WO2022048382A1 - 一种mems结构 - Google Patents

一种mems结构 Download PDF

Info

Publication number
WO2022048382A1
WO2022048382A1 PCT/CN2021/110434 CN2021110434W WO2022048382A1 WO 2022048382 A1 WO2022048382 A1 WO 2022048382A1 CN 2021110434 W CN2021110434 W CN 2021110434W WO 2022048382 A1 WO2022048382 A1 WO 2022048382A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
mems structure
substrate
layer
piezoelectric
Prior art date
Application number
PCT/CN2021/110434
Other languages
English (en)
French (fr)
Inventor
李冠华
刘端
Original Assignee
安徽奥飞声学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽奥飞声学科技有限公司 filed Critical 安徽奥飞声学科技有限公司
Publication of WO2022048382A1 publication Critical patent/WO2022048382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones

Definitions

  • the present application relates to the technical field of micro-electromechanical systems, and in particular, to a MEMS structure and a method for forming the same.
  • MEMS Micro-Electro-Mechanical Systems, that is, Micro-Electro-Mechanical Systems
  • microphones mainly include two types: capacitive and piezoelectric.
  • MEMS piezoelectric microphones are prepared by using micro-electromechanical system technology and piezoelectric thin-film technology. Due to the use of semiconductor planar technology and bulk silicon processing technologies, they are small in size, small in volume, and good in consistency. At the same time, compared with the condenser microphone, it has the advantages of no bias voltage, large operating temperature range, dustproof, waterproof, etc., but its sensitivity is relatively low, which restricts the development of MEMS piezoelectric microphones.
  • the present application proposes a MEMS structure, which can effectively improve the sensitivity.
  • a MEMS structure comprising:
  • the second part of the piezoelectric layer is formed above the second electrode layer
  • first electrode layer and the first part are symmetrical with the second part and the third electrode layer with the second electrode layer as a neutral plane.
  • the thickness of the middle region of the diaphragm is greater than the thickness of the peripheral region of the diaphragm, which is beneficial to release the stress at the connection between the piezoelectric layer and the substrate, and reduces the charge in the peripheral region and the middle region. and the resulting reduction in sensitivity.
  • the MEMS structure provided by the present application increases the sensitivity.
  • FIG. 1 shows a schematic perspective view of a MEMS structure provided according to some embodiments
  • FIG. 2 illustrates a cross-sectional perspective view of a MEMS structure provided in accordance with some embodiments
  • FIG. 3 illustrates a top view of a MEMS structure provided in accordance with some embodiments
  • FIG. 4 shows a schematic diagram of connection of electrode layers of a MEMS structure provided according to some embodiments
  • FIG. 5 shows the sensitivity frequency response curve of the MEMS structure in FIG. 1 .
  • a MEMS structure that can be used in sensors or actuators, such as microphones, speakers, hydrophones.
  • the MEMS structure may include a piezoelectric MEMS microphone that converts acoustic energy into electrical energy.
  • the MEMS structure includes a laminated substrate 10, a first electrode layer 20, a first portion 31 of a piezoelectric layer 30, a second electrode layer 40, a second portion 32 of the piezoelectric layer 30, and a third electrode layer 50 .
  • the substrate 10 has a cavity 11 .
  • the first electrode layer 20 is suspended in the cavity 11 .
  • the first portion 31 of the piezoelectric layer 30 is formed over the first electrode layer 20 and is connected to the substrate 10 .
  • the second electrode layer 40 is formed over the first portion 31 .
  • the second portion 32 of the piezoelectric layer 30 is formed over the second electrode layer 40 .
  • the third electrode layer 50 is formed over the second portion 32 .
  • the first electrode layer 20 and the first part 31 are symmetrical with the second part 32 and the third electrode layer 50 with the second electrode layer 40 as the neutral plane. In other words, the first electrode layer 20 and the first portion 31 are symmetrical in the thickness direction with respect to the second electrode layer 40 and the second portion 32 and the third electrode layer 50 .
  • the output voltage of the MEMS structure is improved by such a bimorph structure.
  • the MEMS structure further includes an isolation layer (not shown in the figure), and the isolation layer is formed at the position of the upper surface and the lower surface of the second electrode layer 40 .
  • isolation layers are formed at the locations of the upper surface of the first electrode layer 20 and the lower surface of the third electrode layer 50 . Providing the isolation layer can avoid short circuits between the first electrode layer 20 , the second electrode layer 40 and the third electrode layer 50 .
  • the top surface of the first electrode layer 20 is located below the top surface of the substrate 10
  • the bottom surface of the second electrode layer 40 is located above the top surface of the substrate 10
  • the vertical projection area of the first electrode layer 20 is located in the cavity 11 .
  • the second portion 32 is formed over the second electrode layer 40 and the first portion 31 .
  • the top surface of the peripheral region of the second portion 32 is lower than the top surface of the middle region of the second portion 32
  • the peripheral region of the second portion 32 is connected to the substrate 10
  • the third electrode layer 50 is formed in the middle region of the second portion 32 above.
  • the thickness of the middle region of the diaphragm is greater than the thickness of the peripheral region of the diaphragm, which is beneficial to release the stress at the connection between the piezoelectric layer 30 and the substrate 10 and reduce the charge neutralization in the peripheral region and the middle region. decreased sensitivity.
  • the MEMS structure provided by the present application increases the sensitivity.
  • the first electrode layer 20 , the second electrode layer 40 and the third electrode layer 50 have corresponding at least two equal divisions. In some embodiments, the first electrode layer 20 , the second electrode layer 40 and the third electrode layer 50 have corresponding 12 equal divisions.
  • the second electrode layer 40 is drawn out through a first wire (not shown in the figure) as a terminal of the MEMS structure .
  • the first electrode layer 20 and the third electrode layer 50 are connected, they are connected to the second electrode layer 40 in the second equal division.
  • the first equal division is adjacent to the second equal division, and multiple adjacent equal divisions are repeatedly connected.
  • the first electrode layer 20 and the third electrode layer 50 in the twelfth equal division are connected as another terminal of the MEMS structure. Through this electrode connection method, the output charge can be increased without changing the output voltage, thereby increasing the output energy of the MEMS structure.
  • the material of the substrate 10 includes the material of silicon or any suitable silicon-based compound or derivative (eg, silicon wafer, SOI, polysilicon on SiO2 /Si).
  • the substrate 10 may have various shapes, not limited to pentagons, hexagons, or other regular or irregular shapes.
  • the first electrode layer 20 may be formed by electron beam evaporation, magnetron sputtering process.
  • the first electrode layer 20 includes aluminum, gold, platinum, molybdenum, titanium, chromium and their composite films or other suitable materials.
  • the materials of the second electrode layer 40 and the third electrode layer 50 may be the same as or different from those of the first electrode layer 20 .
  • the piezoelectric layer 30 includes one or more layers of zinc oxide, aluminum nitride, organic piezoelectric films, lead zirconate titanate (PZT), perovskite piezoelectric films, or other suitable materials.
  • the piezoelectric layer 30 may be formed by a CVD process or a magnetron sputtering process or other suitable processes.
  • the cavity 11 may be formed by reactive ion etching or the like.
  • FIG. 5 represents the sensitivity frequency response curve for the specific dimensions and parameters of the structure shown in FIG. 1 .
  • the radius of the cavity 11 of the substrate 10 is 500 ⁇ m, and the radius of the center portion of the piezoelectric layer 30 and the electrode layer is 450 ⁇ m.
  • the thickness of the electrode layer is 100 nm, and the material is aluminum (Al).
  • the center thickness of the composite film is 1900 nm, and the edge thickness is 800 nm.
  • the piezoelectric material is aluminum nitride (AlN). It can be seen from the sensitivity frequency response curve that the sensitivity of the structure is above -42dB in the frequency range of 100-20000Hz, and it is very flat within 10kHz. This just gives a size parameter and material parameter, which can be adjusted at will according to different needs.
  • the thickness of the middle region of the diaphragm is greater than the thickness of the peripheral region of the diaphragm, thereby facilitating the connection between the release piezoelectric layer 30 and the substrate 10
  • the stress at the outer and middle regions reduces the chance of sensitivity reduction due to charge neutralization at the peripheral and intermediate regions.
  • the MEMS structure provided by the present application increases the sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

本申请公开了一种MEMS结构,包括:衬底,具有空腔;第一电极层,悬置于所述空腔内;压电层的第一部分,形成于所述第一电极层上方,并且与所述衬底连接;第二电极层,形成于所述第一部分上方;所述压电层的第二部分,形成于所述第二电极层上方;第三电极层,形成于所述第二部分上方;其中,所述第一电极层和所述第一部分以所述第二电极层为中性面与所述第二部分和所述第三电极层对称。该MEMS结构中,膜片的中间区域的厚度大于膜片的***区域的厚度,从而有利于释放压电层与衬底连接处的应力,降低了***区域和中间区域处电荷中和导致的灵敏度降低的几率。

Description

一种MEMS结构 技术领域
本申请涉及微电机械***技术领域,具体来说,涉及一种MEMS结构及其形成方法。
背景技术
MEMS(Micro-Electro-Mechanical Systems,即微电机械***)麦克风主要包括电容式和压电式两种。MEMS压电麦克风是利用微电机械***技术和压电薄膜技术制备的,由于采用半导体平面工艺和体硅加工等技术,所以其尺寸小、体积小、一致性好。同时相对于电容传声器还有不需要偏置电压、工作温度范围大、防尘、防水等优点,但其灵敏度比较低,制约着MEMS压电麦克风的发展。
针对相关技术中如何提高MEMS结构的灵敏度的问题,目前比较常见的解决方案是将电极层分割成多个部分,但是这种分割电极的方法对于提高灵敏度的范围有限。
发明内容
针对相关技术中如何提高MEMS结构的灵敏度的问题,本申请提出一种MEMS结构,能够有效提高灵敏度。
本申请的技术方案是这样实现的:
根据本申请的一个方面,提供了一种MEMS结构,包括:
衬底,具有空腔;
第一电极层,悬置于所述空腔内;
压电层的第一部分,形成于所述第一电极层上方,并且与所述衬底连接;
第二电极层,形成于所述第一部分上方;
所述压电层的第二部分,形成于所述第二电极层上方;
第三电极层,形成于所述第二部分上方;
其中,所述第一电极层和所述第一部分以所述第二电极层为中性面与所述第二部分和所述第三电极层对称。
本申请所提供的MEMS结构中,膜片的中间区域的厚度大于膜片的***区域的厚度,从而有利于释放压电层与衬底连接处的应力,降低了***区域和中间区域处电荷中和导致的灵敏度降低的几率。换句话说,本申请所提供的MEMS结构提高了灵敏度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据一些实施例提供的MEMS结构的立体示意图;
图2示出了根据一些实施例提供的MEMS结构的剖面立体图;
图3示出了根据一些实施例提供的MEMS结构的俯视图;
图4示出了根据一些实施例提供的MEMS结构的电极层连接示意图;
图5示出了图1中的MEMS结构的灵敏度频响曲线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
根据本申请的实施例,提供了一种MEMS结构,该MEMS结构可以用于传感器或执行器,例如麦克风、扬声器、水听 器。在本申请的实施例中,该MEMS结构可以包括压电式MEMS麦克风,将声能转换成电能。
参见图1和图2,该MEMS结构包括层叠的衬底10、第一电极层20、压电层30的第一部分31、第二电极层40、压电层30的第二部分32和第三电极层50。
衬底10具有空腔11。第一电极层20悬置于空腔11内。压电层30的第一部分31形成于第一电极层20上方,并且与衬底10连接。第二电极层40形成于第一部分31上方。压电层30的第二部分32形成于第二电极层40上方。第三电极层50形成于第二部分32上方。其中,第一电极层20和第一部分31以第二电极层40为中性面与第二部分32和第三电极层50对称。换句话说,第一电极层20和第一部分31关于第二电极层40与第二部分32和第三电极层50在厚度方向上对称。通过这样的双晶片结构提高了MEMS结构的输出电压。
在一些实施例中,MEMS结构还包括隔离层(图中未示出),隔离层形成于第二电极层40的上表面和下表面的位置处。在一些实施例中,隔离层形成于第一电极层20的上表面和第三电极层50的下表面的位置处。设置隔离层可以避免第一电极层20、第二电极层40和第三电极层50之间的短路。
在本申请的实施例中,第一电极层20的顶面位于衬底10的顶面下方,第二电极层40的底面位于衬底10的顶面的上方。第一电极层20的竖直方向投影区域位于空腔11内。第二部分32形成于第二电极层40和第一部分31上方。第二部分32的***区域的顶面低于第二部分32的中间区域的顶面,第二部分32的***区域与衬底10连接,第三电极层50形成于第二部分32的中间区域的上方。在整个MEMS结构中,膜片的中间区域的厚度大于膜片的***区域的厚度,从而有利于释放压电层30与衬底10连接处的应力,降低***区域和中间区域 处电荷中和导致的灵敏度降低。换句话说,本申请所提供的MEMS结构提高了灵敏度。
参见图3,第一电极层20、第二电极层40和第三电极层50具有相对应的至少两个等分区。在一些实施例中,第一电极层20、第二电极层40和第三电极层50具有相对应的12个等分区。
参见图4,为了将MEMS结构的电信号传导出来,在一些实施例中,在第一等分区内,第二电极层40通过第一导线(图中未示出)引出作为MEMS结构的一个端子。第一电极层20和第三电极层50连接后与第二等分区内的第二电极层40相连,第一等分区与第二等分区相邻,依此重复连接多个相邻等分区。在第十二等分区内的第一电极层20和第三电极层50连接后作为MEMS结构的另一个端子。通过这种电极连接方式,可以在不改变输出电压的情况下,增大输出电荷,从而提高MEMS结构的输出能量。
衬底10的材料包括硅或任何合适的硅基化合物或衍生物(例如硅晶片、SOI、SiO 2/Si上的多晶硅)的材料。衬底10可以具有各种形状,不限于五边形、六边形或其他规则或不规则形状。可以通过电子束蒸发、磁控溅射工艺形成第一电极层20。第一电极层20包括铝、金、铂、钼、钛、铬以及它们组成的复合膜或其他合适的材料。第二电极层40和第三电极层50的材料可以与第一电极层20的材料相同或不同。压电层30包括氧化锌、氮化铝、有机压电膜、锆钛酸铅(PZT)、钙钛矿型压电膜中的一层或多层,或其他合适的材料。可以通过CVD工艺或磁控溅射工艺或其他合适工艺形成压电层30。可以通过反应离子蚀刻等方式形成空腔11。
图5代表图1所示的结构的特定尺寸和参数下的灵敏度频响曲线。其中,衬底10的空腔11半径为500μm,压电层30中心部分和电极层半径450μm。其中电极层厚度为100nm,材 料为铝(Al)。复合膜中心厚度1900nm,边缘厚度800nm。压电材料为氮化铝(AlN)。从灵敏度频响曲线可以看到,结构在100~20000Hz频率范围内,灵敏度都-42dB以上,并且在10kHz以内非常平坦。这只是给出了一种尺寸参数和材料参数,可以根据不同需要随意调节。
综上,借助于本申请的上述技术方案,本申请所提供的MEMS结构中,膜片的中间区域的厚度大于膜片的***区域的厚度,从而有利于释放压电层30与衬底10连接处的应力,降低了***区域和中间区域处电荷中和导致的灵敏度降低的几率。换句话说,本申请所提供的MEMS结构提高了灵敏度。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种MEMS结构,其特征在于,包括:
    衬底,具有空腔;
    第一电极层,悬置于所述空腔内;
    压电层的第一部分,形成于所述第一电极层上方,并且与所述衬底连接;
    第二电极层,形成于所述第一部分上方;
    所述压电层的第二部分,形成于所述第二电极层上方;
    第三电极层,形成于所述第二部分上方;
    其中,所述第一电极层和所述第一部分以所述第二电极层为中性面与所述第二部分和所述第三电极层对称。
  2. 根据权利要求1所述的MEMS结构,其特征在于,所述第一电极层的顶面位于所述衬底的顶面下方,所述第二电极层的底面位于所述衬底的顶面的上方。
  3. 根据权利要求1所述的MEMS结构,其特征在于,所述第一电极层的竖直方向投影区域位于所述空腔内。
  4. 根据权利要求1所述的MEMS结构,其特征在于,所述第二部分形成于所述第二电极层和所述第一部分上方。
  5. 根据权利要求1所述的MEMS结构,其特征在于,所述第二部分的***区域的顶面低于所述第二部分的中间区域的顶面,所述第二部分的***区域与所述衬底连接,所述第三电极层形成于所述第二部分的中间区域的上方。
  6. 根据权利要求1所述的MEMS结构,其特征在于,所述第一电极层、所述第二电极层和所述第三电极层具有相对应的至少两个等分区。
  7. 根据权利要求6所述的MEMS结构,其特征在于,所述第一电极层、所述第二电极层和所述第三电极层具有相对应的12个等分区。
  8. 根据权利要求7所述的MEMS结构,其特征在于,
    在第一等分区内,所述第二电极层通过第一导线引出作为所述MEMS结构的一个端子;
    在所述第一等分区内的所述第一电极层和所述第三电极层连接后与第二等分区内的所述第二电极层相连,所述第一等分区与所述第二等分区相邻,依此重复连接多个相邻等分区;
    在第十二等分区内的所述第一电极层和所述第三电极层连接后作为所述MEMS结构的另一个端子。
  9. 根据权利要求1所述的MEMS结构,其特征在于,所述MEMS结构还包括隔离层,所述隔离层形成于所述第二电极层的上下表面的位置处,或者所述隔离层形成于所述第一电极层的上表面和所述第三电极层的下表面的位置处。
  10. 根据权利要求1所述的MEMS结构,其特征在于,所述MEMS结构包括压电式MEMS麦克风。
PCT/CN2021/110434 2020-09-04 2021-08-04 一种mems结构 WO2022048382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010922526.0A CN111901736A (zh) 2020-09-04 2020-09-04 一种mems结构
CN202010922526.0 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022048382A1 true WO2022048382A1 (zh) 2022-03-10

Family

ID=73225030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110434 WO2022048382A1 (zh) 2020-09-04 2021-08-04 一种mems结构

Country Status (2)

Country Link
CN (1) CN111901736A (zh)
WO (1) WO2022048382A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901736A (zh) * 2020-09-04 2020-11-06 安徽奥飞声学科技有限公司 一种mems结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150350792A1 (en) * 2008-06-30 2015-12-03 Karl Grosh Piezoelectric mems microphone
CN109319726A (zh) * 2017-07-31 2019-02-12 新加坡商格罗方德半导体私人有限公司 具有偏向控制的压电麦克风及其制造方法
CN111146328A (zh) * 2019-12-31 2020-05-12 诺思(天津)微***有限责任公司 单晶压电结构及具有其的电子设备
CN111146327A (zh) * 2019-12-25 2020-05-12 诺思(天津)微***有限责任公司 单晶压电结构及其制造方法、单晶压电层叠结构的电子设备
CN111901736A (zh) * 2020-09-04 2020-11-06 安徽奥飞声学科技有限公司 一种mems结构
CN212324361U (zh) * 2020-09-04 2021-01-08 安徽奥飞声学科技有限公司 一种mems结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247295A (ja) * 2009-04-17 2010-11-04 Toshiba Corp 圧電mems素子及びその製造方法
JP6787553B2 (ja) * 2017-02-14 2020-11-18 新日本無線株式会社 圧電素子
CN110739931A (zh) * 2019-09-04 2020-01-31 深圳市汇芯通信技术有限公司 一种滤波器及其制备方法
CN110636421A (zh) * 2019-09-09 2019-12-31 安徽奥飞声学科技有限公司 一种mems结构及其制造方法
CN111017861A (zh) * 2019-10-14 2020-04-17 清华大学 基于逆压电效应的电容-悬臂梁微型式电场测量传感器件
CN110677795A (zh) * 2019-11-12 2020-01-10 安徽奥飞声学科技有限公司 一种mems结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150350792A1 (en) * 2008-06-30 2015-12-03 Karl Grosh Piezoelectric mems microphone
CN109319726A (zh) * 2017-07-31 2019-02-12 新加坡商格罗方德半导体私人有限公司 具有偏向控制的压电麦克风及其制造方法
CN111146327A (zh) * 2019-12-25 2020-05-12 诺思(天津)微***有限责任公司 单晶压电结构及其制造方法、单晶压电层叠结构的电子设备
CN111146328A (zh) * 2019-12-31 2020-05-12 诺思(天津)微***有限责任公司 单晶压电结构及具有其的电子设备
CN111901736A (zh) * 2020-09-04 2020-11-06 安徽奥飞声学科技有限公司 一种mems结构
CN212324361U (zh) * 2020-09-04 2021-01-08 安徽奥飞声学科技有限公司 一种mems结构

Also Published As

Publication number Publication date
CN111901736A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
US11665968B2 (en) Piezoelectric MEMS microphone
US8357981B2 (en) Transducer devices having different frequencies based on layer thicknesses and method of fabricating the same
CN110099344B (zh) 一种mems结构
US20100002543A1 (en) Micromechanical Structure for Receiving and/or Generating Acoustic Signals, Method for Producing a Micromechnical Structure, and Use of a Micromechanical Structure
CN110149582B (zh) 一种mems结构的制备方法
CN110099345B (zh) 一种mems结构
US20180002160A1 (en) Mems device and process
CN111800716A (zh) 一种mems结构及其形成方法
CN110113700A (zh) 一种mems结构
CN110113702B (zh) 一种mems结构的制造方法
CN110636421A (zh) 一种mems结构及其制造方法
WO2022048382A1 (zh) 一种mems结构
US11631800B2 (en) Piezoelectric MEMS devices and methods of forming thereof
CN209748812U (zh) 一种mems结构
CN212086492U (zh) 一种mems结构
CN110113703B (zh) 一种mems结构的制备方法
CN212324361U (zh) 一种mems结构
CN209748811U (zh) 一种mems结构
CN209627695U (zh) 一种mems结构
CN110677795A (zh) 一种mems结构
JP4944494B2 (ja) 静電容量型センサ
WO2022110420A1 (zh) 压电mems麦克风及其阵列和制备方法
CN113301484A (zh) 一种mems结构及其制造方法
CN209608857U (zh) 一种mems结构
CN210609703U (zh) 一种mems结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863450

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21863450

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21863450

Country of ref document: EP

Kind code of ref document: A1