WO2022048272A1 - 加热控制方法、装置、设备及存储介质 - Google Patents

加热控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022048272A1
WO2022048272A1 PCT/CN2021/102927 CN2021102927W WO2022048272A1 WO 2022048272 A1 WO2022048272 A1 WO 2022048272A1 CN 2021102927 W CN2021102927 W CN 2021102927W WO 2022048272 A1 WO2022048272 A1 WO 2022048272A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cut
battery
vehicle
brake pedal
Prior art date
Application number
PCT/CN2021/102927
Other languages
English (en)
French (fr)
Inventor
霍云龙
王燕
刘建康
杨钫
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022048272A1 publication Critical patent/WO2022048272A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present application relate to vehicle technology, for example, to a heating control method, device, device, and storage medium.
  • the power battery heating function has become an important way for many electric vehicles to solve such problems.
  • the temperature of the power battery is raised by the battery heating function, so that it can get out of the too low temperature and restore its maximum power capacity for discharging and charging.
  • the braking energy can be recovered as much as possible on the premise of meeting the power performance of the vehicle in winter, which is beneficial to prolong the driving range of the pure electric vehicle in winter.
  • the battery heating termination temperature adopts a uniform temperature threshold.
  • the battery starts to heat when the temperature is lower than the temperature threshold, and stops when the temperature reaches the temperature threshold.
  • the embodiments of the present application provide a heating control method, device, equipment, and storage medium, which can formulate different battery heating methods for different driving behaviors of drivers of each vehicle on the basis of basically satisfying the power requirements of different drivers.
  • the cut-off temperature is simple in calculation and strong in personalization. When the driver's performance demand for the battery is not strong, it can prevent energy waste caused by excessive heating temperature. At the same time, considering the driver's braking demand habits and working conditions, the braking energy recovery rate at low temperature can be increased to a certain extent, which has the effect of energy saving at low temperature.
  • An embodiment of the present application provides a heating control method, including: when a vehicle is in a high-voltage power-on state, acquiring battery temperature, ambient temperature, and battery state of charge (State of Charge, SOC) values; When the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery state of charge value is greater than the state of charge value threshold, the battery is heated; the target cut-off temperature is determined according to the historical data of the vehicle. After the stated target cut-off temperature, stop heating the battery.
  • SOC state of Charge
  • determining the target cut-off temperature according to historical data of the vehicle includes: acquiring historical data of the vehicle, where the historical data includes: the average opening of the brake pedal, the average stepping frequency of the brake pedal, and the average battery average during driving of the vehicle. Discharge power; the first cut-off temperature and the second cut-off temperature are determined according to the historical data, wherein the first cut-off temperature is the battery temperature that meets the driver's power requirements, and the second cut-off temperature is to meet the recovery of the vehicle. battery temperature for performance; the target cut-off temperature is determined from the first cut-off temperature and the second cut-off temperature.
  • determining a target cut-off temperature according to the first cut-off temperature and the second cut-off temperature includes: when the first cut-off temperature is equal to the second cut-off temperature, determining that the target cut-off temperature is the The first cut-off temperature or the second cut-off temperature; when the first cut-off temperature is lower than the second cut-off temperature, obtain the first time when the battery temperature rises to the first cut-off temperature, and obtain the first cut-off temperature at the first cut-off temperature.
  • the average opening of the brake pedal and the average stepping frequency of the brake pedal in the time period, and the current driving braking demand is determined according to the average opening of the brake pedal and the average stepping frequency of the brake pedal in the first time, and according to the
  • the historical data determines the historical driving brake demand, and in the case that the current driving brake demand is less than the historical driving brake demand, the target cutoff temperature is determined as the first cutoff temperature, and when the current driving brake demand is greater than or equal to the historical driving braking demand, determine the target cut-off temperature as the second cut-off temperature; when the first cut-off temperature is greater than the second cut-off temperature, and the first cut-off temperature is the same as the When the difference between the two cut-off temperatures is less than the cut-off temperature threshold, the target cut-off temperature is determined to be the second cut-off temperature, and when the difference between the first cut-off temperature and the two cut-off temperatures is greater than or equal to the cut-off temperature threshold Next, the target cut-off temperature is determined to be the first cut-off temperature
  • determining the first cut-off temperature and the second cut-off temperature according to the historical data includes: determining, based on a fuzzy rule, the peak charging power of the battery according to the brake pedal opening and the braking pedal stepping frequency; The second cutoff temperature is obtained by calculating the peak charging power and the state of charge value of the battery; the first cutoff temperature is obtained by calculating the average discharge power of the battery and the state of charge value of the battery during the running of the vehicle.
  • the embodiment of the present application further provides a heating control device, the heating control device includes: an acquisition module configured to acquire battery temperature, ambient temperature and battery state of charge values when the vehicle is in a high-voltage power-on state; the heating module , set to heat the battery of the vehicle when the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery state of charge value is greater than the state of charge value threshold; the control module is set to be based on The historical data of the vehicle determines a target cut-off temperature, and after the battery is heated to the target cut-off temperature, the heating of the battery is stopped.
  • an acquisition module configured to acquire battery temperature, ambient temperature and battery state of charge values when the vehicle is in a high-voltage power-on state
  • the heating module set to heat the battery of the vehicle when the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery state of charge value is greater than the state of charge value threshold
  • the control module is set to be based on The historical
  • control module is configured to determine the target cut-off temperature according to the historical data of the vehicle in the following manner: obtain the historical data of the vehicle, the historical data includes: the average opening of the brake pedal, the average stepping of the brake pedal frequency and the average discharge power of the battery during the driving process of the vehicle; the first cut-off temperature and the second cut-off temperature are determined according to the historical data, wherein the first cut-off temperature is the battery temperature that meets the driver's power requirements, and the The second cut-off temperature is a battery temperature that satisfies the recovery performance of the vehicle; the target cut-off temperature is determined according to the first cut-off temperature and the second cut-off temperature.
  • control module is configured to determine the target cut-off temperature according to the first cut-off temperature and the second cut-off temperature in the following manner: when the first cut-off temperature is equal to the second cut-off temperature, determine the target cut-off temperature.
  • the temperature is the first cut-off temperature or the second cut-off temperature; when the first cut-off temperature is lower than the second cut-off temperature, obtain the first time for the battery temperature to rise to the first cut-off temperature, Obtain the average opening of the brake pedal and the average stepping frequency of the brake pedal in the first time, determine the current driving braking demand according to the average opening of the brake pedal and the average stepping frequency of the brake pedal in the first time, and Determine the historical driving brake demand according to the historical data, and determine the target cutoff temperature as the first cutoff temperature when the current driving brake demand is less than the historical driving brake demand, and determine the target cutoff temperature as the first cutoff temperature.
  • the target cut-off temperature is determined to be the second cut-off temperature
  • the difference between the first cut-off temperature and the second cut-off temperature is greater than or equal to the cut-off temperature
  • the target cut-off temperature is determined to be the first cut-off temperature
  • control module is configured to determine the first cut-off temperature and the second cut-off temperature according to historical data in the following manner: based on fuzzy rules, determine the peak battery charge according to the brake pedal opening and the brake pedal stepping frequency. power; the second cut-off temperature is calculated according to the battery peak charging power and the battery state of charge value; the first cut-off temperature is calculated according to the battery average discharge power and the battery state of charge value during the driving process of the vehicle .
  • the embodiments of the present application also provide a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor executes the program to achieve any of the methods in the embodiments of the present application.
  • a computer device including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor executes the program to achieve any of the methods in the embodiments of the present application.
  • the embodiment of the present application further provides a computer-readable storage medium, which stores a computer program, and when the program is executed by a processor, implements the heating control method described in any one of the embodiments of the present application.
  • FIG. 1 is a flowchart of a heating control method in Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural diagram of a heating control device in Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a computer device in Embodiment 3 of the present application.
  • FIG. 1 is a flowchart of a heating control method provided in the first embodiment of the application. This embodiment is applicable to the situation of vehicle heating control.
  • the method can be executed by the heating control device in the embodiment of the application, and the device can use implemented in software and/or hardware. As shown in Figure 1, the method includes the following steps.
  • the high-voltage power-on state means that the whole vehicle is powered on and the relay is in a closed state. For example, after the user steps on the brake and inserts the key to start the vehicle, the vehicle is in a high-voltage power-on state, which is not limited in the embodiments of the present application. .
  • the battery temperature, the ambient temperature, and the battery state of charge can be acquired by sensors, and the embodiments of the present application do not limit the acquisition methods of the battery temperature, the ambient temperature, and the battery state of charge.
  • the battery temperature, ambient temperature, and battery state-of-charge values are obtained.
  • the battery temperature, ambient temperature, and battery state-of-charge values collected by sensors are obtained.
  • the battery temperature threshold may be set as required, which is not limited in this embodiment of the present application.
  • the ambient temperature threshold may be set as required, which is not limited in this embodiment of the present application.
  • the state-of-charge value threshold may be set as required, which is not limited in this embodiment of the present application.
  • the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery state of charge value is greater than the state of charge value threshold, the battery is heated, for example, if the battery temperature is lower than T0, the ambient temperature is lower than When Tb, and the SOC of the power battery>SOC1, the battery is heated.
  • S130 Determine a target cut-off temperature according to historical data of the vehicle, and stop heating the battery after the battery is heated to the target cut-off temperature.
  • the historical data of the vehicle may include: the average opening of the brake pedal, the average stepping frequency of the brake pedal, and the average discharge power of the battery during the driving process of the vehicle, and may also include other data that can characterize the characteristics of the vehicle. No restrictions apply.
  • the target cut-off temperature is the final heating cut-off temperature, that is, when the battery is heated to the target cut-off temperature, the heating of the battery is stopped.
  • determining the target cut-off temperature according to historical data of the vehicle includes: acquiring historical data of the vehicle, where the historical data includes: the average opening of the brake pedal, the average stepping frequency of the brake pedal, and the average battery average during driving of the vehicle. Discharge power; the first cut-off temperature and the second cut-off temperature are determined according to the historical data, wherein the first cut-off temperature is the battery temperature that meets the driver's power requirements, and the second cut-off temperature is to meet the recovery of the vehicle.
  • the battery temperature of the performance; the target cut-off temperature for battery heating is determined according to the first cut-off temperature and the second cut-off temperature.
  • the manner of determining the first cut-off temperature and the second cut-off temperature according to historical data may be determined according to the peak battery charging power and the battery state of charge value, or may be determined according to the battery average discharge power and the battery state of charge value during the driving process of the vehicle , or other manners, which are not limited in this embodiment of the present application.
  • vehicle usage parameters that can reflect different driving habits of drivers to calculate the first cut-off temperature T1 or the second cut-off temperature T2; the embodiment of the present application uses the brake pedal use parameter and the average value of battery discharge power to calculate, Other parameters such as motor power, torque, accelerator pedal, etc. may be used to calculate the first cut-off temperature or the second cut-off temperature.
  • the method of determining the target cut-off temperature of battery heating according to the first cut-off temperature and the second cut-off temperature may be to determine the target cut-off temperature of battery heating according to the magnitude relationship between the first cut-off temperature and the second cut-off temperature, or to determine the target cut-off temperature of battery heating according to the relationship between the first cut-off temperature and the second cut-off temperature.
  • the first cut-off temperature, the second cut-off temperature, the average brake pedal opening and the average brake pedal stepping frequency determine the target cut-off temperature for battery heating, which can also be based on the difference between the first cut-off temperature and the second cut-off temperature and the cut-off temperature.
  • the relationship between the temperature thresholds determines the target cut-off temperature for battery heating, and may also be a combination of the above methods, which is not limited in this embodiment of the present application.
  • determining a target cut-off temperature according to historical data of the vehicle, and stopping heating the battery after the battery is heated to the target cut-off temperature including: if the first cut-off temperature is equal to the second cut-off temperature, then Determine the target cut-off temperature as the first cut-off temperature or the second cut-off temperature, and stop heating the battery when the battery is heated to the first cut-off temperature or the second cut-off temperature; if the first cut-off temperature If the cut-off temperature is lower than the second cut-off temperature, obtain the first time when the battery temperature rises to the first cut-off temperature, obtain the average opening of the brake pedal and the average stepping frequency of the brake pedal within the first time, and obtain the The average opening of the brake pedal and the average stepping frequency of the brake pedal in the first time period determine the current driving braking demand, and determine the historical driving braking demand according to the historical data, if the current driving braking demand is less than the historical driving braking demand, when the battery is heated to the first cut-off temperature, stop heating the battery,
  • a first cut-off temperature and a second cut-off temperature are determined according to the historical data, wherein the first cut-off temperature is a battery temperature that meets the driver's power requirement, and the second cut-off temperature is a battery temperature that meets the vehicle's power requirements.
  • the battery temperature of the recovery performance includes: based on fuzzy rules, determining the peak battery charging power according to the brake pedal opening and the braking pedal stepping frequency; calculating the first battery according to the battery peak charging power and the battery state of charge value 2.
  • the cut-off temperature; the first cut-off temperature is calculated according to the average discharge power of the battery and the state of charge value of the battery during the running of the vehicle.
  • the system structure corresponding to the heating control method provided by the embodiment of the present application is composed of a power battery, a heating device, a controller, a temperature acquisition system, and the like.
  • the battery is heated by the battery heating device, the vehicle controller is used for calculation and corresponding control, and the temperature of the battery is collected by the temperature sensor.
  • the control process is shown in Figure 2: After the vehicle is powered on at high voltage, when the following three conditions are met at the same time, the power battery heating system turns on the heating function, and the driving heating function starts: (1) The battery temperature is lower than T0; (2) The ambient temperature lower than Tb; (3) SOC>SOC1 of the power battery.
  • the heating device heats the battery indirectly by heating the battery or directly heating the battery with a certain power.
  • the embodiment of the present application does not limit the heating method, and the battery is heated by the above method, thereby increasing the battery temperature.
  • the heating function After the heating function is turned on, it is necessary to calculate the first cut-off temperature T1 and the second cut-off temperature T2 of the heating according to the average opening of the brake pedal and the average stepping frequency of the brake pedal during the driver's previous n driving, and the average discharge power of the battery during driving. , here it is simply indicated that the first cut-off temperature T1 is the battery temperature that can meet the driver's power requirements, and the second cut-off temperature T2 is the battery temperature that can meet the recovery performance of the vehicle. By comparing the first cut-off temperature T1 and the second cut-off temperature T2, the final cut-off temperature of the battery heating is confirmed.
  • the average pressing frequency determines the current driving braking demand; the historical driving braking demand is determined according to the historical data, and the current driving braking demand is determined according to the average opening of the brake pedal and the average pressing frequency of the brake pedal within the time t.
  • Fuzzy rules query the fuzzy rules according to the average opening of the brake pedal and the average stepping frequency of the brake pedal in time t, and obtain the current driving corresponding to the average opening of the brake pedal and the average stepping frequency of the brake pedal in time t Braking demand, if the current driving braking demand is low and the historical driving braking demand is medium or high, or the current driving braking demand is medium and the historical driving braking demand is high, it can be considered that the driving braking demand is relatively high. If there is a big change (such as driving on a continuous highway, etc.), after the battery is heated to T1, the battery heating is turned off;
  • Fuzzy rules query the fuzzy rules according to the average opening of the brake pedal and the average stepping frequency of the brake pedal in time t, and obtain the current driving corresponding to the average opening of the brake pedal and the average stepping frequency of the brake pedal in time t Braking demand, if the current driving braking demand is in line with or higher than the historical driving braking demand, after the battery is heated to T2, the battery heating is turned off.
  • T°C for example, 5°C means that the two temperature thresholds T1 and T2 are quite different
  • the SOC of the power battery is judged at any time. If the SOC is lower than SOC1, that is, when the battery power is low, the heating device will exit at any time to ensure that the remaining power is used for driving.
  • Calculation method of the first cut-off temperature and the second cut-off temperature The calculation method of the first cut-off temperature and the second cut-off temperature is mainly the calculation of T1 and T2 in the above process.
  • the value of T2 can be calculated from the battery peak charging power in the historical data, but the battery peak charging power cannot accurately represent the driver's braking demand. For example, in winter, the battery peak charging power is always at a low value, which cannot actually reflect the current situation.
  • the driver's braking demand so here, using the brake pedal opening and the brake pedal stepping frequency, the peak battery charging power corresponding to the driver's braking demand is determined based on the fuzzy control method.
  • the fuzzy rules are shown in Table 1.
  • the average opening of the brake pedal is the non-zero average value of the opening of the brake pedal in the historical data of a period of travel (the vehicle has a speed), where 0 means that the opening of the pedal is 0 , 1 means that the brake pedal is pressed to the end; the frequency of the brake pedal is the historical data of the same trip (the vehicle has a speed), the average number of times the brake pedal is pressed per minute, that is, the number of times the brake pedal is used per minute, from The process of the brake pedal opening from 0 to the next time it is 0 is recorded as one time.
  • the numerical values used for fuzzy classification in Table 1 may vary and are not limited to this classification.
  • the fuzzy rules are shown in Table 1:
  • the low, medium and high braking demands of drivers in Table 1 correspond to the three braking demands of low, medium and high power.
  • three battery peak charging powers P1, P2 and P3 can be determined, and P1, P2 and P3 can represent the three braking demand powers of low, medium and high.
  • P1, P2 and P3 three kinds of braking demand power are satisfied respectively: under the World Harmonized Light-duty Vehicles Test Procedure (WLTC) or other working conditions, 30%, 50% and 80% of the braking power can be recovered. braking energy.
  • WLTC World Harmonized Light-duty Vehicles Test Procedure
  • the battery peak charging power P c f1(SOC, T), that is, the battery peak charging power is a function value of SOC and temperature T, and the power battery temperature value can be calculated by combining the battery state of charge value SOC and the battery peak charging power.
  • the temperature value is the second cut-off temperature T2 that satisfies a certain recovery capability, wherein the battery state of charge value SOC may be the SOC before the battery is heated, or the SOC at the current moment, which is not limited in this embodiment of the present application.
  • the first cut-off temperature T1 is calculated according to the average value of the battery discharge power.
  • the sampling method for calculating the average discharge power is the same as the sampling method for the average opening of the brake pedal in the calculation process of T2 above.
  • a certain number of battery discharge power values are taken to calculate the average discharge power P0.
  • the battery discharge power P d f2 (SOC, T), the temperature value of the power battery can be calculated based on the SOC and the average value P0 of the discharge power.
  • This temperature value is the first cut-off temperature T1 that satisfies a certain recovery capacity, where the battery is charged
  • the state value SOC may be the SOC before the battery is heated, or may be the SOC at the current moment, which is not limited in this embodiment of the present application.
  • the calculation of T1 and T2 is realized by the controller, and the historical data is also recorded by the controller.
  • the sample statistics of historical data there are two ways to calculate the sample statistics of historical data: one is to use the sample size within a period of time t1 closest to the current moment, and the other is to measure according to the number of data frames, The data period of each frame can be set to 1s, and the n-frame data closest to the current moment is used as the sample size. These sample sizes should be sufficient to support accurate calculations of T1 and T2.
  • the controller should also have simple data processing capabilities, which can extract key car usage parameters from the data, such as brake pedal opening, brake pedal usage frequency, etc., and can filter out non-zero values.
  • the heating cut-off temperature of the power battery at low temperature is determined according to the driving habits of the driver, and not all vehicles are set with a uniform heating cut-off temperature; from the user's point of view, it not only satisfies the power performance but also considers the economy at low temperature. sex.
  • a calculation method for the heating cut-off temperature of the battery is established. The method of using the current driving condition for correction has been added to improve the applicability of the operating conditions.
  • the battery temperature, ambient temperature, and battery state-of-charge values are obtained; if the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery The state of charge value is greater than the state of charge value threshold, the battery is heated; the target cut-off temperature is determined according to the historical data of the vehicle, and when the battery is heated to the target cut-off temperature, the battery is stopped to be heated, which can basically meet different requirements.
  • different battery heating cut-off temperatures are formulated for different driving behaviors of each vehicle. The calculation is simple and the personalization is strong.
  • the driver's performance requirements for the battery are not strong, it can prevent the heating temperature from being too high. High energy waste.
  • the recovery rate of braking energy at low temperature can be increased to a certain extent, which has the effect of energy saving at low temperature.
  • FIG. 3 is a schematic structural diagram of a heating control device provided in Embodiment 2 of the present application. This embodiment can be applied to the situation of vehicle heating control, the device can be implemented by software and/or hardware, and the device can be integrated in any equipment that provides heating control function, as shown in FIG. 3 , the heating control device It includes: an acquisition module 210 , a heating module 220 and a control module 230 .
  • the obtaining module 210 is configured to obtain the battery temperature, the ambient temperature and the battery state of charge when the vehicle is in a high voltage power-on state;
  • the heating module 220 is configured to obtain the battery temperature if the battery temperature is less than the battery temperature threshold and the ambient temperature is less than the ambient temperature threshold And the battery state of charge value is greater than the state of charge value threshold, the battery is heated;
  • the control module 230 is configured to determine the target cut-off temperature according to the historical data of the vehicle, and stop heating the battery when the battery is heated to the target cut-off temperature. heating.
  • control module is configured to determine the target cut-off temperature according to historical data of the vehicle in the following manner: obtain historical data of the vehicle, the historical data including: the average brake pedal opening, the average brake pedal opening Stepping frequency and average battery discharge power during vehicle running; determine the first cut-off temperature and the second cut-off temperature according to the historical data, wherein the first cut-off temperature is the battery temperature that meets the driver's power requirements, so The second cut-off temperature is a battery temperature that satisfies the recovery performance of the vehicle; the target cut-off temperature for battery heating is determined according to the first cut-off temperature and the second cut-off temperature.
  • control module is configured to: if the first cut-off temperature is equal to the second cut-off temperature, determine that the target cut-off temperature is the first cut-off temperature or the second cut-off temperature, and when the battery is When heating to the first cut-off temperature or the second cut-off temperature, stop heating the battery; if the first cut-off temperature is lower than the second cut-off temperature, obtain the battery temperature rising to the first cut-off temperature The required first time, obtain the average opening of the brake pedal and the average stepping frequency of the brake pedal in the first time, and determine according to the average opening of the brake pedal and the average stepping frequency of the brake pedal in the first time The current driving and braking demand is determined according to the historical data.
  • Stop heating the battery if the current driving brake demand is greater than or equal to the historical driving brake demand, stop heating the battery when the battery is heated to the second cut-off temperature; if the first If the cut-off temperature is greater than the second cut-off temperature, and the difference between the first cut-off temperature and the second cut-off temperature is less than the cut-off temperature threshold, then when the battery is heated to the second cut-off temperature, the heating of the battery is stopped. , if the difference between the first cut-off temperature and the second cut-off temperature is greater than or equal to the cut-off temperature threshold, when the battery is heated to the first cut-off temperature, the heating of the battery is stopped.
  • control module is configured to determine the target cut-off temperature according to the first cut-off temperature and the second cut-off temperature in the following manner: based on a fuzzy rule, determine the battery peak value according to the brake pedal opening and the brake pedal stepping frequency. charging power; the second cut-off temperature is calculated according to the battery peak charging power and the battery state of charge value; the first cut-off temperature is calculated according to the battery average discharge power and the battery state of charge value during the running of the vehicle temperature.
  • the above product can execute the method provided by any embodiment of the present application, and has functional modules corresponding to the execution method.
  • the battery temperature, ambient temperature, and battery state-of-charge values are obtained; if the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery The state of charge value is greater than the state of charge value threshold, the battery is heated; the target cut-off temperature is determined according to the historical data of the vehicle, and when the battery is heated to the target cut-off temperature, the battery is stopped to be heated, which can basically meet different requirements.
  • different battery heating cut-off temperatures are formulated for different driving behaviors of each vehicle. The calculation is simple and the personalization is strong.
  • the driver's demand for battery performance is not strong, it can prevent heating Energy waste caused by overheating.
  • the braking energy recovery rate at low temperature can be increased to a certain extent, which has the effect of energy saving at low temperature.
  • FIG. 4 is a schematic structural diagram of a computer device in Embodiment 3 of the present application.
  • FIG. 4 shows a block diagram of an exemplary computer device 12 suitable for use in implementing embodiments of the present application.
  • the computer device 12 shown in FIG. 4 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • computer device 12 takes the form of a general-purpose computing device.
  • Components of computer device 12 may include, but are not limited to, one or more processors or processing units 16 , system memory 28 , and a bus 18 connecting various system components including system memory 28 and processing unit 16 .
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association) Association, VESA) local bus and Peripheral Component Interconnect (PCI) bus.
  • Computer device 12 includes a variety of computer system readable media. These media can be any available media that can be accessed by computer device 12, including both volatile and nonvolatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • Computer device 12 may optionally include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be configured to read and write to a non-removable, non-volatile magnetic medium (not shown in FIG. 4, commonly referred to as a "hard drive"), although not shown in FIG.
  • Disk drives for reading and writing removable non-volatile magnetic disks (such as "floppy disks"), and removable non-volatile optical disks (Compact Disc-Read Only Memory, CD-ROM), Digital Video Discs (Digital Video Discs) Disc-Read Only Memory, DVD-ROM) or other optical media) optical disk drive for reading and writing.
  • each drive may be connected to bus 18 through one or more data media interfaces.
  • the memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present application.
  • a program/utility 40 having a set (at least one) of program modules 42, which may be stored, for example, in memory 28, such program modules 42 including, but not limited to, an operating system, one or more application programs, other program modules, and program data , each or a combination of these examples may include an implementation of a network environment.
  • Program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • Computer device 12 may also communicate with one or more external devices 14 (eg, keyboard, pointing device, display 24, etc.), may also communicate with one or more devices that enable a user to interact with computer device 12, and/or communicate with Any device (eg, network card, modem, etc.) that enables the computer device 12 to communicate with one or more other computing devices. Such communication may take place through input/output (I/O) interface 22 .
  • the display 24 does not exist as an independent entity, but is embedded in the mirror surface. When the display surface of the display 24 is not displayed, the display surface of the display 24 and the mirror surface are visually integrated.
  • Computer device 12 may also communicate with one or more networks (eg, Local Area Network (LAN), Wide Area Network, WAN) and/or public networks, such as the Internet, through network adapter 20. As shown, network adapter 20 communicates with other modules of computer device 12 via bus 18 . Although not shown, other hardware and/or software modules may be used in conjunction with computer device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, Redundant Arrays of Independent Disks , RAID) systems, tape drives, and data backup storage systems.
  • networks eg, Local Area Network (LAN), Wide Area Network, WAN
  • WAN Wide Area Network
  • public networks such as the Internet
  • network adapter 20 communicates with other modules of computer device 12 via bus 18 .
  • other hardware and/or software modules may be used in conjunction with computer device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, Redundant Arrays of Independent Disks , RAID) systems, tape drives, and data backup storage
  • the processing unit 16 executes a variety of functional applications and data processing by running the programs stored in the system memory 28, for example, to realize the heating control method provided by the embodiments of the present application: when the vehicle is in a high-voltage power-on state, obtain the battery temperature, Ambient temperature and battery state of charge value; if the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery state of charge value is greater than the state of charge value threshold, the battery is heated; according to the history of the vehicle The data determines the target cut-off temperature, and when the battery is heated to the target cut-off temperature, the heating of the battery is stopped.
  • the fourth embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the program is executed by a processor, implements the heating control methods provided by all the application embodiments of the present application: when the vehicle is in a high-voltage power-on state, Obtain battery temperature, ambient temperature and battery state of charge value; if the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold and the battery state of charge value is greater than the state of charge value threshold, then heat the battery; The target cut-off temperature is determined according to the historical data of the vehicle, and when the battery is heated to the target cut-off temperature, the heating of the battery is stopped.
  • the computer-readable medium can be a computer-readable signal medium or a computer-readable storage medium or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, RAM, Read Only Memory (ROM), erasable programmable Read-only memory (Erasable Programmable Read-Only Memory, EPROM) or flash memory), optical fiber, CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, with computer-readable program code embodied in the signal medium. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • clients and servers can communicate using any currently known or future developed network protocols such as Hyper Text Transfer Protocol (HTTP), and can communicate with digital data in any form or medium.
  • HTTP Hyper Text Transfer Protocol
  • Data communications eg, communications networks
  • Examples of communication networks include LANs, WANs, the Internet (eg, the Internet), and peer-to-peer networks (eg, ad hoc peer-to-peer networks), as well as any currently known or future developed networks.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or may exist alone without being assembled into the electronic device.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the electronic device, the electronic device: when the vehicle is in a high-voltage power-on state, obtains battery temperature, ambient temperature and battery charge State of charge value; if the battery temperature is less than the battery temperature threshold, the ambient temperature is less than the ambient temperature threshold, and the battery state of charge value is greater than the state of charge value threshold, the battery is heated; the target cut-off temperature is determined according to the historical data of the vehicle , when the battery is heated to the target cut-off temperature, stop heating the battery. .
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedures, or a combination thereof programming language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a LAN or WAN, or may be connected to an external computer (eg, through the Internet using an Internet service provider).
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures.
  • two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • Each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in special purpose hardware-based systems that perform the specified functions or operations, or special purpose hardware implemented in combination with computer instructions.
  • the units involved in the embodiments of the present disclosure may be implemented in a software manner, and may also be implemented in a hardware manner.
  • the name of a unit in a case does not constitute a qualification for the unit itself.
  • exemplary types of hardware logic components include: Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (Application Specific Standard Products) Standard Product, ASSP), system on chip (System On Chip, SOC), complex programmable logic device (Complex Programmable Logic Device, CPLD) and so on.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Products
  • ASOC System On Chip
  • complex programmable logic device Complex Programmable Logic Device, CPLD
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with the instruction execution system, apparatus, or apparatus.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing. Examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, RAM, ROM, EPROM or flash memory, optical fibers, CD-ROMs, optical storage devices, magnetic storage devices, or Any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种加热控制方法,包括:在车辆处于高压上电状态的情况下,获取电池温度、环境温度和电池荷电状态值;在所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值的情况下,对电池进行加热;根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热。还公开了一种应用加热控制方法的加热控制装置、计算机设备及存储介质。通过电池加热功能将动力电池的温度升高,使其脱离过低的温度,恢复其放电和充电的最大功率能力,同时在满足车辆的冬季动力性的前提下能尽可能多的回收制动能量,有利于延长纯电动汽车的冬季续驶里程。

Description

加热控制方法、装置、设备及存储介质
本申请要求在2020年09月07日提交中国专利局、申请号为202010931152.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及车辆技术,例如涉及一种加热控制方法、装置、设备及存储介质。
背景技术
在冬季严寒条件下,车用动力电池的性能和放电容量都会出现大幅衰减,加之冬季车辆的暖风使用和阻力增加,造成车辆的续驶里程大幅缩短和车辆的动力性能下降。动力电池加热功能成为了许多电动汽车解决此类问题的重要途径。通过电池加热功能将动力电池的温度升高,使其脱离过低的温度,恢复其放电和充电的最大功率能力。同时在满足车辆的冬季动力性的前提下能尽可能多的回收制动能量,有利于延长纯电动汽车的冬季续驶里程。
电池加热终止温度采用统一的温度阈值,电池的温度低于温度阈值即开始加热,加热到该温度阈值就停止。
发明内容
本申请实施例提供一种加热控制方法、装置、设备及存储介质,能够在基本满足不同驾驶员的动力性要求的基础上,对每辆车的驾驶员的不同驾驶行为习惯制定不同的电池加热的截止温度,计算简单,个性化强,对于驾驶员对电池的性能需求不强烈时,能防止加热温度过高造成的能量浪费。同时考虑到驾驶员的制动需求习惯和工况,在一定程度上可以增加低温下的制动能量回收率,具有低温下的节能的作用。
本申请实施例提供了一种加热控制方法,包括:在车辆处于高压上电状态的情况下,获取电池温度、环境温度和电池荷电状态(State of Charge,SOC)值;在所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值的情况下,对电池进行加热;根据车辆的历史数据确定目标截止温度,在电池被加热至所述目标截止温度后,停止对电池进行加热。
可选的,根据车辆的历史数据确定目标截止温度包括:获取所述车辆的历 史数据,所述历史数据包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率;根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足驾驶员的动力性要求的电池温度,所述第二截止温度为满足车辆的回收性能的电池温度;根据所述第一截止温度和所述第二截止温度确定所述目标截止温度。
可选的,根据所述第一截止温度和所述第二截止温度确定目标截止温度,包括:在所述第一截止温度等于所述第二截止温度的情况下,确定目标截止温度为所述第一截止温度或者所述第二截止温度;在所述第一截止温度小于所述第二截止温度的情况下,获取电池温度升至所述第一截止温度的第一时间,获取在第一时间内的制动踏板平均开度和制动踏板平均踩踏频率,根据所述在第一时间内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求,并根据所述历史数据确定历史驾驶制动需求,在所述当前驾驶制动需求小于所述历史驾驶制动需求的情况下,确定目标截止温度为所述第一截止温度,在所述当前驾驶制动需求大于或者等于所述历史驾驶制动需求的情况下,确定目标截止温度为所述第二截止温度;在所述第一截止温度大于所述第二截止温度,且所述第一截止温度与所述二截止温度的差值小于截止温度阈值的情况下,确定目标截止温度为所述第二截止温度,在所述第一截止温度与所述二截止温度的差值大于或者等于截止温度阈值的情况下,确定目标截止温度为所述第一截止温度。
可选的,根据所述历史数据确定第一截止温度和第二截止温度,包括:基于模糊规则,根据所述制动踏板开度和制动踏板踩踏频率确定电池峰值充电功率;根据所述电池峰值充电功率和电池荷电状态值计算得到所述第二截止温度;根据所述车辆行驶过程中的电池平均放电功率和电池荷电状态值计算得到所述第一截止温度。
本申请实施例还提供了一种加热控制装置,该加热控制装置包括:获取模块,设置为在车辆处于高压上电状态的情况下,获取电池温度、环境温度和电池荷电状态值;加热模块,设置为在所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值的情况下,对车辆的电池进行加热;控制模块,设置为根据车辆的历史数据确定目标截止温度,在电池加热至所述目标截止温度后,停止对所述电池进行加热。
可选的,所述控制模块是设置为通过如下方式根据车辆的历史数据确定目标截止温度:获取所述车辆的历史数据,所述历史数据包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率;根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足 驾驶员的动力性要求的电池温度,所述第二截止温度为满足车辆的回收性能的电池温度;根据所述第一截止温度和所述第二截止温度确定所述目标截止温度。
可选的,所述控制模块是设置为通过如下方式根据第一截止温度和第二截止温度确定目标截止温度:在所述第一截止温度等于所述第二截止温度的情况下,确定目标截止温度为所述第一截止温度或者所述第二截止温度;在所述第一截止温度小于所述第二截止温度的情况下,获取电池温度升至所述第一截止温度的第一时间,获取在第一时间内的制动踏板平均开度和制动踏板平均踩踏频率,根据所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求,并根据所述历史数据确定历史驾驶制动需求,在所述当前驾驶制动需求小于所述历史驾驶制动需求的情况下,确定目标截止温度为所述第一截止温度,在所述当前驾驶制动需求大于或者等于所述历史驾驶制动需求的情况下,确定目标截止温度为所述第二截止温度;在所述第一截止温度大于所述第二截止温度,且所述第一截止温度与所述二截止温度的差值小于截止温度阈值的情况下,确定目标截止温度为所述第二截止温度,在所述第一截止温度与所述二截止温度的差值大于或者等于截止温度阈值的情况下,确定目标截止温度为所述第一截止温度。
可选的,所述控制模块是设置为通过如下方式根据历史数据确定第一截止温度和第二截止温度:基于模糊规则,根据所述制动踏板开度和制动踏板踩踏频率确定电池峰值充电功率;根据所述电池峰值充电功率和电池荷电状态值计算得到所述第二截止温度;根据所述车辆行驶过程中的电池平均放电功率和电池荷电状态值计算得到所述第一截止温度。
本申请实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如本申请实施例中任一所述的加热控制方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该程序被处理器执行时实现如本申请实施例中任一所述的加热控制方法。
附图说明
为了说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。以下附图仅示出了本申请的一些实施例,因此不应被看作是对范围的限定。
图1是本申请实施例一中的一种加热控制方法的流程图;
图2是本申请实施例一中的另一种加热控制方法的流程图;
图3是本申请实施例二中的一种加热控制装置的结构示意图;
图4是本申请实施例三中的一种计算机设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
相似的标号和字母在下面的附图中表示类似项,因此,一旦一项在一个附图中被定义,则在随后的附图中不需要对该项进行定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例一
图1为本申请实施例一提供的一种加热控制方法的流程图,本实施例可适用于车辆加热控制的情况,该方法可以由本申请实施例中的加热控制装置来执行,该装置可采用软件和/或硬件的方式实现。如图1所示,该方法包括如下步骤。
S110,当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值。
所述高压上电状态是指整车处于上电状态,且继电器处于闭合状态,例如,用户踩踏制动,***钥匙启动车辆后,车辆处于高压上电状态,本申请实施例对此不进行限制。
所述电池温度、环境温度和电池荷电状态可以通过传感器采集得到,本申请实施例对电池温度、环境温度和电池荷电状态值的获取方式不进行限制。
当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值,例如,当车辆处于高压上电状态时,获取通过传感器采集的电池温度、环境温度和电池荷电状态值。
S120,若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热。
所述电池温度阈值可以根据需要进行设定,本申请实施例对此不进行限制。
所述境温度阈值可以根据需要进行设定,本申请实施例对此不进行限制。
所述荷电状态值阈值可以根据需要进行设定,本申请实施例对此不进行限制。
若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热,例如,若电池温度低于T0,环境温度低于Tb,且动力电池的SOC>SOC1时,对电池进行加热。
S130,根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热。
所述车辆的历史数据可以包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率,也可以包括其他能够表征车辆特征的数据,本申请实施例对此不进行限制。
所述目标截止温度为最终的加热截止温度,也就是说,当电池被加热到目标截止温度后,停止对电池进行加热。
根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热,例如,根据车辆的历史数据确定目标截止温度X,当电池被加热至所述目标截止温度X后,停止加热模式,进入温度维持模式。
可选的,根据车辆的历史数据确定目标截止温度包括:获取所述车辆的历史数据,所述历史数据包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率;根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足驾驶员的动力性要求的电池温度,所述第二截止温度为满足车辆的回收性能的电池温度;根据所述第一截止温度和所述第二截止温度确定电池加热的目标截止温度。
根据历史数据确定第一截止温度和第二截止温度的方式可以为根据电池峰值充电功率和电池荷电状态值确定,也可以为根据车辆行驶过程中的电池平均放电功率和电池荷电状态值确定,还可以为其他方式,本申请实施例对此不进行限制。
可能存在其他能反映驾驶员的不同驾驶习惯的车辆使用参数来计算第一截止温度T1或第二截止温度T2;本申请实施例利用的是制动踏板使用参数和电池放电功率均值来进行计算,可能还有如电机功率、扭矩、加速踏板等其他使用等参数来计算第一截止温度或第二截止温度。
根据第一截止温度和所述第二截止温度确定电池加热的目标截止温度的方式可以为根据第一截止温度和所述第二截止温度的大小关系确定电池加热的目标截止温度,也可以为根据第一截止温度、第二截止温度、制动踏板平均开度和制动踏板平均踩踏频率确定电池加热的目标截止温度,还可以为根据第一截 止温度与所述二截止温度的差值与截止温度阈值的大小关系确定电池加热的目标截止温度,还可以为上述方式的组合,本申请实施例对此不进行限制。
可选的,根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热,包括:若所述第一截止温度等于所述第二截止温度,则确定目标截止温度为所述第一截止温度或者所述第二截止温度,当电池被加热至所述第一截止温度或者所述第二截止温度时,停止对电池进行加热;若所述第一截止温度小于所述第二截止温度,则获取电池温度升至所述第一截止温度的第一时间,获取在第一时间内的制动踏板平均开度和制动踏板平均踩踏频率,根据所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求,并根据所述历史数据确定历史驾驶制动需求,若所述当前驾驶制动需求小于所述历史驾驶制动需求,则当电池被加热至所述第一截止温度时,停止对电池进行加热,若所述当前驾驶制动需求大于或者等于所述历史驾驶制动需求,则当电池被加热至所述第二截止温度时,停止对电池进行加热;若所述第一截止温度大于所述第二截止温度,且所述第一截止温度与所述二截止温度的差值小于截止温度阈值,则当电池被加热至所述第二截止温度时,停止对电池进行加热,若所述第一截止温度与所述二截止温度的差值大于或者等于截止温度阈值,则当电池被加热至所述第一截止温度时,停止对电池进行加热。
可选的,根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足驾驶员的动力性要求的电池温度,所述第二截止温度为满足车辆的回收性能的电池温度,包括:基于模糊规则,根据所述制动踏板开度和制动踏板踩踏频率确定电池峰值充电功率;根据所述电池峰值充电功率和电池荷电状态值计算得到所述第二截止温度;根据所述车辆行驶过程中的电池平均放电功率和电池荷电状态值计算得到所述第一截止温度。
在一个例子中,本申请实施例提供的加热控制方法对应的***结构由动力电池、加热装置、控制器、温度采集***等构成。利用电池加热装置给电池加热,利用车辆控制器进行计算和相应的控制,通过温度传感器采集电池温度等。控制流程如图2所示:整车高压上电后,同时满足以下三个条件时,动力电池加热***开启加热功能,行车加热功能启动:(1)电池温度低于T0;(2)环境温度低于Tb;(3)动力电池的SOC>SOC1。
加热装置以一定的功率通过水路方式对电池进行间接加热或直接给电池加热等加热方式对电池加热,本申请实施例对加热方法不进行限制,通过上述方式对电池进行加热,进而提升电池温度。
加热功能开启后需要根据驾驶员前n次行驶的制动踏板平均开度和制动踏 板平均踩踏频率、行驶过程中的电池平均放电功率来计算加热的第一截止温度T1和第二截止温度T2,这里只是简单指明第一截止温度T1是能满足驾驶员的动力性要求的电池温度,第二截止温度T2是能满足车辆的回收性能的电池温度。通过对第一截止温度T1和第二截止温度T2的比较,确认电池加热的最终截止温度。
由于行驶的路况和环境可能存在不同,当次行驶的驱动和制动的实际需求与基于历史数据的驾驶需求分析可能存在偏差,不能完全按照历史数据确定当前次行驶的动力性和制动性需求,需要按照本次行驶数据进行适当修正,增加算法的灵活性和准确性,防止由于过度加热而导致能源浪费。根据以上分析,制定规则如下:若T1=T2时,加热截止温度为T1或T2,达到该温度后停止加热模式,进入温度维持模式;若T1<T2时,加热截止温度为T1,是否进一步加热主要看以下两个条件。
(1)在电池温度升至T1的时间t里,获取在时间t内的制动踏板平均开度和制动踏板平均踩踏频率,根据在时间t内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求;根据历史数据确定历史驾驶制动需求,根据在时间t内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求的方式为预先建立模糊规则,根据在时间t内的制动踏板平均开度和制动踏板平均踩踏频率查询模糊规则,得到与在时间t内的制动踏板平均开度和制动踏板平均踩踏频率对应的当前驾驶制动需求,若当前驾驶制动需求为低且历史驾驶制动需求为中或高,或者当前驾驶制动需求为中且历史驾驶制动需求为高,此时可以认为驾驶制动需求出现较大变化(如连续高速公路上行驶等工况),则电池被加热至T1后,截止电池加热;
(2)在电池温度升至T1的时间t里,获取在时间t内的制动踏板平均开度和制动踏板平均踩踏频率,根据在时间t内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求;根据历史数据确定历史驾驶制动需求,根据在时间t内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求的方式为预先建立模糊规则,根据在时间t内的制动踏板平均开度和制动踏板平均踩踏频率查询模糊规则,得到与在时间t内的制动踏板平均开度和制动踏板平均踩踏频率对应的当前驾驶制动需求,若当前驾驶制动需求符合或高于历史驾驶制动需求,则对电池被加热至T2后,截止电池加热。
若T1>T2时,先加热至截止温度T2,是否进一步加热主要看以下两个条件。
(1)若两温度差T1-T2<T℃(如5℃,代表两个温度阈值T1和T2相差较小),则只对电池被加热至T2,而后进入温度维持模式,既满足能量回收要求, 也能满足动力性的基本要求;
(2)若两温度差T1-T2≥T℃(如5℃,代表两个温度阈值T1和T2相差较大),即该驾驶员对车辆动力性能的要求较高,电池被加热至T1后截止电池加热,满足动力性的基本要求。
在加热过程中,随时判断动力电池的SOC的情况,如果SOC低于SOC1时,即电池电量较低时,加热装置随时退出,保证剩余电量用于行驶。
第一截止温度和第二截止温度的计算方法:第一截止温度和第二截止温度的计算方法主要是对以上流程中T1和T2的计算。
(1)第二截止温度T2计算方法
可以通过历史数据中的电池峰值充电功率计算T2的数值,但是电池峰值充电功率不能准确表征驾驶员的制动需求,如在冬季,电池峰值充电功率一直处于较低的数值,不能实际反映此时驾驶员的制动需求,所以此处利用制动踏板开度和制动踏板踩踏频率,基于模糊控制的方法确定驾驶员的制动需求所对应的电池峰值充电功率。模糊规则如表1所示,表1中制动踏板平均开度为一段行程的历史数据中(车辆有车速),制动踏板开度的非0平均数值,其中,0代表踏板开度为0,1代表制动踏板踩到底;制动踏板频率为相同一段行程的历史数据中(车辆有车速),制动踏板每分钟的平均踩踏次数,即每分钟时间内制动踏板使用的次数,从制动踏板开度为0至下一次为0的过程记为一次。表1中用于模糊分类的数值可以变化,不限于此分类。模糊规则如表1所示:
表1
Figure PCTCN2021102927-appb-000001
表1中的低、中、高三种驾驶员的制动需求对应着低、中、高三个制动需求功率。根据试验和仿真方法可以确定三个电池峰值充电功率P1、P2和P3,P1、P2和P3就可以代表低、中、高三个制动需求功率。P1、P2和P3三种制动需求功率分别满足:在世界轻型车辆协调测试程序(World Harmonized Light-duty  Vehicles Test Procedure,WLTC)或其他工况下,可以回收30%、50%和80%的制动能量。
电池峰值充电功率P c=f1(SOC,T),即电池峰值充电功率是关于SOC和温度T的函数值,可以结合电池荷电状态值SOC和电池峰值充电功率计算出动力电池温度值,此温度值即为满足一定回收能力的第二截止温度T2,其中,电池荷电状态值SOC可以为对电池加热之前的SOC,也可以为当前时刻的SOC,本申请实施例对此不进行限制。
(2)第一截止温度T1计算方法
第一截止温度T1按照电池放电功率平均值进行计算。计算放电功率平均值的取样方法同上面T2计算过程中制动踏板平均开度的取样方法相同,取一定数量的电池放电功率值(非0值)计算放电功率平均值P0。电池放电功率P d=f2(SOC,T),可以结合SOC和放电功率平均值P0计算出动力电池温度值,此温度值即为满足一定回收能力的第一截止温度T1,其中,电池荷电状态值SOC可以为对电池加热之前的SOC,也可以为当前时刻的SOC,本申请实施例对此不进行限制。
(3)T1、T2计算需要的历史数据
T1、T2的计算通过控制器来实现,历史数据也由控制器进行记录。为避免数据量过大占据控制器内存,历史数据的计算样本统计有两种方法实现:一是可以使用距离当前时刻最近的一段时间t1内的样本量,二是按照数据帧的数量进行计量,每帧数据周期可以设置为1s,使用距离当前时刻最近的n帧数据作为样本量。这些样本量应该足够支撑T1和T2的准确计算。控制器还应该具有简单的数据处理能力,从数据中提取关键的汽车使用参数,如制动踏板开度、制动踏板使用频率等,可以过滤出非0数值。
本申请实施例根据驾驶员的驾驶习惯,确定低温下动力电池的加热截止温度,并不是所有车辆都设置统一的加热截止温度;从用户角度出发,既满足了动力性又考虑了低温下的经济性。通过制动踏板开度、制动踏板使用频率等变量,基于模糊控制的规则,建立起电池的加热截止温度的计算方法。增加利用当次行驶工况进行修正的方法,提升了工况适用性。
本实施例的技术方案,通过当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值;若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热;根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热,能够在基本满足不同驾驶员的动力性要求的基础 上,对每辆车不同驾驶行为习惯制定不同的电池加热截止温度,计算简单,个性化强,对于驾驶员对电池的性能需求不强烈时,能防止加热温度过高造成的能量浪费。同时考虑到驾驶员的制动需求习惯和工况,在一定程度上可以增加低温下的制动能量的回收率,具有低温下的节能的作用。
实施例二
图3为本申请实施例二提供的一种加热控制装置的结构示意图。本实施例可适用于车辆加热控制的情况,该装置可采用软件和/或硬件的方式实现,该装置可集成在任何提供加热控制功能的设备中,如图3所示,所述加热控制装置包括:获取模块210、加热模块220和控制模块230。
获取模块210设置为当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值;加热模块220设置为若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热;控制模块230设置为根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热。
可选的,所述控制模块是设置为通过如下方式根据车辆的历史上数据确定目标截止温度:获取所述车辆的历史数据,所述历史数据包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率;根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足驾驶员的动力性要求的电池温度,所述第二截止温度为满足车辆的回收性能的电池温度;根据所述第一截止温度和所述第二截止温度确定电池加热的目标截止温度。
可选的,所述控制模块是设置为:若所述第一截止温度等于所述第二截止温度,则确定目标截止温度为所述第一截止温度或者所述第二截止温度,当电池被加热至所述第一截止温度或者所述第二截止温度时,停止对电池进行加热;若所述第一截止温度小于所述第二截止温度,则获取电池温度升至所述第一截止温度所需的第一时间,获取在第一时间内的制动踏板平均开度和制动踏板平均踩踏频率,根据所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求,并根据所述历史数据确定历史驾驶制动需求,若所述当前驾驶制动需求小于所述历史驾驶制动需求,则当电池被加热至所述第一截止温度时,停止对电池进行加热,若所述当前驾驶制动需求大于或者等于所述历史驾驶制动需求,则当电池被加热至所述第二截止温度时,停止对电池进行加热;若所述第一截止温度大于所述第二截止温度,且所述第一截止温度与所述二截止温度的差值小于截止温度阈值,则当电池被加热至所述第二截止温 度时,停止对电池进行加热,若所述第一截止温度与所述二截止温度的差值大于或者等于截止温度阈值,则当电池被加热至所述第一截止温度时,停止对电池进行加热。
可选的,所述控制模块是设置为通过如下方式根据第一截止温度和第二截止温度确定目标截止温度:基于模糊规则,根据所述制动踏板开度和制动踏板踩踏频率确定电池峰值充电功率;根据所述电池峰值充电功率和电池荷电状态值计算得到所述第二截止温度;根据所述车辆行驶过程中的电池平均放电功率和电池荷电状态值计算得到所述第一截止温度。
上述产品可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块。
本实施例的技术方案,通过当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值;若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热;根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热,能够在基本满足不同驾驶员的动力性要求的基础上,对每辆车的不同驾驶行为习惯制定不同的电池加热的截止温度,计算简单,个性化强,对于驾驶员对电池性能的需求不强烈时,能防止加热温度过高造成的能量浪费。同时考虑到驾驶员的制动需求习惯和工况,在一定程度上可以增加低温下的制动能量回收率,具有低温下的节能的作用。
实施例三
图4为本申请实施例三中的一种计算机设备的结构示意图。图4示出了适于用来实现本申请实施方式的示例性计算机设备12的框图。图4显示的计算机设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图4所示,计算机设备12以通用计算设备的形式表现。计算机设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,***存储器28,连接不同***组件(包括***存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,***总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MCA)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及***组件互连(Peripheral Component  Interconnect,PCI)总线。
计算机设备12包括多种计算机***可读介质。这些介质可以是任何能够被计算机设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
***存储器28可以包括易失性存储器形式的计算机***可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。计算机设备12可以可选包括其它可移动/不可移动的、易失性/非易失性计算机***存储介质。仅作为举例,存储***34可以设置为读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”),尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(只读光盘(Compact Disc-Read Only Memory,CD-ROM)、数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请多个实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作***、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或一种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
计算机设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该计算机设备12交互的设备通信,和/或与使得该计算机设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。本实施例中的计算机设备12,显示器24不是作为独立个体存在,而是嵌入镜面中,在显示器24的显示面不予显示时,显示器24的显示面与镜面从视觉上融为一体。计算机设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与计算机设备12的其它模块通信。尽管图中未示出,可以结合计算机设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)***、磁带驱动器以及数据备份存储***等。
处理单元16通过运行存储在***存储器28中的程序,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的加热控制方法:当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值;若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热;根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热。
实施例四
本申请实施例四提供了一种计算机可读存储介质,存储有计算机程序,该程序被处理器执行时实现如本申请所有申请实施例提供的加热控制方法:当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值;若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热;根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存)、光纤、CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,信号介质中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如超文本传输协议(Hyper Text Transfer Protocol,HTTP)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括LAN,WAN,网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:当车辆处于高压上电状态时,获取电池温度、环境温度和电池荷电状态值;若所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且电池荷电状态值大于荷电状态值阈值,则对电池进行加热;根据车辆的历史数据确定目标截止温度,当电池被加热至所述目标截止温度后,停止对电池进行加热。。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括LAN或WAN连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开多种实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,有时也可以按相反的顺序执行,这依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。单元的名称在一种情况下并不构成对该单元本身的限定。
本申请中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执 行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Product,ASSP)、片上***(System On Chip,SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)等等。
在本公开中,机器可读介质可以是有形的介质,可以包含或存储以供指令执行***、装置或设备使用或与指令执行***、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体***、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、EPROM或快闪存储器、光纤、CD-ROM、光学储存设备、磁储存设备、或上述内容的任何合适组合。

Claims (10)

  1. 一种加热控制方法,包括:
    在车辆处于高压上电状态的情况下,获取电池温度、环境温度和电池荷电状态值;
    在所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且所述电池荷电状态值大于荷电状态值阈值的情况下,对所述车辆的电池进行加热;
    根据所述车辆的历史数据确定目标截止温度,在所述电池被加热至所述目标截止温度后,停止对所述电池进行加热。
  2. 根据权利要求1所述的方法,其中,所述根据所述车辆的历史数据确定目标截止温度,包括:
    获取所述车辆的历史数据,所述历史数据包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率;
    根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足驾驶员的动力性要求的电池温度,所述第二截止温度为满足所述车辆的回收性能的电池温度;
    根据所述第一截止温度和所述第二截止温度确定所述目标截止温度。
  3. 根据权利要求2所述的方法,其中,根据所述第一截止温度和所述第二截止温度确定所述目标截止温度,包括:
    在所述第一截止温度等于所述第二截止温度的情况下,确定所述目标截止温度为所述第一截止温度或者所述第二截止温度;
    在所述第一截止温度小于所述第二截止温度的情况下,获取所述电池温度升至所述第一截止温度的第一时间,获取在所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率,根据所述在所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求,并根据所述历史数据确定历史驾驶制动需求,在所述当前驾驶制动需求小于所述历史驾驶制动需求的情况下,确定所述目标截止温度为所述第一截止温度,在所述当前驾驶制动需求大于或者等于所述历史驾驶制动需求的情况下,确定所述目标截止温度为所述第二截止温度;
    在所述第一截止温度大于所述第二截止温度,且所述第一截止温度与所述二截止温度的差值小于截止温度阈值的情况下,确定所述目标截止温度为所述第二截止温度,在所述第一截止温度与所述二截止温度的差值大于或者等于所述截止温度阈值的情况下,确定所述目标截止温度为所述第一截止温度。
  4. 根据权利要求2所述的方法,其中,所述根据所述历史数据确定第一截止 温度和第二截止温度,包括:
    基于模糊规则,根据所述制动踏板开度和所述制动踏板踩踏频率确定电池峰值充电功率;
    根据所述电池峰值充电功率和所述电池荷电状态值计算得到所述第二截止温度;
    根据所述车辆行驶过程中的电池平均放电功率和所述电池荷电状态值计算得到所述第一截止温度。
  5. 一种加热控制装置,包括:
    获取模块,设置为在车辆处于高压上电状态的情况下,获取电池温度、环境温度和电池荷电状态值;
    加热模块,设置为在所述电池温度小于电池温度阈值、所述环境温度小于环境温度阈值且所述电池荷电状态值大于荷电状态值阈值的情况下,对所述车辆的电池进行加热;
    控制模块,设置为根据所述车辆的历史数据确定目标截止温度,在所述电池被加热至所述目标截止温度后,停止对所述电池进行加热。
  6. 根据权利要求5所述的装置,其中,所述控制模块是设置为通过如下方式根据所述车辆的历史数据确定目标截止温度:
    获取所述车辆的历史数据,所述历史数据包括:制动踏板平均开度、制动踏板平均踩踏频率和车辆行驶过程中的电池平均放电功率;
    根据所述历史数据确定第一截止温度和第二截止温度,其中,所述第一截止温度为满足驾驶员的动力性要求的电池温度,所述第二截止温度为满足所述车辆的回收性能的电池温度;
    根据所述第一截止温度和所述第二截止温度确定所述目标截止温度。
  7. 根据权利要求6所述的装置,其中,所述控制模块是设置为通过如下方式根据所述第一截止温度和所述第二截止温度确定所述目标截止温度:
    在所述第一截止温度等于所述第二截止温度的情况下,确定所述目标截止温度为所述第一截止温度或者所述第二截止温度;
    在所述第一截止温度小于所述第二截止温度的情况下,获取所述电池温度升至所述第一截止温度的第一时间,获取在所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率,根据所述在所述第一时间内的制动踏板平均开度和制动踏板平均踩踏频率确定当前驾驶制动需求,并根据所述历史数据确定历史驾驶制动需求,在所述当前驾驶制动需求小于所述历史驾驶制动需求的情况 下,确定所述目标截止温度为所述第一截止温度,在所述当前驾驶制动需求大于或者等于所述历史驾驶制动需求的情况下,确定所述目标截止温度为所述第二截止温度;
    在所述第一截止温度大于所述第二截止温度,且所述第一截止温度与所述二截止温度的差值小于截止温度阈值的情况下,确定所述目标截止温度为所述第二截止温度,在所述第一截止温度与所述二截止温度的差值大于或者等于所述截止温度阈值的情况下,确定所述目标截止温度为所述第一截止温度。
  8. 根据权利要求6所述的装置,其中,所述控制模块是设置为通过如下方式根据所述历史数据确定第一截止温度和第二截止温度:
    基于模糊规则,根据所述制动踏板开度和所述制动踏板踩踏频率确定电池峰值充电功率;
    根据所述电池峰值充电功率和所述电池荷电状态值计算得到所述第二截止温度;
    根据所述车辆行驶过程中的电池平均放电功率和所述电池荷电状态值计算得到所述第一截止温度。
  9. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1-4中任一项所述的方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述程序被处理器执行时实现如权利要求1-4中任一项所述的方法。
PCT/CN2021/102927 2020-09-07 2021-06-29 加热控制方法、装置、设备及存储介质 WO2022048272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010931152.9A CN112092679B (zh) 2020-09-07 2020-09-07 一种加热控制方法、装置、设备及存储介质
CN202010931152.9 2020-09-07

Publications (1)

Publication Number Publication Date
WO2022048272A1 true WO2022048272A1 (zh) 2022-03-10

Family

ID=73750715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102927 WO2022048272A1 (zh) 2020-09-07 2021-06-29 加热控制方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112092679B (zh)
WO (1) WO2022048272A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771346A (zh) * 2022-06-16 2022-07-22 浙江吉利控股集团有限公司 一种电动汽车电池控制方法、装置、电动汽车和存储介质
CN115295925A (zh) * 2022-09-30 2022-11-04 小米汽车科技有限公司 电池加热的方法、装置、电池组件、存储介质和车辆
CN115709691A (zh) * 2022-11-30 2023-02-24 北京百度网讯科技有限公司 自动驾驶控制器的上电方法、装置、存储介质以及车辆
CN116061766A (zh) * 2023-04-06 2023-05-05 成都赛力斯科技有限公司 汽车电池内部加热方法、装置、设备及存储介质
CN116577676A (zh) * 2023-07-14 2023-08-11 中国第一汽车股份有限公司 电池参数的确定方法、装置、处理器和车辆

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092679B (zh) * 2020-09-07 2021-12-28 中国第一汽车股份有限公司 一种加热控制方法、装置、设备及存储介质
CN113060049B (zh) * 2021-03-22 2022-08-30 蜂巢能源科技股份有限公司 车辆控制方法、装置、电子设备及车辆
CN113696788B (zh) * 2021-08-31 2023-01-13 中国第一汽车股份有限公司 一种动力电池行车控制方法及动力电池行车控制***
CN114094233A (zh) * 2021-10-14 2022-02-25 遵义医科大学珠海校区 一种用于储能设备的控制方法、控制装置及其存储介质
CN113937388B (zh) * 2021-10-14 2024-03-22 上海汽车变速器有限公司 电池加热控制方法、装置、设备及存储介质
CN114552069A (zh) * 2022-02-17 2022-05-27 重庆金康赛力斯新能源汽车设计院有限公司 低温行车的电池加热方法、装置、存储介质和电池***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701986A (zh) * 2004-05-26 2005-11-30 福特环球技术公司 车辆电池温度控制的方法和***
US20060196954A1 (en) * 2005-03-02 2006-09-07 Panasonic Ev Energy Co., Ltd. Temperature management apparatus and power supply
JP2010119171A (ja) * 2008-11-11 2010-05-27 Toyota Motor Corp インバータの制御装置および制御方法
CN102055042A (zh) * 2009-10-29 2011-05-11 比亚迪股份有限公司 一种车辆用电池加热控制***及其控制方法
CN103419654A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 电动汽车、电动汽车的动力***及电池加热方法
CN109830782A (zh) * 2017-11-23 2019-05-31 郑州深澜动力科技有限公司 一种电动汽车电池行车加热控制方法
CN111261977A (zh) * 2018-11-30 2020-06-09 株式会社斯巴鲁 车辆的电池加热装置
CN112092679A (zh) * 2020-09-07 2020-12-18 中国第一汽车股份有限公司 一种加热控制方法、装置、设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273225B2 (ja) * 2011-08-29 2013-08-28 株式会社豊田自動織機 温度制御装置及び温度制御方法
JP5816050B2 (ja) * 2011-10-25 2015-11-17 日立オートモティブシステムズ株式会社 バッテリ温度制御装置
DE102012204410A1 (de) * 2012-03-20 2013-09-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Batterieanordnung eines Kraftfahrzeugs
JP5954144B2 (ja) * 2012-11-30 2016-07-20 ソニー株式会社 制御装置、制御方法、制御システムおよび電動車両
JP6232878B2 (ja) * 2013-09-24 2017-11-22 トヨタ自動車株式会社 蓄電システム
JP6090265B2 (ja) * 2014-08-29 2017-03-08 トヨタ自動車株式会社 車両
JP6156353B2 (ja) * 2014-12-24 2017-07-05 トヨタ自動車株式会社 車載電池の昇温装置および昇温方法
JP2019004565A (ja) * 2017-06-13 2019-01-10 株式会社東芝 蓄電池制御装置
CN107415936B (zh) * 2017-07-28 2020-05-22 北京新能源汽车股份有限公司 电池预热方法、装置和混合动力控制设备
CN108539329A (zh) * 2018-03-14 2018-09-14 北汽福田汽车股份有限公司 电池热管理方法、装置、***及电动汽车
CN110588277B (zh) * 2019-08-16 2021-03-30 中国第一汽车股份有限公司 电动汽车热管理方法、***和车辆
CN110626213B (zh) * 2019-09-23 2021-04-30 中国第一汽车股份有限公司 一种电动汽车的动力电池加热装置及控制方法
CN110767958B (zh) * 2019-10-23 2021-02-09 合肥国轩高科动力能源有限公司 一种动力电池加热控制温差的方法
CN111532175B (zh) * 2020-03-30 2022-07-19 宁波吉利汽车研究开发有限公司 一种电动汽车电池加热控制方法、装置、设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701986A (zh) * 2004-05-26 2005-11-30 福特环球技术公司 车辆电池温度控制的方法和***
US20060196954A1 (en) * 2005-03-02 2006-09-07 Panasonic Ev Energy Co., Ltd. Temperature management apparatus and power supply
JP2010119171A (ja) * 2008-11-11 2010-05-27 Toyota Motor Corp インバータの制御装置および制御方法
CN102055042A (zh) * 2009-10-29 2011-05-11 比亚迪股份有限公司 一种车辆用电池加热控制***及其控制方法
CN103419654A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 电动汽车、电动汽车的动力***及电池加热方法
CN109830782A (zh) * 2017-11-23 2019-05-31 郑州深澜动力科技有限公司 一种电动汽车电池行车加热控制方法
CN111261977A (zh) * 2018-11-30 2020-06-09 株式会社斯巴鲁 车辆的电池加热装置
CN112092679A (zh) * 2020-09-07 2020-12-18 中国第一汽车股份有限公司 一种加热控制方法、装置、设备及存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771346A (zh) * 2022-06-16 2022-07-22 浙江吉利控股集团有限公司 一种电动汽车电池控制方法、装置、电动汽车和存储介质
CN115295925A (zh) * 2022-09-30 2022-11-04 小米汽车科技有限公司 电池加热的方法、装置、电池组件、存储介质和车辆
CN115295925B (zh) * 2022-09-30 2023-02-21 小米汽车科技有限公司 电池加热的方法、装置、电池组件、存储介质和车辆
CN115709691A (zh) * 2022-11-30 2023-02-24 北京百度网讯科技有限公司 自动驾驶控制器的上电方法、装置、存储介质以及车辆
CN116061766A (zh) * 2023-04-06 2023-05-05 成都赛力斯科技有限公司 汽车电池内部加热方法、装置、设备及存储介质
CN116061766B (zh) * 2023-04-06 2023-06-27 成都赛力斯科技有限公司 汽车电池内部加热方法、装置、设备及存储介质
CN116577676A (zh) * 2023-07-14 2023-08-11 中国第一汽车股份有限公司 电池参数的确定方法、装置、处理器和车辆
CN116577676B (zh) * 2023-07-14 2023-09-22 中国第一汽车股份有限公司 电池参数的确定方法、装置、处理器和车辆

Also Published As

Publication number Publication date
CN112092679B (zh) 2021-12-28
CN112092679A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022048272A1 (zh) 加热控制方法、装置、设备及存储介质
CN106585386B (zh) 电动汽车的续驶里程显示方法、装置和***
WO2022111496A1 (zh) 剩余里程的确定方法、装置、设备及车辆
CN109720213B (zh) 一种车辆转矩控制方法及装置
CN108909719B (zh) 电动汽车的驾驶习惯识别方法、***、设备以及存储介质
WO2019205014A1 (zh) 驾驶行为分析方法及驾驶行为分析装置
CN106114233A (zh) 一种纯电动汽车剩余里程估算方法
WO2019024402A1 (zh) 复合制动方法、装置和自适应巡航控制器
CN112248883B (zh) 动力电池的加热方法、装置和电子设备
WO2023071620A1 (zh) 电机轮端扭矩能力确定方法、装置、电子设备及存储介质
CN112455286B (zh) 一种充电控制方法及装置、电池管理***
CN112140941B (zh) 一种车模式切换方法、装置、设备及存储介质
CN113335290A (zh) 一种车辆滚动阻力获取方法、获取模块及存储介质
WO2018045650A1 (zh) 一种车速控制方法及装置
CN107415936B (zh) 电池预热方法、装置和混合动力控制设备
WO2024152808A1 (zh) 动力电池***低温行车加热方法、电子设备及存储介质
WO2024021909A1 (zh) 车辆电功率确定方法、装置、电子设备及存储介质
WO2023071619A1 (zh) 混合轮端扭矩能力确定方法、装置、电子设备及存储介质
CN110696807B (zh) 堵车工况发动机停机控制方法、车辆及存储介质
CN111688697A (zh) 一种车辆控制的方法、装置、设备及存储介质
TWI625256B (zh) Vehicle brake consumption oil quantity prompting method and system thereof
CN116533730A (zh) 电池热管理方法、装置、电子设备及车辆
EP4253137A1 (en) Curve prediction-based electric vehicle energy management method, terminal device, and storage medium
CN110758394B (zh) 堵车工况发动机起动控制方法、***、车辆及存储介质
WO2024130699A1 (zh) 车辆质量和阻力系数的估算方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863340

Country of ref document: EP

Kind code of ref document: A1