WO2022048433A1 - 一种控制天线极化方向的方法和天线*** - Google Patents

一种控制天线极化方向的方法和天线*** Download PDF

Info

Publication number
WO2022048433A1
WO2022048433A1 PCT/CN2021/112913 CN2021112913W WO2022048433A1 WO 2022048433 A1 WO2022048433 A1 WO 2022048433A1 CN 2021112913 W CN2021112913 W CN 2021112913W WO 2022048433 A1 WO2022048433 A1 WO 2022048433A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed array
array
feed
polarization direction
phase
Prior art date
Application number
PCT/CN2021/112913
Other languages
English (en)
French (fr)
Inventor
张明
王斌
施学良
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022048433A1 publication Critical patent/WO2022048433A1/zh
Priority to US18/178,623 priority Critical patent/US20230208029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and an antenna system for controlling the polarization direction of an antenna.
  • circularly polarized antennas are generally used, so that the spacecraft can receive signals in any state.
  • circularly polarized antennas can not only reduce signal leakage and attenuation, but also eliminate ionization.
  • the layer is affected by polarization distortion caused by Faraday rotation.
  • polarization diversity is used to reduce multipath fading.
  • linear polarization is often used, for example, the base station uses a +/-45° linearly polarized antenna.
  • the present application provides a method and an antenna system for controlling the polarization direction of an antenna, so as to realize the function that the antenna of a single terminal supports any polarization.
  • an antenna system comprising at least one processor, a first feed array, a second feed array, and a third planar array, wherein the polarization direction of the first feed array is the same as that of the second feed array.
  • the orientation directions are orthogonal, and the third planar array is used to reflect or transmit the beams from the first feed array and the second feed array;
  • at least one processor can be used to: control the phase center of the beam of the first feed array to be in the first feed array.
  • a position, the beam width is the first width
  • the phase center of the beam of the second feed array is controlled to be at the second position
  • the beam width is the second width
  • the beam of the first feed array and the beam of the second feed array are controlled.
  • the phase difference is the first phase difference.
  • the third planar array is used to form a beam in the first polarization direction after reflecting or transmitting the beam of the first feed array and the beam of the second feed array.
  • At least one processor may also be used for: the phase center of the beam of the first feed array and/or the second feed array, the beam width of the beam of the first feed array and/or the second feed array, One or more of the phase differences between the beam of the first feed array and the beam of the second feed array are adjusted.
  • the third plane array adjusts the adjusted beam of the first feed array and the first After the beam adjusted by the two feed arrays is reflected or transmitted, a beam with a second polarization direction can be formed; wherein the first polarization direction is different from the second polarization direction.
  • the antenna system provided in the embodiment of the present application can adjust the beam polarization of the third planar array by adjusting the beam width, phase center or phase difference, etc. of the dual feed array (ie, the first feed array and the second feed array). direction, and then transmit beams in any polarization direction, which can truly support arbitrary polarization switching.
  • the implementation is simple, the cost is low, and it is more convenient to put into practice.
  • the dual feed array can use a dual linearly polarized feed array, for example, the polarization direction of the first feed array is the horizontal polarization direction, and the polarization direction of the second feed array is the vertical polarization direction.
  • the dual feed array can also use a dual circularly polarized feed array, for example, the polarization direction of the first feed array is left-hand circular polarization, and the polarization direction of the second feed array is right-hand circular polarization direction.
  • the first polarization direction is any one of linear polarization, circular polarization or elliptical polarization
  • the second polarization direction is linear polarization, circular polarization or elliptical polarization. any kind.
  • the polarization types of the first polarization direction and the second polarization direction may be the same or different, which are not limited in this application.
  • the first polarization direction is linear polarization and the second polarization direction is circular polarization or elliptical polarization
  • the first polarization direction and the second polarization direction have the same polarization type; or, for example, the first polarization direction
  • the polarization direction is horizontal polarization and the second polarization direction is vertical polarization
  • the polarization types of the first polarization direction and the second polarization direction are different.
  • the at least one processor when the at least one processor adjusts the phase centers of the beams of the first feed array and/or the second feed array, it may be specifically implemented by beam scanning. For example, controlling the first feed array to perform beam scanning, so that the phase center of the beam of the first feed array is deflected; and/or, controlling the second feed array to perform beam scanning, so that the phase center of the beam of the second feed array is centered deflection.
  • the beam scanning can be realized by electronic control.
  • phase center of the dual-feed array can be controlled to be deflected by electronic control, and then the gain of the dual-feed array beam can be controlled to obtain the amplitude value required for any polarization, so that the antenna system supports any polarization direction.
  • the array unit when at least one processor adjusts the beam widths of the beams of the first feed array and/or the second feed array, the array unit may be turned on or off.
  • the first feed array is controlled to turn off or on at least one unit; and/or the second feed array is controlled to turn off or on at least one unit.
  • the opening or closing of the array unit can be realized by electronic control.
  • the beam width of the dual feed array can be controlled electronically to change, and then the gain of the dual feed array beam can be controlled to obtain the amplitude value required for any polarization, so that the antenna system supports any polarization direction.
  • each unit of the third planar array is loaded with an adjustable phase device in the first direction;
  • the electrical parameters such as current, voltage, capacitance, etc.
  • the electrical parameters are used to control the shape and/or size of the unit of the third planar array (such as electrical length).
  • the shape and/or size of the array elements changes.
  • the phase changes to different degrees. Therefore, adjusting the electrical parameters of the adjustable phase device can realize the phase change of the first feed array and/or the second feed array. compensation, thereby achieving the effect of adjusting the phase difference between the first feed array and the second feed array, thereby realizing the formation of any elliptical polarization.
  • At least one processor may also be used for: at the phase center of the beam of the first feed array and/or the second feed array, the first feed array and/or the second feed array, the first feed array and/or the second feed Before adjusting one or more of the beam width of the beam of the array and the phase difference between the beam of the first feed array and the beam of the second feed array, detect the amplitude and phase of the beam of the first feed array, the first The amplitude and phase of the beams of the second feed array, determine the adjustment coefficients of the phase centers of the beams of the first feed array and/or the second feed array, or determine the The adjustment coefficient of the beam width of the beam, or the adjustment coefficient for determining the phase difference between the beam of the first feed array and the beam of the second feed array.
  • the processor adjusts parameters such as phase center, beam width, and phase difference, it can precisely adjust and control according to the corresponding adjustment coefficients.
  • an embodiment of the present application provides an antenna system, including at least one processor, a first feed array, a second feed array, and a third planar array.
  • the polarization direction of the first feed array is the same as that of the second feed array.
  • the polarization directions of the source arrays are orthogonal, and the third planar array is used to reflect or transmit the beams from the first feed array and the second feed array; at least one processor can be used for: when the third planar array receives the first pole When adjusting the beam in the direction of change, control the phase center of the beam of the first feed array to be at the first position and the beam width to be the first width, and control the phase center of the beam of the second feed array to be at the second position and the beam width to be the second width, the phase difference between the beam of the first feed array and the beam of the second feed array is controlled to be the first phase difference.
  • the first beam and the second beam can be formed and received by the first feed array and the second feed array respectively; at least one processor can also be used for: when the third planar array receives the beam in the second polarization direction , the phase center of the beam of the first feed array and/or the second feed array, the beam width of the beam of the first feed array and/or the second feed array, the beam of the first feed array and the second feed array One or more of the phase differences of the beams of the feed array are adjusted.
  • the third plane array reflects or transmits the beams in the second polarization direction
  • the third beam and the fourth beam can be formed. The beams are respectively received by the first feed array and the second feed array; wherein the first polarization direction is different from the second polarization direction.
  • the antenna system provided in the embodiment of the present application can adjust the beam polarization of the third planar array by adjusting the beam width, phase center or phase difference, etc. of the dual feed array (ie, the first feed array and the second feed array). direction, and then receive beams in any polarization direction.
  • the implementation is simple, the cost is low, and it is more convenient to put into practice.
  • the dual feed array can use a dual linearly polarized feed array, for example, the polarization direction of the first feed array is the horizontal polarization direction, and the polarization direction of the second feed array is the vertical polarization direction.
  • the dual feed array can also use a dual circularly polarized feed array, for example, the polarization direction of the first feed array is left-hand circular polarization, and the polarization direction of the second feed array is right-hand circular polarization direction.
  • the first polarization direction is any one of linear polarization, circular polarization or elliptical polarization
  • the second polarization direction is linear polarization, circular polarization or elliptical polarization. any kind.
  • the polarization types of the first polarization direction and the second polarization direction may be the same or different, which are not limited in this application.
  • the first polarization direction is linear polarization and the second polarization direction is circular polarization or elliptical polarization
  • the first polarization direction and the second polarization direction have the same polarization type; or, for example, the first polarization direction
  • the polarization direction is horizontal polarization and the second polarization direction is vertical polarization
  • the polarization types of the first polarization direction and the second polarization direction are different.
  • the at least one processor when the at least one processor adjusts the phase centers of the beams of the first feed array and/or the second feed array, it may be specifically implemented by beam scanning. For example, controlling the first feed array to perform beam scanning, so that the phase center of the beam of the first feed array is deflected; and/or, controlling the second feed array to perform beam scanning, so that the phase center of the beam of the second feed array is centered deflection.
  • the beam scanning can be realized by electronic control.
  • phase center of the dual-feed array can be controlled to be deflected by electronic control, and then the gain of the dual-feed array beam can be controlled to obtain the amplitude value required for any polarization, so that the antenna system supports any polarization direction.
  • At least one processor when at least one processor adjusts the beam widths of the beams of the first feed array and/or the second feed array, it may be specifically implemented by turning on or off the array unit.
  • the first feed array is controlled to turn off or on at least one unit; and/or the second feed array is controlled to turn off or on at least one unit.
  • the greater the number of units that the first feed array and/or the second feed array are turned on, the narrower the beam, and vice versa the greater the number of units that the first feed array and/or the second feed array are turned off, The wider the beam.
  • the opening or closing of the array unit can be realized by electronic control.
  • the beam width of the dual feed array can be controlled electronically to change, and then the gain of the dual feed array beam can be controlled to obtain the amplitude value required for any polarization, so that the antenna system supports any polarization direction.
  • each unit of the third planar array is loaded with an adjustable phase device in the first direction;
  • the electrical parameters such as current, voltage, capacitance, etc.
  • the electrical parameters are used to control the shape and/or size of the unit of the third planar array (such as electrical length).
  • the shape and/or size of the array elements changes.
  • the phase changes to different degrees. Therefore, adjusting the electrical parameters of the adjustable phase device can realize the phase change of the first feed array and/or the second feed array. compensation, thereby achieving the effect of adjusting the phase difference between the first feed array and the second feed array, thereby realizing the formation of any elliptical polarization.
  • At least one processor may also be used for: at the phase center of the beam of the first feed array and/or the second feed array, the first feed array and/or the second feed array, the first feed array and/or the second feed Before adjusting one or more of the beam width of the beam of the array and the phase difference between the beam of the first feed array and the beam of the second feed array, detect the amplitude and phase of the beam of the first feed array, the first The amplitude and phase of the beams of the second feed array, determine the adjustment coefficients of the phase centers of the beams of the first feed array and/or the second feed array, or determine the The adjustment coefficient of the beam width of the beam, or the adjustment coefficient for determining the phase difference between the beam of the first feed array and the beam of the second feed array.
  • the processor adjusts parameters such as phase center, beam width, and phase difference, it can precisely adjust and control according to the corresponding adjustment coefficients.
  • an embodiment of the present application provides an antenna system, including at least one processor, a first feed array, a second feed array, and a third planar array.
  • the polarization direction of the first feed array is the same as that of the second feed array.
  • the polarization directions of the source arrays are orthogonal, and the third planar array is used to reflect or transmit the beams from the first feed source array and the second feed source array; at least one processor can be used to: control the beam of the first feed source array.
  • the phase center is at the first position
  • the beam width is the first width
  • the phase center of the beam of the control second feed array is at the second position
  • the beam width is the second width
  • the beam of the first feed array and the second feed are controlled
  • the phase difference of the beams of the array is the first phase difference.
  • the first polarization direction is formed after the third planar array reflects or transmits the beams of the first feed array and the second feed array.
  • the at least one processor may also be used for: adjusting the phase center of the beam of the first feed array and/or the second feed array, the beam width of the beam of the first feed array and/or the second feed array , one or more of the phase differences between the beam of the first feed array and the beam of the second feed array are adjusted, in this case, the third planar array adjusts the beam and the adjusted beam of the first feed array and The beam adjusted by the second feed array is reflected or transmitted to form a beam in the second polarization direction; at least one processor can also be used for: when the third planar array receives the beam in the first polarization direction, control the first The phase center of the beam of the feed array is at the first position, the beam width is the first width, the phase center of the beam of the control second feed array is at the second position, the beam width is the second width, and the control of the first feed array The phase difference between the beam and the beam in the second feed array is the first phase difference.
  • the third planar array after the third planar array reflects or transmits the beam in the first polarization direction, the first beam and the second beam are formed , respectively received by the first feed array and the second feed array; at least one processor may also be used for: when the third planar array receives the beam in the second polarization direction, to the first feed array and/or the second One of the phase center of the beam of the two feed arrays, the beam width of the beam of the first feed array and/or the second feed array, and the phase difference between the beam of the first feed array and the beam of the second feed array One or more items are adjusted.
  • the third plane array after the third plane array reflects or transmits the beam in the second polarization direction, the third beam and the fourth beam are formed, which are not formed by the first feed array and the fourth beam respectively.
  • Two-feed array receive.
  • the antenna system provided in the embodiment of the present application can adjust the beam polarization of the third planar array by adjusting the beam width, phase center or phase difference, etc. of the dual feed array (ie, the first feed array and the second feed array). It can send beams in any polarization direction, and can also receive beams in any polarization direction.
  • the implementation is simple, the cost is low, and it is more convenient to put into practice.
  • an embodiment of the present application provides a method for controlling the polarization direction of an antenna, which can be applied to an antenna system, where the antenna system includes a first feed array, a second feed array, and a third planar array.
  • the polarization direction of the first feed array is orthogonal to the polarization direction of the second feed array, and the third planar array is used to reflect or transmit the first feed array and the second feed array.
  • the method includes: controlling the phase center of the beam of the first feed array to be at a first position and the beam width to be the first width, and controlling the phase center of the beam of the second feed array to be at the first position
  • the second position, the beam width is the second width, and the phase difference between the beam of the first feed array and the beam of the second feed array is controlled to be the first phase difference, so that the beam of the first feed array and the beam of the second feed array are controlled to be the first phase difference.
  • a beam in the first polarization direction is formed; for the beam of the first feed array and/or the second feed array , the beam width of the beam of the first feed array and/or the second feed array, the phase difference between the beam of the first feed array and the beam of the second feed array.
  • One or more items are adjusted so that the beam of the first feed array and the beam of the second feed array are reflected or transmitted by the third planar array to form a beam in the second polarization direction; Wherein, the first polarization direction is different from the second polarization direction.
  • the polarization direction of the first feed array is a horizontal polarization direction
  • the polarization direction of the second feed array is a vertical polarization direction
  • the first feed The polarization direction of the array is a left-hand circular polarization direction
  • the polarization direction of the second feed array is a right-hand circular polarization direction.
  • the first polarization direction is any one of linear polarization, circular polarization, or elliptical polarization
  • the second polarization direction is linear polarization, circular polarization, or elliptical polarization. any of the polarizations.
  • adjusting the phase centers of the beams of the first feed array and/or the second feed array includes: controlling the first feed array to perform beam scanning, so that all Deflecting the phase center of the beam of the first feed array; and/or controlling the second feed array to perform beam scanning to deflect the phase center of the beam of the second feed array.
  • adjusting the beam width of the beam of the first feed array and/or the second feed array includes: controlling the first feed array to turn off or turn on at least one unit. and/or, controlling the second feed array to turn off or turn on at least one unit.
  • an adjustable phase device is loaded in the first direction of each unit of the third planar array; the beam of the first feed array and the beam of the second feed array are
  • the adjustment of the phase difference includes: adjusting the electrical parameters of the adjustable phase device of each unit, where the electrical parameters are used to control the electrical length of the units of the third planar array.
  • the method further includes: detecting the first The amplitude and phase of the beam of the feed array, the amplitude and phase of the beam of the second feed array, determine the adjustment coefficient of the phase center of the beam of the first feed array and/or the second feed array , or determine the adjustment coefficient of the beam width of the beam of the first feed array and/or the second feed array, or determine the beam of the first feed array and the beam of the second feed array The adjustment factor of the phase difference.
  • an embodiment of the present application provides a method for controlling the polarization direction of an antenna, which is applied to an antenna system, where the antenna system includes a first feed array, a second feed array, and a third planar array.
  • the polarization direction of the feed array is orthogonal to the polarization direction of the second feed array, and the third planar array is used to reflect or transmit the light from the first feed array and the second feed array.
  • the method includes: when the third planar array receives the beam in the first polarization direction, controlling the phase center of the beam of the first feed array to be at the first position and the beam width to be the first width, and controlling The phase center of the beam of the second feed array is at the second position, the beam width is the second width, and the phase difference between the beam of the first feed array and the beam of the second feed array is controlled to be the first phase difference, so that the first beam and the second beam formed after the third planar array reflects or transmits the beam in the first polarization direction can be respectively transmitted by the first feed array and the second beam
  • the feed array receives; when the third planar array receives the beam in the second polarization direction, the phase center of the beam of the first feed array and/or the second feed array, the first Adjust one or more of the beam width of the feed array and/or the beam of the second feed array, and the phase difference between the beam of the first feed array and the beam of the second feed array , so that the third beam and the fourth beam formed after the third
  • the polarization direction of the first feed array is a horizontal polarization direction
  • the polarization direction of the second feed array is a vertical polarization direction
  • the first feed The polarization direction of the array is a left-hand circular polarization direction
  • the polarization direction of the second feed array is a right-hand circular polarization direction.
  • the first polarization direction is any one of linear polarization, circular polarization, or elliptical polarization
  • the second polarization direction is linear polarization, circular polarization, or elliptical polarization. any of the polarizations.
  • adjusting the phase centers of the beams of the first feed array and/or the second feed array includes: controlling the first feed array to perform beam scanning, so that all Deflecting the phase center of the beam of the first feed array; and/or controlling the second feed array to perform beam scanning to deflect the phase center of the beam of the second feed array.
  • adjusting the beam width of the beam of the first feed array and/or the second feed array includes: controlling the first feed array to turn off or turn on at least one unit. and/or, controlling the second feed array to turn off or turn on at least one unit.
  • an adjustable phase device is loaded in the first direction of each unit of the third planar array; the beam of the first feed array and the beam of the second feed array are
  • the adjustment of the phase difference includes: adjusting the electrical parameters of the adjustable phase device of each unit, where the electrical parameters are used to control the electrical length of the units of the third planar array.
  • the method further includes: detecting the first The amplitude and phase of the beam of the feed array, the amplitude and phase of the beam of the second feed array, determine the adjustment coefficient of the phase center of the beam of the first feed array and/or the second feed array , or determine the adjustment coefficient of the beam width of the beam of the first feed array and/or the second feed array, or determine the beam of the first feed array and the beam of the second feed array The adjustment factor of the phase difference.
  • a communication apparatus in a sixth aspect, includes a module for performing the method described in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the apparatus may include:
  • the processing module is used to control the phase center of the beam of the first feed array to be at the first position and the beam width to be the first width, and to control the phase center of the beam of the second feed array to be at the second position and the beam width to be the second width , control the phase difference between the beam of the first feed array and the beam of the second feed array to be the first phase difference, so that the beam of the first feed array and the beam of the second feed array are After being reflected or transmitted by the third planar array, a beam in the first polarization direction is formed;
  • a sending module configured to send the beam of the first polarization direction to the outside world
  • the processing module is further configured to determine the phase center of the beam of the first feed array and/or the second feed array, and the phase center of the first feed array and/or the second feed array.
  • One or more items of the beam width of the beam and the phase difference between the beam of the first feed array and the beam of the second feed array are adjusted so that the beam of the first feed array and the beam of the second feed array are adjusted.
  • a beam of a second polarization direction is formed; wherein the first polarization direction is different from the second polarization direction;
  • the sending module is further configured to send the beam of the second polarization direction to the outside world.
  • a communication apparatus in a seventh aspect, includes a module for executing the method described in the fifth aspect or any possible implementation manner of the fifth aspect.
  • the apparatus may include:
  • a processing module configured to control the phase center of the beam of the first feed array to be at the first position and the beam width to be the first width when the third planar array receives the beam in the first polarization direction, and control the beam of the first feed array to be the first width.
  • the phase center of the beam of the second feed array is at the second position
  • the beam width is the second width
  • the phase difference between the beam of the first feed array and the beam of the second feed array is controlled to be the first phase difference , so that the first beam and the second beam formed after the third planar array reflects or transmits the beam in the first polarization direction can be respectively transmitted by the first feed array and the second feed.
  • a receiving module configured to receive the first beam and the second wave
  • the processing module is further configured to, when the third planar array receives the beam in the second polarization direction, perform an adjustment on the phase center, all the phase centers of the beams of the first feed array and/or the second feed array. one or more of the beam width of the beam of the first feed array and/or the second feed array, the phase difference between the beam of the first feed array and the beam of the second feed array item is adjusted so that the third beam and the fourth beam formed after the third planar array reflects or transmits the beam in the second polarization direction can be respectively transmitted by the first feed array and the fourth beam.
  • Two-feed array receiving wherein, the first polarization direction is different from the second polarization direction;
  • the receiving module is further configured to receive the third beam and the fourth wave.
  • an embodiment of the present application provides a communication device, including a processor and a communication interface, where the communication interface is used to communicate with other communication devices; the processor is configured to run a set of programs, so as to make the fourth aspect described above Or any possible implementation manner of the fourth aspect or the method described in the fifth aspect or any possible implementation manner of the fifth aspect is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, where computer-readable instructions are stored in the computer storage medium, and when the computer-readable instructions are executed on a communication device, the above fourth aspect or The method described in any of the possible implementations of the fourth aspect or the method described in the fifth aspect or any of the possible implementations of the fifth aspect is implemented.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the fourth aspect or any possible implementation manner of the fourth aspect or the fifth aspect or the fourth aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a computer program product, including instructions, which, when executed on a computer, cause the computer to execute any possible implementation manner of the fourth aspect or the fourth aspect or the fifth aspect. Or the method described in the method described in any possible implementation manner of the fifth aspect.
  • 1A is a schematic diagram of a possible reflectarray antenna
  • FIG. 1B is a schematic diagram of a possible transmission array antenna
  • 2A is a schematic diagram of a mechanical rotation feed technology
  • FIG. 2B is a schematic diagram of a polarization technique for reconstructing a reflection array unit
  • FIG. 3A is a possible application scenario of an embodiment of the present application.
  • FIG. 3B is another possible application scenario of the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna system according to an embodiment of the present application.
  • FIG. 5A is a schematic diagram of two orthogonal linearly polarized waves realizing arbitrary linearly polarized waves
  • FIG. 5B is a block diagram for realizing arbitrary polarization of dual linear polarization synthesis
  • Fig. 6 is the realization block diagram of dual circular polarization synthesis arbitrary polarization
  • FIG. 7 is a schematic diagram of the focal length and aperture of a reverse (transmission) array antenna
  • 8A is a schematic diagram of different phase centers corresponding to different aperture efficiencies
  • 8B is a schematic diagram of the efficiency of different feed beam widths corresponding to different apertures
  • Fig. 9 is the schematic diagram of the adjustable phase device loaded on the array unit of the third planar array
  • FIG. 10 is a flowchart of a method for controlling an antenna polarization direction provided by an embodiment of the present application
  • FIG. 11 is a flowchart of another method for controlling the polarization direction of an antenna provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the formation of arbitrary polarized beams by different phase center feed arrays
  • FIG. 13 is a schematic diagram of the change of the phase center when the feed beam is scanned
  • FIG. 14 is a schematic diagram of combining arbitrary polarizations with different feed beam widths
  • FIG. 15 is a schematic structural diagram of another antenna system provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • Reflective array antenna (or transmission array antenna) is a new type of high-gain antenna composed of feed + plane array, which combines the advantages of classic reflector antenna (or transmission antenna) and direct radiation array antenna, and can be designed through reasonable design.
  • the reflected phase of each individual element (ie, the reconfigurable aperture) in the array plane is used to achieve a specific shape or direction of the far-field beam.
  • Reflective array antennas (or transmissive array antennas) have developed rapidly in recent years due to their low power consumption, light weight, high gain, low cost, and easy integration. application prospects.
  • FIG. 1A it is a schematic diagram of a possible reflection array antenna
  • FIG. 1B it is a schematic diagram of a possible transmission array antenna.
  • the antenna of the device is mostly in the form of linear polarization, for example, the base station adopts +/-45° linear polarization.
  • the base station adopts +/-45° linear polarization.
  • targets such as satellite communication, space detection and radar.
  • the application value of the reflectarray antenna with multi-polarization conversion function is highlighted.
  • the spacecraft can receive signals in any state, while on a flying device, a circularly polarized antenna can not only reduce the loss and attenuation of the signal, but also eliminate the The ionosphere is affected by polarization distortion caused by Faraday rotation.
  • Reconstructing reflect array unit polarization technology Adjusting the unit polarization characteristics of the reflection front in the reflect array antenna can realize the switching between circular polarization and linear polarization. As shown in Figure 2B, by adding multiple switches to the reflectarray unit structure to realize the switching of the polarization characteristics of the reflectarray unit, the antenna system of linear polarization and circular polarization can be realized respectively, and the system complexity of feed rotation can be avoided.
  • the embodiments of the present application provide a method and an antenna system for controlling the polarization direction of an antenna, which adjust the beam width and/or phase center of a dual linearly polarized or dual circularly polarized feed array by means of electronic control, thereby changing the
  • an arbitrary linear polarization or arbitrary circular polarization reflection array or transmission array can be formed.
  • an adjustable phase device such as a varactor diode or an adjustable capacitor, etc.
  • the dual linear polarization or dual circular polarization feed array can be sent out.
  • the phase of the beam is compensated to achieve the effect of adjusting the phase difference of the dual linear polarization or dual circular polarization feed array, thereby forming any elliptical polarization.
  • embodiments of the present application can be applied to various devices, for example, can be applied to terminals, base stations, or on-board devices of any polarization required in future satellite-ground converged communications.
  • an antenna system supporting any polarization is used in a vehicle or a home terminal.
  • the antenna system of the base station is linearly polarized
  • the antenna system of the satellite is circularly polarized
  • the antenna system of the vehicle terminal and the home terminal supports any polarization, so that the vehicle terminal and the home terminal can be linearly polarized.
  • Communicate with the base station and can communicate with the satellite in a circularly polarized manner.
  • an antenna system supporting any polarization is used for base stations and satellites.
  • the antenna systems of the base station and satellite support any polarization mode, so that the base station and satellite can communicate with the equipment of any polarization mode, for example, communicate with the base station in a linear polarization mode, and communicate with the base station in a circular polarization or linear polarization mode.
  • Home terminal communication etc.
  • FIG. 3A and FIG. 3B are only two examples of application scenarios of the present application, but not limitations, and the possibility of other application scenarios is not excluded in practical applications.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/" generally indicates that the associated objects are an "or” relationship.
  • At least one of the following items refers to any combination of these items, including any combination of single item(s) or plural items(s), such as at least one of a, b or c (a), can mean: a, or b, or c, or a and b, or b and c, or a and c, or a and b and c.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first priority criterion and the second priority criterion are only for distinguishing different criteria, and do not indicate the difference in content, priority, or importance of the two criteria.
  • FIG. 4 it is a schematic structural diagram of an antenna system according to an embodiment of the present application.
  • the antenna system includes at least one processor 41 (one processor 41 is taken as an example in FIG. 4 ), a dual feed array 42 and a third planar array 43 .
  • the dual feed array 42 further includes a first feed array 421 and a second feed array 422 , and the polarization direction of the first feed array 421 is orthogonal to the polarization direction of the second feed array 422 .
  • the dual feed array 42 is a dual circularly polarized array.
  • the polarization direction of the first feed array 421 is a left-hand circular polarization direction
  • the polarization direction of the second feed array 422 is a right-hand circular polarization direction; or, the polarization direction of the second feed array 421 is a left-hand circular polarization direction.
  • the polarization direction and the polarization direction of the first feed array 421 are right-hand circular polarization directions.
  • the dual feed array 42 is a dual linearly polarized array.
  • the polarization direction of the first feed array 421 is the horizontal polarization direction
  • the polarization direction of the second feed array 422 is the vertical polarization direction; or, the polarization direction of the first feed array 421 is the vertical polarization direction
  • the polarization direction of the second feed array 422 is the horizontal polarization direction.
  • the third planar array 43 is a transmissive array.
  • the antenna system transmits beams, beams a from the first feed array 421 and beams b from the second feed array 422 are transmitted through the third planar array 43 to form beams c to be sent out; when the antenna system receives beams, the beams from The external beam c is transmitted through the third planar array 43 to form beams a and b, which are respectively received by the first feed array 421 and the second feed array 422 .
  • the third planar array 43 is a reflective array.
  • the antenna system transmits beams, beams a from the first feed array 421 and beams b from the second feed array 422 are reflected by the third planar array 43 to form beams c to be sent out; when the antenna system receives beams, the beams from The external beam c is reflected by the third planar array 43 to form beams a and b, which are respectively received by the first feed array 421 and the second feed array 422 .
  • the third planar array 43 is a reflection array. As shown in FIG. 4 , the third planar array 43 forms a composite beam c after reflecting the beams a and b.
  • the processor 41 is electrically connected to the first feed array 421 and the second feed array 422, respectively, and the processor 41 can send control instructions to the first feed array 421 and the second feed array 422, and further Control the phase center and beam width of the beam of the first feed array 421 and the beam of the second feed array 422 .
  • the processor 41 can also control the initial phase difference between the beam of the first feed array 421 and the beam of the second feed array 422 (that is, adjust the phase difference of the beams a and b when the dual feed array 42 is emitted) .
  • the processor 41 may also be electrically connected to the third planar array 43, so as to control each array unit in the third planar array (herein, the “array unit” is referred to as “unit” for short) to the incident beam (that is, the incident beam). to the phase modulation parameters of the beams of each unit, further compensating the phases of the beams of the first feed array 421 and/or the beams of the second feed array 422, and adjusting the beams a and b are emitted from the dual feed array 42. Phase difference at the third planar array 43 .
  • the processor 41 controls one or more of the phase center, beam width or phase difference of the dual feed array 42, so that the antenna system can transmit beams of any polarization direction to the outside world or receive beams of any polarization direction from the outside world .
  • the Z direction is the propagation direction
  • the polarization directions are the X direction and the Y direction, respectively.
  • the synthetic electric field can conform to the following formula:
  • two orthogonally placed linearly polarized waves can obtain arbitrary linearly polarized waves, circularly polarized waves and elliptically polarized waves through amplitude and phase control.
  • FIG. 5A is a schematic diagram of realizing an arbitrary linearly polarized wave for two orthogonal linearly polarized waves.
  • FIG. 5B is a block diagram of the implementation of dual linear polarization synthesis arbitrary polarization.
  • Table 1 is an example of composite polarization under several control modes in the implementation block diagram shown in FIG. 5B .
  • the Z direction is the propagation direction
  • the polarization directions are the X direction and the Y direction, respectively.
  • the synthetic electric field can conform to the formula:
  • the first item When stimulated alone, is a right-handed circularly polarized wave
  • two overlapping circularly polarized waves can obtain arbitrary linearly polarized waves, elliptically polarized waves and circularly polarized waves through amplitude control.
  • Figure 6 is a block diagram of the implementation of dual circular polarization synthesis arbitrary polarization.
  • Table 2 is an example of composite polarization under several control modes in the implementation block diagram shown in FIG. 6 . It should be understood that Figure 6 is based on (Initial phase difference) is controlled by phase shift control 2 on the vertical polarization channel as an example. It is controlled on the horizontal polarization channel, which is not limited in this application.
  • the phase center of the antenna (beam) is described below.
  • the phase center involved refers to the distance between the feed array and the reflector array, as shown in Figure 7.
  • Table 3 shows the gain values corresponding to different F/D values. As can be seen from Table 3, the gain of the reflectarray antenna with F/D equal to 0.5 is the largest, and the gain changes when the phase center changes.
  • aperture efficiency refers to the ratio of the effective aperture of the antenna to the physical aperture
  • antenna gains which in turn affect different beam electric field values, so any linear polarization or elliptical polarization can be obtained.
  • desired amplitude value For each designed antenna system, the aperture efficiency of the antenna is related to the phase center of the feed array and the beam width of the feed.
  • FIG. 8A it is a schematic diagram of different phase centers (theta) corresponding to different aperture efficiencies. It can be seen that the aperture efficiency changes with the change of the phase center. When the phase center is around 40°, the gain is the largest, and the aperture efficiency decreases in the direction less than or greater than 40°.
  • FIG. 8B it is a schematic diagram of different aperture efficiencies corresponding to different feed beam widths. It can be seen that the beam width of feed 1 > the beam width of feed 2 > the beam width of feed 3, and the aperture efficiency of feed 3 > the aperture efficiency of feed 2 > the aperture efficiency of feed 1.
  • the processor 41 controls the first feed array 421 and/or the second feed array 422 .
  • the change of the phase center can lead to the change of aperture efficiency, which in turn changes the beam amplitude of the reverse (or transmitted) wave of the third planar array 43 , that is, changing the phase center can change the amplitude change required for any polarization.
  • the processor 41 controls the beam width of the first feed array 421 and/or the second feed array 422 to change, which can also lead to a change in aperture efficiency, thereby changing the beam amplitude of the reflected (transmitted) wave of the third planar array 43, that is, changing The beamwidth changes the amplitude change required for any polarization. Therefore, in the embodiment of the present application, the processor 41 can control the amplitude change required by any polarization by controlling the phase center and/or the beam width of the dual feed array 42, thereby realizing any linear polarization or circular polarization.
  • the control of the phase difference between the first feed array 421 and the second feed array 422 can be realized by setting a phase shift control module on the radio frequency channel corresponding to the first feed array 421 and the second feed array 422 (as shown in FIG. 5B ). , shown in Figure 6), and then realize the formation of any elliptical polarization.
  • adjustable phase devices such as varactor diodes or adjustable capacitors or other adjustable potentials, etc.
  • adjustable phase devices can also be loaded on the array unit of the third planar array, and by controlling the electrical parameters of the adjustable phase devices (such as current , voltage, capacitance, etc.), and then control the phase modulation parameters (such as the shape and/or size of the unit) of each element in the third planar array to the beam (that is, the beam incident on each element), and then realize the first feed array. 421 and/or the phase compensation of the second feed array 422 to achieve the effect of adjusting the phase difference between the first feed array 421 and the second feed array 422, thereby realizing the formation of any elliptical polarization.
  • FIG. 9 it is a schematic diagram of loading adjustable capacitors in the x-direction of the array unit of the third planar array.
  • the shape of the array unit is a rectangle
  • the shape of the array unit is a cross (of course, this is only an example, and it can actually be other shape).
  • a method for controlling the polarization direction of an antenna provided by an embodiment of the present application can be applied to the antenna system shown in FIG. 4 , and the method includes:
  • the processor 41 controls the first feed array 421 to transmit the beam with the phase center at the first position and the beam width as the first width, and controls the second feed
  • the phase center of the transmit beam of the source array 422 is at the second position
  • the beam width is the second width
  • the phase difference between the transmit beam of the first feed array and the transmit beam of the second feed array is controlled to be the first phase difference, and then the first feed
  • the beam a1 emitted by the source array and the beam b1 emitted by the second feed array are reflected by the third planar array 43 to form a beam c1 in the first polarization direction.
  • the polarization direction herein includes circular polarization, linear polarization (including horizontal polarization, vertical polarization, and linear polarization in other directions), elliptical polarization, and the like.
  • the first polarization direction here can be any one of circular polarization, linear polarization or elliptical polarization.
  • the processor 41 compares the phase center of the dual feed array 42, the beam width of the dual feed array 42, the first feed array 421 and the second One or more of the phase differences of the feed array 422 are adjusted, so that the beam a2 emitted by the first feed array and the beam emitted by the second feed array b2 are reflected by the third planar array 43 to form a second pole The beam c2 in the polarization direction; wherein, the first polarization direction is different from the second polarization direction.
  • the processor 41 adjusts any one of the first feed array 421 and the second feed array 422.
  • the phase center or beam width of a beam of a feed array can also be considered as the processor 41 adjusting the phase center or beam width of the beam of the dual feed array 42 (the first feed array 421 and the second feed array 422 ).
  • the processor 41 can determine the phase center of the beam of the first feed array 421 and/or the second feed array 422, the beam width of the beam of the first feed array and/or the second feed array, Any one or more of the phase differences between the beams of the first feed array and the beams of the second feed array are adjusted.
  • the polarization types of the first polarization direction and the second polarization direction may be the same or different, which are not limited here.
  • the first polarization direction is linear polarization
  • the second polarization direction is circular polarization or elliptical polarization
  • the polarization types are the same.
  • the first polarization direction is horizontal polarization
  • the second polarization direction is vertical polarization
  • the polarization types are different.
  • the following describes the method for the antenna system provided by the embodiments of the present application to receive beams from the outside world.
  • the antenna system receiving beams from the outside world is the inverse process of transmitting beams to the outside world, and the principle of controlling the polarization direction is similar.
  • FIG. 11 another method for controlling the polarization direction of an antenna provided in this embodiment of the application can be applied to the antenna system shown in FIG. 4 , and the method includes:
  • the processor 41 controls the first feed array 421 to receive the phase center of the beam at the first position and the beam width as the first width, and controls the second feed
  • the phase center of the receiving beam of the source array 422 is at the second position
  • the beam width is the second width
  • the phase difference between the receiving beam of the first feed array 421 and the receiving beam of the second feed array 422 is controlled to be the first phase difference, so that the third The first beam a1 and the second beam b1 formed by the planar array 43 reflecting or transmitting the beam c1 in the first polarization direction can be respectively received by the first feed array and the second feed array.
  • the processor 41 determines the phase center of the receiving beam of the first feed array 421 and/or the second feed array 422, the first feed array and/or one or more of the beam width of the receiving beam of the second feed array and the phase difference between the receiving beam of the first feed array and the receiving beam of the second feed array are adjusted so that the third planar array 43.
  • the third beam a2 and the fourth beam b2 formed by reflecting or transmitting the beam c2 in the second polarization direction can be respectively received by the first feed array 421 and the second feed array 422;
  • the polarization direction is different from the second polarization direction.
  • a single antenna system may only be used to implement the sending method shown in FIG. 10 or the receiving method shown in FIG. 11 , and may also be used to implement both the sending method shown in FIG. 10 . It is also used to implement the receiving method shown in FIG. 11 , which is not limited in this application.
  • the processor 41 when the processor 41 adjusts the phase centers of the beams of the first feed array 421 and/or the second feed array 422, it may specifically be: controlling the first feed array 421 performs beam scanning to deflect the phase center of the beam of the first feed array 421 ; and/or controls the second feed array 422 to perform beam scanning to deflect the phase center of the beam of the second feed array 422 .
  • a phased array antenna with orthogonal dual-line (or dual-circular) polarization multi-beam is used, and the beam directions of different polarizations are controlled by beam scanning, resulting in different phase centers of the dual feed array 42.
  • the The physical location of the feed is fixed. Therefore, different phase centers have different aperture efficiencies at the same physical position. That is, the electric field amplitudes corresponding to different phase centers are different.
  • orthogonal linearly polarized waves linearly polarized waves of arbitrary polarization can be synthesized. polarization.
  • FIG. 12 is a schematic diagram of the formation of arbitrarily polarized beams formed by central feed arrays with different phases. It should be understood that FIG. 12 shows the reflected beams a' and b' corresponding to the beams a and b respectively, but in essence the beams a' and b' may be a composite beam, that is, when the reflected beams a' and b' point to the same position
  • the beam c can be synthesized, and the synthesis effect can be referred to FIG. 4 .
  • Figure 13 is a schematic diagram of the change of the phase center when the feed beam is scanned.
  • the phase center changes.
  • the phase center Z 34mm
  • the phase center Z 21mm.
  • the processor 41 when the processor 41 adjusts the beam width of the beam of the first feed array 421 and/or the second feed array 422, it may specifically be: controlling the first feed array 421 closes or opens at least one unit; and/or, controls the second feed array 422 to close or open at least one unit.
  • a phased array antenna that adopts orthogonal dual-line (or dual-circular) polarization multi-beam for example, the dual-feed array 42 adopts an orthogonal dual-line polarization multi-beam phased array antenna, and the orthogonal pole is obtained by linear polarization at any angle.
  • Different aperture efficiencies correspond to different beam gains, that is, feeds with different beam widths.
  • the amplitudes of the feed ports are weighted to control the number of cells opened by the first feed array 421 and/or the second feed array 422 .
  • FIG. 14 which is a schematic diagram of combining arbitrary polarizations with different feed beam widths
  • the width of the beam a of the feed array 421 is larger than the width of the beam b of the feed array 422 , so the gain formed by the reflector is different.
  • FIG. 14 shows the reflected beams a' and b' corresponding to the beams a and b respectively, but in essence the beams a' and b' may be a composite beam, that is, when the reflected beams a' and b' point to the same position
  • the beam c can be synthesized, and the synthesis effect can be referred to FIG. 4 .
  • the processor 41 determines the phase center of the beam of the first feed array 421 and/or the second feed array 422, and the beam width of the beam of the first feed array 421 and/or the second feed array 422.
  • the processor 41 can first detect the amplitude and the amplitude of the current beam of the first feed array 421 and the second feed array 422 Then according to the amplitude and phase of the current beam of the first feed array 421 and the second feed array 422, and the amplitude and phase of the beam to be adjusted by the first feed array 421 and the second feed array 422 (ie Adjustment requirements), determine the phase center or beam width or phase adjustment coefficients of the beams of the first feed array 421 and/or the second feed array 422, and then make corresponding adjustments based on these adjustment coefficients, thereby improving the accuracy of the adjustment.
  • the processor 41 detects whether the amplitude and phase of the adjusted beams of the first feed array 421 and the second feed array 422 meet the adjustment requirements, and if not, continue to adjust, Until the amplitude and phase of the beams of the first feed array 421 and the second feed array 422 meet the adjustment requirements, the adjustment accuracy is further improved.
  • FIG. 4 is only an example of the key components of the antenna system in the embodiment of the present application, and the antenna system may further include other components in practical applications.
  • the processor 41 is specifically a baseband processor, and the radio frequency channel between the processor 41 and the first feed array 421 further includes a digital/analog (or analog/digital) converter 44a, a frequency converter 45a, The power amplifier 46a; the radio frequency channel between the processor 41 and the second feed array 422 also includes a digital/analog (or analog/digital) converter 44b, a frequency converter 45b, and a power amplifier 46b.
  • a dual linear polarization or dual circular polarization dual feed array 42 is set, and the beam width and/or phase center of the dual linear polarization or dual circular polarization feed array 42 is adjusted by electronic control. , so that the antenna system can form any linearly polarized or any circularly polarized beam, and further load an adjustable phase device on the unit structure of the third planar array 43 to form any elliptical polarization. Not only can it truly support arbitrary polarization switching, but also does not need to mechanically rotate the feed source or reconstruct the polarization of the reflection array unit, the implementation is simple, the cost is low, and it is more convenient to put into practice.
  • an embodiment of the present application further provides a communication device, including a module for executing the method shown in FIG. 10 and/or FIG. 11 .
  • the apparatus may include:
  • the processing module 1601 is used to control the phase center of the beam of the first feed array to be at the first position and the beam width to be the first width, and to control the phase center of the beam of the second feed array to be at the second position and the beam width to be the second width, control the phase difference between the beam of the first feed array and the beam of the second feed array to be the first phase difference, so that the beam of the first feed array and the beam of the second feed array are After the beam is reflected or transmitted by the third planar array, a beam in the first polarization direction is formed;
  • a sending module 1602 configured to send the beam of the first polarization direction to the outside world
  • the processing module 1601 is further configured to analyze the phase center of the beam of the first feed array and/or the second feed array, the first feed array and/or the second feed array One or more of the beam width of the beam of the first feed array and the phase difference between the beam of the first feed array and the beam of the second feed array are adjusted, so that the beam of the first feed array and the beam of the second feed array are adjusted.
  • a beam of a second polarization direction is formed; wherein the first polarization direction is different from the second polarization direction;
  • the sending module 1602 is further configured to send the beam of the second polarization direction to the outside world.
  • the apparatus may include:
  • the processing module 1701 is configured to control the phase center of the beam of the first feed array to be at the first position and the beam width to be the first width when the third planar array receives the beam of the first polarization direction, and control the beam of the first feed array to be the first width.
  • the phase center of the beam of the second feed array is at the second position, the beam width is the second width, and the phase difference between the beam of the first feed array and the beam of the second feed array is controlled to be the first phase difference, so that the first beam and the second beam formed after the third planar array reflects or transmits the beam in the first polarization direction can be respectively transmitted by the first feed source array and the second feed source array.
  • source array receive;
  • a receiving module 1702 configured to receive the first beam and the second wave
  • the processing module 1701 is further configured to, when the third planar array receives the beam in the second polarization direction, perform an analysis on the phase center, One of the beam width of the beam of the first feed array and/or the second feed array, the phase difference between the beam of the first feed array and the beam of the second feed array, or Adjusting multiple items, so that the third beam and the fourth beam formed after the third planar array reflects or transmits the beam in the second polarization direction can be respectively used by the first feed array and the fourth beam.
  • the second feed array receives; wherein, the first polarization direction is different from the second polarization direction;
  • the receiving module 1702 is further configured to receive the third beam and the fourth wave.
  • an embodiment of the present application further provides a communication device, including a processor 1801 and a communication interface 1802, the communication interface 1802 is used for communicating with other communication devices; the processor 1801 is used for A set of programs is run such that the method shown in Figure 10 and/or Figure 11 is implemented.
  • the processor 1801 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or execute the implementation of the present application.
  • the general purpose processor 1801 may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • Communication interface 1802 may be a transceiver, circuit, bus, module, or other type of communication interface for communicating with other devices over a transmission medium.
  • the apparatus when the apparatus is a terminal, the other device may be a satellite, a gateway station or an ATG network device.
  • the device when the device is a satellite, gateway or ATG network device, the other device may be a terminal.
  • the apparatus may further include a memory 1803 for storing program instructions and/or data.
  • the memory 1803 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as random access memory 1803 (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • Memory 1803 may be coupled to processor 1801 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1801 may cooperate with memory 1803.
  • Processor 1801 may execute program instructions stored in memory 1803 . At least one of the at least one memory 1803 may be included in the processor 1801 .
  • connection medium between the above-mentioned communication interface 1802 , the processor 1801 , and the memory 1803 is not limited in this embodiment of the present application.
  • the memory 1803, the communication interface 1802, and the processor 1801 are connected by a bus in FIG. 18.
  • the bus is represented by a thick line in FIG. 18.
  • the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable instructions. /or the method shown in Figure 11 is implemented.
  • an embodiment of the present application further provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the method shown in FIG. 10 and/or FIG. 11 .
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiments of the present application also provide a computer program product, including instructions, which, when executed on a computer, cause the computer to execute the method shown in FIG. 10 and/or FIG. 11 .
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, for example, from a website site, computer, server, or data center via Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, fiber optic, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital versatile disc (DVD)), or semiconductor media (eg, solid state disk (SSD) ))Wait.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例涉及一种控制天线极化方向的方法和天线***。天线***中设置极化方向正交的第一馈源阵列和第二馈源阵列,通过调节第一馈源阵列和/或第二馈源阵列的波束宽度、第一馈源阵列和/或第二馈源阵列的相位中心、第一馈源阵列和第二馈源阵列的相位差等参数,可以调整第三平面阵列的波束的极化方向,进而实现天线***支持任意极化方向切换。本申请实施例无需机械旋转馈源或重构反射阵单元极化,实现方式简单、成本低,进而发射任意极化方向的波束,更便于投入实际中使用。

Description

一种控制天线极化方向的方法和天线***
相关申请的交叉引用
本申请要求在2020年09月07日提交中国专利局、申请号为202010929217.6、申请名称为“一种控制天线极化方向的方法和天线***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种控制天线极化方向的方法和天线***。
背景技术
在高速运动的航天器上,一般采用圆极化天线,使得航天器可在任意状态下接收到信号而在飞行设备上,圆极化天线不但可减小信号的漏失、衰减,而且能消除电离层由法拉第旋转导致的极化畸变影响,移动通信中利用极化分集方式降低多径衰落。而在地面的通信***中,则多采用线极化的形式,如基站采用+/-45°线极化天线。
随着星地融合通信的发展,单一终端与星载设备、地面基站等均存在通信需求,因此单一终端的天线支持任意极化的功能成为迫切需求。
发明内容
本申请提供一种控制天线极化方向的方法和天线***,用以实现单个终端的天线支持任意极化的功能。
第一方面,提供一种天线***,包括至少一个处理器、第一馈源阵列、第二馈源阵列以及第三平面阵列,第一馈源阵列的极化方向与第二馈源阵列的极化方向正交,第三平面阵列用于反射或透射来自第一馈源阵列和第二馈源阵列的波束;至少一个处理器可以用于:控制第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制第一馈源阵列的波束与第二馈源阵列的波束的相位差为第一相位差,在这种情况下,第三平面阵列用于对第一馈源阵列的波束和第二馈源阵列的波束进行反射或透射后,形成第一极化方向的波束;至少一个处理器还可以还用于:对第一馈源阵列和/或第二馈源阵列的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的一项或多项进行调整,在这种情况下,第三平面阵列对第一馈源阵列调整后的波束和第二馈源阵列调整后的波束进行反射或透射后,可以形成第二极化方向的波束;其中,第一极化方向与第二极化方向不同。
本申请实施例提供的天线***通过调节双馈源阵列(即第一馈源阵列、第二馈源阵列)的波束宽度、相位中心或相位差等,可以调整第三平面阵列的波束的极化方向,进而发射任意极化方向的波束,能真正地支持任意极化切换。相比于现有技术,无需机械旋转馈源或重构反射阵单元极化,实现方式简单、成本低,更便于投入实际中使用。
一种可能的实施方式中,双馈源阵列可以采用双线极化馈源阵列,例如第一馈源阵列 的极化方向为水平极化方向,第二馈源阵列的极化方向为垂直极化方向;双馈源阵列也可以采用双圆极化馈源阵列,例如第一馈源阵列的极化方向为左旋圆极化方向,第二馈源阵列的极化方向为右旋圆极化方向。
应理解,以上两种实现方式仅为举例而非限定,实际应用中不排除其他实现方式的可能性。
一种可能的实施方式中,第一极化方向为线极化、圆极化或椭圆极化中的任意一种,第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
应理解,第一极化方向与第二极化方向的极化类型可以相同也可以不同,本申请不做限制。例如,第一极化方向是线极化,第二极化方向是圆极化或椭圆极化,则第一极化方向与第二极化方向的极化类型相同;或者,例如,第一极化方向是水平极化,第二极化方向是垂直极化,则第一极化方向与第二极化方向的极化类型不同。
一种可能的实施方式中,至少一个处理器在对第一馈源阵列和/或第二馈源阵列的波束的相位中心进行调整时,具体可以通过波束扫描实现。例如,控制第一馈源阵列执行波束扫描,使第一馈源阵列的波束的相位中心偏转;和/或,控制第二馈源阵列执行波束扫描,使第二馈源阵列的波束的相位中心偏转。
而波束扫描,可以通过电控的方式实现。
如此,便可以通过电控方式控制双馈源阵列的相位中心发生偏转,进而控制双馈源阵列波束的增益,进而得到任意极化所需要的幅度值,使得天线***支持任意极化方向。
一种可能的实施方式中,至少一个处理器在对第一馈源阵列和/或第二馈源阵列的波束的波束宽度进行调整时,具体可以通过打开或关闭阵列单元实现。例如,控制第一馈源阵列关闭或打开至少一个单元;和/或,控制第二馈源阵列关闭或打开至少一个单元。其中,第一馈源阵列和/或第二馈源阵列打开的单元的数量越多,波束越窄,反之,第一馈源阵列和/或第二馈源阵列关闭的单元的数量越多,波束越宽。
而阵列单元的打开或关闭,可以通过电控的方式实现。
如此,便可以通过电控方式控制双馈源阵列的波束宽度发生变化,进而控制双馈源阵列波束的增益,进而得到任意极化所需要的幅度值,使得天线***支持任意极化方向。
一种可能的实施方式中,第三平面阵列的每个单元的第一方向上加载有可调相位器件;至少一个处理器在对第一馈源阵列的波束与第二馈源阵列的波束的相位差进行调整时,具体可以是调整每个单元的可调相位器件的电参数(如电流、电压、电容等),电参数用于控制第三平面阵列的单元的形状和/或大小(如电长度)。
当电参数改变时,阵列单元的形状和/或大小会发生改变。而波束经过不同形状和/或大小的阵列单元出射后,相位发生不同程度的改变,因而调节可调相位器件的电参数可以实现对第一馈源阵列和/或第二馈源阵列的相位的补偿,进而达到调整第一馈源阵列与第二馈源阵列的相位差的效果,进而实现形成任意椭圆极化。
一种可能的实施方式中,至少一个处理器还可以用于:在对第一馈源阵列和/或第二馈源阵列的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的一项或多项进行调整之前,检测第一馈源阵列的波束的幅度和相位、第二馈源阵列的波束的幅度和相位,确定第一馈源阵列和/或第二馈源阵列的波束的相位中心的调整系数,或者确定第一馈源阵列和/或第二馈源阵列的波束的波束宽度的调整系数,或者确定第一馈源阵列的波束与第二馈源阵列的波束的相位差 的调整系数。
这样,处理器在对相位中心、波束宽度、相位差等参数调整时,就可以根据对应的调整系数进行精准调控。
第二方面,本申请实施例提供一种天线***,包括至少一个处理器、第一馈源阵列、第二馈源阵列以及第三平面阵列,第一馈源阵列的极化方向与第二馈源阵列的极化方向正交,第三平面阵列用于反射或透射来自第一馈源阵列和第二馈源阵列的波束;至少一个处理器可以用于:当第三平面阵列接收第一极化方向的波束时,控制第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制第一馈源阵列的波束与第二馈源阵列的波束的相位差为第一相位差,在这种情况下,第三平面阵列对第一极化方向的波束进行反射或透射后,可以形成第一波束和第二波束,并分别由第一馈源阵列和第二馈源阵列接收;至少一个处理器还可以用于:当第三平面阵列接收第二极化方向的波束时,对第一馈源阵列和/或第二馈源阵列的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的一项或多项进行调整,在这种情况下,第三平面阵列对第二极化方向的波束进行反射或透射后,可以形成第三波束和第四波束,并分别由第一馈源阵列和第二馈源阵列接收;其中,第一极化方向与第二极化方向不同。
本申请实施例提供的天线***通过调节双馈源阵列(即第一馈源阵列、第二馈源阵列)的波束宽度、相位中心或相位差等,可以调整第三平面阵列的波束的极化方向,进而接收任意极化方向的波束。相比于现有技术,无需机械旋转馈源或重构反射阵单元极化,实现方式简单、成本低,更便于投入实际中使用。
一种可能的实施方式中,双馈源阵列可以采用双线极化馈源阵列,例如第一馈源阵列的极化方向为水平极化方向,第二馈源阵列的极化方向为垂直极化方向;双馈源阵列也可以采用双圆极化馈源阵列,例如第一馈源阵列的极化方向为左旋圆极化方向,第二馈源阵列的极化方向为右旋圆极化方向。
应理解,以上两种实现方式仅为举例而非限定,实际应用中不排除其他实现方式的可能性。
一种可能的实施方式中,第一极化方向为线极化、圆极化或椭圆极化中的任意一种,第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
应理解,第一极化方向与第二极化方向的极化类型可以相同也可以不同,本申请不做限制。例如,第一极化方向是线极化,第二极化方向是圆极化或椭圆极化,则第一极化方向与第二极化方向的极化类型相同;或者,例如,第一极化方向是水平极化,第二极化方向是垂直极化,则第一极化方向与第二极化方向的极化类型不同。
一种可能的实施方式中,至少一个处理器在对第一馈源阵列和/或第二馈源阵列的波束的相位中心进行调整时,具体可以通过波束扫描实现。例如,控制第一馈源阵列执行波束扫描,使第一馈源阵列的波束的相位中心偏转;和/或,控制第二馈源阵列执行波束扫描,使第二馈源阵列的波束的相位中心偏转。
而波束扫描,可以通过电控的方式实现。
如此,便可以通过电控方式控制双馈源阵列的相位中心发生偏转,进而控制双馈源阵列波束的增益,进而得到任意极化所需要的幅度值,使得天线***支持任意极化方向。
一种可能的实施方式中,至少一个处理器在对第一馈源阵列和/或第二馈源阵列的波束 的波束宽度进行调整时,具体可以通过打开或关闭阵列单元实现。例如,控制第一馈源阵列关闭或打开至少一个单元;和/或,控制第二馈源阵列关闭或打开至少一个单元。其中,第一馈源阵列和/或第二馈源阵列打开的单元的数量越多,波束越窄,反之,第一馈源阵列和/或第二馈源阵列关闭的单元的数量越多,波束越宽。
而阵列单元的打开或关闭,可以通过电控的方式实现。
如此,便可以通过电控方式控制双馈源阵列的波束宽度发生变化,进而控制双馈源阵列波束的增益,进而得到任意极化所需要的幅度值,使得天线***支持任意极化方向。
一种可能的实施方式中,第三平面阵列的每个单元的第一方向上加载有可调相位器件;至少一个处理器在对第一馈源阵列的波束与第二馈源阵列的波束的相位差进行调整时,具体可以是调整每个单元的可调相位器件的电参数(如电流、电压、电容等),电参数用于控制第三平面阵列的单元的形状和/或大小(如电长度)。
当电参数改变时,阵列单元的形状和/或大小会发生改变。而波束经过不同形状和/或大小的阵列单元出射后,相位发生不同程度的改变,因而调节可调相位器件的电参数可以实现对第一馈源阵列和/或第二馈源阵列的相位的补偿,进而达到调整第一馈源阵列与第二馈源阵列的相位差的效果,进而实现形成任意椭圆极化。
一种可能的实施方式中,至少一个处理器还可以用于:在对第一馈源阵列和/或第二馈源阵列的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的一项或多项进行调整之前,检测第一馈源阵列的波束的幅度和相位、第二馈源阵列的波束的幅度和相位,确定第一馈源阵列和/或第二馈源阵列的波束的相位中心的调整系数,或者确定第一馈源阵列和/或第二馈源阵列的波束的波束宽度的调整系数,或者确定第一馈源阵列的波束与第二馈源阵列的波束的相位差的调整系数。
这样,处理器在对相位中心、波束宽度、相位差等参数调整时,就可以根据对应的调整系数进行精准调控。
第三方面,本申请实施例提供一种天线***,包括至少一个处理器、第一馈源阵列、第二馈源阵列以及第三平面阵列,第一馈源阵列的极化方向与第二馈源阵列的极化方向正交,第三平面阵列用于反射或透射来自第一馈源阵列和第二馈源阵列的波束;至少一个处理器可以用于:控制第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制第一馈源阵列的波束与第二馈源阵列的波束的相位差为第一相位差,在这种情况下,第三平面阵列对第一馈源阵列的波束和第二馈源阵列的波束进行反射或透射后,形成第一极化方向的波束;至少一个处理器还可以用于:对第一馈源阵列和/或第二馈源阵列的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的一项或多项进行调整,在这种情况下,第三平面阵列对第一馈源阵列调整后的波束和第二馈源阵列调整后的波束进行反射或透射,形成第二极化方向的波束;至少一个处理器还可以用于:当第三平面阵列接收第一极化方向的波束时,控制第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制第一馈源阵列的波束与第二馈源阵列的波束的相位差为第一相位差,在这种情况下,第三平面阵列对第一极化方向的波束进行反射或透射后,形成第一波束和第二波束,分别被第一馈源阵列和第二馈源阵列接收;至少一个处 理器还可以用于:当第三平面阵列接收第二极化方向的波束时,对第一馈源阵列和/或第二馈源阵列的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的一项或多项进行调整,在这种情况下,第三平面阵列对第二极化方向的波束进行反射或透射后,形成第三波束和第四波束,并非分别由第一馈源阵列和第二馈源阵列接收。
本申请实施例提供的天线***通过调节双馈源阵列(即第一馈源阵列、第二馈源阵列)的波束宽度、相位中心或相位差等,可以调整第三平面阵列的波束的极化方向,进而可以发送任意极化方向的波束,还可以接收任意极化方向的波束。相比于现有技术,无需机械旋转馈源或重构反射阵单元极化,实现方式简单、成本低,更便于投入实际中使用。
进一步的具体实现方式可以参考上述第一方面或第二方面中各个可能的实现方式,这里不再赘述。
第四方面,本申请实施例提供一种控制天线极化方向的方法,应用于可以应用于天线***,所述天线***包括第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;所述方法包括:控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经所述第三平面阵列反射或透射后,形成第一极化方向的波束;对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经所述第三平面阵列反射或透射后,形成第二极化方向的波束;其中,所述第一极化方向与所述第二极化方向不同。
一种可能的实现方式中,所述第一馈源阵列的极化方向为水平极化方向,所述第二馈源阵列的极化方向为垂直极化方向;或者,所述第一馈源阵列的极化方向为左旋圆极化方向,所述第二馈源阵列的极化方向为右旋圆极化方向。
一种可能的实现方式中,所述第一极化方向为线极化、圆极化或椭圆极化中的任意一种,所述第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
一种可能的实现方式中,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心进行调整,包括:控制所述第一馈源阵列执行波束扫描,使所述第一馈源阵列的波束的相位中心偏转;和/或,控制所述第二馈源阵列执行波束扫描,使所述第二馈源阵列的波束的相位中心偏转。
一种可能的实现方式中,对所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度进行调整,包括:控制所述第一馈源阵列关闭或打开至少一个单元;和/或,控制所述第二馈源阵列关闭或打开至少一个单元。
一种可能的实现方式中,所述第三平面阵列的每个单元的第一方向上加载有可调相位器件;对所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差进行调整,包括:调整所述每个单元的可调相位器件的电参数,所述电参数用于控制所述第三平面阵列的单元的电长度。
一种可能的实现方式中,在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整之前,所述方法还包括:检测所述第一馈源阵列的波束的幅度和相位、所述第二馈源阵列的波束的幅度和相位,确定所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心的调整系数,或者确定所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度的调整系数,或者确定所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差的调整系数。
第五方面,本申请实施例提供一种控制天线极化方向的方法,应用于天线***,所述天线***包括第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;所述方法包括:当所述第三平面阵列接收第一极化方向的波束时,控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第三平面阵列对所述第一极化方向的波束进行反射或透射后所形成的第一波束和第二波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;当所述第三平面阵列接收第二极化方向的波束时,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第三平面阵列对所述第二极化方向的波束进行反射或透射后所形成的第三波束和第四波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;其中,所述第一极化方向与所述第二极化方向不同。
一种可能的实现方式中,所述第一馈源阵列的极化方向为水平极化方向,所述第二馈源阵列的极化方向为垂直极化方向;或者,所述第一馈源阵列的极化方向为左旋圆极化方向,所述第二馈源阵列的极化方向为右旋圆极化方向。
一种可能的实现方式中,所述第一极化方向为线极化、圆极化或椭圆极化中的任意一种,所述第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
一种可能的实现方式中,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心进行调整,包括:控制所述第一馈源阵列执行波束扫描,使所述第一馈源阵列的波束的相位中心偏转;和/或,控制所述第二馈源阵列执行波束扫描,使所述第二馈源阵列的波束的相位中心偏转。
一种可能的实现方式中,对所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度进行调整,包括:控制所述第一馈源阵列关闭或打开至少一个单元;和/或,控制所述第二馈源阵列关闭或打开至少一个单元。
一种可能的实现方式中,所述第三平面阵列的每个单元的第一方向上加载有可调相位器件;对所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差进行调整,包括:调整所述每个单元的可调相位器件的电参数,所述电参数用于控制所述第三平面阵列的单元的电长度。
一种可能的实现方式中,在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整之前,所述方法还包括: 检测所述第一馈源阵列的波束的幅度和相位、所述第二馈源阵列的波束的幅度和相位,确定所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心的调整系数,或者确定所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度的调整系数,或者确定所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差的调整系数。
第六方面,提供一种通信装置,该装置包括用于执行上述第四方面或第四方面任一种可能的实现方式所述方法的模块。
示例性的,该装置可以包括:
处理模块,用于控制第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经第三平面阵列反射或透射后,形成第一极化方向的波束;
发送模块,用于向外界发送所述第一极化方向的波束;
所述处理模块,还用于对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经所述第三平面阵列反射或透射后,形成第二极化方向的波束;其中,所述第一极化方向与所述第二极化方向不同;
所述发送模块,还用于向外界发送所述第二极化方向的波束。
第七方面,提供一种通信装置,该装置包括用于执行上述第五方面或第五方面任一种可能的实现方式所述方法的模块。
示例性的,该装置可以包括:
处理模块,用于当所述第三平面阵列接收第一极化方向的波束时,控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第三平面阵列对所述第一极化方向的波束进行反射或透射后所形成的第一波束和第二波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;
接收模块,用于接收所述第一波束和所述第二波;
所述处理模块,还用于当所述第三平面阵列接收第二极化方向的波束时,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第三平面阵列对所述第二极化方向的波束进行反射或透射后所形成的第三波束和第四波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;其中,所述第一极化方向与所述第二极化方向不同;
所述接收模块,还用于接收所述第三波束和所述第四波。
第八方面,本申请实施例提供一种通信装置,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得上述第四方面或第四方面任一种可能的实现方式或第五方面或第五方面任一种可能的实现方式中所述的方法被实现。
第九方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得上述第四方面或第四方面任一种可能的实现方式或第五方面或第五方面任一种可能的实现方式中所述的方法中所述的方法被实现。
第十方面,本申请实施例提供一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第四方面或第四方面任一种可能的实现方式或第五方面或第五方面任一种可能的实现方式中所述的方法中所述的方法。
该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如上述第四方面或第四方面任一种可能的实现方式或第五方面或第五方面任一种可能的实现方式中所述的方法中所述的方法。
附图说明
图1A为一种可能的反射阵天线的示意图;
图1B为一种可能的透射阵天线的示意图;
图2A为机械旋转馈源技术的示意图;
图2B为重构反射阵单元极化技术的示意图;
图3A为本申请实施例的一种可能的应用场景;
图3B为本申请实施例的另一种可能的应用场景;
图4为本申请实施例提供的一种天线***的结构示意图;
图5A为两个正交的线极化波实现任意线极化波的原理图;
图5B为双线极化合成任意极化实现框图;
图6为双圆极化合成任意极化实现框图;
图7为反(透)射阵天线焦距和口径示意图;
图8A为不同相位中心对应不同口径效率的示意图;
图8B为不同馈源波束宽度对应不同口径效率的示意图;
图9为第三平面阵的阵列单元上加载的可调相位器件的示意图;
图10为本申请实施例提供的一种控制天线极化方向的方法的流程图;
图11为本申请实施例提供的另一种控制天线极化方向的方法的流程图;
图12为不同相位中心馈源阵列形成任意极化波束的示意图;
图13为馈源波束扫描时相位中心变化示意图;
图14为不同馈源波束宽度合成任意极化的示意图;
图15为本申请实施例提供的另一种天线***的结构示意图;
图16为本申请实施例提供的一种通信装置的结构示意图;
图17为本申请实施例提供的另一种通信装置的结构示意图;
图18为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
反射阵天线(或透射阵天线)是由馈源+平面阵列组成是一种新型的高增益天线,结合 了经典反射面天线(或透射面天线)和直接辐射阵列天线的优点,可以通过合理设计阵列平面上各个独立单元(即可重构孔径)的反射相位来实现特定形状或指向的远场波束。反射阵天线(或透射阵天线)因其功耗低、重量轻、增益高、成本低、易集成等优势在近些年得到了快速发展,发展出了多种多样的天线形式,具有广阔的应用前景。如图1A所示,为一种可能的反射阵天线的示意图;如图1B所示,为一种可能的透射阵天线的示意图。
在地面的通信***中,设备的天线多采用线极化的形式,如基站采用+/-45°线极化。但在复杂的气候和电磁环境下,这种单一线极化的天线则无法满足如卫星通信、太空侦测和雷达对目标的跟踪定位要求。
为了提高发射、接收天线间的极化效率,避免极化不匹配,具有多极化变换功能的反射阵天线的应用价值就突显出来。例如,在高速运动的航天器上,采用圆极化天线,航天器可在任意状态下接收到信号,而在飞行设备上,圆极化天线不但可减小信号的漏失、衰减,而且能消除电离层由法拉第旋转导致的极化畸变影响。
随着未来星地融合通信的发展,单一终端与星载设备、地面基站等均存在通信需求,单一终端的天线支持任意极化的功能成为迫切需求。
1、机械旋转馈源技术:全极化反射阵中的单元如果是完全对称单元,且馈源全部是线极化入射时,通过调整馈源的角度可以调整馈源的波束的极化方向,进而实现任意极化的天线***。如图2A所示,馈源的角度旋转至0°、45°、90°、135°时,可分别实现水平极化、左旋圆极化、垂直极化和右旋圆极化。
但是,这种方法是通过机械旋转馈源实现线极化和圆极化天线切换,在实际使用中不方便,尤其当天线设计完成的时候,***旋转结构复杂且笨重,实现难度大。
2、重构反射阵单元极化技术:调整反射阵天线中的反射阵面的单元极化特性,可以实现圆极化和线极化的切换。如图2B所示,通过在反射阵单元结构中加多个开关实现反射阵单元极化特性切换,可分别实现线极化和圆极化的天线***,可避免馈源旋转的***复杂性。
但是,重构反射阵单元极化技术目前还没有任意线极化和任意椭圆极化的具体实现方法。并且实际应用中反射阵中的反射阵元数量成百上千,且每个开关均需要控制,这种方法在实际应用中极为不方便,实现难度大。另外,该方法中,如果不改变馈源,则只能是水平极化和垂直极化相互切换,或者是左旋圆极化和右旋圆极化相互切换,存在局限性,并不能真正地支持任意极化切换。
由此可见,虽然机械旋转馈源技术或重构反射阵单元极化技术,可以实现圆极化和线极化可重构,但是机械旋转馈源技术实现任意极化的方式在实际使用中并不方便,而重构反射阵单元极化技术则需要大量的开关和控制线,实现起来也非常复杂。
基于此,本申请实施例提供一种控制天线极化方向的方法和天线***,采用电控的方式调节双线极化或者双圆极化馈源阵列的波束宽度和/或相位中心,从而改变通过周期性可调平面阵列的反射波增益(反射阵)或透射波增益(透射阵),进而可以形成任意线极化或任意圆极化的反射阵或透射阵。进一步的,还可以在可调反(透)射阵面的单元结构上加载可调相位器件(如变容二极管或可调电容等),对双线极化或者双圆极化馈源阵列发出的波束的相位进行补偿,达到调节双线极化或者双圆极化馈源阵列的相位差的效果,进而形成任意椭圆极化。
应理解,本申请实施例可以应用于各种设备,例如可以应用于未来星地融合通信中所 需任意极化的终端、基站或星载设备等。
例如,参见图3A,为本申请实施例的一种可能的应用场景,支持任意极化的天线***用于车载或家庭终端。其中,基站的天线***是线极化,卫星的天线***是圆极化,而车载终端、家庭终端的天线***则支持任意极化,使得车载终端、家庭终端等既可以以线极化的方式与基站通信,又可以以圆极化的方式与卫星通信。
例如,参见图3B,为本申请实施例的另一种可能的应用场景,支持任意极化的天线***用于基站和卫星。其中,基站、卫星的天线***支持任意极化方式,使得基站、卫星能够与任一极化方式的设备通信,例如以线极化方式与基站通信,以圆极化或线极化的方式与家庭终端通信等。
当然,图3A和图3B仅仅是对本申请应用场景的两种示例而非限定,在实际应用中不排除还有其它应用场景的可能性。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例的技术方案作进一步地详细描述。
本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合,例如a、b或c中的至少一项(个),可以表示:a,或b,或c,或a和b,或b和c,或a和c,或a和b和c。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一优先级准则和第二优先级准则,只是为了区分不同的准则,而并不是表示这两种准则的内容、优先级或者重要程度等的不同。
此外,本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、***、产品或设备,不限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。
如图4所示,为本申请实施例提供的一种天线***的结构示意图。该天线***包括至少一个处理器41(图4以一个处理器41为例)、双馈源阵列42以及第三平面阵列43。双馈源阵列42进一步包括第一馈源阵列421、第二馈源阵列422,且第一馈源阵列421的极化方向与第二馈源阵列422的极化方向正交。
一种可能的设计中,双馈源阵列42为双圆极化阵列。第一馈源阵列421的极化方向为左旋圆极化方向、第二馈源阵列422的极化方向为右旋圆极化方向;或者,第二馈源阵列421的极化方向为左旋圆极化方向、第一馈源阵列421的极化方向为右旋圆极化方向。
另一种可能的设计中,双馈源阵列42为双线极化阵列。第一馈源阵列421的极化方向为水平极化方向、第二馈源阵列422的极化方向为垂直极化方向;或者,第一馈源阵列421的极化方向为垂直极化方向、第二馈源阵列422的极化方向为水平极化方向。
当然,以上两种仅是对第一馈源阵列421的极化方向与第二馈源阵列422的极化方向的举例而非限定,在实际应用中不排除其他实现方式的可能性。
一种可能的设计中,第三平面阵列43是透射阵列。在天线***发射波束时,来自第 一馈源阵列421的波束a和第二馈源阵列422的波束b经由第三平面阵列43透射后形成波束c向外发送;在天线***接收波束时,来自外界的波c束经由第三平面阵列43透射后形成波束a、b,分别由第一馈源阵列421和第二馈源阵列422接收。
另一种可能的设计中,第三平面阵列43是反射阵列。在天线***发射波束时,来自第一馈源阵列421的波束a和第二馈源阵列422的波束b经由第三平面阵列43反射后形成波束c向外发送;在天线***接收波束时,来自外界的波c束经由第三平面阵列43反射后形成波束a、b,分别由第一馈源阵列421和第二馈源阵列422接收。
为了便于描述,在下文中,主要以第三平面阵列43是反射阵列为例。如图4所示,第三平面阵列43对波束a、b进行反射后形成合成波束c。
继续参见图4,处理器41与第一馈源阵列421和第二馈源阵列422分别电连接,进而处理器41可以向第一馈源阵列421和第二馈源阵列422发送控制指令,进而控制第一馈源阵列421的波束和第二馈源阵列422的波束的相位中心、波束宽度。
可选的,处理器41还可以控制第一馈源阵列421的波束和第二馈源阵列422的波束的初始相位差(即调整波束a、b在双馈源阵列42射出时的相位差)。
可选的,处理器41还可以与第三平面阵列43电连接,进而可以控制第三平面阵列中各阵列单元(本文中又将“阵列单元”简称为“单元”)对入射波束(即入射到各单元的波束)的相位调制参数,进一步对第一馈源阵列421的波束和/或第二馈源阵列422的波束的相位进行补偿,调整波束a、b从双馈源阵列42射出后在第三平面阵列43处的相位差。
处理器41通过控制双馈源阵列42的相位中心、波束宽度或相位差中的一项或多项,使得天线***可以向外界发射任意极化方向的波束或者从外界接收任意极化方向的波束。
下面介绍双馈源阵列42为双线极化时实现任意极化原理。
对于正交放置的两个线极化波以Z方向为传播方向,极化方向分别为X方向和Y方向合成电场可以符合下述公式:
Figure PCTCN2021112913-appb-000001
有以下几种情况:
Figure PCTCN2021112913-appb-000002
或者相差π时,
Figure PCTCN2021112913-appb-000003
为极化方向和x轴夹角为
Figure PCTCN2021112913-appb-000004
的线极化波;
当相差π/2,或者3π/2时,E x和E y相等且E x超前E y90°,
Figure PCTCN2021112913-appb-000005
为右旋圆极化波;
当相差π/2,或者3π/2时,E x和E y相等且E x落后E y90°,
Figure PCTCN2021112913-appb-000006
为左旋圆极化波;
Figure PCTCN2021112913-appb-000007
Figure PCTCN2021112913-appb-000008
不相等,E x和E y不相等且E x超前E y时,
Figure PCTCN2021112913-appb-000009
为右旋椭圆极化波;
Figure PCTCN2021112913-appb-000010
Figure PCTCN2021112913-appb-000011
不相等,E x和E y不相等且E x落后E y时,
Figure PCTCN2021112913-appb-000012
为左旋椭圆极化波。
所以,两个正交放置的线极化波可以通过幅度和相位控制得到任意线极化波,圆极化波和椭圆极化波。
请参见图5A,为两个正交的线极化波实现任意线极化波的原理图。请参见图5B,为双线极化合成任意极化实现框图。表1是图5B所示实现框图中几种控制方式下的合成极化示例。
表1
Figure PCTCN2021112913-appb-000013
下面介绍双馈源阵列42为双圆极化时实现任意极化原理。
对于重叠放置的两个圆极化波以Z方向为传播方向,极化方向分别为X方向和Y方向合成电场可以符合公式:
Figure PCTCN2021112913-appb-000014
第一项
Figure PCTCN2021112913-appb-000015
单独激励时,
Figure PCTCN2021112913-appb-000016
为右旋圆极化波;
第二项
Figure PCTCN2021112913-appb-000017
单独激励时,
Figure PCTCN2021112913-appb-000018
为左旋圆极化波;
第一项和第二项同时激励且振幅相等时,
Figure PCTCN2021112913-appb-000019
为极化方向与x轴夹角
Figure PCTCN2021112913-appb-000020
的线极化波;
第一项和第二项同时激励且振幅不相等时,
Figure PCTCN2021112913-appb-000021
为椭圆极化波。
所以,两个重叠放置的圆极化波能够通过幅度控制得到任意线极化波,椭圆极化波和圆极化波。
请参见图6,为双圆极化合成任意极化实现框图。表2是图6所示实现框图中几种控制方式下的合成极化示例。应理解,图6是以
Figure PCTCN2021112913-appb-000022
(初始相位差)通过垂直极化通道上的移相控制2控制为例,实际还可以将
Figure PCTCN2021112913-appb-000023
放在水平极化通道上控制,本申请对此不做限定。
表2
Figure PCTCN2021112913-appb-000024
下面介绍天线(波束)的相位中心。
天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心,波束指向不一致,相位中心会发生一定的变化。
对于反(透)射阵天线涉及到的相位中心是指馈源阵列同反射阵列之间的距离,如图7所示。表3给出了不同F/D的值对应的增益值。从表3可以看出,F/D等于0.5的反射阵天线,其增益为最大,当相位中心改变时,增益变化。
表3
F/D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
增益(dB) 13.15 13.8 15.45 19.16 20.98 20.3 17.95 16.41 15.38 13
下面介绍天线***口径效率和相位中心、波束宽度之间的关系。
对同一个反射阵面,不同的口径效率(口径效率是指天线的有效口径和物理口径的比值)对应不同的天线增益,进而影响不同波束电场值,因此可以得到任意线极化或者椭圆极化所需要的幅度值。对于每个设计好的天线***来说,天线的口径效率同馈源阵列的相位中心和馈源的波束宽度有关。
参见图8A,为不同相位中心(theta)对应不同口径效率的示意图。可以看出,口径效率随着相位中心的变化而变化,相位中心在40°左右时,增益最大,口径效率在小于或大于40°的方向上递减。
参见图8B,为不同馈源波束宽度对应不同口径效率的示意图。可以看出,馈源1波束宽度>馈源2波束宽度>馈源3波束宽度,而馈源3口径效率>馈源2口径效率>馈源1口径效率。
通过上述(图5A~图5B、图6~图7、图8A~图8B所示实施例的)相关介绍可知,处理器41控制第一馈源阵列421和/或第二馈源阵列422的相位中心的改变,可以导致口径效率的变化,进而改变第三平面阵列43反(或透)射波的波束幅度,即改变相位中心可以改变任意极化所需的幅度变化。处理器41控制第一馈源阵列421和/或第二馈源阵列422的波束宽度改变,也可以导致口径效率变化,进而改变第三平面阵列43反(透)射波的波束幅度,即改变波束宽度改变任意极化所需的幅度变化。因此,本申请实施例中,处理器41通过控制双馈源阵列42的相位中心和/或波束宽度可以控制任意极化所需的幅度变化,进而实现任意线极化或圆极化。
对于第一馈源阵列421与第二馈源阵列422的相位差的控制,可以由第一馈源阵列421与第二馈源阵列422对应的射频通道上设置移相控制模块实现(如图5B、图6所示),进而实现形成任意椭圆极化。除此之外,还可以在第三平面阵的阵列单元上加载可调相位器件(如变容二极管或可调电容或其他可调电位等),通过控制可调相位器件的电参数(如电流、电压、电容等),进而控制第三平面阵列中各单元对波束(即入射到各单元的波束)的相位调制参数(例如单元的形状和/或大小),进而实现对第一馈源阵列421和/或第二馈源阵列422的相位的补偿,达到调整第一馈源阵列421与第二馈源阵列422的相位差的效果,进而实现形成任意椭圆极化。
如图9所示,为在第三平面阵列的阵列单元的x方向上加载可调电容的示意图。其中,馈源阵列42为双圆极化时,阵列单元的形状为矩形,馈源阵列42为双线极化时,阵列单元的形状为十字形(当然这里仅为举例,实际还可以是其它形状)。通过调整可调电容的 电容值,可以增大或减小阵列单元在x方向上的长度,进而改变阵列单元的尺寸,进而对入射到单元的波束的相位进行调整。
上面介绍了本申请实施例提供的天线***形成任意极化的原理,以下介绍本申请实施例提供的天线***向外界发射波束的方法。
如图10所示,为本申请实施例提供的一种控制天线极化方向的方法,可以应用于图4所示天线***,方法包括:
S1001、当第三平面阵列43需要发射第一极化方向的波束时,处理器41控制第一馈源阵列421发射波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列422发射波束的相位中心在第二位置、波束宽度为第二宽度,以及控制第一馈源阵列发射波束与第二馈源阵列发射波束的相位差为第一相位差,进而第一馈源阵列发射的波束a1和第二馈源阵列发射的波束b1经第三平面阵列43反射后,形成第一极化方向的波束c1。
应理解,本文中极化方向包括圆极化、线极化(包括水平极化、垂直极化以及其它方向的线极化)、椭圆极化等类型。这里的第一极化方向可以是圆极化、线极化或椭圆极化的中任意一种。
其中,第一极化方向与相位中心、波束宽度、相位差的对应关系可以根据上文相关介绍得到,此处不再赘述。
S1002、当第三平面阵列43需要发射第二极化方向的波束时,处理器41对双馈源阵列42的相位中心、双馈源阵列42的波束宽度、第一馈源阵列421和第二馈源阵列422的相位差中的一项或多项进行调整,进而第一馈源阵列发射的波束a2和第二馈源阵列b2发射的波束经第三平面阵列43反射后,形成第二极化方向的波束c2;其中,第一极化方向与第二极化方向不同。
应理解,由于第一馈源阵列421和第二馈源阵列422可以看成一个整体,即双馈源阵列42,所以处理器41调整第一馈源阵列421和第二馈源阵列422中任一馈源阵列的波束的相位中心或波束宽度,也可以认为是处理器41是调整双馈源阵列42(第一馈源阵列421和第二馈源阵列422)的波束的相位中心或波束宽度。换而言之,处理器41可以对第一馈源阵列421和/或第二馈源阵列422的波束的相位中心、第一馈源阵列和/或第二馈源阵列的波束的波束宽度、第一馈源阵列的波束与第二馈源阵列的波束的相位差中的任意一项或多项进行调整。
其中,第二极化方向与相位中心、波束宽度以及相位差的对应关系可以根据上文相关介绍得到,此处不再赘述。
应理解,第一极化方向与第二极化方向的极化类型可以相同也可以不同,这里不做限制。例如,第一极化方向是线极化,第二极化方向是圆极化或椭圆极化,极化类型相同。例如,第一极化方向是水平极化,第二极化方向是垂直极化,极化类型不同。
以下介绍本申请实施例提供的天线***从外界接收波束的方法。
天线***从外界接收波束是向外界发射波束的逆过程,其控制极化方向方式的原理类似。如图11所示,为本申请实施例提供的另一种控制天线极化方向的方法,可以应用于图4所示天线***,方法包括:
S1101、当第三平面阵列43需要接收第一极化方向的波束时,处理器41控制第一馈源阵列421接收波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列422接收波束的相位中心在第二位置、波束宽度为第二宽度,控制第一馈源阵列421接收波束 与第二馈源阵列422接收波束的相位差为第一相位差,使得第三平面阵列43对第一极化方向的波束c1进行反射或透射后所形成的第一波束a1和第二波束b1能够分别被第一馈源阵列和第二馈源阵列接收。
S1102、当第三平面阵列43需要接收第二极化方向的波束时,处理器41对第一馈源阵列421和/或第二馈源阵列422的接收波束的相位中心、第一馈源阵列和/或第二馈源阵列的接收波束的波束宽度、第一馈源阵列的接收波束与第二馈源阵列的接收波束的相位差中的一项或多项进行调整,使得第三平面阵列43对第二极化方向的波束c2进行反射或透射后所形成的第三波束a2和第四波束b2能够分别被第一馈源阵列421和第二馈源阵列422接收;其中,第一极化方向与第二极化方向不同。
应理解,在实际应用中,单个天线***(或单个设备)可以仅用于实现图10所示的发送方法或图11所示的接收方法,也可以既用于实现图10所示的发送方法又用于实现图11所示的接收方法,本申请不做限制。
可选的,在本申请实施例中,处理器41在对第一馈源阵列421和/或第二馈源阵列422的波束的相位中心进行调整时,具体可以是:控制第一馈源阵列421执行波束扫描,使第一馈源阵列421的波束的相位中心偏转;和/或,控制第二馈源阵列422执行波束扫描,使第二馈源阵列422的波束的相位中心偏转。
采用正交双线(或双圆)极化多波束的相控阵天线,通过波束扫描控制不同极化的波束指向,导致双馈源阵列42不同的相位中心,而反射阵天线设计完成后其馈源物理位置固定。因此不同的相位中心,在相同的物理位置上所形成口径效率是不一样的。即不同相位中心所对应的电场幅度不一样。正如上文所述,对于正交线极化波可以合成任意极化的线极化波,在此基础上,通过控制反射阵阵元上可调电容或者可调电路调节相位差,实现任意椭圆极化。
示例性的,图12为不同相位中心馈源阵列形成任意极化波束的示意图。应理解,图12分别示出了波束a、b对应的反射波束a’、b’,但实质上波束a’、b’可以是一个合成波束,即反射波束a’、b’指向同一位置时可以合成波束c,合成效果可以参考图4。
图13为馈源波束扫描时相位中心变化示意图,馈源波束扫描时相位中心发生变化,当馈源波束指向14°时,相位中心Z:34mm,馈源波束指向6°时,相位中心Z:21mm。
可选的,在本申请实施例中,处理器41在对第一馈源阵列421和/或第二馈源阵列422的波束的波束宽度进行调整时,具体可以是:控制第一馈源阵列421关闭或打开至少一个单元;和/或,控制第二馈源阵列422关闭或打开至少一个单元。
其中,第一馈源阵列421和/或第二馈源阵列422打开的单元的数量越多,波束越窄,反之,第一馈源阵列421和/或第二馈源阵列422关闭的单元的数量越多,波束越宽。
采用正交双线(或双圆)极化多波束的相控阵天线,如双馈源阵列42采用正交双线极化多波束相控阵天线,由任意角度线极化得到正交极化波束的增益,进而计算出不同的口径效率,不同的口径效率对应不同的波束增益,即不同的波束宽度的馈源。通过得到的不同馈源波束宽度,对馈源的端口的幅度进行加权,控制第一馈源阵列421和/或第二馈源阵列422打开的单元的数量。
如图14所示,为不同馈源波束宽度合成任意极化的示意图,馈源阵列421波束a的宽度大于馈源阵列422波束b的宽度,因此可得反射阵形成的增益大小不一样。应理解,图14分别示出了波束a、b对应的反射波束a’、b’,但实质上波束a’、b’可以是一个合成波束, 即反射波束a’、b’指向同一位置时可以合成波束c,合成效果可以参考图4。
可选的,处理器41在对第一馈源阵列421和/或第二馈源阵列422的波束的相位中心、第一馈源阵列421和/或第二馈源阵列422的波束的波束宽度、第一馈源阵列421的波束与第二馈源阵列422的波束的相位差等进行调整时,处理器41可以先检测第一馈源阵列421和第二馈源阵列422当前波束的幅度和相位,然后根据第一馈源阵列421和第二馈源阵列422当前波束的幅度和相位,以及第一馈源阵列421和第二馈源阵列422所需调整到的波束的幅度和相位(即调整要求),确定第一馈源阵列421和/或第二馈源阵列422的波束的相位中心或波束宽度或相位的调整系数,进而基于这些调整系数进行相应调整,进而提高调整的准确性。
进一步可选的,在每执行一次调整后,处理器41检测第一馈源阵列421和第二馈源阵列422调整后的波束的幅度和相位是否满足调整要求,若不满足,则继续调整,直至第一馈源阵列421和第二馈源阵列422的波束的幅度和相位满足调整要求为止,进而进一步提高调整的准确性。
进一步需要说明的是,图4仅为本申请实施例中天线***关键部件的示例,在实际应用中天线***还可以进一步包括其他部件。例如,参见图15所示,处理器41具体为基带处理器,处理器41与第一馈源阵列421的射频通道上还包括数/模(或模/数)转换器44a、变频器45a、功率放大器46a;处理器41与第二馈源阵列422的射频通道上还包括数/模(或模/数)转换器44b、变频器45b、功率放大器46b。
本申请实施例通过设置双线极化或双圆极化的双馈源阵列42,并采用电控的方式调节双线极化或者双圆极化馈源阵列42的波束宽度和/或相位中心,使得天线***可以形成任意线极化或任意圆极化的波束,进一步在第三平面阵列43的单元结构上加载可调相位器件,可以形成任意椭圆极化。不仅能够真正地支持任意极化切换,而且无需机械旋转馈源或重构反射阵单元极化,实现方式简单、成本低,更便于投入实际中使用。
以上各实施例可以相互结合以实现不同的技术效果。
基于同一技术构思,本申请实施例还提供一种通信装置,包括用于执行图10和/或图11所示方法的模块。
示例性的,参见图16,该装置可以包括:
处理模块1601,用于控制第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经第三平面阵列反射或透射后,形成第一极化方向的波束;
发送模块1602,用于向外界发送所述第一极化方向的波束;
所述处理模块1601,还用于对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经所述第三平面阵列反射或透射后,形成第二极化方向的波束;其中,所述第一极化方向与所述第二极化方向不同;
所述发送模块1602,还用于向外界发送所述第二极化方向的波束。
以上各单元所执行操作的具体实现方式可以参照上述实施例中对应方法步骤的具体 实现方式,这里不再赘述。
或者,示例性的,参见图17,该装置可以包括:
处理模块1701,用于当所述第三平面阵列接收第一极化方向的波束时,控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第三平面阵列对所述第一极化方向的波束进行反射或透射后所形成的第一波束和第二波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;
接收模块1702,用于接收所述第一波束和所述第二波;
所述处理模块1701,还用于当所述第三平面阵列接收第二极化方向的波束时,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第三平面阵列对所述第二极化方向的波束进行反射或透射后所形成的第三波束和第四波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;其中,所述第一极化方向与所述第二极化方向不同;
所述接收模块1702,还用于接收所述第三波束和所述第四波。
以上各单元所执行操作的具体实现方式可以参照上述实施例中对应方法步骤的具体实现方式,这里不再赘述。
参见图18,基于同一技术构思,本申请实施例还提供一种通信装置,包括处理器1801和通信接口1802,所述通信接口1802用于与其它通信装置进行通信;所述处理器1801用于运行一组程序,以使得图10和/或图11所示的方法被实现。
其中,处理器1801可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器1801可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
通信接口1802可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。示例性地,装置是终端时,该其它设备可以是卫星、关口站或者ATG网络设备。装置是卫星、关口站或者ATG网络设备时,该其它设备可以是终端。
可选的,所述装置还可以包括存储器1803,用于存储程序指令和/或数据。其中,存储器1803可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器1803(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
存储器1803可以和处理器1801耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1801可能和存储器1803协同操作。处理器1801可能执行存储器1803 中存储的程序指令。所述至少一个存储器1803中的至少一个可以包括于处理器1801中。
应理解,本申请实施例中不限定上述通信接口1802、处理器1801以及存储器1803之间的具体连接介质。本申请实施例在图18中以存储器1803、通信接口1802以及处理器1801之间通过总线连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于同一技术构思,本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得图10和/或图11所示的方法被实现。
基于同一技术构思,本申请实施例还提供一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现图10和/或图11所示的方法。
该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
基于同一技术构思,本申请实施例还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如图10和/或图11所示的方法。
本申请实施例是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种控制天线极化方向的方法,其特征在于,应用于天线***,所述天线***包括第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;
    所述方法包括:
    控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经所述第三平面阵列反射或透射后,形成第一极化方向的波束;
    对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第一馈源阵列的波束和所述第二馈源阵列的波束经所述第三平面阵列反射或透射后,形成第二极化方向的波束;
    其中,所述第一极化方向与所述第二极化方向不同。
  2. 如权利要求1所述的方法,其特征在于,所述第一馈源阵列的极化方向为水平极化方向,所述第二馈源阵列的极化方向为垂直极化方向;或者,所述第一馈源阵列的极化方向为左旋圆极化方向,所述第二馈源阵列的极化方向为右旋圆极化方向。
  3. 如权利要求1所述的方法,其特征在于,所述第一极化方向为线极化、圆极化或椭圆极化中的任意一种,所述第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
  4. 如权利要求1-3任一项所述的方法,其特征在于,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心进行调整,包括:
    控制所述第一馈源阵列执行波束扫描,使所述第一馈源阵列的波束的相位中心偏转;和/或,
    控制所述第二馈源阵列执行波束扫描,使所述第二馈源阵列的波束的相位中心偏转。
  5. 如权利要求1-3任一项所述的方法,其特征在于,对所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度进行调整,包括:
    控制所述第一馈源阵列关闭或打开至少一个单元;和/或,
    控制所述第二馈源阵列关闭或打开至少一个单元。
  6. 如权利要求1-3任一项所述的方法,其特征在于,
    所述第三平面阵列的每个单元的第一方向上加载有可调相位器件;
    对所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差进行调整,包括:
    调整所述每个单元的可调相位器件的电参数,所述电参数用于控制所述第三平面阵列的单元的电长度。
  7. 如权利要求1-6任一项所述的方法,其特征在于,在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整之前,所述方法还包括:
    检测所述第一馈源阵列的波束的幅度和相位、所述第二馈源阵列的波束的幅度和相位,确定所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心的调整系数,或者确定所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度的调整系数,或者确定所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差的调整系数。
  8. 一种控制天线极化方向的方法,其特征在于,应用于天线***,所述天线***包括第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;
    所述方法包括:
    当所述第三平面阵列接收第一极化方向的波束时,控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差,使得所述第三平面阵列对所述第一极化方向的波束进行反射或透射后所形成的第一波束和第二波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;
    当所述第三平面阵列接收第二极化方向的波束时,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整,使得所述第三平面阵列对所述第二极化方向的波束进行反射或透射后所形成的第三波束和第四波束能够分别被所述第一馈源阵列和所述第二馈源阵列接收;
    其中,所述第一极化方向与所述第二极化方向不同。
  9. 如权利要求8所述的方法,其特征在于,所述第一馈源阵列的极化方向为水平极化方向,所述第二馈源阵列的极化方向为垂直极化方向;或者,所述第一馈源阵列的极化方向为左旋圆极化方向,所述第二馈源阵列的极化方向为右旋圆极化方向。
  10. 如权利要求8所述的方法,其特征在于,所述第一极化方向为线极化、圆极化或椭圆极化中的任意一种,所述第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
  11. 如权利要求8-10任一项所述的方法,其特征在于,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心进行调整,包括:
    控制所述第一馈源阵列执行波束扫描,使所述第一馈源阵列的波束的相位中心偏转;和/或,
    控制所述第二馈源阵列执行波束扫描,使所述第二馈源阵列的波束的相位中心偏转。
  12. 如权利要求8-10任一项所述的方法,其特征在于,对所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度进行调整,包括:
    控制所述第一馈源阵列关闭或打开至少一个单元;和/或,
    控制所述第二馈源阵列关闭或打开至少一个单元。
  13. 如权利要求8-10任一项所述的方法,其特征在于,所述第三平面阵列的每个单元的第一方向上加载有可调相位器件;
    对所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差进行调整,包括:
    调整所述每个单元的可调相位器件的电参数,所述电参数用于控制所述第三平面阵列的单元的电长度。
  14. 如权利要求8-13任一项所述的方法,其特征在于,在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整之前,所述方法还包括:
    检测所述第一馈源阵列的波束的幅度和相位、所述第二馈源阵列的波束的幅度和相位,确定所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心的调整系数,或者确定所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度的调整系数,或者确定所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差的调整系数。
  15. 一种天线***,其特征在于,包括至少一个处理器、第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;
    所述至少一个处理器用于:控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差;
    所述第三平面阵列用于:对所述第一馈源阵列的波束和所述第二馈源阵列的波束进行反射或透射,形成第一极化方向的波束;
    所述至少一个处理器还用于:对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整;
    所述第三平面阵列还用于:对所述第一馈源阵列调整后的波束和所述第二馈源阵列调整后的波束进行反射或透射,形成第二极化方向的波束;
    其中,所述第一极化方向与所述第二极化方向不同。
  16. 如权利要求15所述的天线***,其特征在于,所述第一馈源阵列的极化方向为水平极化方向,所述第二馈源阵列的极化方向为垂直极化方向;或者,所述第一馈源阵列的极化方向为左旋圆极化方向,所述第二馈源阵列的极化方向为右旋圆极化方向。
  17. 如权利要求15所述的天线***,其特征在于,所述第一极化方向为线极化、圆极化或椭圆极化中的任意一种,所述第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
  18. 如权利要求15-17任一项所述的天线***,其特征在于,所述至少一个处理器在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心进行调整时,具体用于:
    控制所述第一馈源阵列执行波束扫描,使所述第一馈源阵列的波束的相位中心偏转;和/或,
    控制所述第二馈源阵列执行波束扫描,使所述第二馈源阵列的波束的相位中心偏转。
  19. 如权利要求15-17任一项所述的天线***,其特征在于,所述至少一个处理器在对所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度进行调整时,具体用于:
    控制所述第一馈源阵列关闭或打开至少一个单元;和/或,
    控制所述第二馈源阵列关闭或打开至少一个单元。
  20. 如权利要求15-17任一项所述的天线***,其特征在于,所述第三平面阵列的每个单元的第一方向上加载有可调相位器件;
    所述至少一个处理器在对所述第一馈源阵列的波束与所述第二馈源阵列的波束的相 位差进行调整时,具体用于:
    调整所述每个单元的可调相位器件的电参数,所述电参数用于控制所述第三平面阵列的单元的电长度。
  21. 如权利要求15-20任一项所述的天线***,其特征在于,所述至少一个处理器还用于:
    在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整之前,检测所述第一馈源阵列的波束的幅度和相位、所述第二馈源阵列的波束的幅度和相位,确定所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心的调整系数,或者确定所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度的调整系数,或者确定所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差的调整系数。
  22. 一种天线***,其特征在于,包括至少一个处理器、第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;
    所述至少一个处理器用于:当所述第三平面阵列接收第一极化方向的波束时,控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差;
    所述第三平面阵列用于:对所述第一极化方向的波束进行反射或透射,形成第一波束和第二波束;所述第一馈源阵列用于:接收所述第一波束;所述第二馈源阵列用于:接收所述第二波束;
    所述至少一个处理器还用于:当所述第三平面阵列接收第二极化方向的波束时,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整;
    所述第三平面阵列还用于:对所述第二极化方向的波束进行反射或透射,形成第三波束和第四波束;所述第一馈源阵列还用于:接收所述第三波束;所述第二馈源阵列还用于:接收所述第四波束;
    其中,所述第一极化方向与所述第二极化方向不同。
  23. 如权利要求22所述的天线***,其特征在于,所述第一馈源阵列的极化方向为水平极化方向,所述第二馈源阵列的极化方向为垂直极化方向;或者,所述第一馈源阵列的极化方向为左旋圆极化方向,所述第二馈源阵列的极化方向为右旋圆极化方向。
  24. 如权利要求22所述的天线***,其特征在于,所述第一极化方向为线极化、圆极化或椭圆极化中的任意一种,所述第二极化方向为线极化、圆极化或椭圆极化中的任意一种。
  25. 如权利要求22-24任一项所述的天线***,其特征在于,所述至少一个处理器在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心进行调整时,具体用于:
    控制所述第一馈源阵列执行波束扫描,使所述第一馈源阵列的波束的相位中心偏转;和/或,
    控制所述第二馈源阵列执行波束扫描,使所述第二馈源阵列的波束的相位中心偏转。
  26. 如权利要求22-24任一项所述的天线***,其特征在于,所述至少一个处理器在对所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度进行调整时,具体用于:
    控制所述第一馈源阵列关闭或打开至少一个单元;和/或,
    控制所述第二馈源阵列关闭或打开至少一个单元。
  27. 如权利要求22-24任一项所述的天线***,其特征在于,所述第三平面阵列的每个单元的第一方向上加载有可调相位器件;
    所述至少一个处理器在对所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差进行调整时,具体用于:
    调整所述每个单元的可调相位器件的电参数,所述电参数用于控制所述第三平面阵列的单元的电长度。
  28. 如权利要求22-27任一项所述的天线***,其特征在于,所述至少一个处理器还用于:
    在对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整之前,检测所述第一馈源阵列的波束的幅度和相位、所述第二馈源阵列的波束的幅度和相位,确定所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心的调整系数,或者确定所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度的调整系数,或者确定所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差的调整系数。
  29. 一种天线***,其特征在于,包括至少一个处理器、第一馈源阵列、第二馈源阵列以及第三平面阵列,所述第一馈源阵列的极化方向与所述第二馈源阵列的极化方向正交,所述第三平面阵列用于反射或透射来自所述第一馈源阵列和所述第二馈源阵列的波束;
    所述至少一个处理器用于:控制所述第一馈源阵列的波束的相位中心在第一位置、波束宽度为第一宽度,控制所述第二馈源阵列的波束的相位中心在第二位置、波束宽度为第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为第一相位差;
    所述第三平面阵列用于:对所述第一馈源阵列的波束和所述第二馈源阵列的波束进行反射或透射,形成第一极化方向的波束;
    所述至少一个处理器还用于:对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整;
    所述第三平面阵列还用于:对所述第一馈源阵列调整后的波束和所述第二馈源阵列调整后的波束进行反射或透射,形成第二极化方向的波束;
    其中,所述第一极化方向与所述第二极化方向不同;
    所述至少一个处理器还用于:当所述第三平面阵列接收所述第一极化方向的波束时,控制所述第一馈源阵列的波束的相位中心在所述第一位置、波束宽度为所述第一宽度,控制所述第二馈源阵列的波束的相位中心在所述第二位置、波束宽度为所述第二宽度,控制所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差为所述第一相位差;
    所述第三平面阵列还用于:对所述第一极化方向的波束进行反射或透射,形成第一波束和第二波束;所述第一馈源阵列还用于:接收所述第一波束;所述第二馈源阵列用于: 接收所述第二波束;
    所述至少一个处理器还用于:当所述第三平面阵列接收所述第二极化方向的波束时,对所述第一馈源阵列和/或所述第二馈源阵列的波束的相位中心、所述第一馈源阵列和/或所述第二馈源阵列的波束的波束宽度、所述第一馈源阵列的波束与所述第二馈源阵列的波束的相位差中的一项或多项进行调整;
    所述第三平面阵列还用于:对所述第二极化方向的波束进行反射或透射,形成第三波束和第四波束;所述第一馈源阵列还用于:接收所述第三波束;所述第二馈源阵列还用于:接收所述第四波束。
  30. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得权利要求1-7和/或8-14中任一项所述的方法被执行。
PCT/CN2021/112913 2020-09-07 2021-08-17 一种控制天线极化方向的方法和天线*** WO2022048433A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/178,623 US20230208029A1 (en) 2020-09-07 2023-03-06 Method for Controlling Antenna Polarization Direction and Antenna System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010929217.6 2020-09-07
CN202010929217.6A CN114156662A (zh) 2020-09-07 2020-09-07 一种控制天线极化方向的方法和天线***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/178,623 Continuation US20230208029A1 (en) 2020-09-07 2023-03-06 Method for Controlling Antenna Polarization Direction and Antenna System

Publications (1)

Publication Number Publication Date
WO2022048433A1 true WO2022048433A1 (zh) 2022-03-10

Family

ID=80460813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112913 WO2022048433A1 (zh) 2020-09-07 2021-08-17 一种控制天线极化方向的方法和天线***

Country Status (3)

Country Link
US (1) US20230208029A1 (zh)
CN (1) CN114156662A (zh)
WO (1) WO2022048433A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052987A1 (en) * 2008-09-03 2010-03-04 Lockheed Martin Corporation Electronically steered, dual-polarized, dual-plane, monopulse antenna feed
CN104269651A (zh) * 2014-09-15 2015-01-07 电子科技大学 一种用于同时同频全双工***的反射阵天线
CN104779442A (zh) * 2015-04-24 2015-07-15 电子科技大学 一种电控波束扫描反射阵天线及其波束扫描方法
CN105720377A (zh) * 2016-01-27 2016-06-29 西安电子科技大学 一种新型多极化透射阵天线
CN109687164A (zh) * 2018-11-29 2019-04-26 西安工业大学 反透射一体化多功能平面空馈阵列天线、无线通信***
CN111193108A (zh) * 2020-02-24 2020-05-22 西南交通大学 一种高功率容量双频带椭圆贴片反射阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052987A1 (en) * 2008-09-03 2010-03-04 Lockheed Martin Corporation Electronically steered, dual-polarized, dual-plane, monopulse antenna feed
CN104269651A (zh) * 2014-09-15 2015-01-07 电子科技大学 一种用于同时同频全双工***的反射阵天线
CN104779442A (zh) * 2015-04-24 2015-07-15 电子科技大学 一种电控波束扫描反射阵天线及其波束扫描方法
CN105720377A (zh) * 2016-01-27 2016-06-29 西安电子科技大学 一种新型多极化透射阵天线
CN109687164A (zh) * 2018-11-29 2019-04-26 西安工业大学 反透射一体化多功能平面空馈阵列天线、无线通信***
CN111193108A (zh) * 2020-02-24 2020-05-22 西南交通大学 一种高功率容量双频带椭圆贴片反射阵列天线

Also Published As

Publication number Publication date
CN114156662A (zh) 2022-03-08
US20230208029A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US20200162141A1 (en) Small cell beam-forming antennas
US9246235B2 (en) Controllable directional antenna apparatus and method
CA2721438C (en) Circularly polarized loop reflector antenna and associated methods
US11276941B2 (en) Broadband antenna
CN105161835B (zh) 一种宽波束平面圆极化天线
US10992066B2 (en) Broadband antenna
US3044063A (en) Directional antenna system
EP3292636A1 (en) Transmit device and method thereof
US20230379023A1 (en) Array antenna and system and method for element configuration in array antenna
WO2022048433A1 (zh) 一种控制天线极化方向的方法和天线***
US20230163462A1 (en) Antenna device with improved radiation directivity
Ferrando-Rocher et al. Satcom on-the-move antenna with mechanically switchable circular polarization
Li et al. Circularly polarized folded transmitarray antenna for multi-beam applications
Tang et al. A low‐profile dual‐polarized stacked patch antenna array with mutual coupling reduction for massive MIMO
CN118369820A (zh) 具有两个堆叠辐射单元的天线设备
Lee et al. Dual‐Polarized Small Base Station Antenna Integrated RF Module Applicable to Various Cell Environments for Next‐Generation Mobile Communication Service
CN111525262A (zh) 一种圆形多波束相控阵列天线及通信方法
Uehara et al. A planar sector antenna for indoor high-speed wireless communication terminals
KR102666553B1 (ko) 고이득 ka 밴드용 이중 오프셋 리플렉트어레이 안테나
EP3975334A1 (en) Antenna apparatus
CN117239426B (zh) 一种基于磁电偶极子的圆极化卫星天线
US20230146159A1 (en) Antenna solution for mm-wave systems
CN110011028B (zh) 一种天线***、通讯终端和基站
Hou et al. A dual-polarized antenna array with electrically down-tilt function based on the vector modulator
Hesselbarth Antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863500

Country of ref document: EP

Kind code of ref document: A1