyanine (hereinafter, also simply referred to as "metal halide phthalocyanine”) having zinc, iron, aluminum, magnesium, silicon or vanadium as a central metal. That is, the crude pigment is a group consisting of a halogenated zinc phthalocyanine crude pigment, a halogenated iron phthalocyanine crude pigment, a halogenated aluminum phthalocyanine crude pigment, a halogenated magnesium phthalocyanine crude pigment, a halogenated silicon phthalocyanine crude pigment and a halogenated vanadium phthalocyanine crude pigment.
  • metal phthalocyanine metal halide phthalocyanine
  • the halogenated metal phthalocyanine crude pigment selected from the above, and the pigment for a color filter produced by the production method of the present embodiment is a halogenated zinc phthalocyanine pigment, a halogenated iron phthalocyanine pigment, a halogenated aluminum phthalocyanine pigment, and a halogenated magnesium phthalocyanine. It is a halogenated metal phthalocyanine pigment selected from the group consisting of a pigment, a halogenated silicon phthalocyanine pigment and a halogenated vanadium phthalocyanine pigment.
  • the crude pigment may be, for example, one obtained by precipitating metal halide phthalocyanine immediately after synthesis (for example, an aggregate of metal halide phthalocyanine).
  • the crude pigment may be composed of one kind of metal halide phthalocyanine, or may be made of a plurality of kinds of metal halide phthalocyanines having different numbers of halogen atoms.
  • the metal halide phthalocyanine has, for example, a structure represented by the following formula (1).
  • X 1 to X 16 each independently represent a hydrogen atom or a halogen atom.
  • M is a central metal and represents Zn (zinc), Fe (iron), Al (aluminum), Mg (magnesium), Si (silicon) or V (vanadium).
  • R 1 R 2 [R 1 and R 2 are independent of each other.
  • Represents a group. ], -OC ( O)
  • R 3 has a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, and a substituent.
  • R 4 has a hydroxyl group, an alkyl group which may have a substituent, an aryl group which may have a substituent or a substituent. Represents a optionally heterocyclic group. )] Represents a group represented by. m represents the number of Z coupled to M and is an integer of 0 to 2.
  • the alkyl groups in R 1 to R 4 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, neopentyl group, n-hexyl group, n-octyl group and stearyl group. , 2-Ethylhexyl groups and the like, linear or branched alkyl groups.
  • Examples of the substituent of the alkyl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkoxyl group such as a methoxy group, an aryl group such as a phenyl group and a tolyl group, and a nitro group. There may be a plurality of substituents.
  • Examples of the alkyl group having a substituent include a trichloromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 2,2-dibromoethyl group, a 2-ethoxyethyl group and a 2-butoxyethyl group.
  • Examples of the aryl group in R 1 to R 4 include a monocyclic aromatic hydrocarbon group such as a phenyl group and a p-tolyl group, and a condensed aromatic hydrocarbon group such as a naphthyl group and an anthryl group.
  • Examples of the substituent of the aryl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkoxyl group, an amino group and a nitro group. There may be a plurality of substituents.
  • Examples of the aryl group having a substituent include a p-bromophenyl group, a p-nitrophenyl group, a p-methoxyphenyl group, a 2,4-dichlorophenyl group, a pentafluorophenyl group, a 2-dimethylaminophenyl group and a 2-.
  • Examples thereof include a methyl-4-chlorophenyl group, a 4-methoxy-1-naphthyl group, a 6-methyl-2-naphthyl group, a 4,5,8-trichloro-2-naphthyl group, an anthraquinonyl group and the like.
  • the alkoxyl groups in R 1 and R 2 include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, neopentyloxy group and 2,3-dimethyl-3-.
  • Examples thereof include a linear or branched alkoxyl group such as a pentyloxy group, an n-hexyloxy group, an n-octyloxy group, a stearyloxy group and a 2-ethylhexyloxy group.
  • Examples of the substituent of the alkoxyl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an aryl group such as an alkoxyl group, a phenyl group and a tolyl group, and a nitro group. There may be a plurality of substituents.
  • Examples of the alkoxyl group having a substituent include a trichloromethoxy group, a trifluoromethoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,3,3-tetrafluoropropoxy group and a 2,2-ditrifluoro group. Examples thereof include a methylpropoxy group, a 2-ethoxyethoxy group, a 2-butoxyethoxy group, a 2-nitropropoxy group, a benzyloxy group and the like.
  • a fused aromatic hydrocarbon group such as an aryloxy group composed of a monocyclic aromatic hydrocarbon group such as a phenoxy group and a p-methylphenoxy group, a naphthaloxy group and an anthryloxy group
  • a substituent of the aryloxy group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkyl group, an alkoxyl group, an amino group and a nitro group. There may be a plurality of substituents.
  • aryloxy group having a substituent examples include a p-nitrophenoxy group, a p-methoxyphenoxy group, a 2,4-dichlorophenoxy group, a pentafluorophenoxy group, a 2-methyl-4-chlorophenoxy group and the like. ..
  • the cycloalkyl group in R3 includes a monocyclic aliphatic hydrocarbon group such as a cyclopentyl group , a cyclohexyl group, a 2,5-dimethylcyclopentyl group and a 4-tert-butylcyclohexyl group, and a condensation of a boronyl group and an adamantyl group.
  • a monocyclic aliphatic hydrocarbon group such as a cyclopentyl group , a cyclohexyl group, a 2,5-dimethylcyclopentyl group and a 4-tert-butylcyclohexyl group, and a condensation of a boronyl group and an adamantyl group.
  • Examples include aliphatic hydrocarbon groups.
  • Examples of the substituent of the cycloalkyl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkyl group, an alkoxyl group, a hydroxyl group, an amino group and a nitro group. There may be a plurality of substituents.
  • Examples of the cycloalkyl group having a substituent include a 2,5-dichlorocyclopentyl group and a 4-hydroxycyclohexyl group.
  • Examples of the heterocyclic group in R 3 and R 4 include an aliphatic heterocyclic group such as a pyridyl group, a pyrazil group, a piperidino group, a pyranyl group, a morpholino group and an acridinyl group, and an aromatic heterocyclic group.
  • Examples of the substituent of the heterocyclic group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkyl group, an alkoxyl group, a hydroxyl group, an amino group and a nitro group. There may be a plurality of substituents.
  • Examples of the heterocyclic group having a substituent include a 3-methylpyridyl group, an N-methylpiperidyl group, an N-methylpyrrolill group and the like.
  • Examples of the halogen atom represented by X 1 to X 16 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. From the viewpoint of obtaining better brightness, at least one of X 1 to X 16 is preferably a bromine atom or a chlorine atom, and more preferably a bromine atom. All of X 1 to X 16 may be chlorine atoms or bromine atoms.
  • M is Zn, Fe or Mg in the metal halide phthalocyanine having a structure distorted by halogenation, compared with the case where M is Cu (copper), Ni (nickel), Co (cobalt) or the like.
  • the distance between the central metal (M) of the phthalocyanine ring and the nitrogen atom on the isoindoline unit is long, and large pores are formed around the central metal (M). Therefore, when the nitrogen atom on the isoindoline unit is protonated under acidic conditions, if M is Zn, Fe or Mg, M is Cu (copper), Ni (nickel), Co (cobalt) or the like.
  • the counter anion for example, a halide ion such as a chloride ion
  • the counter anion is more likely to be stabilized in a state of being close to the central metal. It is presumed that the presence of this counter anion makes it difficult for stacking of the phthalocyanine ring due to the intramolecular interaction to occur, so that the crude pigment has a lower crystallinity, and thus better brightness can be obtained.
  • m depends on the valence of M.
  • valence of M 2
  • valence of M 3
  • m 3
  • Z is an oxygen atom, and M and Z (oxygen atom) are bonded to each other by a double bond.
  • the halogen atom represented by Z include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the average number of halogen atoms in one molecule of the metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 0.1 or more and 16 or less.
  • the average number of halogen atoms may be less than 9, but preferably 9 or more.
  • the average number of halogen atoms is 9 or more, 5 or more halogen atoms are present at the ⁇ -position of the phthalocyanine ring (in the compound represented by the formula (1), X 1 , X 4 , X 5 , X.
  • X 9 , X 12 , X 13 and X 16 are at least 5 halogen atoms), and at least two halogen atoms are present next to each other, resulting in a distorted structure of the phthalocyanine ring. It is easy to take, and the crystallinity of the crude pigment tends to be lower. Therefore, when the average number of halogen atoms is 9 or more, the effect of the present invention tends to be remarkably obtained. From this point of view, the average number of halogen atoms may be 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, or 15 or more.
  • the number of the halogen atoms means the number of halogen atoms substituting the hydrogen atom of the aromatic ring.
  • the average number of bromine atoms in one molecule of the metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment may be 13 or more, even if it is less than 13.
  • the average number of bromine atoms When the average number of bromine atoms is less than 13, the average number of bromine atoms may be 0.1 or more, 6 or more, or 8 or more. Further, the average number of bromine atoms may be 12 or less or 11 or less.
  • the above-mentioned upper limit value and lower limit value can be arbitrarily combined. For example, the average number of bromine atoms may be 0.1 or more and less than 13, 8-12 or 8-11. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
  • the average number of bromine atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 5 or less. It may be 3 or less, 2.5 or less, or less than 2.
  • the average number of chlorine atoms may be 0.1 or more, 0.3 or more, 0.6 or more, 0.8 or more, 1 or more, 1.3 or more, or 2 or more.
  • the average number of bromine atoms is less than 13
  • the average number of halogen atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 14 or less. It may be 13 or less, less than 13 or 12 or less.
  • the average number of halogen atoms may be 8 or more, 9 or more, or 10 or more.
  • the average number of bromine atoms When the average number of bromine atoms is 13 or more, the average number of bromine atoms may be 15 or less. The average number of bromine atoms may be 14 or more.
  • the average number of bromine atoms is 13 or more
  • the average number of chlorine atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 0.1. It may be one or more or one or more.
  • the average number of chlorine atoms may be 3 or less or less than 2.
  • the average number of bromine atoms is 13 or more
  • the average number of halogen atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 13 or more. It may be 14 or more or 15 or more. The average number of halogen atoms may be 15 or less.
  • the number of halogen atoms (for example, the number of bromine atoms and the number of chlorine atoms) is a crude pigment using, for example, a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (JMS-S3000 manufactured by Nippon Denshi Co., Ltd.). Can be identified by mass spectrometry. Specifically, the number of each halogen atom is calculated as a relative value per metal atom from the mass ratio of the metal atom (the metal atom that becomes the central metal of the metal halide phthalocyanine) and each halogen atom in the crude pigment. can do.
  • a metal halide phthalocyanine having zinc, iron, aluminum, magnesium, silicon or vanadium as a central metal is produced by a known production method such as a chlorosulfonic acid method, a halide phthalonitrile method, or a melting method. It includes a step of synthesizing and a step of precipitating the synthesized metal halide phthalocyanine to obtain a crude pigment (metal halide phthalocyanine crude pigment).
  • the step of synthesizing the metal halide phthalocyanine may be, for example, a step of synthesizing the metal halide phthalocyanine using a compound that reacts with water to generate an acid. Examples of the method for synthesizing the metal halide phthalocyanine using a compound that reacts with water to generate an acid include a chlorosulfonic acid method and a melting method.
  • Examples of the chlorosulfonic acid method include a method in which a metal phthalocyanine (for example, zinc phthalocyanine) is dissolved in a sulfur oxide-based solvent such as chlorosulfonic acid, and chlorine gas and bromine are charged therein for halogenation. The reaction at this time is carried out, for example, at a temperature of 20 to 120 ° C. and in the range of 3 to 20 hours.
  • a metal phthalocyanine for example, zinc phthalocyanine
  • chlorine gas and bromine are charged therein for halogenation.
  • the reaction at this time is carried out, for example, at a temperature of 20 to 120 ° C. and in the range of 3 to 20 hours.
  • the chlorosulfonic acid method it is a compound in which a sulfur oxide-based solvent such as chlorosulfonic acid reacts with water to generate an acid.
  • chlorosulfonic acid reacts with water to generate hydrochloric acid and sulfuric acid.
  • the halogenated phthalonitrile method includes, for example, phthalic acid or phthalodinitrile in which a part or all of the hydrogen atom of the aromatic ring is substituted with a halogen atom such as chlorine, and a metal serving as a central metal or the metal concerned.
  • a method of synthesizing the corresponding metal halide phthalocyanine by appropriately using the salt of the above as a starting material can be mentioned.
  • a catalyst such as ammonium molybdate may be used if necessary.
  • the reaction at this time is carried out, for example, at a temperature of 100 to 300 ° C. and in the range of 7 to 35 hours.
  • Examples of the melting method include aluminum halides such as aluminum chloride and aluminum bromide, titanium halides such as titanium tetrachloride, alkali metal halides such as sodium chloride and sodium bromide, or alkaline earth metal halides (hereinafter, “alkali”).
  • Metallized phthalocyanine referred to as "metal halide”
  • metal phthalocyanine referred to as “metal halide”
  • a method of halogenating zinc phthalocyanine) with a halogenating agent can be mentioned.
  • the above-mentioned aluminum halide, titanium halide, alkali (earth) metal halide, thionyl chloride and other compounds that serve as a solvent during halogenation react with water to generate an acid.
  • aluminum chloride reacts with water to generate hydrochloric acid.
  • a suitable aluminum halide is aluminum chloride.
  • the amount of aluminum halide added is usually 3 times or more, preferably 10 to 20 times, mol with respect to the metal phthalocyanine (for example, zinc phthalocyanine).
  • Aluminum halide may be used alone, but if an alkali (earth) metal halide is used in combination with aluminum halide, the melting temperature can be further lowered, which is advantageous in terms of operation.
  • a suitable alkaline (earth) metal halide is sodium chloride.
  • the amount of the alkali (earth) metal halide to be added is preferably 1 to 15 parts by mass with respect to 10 parts by mass of aluminum halide within the range of producing a molten salt.
  • halogenating agent examples include chlorine gas, sulfuryl chloride, bromine and the like.
  • the halogenation temperature is preferably 10 to 170 ° C, more preferably 30 to 140 ° C. Further, it is possible to pressurize in order to increase the reaction rate.
  • the reaction time may be 5 to 100 hours, preferably 30 to 45 hours.
  • the ratio of chloride, bromide and iodide in the molten salt is adjusted, and the amount of chlorine gas, bromine, iodine, etc. introduced and the reaction time are changed. It is preferable because the content ratio of the halogenated metal phthalocyanine having a specific halogen atomic composition in the produced halogenated metal bromide can be arbitrarily controlled. Further, according to the melting method, the decomposition of the raw material during the reaction is small, the yield from the raw material is more excellent, and the reaction can be carried out with an inexpensive device without using a strong acid.
  • a metal halide phthalocyanine having a halogen atomic composition different from that of the existing metal halide phthalocyanine can be obtained by optimizing the raw material charging method, the catalyst species and the amount used thereof, the reaction temperature and the reaction time.
  • the metal halide phthalocyanine is in a state of being dissolved in the reaction solution in the reaction solution obtained after the reaction is completed.
  • the obtained mixture (reaction solution) is put into an acidic aqueous solution such as water or hydrochloric acid or a basic aqueous solution such as an aqueous sodium hydroxide solution to precipitate (precipitate) the metal halide phthalocyanine produced.
  • an acidic aqueous solution such as water or hydrochloric acid
  • an acid such as hydrochloric acid or sulfuric acid is generated, and the acid is contained in the precipitate and is crude.
  • the acid will remain in the pigment.
  • a basic aqueous solution when used, the generation of acid is suppressed, so that the inclusion of acid in the precipitate can be suppressed and the residual acid can be suppressed in the crude pigment. can.
  • the crude pigment contains an acid, it is considered that the aggregation of the particles by the acid is promoted at the time of pigmentation and the miniaturization of the pigment particles is hindered. Therefore, finer pigment particles can be obtained.
  • the first step may further include a post-treatment step of post-treating the precipitate after the precipitation step.
  • the first step may further include, for example, a step of filtering the precipitate (first post-treatment step).
  • the first post-treatment step may be a step of filtering and washing the precipitate, or may be a step of filtering, washing and drying the precipitate.
  • the washing may be performed using, for example, an aqueous solvent such as water, sodium hydrogensulfate water, sodium hydrogencarbonate water, or sodium hydroxide water.
  • an organic solvent such as acetone, toluene, methyl alcohol, ethyl alcohol, and dimethylformamide may be used, if necessary.
  • cleaning with an organic solvent may be performed.
  • the washing may be repeated a plurality of times (for example, 2 to 5 times). Specifically, it is preferable to perform washing until the pH of the filtrate becomes equal to the pH of the water used for washing (for example, the difference between the two is 0.2 or less).
  • the first step may further include, for example, a step of dry grinding the precipitate (a second post-treatment step).
  • Dry grinding may be performed in a crusher such as an attritor, a ball mill, a vibration mill, or a vibration ball mill.
  • the dry pulverization may be performed while heating (for example, while heating so that the temperature inside the pulverizer becomes 40 ° C. to 200 ° C.).
  • washing with water may be performed. By washing with water after dry-grinding (particularly after dry-grinding with an attritor), the amount of acid contained in the crude pigment can be further reduced.
  • the washing may be either water washing (washing with water below 40 ° C.) or hot water washing (washing with water above 40 ° C.).
  • the washing is preferably carried out until the pH of the filtrate becomes equal to the pH of the water used for washing (for example, the difference between the two is 0.2 or less).
  • a treatment for improving the wettability of the precipitate for example, a treatment for bringing the precipitate into contact with a water-soluble organic solvent such as methanol
  • Dry grinding and washing may be repeated multiple times.
  • the first step may further include, for example, a step of kneading the precipitate together with water (third post-treatment step).
  • a step of kneading the precipitate together with water By performing the third post-treatment step, the amount of acid contained in the crude pigment can be further reduced. Kneading can be performed using, for example, a kneader, a mix maller, or the like. Kneading may be performed while heating. For example, the temperature of water may be 40 ° C. or higher. Inorganic salts may be added to the water. At this time, by allowing at least a part of the inorganic salt to exist in a solid state, the force applied during kneading can be improved.
  • an organic solvent for example, an organic solvent that can be used in the second step described later
  • the amount of the organic solvent used is preferably smaller than the amount of water used, and no organic solvent is used. Is more preferable.
  • washing may be performed in the same manner as in the first post-treatment step. Kneading and washing may be repeated a plurality of times.
  • the first step may further include, for example, a step of heating (for example, boiling) the precipitate in water (fourth post-treatment step).
  • a step of heating for example, boiling
  • the heating temperature in water may be, for example, 40 ° C. or higher and the boiling point or lower, and the heating time may be, for example, 1 to 300 minutes.
  • An organic solvent for example, an organic solvent that can be used in the second step described later
  • the mixing amount of the organic solvent is preferably 20 parts by mass or less with respect to 100 parts by mass of water. Is.
  • the precipitate may be heated in water and then washed, and the precipitate is heated in water and then washed, and further heated and washed in water. May be repeated once or more (preferably twice or more). Cleaning may be performed in the same manner as in the first post-treatment step.
  • first to fourth post-treatment steps may be carried out.
  • the order thereof is not particularly limited.
  • the crude pigment can be obtained by the first step.
  • the precipitate obtained in the first step may be used as the crude pigment as it is, and the post-treatment step may be applied to the precipitate.
  • the crude pigment may be obtained by performing (at least one step of the first to fourth post-treatment steps).
  • the arithmetic standard deviation of the particle size distribution of the crude pigment is, for example, 15 nm or more.
  • the arithmetic standard deviation of the particle size distribution of the crude pigment is, for example, 1500 nm or less.
  • finer pigment particles can be easily obtained.
  • the arithmetic standard deviation of the particle size distribution of the crude pigment can be measured using a dynamic light scattering type particle size distribution measuring device, and specifically, can be measured by the following methods and conditions.
  • ⁇ Method> 2.48 g of crude pigment, 1.24 g of BYK-LPN6919 manufactured by Big Chemie, 1.86 g of Unidic ZL-295 manufactured by DIC Corporation, and 10.92 g of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads.
  • the mixture is dispersed for 2 hours to obtain a dispersion.
  • 0.02 g of the dispersion is diluted with 20 g of propylene glycol monomethyl ether acetate to obtain a dispersion for measuring the particle size distribution.
  • -Measuring equipment Dynamic light scattering type particle size distribution measuring device LB-550 (manufactured by HORIBA, Ltd.) ⁇ Measurement temperature: 25 ° C -Measurement sample: Dispersion for particle size distribution measurement-Data analysis conditions: Particle size standard Scattered light intensity, dispersion medium refractive index 1.402
  • the crude pigment may contain an acid.
  • the crude pigment contains acid.
  • the crude pigment is further mixed with 100 ml of ion-exchanged water, and the obtained mixture is heated for 5 minutes to bring it to a boiling state, and then heated for another 5 minutes.
  • the pH of the filtrate measured by the above method is defined as "pH of crude pigment”.
  • the pH of the crude pigment When the pH of the crude pigment is less than 5, the effect of the present invention tends to be remarkably obtained.
  • the central metal of the metal halide phthalocyanine constituting the crude pigment is zinc, iron or magnesium, the crystallinity tends to be further lowered when the crude pigment contains an acid, and the effect of the present invention is more remarkable.
  • the pH of the crude pigment may be 4.5 or less or 3.5 or less.
  • the pH of the filtrate may be, for example, 2.0 or higher.
  • the second step includes a kneading step of kneading the mixture containing the crude pigment, the inorganic salt and the organic solvent prepared in the first step at a maximum shear rate of more than 800s -1 .
  • the crude pigment is ground and refined by kneading the mixture using a kneading device.
  • a kneading device for example, a kneader, a mix muller, a planetary mixer, a continuous uniaxial kneader, a flasher and the like can be used.
  • the kneading device may be an open type or a closed type, but if it is a closed type, the volatilization of the organic solvent can be suppressed and the kneading time can be lengthened. Further, the kneader may be a tangential type or a meshing type, but if it is a tangential type, it can be efficiently kneaded even when the viscosity of the kneaded product is high.
  • FIG. 1 is a schematic cross-sectional view showing the internal structure of the kneading device used in the manufacturing method of one embodiment.
  • the kneading device 10 shown in FIG. 1 is a double-arm type kneader, and includes a kneading chamber 11 and a pair of blades 12 provided in the kneading chamber 11. In the kneading step, after the mixture is charged into the kneading chamber 11, the pair of blades 12 are rotated by a motor.
  • a gap (clearance) C1 exists between the inner wall surface 11a of the kneading chamber 11 and the blades 12, and the pair of blades 12 rotate in opposite directions (arrow directions shown in FIG. 1).
  • shear stress is applied to the mixture passing through the clearance C1, and the crude pigment is made finer.
  • the shapes of the pair of blades 12 are the same as each other.
  • FIG. 2 is a schematic plan view showing the internal structure of the kneading device used in another embodiment
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the kneading device 20 shown in FIGS. 2 and 3 is a mix muller, which is a kneading chamber 21 having a circular bottom surface 21a, and a pair of muller wheels 22, pillar portions 23, connecting portions 24, and a pair of muller wheels 22 provided in the kneading chamber 21.
  • a pressure spring 25 is provided.
  • the maller wheel 22 is connected to the pillar portion 23 by the connecting portion 24.
  • the pillar portion 23 extends vertically from the center of the bottom surface 21a and is rotatable about the rotation axis L1 by a motor.
  • the pillar portion 23 is rotated to revolve the pair of maller wheels 22 around the pillar portion 23.
  • a gap (clearance) C2 exists between the bottom surface 21a of the kneading chamber 21 and the maller wheel 22, and a load from the vertical direction is applied by the weight of the maller wheel 22 and / or the pressure spring 25.
  • the maller wheel 22 revolves and rotates due to contact with the mixture passing through the clearance C2, so that the mixture has a kneading action, a smearing action, and a spaturating action, and the crude pigment is made finer.
  • the shapes of the pair of maller wheels 22 are the same as each other.
  • the maximum shear rate during kneading is more than 800s -1 , and from the viewpoint that aggregation of the crude pigment during kneading can be further suppressed and the crude pigment can be further miniaturized, it is 1500s -1 or more or 2500s -1 or more. There may be.
  • the maximum shear rate may be 5000s -1 or less from the viewpoint of preventing the pigment particles from being crushed. From these points of view, the maximum shear rate may be 800s -1 more than 5000s -1 or less, 1500-5000s -1 or 2500-5000s -1 .
  • the “maximum shear rate” means the shear rate at the place where the shear rate of the kneaded material is maximum in the kneading device.
  • the “shear velocity” is expressed as v / h, where v is the moving speed of the kneaded material (distance traveled per unit time) and h is the width of the portion where the kneaded material passes at the moving speed v. be able to.
  • the shear rate in the clearance C1 is obtained by setting the moving speed of the kneaded material when passing through the clearance C1 to v and the width of the clearance C1 to h.
  • the shear rate in the clearance C2 is obtained by setting the moving speed of the kneaded material when passing through the clearance C2 to v and the width of the clearance C2 to h. ..
  • the moving speed (distance moved per unit time) of the kneaded material is the maximum and the shearing speed is the maximum at the place where the clearance is the narrowest.
  • the kneaded product is most affected by shearing due to kneading at the place where the shear rate is maximum. Therefore, by increasing the maximum shear rate to more than 800s -1 , the state in which aggregation of the crude pigment is unlikely to occur is maintained. can do.
  • the maximum shear rate can be adjusted, for example, by the shape of the kneading device and the rotation speed of the rotating body (for example, the blade 12, the column portion 23, etc.).
  • the blade 12 is determined from the maximum radius r of the blade 12 (the longest shortest distance from the rotation axis L1 of the blade 12 to the surface of the blade 12). Since the product of the outer circumference of the rotation trajectory (2 x maximum radius r x ⁇ ) and the rotation speed of the blade 12 is the maximum movement speed of the kneaded product, kneading is performed by adjusting the shape of the blade 12 and the rotation speed of the blade 12.
  • the maximum moving speed and clearance of the object can be adjusted to the desired maximum shear rate. Further, for example, in the kneading device 20 shown in FIG. 2, the revolving trajectory of the maller wheel 22 obtained from the sum of the shortest distance D from the rotation axis L2 passing through the center of the pillar portion 23 to the maller wheel 22 and the wheel width W of the maller wheel 22.
  • the maximum moving speed of the kneaded product Since the product of the outer circumference (2 ⁇ [shortest distance D + wheel width W] ⁇ ⁇ ) and the rotation speed of the pillar portion 23 is the maximum moving speed of the kneaded product, the shape of the maller wheel and the horizontal length of the connecting portion 24 By adjusting the rotation speed of the column portion 23, the strength of the tension applied to the maller wheel, and the like, the maximum moving speed and clearance of the kneaded material can be adjusted to obtain a desired shearing speed.
  • the minimum value of the width of the clearance C1 can be, for example, 0.1 to 3.0 mm, 0.1 to 1.0 mm, or 0.1 to 0.4 mm. ..
  • the rotation speed of the blades 12 (when the rotation speeds of the pair of blades 12 are different from each other, the rotation speed of the blade 12 on the side with the higher rotation speed) can be, for example, 30 to 300 rpm, 100 to 200 rpm, or 120 to 160 rpm. ..
  • the rotation speed ratio of the rotation speeds of the pair of blades 12 may be, for example, 2: 1 to 1: 2 or 1.5: 1 to 1: 1.5.
  • As the blade a sigma blade, a masticator blade, a Z blade, a double naven blade or the like can be used.
  • the minimum value of the width of the clearance C2 can be, for example, 1 to 30 mm, 1 to 20 mm, or 1 to 5 mm.
  • the wheel width W of the maller wheel 22 can be, for example, 10 to 100 mm, 20 to 50 mm, or 30 to 40 mm.
  • the rotation speed of the pillar portion 23 (revolution speed of the maller wheel) can be, for example, 10 to 100 rpm, 10 to 60 rpm, or 15 to 45 rpm.
  • the rotation speed of the maller wheel can be, for example, 10 to 100 rpm, 10 to 60 rpm, or 15 to 45 rpm.
  • the rotation speed of the maller wheel may be the same as the revolution speed of the maller wheel.
  • the maximum moving speed of the kneaded product can be, for example, 500 to 3500 mm / s, 700 to 3000 mm / s, or 2000 to 3000 mm / s.
  • the mixture may be kneaded at a temperature lower than 110 ° C.
  • the kneading temperature may be 100 ° C. or lower or 90 ° C. or lower.
  • the kneading temperature may be, for example, 25 ° C. or higher, 40 ° C. or higher, or 60 ° C. or higher.
  • the kneading temperature may be 110 ° C. or higher.
  • the kneading temperature may be, for example, 25 to 150 ° C. or lower, 25 ° C.
  • the kneading temperature is the temperature of the mixture (kneaded product) at the time of kneading.
  • a temperature adjusting device may be used to adjust the temperature of the kneaded product within the above range.
  • the mixture may be heated by flowing a heat medium (ethylene glycol or the like) heated by the temperature control device through the jacket of the kneading device.
  • the amount of electric power consumed for kneading the mixture is larger than 10.0 kWh per 1 kg of crude pigment.
  • the amount of electric power consumed for kneading the mixture is synonymous with the amount of energy input to the mixture by kneading, and the kneading device is used during the kneading time of the mixture, that is, from the start of kneading to the end of kneading.
  • the electric energy for heating (for example, the electric energy for heating the heat medium by the temperature adjusting device) is not included in the electric energy.
  • the amount of electric power consumed for kneading the mixture may be 14.0 kWh or more or 25.0 kWh or more per 1 kg of the crude pigment from the viewpoint of making the crude pigment finer and obtaining a color filter pigment further excellent in the effect of improving the brightness. ..
  • the amount of electric power consumed for kneading the mixture may be 100.0 kWh or less, 70.0 kWh or less, or 50.0 kWh or less per 1 kg of the crude pigment from the viewpoint of suppressing aggregation of the crude pigment due to excessive kneading.
  • the amount of electric power consumed for kneading the mixture may be more than 10.0kWh and 100.0kWh or less, 14.0 to 70.0kWh or 14.0 to 50.0kWh per 1 kg of the crude pigment.
  • the amount of electric power consumed for kneading the mixture includes the kneading time, the shape of the kneading device, the rotation speed of the rotating body (for example, the blade 12, the pillar 23, etc.), the mixing ratio of the mixture, the type of the organic solvent in the mixture, and the like. Can be adjusted by.
  • the kneading time may be 5 hours or more, 7 hours or more, or 9 hours or more from the viewpoint of obtaining a color filter pigment having a finer coarse pigment and a more excellent effect of improving the brightness.
  • the kneading time may be 100 hours or less, 50 hours or less, or 30 hours or less from the viewpoint of suppressing aggregation of the crude pigment due to excessive kneading. From these viewpoints, the kneading time may be 5 to 100 hours, 7 to 50 hours or 9 to 30 hours.
  • organic solvent that does not dissolve the crude pigment and the inorganic salt described later.
  • organic solvent it is preferable to use an organic solvent capable of suppressing crystal growth.
  • a water-soluble organic solvent can be preferably used.
  • the organic solvent include diethylene glycol, glycerin, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, and 2-butoxyethanol.
  • the organic solvent one kind may be used alone or a plurality of kinds may be used in combination.
  • the amount of the organic solvent (for example, a water-soluble organic solvent) used is 1 part by mass or more with respect to 100 parts by mass of the crude pigment from the viewpoint of promoting the wetting of the surface of the pigment particles and making the pigment particles finer more efficiently. It may be 30 parts by mass or more or 50 parts by mass or more.
  • the amount of the organic solvent (for example, a water-soluble organic solvent) used is such that the force applied to the crude pigment at the time of kneading becomes larger due to the high viscosity of the mixture, and the aggregation of the crude pigment at the time of kneading is further suppressed.
  • the amount of the organic solvent (for example, a water-soluble organic solvent) used may be 1 to 500 parts by mass, 30 to 400 parts by mass or 50 to 200 parts by mass with respect to 100 parts by mass of the crude pigment.
  • the amount of the organic solvent used can be rephrased as the content of the organic solvent in the mixture.
  • an inorganic salt having solubility in water and / or methanol is preferably used, and an inorganic salt having solubility in water (water-soluble inorganic salt) is more preferably used.
  • the inorganic salt include sodium chloride, potassium chloride, lithium chloride, sodium sulfate and the like.
  • the average particle size (average primary particle size) of the primary particles of the inorganic salt is, for example, 0.5 to 50 ⁇ m. Such an inorganic salt can be easily obtained by finely pulverizing an ordinary inorganic salt.
  • the average primary particle size of the inorganic salt is measured by the same method as the average primary particle size of the pigment described later.
  • the inorganic salt is ultrasonically dispersed in cyclohexane and then photographed with a microscope, and the average particle size of the primary particles (average primary particles) is obtained from the average value of 40 primary particles constituting the aggregate on the two-dimensional image. Diameter) can be calculated.
  • the amount of the inorganic salt (for example, a water-soluble inorganic salt) used is such that the force applied to the crude pigment at the time of kneading becomes larger and the aggregation of the crude pigment at the time of kneading is further suppressed. It may be 30 parts by mass or more, 40 parts by mass or more, or 50 parts by mass or more.
  • the amount of the inorganic salt (for example, a water-soluble inorganic salt) used is 100 parts by mass or less, 80 parts by mass or less, or 60 parts by mass or less with respect to 1 part by mass of the crude pigment from the viewpoint of increasing the production efficiency of the pigment. good.
  • the amount of the inorganic salt (for example, a water-soluble inorganic salt) used may be 30 to 100 parts by mass, 30 to 60 parts by mass or 40 to 60 parts by mass with respect to 1 part by mass of the crude pigment.
  • the amount of the inorganic salt used can also be rephrased as the content of the inorganic salt in the mixture.
  • the amount of water used may be, for example, 20 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less with respect to 100 parts by mass of the crude pigment.
  • a washing step of washing the mixture after kneading may be carried out.
  • the cleaning depending on the type of the inorganic salt, washing with water, washing with hot water, washing with an organic solvent (for example, an organic solvent having a small surface tension such as methanol), or a combination thereof can be adopted.
  • an organic solvent for example, an organic solvent having a small surface tension such as methanol
  • the organic solvent and the inorganic salt can be easily removed by washing with water.
  • the cleaning step may be carried out using a basic aqueous solution such as an aqueous solution of potassium hydroxide.
  • a basic aqueous solution such as an aqueous solution of potassium hydroxide.
  • the counter anion is removed from a part of the metal halide phthalocyanine protonated under acidic conditions, the heat resistance is improved, and the effect of further improving the brightness tends to be obtained.
  • an aqueous solution having a pH higher than 8 at 25 ° C. may be used as the basic aqueous solution.
  • the temperature of the basic aqueous solution may be, for example, 40 to 90 ° C.
  • Cleaning may be performed by stirring the mixture in a cleaning solution (for example, water, an organic solvent, a basic aqueous solution, etc.). The washing may be repeated, for example, in the range of 1 to 5 times.
  • the amount of the cleaning liquid used for one cleaning may be, for example, 200 to 1500 parts by mass with respect to 100 parts by mass of the total amount of the mixture. If necessary, pickling may be performed.
  • the washed mixture (solid matter mainly composed of pigment) may be subjected to operations such as filtration, drying, and pulverization.
  • drying after washing and filtration include batch type or continuous type drying in which the pigment is dehydrated and / or the solvent is removed by heating at 80 to 120 ° C. by a heating source installed in a dryer. ..
  • the dryer generally include a box-type dryer, a band dryer, a spray dryer and the like. In particular, spray-drying using a spray dryer is preferable because it is easy to disperse when preparing the paste.
  • an organic solvent is used for cleaning, it is preferable to vacuum dry at 0 to 60 ° C.
  • the crushing after drying is not an operation for increasing the specific surface area or reducing the average particle size of the primary particles, but the pigment is used as in the case of drying using a box dryer or a band dryer, for example. This is done to dissolve the pigment and pulverize it when it becomes a lamp shape or the like. For example, crushing with a mortar, a hammer mill, a disc mill, a pin mill, a jet mill, or the like can be mentioned.
  • the metal halide phthalocyanine crude pigment can be further refined as compared with the pigmentation by the conventional method. That is, the pigment obtained by the above-mentioned production method is a metal halide phthalocyanine pigment that has been further miniaturized, and when used as a color filter pigment, the brightness of the pixel portion (particularly the green pixel portion) is further improved. Can be done. In general, the smaller the particle size (primary particle size) of a color filter pigment, the better the brightness and contrast of the pixel portion. Therefore, the halogenated metal phthalocyanine pigment obtained by the above manufacturing method is green for a color filter. When used as a pigment, it also tends to provide excellent contrast.
  • the average particle size (average primary particle size) of the primary particles of the pigment obtained by the above method is, for example, 30 nm or less. According to the above method, for example, a pigment having an average primary particle size of 25 nm or less can be obtained.
  • the average primary particle size of the pigment may be 10 nm or more.
  • the average primary particle size is an average value of the major axis of the primary particle, and can be obtained by measuring the major axis of the primary particle in the same manner as the measurement of the average aspect ratio described later.
  • the average aspect ratio of the primary particles of the pigment is, for example, 1.2 or more, 1.3 or more, 1.4 or more, or 1.5 or more.
  • the average aspect ratio of the primary particles of the pigment is, for example, less than 2.0, 1.8 or less, 1.6 or less, or 1.4 or less.
  • a pigment having such an average aspect ratio provides better brightness and contrast.
  • a pigment having an average aspect ratio of the primary particles in the range of 1.0 to 3.0 preferably does not contain primary particles having an aspect ratio of 5 or more, and more preferably does not contain primary particles having an aspect ratio of 4 or more. It is preferable that the primary particles having an aspect ratio of more than 3 are not contained.
  • the aspect ratio and average aspect ratio of the primary particles can be measured by the following methods. First, the particles in the field of view are photographed with a transmission electron microscope (for example, JEM-2010 manufactured by JEOL Ltd.). Then, the longer diameter (major axis) and the shorter diameter (minor axis) of the primary particles existing on the two-dimensional image are measured, and the ratio of the major axis to the minor axis is defined as the aspect ratio of the primary particles. Further, the average value of the major axis and the minor axis is obtained for 40 primary particles, and the ratio of the major axis to the minor axis is calculated using these values, and this is used as the average aspect ratio. At this time, the pigment as a sample is photographed with a microscope after ultrasonically dispersing it in a solvent (for example, cyclohexane). Further, a scanning electron microscope may be used instead of the transmission electron microscope.
  • a solvent for example, cyclohexane
  • reaction solution was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water and dried to obtain a crude pigment A1.
  • the washing with water was carried out until the difference between the pH of the filtrate and the pH of the water used for washing became ⁇ 0.2.
  • Mass spectrometry of the crude pigment A1 by JMS-S3000 manufactured by JEOL Ltd. was performed, and it was confirmed that the halogenated zinc phthalocyanine had an average bromine number of 13.2 and an average chlorine number of 1.8.
  • the Delay Time was 500 ns
  • the Laser Integrity was 44%
  • reaction solution was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water, and dried to obtain a crude pigment A2.
  • the washing with water was carried out until the pH of the filtrate became the same as the pH of the water used for washing.
  • Mass spectrometry of the crude pigment A2 by JMS-S3000 manufactured by JEOL Ltd. was performed, and it was confirmed that the halogenated zinc phthalocyanine had an average bromine number of 9.3 and an average chlorine number of 2.9.
  • the Delay Time was 510 ns
  • the Laser Integrity was 40%
  • reaction solution was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water, and dried to obtain a crude pigment A3.
  • the washing with water was carried out until the difference between the pH of the filtrate and the pH of the water used for washing became ⁇ 0.2.
  • the crude pigment A3 was mass-analyzed by JMS-S3000 manufactured by Nippon Denshi Co., Ltd., and the average number of bromine was 14.3 and the average number of chlorine was 1.4 (the chlorine atom (chloro group) of the axial ligand was not included. ) Halogenated chloroaluminum phthalocyanine (halogenated aluminum phthalocyanine having a chloro group as an axial ligand) was confirmed.
  • the Delay Time was 275 ns
  • the Laser Integrity was 40%
  • reaction solution was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water and dried to obtain a crude pigment A4.
  • the washing with water was carried out until the difference between the pH of the filtrate and the pH of the water used for washing became ⁇ 0.2.
  • Mass spectrometry of the crude pigment A4 by JMS-S3000 manufactured by JEOL Ltd. was performed, and it was confirmed that the halogenated copper phthalocyanine had an average bromine number of 13.0 and an average chlorine number of 2.6.
  • the Delay Time was 275 ns
  • the Laser Integrity was 34%
  • the blade of the double-armed kneader has a sigma blade having a shape in which the outer circumference of the rotation trajectory is 0.35 m and the minimum clearance width between the blade and the inner wall surface of the kneading chamber (troff) is 0.5 mm.
  • the maximum moving speed of the kneaded material (outer circumference of the blade rotation trajectory x blade rotation speed) is 817 mm. It was set to / s, and the maximum shear rate (maximum moving speed of kneaded material x minimum value of clearance width) was set to 1633s -1 .
  • the power consumption of the dual-arm kneader was measured with the Watt Monitor TAP-TST8N manufactured by Sanwa Supply Co., Ltd., and the kneading time was adjusted so that the power consumption for kneading the mixture was 15.0 kWh per 1 kg of the crude pigment A1. did.
  • the kneading time was 10 hours.
  • the mixture after kneading was taken out into 16 kg of water at 80 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain a green pigment G1.
  • the green pigment G1 is ultrasonically dispersed in cyclohexane and then photographed with a microscope, and the average particle size (average primary particle size) of the primary particles is calculated from the average value of 40 primary particles constituting the aggregate on the two-dimensional image. did.
  • the average particle size of the primary particles was 28 nm.
  • Pigment Yellow 138 (Chromofine Yellow 6206EC manufactured by Dainichiseika Co., Ltd.) 1.65 g, DISPERBYK-161 (manufactured by Big Chemie) 3.85 g, Propylene Glycol Monomethyl Ether Acetate 11.00 g Zircon of 0.3 to 0.4 mm Using beads, the mixture was dispersed for 2 hours with a paint shaker manufactured by Toyo Seiki Co., Ltd. to obtain a dispersion.
  • the evaluation composition (CG1) was spin-coated on a soda glass substrate, dried at 90 ° C. for 3 minutes, and then heated at 230 ° C. for 1 hour. As a result, a glass substrate for contrast evaluation having a colored film on the soda glass substrate was produced. By adjusting the spin rotation speed at the time of spin coating, the thickness of the colored film obtained by heating at 230 ° C. for 1 hour was set to 1.8 ⁇ m.
  • a coating liquid obtained by mixing the yellow composition for toning (TY1) prepared above and the composition for evaluation (CG1) is spin-coated on a soda glass substrate and dried at 90 ° C. for 3 minutes. , 230 ° C. for 1 hour.
  • a glass substrate for luminance evaluation having a colored film on the soda glass substrate was produced.
  • a colored film having a chromaticity (x, y) of (0.275, 0.570) in the C light source was prepared.
  • the contrast of the colored film on the glass substrate for contrast evaluation was measured by the contrast tester CT-1 manufactured by Tsubosaka Electric Co., Ltd., and the brightness of the colored film on the glass substrate for luminance evaluation was measured by U-3900 manufactured by Hitachi High-Tech Science. The results are shown in Table 1.
  • the contrast and brightness shown in Table 1 are values based on the contrast and brightness of Experimental Example 7.
  • Example 2 The blade was changed to a sigma blade with a larger diameter and kneaded so that the minimum clearance width between the blade and the inner wall surface of the kneading chamber was 0.25 mm, and the shear rate was set to 3267s -1 . Except, the green pigment G2 was obtained in the same manner as in Experimental Example 1. The amount of electric power consumed for kneading the mixture was 28.3 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G2 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G2 was used instead of the green pigment G1. The results are shown in Table 1.
  • a green pigment G3 was obtained in the same manner as in Experimental Example 1 except that the kneading temperature was set to 130 ° C. The amount of electric power consumed for kneading the mixture was 13.7 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G3 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G3 was used instead of the green pigment G1. The results are shown in Table 1.
  • Example 4 A green pigment G4 was obtained in the same manner as in Experimental Example 1 except that the amount of crude pigment A1 used was 80 g so that the amount of sodium chloride used was 40 times the amount of crude pigment used. The amount of electric power consumed for kneading the mixture was 14.6 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G4 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G4 was used instead of the green pigment G1. The results are shown in Table 1.
  • Example 5 The mixture after kneading was green in the same manner as in Experimental Example 4 except that the mixture was taken out into a 5% potassium hydroxide aqueous solution (pH at 25 ° C.: 13.8) at 80 ° C. instead of water at 80 ° C. Pigment G5 was obtained. Further, the average primary particle size of the green pigment G5 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G5 was used instead of the green pigment G1. The results are shown in Table 1.
  • the muller wheel in the mixed muller a muller wheel having a diameter of 1200 mm and a thickness of 360 mm is used, the outer circumference of the revolution orbit of the muller wheel is 3.75 m, and the minimum value of the clearance width between the muller wheel and the bottom surface of the kneading chamber.
  • the position of the maller wheel and the strength of the tension applied to the maller wheel were adjusted so that the height was 3 mm (the tension applied to the maller wheel was set to 3365 kg).
  • the maximum moving speed of the kneaded material (outer circumference of the muller wheel revolution track x rotation speed of the pillar) is 2500 mm / s, and the maximum shearing occurs.
  • the speed (maximum moving speed of kneaded product x minimum value of clearance width) was set to 833s -1 .
  • the rotation speed of the maller wheel was set to 40 rpm.
  • the power consumption of the mix maller was measured with a Watt monitor TAP-TST8N manufactured by Sanwa Supply Co., Ltd., and the kneading time was adjusted so that the power consumption for kneading the mixture was 11.5 kWh per 1 kg of the crude pigment A1.
  • the kneading time was 2.5 hours.
  • the mixture after kneading was taken out into 150 kg of water at 80 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain a green pigment G6.
  • the average primary particle size of the green pigment G6 was measured in the same manner as in Experimental Example 1.
  • a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced in the same manner as in Experimental Example 1 except that the green pigment G6 was used instead of the green pigment G1, and the contrast and luminance were measured. The results are shown in Table 1.
  • Kneading is performed by changing the blade to a sigma blade having a smaller diameter so that the minimum clearance width between the blade and the inner wall surface of the kneading chamber is 1 mm, and the rotation speed of the blade is 70 rpm for kneading.
  • the maximum moving speed of the object (outer circumference of the blade rotation trajectory x blade rotation speed) was set to 408 mm / s, and the maximum shear rate (maximum moving speed of the kneaded material x minimum clearance width) was set to 408s -1 .
  • a green pigment G7 was obtained in the same manner as in Experimental Example 1 except that the kneading time was 8 hours and the amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of the crude pigment A1. Moreover, the average primary particle diameter of the green pigment G7 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G7 was used instead of the green pigment G1. The results are shown in Table 1.
  • Example 8 A green pigment G8 was obtained in the same manner as in Experimental Example 7, except that the kneading time was 24 hours and the amount of electric power consumed for kneading the mixture was 23.9 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G8 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G8 was used instead of the green pigment G1. The results are shown in Table 1.
  • Example 9 A green pigment G9 was obtained in the same manner as in Experimental Example 5, except that the crude pigment A2 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 14.7 kWh per 1 kg of crude pigment A2. Further, the average primary particle size of the green pigment G9 was measured in the same manner as in Experimental Example 1. In addition, Pigment Yellow 185 (Pariotor Yellow D1155 manufactured by BASF) was used in place of Pigment Yellow 138 (Chromofine Yellow 6206EC manufactured by Dainichi Seika Co., Ltd.), and Green Pigment G9 was used in place of Green Pigment G1.
  • a glass substrate for contrast evaluation and a glass substrate for brightness evaluation were produced in the same manner as in Experimental Example 1 except that the chromaticity (x, y) of the colored film was adjusted to (0.230, 0.670). , Contrast and brightness were measured. The results are shown in Table 2. The contrast and brightness shown in Table 2 are values based on the contrast and brightness of Experimental Example 10.
  • Example 10 A green pigment G10 was obtained in the same manner as in Experimental Example 7, except that the crude pigment A2 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of crude pigment A2. Further, the average primary particle size of the green pigment G10 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 9, except that the green pigment G10 was used instead of the green pigment G9. The results are shown in Table 2.
  • Example 11 A green pigment G11 was obtained in the same manner as in Experimental Example 5, except that the crude pigment A3 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 14.4 kWh per 1 kg of crude pigment A3. The average primary particle size of the green pigment G11 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G11 was used instead of the green pigment G1. The results are shown in Table 3. The contrast and brightness shown in Table 3 are values based on the contrast and brightness of Experimental Example 12.
  • Example 12 A green pigment G12 was obtained in the same manner as in Experimental Example 7, except that the crude pigment A3 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of crude pigment A3. Further, the average primary particle size of the green pigment G12 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G12 was used instead of the green pigment G1. The results are shown in Table 3.
  • Example 13 A green pigment G13 was obtained in the same manner as in Experimental Example 5, except that the crude pigment A4 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 14.3 kWh per 1 kg of crude pigment A4. The average primary particle size of the green pigment G13 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G13 was used instead of the green pigment G1. The results are shown in Table 4. The contrast and brightness shown in Table 4 are values based on the contrast and brightness of Experimental Example 14.
  • Example 14 A green pigment G14 was obtained in the same manner as in Experimental Example 7, except that the crude pigment A4 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of crude pigment A4. Further, the average primary particle size of the green pigment G14 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G14 was used instead of the green pigment G1. The results are shown in Table 4.

Abstract

A method for manufacturing a color filter pigment, the method having a kneading step for kneading a mixture containing a crude pigment, an inorganic salt, and an organic solvent at a maximum shear rate exceeding 800 s-1, the crude pigment being configured from a halogenated metal phthalocyanine having zinc, iron, aluminum, magnesium, silicon, or vanadium as the central metal thereof, and the amount of electric power consumed in kneading of the mixture in the kneading step being greater than 10.0 kWh per 1 kg of the crude pigment.

Description

カラーフィルタ用顔料の製造方法Manufacturing method of pigment for color filter
 本発明は、カラーフィルタ用顔料の製造方法に関する。 The present invention relates to a method for producing a pigment for a color filter.
 現在、着色組成物は様々な分野に用いられており、着色組成物の具体的な用途としては、印刷インキ、塗料、樹脂用着色剤、繊維用着色剤、IT情報記録用色材(カラーフィルタ、トナー、インクジェット)などが挙げられる。着色組成物に用いられる色素は、主に顔料と染料とに大別されるが、着色力の点において優勢とされている有機顔料に注目が集まっている。 Currently, coloring compositions are used in various fields, and specific uses of coloring compositions include printing inks, paints, colorants for resins, colorants for fibers, and color materials for IT information recording (color filters). , Toner, inkjet) and the like. The dyes used in the coloring composition are mainly classified into pigments and dyes, but organic pigments, which are predominant in terms of coloring power, are attracting attention.
 有機顔料は、カラーフィルタ用顔料として有用であることが知られている。カラーフィルタ用の有機顔料としては、フタロシアニン系顔料が注目されており、カラーフィルタの緑色画素部等に用いられている(例えば、特許文献1参照)。 Organic pigments are known to be useful as pigments for color filters. Phthalocyanine-based pigments are attracting attention as organic pigments for color filters, and are used for green pixel portions and the like of color filters (see, for example, Patent Document 1).
国際公開2018/043548号パンフレットInternational Publication No. 2018/043548 Pamphlet
 本発明は、画素部の輝度を向上させることができるカラーフィルタ用顔料の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a pigment for a color filter, which can improve the brightness of a pixel portion.
 有機顔料を構成する有機化合物は、合成後には微粒子同士が凝集し、クルードと呼ばれる凝集体の状態で存在する。そのため、通常、合成後の有機化合物をそのまま顔料として用いることはできず、粒子サイズを調整するための顔料化工程が行われる。顔料化工程で顔料化される上記有機化合物の凝集体(クルード)は粗顔料と呼ばれ、当該粗顔料を混練等により磨砕することで、微細な有機顔料を得る。 The organic compounds constituting the organic pigment exist in the state of aggregates called crudo, in which fine particles aggregate with each other after synthesis. Therefore, usually, the synthesized organic compound cannot be used as a pigment as it is, and a pigmentation step for adjusting the particle size is performed. The aggregate (crude) of the organic compound pigmented in the pigmentation step is called a crude pigment, and the crude pigment is ground by kneading or the like to obtain a fine organic pigment.
 有機顔料を製造するための粗顔料の顔料化は、通常、粗顔料と無機塩と有機溶剤とを含む混合物を混練することにより行われるが、混練時には粗顔料の微細化と同時に結晶化が進行する。混合物の混練に投入するエネルギー量(混練に消費される電力量)が大きくなりすぎると、上記結晶化が優勢となるため、微細な顔料を得るためには、投入するエネルギー量が大きくなりすぎないようにする(例えば、粗顔料1kgあたり8.0kWh以下の消費電力量とする)必要がある。 Pigmentization of a crude pigment for producing an organic pigment is usually carried out by kneading a mixture containing the crude pigment, an inorganic salt and an organic solvent, but during kneading, crystallization proceeds at the same time as the crude pigment is refined. do. If the amount of energy input to the kneading of the mixture (the amount of electric power consumed for kneading) becomes too large, the above crystallization becomes predominant. Therefore, the amount of energy input to obtain a fine pigment does not become too large. (For example, the power consumption is 8.0 kWh or less per 1 kg of crude pigment).
 本発明者らは、フタロシアニン系顔料が画素部の輝度を向上させ得る顔料でありながら、結晶化し易い顔料である点に着目し、フタロシアニン系顔料の製造において、上記混練時の結晶化を抑制することができれば、通常よりも大きなエネルギー量で混練した場合でも粗顔料の微細化が優勢となり、フタロシアニン系顔料をより一層微細化することができ、結果として、画素部の輝度をより向上させることができるカラーフィルタ顔料を得ることができるのではないかとの着想を得た。本発明者らは、上記着想に基づき鋭意検討を行った結果、本発明を完成させた。 The present inventors have focused on the fact that the phthalocyanine pigment is a pigment that can improve the brightness of the pixel portion but is easily crystallized, and suppresses the crystallization during the kneading in the production of the phthalocyanine pigment. If this is possible, even when kneaded with a larger amount of energy than usual, the micronization of the crude pigment becomes predominant, the phthalocyanine pigment can be further miniaturized, and as a result, the brightness of the pixel portion can be further improved. I got the idea that it would be possible to obtain a color filter pigment that can be produced. The present inventors have completed the present invention as a result of diligent studies based on the above idea.
 すなわち、本発明の一側面は、粗顔料と無機塩と有機溶剤とを含む混合物を、800s-1を超える最大せん断速度で混練する混練工程を有し、粗顔料が、亜鉛、鉄、アルミニウム、マグネシウム、シリコン又はバナジウムを中心金属とするハロゲン化金属フタロシアニンで構成され、混練工程で混合物の混練に消費される電力量が、粗顔料1kgあたり10.0kWhより大きい、カラーフィルタ用顔料の製造方法に関する。 That is, one aspect of the present invention has a kneading step of kneading a mixture containing a crude pigment, an inorganic salt and an organic solvent at a maximum shear rate exceeding 800s -1 , and the crude pigment is zinc, iron, aluminum, and the like. The present invention relates to a method for producing a pigment for a color filter, which is composed of a metal halide phthalocyanine having magnesium, silicon or vanadium as a central metal, and the amount of power consumed for kneading the mixture in the kneading step is greater than 10.0 kWh per 1 kg of crude pigment. ..
 上記側面の製造方法によれば、画素部の輝度を向上させることができるカラーフィルタ用顔料を得ることができる。 According to the manufacturing method of the above aspect, it is possible to obtain a pigment for a color filter capable of improving the brightness of the pixel portion.
 ハロゲン化金属フタロシアニンは、金属フタロシアニンにおける芳香環上の水素原子の少なくとも一部がハロゲン化されてなる化合物であり、当該芳香環のハロゲン化に起因して、フタロシアニン環が歪んだ構造をとりやすいため、結晶化し難い傾向がある。そのため、粗顔料としてハロゲン化金属フタロシアニンで構成される粗顔料を用いることで、混練時に投入するエネルギー量(混練に消費される電力量)を大きくした場合にも結晶化が進行し難いと推察される。一方、本発明者らの検討の結果明らかになったことであるが、混練時に投入するエネルギー量(混練に消費される電力量)が大きい場合、上記ハロゲン化金属フタロシアニンで構成される粗顔料を用いたとしても、混練時の最大せん断速度が800s-1以下であると粗顔料の凝集が進行してしまう。そのため、混練時の最大せん断速度は800s-1より大きくする必要がある。混練時の最大せん断速度を800s-1より大きくすることで、混練中、粗顔料の凝集が起こり難い状態が維持されることとなり、粗顔料の微細化が優勢となると推察される。 Halogenated metal phthalocyanine is a compound in which at least a part of hydrogen atoms on the aromatic ring in metal phthalocyanine is halogenated, and the phthalocyanine ring tends to have a distorted structure due to the halogenation of the aromatic ring. , Tends to be difficult to crystallize. Therefore, by using a crude pigment composed of metal halide phthalocyanine as the crude pigment, it is presumed that crystallization is difficult to proceed even when the amount of energy input during kneading (the amount of power consumed for kneading) is increased. To. On the other hand, as a result of the studies by the present inventors, when the amount of energy input during kneading (the amount of electric power consumed for kneading) is large, the crude pigment composed of the metal halide phthalocyanine is used. Even if it is used, if the maximum shear rate at the time of kneading is 800s -1 or less, aggregation of the crude pigment will proceed. Therefore, the maximum shear rate during kneading needs to be larger than 800s -1 . By increasing the maximum shear rate during kneading to more than 800s -1 , it is presumed that the state in which aggregation of the crude pigment is unlikely to occur is maintained during kneading, and the miniaturization of the crude pigment becomes predominant.
 一態様において、粗顔料のpHは5未満であってよい。この場合、粗顔料の中心金属は、亜鉛、鉄又はマグネシウムであってよい。また、この場合、カラーフィルタ用顔料の製造方法は、混練工程で得られた混練後の混合物を、25℃でのpHが8よりも大きい水溶液で洗浄する洗浄工程をさらに有してよい。 In one embodiment, the pH of the crude pigment may be less than 5. In this case, the central metal of the crude pigment may be zinc, iron or magnesium. Further, in this case, the method for producing a pigment for a color filter may further include a washing step of washing the mixture after kneading obtained in the kneading step with an aqueous solution having a pH higher than 8 at 25 ° C.
 一態様において、粗顔料における、ハロゲン化金属フタロシアニン1分子中のハロゲン原子の数の平均は、9個以上であってよい。 In one embodiment, the average number of halogen atoms in one molecule of metal halide phthalocyanine in the crude pigment may be 9 or more.
 一態様において、混練工程では、110℃よりも低い温度で混合物を混練してよい。 In one embodiment, in the kneading step, the mixture may be kneaded at a temperature lower than 110 ° C.
 一態様において、混練工程における無機塩の使用量は、粗顔料1質量部に対し、30質量部以上であってよい。 In one embodiment, the amount of the inorganic salt used in the kneading step may be 30 parts by mass or more with respect to 1 part by mass of the crude pigment.
 本発明によれば、画素部の輝度を向上させることができるカラーフィルタ用顔料の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a pigment for a color filter that can improve the brightness of a pixel portion.
図1は、一実施形態の製造方法で使用される混練装置の内部構造を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing the internal structure of the kneading device used in the manufacturing method of one embodiment. 図2は、他の一実施形態の製造方法で使用される混練装置の内部構造を示す模式平面図である。FIG. 2 is a schematic plan view showing the internal structure of the kneading device used in the manufacturing method of another embodiment. 図3は、図2のIII-III線に沿った矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments.
 一実施形態のカラーフィルタ用顔料の製造方法は、例えば、粗顔料を用意する第1の工程と、当該粗顔料を顔料化する第2の工程と、を有する。 The method for producing a pigment for a color filter according to one embodiment includes, for example, a first step of preparing a crude pigment and a second step of pigmenting the crude pigment.
 第1の工程で用意する粗顔料は、亜鉛、鉄、アルミニウム、マグネシウム、シリコン又はバナジウムを中心金属とするハロゲン化金属フタロシアニン(以下、単に「ハロゲン化金属フタロシアニン」ともいう)で構成される。すなわち、粗顔料は、ハロゲン化亜鉛フタロシアニン粗顔料、ハロゲン化鉄フタロシアニン粗顔料、ハロゲン化アルミニウムフタロシアニン粗顔料、ハロゲン化マグネシウムフタロシアニン粗顔料、ハロゲン化シリコンフタロシアニン粗顔料及びハロゲン化バナジウムフタロシアニン粗顔料からなる群より選ばれるハロゲン化金属フタロシアニン粗顔料であり、本実施形態の製造方法で製造されるカラーフィルタ用顔料は、ハロゲン化亜鉛フタロシアニン顔料、ハロゲン化鉄フタロシアニン顔料、ハロゲン化アルミニウムフタロシアニン顔料、ハロゲン化マグネシウムフタロシアニン顔料、ハロゲン化シリコンフタロシアニン顔料及びハロゲン化バナジウムフタロシアニン顔料からなる群より選ばれるハロゲン化金属フタロシアニン顔料である。 The crude pigment prepared in the first step is composed of metal halide phthalocyanine (hereinafter, also simply referred to as "metal halide phthalocyanine") having zinc, iron, aluminum, magnesium, silicon or vanadium as a central metal. That is, the crude pigment is a group consisting of a halogenated zinc phthalocyanine crude pigment, a halogenated iron phthalocyanine crude pigment, a halogenated aluminum phthalocyanine crude pigment, a halogenated magnesium phthalocyanine crude pigment, a halogenated silicon phthalocyanine crude pigment and a halogenated vanadium phthalocyanine crude pigment. The halogenated metal phthalocyanine crude pigment selected from the above, and the pigment for a color filter produced by the production method of the present embodiment is a halogenated zinc phthalocyanine pigment, a halogenated iron phthalocyanine pigment, a halogenated aluminum phthalocyanine pigment, and a halogenated magnesium phthalocyanine. It is a halogenated metal phthalocyanine pigment selected from the group consisting of a pigment, a halogenated silicon phthalocyanine pigment and a halogenated vanadium phthalocyanine pigment.
 粗顔料は、例えば、合成直後のハロゲン化金属フタロシアニンを析出させて得られたもの(例えばハロゲン化金属フタロシアニンの凝集体)であってよい。粗顔料は、1種のハロゲン化金属フタロシアニンで構成されていてよく、ハロゲン原子数の異なる複数種のハロゲン化金属フタロシアニンで構成されていてもよい。 The crude pigment may be, for example, one obtained by precipitating metal halide phthalocyanine immediately after synthesis (for example, an aggregate of metal halide phthalocyanine). The crude pigment may be composed of one kind of metal halide phthalocyanine, or may be made of a plurality of kinds of metal halide phthalocyanines having different numbers of halogen atoms.
 ハロゲン化金属フタロシアニンは、例えば、下記式(1)で表される構造を有する。 The metal halide phthalocyanine has, for example, a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、X~X16は、各々独立に、水素原子又はハロゲン原子を表す。Mは、中心金属であり、Zn(亜鉛)、Fe(鉄)、Al(アルミニウム)、Mg(マグネシウム)、Si(シリコン)又はV(バナジウム)を表す。Zは、中心金属(M)に結合する軸配位子であり、ハロゲン原子、酸素原子、水酸基、スルホン酸基、-OP(=O)R[R及びRは、それぞれ独立に、水素原子、水酸基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシル基又は置換基を有してもよいアリールオキシ基を表す。]で表される基、-OC(=O)R[Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよい複素環基を表す。]で表される基、-OS(=O)[Rは、水酸基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよい複素環基を表す。)]で表される基を表す。mは、Mに結合するZの数を表し、0~2の整数である。 In formula (1), X 1 to X 16 each independently represent a hydrogen atom or a halogen atom. M is a central metal and represents Zn (zinc), Fe (iron), Al (aluminum), Mg (magnesium), Si (silicon) or V (vanadium). Z is an axial ligand that binds to the central metal (M), and a halogen atom, an oxygen atom, a hydroxyl group, a sulfonic acid group, and -OP (= O) R 1 R 2 [R 1 and R 2 are independent of each other. A hydrogen atom, a hydroxyl group, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxyl group which may have a substituent or an aryloxy which may have a substituent. Represents a group. ], -OC (= O) R 3 [R 3 has a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, and a substituent. Represents a heterocyclic group which may have an aryl group or a substituent which may be used. ], -OS (= O) 2 R 4 [R 4 has a hydroxyl group, an alkyl group which may have a substituent, an aryl group which may have a substituent or a substituent. Represents a optionally heterocyclic group. )] Represents a group represented by. m represents the number of Z coupled to M and is an integer of 0 to 2.
 R~Rにおけるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ネオペンチル基、n-へキシル基、n-オクチル基、ステアリル基、2-エチルへキシル基等の直鎖又は分岐アルキル基が挙げられる。置換基を有するアルキル基の置換基としては、塩素原子、フッ素原子、臭素原子等のハロゲン原子、メトキシ基等のアルコキシル基、フェニル基、トリル基等のアリール基、ニトロ基などが挙げられる。置換基は、複数あってもよい。置換基を有するアルキル基としては、例えば、トリクロロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、2,2-ジブロモエチル基、2-エトキシエチル基、2-ブトキシエチル基、2-ニトロプロピル基、べンジル基、4-メチルべンジル基、4-tert-ブチルべンジル基、4-メトキシべンジル基、4-ニトロべンジル基、2,4-ジクロロべンジル基等が挙げられる。 The alkyl groups in R 1 to R 4 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, neopentyl group, n-hexyl group, n-octyl group and stearyl group. , 2-Ethylhexyl groups and the like, linear or branched alkyl groups. Examples of the substituent of the alkyl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkoxyl group such as a methoxy group, an aryl group such as a phenyl group and a tolyl group, and a nitro group. There may be a plurality of substituents. Examples of the alkyl group having a substituent include a trichloromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 2,2-dibromoethyl group, a 2-ethoxyethyl group and a 2-butoxyethyl group. , 2-nitropropyl group, benzyl group, 4-methylbenzyl group, 4-tert-butylbenzyl group, 4-methoxybenzyl group, 4-nitrobenzyl group, 2,4-dichlorobenzyl group, etc. Can be mentioned.
 R~Rにおけるアリール基としては、フェニル基、p-トリル基等の単環芳香族炭化水素基、ナフチル基、アンスリル基等の縮合芳香族炭化水素基などが挙げられる。置換基を有するアリール基の置換基としては、塩素原子、フッ素原子、臭素原子等のハロゲン原子、アルコキシル基、アミノ基、ニトロ基などが挙げられる。置換基は、複数あってもよい。置換基を有するアリール基としては、例えば、p-ブロモフェニル基、p-ニトロフェニル基、p-メトキシフェニル基、2,4-ジクロロフェニル基、ペンタフルオロフェニル基、2-ジメチルアミノフェニル基、2-メチル-4-クロロフェニル基、4-メトキシ-1-ナフチル基、6-メチル-2-ナフチル基、4,5,8-トリクロロ-2-ナフチル基、アントラキノニル基等が挙げられる。 Examples of the aryl group in R 1 to R 4 include a monocyclic aromatic hydrocarbon group such as a phenyl group and a p-tolyl group, and a condensed aromatic hydrocarbon group such as a naphthyl group and an anthryl group. Examples of the substituent of the aryl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkoxyl group, an amino group and a nitro group. There may be a plurality of substituents. Examples of the aryl group having a substituent include a p-bromophenyl group, a p-nitrophenyl group, a p-methoxyphenyl group, a 2,4-dichlorophenyl group, a pentafluorophenyl group, a 2-dimethylaminophenyl group and a 2-. Examples thereof include a methyl-4-chlorophenyl group, a 4-methoxy-1-naphthyl group, a 6-methyl-2-naphthyl group, a 4,5,8-trichloro-2-naphthyl group, an anthraquinonyl group and the like.
 R及びRにおけるアルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、ネオペンチルオキシ基、2,3-ジメチル-3-ペンチルオキシ基、n-へキシルオキシ基、n-オクチルオキシ基、ステアリルオキシ基、2-エチルへキシルオキシ基等の直鎖又は分岐アルコキシル基が挙げられる。置換基を有するアルコキシル基の置換基としては、塩素原子、フッ素原子、臭素原子等のハロゲン原子、アルコキシル基、フェニル基、トリル基等のアリール基、ニトロ基などが挙げられる。置換基は、複数あってもよい。置換基を有するアルコキシル基としては、例えば、トリクロロメトキシ基、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2-ジトリフルオロメチルプロポキシ基、2-エトキシエトキシ基、2-ブトキシエトキシ基、2-ニトロプロポキシ基、ベンジルオキシ基等が挙げられる。 The alkoxyl groups in R 1 and R 2 include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, neopentyloxy group and 2,3-dimethyl-3-. Examples thereof include a linear or branched alkoxyl group such as a pentyloxy group, an n-hexyloxy group, an n-octyloxy group, a stearyloxy group and a 2-ethylhexyloxy group. Examples of the substituent of the alkoxyl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an aryl group such as an alkoxyl group, a phenyl group and a tolyl group, and a nitro group. There may be a plurality of substituents. Examples of the alkoxyl group having a substituent include a trichloromethoxy group, a trifluoromethoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,3,3-tetrafluoropropoxy group and a 2,2-ditrifluoro group. Examples thereof include a methylpropoxy group, a 2-ethoxyethoxy group, a 2-butoxyethoxy group, a 2-nitropropoxy group, a benzyloxy group and the like.
 R及びRにおけるアリールオキシ基としては、フェノキシ基、p-メチルフェノキシ基等の単環芳香族炭化水素基からなるアリールオキシ基、ナフタルオキシ基、アンスリルオキシ基等の縮合芳香族炭化水素基からなるアリールオキシ基などが挙げられる。置換基を有するアリールオキシ基の置換基としては、塩素原子、フッ素原子、臭素原子等のハロゲン原子、アルキル基、アルコキシル基、アミノ基、ニトロ基などが挙げられる。置換基は、複数あってもよい。置換基を有するアリールオキシ基としては、例えば、p-ニトロフェノキシ基、p-メトキシフェノキシ基、2,4-ジクロロフェノキシ基、ペンタフルオロフェノキシ基、2-メチル-4-クロロフェノキシ基等が挙げられる。 As the aryloxy group in R 1 and R 2 , a fused aromatic hydrocarbon group such as an aryloxy group composed of a monocyclic aromatic hydrocarbon group such as a phenoxy group and a p-methylphenoxy group, a naphthaloxy group and an anthryloxy group Examples thereof include an aryloxy group composed of. Examples of the substituent of the aryloxy group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkyl group, an alkoxyl group, an amino group and a nitro group. There may be a plurality of substituents. Examples of the aryloxy group having a substituent include a p-nitrophenoxy group, a p-methoxyphenoxy group, a 2,4-dichlorophenoxy group, a pentafluorophenoxy group, a 2-methyl-4-chlorophenoxy group and the like. ..
 Rにおけるシクロアルキル基としては、シクロペンチル基、シクロへキシル基、2,5-ジメチルシクロペンチル基、4-tert-ブチルシクロヘキシル基等の単環脂肪族炭化水素基、ボルニル基、アダマンチル基等の縮合脂肪族炭化水素基などが挙げられる。置換基を有するシクロアルキル基の置換基としては、塩素原子、フッ素原子、臭素原子等のハロゲン原子、アルキル基、アルコキシル基、水酸基、アミノ基、ニトロ基などが挙げられる。置換基は、複数あってもよい。置換基を有するシクロアルキル基としては、例えば、2,5-ジクロロシクロペンチル基、4-ヒドロキシシクロヘキシル基等が挙げられる。 The cycloalkyl group in R3 includes a monocyclic aliphatic hydrocarbon group such as a cyclopentyl group , a cyclohexyl group, a 2,5-dimethylcyclopentyl group and a 4-tert-butylcyclohexyl group, and a condensation of a boronyl group and an adamantyl group. Examples include aliphatic hydrocarbon groups. Examples of the substituent of the cycloalkyl group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkyl group, an alkoxyl group, a hydroxyl group, an amino group and a nitro group. There may be a plurality of substituents. Examples of the cycloalkyl group having a substituent include a 2,5-dichlorocyclopentyl group and a 4-hydroxycyclohexyl group.
 R及びRにおける複素環基としては、ピリジル基、ピラジル基、ピペリジノ基、ピラニル基、モルホリノ基、アクリジニル基等の脂肪族複素環基、芳香族複素環基などが挙げられる。置換基を有する複素環基の置換基としては、塩素原子、フッ素原子、臭素原子等のハロゲン原子、アルキル基、アルコキシル基、水酸基、アミノ基、ニトロ基などが挙げられる。置換基は、複数あってもよい。置換基を有する複素環基としては、例えば、3-メチルピリジル基、N-メチルピペリジル基、N-メチルピロリル基等が挙げられる。 Examples of the heterocyclic group in R 3 and R 4 include an aliphatic heterocyclic group such as a pyridyl group, a pyrazil group, a piperidino group, a pyranyl group, a morpholino group and an acridinyl group, and an aromatic heterocyclic group. Examples of the substituent of the heterocyclic group having a substituent include a halogen atom such as a chlorine atom, a fluorine atom and a bromine atom, an alkyl group, an alkoxyl group, a hydroxyl group, an amino group and a nitro group. There may be a plurality of substituents. Examples of the heterocyclic group having a substituent include a 3-methylpyridyl group, an N-methylpiperidyl group, an N-methylpyrrolill group and the like.
 X~X16で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。より優れた輝度が得られる観点では、X~X16の少なくとも1つが、臭素原子又は塩素原子であることが好ましく、臭素原子であることがより好ましい。X~X16の全てが、塩素原子又は臭素原子であってもよい。 Examples of the halogen atom represented by X 1 to X 16 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. From the viewpoint of obtaining better brightness, at least one of X 1 to X 16 is preferably a bromine atom or a chlorine atom, and more preferably a bromine atom. All of X 1 to X 16 may be chlorine atoms or bromine atoms.
 MがAl、Si又はVである場合、より優れた輝度が得られやすい。この理由は、中心金属(M)に結合する軸配位子(Z)によって、分子間相互作用によるフタロシアニン環のスタッキングが起こり難くなり、粗顔料がより結晶性の低いものとなるためであると推察される。また、MがZn、Fe又はMgである場合、ハロゲン化金属フタロシアニンの合成の際に水と反応して酸を発生する化合物を用いた場合において、より優れた輝度が得られやすい。この理由は、以下のとおりと推察される。すなわち、ハロゲン化によって歪んだ構造を有するハロゲン化金属フタロシアニンにおいてMがZn、Fe又はMgである場合、MがCu(銅)、Ni(ニッケル)、Co(コバルト)等である場合と比較して、フタロシアニン環の中心金属(M)と、イソインドリンユニット上の窒素原子との距離が長く、中心金属(M)周辺に大きな空孔が形成されている。そのため、酸性条件下でイソインドリンユニット上の窒素原子がプロトン化された場合、MがZn、Fe又はMgであると、MがCu(銅)、Ni(ニッケル)、Co(コバルト)等である場合と比較して、カウンターアニオン(例えば塩化物イオン等のハロゲン化物イオン)が中心金属に接近した状態で安定化しやすくなる。このカウンターアニオンの存在により、分子間相互作用によるフタロシアニン環のスタッキングが起こり難くなることで、粗顔料がより結晶性の低いものとなるため、より優れた輝度が得られると推察される。 When M is Al, Si or V, it is easy to obtain better brightness. The reason for this is that the axial ligand (Z) bound to the central metal (M) makes it difficult for stacking of the phthalocyanine ring due to intramolecular interaction to occur, and the crude pigment becomes less crystalline. Inferred. Further, when M is Zn, Fe or Mg, more excellent luminance can be easily obtained when a compound that reacts with water to generate an acid is used in the synthesis of the metal halide phthalocyanine. The reason for this is presumed to be as follows. That is, in the case where M is Zn, Fe or Mg in the metal halide phthalocyanine having a structure distorted by halogenation, compared with the case where M is Cu (copper), Ni (nickel), Co (cobalt) or the like. , The distance between the central metal (M) of the phthalocyanine ring and the nitrogen atom on the isoindoline unit is long, and large pores are formed around the central metal (M). Therefore, when the nitrogen atom on the isoindoline unit is protonated under acidic conditions, if M is Zn, Fe or Mg, M is Cu (copper), Ni (nickel), Co (cobalt) or the like. Compared with the case, the counter anion (for example, a halide ion such as a chloride ion) is more likely to be stabilized in a state of being close to the central metal. It is presumed that the presence of this counter anion makes it difficult for stacking of the phthalocyanine ring due to the intramolecular interaction to occur, so that the crude pigment has a lower crystallinity, and thus better brightness can be obtained.
 mは、Mの価数によって異なる。Mの価数が2である場合、すなわち、MがZn、Fe又はMgである場合、mは0である。Mの価数が3である場合、すなわち、MがAlである場合、mは1である。この場合、Zは、ハロゲン原子、水酸基、スルホン酸基、-OP(=O)Rで表される基、-OC(=O)Rで表される基、-OS(=O)で表される基である。Mの価数が4である場合、すなわち、MがSi又はVである場合、mは1又は2である。Mの価数が4でありmが1である場合、Zは酸素原子であり、MとZ(酸素原子)は二重結合により互いに結合している。Mの価数が4でありmが2である場合、Zは、ハロゲン原子、水酸基、スルホン酸基、-OP(=O)Rで表される基、-OC(=O)Rで表される基、-OS(=O)で表される基であり、複数のZは、互いに同一であっても異なっていてもよい。Zで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 m depends on the valence of M. When the valence of M is 2, that is, when M is Zn, Fe or Mg, m is 0. When the valence of M is 3, that is, when M is Al, m is 1. In this case, Z is a halogen atom, a hydroxyl group, a sulfonic acid group, a group represented by -OP (= O) R 1 R 2 , a group represented by -OC (= O) R 3 , and -OS (= O). ) 2 It is a group represented by R4 . If the valence of M is 4, that is, if M is Si or V, then m is 1 or 2. When the valence of M is 4 and m is 1, Z is an oxygen atom, and M and Z (oxygen atom) are bonded to each other by a double bond. When the valence of M is 4 and m is 2, Z is a halogen atom, a hydroxyl group, a sulfonic acid group, a group represented by -OP (= O) R 1 R 2 , and -OC (= O) R. It is a group represented by 3 and a group represented by -OS (= O) 2 R4 , and a plurality of Zs may be the same or different from each other. Examples of the halogen atom represented by Z include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 粗顔料における、ハロゲン化金属フタロシアニン(例えば式(1)で表される化合物)1分子中のハロゲン原子の数の平均は、0.1個以上16個以下である。ハロゲン原子の数の平均は、9個未満であってもよいが、好ましくは9個以上である。ハロゲン原子の数の平均が9個以上であると、フタロシアニン環のα位にハロゲン原子が5個以上存在する(式(1)で表される化合物では、X、X、X、X、X、X12、X13及びX16のうちの少なくとも5個がハロゲン原子となる)こととなり、少なくとも2つのハロゲン原子が隣り合って存在することになるため、フタロシアニン環が歪んだ構造をとりやすく、粗顔料の結晶性がより低くなる傾向がある。そのため、ハロゲン原子の数の平均が9個以上であると、本発明の効果が顕著に得られる傾向がある。かかる観点から、ハロゲン原子の数の平均は10個以上、11個以上、12個以上、13個以上、14個以上又は15個以上であってもよい。なお、ハロゲン化金属フタロシアニンが軸配位子にハロゲン原子を含む場合、上記ハロゲン原子の数とは、芳香環の水素原子を置換するハロゲン原子の数を意味する。 The average number of halogen atoms in one molecule of the metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 0.1 or more and 16 or less. The average number of halogen atoms may be less than 9, but preferably 9 or more. When the average number of halogen atoms is 9 or more, 5 or more halogen atoms are present at the α-position of the phthalocyanine ring (in the compound represented by the formula (1), X 1 , X 4 , X 5 , X. 8 , X 9 , X 12 , X 13 and X 16 are at least 5 halogen atoms), and at least two halogen atoms are present next to each other, resulting in a distorted structure of the phthalocyanine ring. It is easy to take, and the crystallinity of the crude pigment tends to be lower. Therefore, when the average number of halogen atoms is 9 or more, the effect of the present invention tends to be remarkably obtained. From this point of view, the average number of halogen atoms may be 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, or 15 or more. When the metal halide phthalocyanine contains a halogen atom in the axial ligand, the number of the halogen atoms means the number of halogen atoms substituting the hydrogen atom of the aromatic ring.
 粗顔料における、ハロゲン化金属フタロシアニン(例えば式(1)で表される化合物)1分子中の臭素原子の数の平均は、13個未満であっても、13個以上であってよい。 The average number of bromine atoms in one molecule of the metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment may be 13 or more, even if it is less than 13.
 臭素原子の数の平均が13個未満である場合、臭素原子の数の平均は、0.1個以上、6個以上又は8個以上であってよい。また、臭素原子の数の平均は、12個以下又は11個以下であってもよい。上述の上限値及び下限値は、任意に組み合わせることができる。例えば、臭素原子の数の平均は、0.1個以上13個未満、8~12個又は8~11個であってよい。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 When the average number of bromine atoms is less than 13, the average number of bromine atoms may be 0.1 or more, 6 or more, or 8 or more. Further, the average number of bromine atoms may be 12 or less or 11 or less. The above-mentioned upper limit value and lower limit value can be arbitrarily combined. For example, the average number of bromine atoms may be 0.1 or more and less than 13, 8-12 or 8-11. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 臭素原子の数の平均が13個未満である場合、粗顔料における、ハロゲン化金属フタロシアニン(例えば式(1)で表される化合物)1分子中の塩素原子の数の平均は、5個以下、3個以下、2.5個以下又は2個未満であってよい。塩素原子の数の平均は、0.1個以上、0.3個以上、0.6個以上、0.8個以上、1個以上、1.3個以上又は2個以上であってよい。 When the average number of bromine atoms is less than 13, the average number of chlorine atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 5 or less. It may be 3 or less, 2.5 or less, or less than 2. The average number of chlorine atoms may be 0.1 or more, 0.3 or more, 0.6 or more, 0.8 or more, 1 or more, 1.3 or more, or 2 or more.
 臭素原子の数の平均が13個未満である場合、粗顔料における、ハロゲン化金属フタロシアニン(例えば式(1)で表される化合物)1分子中のハロゲン原子の数の平均は、14個以下、13個以下、13個未満又は12個以下であってよい。ハロゲン原子の数の平均は、8個以上、9個以上又は10個以上であってもよい。 When the average number of bromine atoms is less than 13, the average number of halogen atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 14 or less. It may be 13 or less, less than 13 or 12 or less. The average number of halogen atoms may be 8 or more, 9 or more, or 10 or more.
 臭素原子の数の平均が13個以上である場合、臭素原子の数の平均は15個以下であってよい。臭素原子の数の平均は14個以上であってもよい。 When the average number of bromine atoms is 13 or more, the average number of bromine atoms may be 15 or less. The average number of bromine atoms may be 14 or more.
 臭素原子の数の平均が13個以上である場合、粗顔料における、ハロゲン化金属フタロシアニン(例えば式(1)で表される化合物)1分子中の塩素原子の数の平均は、0.1個以上又は1個以上であってよい。塩素原子の数の平均は、3個以下又は2個未満であってよい。 When the average number of bromine atoms is 13 or more, the average number of chlorine atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 0.1. It may be one or more or one or more. The average number of chlorine atoms may be 3 or less or less than 2.
 臭素原子の数の平均が13個以上である場合、粗顔料における、ハロゲン化金属フタロシアニン(例えば式(1)で表される化合物)1分子中のハロゲン原子の数の平均は、13個以上、14個以上又は15個以上であってよい。ハロゲン原子の数の平均は、15個以下であってもよい。 When the average number of bromine atoms is 13 or more, the average number of halogen atoms in one molecule of metal halide phthalocyanine (for example, the compound represented by the formula (1)) in the crude pigment is 13 or more. It may be 14 or more or 15 or more. The average number of halogen atoms may be 15 or less.
 上記ハロゲン原子の数(例えば、臭素原子の数及び塩素原子の数)は、例えば、マトリックス支援レーザー脱離イオン化飛行時間質量分析計(日本電子株式会社製のJMS-S3000等)を用いた粗顔料の質量分析により特定することができる。具体的には、粗顔料における、金属原子(ハロゲン化金属フタロシアニンの中心金属となる金属原子)と各ハロゲン原子の質量比から、金属原子1個あたりの相対値として、各ハロゲン原子の数を算出することができる。 The number of halogen atoms (for example, the number of bromine atoms and the number of chlorine atoms) is a crude pigment using, for example, a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (JMS-S3000 manufactured by Nippon Denshi Co., Ltd.). Can be identified by mass spectrometry. Specifically, the number of each halogen atom is calculated as a relative value per metal atom from the mass ratio of the metal atom (the metal atom that becomes the central metal of the metal halide phthalocyanine) and each halogen atom in the crude pigment. can do.
 第1の工程は、例えば、クロロスルホン酸法、ハロゲン化フタロニトリル法、溶融法等の公知の製造方法により、亜鉛、鉄、アルミニウム、マグネシウム、シリコン又はバナジウムを中心金属とするハロゲン化金属フタロシアニンを合成する工程と、合成したハロゲン化金属フタロシアニンを析出させて粗顔料(ハロゲン化金属フタロシアニン粗顔料)を得る工程とを含む。ハロゲン化金属フタロシアニンを合成する工程は、例えば、水と反応して酸を発生する化合物を用いてハロゲン化金属フタロシアニンを合成する工程であってもよい。水と反応して酸を発生する化合物を用いてハロゲン化金属フタロシアニンを合成する方法としては、例えば、クロロスルホン酸法、溶融法等が挙げられる。 In the first step, for example, a metal halide phthalocyanine having zinc, iron, aluminum, magnesium, silicon or vanadium as a central metal is produced by a known production method such as a chlorosulfonic acid method, a halide phthalonitrile method, or a melting method. It includes a step of synthesizing and a step of precipitating the synthesized metal halide phthalocyanine to obtain a crude pigment (metal halide phthalocyanine crude pigment). The step of synthesizing the metal halide phthalocyanine may be, for example, a step of synthesizing the metal halide phthalocyanine using a compound that reacts with water to generate an acid. Examples of the method for synthesizing the metal halide phthalocyanine using a compound that reacts with water to generate an acid include a chlorosulfonic acid method and a melting method.
 クロロスルホン酸法としては、金属フタロシアニン(例えば亜鉛フタロシアニン)を、クロロスルホン酸等の硫黄酸化物系の溶媒に溶解し、これに塩素ガス、臭素を仕込みハロゲン化する方法が挙げられる。この際の反応は、例えば、温度20~120℃かつ3~20時間の範囲で行われる。クロロスルホン酸法では、上記クロロスルホン酸等の硫黄酸化物系の溶媒が水と反応して酸を発生する化合物である。例えば、クロロスルホン酸は、水と反応して塩酸と硫酸を発生する。 Examples of the chlorosulfonic acid method include a method in which a metal phthalocyanine (for example, zinc phthalocyanine) is dissolved in a sulfur oxide-based solvent such as chlorosulfonic acid, and chlorine gas and bromine are charged therein for halogenation. The reaction at this time is carried out, for example, at a temperature of 20 to 120 ° C. and in the range of 3 to 20 hours. In the chlorosulfonic acid method, it is a compound in which a sulfur oxide-based solvent such as chlorosulfonic acid reacts with water to generate an acid. For example, chlorosulfonic acid reacts with water to generate hydrochloric acid and sulfuric acid.
 ハロゲン化フタロニトリル法としては、例えば、芳香環の水素原子の一部又は全部が臭素の他、塩素等のハロゲン原子で置換されたフタル酸又はフタロジニトリルと、中心金属となる金属又は当該金属の塩を適宜出発原料として使用して、対応するハロゲン化金属フタロシアニンを合成する方法が挙げられる。この場合、必要に応じてモリブデン酸アンモニウム等の触媒を用いてもよい。この際の反応は、例えば、温度100~300℃かつ7~35時間の範囲で行われる。 The halogenated phthalonitrile method includes, for example, phthalic acid or phthalodinitrile in which a part or all of the hydrogen atom of the aromatic ring is substituted with a halogen atom such as chlorine, and a metal serving as a central metal or the metal concerned. A method of synthesizing the corresponding metal halide phthalocyanine by appropriately using the salt of the above as a starting material can be mentioned. In this case, a catalyst such as ammonium molybdate may be used if necessary. The reaction at this time is carried out, for example, at a temperature of 100 to 300 ° C. and in the range of 7 to 35 hours.
 溶融法としては、塩化アルミニウム、臭化アルミニウム等のハロゲン化アルミニウム、四塩化チタン等のハロゲン化チタン、塩化ナトリウム、臭化ナトリウム等のアルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物(以下、「アルカリ(土類)金属ハロゲン化物」という)、塩化チオニルなど、各種のハロゲン化の際に溶媒となる化合物の一種又は二種以上の混合物からなる10~170℃程度の溶融物中で、金属フタロシアニン(例えば亜鉛フタロシアニン)をハロゲン化剤にてハロゲン化する方法が挙げられる。溶融法では、上記ハロゲン化アルミニウム、ハロゲン化チタン、アルカリ(土類)金属ハロゲン化物、塩化チオニル等のハロゲン化の際に溶媒となる化合物が水と反応して酸を発生する化合物である。例えば、塩化アルミニウムは、水と反応して塩酸を発生する。 Examples of the melting method include aluminum halides such as aluminum chloride and aluminum bromide, titanium halides such as titanium tetrachloride, alkali metal halides such as sodium chloride and sodium bromide, or alkaline earth metal halides (hereinafter, “alkali”). Metallized phthalocyanine (referred to as "metal halide"), metal phthalocyanine (referred to as "metal halide") in a melt at about 10 to 170 ° C. consisting of one or a mixture of two or more compounds that serve as solvents during various halogenation. For example, a method of halogenating zinc phthalocyanine) with a halogenating agent can be mentioned. In the melting method, the above-mentioned aluminum halide, titanium halide, alkali (earth) metal halide, thionyl chloride and other compounds that serve as a solvent during halogenation react with water to generate an acid. For example, aluminum chloride reacts with water to generate hydrochloric acid.
 好適なハロゲン化アルミニウムは、塩化アルミニウムである。ハロゲン化アルミニウムを用いる上記方法における、ハロゲン化アルミニウムの添加量は、金属フタロシアニン(例えば亜鉛フタロシアニン)に対して、通常は、3倍モル以上であり、好ましくは10~20倍モルである。 A suitable aluminum halide is aluminum chloride. In the above method using aluminum halide, the amount of aluminum halide added is usually 3 times or more, preferably 10 to 20 times, mol with respect to the metal phthalocyanine (for example, zinc phthalocyanine).
 ハロゲン化アルミニウムは単独で用いてもよいが、アルカリ(土類)金属ハロゲン化物をハロゲン化アルミニウムに併用すると溶融温度をより下げることができ、操作上有利になる。好適なアルカリ(土類)金属ハロゲン化物は、塩化ナトリウムである。加えるアルカリ(土類)金属ハロゲン化物の量は溶融塩を生成する範囲内でハロゲン化アルミニウム10質量部に対してアルカリ(土類)金属ハロゲン化物が1~15質量部が好ましい。 Aluminum halide may be used alone, but if an alkali (earth) metal halide is used in combination with aluminum halide, the melting temperature can be further lowered, which is advantageous in terms of operation. A suitable alkaline (earth) metal halide is sodium chloride. The amount of the alkali (earth) metal halide to be added is preferably 1 to 15 parts by mass with respect to 10 parts by mass of aluminum halide within the range of producing a molten salt.
 ハロゲン化剤としては、塩素ガス、塩化スルフリル、臭素等が挙げられる。 Examples of the halogenating agent include chlorine gas, sulfuryl chloride, bromine and the like.
 ハロゲン化の温度は10~170℃が好ましく、30~140℃がより好ましい。さらに、反応速度を速くするため、加圧することも可能である。反応時間は、5~100時間であってよく、好ましくは30~45時間である。 The halogenation temperature is preferably 10 to 170 ° C, more preferably 30 to 140 ° C. Further, it is possible to pressurize in order to increase the reaction rate. The reaction time may be 5 to 100 hours, preferably 30 to 45 hours.
 前記化合物の二種以上を併用する溶融法は、溶融塩中の塩化物と臭化物とヨウ化物の比率を調節したり、塩素ガス、臭素、ヨウ素等の導入量及び反応時間を変化させたりすることによって、生成するハロゲン化金属フタロシアニン中における特定ハロゲン原子組成のハロゲン化金属フタロシアニンの含有比率を任意にコントロールすることができるため好ましい。また、溶融法によれば、反応中の原料の分解が少なく原料からの収率がより優れ、強酸を用いず安価な装置にて反応を行うことができる。 In the melting method in which two or more of the above compounds are used in combination, the ratio of chloride, bromide and iodide in the molten salt is adjusted, and the amount of chlorine gas, bromine, iodine, etc. introduced and the reaction time are changed. It is preferable because the content ratio of the halogenated metal phthalocyanine having a specific halogen atomic composition in the produced halogenated metal bromide can be arbitrarily controlled. Further, according to the melting method, the decomposition of the raw material during the reaction is small, the yield from the raw material is more excellent, and the reaction can be carried out with an inexpensive device without using a strong acid.
 本実施形態では、原料仕込み方法、触媒種及びその使用量、反応温度並びに反応時間の最適化により、既存のハロゲン化金属フタロシアニンとは異なるハロゲン原子組成のハロゲン化金属フタロシアニンを得ることができる。 In the present embodiment, a metal halide phthalocyanine having a halogen atomic composition different from that of the existing metal halide phthalocyanine can be obtained by optimizing the raw material charging method, the catalyst species and the amount used thereof, the reaction temperature and the reaction time.
 上記いずれの方法であっても、反応終了後に得られる反応溶液においてハロゲン化金属フタロシアニンは反応溶液中に溶解した状態である。反応終了後、得られた混合物(反応溶液)を水、塩酸等の酸性水溶液、又は、水酸化ナトリウム水溶液等の塩基性水溶液中に投入し、生成したハロゲン化金属フタロシアニンを沈殿(析出)させる。この際、上記水と反応して酸を発生する化合物を用いた場合に水、塩酸等の酸性水溶液を用いると、塩酸、硫酸等の酸が発生し、沈殿物中に酸が内包され、粗顔料中に酸が残留することとなる。一方、塩基性水溶液を用いる場合には、酸の発生が抑制されるため、沈殿物中に酸が内包することを抑制することができ、粗顔料中に酸が残留することを抑制することができる。粗顔料が酸を内包すると、顔料化の際に酸による粒子の凝集が促進され、顔料粒子の微細化が阻害されると考えられるが、上記方法で粗顔料に内包される酸を低減することで、より微細な顔料粒子を得ることができる。 In any of the above methods, the metal halide phthalocyanine is in a state of being dissolved in the reaction solution in the reaction solution obtained after the reaction is completed. After completion of the reaction, the obtained mixture (reaction solution) is put into an acidic aqueous solution such as water or hydrochloric acid or a basic aqueous solution such as an aqueous sodium hydroxide solution to precipitate (precipitate) the metal halide phthalocyanine produced. At this time, when an acidic aqueous solution such as water or hydrochloric acid is used when a compound that reacts with the above water to generate an acid is used, an acid such as hydrochloric acid or sulfuric acid is generated, and the acid is contained in the precipitate and is crude. The acid will remain in the pigment. On the other hand, when a basic aqueous solution is used, the generation of acid is suppressed, so that the inclusion of acid in the precipitate can be suppressed and the residual acid can be suppressed in the crude pigment. can. When the crude pigment contains an acid, it is considered that the aggregation of the particles by the acid is promoted at the time of pigmentation and the miniaturization of the pigment particles is hindered. Therefore, finer pigment particles can be obtained.
 第1の工程は、析出工程後に、上記沈殿物を、後処理する後処理工程をさらに含んでいてもよい。 The first step may further include a post-treatment step of post-treating the precipitate after the precipitation step.
 第1の工程は、例えば、上記沈殿物を濾過する工程(第1の後処理工程)をさらに含んでいてもよい。第1の後処理工程は、上記沈殿物をろ過し、洗浄する工程であってよく、上記沈殿物をろ過し、洗浄し、乾燥する工程であってよい。洗浄は、例えば、水、硫酸水素ナトリウム水、炭酸水素ナトリウム水、水酸化ナトリウム水等の水性溶剤を用いて行ってよい。洗浄では、必要に応じて、アセトン、トルエン、メチルアルコール、エチルアルコール、ジメチルホルムアミド等の有機溶剤を用いてもよい。例えば、水性溶剤での洗浄後、有機溶剤での洗浄を行ってよい。洗浄は、複数回(例えば2~5回)繰り返し行ってもよい。具体的には、ろ液のpHが洗浄に用いられる水のpHと同等(例えば、両者の差が0.2以下)になるまで洗浄を行うことが好ましい。 The first step may further include, for example, a step of filtering the precipitate (first post-treatment step). The first post-treatment step may be a step of filtering and washing the precipitate, or may be a step of filtering, washing and drying the precipitate. The washing may be performed using, for example, an aqueous solvent such as water, sodium hydrogensulfate water, sodium hydrogencarbonate water, or sodium hydroxide water. For washing, an organic solvent such as acetone, toluene, methyl alcohol, ethyl alcohol, and dimethylformamide may be used, if necessary. For example, after cleaning with an aqueous solvent, cleaning with an organic solvent may be performed. The washing may be repeated a plurality of times (for example, 2 to 5 times). Specifically, it is preferable to perform washing until the pH of the filtrate becomes equal to the pH of the water used for washing (for example, the difference between the two is 0.2 or less).
 第1の工程は、例えば、上記沈殿物を乾式磨砕する工程(第2の後処理工程)をさらに含んでいてもよい。乾式磨砕は、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等の粉砕機内で行ってよい。乾式粉砕は、加熱しながら(例えば粉砕機内部の温度が40℃~200℃となるように加熱しながら)行ってもよい。乾式磨砕後は水での洗浄を行ってもよい。乾式磨砕後(特にアトライターによる乾式磨砕後)に水での洗浄を行うことで、粗顔料に内包される酸の量をより低減することができる。洗浄は、水洗(40℃未満の水による洗浄)、湯洗(40℃以上の水による洗浄)のいずれであってもよい。洗浄は、第1の後処理工程と同様にろ液のpHが洗浄に用いられる水のpHと同等(例えば、両者の差が0.2以下)になるまで行うことが好ましい。なお、水での洗浄の際又はその前には、沈殿物の濡れ性を向上させる処理(例えば沈殿物をメタノール等の水溶性有機溶剤と接触させる処理)を行ってもよい。乾式磨砕と洗浄は複数回繰り返し行ってもよい。 The first step may further include, for example, a step of dry grinding the precipitate (a second post-treatment step). Dry grinding may be performed in a crusher such as an attritor, a ball mill, a vibration mill, or a vibration ball mill. The dry pulverization may be performed while heating (for example, while heating so that the temperature inside the pulverizer becomes 40 ° C. to 200 ° C.). After the dry grinding, washing with water may be performed. By washing with water after dry-grinding (particularly after dry-grinding with an attritor), the amount of acid contained in the crude pigment can be further reduced. The washing may be either water washing (washing with water below 40 ° C.) or hot water washing (washing with water above 40 ° C.). As in the first post-treatment step, the washing is preferably carried out until the pH of the filtrate becomes equal to the pH of the water used for washing (for example, the difference between the two is 0.2 or less). In addition, at the time of washing with water or before that, a treatment for improving the wettability of the precipitate (for example, a treatment for bringing the precipitate into contact with a water-soluble organic solvent such as methanol) may be performed. Dry grinding and washing may be repeated multiple times.
 第1の工程は、例えば、上記沈殿物を水と共に混練する工程(第3の後処理工程)をさらに含んでいてもよい。第3の後処理工程を行うことで、粗顔料に内包される酸の量をより一層低減することができる。混練は、例えばニーダー、ミックスマラー等を用いて行うことができる。混練は、加熱しながら行ってもよい。例えば、水の温度を40℃以上としてもよい。水には、無機塩を添加してもよい。この際、少なくとも一部の無機塩を固体状で存在させることで、混練時に加わる力を向上させることができる。混練時には有機溶剤(例えば、後述する第2の工程で用い得る有機溶剤)を使用してもよいが、有機溶剤の使用量は水の使用量よりも少ないことが好ましく、有機溶剤を使用しないことがより好ましい。混練後は、第1の後処理工程と同様にして洗浄を行ってもよい。混練及び洗浄は複数回繰り返し行ってもよい。 The first step may further include, for example, a step of kneading the precipitate together with water (third post-treatment step). By performing the third post-treatment step, the amount of acid contained in the crude pigment can be further reduced. Kneading can be performed using, for example, a kneader, a mix maller, or the like. Kneading may be performed while heating. For example, the temperature of water may be 40 ° C. or higher. Inorganic salts may be added to the water. At this time, by allowing at least a part of the inorganic salt to exist in a solid state, the force applied during kneading can be improved. At the time of kneading, an organic solvent (for example, an organic solvent that can be used in the second step described later) may be used, but the amount of the organic solvent used is preferably smaller than the amount of water used, and no organic solvent is used. Is more preferable. After kneading, washing may be performed in the same manner as in the first post-treatment step. Kneading and washing may be repeated a plurality of times.
 第1の工程は、例えば、沈殿物を水中で加熱(例えば煮沸)する工程(第4の後処理工程)をさらに含んでいてもよい。第4の後処理工程を行うことで、粗顔料に内包される酸の量をより一層低減することができる。水中での加熱温度は、例えば、40℃以上沸点以下であってよく、加熱時間は、例えば、1~300分間であってよい。水中には、有機溶剤(例えば、後述する第2の工程で用い得る有機溶剤)を混在させてもよいが、有機溶剤の混在量は、水100質量部に対して、好ましくは20質量部以下である。第4の後処理工程では、より一層酸を除去する観点から、沈殿物を水中で加熱した後に洗浄を行ってよく、沈殿物を水中で加熱した後に洗浄を行い、さらに水中での加熱及び洗浄を1回以上(好ましくは2回以上)繰り返し行ってもよい。洗浄は、第1の後処理工程と同様にして行ってよい。 The first step may further include, for example, a step of heating (for example, boiling) the precipitate in water (fourth post-treatment step). By performing the fourth post-treatment step, the amount of acid contained in the crude pigment can be further reduced. The heating temperature in water may be, for example, 40 ° C. or higher and the boiling point or lower, and the heating time may be, for example, 1 to 300 minutes. An organic solvent (for example, an organic solvent that can be used in the second step described later) may be mixed in the water, but the mixing amount of the organic solvent is preferably 20 parts by mass or less with respect to 100 parts by mass of water. Is. In the fourth post-treatment step, from the viewpoint of further removing the acid, the precipitate may be heated in water and then washed, and the precipitate is heated in water and then washed, and further heated and washed in water. May be repeated once or more (preferably twice or more). Cleaning may be performed in the same manner as in the first post-treatment step.
 本実施形態では、上述した第1~第4の後処理工程のうちの2以上の工程を実施してもよい。第1~第4の後処理工程のうちの2以上の工程を実施する場合、その順序は特に限定されない。 In this embodiment, two or more of the above-mentioned first to fourth post-treatment steps may be carried out. When two or more of the first to fourth post-treatment steps are carried out, the order thereof is not particularly limited.
 上記第1の工程により粗顔料が得られるが、上述したとおり、本実施形態では、第1の工程で得られた上記沈殿物をそのまま粗顔料としてよく、上記沈殿物に対して上記後処理工程(第1~第4の後処理工程のうちの少なくとも一の工程)を行ったものを粗顔料としてもよい。 The crude pigment can be obtained by the first step. As described above, in the present embodiment, the precipitate obtained in the first step may be used as the crude pigment as it is, and the post-treatment step may be applied to the precipitate. The crude pigment may be obtained by performing (at least one step of the first to fourth post-treatment steps).
 粗顔料の粒度分布の算術標準偏差は、例えば、15nm以上である。粗顔料の粒度分布の算術標準偏差は、例えば、1500nm以下である。粗顔料の粒度分布の算術標準偏差がこのような範囲であると、より微細な顔料粒子が得られやすくなる。粗顔料の粒度分布の算術標準偏差は、動的光散乱式粒子径分布測定装置を用いて測定することができ、具体的には以下の方法、条件で測定することができる。
<方法>
 粗顔料2.48gを、ビックケミー社製BYK-LPN6919 1.24g、DIC株式会社製ユニディックZL-295 1.86g、プロピレングリコールモノメチルエーテルアセテート10.92gと共に0.3~0.4mmのジルコンビーズを用いて、東洋精機株式会社製ペイントシェーカーで2時間分散して分散体を得る。ジルコンビーズをナイロンメッシュで取り除いた後の分散体0.02gをプロピレングリコールモノメチルエーテルアセテート20gで希釈して粒度分布測定用分散体を得る。
<条件>
・測定機器:動的光散乱式粒子径分布測定装置LB-550(株式会社堀場製作所製)
・測定温度:25℃
・測定試料:粒度分布測定用分散体
・データ解析条件:粒子径基準 散乱光強度、分散媒屈折率 1.402
The arithmetic standard deviation of the particle size distribution of the crude pigment is, for example, 15 nm or more. The arithmetic standard deviation of the particle size distribution of the crude pigment is, for example, 1500 nm or less. When the arithmetic standard deviation of the particle size distribution of the crude pigment is in such a range, finer pigment particles can be easily obtained. The arithmetic standard deviation of the particle size distribution of the crude pigment can be measured using a dynamic light scattering type particle size distribution measuring device, and specifically, can be measured by the following methods and conditions.
<Method>
2.48 g of crude pigment, 1.24 g of BYK-LPN6919 manufactured by Big Chemie, 1.86 g of Unidic ZL-295 manufactured by DIC Corporation, and 10.92 g of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. Using a paint shaker manufactured by Toyo Seiki Co., Ltd., the mixture is dispersed for 2 hours to obtain a dispersion. After removing the zircon beads with a nylon mesh, 0.02 g of the dispersion is diluted with 20 g of propylene glycol monomethyl ether acetate to obtain a dispersion for measuring the particle size distribution.
<Conditions>
-Measuring equipment: Dynamic light scattering type particle size distribution measuring device LB-550 (manufactured by HORIBA, Ltd.)
・ Measurement temperature: 25 ° C
-Measurement sample: Dispersion for particle size distribution measurement-Data analysis conditions: Particle size standard Scattered light intensity, dispersion medium refractive index 1.402
 粗顔料は、酸を内包していてよい。粗顔料が酸を内包することは、粗顔料 5gをメタノール 5gと混合した後、さらにイオン交換水 100mlと混合し、得られた混合物を5分間加熱して煮沸状態とし、さらに5分間加熱して煮沸状態を維持し、加熱後の混合物を30℃以下に放冷した後、イオン交換水で混合物の全量を100mlに調整してからろ過し、得られたろ液の25℃でのpHを測定することにより確認できる。本明細書では、上記方法により測定されるろ液のpHを「粗顔料のpH」と定義する。粗顔料のpHが、5未満である場合、本発明の効果が顕著に得られる傾向がある。特に、粗顔料を構成するハロゲン化金属フタロシアニンの中心金属が亜鉛、鉄又はマグネシウムである場合、当該粗顔料が酸を内包した場合に結晶性がより一層低くなりやすく、本発明の効果が一層顕著に得られる傾向がある。かかる観点から、粗顔料のpHは、4.5以下又は3.5以下であってもよい。上記ろ液のpHは、例えば、2.0以上であってよい。 The crude pigment may contain an acid. The crude pigment contains acid. After mixing 5 g of the crude pigment with 5 g of methanol, the crude pigment is further mixed with 100 ml of ion-exchanged water, and the obtained mixture is heated for 5 minutes to bring it to a boiling state, and then heated for another 5 minutes. After maintaining the boiling state and allowing the heated mixture to cool to 30 ° C or lower, adjust the total amount of the mixture to 100 ml with ion-exchanged water, filter, and measure the pH of the obtained filtrate at 25 ° C. It can be confirmed by. In the present specification, the pH of the filtrate measured by the above method is defined as "pH of crude pigment". When the pH of the crude pigment is less than 5, the effect of the present invention tends to be remarkably obtained. In particular, when the central metal of the metal halide phthalocyanine constituting the crude pigment is zinc, iron or magnesium, the crystallinity tends to be further lowered when the crude pigment contains an acid, and the effect of the present invention is more remarkable. Tends to be obtained. From this point of view, the pH of the crude pigment may be 4.5 or less or 3.5 or less. The pH of the filtrate may be, for example, 2.0 or higher.
 第2の工程は、第1の工程で用意した粗顔料と無機塩と有機溶剤とを含む混合物を、800s-1を超える最大せん断速度で混練する混練工程を含む。混練工程では、混練装置を用いて混合物を混練することにより粗顔料が磨砕され、微細化される。混練装置としては、例えば、ニーダー、ミックスマラー、プラネタリーミキサー、連続式一軸混練機、フラッシャー等を使用することができる。混練装置は、開放型であっても密閉型であってもよいが、密閉型であれば、有機溶剤の揮発を抑制でき、混練時間をより長くすることができる。また、ニーダーは接線式であっても噛合式であってもよいが、接線式であれば、混練物の粘性が高い場合にも効率的に混練することができる。 The second step includes a kneading step of kneading the mixture containing the crude pigment, the inorganic salt and the organic solvent prepared in the first step at a maximum shear rate of more than 800s -1 . In the kneading step, the crude pigment is ground and refined by kneading the mixture using a kneading device. As the kneading device, for example, a kneader, a mix muller, a planetary mixer, a continuous uniaxial kneader, a flasher and the like can be used. The kneading device may be an open type or a closed type, but if it is a closed type, the volatilization of the organic solvent can be suppressed and the kneading time can be lengthened. Further, the kneader may be a tangential type or a meshing type, but if it is a tangential type, it can be efficiently kneaded even when the viscosity of the kneaded product is high.
 図1は、一実施形態の製造方法で使用される混練装置の内部構造を示す模式断面図である。図1に示す混練装置10は、双腕型ニーダーであり、混練室11と、当該混練室11に設けられた一対のブレード12と、を備える。混練工程では、混合物を混練室11に投入した後、モーターにより、一対のブレード12を回転させる。混練装置10では、混練室11の内壁面11aとブレード12との間に隙間(クリアランス)C1が存在しており、一対のブレード12が互いに逆の方向(図1に示す矢印方向)に回転軸L1を中心として回転することで、クリアランスC1を通過する混合物にせん断応力が加わり、粗顔料が微細化される。通常、一対のブレード12の形状は互いに同一である。 FIG. 1 is a schematic cross-sectional view showing the internal structure of the kneading device used in the manufacturing method of one embodiment. The kneading device 10 shown in FIG. 1 is a double-arm type kneader, and includes a kneading chamber 11 and a pair of blades 12 provided in the kneading chamber 11. In the kneading step, after the mixture is charged into the kneading chamber 11, the pair of blades 12 are rotated by a motor. In the kneading device 10, a gap (clearance) C1 exists between the inner wall surface 11a of the kneading chamber 11 and the blades 12, and the pair of blades 12 rotate in opposite directions (arrow directions shown in FIG. 1). By rotating around L1, shear stress is applied to the mixture passing through the clearance C1, and the crude pigment is made finer. Usually, the shapes of the pair of blades 12 are the same as each other.
 図2は、他の一実施形態で使用される混練装置の内部構造を示す模式平面図であり、図3は、図2のIII-III線に沿った矢視断面図である。図2及び図3に示す混練装置20は、ミックスマラーであり、円形の底面21aを有する混練室21と、当該混練室21に設けられた一対のマラーホイール22、柱部23、連結部24及び加圧ばね25と、を備える。マラーホイール22は、連結部24により柱部23に連結されている。柱部23は、底面21aの中央から垂直に延びており、モーターにより回転軸L1を中心として回転可能である。混練工程では、混合物を混練室21の底面21a上に配置した後、柱部23を回転させることで一対のマラーホイール22を、柱部23の周りを公転させる。混練装置20では、混練室21の底面21aとマラーホイール22との間に隙間(クリアランス)C2が存在しており、マラーホイール22の自重及び/又は加圧ばね25により鉛直方向からの荷重を加えた状態で、マラーホイール22が公転すると共にクリアランスC2を通過する混合物との接触により自転することによって、混合物にニーディング作用、スメアリング作用及びスパチュレイト作用が働き、粗顔料が微細化される。通常、一対のマラーホイール22の形状は互いに同一である。 FIG. 2 is a schematic plan view showing the internal structure of the kneading device used in another embodiment, and FIG. 3 is a cross-sectional view taken along the line III-III of FIG. The kneading device 20 shown in FIGS. 2 and 3 is a mix muller, which is a kneading chamber 21 having a circular bottom surface 21a, and a pair of muller wheels 22, pillar portions 23, connecting portions 24, and a pair of muller wheels 22 provided in the kneading chamber 21. A pressure spring 25 is provided. The maller wheel 22 is connected to the pillar portion 23 by the connecting portion 24. The pillar portion 23 extends vertically from the center of the bottom surface 21a and is rotatable about the rotation axis L1 by a motor. In the kneading step, after the mixture is placed on the bottom surface 21a of the kneading chamber 21, the pillar portion 23 is rotated to revolve the pair of maller wheels 22 around the pillar portion 23. In the kneading device 20, a gap (clearance) C2 exists between the bottom surface 21a of the kneading chamber 21 and the maller wheel 22, and a load from the vertical direction is applied by the weight of the maller wheel 22 and / or the pressure spring 25. In this state, the maller wheel 22 revolves and rotates due to contact with the mixture passing through the clearance C2, so that the mixture has a kneading action, a smearing action, and a spaturating action, and the crude pigment is made finer. Normally, the shapes of the pair of maller wheels 22 are the same as each other.
 混練時の最大せん断速度は、800s-1超であり、混練時の粗顔料の凝集がより抑制され、粗顔料をより微細化することができる観点では、1500s-1以上又は2500s-1以上であってもよい。最大せん断速度は、顔料粒子の破砕を防ぐ観点では、5000s-1以下であってよい。これらの観点から、最大せん断速度は、800s-1超5000s-1以下、1500~5000s-1又は2500~5000s-1であってよい。ここで、「最大せん断速度」は、混練装置中で混練物のせん断速度が最大となる箇所のせん断速度を意味する。「せん断速度」は、混練物の移動速度(単位時間あたりに移動する距離)をvとし、混練物が当該移動速度vで通過する箇所の幅の長さをhとすると、v/hで表すことができる。例えば、図1に示す混練装置10を用いる場合、クリアランスC1におけるせん断速度は、クリアランスC1を通過する際の混練物の移動速度をvとし、クリアランスC1の幅をhとすることで求められる。また、例えば、図2に示す混練装置20を用いる場合、クリアランスC2におけるせん断速度は、クリアランスC2を通過する際の混練物の移動速度をvとし、クリアランスC2の幅をhとすることで求められる。通常は、クリアランスが最も狭くなる箇所で混練物の移動速度(単位時間あたりに移動する距離)が最大となり、せん断速度が最大となる。通常、混練物は、せん断速度が最大となる箇所において混練によるせん断の影響を最も大きく受けることから、最大せん断速度を800s-1よりも大きくすることで、粗顔料の凝集が起こり難い状態を維持することができる。 The maximum shear rate during kneading is more than 800s -1 , and from the viewpoint that aggregation of the crude pigment during kneading can be further suppressed and the crude pigment can be further miniaturized, it is 1500s -1 or more or 2500s -1 or more. There may be. The maximum shear rate may be 5000s -1 or less from the viewpoint of preventing the pigment particles from being crushed. From these points of view, the maximum shear rate may be 800s -1 more than 5000s -1 or less, 1500-5000s -1 or 2500-5000s -1 . Here, the "maximum shear rate" means the shear rate at the place where the shear rate of the kneaded material is maximum in the kneading device. The "shear velocity" is expressed as v / h, where v is the moving speed of the kneaded material (distance traveled per unit time) and h is the width of the portion where the kneaded material passes at the moving speed v. be able to. For example, when the kneading device 10 shown in FIG. 1 is used, the shear rate in the clearance C1 is obtained by setting the moving speed of the kneaded material when passing through the clearance C1 to v and the width of the clearance C1 to h. Further, for example, when the kneading device 20 shown in FIG. 2 is used, the shear rate in the clearance C2 is obtained by setting the moving speed of the kneaded material when passing through the clearance C2 to v and the width of the clearance C2 to h. .. Normally, the moving speed (distance moved per unit time) of the kneaded material is the maximum and the shearing speed is the maximum at the place where the clearance is the narrowest. Normally, the kneaded product is most affected by shearing due to kneading at the place where the shear rate is maximum. Therefore, by increasing the maximum shear rate to more than 800s -1 , the state in which aggregation of the crude pigment is unlikely to occur is maintained. can do.
 最大せん断速度は、例えば、混練装置の形状及び回転体(例えばブレード12、柱部23等)の回転速度により調整することができる。具体的には、例えば、図1に示す混練装置10では、ブレード12の最大半径r(ブレード12の回転軸L1からブレード12の表面までの最短距離のうち最も長いもの)から求められるブレード12の回転軌道の外周(2×最大半径r×π)とブレード12の回転速度との積が混練物の最大移動速度となるため、ブレード12の形状及びブレード12の回転速度等を調整することで混練物の最大移動速度及びクリアランスを調整し、所望の最大せん断速度とすることができる。また、例えば、図2に示す混練装置20では、柱部23の中心を通る回転軸L2からマラーホイール22までの最短距離Dとマラーホイールのホイール幅Wの和から求められるマラーホイール22の公転軌道の外周(2×[最短距離D+ホイール幅W]×π)と柱部23の回転速度との積が混練物の最大移動速度となるため、マラーホイールの形状、連結部24の水平方向の長さ、柱部23の回転速度、マラーホイールに加えるテンションの強さ等を調整することで混練物の最大移動速度及びクリアランスを調整し、所望のせん断速度とすることができる。 The maximum shear rate can be adjusted, for example, by the shape of the kneading device and the rotation speed of the rotating body (for example, the blade 12, the column portion 23, etc.). Specifically, for example, in the kneading device 10 shown in FIG. 1, the blade 12 is determined from the maximum radius r of the blade 12 (the longest shortest distance from the rotation axis L1 of the blade 12 to the surface of the blade 12). Since the product of the outer circumference of the rotation trajectory (2 x maximum radius r x π) and the rotation speed of the blade 12 is the maximum movement speed of the kneaded product, kneading is performed by adjusting the shape of the blade 12 and the rotation speed of the blade 12. The maximum moving speed and clearance of the object can be adjusted to the desired maximum shear rate. Further, for example, in the kneading device 20 shown in FIG. 2, the revolving trajectory of the maller wheel 22 obtained from the sum of the shortest distance D from the rotation axis L2 passing through the center of the pillar portion 23 to the maller wheel 22 and the wheel width W of the maller wheel 22. Since the product of the outer circumference (2 × [shortest distance D + wheel width W] × π) and the rotation speed of the pillar portion 23 is the maximum moving speed of the kneaded product, the shape of the maller wheel and the horizontal length of the connecting portion 24 By adjusting the rotation speed of the column portion 23, the strength of the tension applied to the maller wheel, and the like, the maximum moving speed and clearance of the kneaded material can be adjusted to obtain a desired shearing speed.
 図1に示す混練装置10を用いる場合、クリアランスC1の幅の最小値は、例えば、0.1~3.0mm、0.1~1.0mm又は0.1~0.4mmとすることができる。ブレード12の回転速度(一対のブレード12の回転速度が互いに異なる場合、回転速度が速い側のブレード12の回転速度)は、例えば、30~300rpm、100~200rpm又は120~160rpmとすることができる。一対のブレード12の回転速度の回転速度比は、例えば、2:1~1:2又は1.5:1~1:1.5であってよい。ブレードには、シグマブレード、マスチケーターブレード、Zブレード、ダブルナーベンブレード等を用いることができる。 When the kneading device 10 shown in FIG. 1 is used, the minimum value of the width of the clearance C1 can be, for example, 0.1 to 3.0 mm, 0.1 to 1.0 mm, or 0.1 to 0.4 mm. .. The rotation speed of the blades 12 (when the rotation speeds of the pair of blades 12 are different from each other, the rotation speed of the blade 12 on the side with the higher rotation speed) can be, for example, 30 to 300 rpm, 100 to 200 rpm, or 120 to 160 rpm. .. The rotation speed ratio of the rotation speeds of the pair of blades 12 may be, for example, 2: 1 to 1: 2 or 1.5: 1 to 1: 1.5. As the blade, a sigma blade, a masticator blade, a Z blade, a double naven blade or the like can be used.
 図2に示す混練装置20を用いる場合、クリアランスC2の幅の最小値は、例えば、1~30mm、1~20mm又は1~5mmとすることができる。マラーホイール22のホイール幅Wは、例えば、10~100mm、20~50mm又は30~40mmとすることができる。また、柱部23の回転速度(マラーホイールの公転速度)は、例えば、10~100rpm、10~60rpm又は15~45rpmとすることができる。マラーホイールの自転速度は、例えば、10~100rpm、10~60rpm又は15~45rpmとすることができる。マラーホイールの自転速度は、マラーホイールの公転速度と同じであってよい。 When the kneading device 20 shown in FIG. 2 is used, the minimum value of the width of the clearance C2 can be, for example, 1 to 30 mm, 1 to 20 mm, or 1 to 5 mm. The wheel width W of the maller wheel 22 can be, for example, 10 to 100 mm, 20 to 50 mm, or 30 to 40 mm. Further, the rotation speed of the pillar portion 23 (revolution speed of the maller wheel) can be, for example, 10 to 100 rpm, 10 to 60 rpm, or 15 to 45 rpm. The rotation speed of the maller wheel can be, for example, 10 to 100 rpm, 10 to 60 rpm, or 15 to 45 rpm. The rotation speed of the maller wheel may be the same as the revolution speed of the maller wheel.
 混練物の最大移動速度は、例えば、500~3500mm/s、700~3000mm/s又は2000~3000mm/sとすることができる。 The maximum moving speed of the kneaded product can be, for example, 500 to 3500 mm / s, 700 to 3000 mm / s, or 2000 to 3000 mm / s.
 混練工程では、110℃よりも低い温度で混合物を混練してよい。混練温度が110℃未満であることで、粗顔料の結晶化がより抑制される。かかる観点から、混練温度は、100℃以下又は90℃以下であってよい。混練温度は、例えば、25℃以上、40℃以上又は60℃以上であってよい。混練温度は110℃以上であってもよい。混練温度は、例えば、25~150℃以下、25℃以上110℃未満、40~100℃又は60~90℃であってよい。なお、上記混練温度は、混練時の混合物(混練物)の温度である。混練工程では、混練物の温度を上記範囲に調整するために、温度調整装置を用いてもよい。例えば、温度調整装置で加温した熱媒(エチレングリコール等)を混練装置のジャケットに流すことにより混合物を加温してよい。 In the kneading step, the mixture may be kneaded at a temperature lower than 110 ° C. When the kneading temperature is less than 110 ° C., the crystallization of the crude pigment is further suppressed. From this point of view, the kneading temperature may be 100 ° C. or lower or 90 ° C. or lower. The kneading temperature may be, for example, 25 ° C. or higher, 40 ° C. or higher, or 60 ° C. or higher. The kneading temperature may be 110 ° C. or higher. The kneading temperature may be, for example, 25 to 150 ° C. or lower, 25 ° C. or higher and lower than 110 ° C., 40 to 100 ° C. or 60 to 90 ° C. The kneading temperature is the temperature of the mixture (kneaded product) at the time of kneading. In the kneading step, a temperature adjusting device may be used to adjust the temperature of the kneaded product within the above range. For example, the mixture may be heated by flowing a heat medium (ethylene glycol or the like) heated by the temperature control device through the jacket of the kneading device.
 混練工程では、混合物の混練に消費される電力量が、粗顔料1kgあたり10.0kWhより大きい。ここで、「混合物の混練に消費される電力量」は、混練により混合物に投入されるエネルギー量と同義であり、混合物の混練時間中、すなわち、混練開始から混練終了までの間に、混練装置が消費した総電力量から、混練装置に混合物を投入せずに混練時間と同じ時間混練装置を空運転させた時に混練装置が消費する電力量を引くことにより求められる。ただし、加熱のために電力を消費する場合、加熱のための電力量(例えば、上記温度調整装置による熱媒の加熱のための電力量)は、上記電力量には含まれない。 In the kneading step, the amount of electric power consumed for kneading the mixture is larger than 10.0 kWh per 1 kg of crude pigment. Here, "the amount of electric power consumed for kneading the mixture" is synonymous with the amount of energy input to the mixture by kneading, and the kneading device is used during the kneading time of the mixture, that is, from the start of kneading to the end of kneading. It is obtained by subtracting the amount of electric power consumed by the kneading device when the kneading device is operated idle for the same time as the kneading time without charging the mixture into the kneading device from the total electric energy consumed by the kneading device. However, when electric power is consumed for heating, the electric energy for heating (for example, the electric energy for heating the heat medium by the temperature adjusting device) is not included in the electric energy.
 混合物の混練に消費される電力量は、粗顔料をより微細化し、輝度の向上効果に一層優れるカラーフィルタ顔料を得る観点では、粗顔料1kgあたり、14.0kWh以上又は25.0kWh以上としてもよい。混合物の混練に消費される電力量は、過剰な混練による粗顔料の凝集を抑制する観点では、粗顔料1kgあたり、100.0kWh以下、70.0kWh以下又は50.0kWh以下としてよい。これらの観点から、混合物の混練に消費される電力量は、粗顔料1kgあたり、10.0kWh超100.0kWh以下、14.0~70.0kWh又は14.0~50.0kWhとしてよい。なお、混合物の混練に消費される電力量は、混練時間、混練装置の形状、回転体(例えばブレード12、柱部23等)の回転速度、混合物の配合比率、混合物中の有機溶剤の種類等により調整することができる。 The amount of electric power consumed for kneading the mixture may be 14.0 kWh or more or 25.0 kWh or more per 1 kg of the crude pigment from the viewpoint of making the crude pigment finer and obtaining a color filter pigment further excellent in the effect of improving the brightness. .. The amount of electric power consumed for kneading the mixture may be 100.0 kWh or less, 70.0 kWh or less, or 50.0 kWh or less per 1 kg of the crude pigment from the viewpoint of suppressing aggregation of the crude pigment due to excessive kneading. From these viewpoints, the amount of electric power consumed for kneading the mixture may be more than 10.0kWh and 100.0kWh or less, 14.0 to 70.0kWh or 14.0 to 50.0kWh per 1 kg of the crude pigment. The amount of electric power consumed for kneading the mixture includes the kneading time, the shape of the kneading device, the rotation speed of the rotating body (for example, the blade 12, the pillar 23, etc.), the mixing ratio of the mixture, the type of the organic solvent in the mixture, and the like. Can be adjusted by.
 混練時間は、粗顔料をより微細化し、輝度の向上効果に一層優れるカラーフィルタ顔料を得る観点では、5時間以上、7時間以上又は9時間以上であってよい。混練時間は、過剰な混練による粗顔料の凝集を抑制する観点では、100時間以下、50時間以下又は30時間以下であってよい。これらの観点から、混練時間は、5~100時間、7~50時間又は9~30時間であってよい。 The kneading time may be 5 hours or more, 7 hours or more, or 9 hours or more from the viewpoint of obtaining a color filter pigment having a finer coarse pigment and a more excellent effect of improving the brightness. The kneading time may be 100 hours or less, 50 hours or less, or 30 hours or less from the viewpoint of suppressing aggregation of the crude pigment due to excessive kneading. From these viewpoints, the kneading time may be 5 to 100 hours, 7 to 50 hours or 9 to 30 hours.
 有機溶剤には、粗顔料及び後述する無機塩を溶解しないものを用いることが好ましい。有機溶剤としては、結晶成長を抑制し得る有機溶剤を使用することが好ましい。このような有機溶剤としては水溶性有機溶剤が好適に使用できる。有機溶剤としては、例えばジエチレングリコール、グリセリン、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、液体ポリエチレングリコール、液体ポリプロピレングリコール、2-(メトキシメトキシ)エタノール、2-ブトキシエタノール、2-(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリメチルフォスフェート、4-ブチロラクトン、プロピレンカーボネート、N-メチル-2-ピロリドン、メタノール、エチレンシアノヒドリン等を用いることができる。有機溶剤は1種を単独で、又は複数種を組み合わせ使用することができる。 It is preferable to use an organic solvent that does not dissolve the crude pigment and the inorganic salt described later. As the organic solvent, it is preferable to use an organic solvent capable of suppressing crystal growth. As such an organic solvent, a water-soluble organic solvent can be preferably used. Examples of the organic solvent include diethylene glycol, glycerin, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, and 2-butoxyethanol. , 2- (Isopentyloxy) Ethanol, 2- (Hexyloxy) Ethanol, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monobutyl Ether, Triethylene Glycol, Triethylene Glycol Monomethyl Ether, 1-methoxy-2-propanol, 1 -Ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, trimethyl phosphate, 4-butyrolactone, propylene carbonate, N-methyl-2-pyrrolidone, methanol, ethylene cyanohydrin and the like are used. be able to. As the organic solvent, one kind may be used alone or a plurality of kinds may be used in combination.
 有機溶剤(例えば水溶性有機溶剤)の使用量は、顔料粒子表面の濡れを進めて、より効率的に顔料粒子を微細化する観点から、粗顔料100質量部に対して、1質量部以上、30質量部以上又は50質量部以上であってよい。有機溶剤(例えば水溶性有機溶剤)の使用量は、混合物の高粘度化により、混練時に粗顔料に加わる力がより大きくなり、混練時の粗顔料の凝集がより抑制される観点から、粗顔料100質量部に対して、500質量部以下、400質量部以下又は200質量部以下であってよい。これらの観点から、有機溶剤(例えば水溶性有機溶剤)の使用量は、粗顔料100質量部に対して、1~500質量部、30~400質量部又は50~200質量部であってよい。なお、有機溶剤の使用量は、混合物における有機溶剤の含有量と言い換えることもできる。 The amount of the organic solvent (for example, a water-soluble organic solvent) used is 1 part by mass or more with respect to 100 parts by mass of the crude pigment from the viewpoint of promoting the wetting of the surface of the pigment particles and making the pigment particles finer more efficiently. It may be 30 parts by mass or more or 50 parts by mass or more. The amount of the organic solvent (for example, a water-soluble organic solvent) used is such that the force applied to the crude pigment at the time of kneading becomes larger due to the high viscosity of the mixture, and the aggregation of the crude pigment at the time of kneading is further suppressed. It may be 500 parts by mass or less, 400 parts by mass or less, or 200 parts by mass or less with respect to 100 parts by mass. From these viewpoints, the amount of the organic solvent (for example, a water-soluble organic solvent) used may be 1 to 500 parts by mass, 30 to 400 parts by mass or 50 to 200 parts by mass with respect to 100 parts by mass of the crude pigment. The amount of the organic solvent used can be rephrased as the content of the organic solvent in the mixture.
 無機塩としては、水及び/又はメタノールに対する溶解性を有する無機塩が好ましく用いられ、水に対する溶解性を有する無機塩(水溶性無機塩)がより好ましく用いられる。無機塩の具体例としては、塩化ナトリウム、塩化カリウム、塩化リチウム、硫酸ナトリウム等が挙げられる。無機塩の一次粒子の平均粒子径(平均一次粒子径)は、例えば、0.5~50μmである。このような無機塩は、通常の無機塩を微粉砕することにより容易に得られる。無機塩の平均一次粒子径は、後述する顔料の平均一次粒子径と同様の方法により測定される。具体的には、無機塩をシクロヘキサンに超音波分散させてから顕微鏡で撮影し、二次元画像上の凝集体を構成する一次粒子40個の平均値から、一次粒子の平均粒子径(平均一次粒子径)を算出することができる。 As the inorganic salt, an inorganic salt having solubility in water and / or methanol is preferably used, and an inorganic salt having solubility in water (water-soluble inorganic salt) is more preferably used. Specific examples of the inorganic salt include sodium chloride, potassium chloride, lithium chloride, sodium sulfate and the like. The average particle size (average primary particle size) of the primary particles of the inorganic salt is, for example, 0.5 to 50 μm. Such an inorganic salt can be easily obtained by finely pulverizing an ordinary inorganic salt. The average primary particle size of the inorganic salt is measured by the same method as the average primary particle size of the pigment described later. Specifically, the inorganic salt is ultrasonically dispersed in cyclohexane and then photographed with a microscope, and the average particle size of the primary particles (average primary particles) is obtained from the average value of 40 primary particles constituting the aggregate on the two-dimensional image. Diameter) can be calculated.
 無機塩(例えば水溶性無機塩)の使用量は、混練時に粗顔料に加わる力がより大きくなり、混練時の粗顔料の凝集がより抑制される観点から、粗顔料1質量部に対して、30質量部以上、40質量部以上又は50質量部以上であってよい。無機塩(例えば水溶性無機塩)の使用量は、顔料の生産効率を高くする観点から、粗顔料1質量部に対して、100質量部以下、80質量部以下又は60質量部以下であってよい。これらの観点から、無機塩(例えば水溶性無機塩)の使用量は、粗顔料1質量部に対して、30~100質量部、30~60質量部又は40~60質量部であってよい。なお、無機塩の使用量は、混合物における無機塩の含有量と言い換えることもできる。 The amount of the inorganic salt (for example, a water-soluble inorganic salt) used is such that the force applied to the crude pigment at the time of kneading becomes larger and the aggregation of the crude pigment at the time of kneading is further suppressed. It may be 30 parts by mass or more, 40 parts by mass or more, or 50 parts by mass or more. The amount of the inorganic salt (for example, a water-soluble inorganic salt) used is 100 parts by mass or less, 80 parts by mass or less, or 60 parts by mass or less with respect to 1 part by mass of the crude pigment from the viewpoint of increasing the production efficiency of the pigment. good. From these viewpoints, the amount of the inorganic salt (for example, a water-soluble inorganic salt) used may be 30 to 100 parts by mass, 30 to 60 parts by mass or 40 to 60 parts by mass with respect to 1 part by mass of the crude pigment. The amount of the inorganic salt used can also be rephrased as the content of the inorganic salt in the mixture.
 混練工程では、水を使用しないことが好ましい。水の使用量は、例えば、粗顔料100質量部に対して、20質量部以下であり、10質量部以下又は5質量部以下であってもよい。 It is preferable not to use water in the kneading process. The amount of water used may be, for example, 20 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less with respect to 100 parts by mass of the crude pigment.
 混練工程後は、混練後の混合物を洗浄する洗浄工程を実施してよい。洗浄としては、無機塩の種類に応じて、水洗、湯洗、有機溶剤(例えば、メタノール等の表面張力が小さい有機溶剤)での洗浄及びこれらの組み合わせを採用できる。水溶性無機塩及び水溶性有機溶剤を用いた場合は、水洗することで容易に有機溶剤と無機塩を除去することができる。 After the kneading step, a washing step of washing the mixture after kneading may be carried out. As the cleaning, depending on the type of the inorganic salt, washing with water, washing with hot water, washing with an organic solvent (for example, an organic solvent having a small surface tension such as methanol), or a combination thereof can be adopted. When a water-soluble inorganic salt and a water-soluble organic solvent are used, the organic solvent and the inorganic salt can be easily removed by washing with water.
 酸を内包する粗顔料(例えば、pHが5未満である粗顔料)を用いた場合、水酸化カリウム水溶液等の塩基性水溶液を用いて洗浄工程を実施してもよい。塩基性水溶液を用いることで、酸性条件下でプロトン化されたハロゲン化金属フタロシアニンの一部からカウンターアニオンが外れ、耐熱性が向上し、より一層輝度の向上効果が得られる傾向がある。かかる効果が得られやすくなる観点から、塩基性水溶液として、25℃でのpHが8よりも大きい水溶液を用いてもよい。塩基性水溶液の温度は、例えば、40~90℃であってよい。 When a crude pigment containing an acid (for example, a crude pigment having a pH of less than 5) is used, the cleaning step may be carried out using a basic aqueous solution such as an aqueous solution of potassium hydroxide. By using a basic aqueous solution, the counter anion is removed from a part of the metal halide phthalocyanine protonated under acidic conditions, the heat resistance is improved, and the effect of further improving the brightness tends to be obtained. From the viewpoint that such an effect can be easily obtained, an aqueous solution having a pH higher than 8 at 25 ° C. may be used as the basic aqueous solution. The temperature of the basic aqueous solution may be, for example, 40 to 90 ° C.
 洗浄は、混合物を洗浄液(例えば、水、有機溶剤又は塩基性水溶液等)中で攪拌することで行ってよい。洗浄は、例えば、1~5回の範囲で繰り返し行ってもよい。1回の洗浄に使用する洗浄液の量は、例えば、混合物の全量100質量部に対して、200~1500質量部であってよい。必要であれば、酸洗浄を行ってもよい。 Cleaning may be performed by stirring the mixture in a cleaning solution (for example, water, an organic solvent, a basic aqueous solution, etc.). The washing may be repeated, for example, in the range of 1 to 5 times. The amount of the cleaning liquid used for one cleaning may be, for example, 200 to 1500 parts by mass with respect to 100 parts by mass of the total amount of the mixture. If necessary, pickling may be performed.
 洗浄後は、必要に応じて洗浄後の混合物(顔料を主体とする固形物)に対して、濾過、乾燥、粉砕等の操作を行ってもよい。上記洗浄及び濾過後の乾燥としては、例えば、乾燥機に設置した加熱源による80~120℃の加熱等により、顔料の脱水及び/又は脱溶剤をする回分式或いは連続式の乾燥等が挙げられる。乾燥機としては、一般に、箱型乾燥機、バンド乾燥機、スプレードライヤー等が挙げられる。特に、スプレードライヤーを用いるスプレードライ乾燥はペースト作製時に易分散であるため好ましい。洗浄に有機溶剤を用いる場合は、0~60℃で真空乾燥することが好ましい。 After washing, if necessary, the washed mixture (solid matter mainly composed of pigment) may be subjected to operations such as filtration, drying, and pulverization. Examples of the drying after washing and filtration include batch type or continuous type drying in which the pigment is dehydrated and / or the solvent is removed by heating at 80 to 120 ° C. by a heating source installed in a dryer. .. Examples of the dryer generally include a box-type dryer, a band dryer, a spray dryer and the like. In particular, spray-drying using a spray dryer is preferable because it is easy to disperse when preparing the paste. When an organic solvent is used for cleaning, it is preferable to vacuum dry at 0 to 60 ° C.
 乾燥後の粉砕は、比表面積を大きくしたり、一次粒子の平均粒子径を小さくしたりするための操作ではなく、例えば箱型乾燥機、バンド乾燥機を用いた乾燥の場合のように顔料がランプ状等となった際に顔料を解して粉末化するために行うものである。例えば、乳鉢、ハンマーミル、ディスクミル、ピンミル、ジェットミル等による粉砕などが挙げられる。 The crushing after drying is not an operation for increasing the specific surface area or reducing the average particle size of the primary particles, but the pigment is used as in the case of drying using a box dryer or a band dryer, for example. This is done to dissolve the pigment and pulverize it when it becomes a lamp shape or the like. For example, crushing with a mortar, a hammer mill, a disc mill, a pin mill, a jet mill, or the like can be mentioned.
 上記製造方法によれば、ハロゲン化金属フタロシアニン粗顔料を従来の方法により顔料化するよりも、一層微細化することができる。つまり、上記製造方法により得られる顔料は、一層微細化されたハロゲン化金属フタロシアニン顔料であり、カラーフィルタ顔料として用いられた場合には、画素部(特に緑色画素部)の輝度を一層向上させることができる。一般に、カラーフィルタ顔料は、その粒子径(一次粒子径)が小さいほど、画素部の輝度及びコントラストを向上させることができるため、上記製造方法により得られるハロゲン化金属フタロシアニン顔料をカラーフィルタ用の緑色顔料として用いる場合、優れたコントラストも得られる傾向がある。 According to the above manufacturing method, the metal halide phthalocyanine crude pigment can be further refined as compared with the pigmentation by the conventional method. That is, the pigment obtained by the above-mentioned production method is a metal halide phthalocyanine pigment that has been further miniaturized, and when used as a color filter pigment, the brightness of the pixel portion (particularly the green pixel portion) is further improved. Can be done. In general, the smaller the particle size (primary particle size) of a color filter pigment, the better the brightness and contrast of the pixel portion. Therefore, the halogenated metal phthalocyanine pigment obtained by the above manufacturing method is green for a color filter. When used as a pigment, it also tends to provide excellent contrast.
 上記方法により得られる顔料の一次粒子の平均粒子径(平均一次粒子径)は、例えば、30nm以下である。上記方法によれば、例えば、25nm以下の平均一次粒子径を有する顔料を得ることもできる。顔料の平均一次粒子径は、10nm以上であってよい。ここで、平均一次粒子径は、一次粒子の長径の平均値であり、後述する平均アスペクト比の測定と同様にして一次粒子の長径を測定することにより求めることができる。 The average particle size (average primary particle size) of the primary particles of the pigment obtained by the above method is, for example, 30 nm or less. According to the above method, for example, a pigment having an average primary particle size of 25 nm or less can be obtained. The average primary particle size of the pigment may be 10 nm or more. Here, the average primary particle size is an average value of the major axis of the primary particle, and can be obtained by measuring the major axis of the primary particle in the same manner as the measurement of the average aspect ratio described later.
 顔料の一次粒子の平均アスペクト比は、例えば、1.2以上、1.3以上、1.4以上又は1.5以上である。顔料の一次粒子の平均アスペクト比は、例えば、2.0未満、1.8以下、1.6以下又は1.4以下である。このような平均アスペクト比を有する顔料によれば、より優れた輝度及びコントラストが得られる。 The average aspect ratio of the primary particles of the pigment is, for example, 1.2 or more, 1.3 or more, 1.4 or more, or 1.5 or more. The average aspect ratio of the primary particles of the pigment is, for example, less than 2.0, 1.8 or less, 1.6 or less, or 1.4 or less. A pigment having such an average aspect ratio provides better brightness and contrast.
 一次粒子の平均アスペクト比が1.0~3.0の範囲にある顔料は、アスペクト比が5以上の一次粒子を含まないことが好ましく、アスペクト比が4以上の一次粒子を含まないことがより好ましく、アスペクト比が3を超える一次粒子を含まないことがさらに好ましい。 A pigment having an average aspect ratio of the primary particles in the range of 1.0 to 3.0 preferably does not contain primary particles having an aspect ratio of 5 or more, and more preferably does not contain primary particles having an aspect ratio of 4 or more. It is preferable that the primary particles having an aspect ratio of more than 3 are not contained.
 一次粒子のアスペクト比及び平均アスペクト比は、以下の方法で測定することができる。まず、透過型電子顕微鏡(例えば日本電子株式会社製のJEM-2010)で視野内の粒子を撮影する。そして、二次元画像上に存在する一次粒子の長い方の径(長径)と、短い方の径(短径)とを測定し、短径に対する長径の比を一次粒子のアスペクト比とする。また、一次粒子40個につき長径と、短径の平均値を求め、これらの値を用いて短径に対する長径の比を算出し、これを平均アスペクト比とする。この際、試料である顔料は、これを溶媒(例えばシクロヘキサン)に超音波分散させてから顕微鏡で撮影する。また、透過型電子顕微鏡の代わりに走査型電子顕微鏡を使用してもよい。 The aspect ratio and average aspect ratio of the primary particles can be measured by the following methods. First, the particles in the field of view are photographed with a transmission electron microscope (for example, JEM-2010 manufactured by JEOL Ltd.). Then, the longer diameter (major axis) and the shorter diameter (minor axis) of the primary particles existing on the two-dimensional image are measured, and the ratio of the major axis to the minor axis is defined as the aspect ratio of the primary particles. Further, the average value of the major axis and the minor axis is obtained for 40 primary particles, and the ratio of the major axis to the minor axis is calculated using these values, and this is used as the average aspect ratio. At this time, the pigment as a sample is photographed with a microscope after ultrasonically dispersing it in a solvent (for example, cyclohexane). Further, a scanning electron microscope may be used instead of the transmission electron microscope.
 以下、本発明の内容を実験例を用いてより詳細に説明するが、本発明は以下の実験例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail using experimental examples, but the present invention is not limited to the following experimental examples.
<粗顔料の合成>
(粗顔料A1の合成)
 300mlフラスコに、塩化スルフリル(富士フイルム和光純薬工業株式会社製) 91g、塩化アルミニウム(関東化学株式会社製) 109g、塩化ナトリウム(東京化成工業株式会社製) 15g、亜鉛フタロシアニン(DIC株式会社製) 30g、臭素(富士フイルム和光純薬工業株式会社製) 230gを仕込んだ後、130℃まで昇温し、130℃で40時間保持した。反応混合物(反応溶液)を水に取り出し、沈殿物を析出させた後、当該沈殿物をろ過し、水洗し、乾燥することにより粗顔料A1を得た。なお、水洗は、ろ液のpHと洗浄に用いられる水のpHの差が±0.2になるまで行った。
<Synthesis of crude pigment>
(Synthesis of crude pigment A1)
Sulfuryl chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 91 g, aluminum chloride (manufactured by Kanto Chemical Co., Inc.) 109 g, sodium chloride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 15 g, zinc phthalocyanine (manufactured by DIC Co., Ltd.) in a 300 ml flask. After charging 30 g and 230 g of bromine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), the temperature was raised to 130 ° C. and kept at 130 ° C. for 40 hours. The reaction mixture (reaction solution) was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water and dried to obtain a crude pigment A1. The washing with water was carried out until the difference between the pH of the filtrate and the pH of the water used for washing became ± 0.2.
 粗顔料A1について日本電子株式会社製JMS-S3000による質量分析を行い、平均臭素数が13.2個、平均塩素数が1.8個のハロゲン化亜鉛フタロシアニンであることを確認した。なお、質量分析時のDelay Timeは500ns、Laser Intensityは44%、m/z=1820以上1860以下のピークのResolvingPower Valueは31804であった。 Mass spectrometry of the crude pigment A1 by JMS-S3000 manufactured by JEOL Ltd. was performed, and it was confirmed that the halogenated zinc phthalocyanine had an average bromine number of 13.2 and an average chlorine number of 1.8. At the time of mass spectrometry, the Delay Time was 500 ns, the Laser Integrity was 44%, and the Reserving Power Value of the peak of m / z = 1820 or more and 1860 or less was 31804.
(粗顔料A2の合成)
 300mlフラスコに、塩化スルフリル(富士フイルム和光純薬工業株式会社製) 90g、塩化アルミニウム(関東化学株式会社製) 105g、塩化ナトリウム(東京化成工業株式会社製) 14g、亜鉛フタロシアニン(DIC株式会社製) 27g、臭素(富士フイルム和光純薬工業株式会社製) 55gを仕込んだ後、130℃まで昇温し、130℃で40時間保持した。反応混合物(反応溶液)を水に取り出し、沈殿物を析出させた後、当該沈殿物をろ過し、水洗し、乾燥することにより粗顔料A2を得た。なお、水洗は、ろ液のpHが洗浄に用いられる水と同等のpHになるまで行った。
(Synthesis of crude pigment A2)
Sulfuryl chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 90 g, aluminum chloride (manufactured by Kanto Chemical Co., Inc.) 105 g, sodium chloride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 14 g, zinc phthalocyanine (manufactured by DIC Co., Ltd.) in a 300 ml flask. After charging 27 g and 55 g of bromine (manufactured by Wako Pure Chemical Industries, Ltd.), the temperature was raised to 130 ° C. and kept at 130 ° C. for 40 hours. The reaction mixture (reaction solution) was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water, and dried to obtain a crude pigment A2. The washing with water was carried out until the pH of the filtrate became the same as the pH of the water used for washing.
 粗顔料A2について日本電子株式会社製JMS-S3000による質量分析を行い、平均臭素数が9.3個、平均塩素数が2.9個のハロゲン化亜鉛フタロシアニンであることを確認した。なお、質量分析時のDelay Timeは510ns、Laser Intensityは40%、m/z=1820以上1860以下のピークのResolvingPower Valueは65086であった。 Mass spectrometry of the crude pigment A2 by JMS-S3000 manufactured by JEOL Ltd. was performed, and it was confirmed that the halogenated zinc phthalocyanine had an average bromine number of 9.3 and an average chlorine number of 2.9. At the time of mass spectrometry, the Delay Time was 510 ns, the Laser Integrity was 40%, and the Reserving Power Value of the peak of m / z = 1820 or more and 1860 or less was 65086.
(粗顔料A3の合成)
 300mlフラスコに、塩化スルフリル(富士フイルム和光純薬工業株式会社製) 91g、塩化アルミニウム(関東化学株式会社製) 109g、塩化ナトリウム(東京化成工業株式会社製) 15g、クロロアルミニウムフタロシアニン(東京化成工業株式会社製) 30g、臭素(富士フイルム和光純薬工業株式会社製) 230gを仕込んだ後、130℃まで昇温し、130℃で40時間保持した。反応混合物(反応溶液)を水に取り出し、沈殿物を析出させた後、当該沈殿物をろ過し、水洗し、乾燥することにより粗顔料A3を得た。なお、水洗は、ろ液のpHと洗浄に用いられる水のpHの差が±0.2になるまで行った。
(Synthesis of crude pigment A3)
Sulfuryl chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 91 g, aluminum chloride (manufactured by Kanto Chemical Co., Inc.) 109 g, sodium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) 15 g, chloroaluminum phthalocyanine (manufactured by Tokyo Chemical Industry Co., Ltd.) in a 300 ml flask. After charging 30 g of (manufactured by the company) and 230 g of bromine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), the temperature was raised to 130 ° C. and kept at 130 ° C. for 40 hours. The reaction mixture (reaction solution) was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water, and dried to obtain a crude pigment A3. The washing with water was carried out until the difference between the pH of the filtrate and the pH of the water used for washing became ± 0.2.
 粗顔料A3について日本電子株式会社製JMS-S3000による質量分析を行い、平均臭素数が14.3個、平均塩素数が1.4個(軸配位子の塩素原子(クロロ基)は含まない)のハロゲン化クロロアルミニウムフタロシアニン(軸配位子にクロロ基を有するハロゲン化アルミニウムフタロシアニン)であることを確認した。なお、質量分析時のDelay Timeは275ns、Laser Intensityは40%、m/z=1820以上1860以下のピークのResolvingPower Valueは56320であった。 The crude pigment A3 was mass-analyzed by JMS-S3000 manufactured by Nippon Denshi Co., Ltd., and the average number of bromine was 14.3 and the average number of chlorine was 1.4 (the chlorine atom (chloro group) of the axial ligand was not included. ) Halogenated chloroaluminum phthalocyanine (halogenated aluminum phthalocyanine having a chloro group as an axial ligand) was confirmed. At the time of mass spectrometry, the Delay Time was 275 ns, the Laser Integrity was 40%, and the Reserving Power Value with a peak of m / z = 1820 or more and 1860 or less was 56320.
(粗顔料A4の合成)
 300mlフラスコに、塩化スルフリル(富士フイルム和光純薬工業株式会社製) 91g、塩化アルミニウム(関東化学株式会社製) 109g、塩化ナトリウム(東京化成工業株式会社製) 15g、銅フタロシアニン(東京化成工業株式会社製) 30g、臭素(富士フイルム和光純薬工業株式会社製) 230gを仕込んだ後、130℃まで昇温し、130℃で40時間保持した。反応混合物(反応溶液)を水に取り出し、沈殿物を析出させた後、当該沈殿物をろ過し、水洗し、乾燥することにより粗顔料A4を得た。なお、水洗は、ろ液のpHと洗浄に用いられる水のpHの差が±0.2になるまで行った。
(Synthesis of crude pigment A4)
Sulfuryl chloride (manufactured by Wako Pure Chemical Industries, Ltd.) 91 g, aluminum chloride (manufactured by Kanto Chemical Co., Inc.) 109 g, sodium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) 15 g, copper phthalocyanine (manufactured by Tokyo Chemical Industry Co., Ltd.) in a 300 ml flask. (Manufactured by) 30 g and 230 g of bromine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were charged, the temperature was raised to 130 ° C., and the temperature was maintained at 130 ° C. for 40 hours. The reaction mixture (reaction solution) was taken out into water to precipitate a precipitate, and then the precipitate was filtered, washed with water and dried to obtain a crude pigment A4. The washing with water was carried out until the difference between the pH of the filtrate and the pH of the water used for washing became ± 0.2.
 粗顔料A4について日本電子株式会社製JMS-S3000による質量分析を行い、平均臭素数が13.0個、平均塩素数が2.6個のハロゲン化銅フタロシアニンであることを確認した。なお、質量分析時のDelay Timeは275ns、Laser Intensityは34%、m/z=1820以上1860以下のピークのResolvingPower Valueは42805であった。 Mass spectrometry of the crude pigment A4 by JMS-S3000 manufactured by JEOL Ltd. was performed, and it was confirmed that the halogenated copper phthalocyanine had an average bromine number of 13.0 and an average chlorine number of 2.6. At the time of mass spectrometry, the Delay Time was 275 ns, the Laser Integrity was 34%, and the Reserving Power Value of the peak of m / z = 1820 or more and 1860 or less was 42805.
<粗顔料のpH測定>
 300mlビーカーに、粗顔料(粗顔料A1~A4) 5gとメタノール 5gとをはかりこみ混合した後、さらにイオン交換水 100mlをはかりこみ、ホットスターラーで5分かけて煮沸状態とし、さらに5分間煮沸を続けた。次いで、30℃以下に放冷した後、100mlのメスシリンダーへ移し、イオン交換水で全量を100mlに調整してからろ過し、ろ液のpHを測定した。pHは、横河電機株式会社製のPH71 パーソナルpHメータで測定した。結果を表1に示す。
<Measurement of pH of crude pigment>
In a 300 ml beaker, 5 g of crude pigments (crude pigments A1 to A4) and 5 g of methanol are weighed and mixed, then 100 ml of ion-exchanged water is weighed in, and the mixture is boiled in a hot stirrer for 5 minutes, and then boiled for another 5 minutes. Continued. Then, after allowing to cool to 30 ° C. or lower, the mixture was transferred to a 100 ml graduated cylinder, the total volume was adjusted to 100 ml with ion-exchanged water, and the mixture was filtered to measure the pH of the filtrate. The pH was measured with a PH71 personal pH meter manufactured by Yokogawa Electric Corporation. The results are shown in Table 1.
<実験例1>
(粗顔料の顔料化)
 粗顔料A1 320g、粉砕した塩化ナトリウム(鳴門塩業株式会社製、商品名:精選特級塩 うず塩微粒、粉砕後の平均一次粒子径:120μm) 3200g及びジエチレングリコール(東京化成工業株式会社製) 504gを双腕型ニーダー(株式会社井上製作所製、製品名:KHD-8、密閉型接線式)に仕込み、これらの混合物を混練温度(混練時の混合物の温度)が80℃となるように調整(温度変動幅:約2~3℃)しながら混練した。この際、双腕型ニーダーのブレードには、回転軌道の外周が0.35mであり、ブレードと混練室(トロフ)の内壁面のクリアランスの幅の最小値が0.5mmとなる形状のシグマブレードを使用した。ブレードの回転速度(速い側の回転速度)を140rpm(回転速度比=1:1.4)とすることで、混練物の最大移動速度(ブレードの回転軌道の外周×ブレードの回転速度)を817mm/sとし、最大せん断速度(混練物の最大移動速度×クリアランスの幅の最小値)を1633s-1とした。また、双腕型ニーダーの消費電力量をサンワサプライ社製ワットモニターTAP-TST8Nで測定し、混合物の混練に消費される電力量が、粗顔料A1 1kgあたり15.0kWhとなるように混練時間を調整した。混練時間は10時間とした。混練後の混合物を80℃の水16kgに取り出し、1時間攪拌した後、ろ過し、湯洗し、乾燥し、粉砕することにより、緑色顔料G1を得た。
<Experimental Example 1>
(Pigmentation of crude pigment)
Crude pigment A1 320g, crushed sodium chloride (manufactured by Naruto Salt Industry Co., Ltd., trade name: finely selected special grade salt vortex salt fine granules, average primary particle size after crushing: 120 μm) 3200 g and diethylene glycol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 504 g. It is charged in a double-armed kneader (manufactured by Inoue Seisakusho Co., Ltd., product name: KHD-8, closed type tangent type), and the kneading temperature (temperature of the mixture at the time of kneading) is adjusted to 80 ° C. (temperature). Fluctuation range: about 2 to 3 ° C.) was kneaded. At this time, the blade of the double-armed kneader has a sigma blade having a shape in which the outer circumference of the rotation trajectory is 0.35 m and the minimum clearance width between the blade and the inner wall surface of the kneading chamber (troff) is 0.5 mm. It was used. By setting the blade rotation speed (rotational speed on the faster side) to 140 rpm (rotational speed ratio = 1: 1.4), the maximum moving speed of the kneaded material (outer circumference of the blade rotation trajectory x blade rotation speed) is 817 mm. It was set to / s, and the maximum shear rate (maximum moving speed of kneaded material x minimum value of clearance width) was set to 1633s -1 . In addition, the power consumption of the dual-arm kneader was measured with the Watt Monitor TAP-TST8N manufactured by Sanwa Supply Co., Ltd., and the kneading time was adjusted so that the power consumption for kneading the mixture was 15.0 kWh per 1 kg of the crude pigment A1. did. The kneading time was 10 hours. The mixture after kneading was taken out into 16 kg of water at 80 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain a green pigment G1.
(平均一次粒子径の測定)
 緑色顔料G1をシクロヘキサンに超音波分散させてから顕微鏡で撮影し、二次元画像上の凝集体を構成する一次粒子40個の平均値から、一次粒子の平均粒子径(平均一次粒子径)を算出した。一次粒子の平均粒子径は28nmであった。
(Measurement of average primary particle size)
The green pigment G1 is ultrasonically dispersed in cyclohexane and then photographed with a microscope, and the average particle size (average primary particle size) of the primary particles is calculated from the average value of 40 primary particles constituting the aggregate on the two-dimensional image. did. The average particle size of the primary particles was 28 nm.
(コントラスト及び輝度の評価)
 ピグメントイエロー138(大日精化社製クロモファインイエロー6206EC) 1.65gを、DISPERBYK-161(ビックケミー社製) 3.85g、プロピレングリコールモノメチルエーテルアセテート 11.00gと共に0.3~0.4 mmのジルコンビーズを用いて、東洋精機株式会社製ペイントシェーカーで2時間分散して分散体を得た。
(Evaluation of contrast and brightness)
Pigment Yellow 138 (Chromofine Yellow 6206EC manufactured by Dainichiseika Co., Ltd.) 1.65 g, DISPERBYK-161 (manufactured by Big Chemie) 3.85 g, Propylene Glycol Monomethyl Ether Acetate 11.00 g Zircon of 0.3 to 0.4 mm Using beads, the mixture was dispersed for 2 hours with a paint shaker manufactured by Toyo Seiki Co., Ltd. to obtain a dispersion.
 上記分散体 4.0g、ユニディックZL-295 0.98g、プロピレングリコールモノメチルエーテルアセテート 0.22gを加えて、ペイントシェーカーで混合することで調色用黄色組成物(TY1)を得た。 4.0 g of the above dispersion, 0.98 g of Unidic ZL-295, and 0.22 g of propylene glycol monomethyl ether acetate were added and mixed with a paint shaker to obtain a yellow composition for toning (TY1).
 実験例1で得られた緑色顔料G1 2.48gを、ビックケミー社製BYK-LPN6919 1.24g、DIC株式会社製 ユニディックZL-295 1.86g、プロピレングリコールモノメチルエーテルアセテート10.92gと共に0.3~0.4mmのジルコンビーズを用いて、東洋精機株式会社製ペイントシェーカーで2時間分散してカラーフィルタ用顔料分散体(MG1)を得た。 0.3 of the green pigment G1 2.48 g obtained in Experimental Example 1 together with BYK-LPN6919 1.24 g manufactured by Big Chemie, 1.86 g of Unidic ZL-295 manufactured by DIC Corporation, and 10.92 g of propylene glycol monomethyl ether acetate. A pigment dispersion for a color filter (MG1) was obtained by dispersing with a paint shaker manufactured by Toyo Seiki Co., Ltd. for 2 hours using zircon beads of about 0.4 mm.
 上記カラーフィルタ用顔料分散体(MG1) 4.0g、DIC株式会社製 ユニディックZL-295 0.98g、プロピレングリコールモノメチルエーテルアセテート0.22gを加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物(CG1)を得た。 Add 4.0 g of the pigment dispersion for color filter (MG1), 0.98 g of Unidic ZL-295 manufactured by DIC Corporation, and 0.22 g of propylene glycol monomethyl ether acetate, and mix them with a paint shaker to make green for color filters. An evaluation composition (CG1) for forming a pixel portion was obtained.
 評価用組成物(CG1)を、ソーダガラス基板上にスピンコートし、90℃で3分乾燥した後に、230℃で1時間加熱した。これにより、着色膜をソーダガラス基板上に有する、コントラスト評価用ガラス基板を作製した。なお、スピンコートする際にスピン回転速度を調整することにより、230℃で1時間加熱して得られる着色膜の厚さを1.8μmとした。 The evaluation composition (CG1) was spin-coated on a soda glass substrate, dried at 90 ° C. for 3 minutes, and then heated at 230 ° C. for 1 hour. As a result, a glass substrate for contrast evaluation having a colored film on the soda glass substrate was produced. By adjusting the spin rotation speed at the time of spin coating, the thickness of the colored film obtained by heating at 230 ° C. for 1 hour was set to 1.8 μm.
 さらに、上記で作製した調色用黄色組成物(TY1)と評価用組成物(CG1)を混合して得られる塗液を、ソーダガラス基板上にスピンコートし、90℃で3分乾燥した後に、230℃で1時間加熱した。これにより、着色膜をソーダガラス基板上に有する、輝度評価用ガラス基板を作製した。なお、調色用黄色組成物(TY1)と評価用組成物(CG1)の混合比と、スピンコートする際のスピン回転速度を調整することにより、230℃で1時間加熱して得られる着色膜のC光源における色度(x,y)が(0.275,0.570)となる着色膜を作製した。 Further, a coating liquid obtained by mixing the yellow composition for toning (TY1) prepared above and the composition for evaluation (CG1) is spin-coated on a soda glass substrate and dried at 90 ° C. for 3 minutes. , 230 ° C. for 1 hour. As a result, a glass substrate for luminance evaluation having a colored film on the soda glass substrate was produced. A colored film obtained by heating at 230 ° C. for 1 hour by adjusting the mixing ratio of the yellow composition for toning (TY1) and the composition for evaluation (CG1) and the spin rotation speed at the time of spin coating. A colored film having a chromaticity (x, y) of (0.275, 0.570) in the C light source was prepared.
 コントラスト評価用ガラス基板における着色膜のコントラストを壺坂電機株式会社製のコントラストテスターCT-1で測定し、輝度評価用ガラス基板における着色膜の輝度を日立ハイテクサイエンス社製U-3900で測定した。結果を表1に示す。なお、表1に示すコントラスト及び輝度は、実験例7のコントラスト及び輝度を基準とする値である。 The contrast of the colored film on the glass substrate for contrast evaluation was measured by the contrast tester CT-1 manufactured by Tsubosaka Electric Co., Ltd., and the brightness of the colored film on the glass substrate for luminance evaluation was measured by U-3900 manufactured by Hitachi High-Tech Science. The results are shown in Table 1. The contrast and brightness shown in Table 1 are values based on the contrast and brightness of Experimental Example 7.
<実験例2>
 ブレードと混練室の内壁面のクリアランスの幅の最小値が0.25mmとなるように、ブレードをより大きな径を有するシグマブレードに変更して混練を行い、せん断速度を3267s-1としたことを除き、実験例1と同様にして、緑色顔料G2を得た。なお、混合物の混練に消費された電力量は、粗顔料A1 1kgあたり28.3kWhであった。また、実験例1と同様にして、緑色顔料G2の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G2を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。
<Experimental Example 2>
The blade was changed to a sigma blade with a larger diameter and kneaded so that the minimum clearance width between the blade and the inner wall surface of the kneading chamber was 0.25 mm, and the shear rate was set to 3267s -1 . Except, the green pigment G2 was obtained in the same manner as in Experimental Example 1. The amount of electric power consumed for kneading the mixture was 28.3 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G2 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G2 was used instead of the green pigment G1. The results are shown in Table 1.
<実験例3>
 混練温度を130℃としたことを除き、実験例1と同様にして、緑色顔料G3を得た。なお、混合物の混練に消費された電力量は、粗顔料A1 1kgあたり13.7kWhであった。また、実験例1と同様にして、緑色顔料G3の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G3を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。
<Experimental example 3>
A green pigment G3 was obtained in the same manner as in Experimental Example 1 except that the kneading temperature was set to 130 ° C. The amount of electric power consumed for kneading the mixture was 13.7 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G3 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G3 was used instead of the green pigment G1. The results are shown in Table 1.
<実験例4>
 塩化ナトリウムの使用量が粗顔料の使用量の40倍の量となるように、粗顔料A1の使用量を80gとしたことを除き、実験例1と同様にして、緑色顔料G4を得た。なお、混合物の混練に消費された電力量は、粗顔料A1 1kgあたり14.6kWhであった。また、実験例1と同様にして、緑色顔料G4の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G4を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。
<Experimental Example 4>
A green pigment G4 was obtained in the same manner as in Experimental Example 1 except that the amount of crude pigment A1 used was 80 g so that the amount of sodium chloride used was 40 times the amount of crude pigment used. The amount of electric power consumed for kneading the mixture was 14.6 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G4 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G4 was used instead of the green pigment G1. The results are shown in Table 1.
<実験例5>
 混練後の混合物を、80℃の水に代えて、80℃の5%水酸化カリウム水溶液(25℃でのpH:13.8)に取り出したことを除き、実験例4と同様にして、緑色顔料G5を得た。また、実験例1と同様にして、緑色顔料G5の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G5を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。
<Experimental Example 5>
The mixture after kneading was green in the same manner as in Experimental Example 4 except that the mixture was taken out into a 5% potassium hydroxide aqueous solution (pH at 25 ° C.: 13.8) at 80 ° C. instead of water at 80 ° C. Pigment G5 was obtained. Further, the average primary particle size of the green pigment G5 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G5 was used instead of the green pigment G1. The results are shown in Table 1.
<実験例6>
 粗顔料A1 3kg、粉砕した塩化ナトリウム30kg、ジエチレングリコール(東京化成工業株式会社製) 4.7kgをミックスマラー(新東工業株式会社製、製品名:MSG-60E)に仕込み、これらの混合物を80℃の混練温度(混練時の混合物の温度)で混練した。この際、ミックスマラーにおけるマラーホイールとしては、直径1200mm、厚さ360mmのマラーホイールを用い、マラーホイールの公転軌道の外周が3.75mとなり、マラーホイールと混練室の底面のクリアランスの幅の最小値が3mmとなるようにマラーホイールの位置及びマラーホイールに加えるテンションの強さを調整した(マラーホイールに加えるテンションは3365kgとした。)。また、柱部の回転速度(マラーホイールの公転速度)を40rpmとすることで、混練物の最大移動速度(マラーホイールの公転軌道の外周×柱部の回転速度)を2500mm/sとし、最大せん断速度(混練物の最大移動速度×クリアランスの幅の最小値)を833s-1とした。なお、マラーホイールの自転速度は40rpmとした。また、ミックスマラーの消費電力量をサンワサプライ社製ワットモニターTAP-TST8Nで測定し、混合物の混練に消費される電力量が、粗顔料A1 1kgあたり11.5kWhとなるように混練時間を調整した。混練時間は2.5時間とした。混練後の混合物を80℃の水150kgに取り出し、1時間攪拌した後、ろ過し、湯洗し、乾燥し、粉砕することにより、緑色顔料G6を得た。
<Experimental Example 6>
Crude pigment A1 3 kg, crushed sodium chloride 30 kg, and diethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) 4.7 kg were charged into Mix Muller (manufactured by Shinto Kogyo Co., Ltd., product name: MSG-60E), and the mixture thereof was charged at 80 ° C. The mixture was kneaded at the kneading temperature (the temperature of the mixture at the time of kneading). At this time, as the muller wheel in the mixed muller, a muller wheel having a diameter of 1200 mm and a thickness of 360 mm is used, the outer circumference of the revolution orbit of the muller wheel is 3.75 m, and the minimum value of the clearance width between the muller wheel and the bottom surface of the kneading chamber. The position of the maller wheel and the strength of the tension applied to the maller wheel were adjusted so that the height was 3 mm (the tension applied to the maller wheel was set to 3365 kg). In addition, by setting the rotation speed of the pillar (maller wheel revolution speed) to 40 rpm, the maximum moving speed of the kneaded material (outer circumference of the muller wheel revolution track x rotation speed of the pillar) is 2500 mm / s, and the maximum shearing occurs. The speed (maximum moving speed of kneaded product x minimum value of clearance width) was set to 833s -1 . The rotation speed of the maller wheel was set to 40 rpm. Further, the power consumption of the mix maller was measured with a Watt monitor TAP-TST8N manufactured by Sanwa Supply Co., Ltd., and the kneading time was adjusted so that the power consumption for kneading the mixture was 11.5 kWh per 1 kg of the crude pigment A1. The kneading time was 2.5 hours. The mixture after kneading was taken out into 150 kg of water at 80 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain a green pigment G6.
 実験例1と同様にして、緑色顔料G6の平均一次粒子径を測定した。緑色顔料G1に代えて緑色顔料G6を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。 The average primary particle size of the green pigment G6 was measured in the same manner as in Experimental Example 1. A glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced in the same manner as in Experimental Example 1 except that the green pigment G6 was used instead of the green pigment G1, and the contrast and luminance were measured. The results are shown in Table 1.
<実験例7>
 ブレードと混練室の内壁面のクリアランスの幅の最小値が1mmとなるように、ブレードをより小さな径を有するシグマブレードに変更して混練を行い、ブレードの回転速度を70rpmとすることで、混練物の最大移動速度(ブレードの回転軌道の外周×ブレードの回転速度)を408mm/sとし、最大せん断速度(混練物の最大移動速度×クリアランスの幅の最小値)を408s-1としたこと、及び、混練時間を8時間とし、混合物の混練に消費される電力量を、粗顔料A1 1kgあたり8.0kWhとしたことを除き、実験例1と同様にして、緑色顔料G7を得た。また、実験例1と同様にして、緑色顔料G7の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G7を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。
<Experimental Example 7>
Kneading is performed by changing the blade to a sigma blade having a smaller diameter so that the minimum clearance width between the blade and the inner wall surface of the kneading chamber is 1 mm, and the rotation speed of the blade is 70 rpm for kneading. The maximum moving speed of the object (outer circumference of the blade rotation trajectory x blade rotation speed) was set to 408 mm / s, and the maximum shear rate (maximum moving speed of the kneaded material x minimum clearance width) was set to 408s -1 . A green pigment G7 was obtained in the same manner as in Experimental Example 1 except that the kneading time was 8 hours and the amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of the crude pigment A1. Moreover, the average primary particle diameter of the green pigment G7 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G7 was used instead of the green pigment G1. The results are shown in Table 1.
<実験例8>
 混練時間を24時間とし、混合物の混練に消費される電力量を、粗顔料A1 1kgあたり23.9kWhとしたことを除き、実験例7と同様にして、緑色顔料G8を得た。また、実験例1と同様にして、緑色顔料G8の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G8を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表1に示す。
<Experimental Example 8>
A green pigment G8 was obtained in the same manner as in Experimental Example 7, except that the kneading time was 24 hours and the amount of electric power consumed for kneading the mixture was 23.9 kWh per 1 kg of crude pigment A1. Further, the average primary particle size of the green pigment G8 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G8 was used instead of the green pigment G1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実験例9>
 粗顔料A1に代えて粗顔料A2を用いたことを除き、実験例5と同様にして、緑色顔料G9を得た。なお、混合物の混練に消費された電力量は、粗顔料A2 1kgあたり14.7kWhであった。また、実験例1と同様にして、緑色顔料G9の平均一次粒子径を測定した。また、ピグメントイエロー138(大日精化社製クロモファインイエロー6206EC)に代えてピグメントイエロー185(BASF社製Paliotol Yellow D1155)を用いたこと、緑色顔料G1に代えて緑色顔料G9を用いたこと、及び、着色膜の色度(x,y)を(0.230,0.670)に調整したこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表2に示す。なお、表2に示すコントラスト及び輝度は、実験例10のコントラスト及び輝度を基準とする値である。
<Experimental Example 9>
A green pigment G9 was obtained in the same manner as in Experimental Example 5, except that the crude pigment A2 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 14.7 kWh per 1 kg of crude pigment A2. Further, the average primary particle size of the green pigment G9 was measured in the same manner as in Experimental Example 1. In addition, Pigment Yellow 185 (Pariotor Yellow D1155 manufactured by BASF) was used in place of Pigment Yellow 138 (Chromofine Yellow 6206EC manufactured by Dainichi Seika Co., Ltd.), and Green Pigment G9 was used in place of Green Pigment G1. A glass substrate for contrast evaluation and a glass substrate for brightness evaluation were produced in the same manner as in Experimental Example 1 except that the chromaticity (x, y) of the colored film was adjusted to (0.230, 0.670). , Contrast and brightness were measured. The results are shown in Table 2. The contrast and brightness shown in Table 2 are values based on the contrast and brightness of Experimental Example 10.
<実験例10>
 粗顔料A1に代えて粗顔料A2を用いたことを除き、実験例7と同様にして、緑色顔料G10を得た。なお、混合物の混練に消費された電力量は、粗顔料A2 1kgあたり8.0kWhであった。また、実験例1と同様にして、緑色顔料G10の平均一次粒子径を測定した。また、緑色顔料G9に代えて緑色顔料G10を用いたこと以外は、実験例9と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表2に示す。
<Experimental Example 10>
A green pigment G10 was obtained in the same manner as in Experimental Example 7, except that the crude pigment A2 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of crude pigment A2. Further, the average primary particle size of the green pigment G10 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 9, except that the green pigment G10 was used instead of the green pigment G9. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実験例11>
 粗顔料A1に代えて粗顔料A3を用いたことを除き、実験例5と同様にして、緑色顔料G11を得た。なお、混合物の混練に消費された電力量は、粗顔料A3 1kgあたり14.4kWhであった。実験例1と同様にして、緑色顔料G11の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G11を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表3に示す。なお、表3に示すコントラスト及び輝度は、実験例12のコントラスト及び輝度を基準とする値である。
<Experimental Example 11>
A green pigment G11 was obtained in the same manner as in Experimental Example 5, except that the crude pigment A3 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 14.4 kWh per 1 kg of crude pigment A3. The average primary particle size of the green pigment G11 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G11 was used instead of the green pigment G1. The results are shown in Table 3. The contrast and brightness shown in Table 3 are values based on the contrast and brightness of Experimental Example 12.
<実験例12>
 粗顔料A1に代えて粗顔料A3を用いたことを除き、実験例7と同様にして、緑色顔料G12を得た。なお、混合物の混練に消費された電力量は、粗顔料A3 1kgあたり8.0kWhであった。また、実験例1と同様にして、緑色顔料G12の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G12を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表3に示す。
<Experimental Example 12>
A green pigment G12 was obtained in the same manner as in Experimental Example 7, except that the crude pigment A3 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of crude pigment A3. Further, the average primary particle size of the green pigment G12 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G12 was used instead of the green pigment G1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実験例13>
 粗顔料A1に代えて粗顔料A4を用いたことを除き、実験例5と同様にして、緑色顔料G13を得た。なお、混合物の混練に消費された電力量は、粗顔料A4 1kgあたり14.3kWhであった。実験例1と同様にして、緑色顔料G13の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G13を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表4に示す。なお、表4に示すコントラスト及び輝度は、実験例14のコントラスト及び輝度を基準とする値である。
<Experimental Example 13>
A green pigment G13 was obtained in the same manner as in Experimental Example 5, except that the crude pigment A4 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 14.3 kWh per 1 kg of crude pigment A4. The average primary particle size of the green pigment G13 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G13 was used instead of the green pigment G1. The results are shown in Table 4. The contrast and brightness shown in Table 4 are values based on the contrast and brightness of Experimental Example 14.
<実験例14>
 粗顔料A1に代えて粗顔料A4を用いたことを除き、実験例7と同様にして、緑色顔料G14を得た。なお、混合物の混練に消費された電力量は、粗顔料A4 1kgあたり8.0kWhであった。また、実験例1と同様にして、緑色顔料G14の平均一次粒子径を測定した。また、緑色顔料G1に代えて緑色顔料G14を用いたこと以外は、実験例1と同様にして、コントラスト評価用ガラス基板及び輝度評価用ガラス基板を作製し、コントラスト及び輝度を測定した。結果を表4に示す。
<Experimental Example 14>
A green pigment G14 was obtained in the same manner as in Experimental Example 7, except that the crude pigment A4 was used instead of the crude pigment A1. The amount of electric power consumed for kneading the mixture was 8.0 kWh per 1 kg of crude pigment A4. Further, the average primary particle size of the green pigment G14 was measured in the same manner as in Experimental Example 1. Further, a glass substrate for contrast evaluation and a glass substrate for luminance evaluation were produced and the contrast and luminance were measured in the same manner as in Experimental Example 1 except that the green pigment G14 was used instead of the green pigment G1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (6)

  1.  粗顔料と無機塩と有機溶剤とを含む混合物を、800s-1を超える最大せん断速度で混練する混練工程を有し、
     前記粗顔料が、亜鉛、鉄、アルミニウム、マグネシウム、シリコン又はバナジウムを中心金属とするハロゲン化金属フタロシアニンで構成され、
     前記混練工程で前記混合物の混練に消費される電力量が、前記粗顔料1kgあたり10.0kWhより大きい、カラーフィルタ用顔料の製造方法。
    It has a kneading step of kneading a mixture containing a crude pigment, an inorganic salt and an organic solvent at a maximum shear rate exceeding 800 s -1 .
    The crude pigment is composed of a metal halide phthalocyanine having zinc, iron, aluminum, magnesium, silicon or vanadium as a central metal.
    A method for producing a pigment for a color filter, wherein the amount of electric power consumed for kneading the mixture in the kneading step is greater than 10.0 kWh per 1 kg of the crude pigment.
  2.  前記粗顔料のpHが、5未満であり、
     前記粗顔料の中心金属が、亜鉛、鉄又はマグネシウムである、請求項1に記載の製造方法。
    The pH of the crude pigment is less than 5,
    The production method according to claim 1, wherein the central metal of the crude pigment is zinc, iron or magnesium.
  3.  前記粗顔料のpHが、5未満であり、
     前記混練工程で得られた混練後の混合物を、25℃でのpHが8よりも大きい水溶液で洗浄する洗浄工程をさらに有する、請求項1又は2に記載の製造方法。
    The pH of the crude pigment is less than 5,
    The production method according to claim 1 or 2, further comprising a washing step of washing the mixture after kneading obtained in the kneading step with an aqueous solution having a pH higher than 8 at 25 ° C.
  4.  前記粗顔料における、ハロゲン化金属フタロシアニン1分子中のハロゲン原子の数の平均が、9個以上である、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the average number of halogen atoms in one molecule of the metal halide phthalocyanine in the crude pigment is 9 or more.
  5.  前記混練工程では、110℃よりも低い温度で前記混合物を混練する、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein in the kneading step, the mixture is kneaded at a temperature lower than 110 ° C.
  6.  前記混練工程における前記無機塩の使用量が、前記粗顔料1質量部に対し、30質量部以上である、請求項1~5のいずれか一項に記載の製造方法。

     
    The production method according to any one of claims 1 to 5, wherein the amount of the inorganic salt used in the kneading step is 30 parts by mass or more with respect to 1 part by mass of the crude pigment.

PCT/JP2020/033338 2020-09-02 2020-09-02 Method for manufacturing color filter pigment WO2022049686A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021514648A JP6923106B1 (en) 2020-09-02 2020-09-02 Manufacturing method of pigments for color filters
CN202080007257.3A CN113272389A (en) 2020-09-02 2020-09-02 Method for producing pigment for color filter
KR1020217025012A KR20230057909A (en) 2020-09-02 2020-09-02 Method for producing pigments for color filters
PCT/JP2020/033338 WO2022049686A1 (en) 2020-09-02 2020-09-02 Method for manufacturing color filter pigment
TW110123851A TW202210589A (en) 2020-09-02 2021-06-29 Method for manufacturing color filter pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033338 WO2022049686A1 (en) 2020-09-02 2020-09-02 Method for manufacturing color filter pigment

Publications (1)

Publication Number Publication Date
WO2022049686A1 true WO2022049686A1 (en) 2022-03-10

Family

ID=77227973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033338 WO2022049686A1 (en) 2020-09-02 2020-09-02 Method for manufacturing color filter pigment

Country Status (5)

Country Link
JP (1) JP6923106B1 (en)
KR (1) KR20230057909A (en)
CN (1) CN113272389A (en)
TW (1) TW202210589A (en)
WO (1) WO2022049686A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS387117B1 (en) * 1960-05-10 1963-05-27
JPH04122778A (en) * 1990-09-13 1992-04-23 Dainippon Ink & Chem Inc Preparation of pigment from crude organic pigment
JPH06316675A (en) * 1992-11-02 1994-11-15 Dainichiseika Color & Chem Mfg Co Ltd Production of crushed coarse pigment
JP2006299138A (en) * 2005-04-22 2006-11-02 Toyo Ink Mfg Co Ltd Manufacturing method of pigment composition
JP2008024743A (en) * 2006-07-18 2008-02-07 Dainippon Ink & Chem Inc Polyhalogenated zinc phthalocyanine, photosensitive composition and color filter
JP2009256615A (en) * 2008-03-28 2009-11-05 Toyo Ink Mfg Co Ltd Method for producing fine organic pigment, fine organic pigment and fine organic pigment color composition
JP2017105934A (en) * 2015-12-10 2017-06-15 Dic株式会社 Method for producing pigment
WO2018043548A1 (en) * 2016-08-31 2018-03-08 Dic株式会社 Pigment composition for color filters, and color filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824054A1 (en) * 1988-07-15 1990-01-18 Basf Ag METHOD FOR CONVERTING RAW COPPER PHTHALOCYANINES INTO A PIGMENT
MXPA04002550A (en) * 2001-10-19 2004-06-18 Ciba Sc Holding Ag Process for making green pigment compositions useful for colour filters and lcd's.
JP2006306996A (en) * 2005-04-28 2006-11-09 Toyo Ink Mfg Co Ltd Production method of pigment composition
JP5579536B2 (en) * 2009-09-03 2014-08-27 富士フイルム株式会社 Colored curable composition and method for preparing the same, color filter and method for producing the same, and solid-state imaging device
JP6294926B2 (en) * 2015-10-13 2018-03-14 花王株式会社 Method for producing pigment composition
KR102558140B1 (en) 2016-10-20 2023-07-21 이경환 Terminal apparatus for motion bed controlling, and control method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS387117B1 (en) * 1960-05-10 1963-05-27
JPH04122778A (en) * 1990-09-13 1992-04-23 Dainippon Ink & Chem Inc Preparation of pigment from crude organic pigment
JPH06316675A (en) * 1992-11-02 1994-11-15 Dainichiseika Color & Chem Mfg Co Ltd Production of crushed coarse pigment
JP2006299138A (en) * 2005-04-22 2006-11-02 Toyo Ink Mfg Co Ltd Manufacturing method of pigment composition
JP2008024743A (en) * 2006-07-18 2008-02-07 Dainippon Ink & Chem Inc Polyhalogenated zinc phthalocyanine, photosensitive composition and color filter
JP2009256615A (en) * 2008-03-28 2009-11-05 Toyo Ink Mfg Co Ltd Method for producing fine organic pigment, fine organic pigment and fine organic pigment color composition
JP2017105934A (en) * 2015-12-10 2017-06-15 Dic株式会社 Method for producing pigment
WO2018043548A1 (en) * 2016-08-31 2018-03-08 Dic株式会社 Pigment composition for color filters, and color filter

Also Published As

Publication number Publication date
TW202210589A (en) 2022-03-16
CN113272389A (en) 2021-08-17
JPWO2022049686A1 (en) 2022-03-10
JP6923106B1 (en) 2021-08-18
KR20230057909A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
KR102383525B1 (en) Pigment composition for color filter and color filter
WO2022049686A1 (en) Method for manufacturing color filter pigment
JP6819825B1 (en) Manufacturing method of halogenated zinc phthalocyanine pigment
TWI836134B (en) Manufacturing method of zinc halide phthalocyanin pigment
JP6819823B1 (en) Manufacturing method of halogenated zinc phthalocyanine pigment
JP6819824B1 (en) Manufacturing method of halogenated zinc phthalocyanine pigment
JP7464630B2 (en) Halogenated zinc phthalocyanine pigment and its manufacturing method
JP6819826B1 (en) Halogenated zinc phthalocyanine pigment and its manufacturing method
JP6989050B1 (en) Halogenated zinc phthalocyanine pigment and its manufacturing method
JP6870785B1 (en) Method for producing zinc halide phthalocyanine pigment
TWI745571B (en) Pigment composition for color filter and color filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021514648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952425

Country of ref document: EP

Kind code of ref document: A1