WO2022045530A1 - High-frequency surgical apparatus and system for nerve blocking - Google Patents

High-frequency surgical apparatus and system for nerve blocking Download PDF

Info

Publication number
WO2022045530A1
WO2022045530A1 PCT/KR2021/006363 KR2021006363W WO2022045530A1 WO 2022045530 A1 WO2022045530 A1 WO 2022045530A1 KR 2021006363 W KR2021006363 W KR 2021006363W WO 2022045530 A1 WO2022045530 A1 WO 2022045530A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
tube
frequency
temperature
wall
Prior art date
Application number
PCT/KR2021/006363
Other languages
French (fr)
Korean (ko)
Inventor
양순철
이상용
서승완
송민철
최창준
유성근
박성민
백진환
Original Assignee
재단법인 오송첨단의료산업진흥재단
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 오송첨단의료산업진흥재단, 포항공과대학교 산학협력단 filed Critical 재단법인 오송첨단의료산업진흥재단
Publication of WO2022045530A1 publication Critical patent/WO2022045530A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4041Evaluating nerves condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00958Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device for switching between different working modes of the main function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/142Electrodes having a specific shape at least partly surrounding the target, e.g. concave, curved or in the form of a cave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier

Definitions

  • the present application relates to a high-frequency surgical device and system for nerve block.
  • Nerve block is a method of alleviating inflammation and pain by injuring nerves.
  • nerve block using a catheter is used to damage nerves distributed from the inner wall to the outer wall of an artery or bronchus.
  • the catheter used in the existing nerve block cannot directly measure the temperature of the target nerve located on the outer wall of the tube, so it cannot be guaranteed whether the nerve is blocked.
  • an embodiment of the present invention provides a high-frequency surgical device for nerve block.
  • the high-frequency surgical device for nerve block includes an electrode surrounding the outer wall of the tube and selectively performing any one of impedance measurement and high-frequency energy transfer; a thermometer embedded in the electrode and measuring the surface temperature of the tube; a central control unit for controlling an operation to selectively perform any one of impedance measurement and high-frequency energy transfer through the electrode; an impedance analyzer for calculating an inner diameter and an outer diameter of a tube by analyzing the impedance measured by the electrode; and a function generator for generating high-frequency energy required for nerve block.
  • another embodiment of the present invention provides a high-frequency surgical system for nerve block.
  • the high-frequency surgical system for nerve block includes: a high-frequency surgical device that surrounds the outer wall of the tube and transmits high-frequency energy to block the nerve at the outer wall of the tube, and measures the surface temperature of the tube; and a computing device for calculating a temperature distribution between the inner and outer walls of the tube by performing an operation on the real-time data received from the surgical device.
  • another embodiment of the present invention provides a high-frequency surgical device for nerve block.
  • the high-frequency surgical device for nerve block includes: an electrode in which a shape memory alloy and an electrode are combined; a handle part having a slide structure for driving the electrode part; and a connection part connecting the electrode part and the handle part and fixing the electrode part so that the electrode part does not move.
  • the surface temperature of the tube can be measured.
  • the electrode can completely surround the outer wall of the tube by 360 degrees, and it is possible to minimize damage to the tube by concentrating heat on the outer wall of the tube and protecting the inner wall.
  • the temperature of the outer wall of the tube can be directly measured, and the temperature inside the tube can be monitored. This makes it possible to proceed with nerve block on the outer wall of the tube.
  • the present invention it is possible to block all neural signals passing around the tube.
  • the sympathetic nerve signal it can be applied to renal nerve block surgery for the treatment of heart diseases such as intractable hypertension and arrhythmia.
  • it can be applied to pulmonary nerve block to treat chronic obstructive pulmonary disease by blocking parasympathetic nerve signals.
  • FIG. 1 is a schematic diagram of a high-frequency surgical instrument and system for nerve block according to an embodiment of the present invention.
  • FIG. 2 is an operation flowchart of the high-frequency surgical instrument and system shown in FIG. 1 .
  • FIG 3 is a view showing a MEMS flexible electrode according to an embodiment of the present invention.
  • Figure 4 is a view showing a manufacturing process of the MEMS flexible electrode according to an embodiment of the present invention.
  • FIG. 5 is a view showing a MEMS flexible electrode and a flexible PCB according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a stacked structure of a flexible PCB according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a concept of adjusting a diameter of a flexible PCB to fit arteries of various sizes according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating the shape of an end that is detachably implemented so that a temperature line can be inserted into the flexible PCB according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an integrated flexible PCB capable of adjusting a diameter according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a stacked structure of an integrated flexible PCB capable of adjusting a diameter according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the overall structure of a high-frequency surgical device for nerve block according to an embodiment of the present invention.
  • FIG. 12 is an enlarged cross-sectional view of the handle portion of the high-frequency surgical device for nerve block shown in FIG. 11 .
  • FIG. 13 is an enlarged cross-sectional view of an electrode in the case of applying the MEMS flexible electrode to the high-frequency surgical device for nerve block shown in FIG. 11 .
  • FIG. 14 is an enlarged cross-sectional view of an electrode when an integrated flexible PCB capable of adjusting a diameter is applied to the high-frequency surgical device for nerve block shown in FIG. 11 .
  • FIG. 1 is a schematic diagram of a high-frequency surgical instrument and system for nerve block according to an embodiment of the present invention.
  • a high-frequency surgical system 100 for nerve block may include a surgical device 110 , a computing device 120 , and an imaging device 130 .
  • the surgical device 110 includes a central control unit 111 , an impedance analyzer 112 , a function generator 113 , an amplifier 114 , a codec 115 , a data communication unit 116 , an electrode 117 and a thermometer 118 . It may be composed of
  • the central controller 111 is for controlling the operation of the surgical device 110 .
  • the central controller 111 may control the operation to selectively perform any one of impedance measurement and high-frequency energy transfer through an electrode 117 to be described later.
  • the central controller 111 may adjust the amount of high-frequency energy applied to the electrode 117 during transmission of high-frequency energy so that the temperature of the tube is kept constant during the nerve block operation. In other words, the central control unit 111 may maintain a constant temperature by adjusting the amount of high-frequency energy transmitted based on a temperature value measured by a thermometer 118 to be described later.
  • the impedance analyzer 112 is to perform impedance analysis in conjunction with an electrode 117 to be described later.
  • the impedance analyzer 112 may calculate the inner diameter and the outer diameter of the tube by analyzing the measured impedance when the electrode 117, which will be described later, measures the impedance.
  • the impedance measured after the electrode 117 wraps the artery is composed of the impedance of the artery wall between the inside diameter and the outside diameter of the blood flowing inside the artery.
  • the outer diameter of the artery is the same, the impedance decreases as the blood volume increases (ie, the artery wall becomes thinner), and increases when the blood volume decreases (ie the artery wall becomes thicker).
  • the outer diameter of the artery may be regarded as the diameter of the electrode surrounding the electrode. Based on this logic, it is possible to calculate the inner diameter and outer diameter of the pipe.
  • the function generator 113 and the amplifier 114 are for generating high-frequency energy required for nerve block according to the control of the central controller 111 .
  • the codec 115 is for signal conversion and may be implemented as an analog-to-digital converter (ADC) that converts an analog signal into a digital signal.
  • ADC analog-to-digital converter
  • the data communication unit 116 is for data communication between the surgical device 110 and the computing device 120 , and may be implemented by applying a wired method, a wireless method, or a wired/wireless method known to those of ordinary skill in the art.
  • the electrode 117 surrounds the outer wall of a tube such as an artery or a bronchus and selectively performs any one of impedance measurement and high-frequency energy transfer, and may be implemented as, for example, a bipolar parallel electrode.
  • the electrode 117 may be implemented in a form combined with a shape memory alloy so as to wind the outer wall of the tube.
  • the electrode 117 can wind the outer wall of the tube by itself, and after the procedure, it is possible to gently unwind the wound tube and come out.
  • the electrode 117 may be implemented as an electrode in which a MEMS flexible electrode and a flexible PCB are combined (see FIG. 5 ) or an integrated flexible PCB electrode with an adjustable diameter (see FIG. 9 ). to be described later.
  • the thermometer 118 is for measuring the temperature of the outer wall of the tube, and at least one temperature sensor may be implemented in a form in which the electrode 117 is embedded.
  • the thermometer 118 may include a plurality of temperature sensors located at a plurality of points of the electrode 117 .
  • the temperature sensor may be, for example, a resistance temperature detector (RTD), a thermistor, or a metal substrate contact temperature sensor (Thermocouple), and the metal substrate contact temperature sensor is a K type (Chromel and Alumel) depending on the type. ), type J (Fe and Mangan), type E (Chromel and Mangan), type T (Cu and Mangan), or type R (Pt and Pt-Rh (13%)).
  • the temperature of the tube measured by the thermometer 118 may be input to the central control unit 111 through the codec 115 , and may also be transmitted to the calculation unit 120 .
  • the computing device 120 is for performing an operation on data received from the surgical device 110 , and may include, for example, a Field Programmable Gate Array (FPGA) 121 capable of performing parallel processing.
  • FPGA Field Programmable Gate Array
  • the computing device 120 receives real-time data (eg, temperature value) related to the nerve block procedure from the surgical device 110 through the data communication unit 122 , and receives the real-time data from the FPGA 121 .
  • the temperature distribution between the inner wall and the outer wall of the tube can be calculated by performing parallel processing on the data, and in this case, optionally input patient information can be additionally considered.
  • various numerical analysis methods such as finite difference method (FDM), finite volume method (FVM), finite element method (FEM), and boundary element method (BEM) can be used to monitor the temperature distribution between the inner and outer walls of the tube.
  • FDM finite difference method
  • FVM finite volume method
  • FEM finite element method
  • BEM boundary element method
  • results can be derived within a short time based on real-time data obtained during the execution of nerve block.
  • the FPGA 121 may be replaced with a multi-processor of a high-performance MCU.
  • the imaging device 130 is for outputting information received from the computing device 120 .
  • the imaging device 130 may output the temperature distribution between the inner wall and the outer wall of the tube calculated by the calculating device 120 in the form of an image or the like.
  • the imaging apparatus 130 may output various types of information related to the nerve block operation, for example, patient information, energy transfer information, operation time information, and the like.
  • FIG. 2 is an operation flowchart of the high-frequency surgical instrument and system shown in FIG. 1 .
  • the operation of the high-frequency surgical device and system may be largely divided into an artery winding process ( S210 ), an artery modeling process ( S220 ), and a nerve block operation process ( S230 ).
  • the electrode is placed and brought into contact with the target artery (S211), and impedance analysis, that is, whether the resistance has changed (S212), is checked to determine whether the electrode is in contact.
  • impedance analysis that is, whether the resistance has changed (S212)
  • S212 the resistance has changed
  • the first thermometer value located at the end of the electrode rises by contacting the target artery from the tip of the electrode (S213)
  • RF energy is applied to the electrode (S214), and the second electrode located in the middle of the electrode is wound in a circle while the electrode is wound in a circle.
  • the thermometer value increases (S215)
  • the arterial modeling process (S220) may proceed. In this way, when the electrode contact is confirmed, high-frequency energy is applied to the electrode to increase heat, and the shape of the shape memory alloy is deformed using this heat so that the electrode completely surrounds the artery.
  • the application of RF energy to the electrodes is stopped ( S221 ), and impedance is measured in a wide frequency band ( S222 ) to obtain the inner and outer diameters of the artery ( S223 ).
  • the appropriate surgical temperature and time are determined according to the calculated inner and outer diameters of the artery (S224), and a simulation model (ie, the artery model) is created with the calculated inner and outer diameters of the artery (S225), and then the RF energy can be applied to the electrode to proceed with nerve block (S226).
  • the operating temperature and time for performing the nerve block may be determined in the arterial model primarily determined through impedance analysis, and the nerve block may be performed by transmitting RF energy according to the primary determination.
  • RF energy is adjusted to maintain a constant electrode temperature (ie, a constant surface temperature of the tube) (S231), and the first and second thermometer values are measured (S232), and the measurement
  • the measured temperature may be set as a boundary condition of the model (S233).
  • the temperature distribution can be expressed and output as an image (S235).
  • the operation temperature and time may be reset using the actual temperature distribution and the arterial model may be modified (S236). In this way, the surgical temperature and time can be determined secondarily based on the values of the first and second thermometers measured in real time during the nerve block operation, and accordingly, the nerve block operation can be performed.
  • Figure 3 is a view showing a MEMS flexible electrode according to an embodiment of the present invention
  • Figure 4 is a view showing a manufacturing process of the MEMS flexible electrode according to an embodiment of the present invention.
  • a bipolar parallel electrode for transmitting high-frequency energy on a biocompatible polymer substrate and a metal substrate contact-type temperature sensor are integrally formed on the same plane. It may be implemented to be formed. As such, since the bipolar parallel electrode and the temperature sensor are integrally formed, it may be more advantageous for integration.
  • the sacrificial layer 42 and the polymer 43 may be sequentially formed on the silicon substrate 41 .
  • the sacrificial layer 42 may be a metal, oxide, polymer, or silicon, and in the embodiment of the present invention, a metal titanium (Ti) sacrificial layer is used.
  • the polymer 43 may be biocompatible parylene, and the polymer 43 may be formed by, for example, chemical vapor deposition (CVD).
  • a metal (eg, Au) film used as the bipolar parallel electrode 44 and a metal substrate contact type temperature sensor ( 44), copper (Cu) and copper nickel alloy (CuNi) may be deposited.
  • a partial region 46 of parylene is etched using a reactive ion etcher (RIE).
  • RIE reactive ion etcher
  • the parylene may have the same thickness as in (a) of FIG. 4 .
  • the etched region 46 may be used for transmission and acquisition of electrical signals.
  • the flexible electrode formed on the silicon substrate may be separated by dissolving the sacrificial layer as shown in FIG. 4(d).
  • the MEMS process as described above has advantages in that various metal films can be deposited, various substrate materials compatible with the semiconductor process can be used, and it is advantageous for miniaturization and integration.
  • FIG 5 is a view showing a MEMS flexible electrode and a flexible PCB according to an embodiment of the present invention, the MEMS flexible electrode and the flexible PCB may be bonded using an ACF (Anisotropic Conductive Film).
  • ACF Anagonal Conductive Film
  • FIG. 6 is a view for explaining a stacked structure of a flexible PCB according to an embodiment of the present invention.
  • an integrated flexible PCB including an electrode wire and a temperature wire may be used to connect the MEMS flexible electrode as shown in FIG. 3 .
  • the flexible PCB may be formed to have the stacked structure shown in FIG. 6 .
  • the MEMS flexible electrode and the flexible PCB can be connected using, for example, ACF bonding on the surface of the shape memory alloy.
  • FIG. 7 is a diagram illustrating a concept of adjusting the diameter of a flexible PCB according to arteries of various sizes according to an embodiment of the present invention
  • FIG. 8 is a view showing a temperature line inserted into the flexible PCB according to an embodiment of the present invention It is a diagram showing the shape of the end that is detachably implemented so as to be able to do so.
  • the diameter of the flexible PCB may be embodied to be adjustable to fit arteries of various sizes.
  • Fig. 8 it can be implemented to be detachable so that an electrode wire for real-time RF energy application and a temperature wire for temperature measurement can be inserted inside the flexible PCB, and the end can be separated for connection with the control system.
  • FIG. 9 is a diagram illustrating an integrated flexible PCB with adjustable diameter according to an embodiment of the present invention
  • FIG. 10 is a diagram illustrating a stacked structure of an integrated flexible PCB with adjustable diameter according to an embodiment of the present invention. .
  • an integrated flexible PCB having an adjustable diameter, including an electrode wire and a temperature wire, and having a bipolar parallel electrode and a metal substrate contact temperature sensor integrally formed can be used.
  • the integrated flexible PCB capable of adjusting a diameter may be formed to have the stacked structure shown in FIG. 10 .
  • FIG. 11 is a cross-sectional view showing the overall structure of the high-frequency surgical device for nerve block according to an embodiment of the present invention
  • FIG. 12 is an enlarged cross-sectional view of the handle part of the high-frequency surgical device for nerve block shown in FIG. 11
  • FIG. 13 is an enlarged cross-sectional view of the electrode part when the MEMS flexible electrode is applied to the high-frequency surgical device for nerve block shown in FIG. 11,
  • FIG. 14 is the high-frequency surgical device for nerve block shown in FIG. It is a cross-sectional view showing an enlarged electrode part when an integrated flexible PCB with adjustable diameter is applied.
  • the high frequency surgical device may be largely composed of an electrode unit 1100 , a connection unit 1200 , and a handle unit 1300 .
  • the electrode unit 1100 may be in a form in which a shape memory alloy and an electrode are combined, and the electrode is an electrode in which a MEMS flexible electrode and a flexible PCB are combined (see FIG. 5 ) or an integrated flexible PCB electrode with an adjustable diameter ( FIG. 9 ). see) can be implemented.
  • the connection part 1200 connects between the electrode part 1100 and the handle part 1300 and may be fixed so that the electrode part 1100 does not move.
  • connection part 1200 may use a biocompatible polymer material (PC, PP, etc.) and a metallic stainless material.
  • the connection part 1200 has a diameter that can use a trocar of, for example, 5 mm, so it can be used for laparoscopic and robotic surgery.
  • the connection part 1200 can be separated from the handle part 1300, and the size of the electrode (MEMS electrode) of the electrode part 1100 is selected according to the size of the artery so that the handle part 1300 and the connection part 1200 are combined.
  • the electrode part 1100 may be selectively mounted in the groove formed in the connection part 1200 in the clamping type and used.
  • the handle unit 1300 may have a slide structure for driving the electrode unit 1100, for example, a case 1310 constituting the outside of the handle, and a stop function according to the pitch interval.
  • a flexible PCB moving unit 1320 for moving the flexible PCB 1360 with a function of pushing and pulling a slide, a guide fixing unit 1330 for fixing the shape memory alloy guide 1340, and a shape memory alloy rod 1350 guide For supporting the shape memory alloy guide 1340, the shape memory alloy rod 1350, the flexible PCB 1360 and the flexible PCB moving unit 1320 to .
  • the diameter of the electrode may be adjusted according to the size of the tube.
  • Such a configuration of the handle portion is merely an example, and if it is a structure capable of moving the flexible PCB 1360 , it may be implemented by being modified in various forms.
  • the electrode part 1100 in the case of applying the MEMS flexible electrode is a MEMS flexible electrode 1110, a shape memory alloy 1120, a tip cap for protecting the MEMS flexible electrode 1110 (Tip cap) ( 1130 and a tip cap lever 1140 for fixing and separating the tip cap 1130 may be included.
  • the tip cap 1130 having a rigid structure in consideration of the flexibility of the electrode and the tip cap lever 1140 may be included to prevent the tip cap 1130 from being separated by any impact.
  • the surface in which the inner surface of the tip cap 1130 and the connection part 1200 is in contact with the maximum frictional force to prevent the tip cap 1130 from being easily separated, the tip cap 1130 and the tip cap lever 1140 The diameter can be minimized as much as possible.
  • the electrode part 1100 in the case of applying an integrated flexible PCB with adjustable diameter is a shape memory alloy 1120 , a tip cap 1130 and a tip cap lever 1140 , and a flexible PCB. 1150 may be included.
  • the electrode part 110 shown in FIG. 14 is implemented in the same way as the electrode part 1100 shown in FIG. 13 except that it is composed of an integrated flexible PCB 1150 with an adjustable diameter instead of the MEMS flexible electrode 1110. can
  • the electrode can completely wind the outer wall of the tube by 360 degrees, and it is possible to minimize damage to the tube by concentrating heat on the outer wall of the tube and protecting the inner wall.
  • the temperature of the outer wall of the tube can be directly measured, and the temperature inside the tube can be monitored. This makes it possible to proceed with nerve block on the outer wall of the tube.
  • the present invention it is possible to block all neural signals passing around the tube.
  • the sympathetic nerve signal it can be applied to renal nerve block surgery for the treatment of heart diseases such as intractable hypertension and arrhythmia.
  • it can be applied to pulmonary nerve block to treat chronic obstructive pulmonary disease by blocking parasympathetic nerve signals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Neurology (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Plasma & Fusion (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physiology (AREA)
  • Surgical Instruments (AREA)

Abstract

High-frequency surgical apparatus for nerve blocking, according to one embodiment of the present invention, can comprise: an electrode which encompasses the outer wall of a tube and which selectively performs either impedance measurement or high-frequency energy transfer; a thermometer which is embedded in the electrode and which measures the surface temperature of the tube; a central control device for controlling an operation so that either impedance measurement or high-frequency energy transfer is selectively performed through the electrode; an impedance analyzer for calculating the inner diameter and the outer diameter of the tube by analyzing impedance measured by the electrode; and a function generator for generating high-frequency energy needed for a nerve-blocking procedure.

Description

신경 차단을 위한 고주파 수술 기기 및 시스템High-frequency surgical instruments and systems for nerve block
본 출원은 신경 차단을 위한 고주파 수술 기기 및 시스템에 관한 것이다.The present application relates to a high-frequency surgical device and system for nerve block.
신경 차단술은 신경을 손상시켜서 염증 및 통증을 완화시키는 방법으로, 일 예로 카테터를 이용하여 동맥 혹은 기관지 내벽에서 외벽에 분포한 신경을 손상시키는 신경 차단술이 사용되고 있다.Nerve block is a method of alleviating inflammation and pain by injuring nerves. For example, nerve block using a catheter is used to damage nerves distributed from the inner wall to the outer wall of an artery or bronchus.
그러나, 이와 같은 기존의 카테터 방식은 다음과 같은 한계점을 가진다.However, such a conventional catheter method has the following limitations.
첫째, 불연속적인(discrete) 전극을 이용하여 무작위로 분포한 신경을 일부만 손상시킬 수 있다.First, it is possible to partially damage randomly distributed nerves using discrete electrodes.
둘째, 신경 차단술 시행 중에 동맥 내벽을 손상시킬 위험이 있고, 에너지 전달 범위를 넘어 위치한 신경들은 손상시킬 수 없다.Second, there is a risk of damaging the arterial lining during nerve block, and nerves located beyond the energy delivery range cannot be damaged.
셋째, 기존의 신경 차단술에 사용되는 카테터는 관의 외벽에 위치한 타겟 신경의 온도를 직접 측정할 수 없어 신경 차단 여부를 장담 할 수 없다.Third, the catheter used in the existing nerve block cannot directly measure the temperature of the target nerve located on the outer wall of the tube, so it cannot be guaranteed whether the nerve is blocked.
따라서, 당해 기술분야에서는 종래 기술의 한계를 극복하고 관의 외벽에서 신경 차단을 시행하기 위한 수술 기기가 요구되고 있다. Therefore, there is a need in the art for a surgical instrument for overcoming the limitations of the prior art and for performing nerve block on the outer wall of the tube.
상기 과제를 해결하기 위해서, 본 발명의 일 실시예는 신경 차단을 위한 고주파 수술 기기를 제공한다.In order to solve the above problems, an embodiment of the present invention provides a high-frequency surgical device for nerve block.
상기 신경 차단을 위한 고주파 수술 기기는, 관의 외벽을 감싸고, 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하는 전극; 상기 전극에 내장되며 관의 표면 온도를 측정하는 온도계; 상기 전극을 통해 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하도록 동작을 제어하는 중앙제어장치; 상기 전극에 의해 측정된 임피던스를 분석하여 관의 내경 및 외경을 산출하는 임피던스 분석기; 및 신경 차단술을 위해 필요한 고주파 에너지를 발생시키는 함수 발생기를 포함할 수 있다.The high-frequency surgical device for nerve block includes an electrode surrounding the outer wall of the tube and selectively performing any one of impedance measurement and high-frequency energy transfer; a thermometer embedded in the electrode and measuring the surface temperature of the tube; a central control unit for controlling an operation to selectively perform any one of impedance measurement and high-frequency energy transfer through the electrode; an impedance analyzer for calculating an inner diameter and an outer diameter of a tube by analyzing the impedance measured by the electrode; and a function generator for generating high-frequency energy required for nerve block.
또한, 본 발명의 다른 실시예는 신경 차단을 위한 고주파 수술 시스템을 제공한다.In addition, another embodiment of the present invention provides a high-frequency surgical system for nerve block.
상기 신경 차단을 위한 고주파 수술 시스템은, 관의 외벽을 감싸고 고주파 에너지를 전달하여 관의 외벽에서 신경 차단을 수행하며, 상기 관의 표면 온도를 측정하는 고주파 수술 기기; 및 상기 수술 기기로부터 수신한 실시간 데이터에 대한 연산을 수행하여 관의 내벽 및 외벽 사이의 온도 분포를 계산하는 연산 장치를 포함할 수 있다.The high-frequency surgical system for nerve block includes: a high-frequency surgical device that surrounds the outer wall of the tube and transmits high-frequency energy to block the nerve at the outer wall of the tube, and measures the surface temperature of the tube; and a computing device for calculating a temperature distribution between the inner and outer walls of the tube by performing an operation on the real-time data received from the surgical device.
또한, 본 발명의 또 다른 실시예는 신경 차단을 위한 고주파 수술 기기를 제공한다.In addition, another embodiment of the present invention provides a high-frequency surgical device for nerve block.
상기 신경 차단을 위한 고주파 수술 기기는, 형상기억합금과 전극이 결합된 전극부; 상기 전극부의 구동을 위해 슬라이드 구조로 이루어지는 핸들부; 및 상기 전극부와 상기 핸들부 사이를 연결하며 상기 전극부가 움직이지 않도록 고정하는 연결부를 포함하며, 상기 전극에 의해 관의 외벽을 감싸고 고주파 에너지를 전달하여 관의 외벽에서 신경 차단을 수행하며, 상기 관의 표면 온도를 측정할 수 있다.The high-frequency surgical device for nerve block includes: an electrode in which a shape memory alloy and an electrode are combined; a handle part having a slide structure for driving the electrode part; and a connection part connecting the electrode part and the handle part and fixing the electrode part so that the electrode part does not move. The surface temperature of the tube can be measured.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것이 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.Incidentally, the means for solving the above problems do not enumerate all the features of the present invention. Various features of the present invention and its advantages and effects may be understood in more detail with reference to the following specific embodiments.
상술한 본 발명의 실시예에 따르면, 전극이 관의 외벽을 360도로 완전히 감쌀 수 있고, 관의 외벽에 열을 집중시키고 내벽을 보호하여 관 손상을 최소화할 수 있다. 또한, 관의 외벽의 온도를 직접 측정할 수 있고, 관 내부의 온도를 모니터링할 수 있다. 이를 통해 관의 외벽에서 신경 차단술을 진행할 수 있게 된다.According to the above-described embodiment of the present invention, the electrode can completely surround the outer wall of the tube by 360 degrees, and it is possible to minimize damage to the tube by concentrating heat on the outer wall of the tube and protecting the inner wall. In addition, the temperature of the outer wall of the tube can be directly measured, and the temperature inside the tube can be monitored. This makes it possible to proceed with nerve block on the outer wall of the tube.
또한, 상술한 본 발명의 실시예에 따르면, 관 주위를 지나는 모든 신경신호를 차단할 수 있다. 예를 들어, 교감신경신호를 차단하여 난치성 고혈압, 부정맥 등 심장질환 치료를 위한 신장신경 차단술에 적용할 수 있다. 또한, 부교감신경신호를 차단하여 만성 폐쇄성 폐질환을 치료하기 위한 폐신경 차단술에도 적용할 수 있다.In addition, according to the embodiment of the present invention described above, it is possible to block all neural signals passing around the tube. For example, by blocking the sympathetic nerve signal, it can be applied to renal nerve block surgery for the treatment of heart diseases such as intractable hypertension and arrhythmia. In addition, it can be applied to pulmonary nerve block to treat chronic obstructive pulmonary disease by blocking parasympathetic nerve signals.
도 1은 본 발명의 실시예에 따른 신경 차단을 위한 고주파 수술 기기 및 시스템의 개략도이다.1 is a schematic diagram of a high-frequency surgical instrument and system for nerve block according to an embodiment of the present invention.
도 2는 도 1에 도시된 고주파 수술 기기 및 시스템의 동작 순서도이다.FIG. 2 is an operation flowchart of the high-frequency surgical instrument and system shown in FIG. 1 .
도 3은 본 발명의 일 실시예에 따른 MEMS 유연 전극을 도시하는 도면이다.3 is a view showing a MEMS flexible electrode according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 MEMS 유연 전극의 제조 과정을 도시하는 도면이다.Figure 4 is a view showing a manufacturing process of the MEMS flexible electrode according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 MEMS 유연 전극과 플렉서블 PCB를 도시하는 도면이다.5 is a view showing a MEMS flexible electrode and a flexible PCB according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 플렉서블 PCB의 적층 구조를 설명하는 도면이다.6 is a view for explaining a stacked structure of a flexible PCB according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따라 플렉서블 PCB의 직경을 다양한 크기의 동맥에 맞추어 조절하는 개념을 도시하는 도면이다.7 is a diagram illustrating a concept of adjusting a diameter of a flexible PCB to fit arteries of various sizes according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따라 플렉서블 PCB 내부에 온도선을 삽입할 수 있도록 분리 가능하게 구현된 끝단의 형태를 도시하는 도면이다. 8 is a diagram illustrating the shape of an end that is detachably implemented so that a temperature line can be inserted into the flexible PCB according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따라 직경 조절이 가능한 통합형 플렉서블 PCB를 도시하는 도면이다.9 is a diagram illustrating an integrated flexible PCB capable of adjusting a diameter according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따라 직경 조절이 가능한 통합형 플렉서블 PCB의 적층 구조를 설명하는 도면이다.10 is a diagram illustrating a stacked structure of an integrated flexible PCB capable of adjusting a diameter according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 신경 차단을 위한 고주파 수술 기기의 전체 구조를 도시하는 단면도이다11 is a cross-sectional view showing the overall structure of a high-frequency surgical device for nerve block according to an embodiment of the present invention.
도 12는 도 11에 도시된 신경 차단을 위한 고주파 수술 기기의 핸들부를 확대하여 도시한 단면도이다.12 is an enlarged cross-sectional view of the handle portion of the high-frequency surgical device for nerve block shown in FIG. 11 .
도 13은 도 11에 도시된 신경 차단을 위한 고주파 수술 기기에 MEMS 유연 전극을 적용한 경우의 전극부를 확대하여 도시한 단면도이다.13 is an enlarged cross-sectional view of an electrode in the case of applying the MEMS flexible electrode to the high-frequency surgical device for nerve block shown in FIG. 11 .
도 14는 도 11에 도시된 신경 차단을 위한 고주파 수술 기기에 직경 조절이 가능한 통합형 플렉서블 PCB를 적용한 경우의 전극부를 확대하여 도시한 단면도이다.14 is an enlarged cross-sectional view of an electrode when an integrated flexible PCB capable of adjusting a diameter is applied to the high-frequency surgical device for nerve block shown in FIG. 11 .
[부호의 설명][Explanation of code]
100: 고주파 수술 시스템100: high frequency surgical system
110: 수술 기기110: surgical instrument
111: 중앙제어장치111: central control unit
112: 임피던스 분석기112: impedance analyzer
113: 함수 발생기113: function generator
114: 증폭기114: amplifier
115: 코덱115: codec
116: 데이터 통신부116: data communication unit
117: 전극117: electrode
118: 온도계118: thermometer
120: 연산 장치 120: arithmetic unit
121: FPGA121: FPGA
122: 데이터 통신부122: data communication unit
130: 영상 장치130: video device
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, preferred embodiments will be described in detail so that those of ordinary skill in the art can easily practice the present invention with reference to the accompanying drawings. However, in describing the preferred embodiment of the present invention in detail, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, throughout the specification, when a part is 'connected' with another part, it is not only 'directly connected' but also 'indirectly connected' with another element interposed therebetween. include In addition, 'including' a certain component means that other components may be further included, rather than excluding other components, unless otherwise stated.
도 1은 본 발명의 실시예에 따른 신경 차단을 위한 고주파 수술 기기 및 시스템의 개략도이다.1 is a schematic diagram of a high-frequency surgical instrument and system for nerve block according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 신경 차단을 위한 고주파 수술 시스템(100)은 수술 기기(110), 연산 장치(120) 및 영상 장치(130)를 포함하여 구성될 수 있다. Referring to FIG. 1 , a high-frequency surgical system 100 for nerve block according to an embodiment of the present invention may include a surgical device 110 , a computing device 120 , and an imaging device 130 .
수술 기기(110)는 중앙제어장치(111), 임피던스 분석기(112), 함수 발생기(113), 증폭기(114), 코덱(115), 데이터 통신부(116), 전극(117) 및 온도계(118)를 포함하여 구성될 수 있다.The surgical device 110 includes a central control unit 111 , an impedance analyzer 112 , a function generator 113 , an amplifier 114 , a codec 115 , a data communication unit 116 , an electrode 117 and a thermometer 118 . It may be composed of
중앙제어장치(111)는 수술 기기(110)의 동작을 제어하기 위한 것이다.The central controller 111 is for controlling the operation of the surgical device 110 .
예를 들어, 중앙제어장치(111)는 후술하는 전극(117)을 통해 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하도록 동작을 제어할 수 있다.For example, the central controller 111 may control the operation to selectively perform any one of impedance measurement and high-frequency energy transfer through an electrode 117 to be described later.
또한, 중앙제어장치(111)는 고주파 에너지 전달 시에 전극(117)으로 인가되는 고주파 에너지의 양을 조절하여 신경 차단술 시행 중에 관의 온도가 일정하게 유지되도록 할 수 있다. 다시 말해, 중앙제어장치(111)는 후술하는 온도계(118)에 의해 측정된 온도 값을 기초로 전달하는 고주파 에너지의 양을 조절함으로써 온도가 일정하게 유지되도록 할 수 있다.In addition, the central controller 111 may adjust the amount of high-frequency energy applied to the electrode 117 during transmission of high-frequency energy so that the temperature of the tube is kept constant during the nerve block operation. In other words, the central control unit 111 may maintain a constant temperature by adjusting the amount of high-frequency energy transmitted based on a temperature value measured by a thermometer 118 to be described later.
임피던스 분석기(112)는 후술하는 전극(117)과 연동하여 임피던스 분석을 수행하기 위한 것이다.The impedance analyzer 112 is to perform impedance analysis in conjunction with an electrode 117 to be described later.
예를 들어, 임피던스 분석기(112)는 후술하는 전극(117)이 임피던스 측정을 하는 경우 측정된 임피던스를 분석하여 관의 내경 및 외경을 산출할 수 있다. 구체적으로 예를 들어, 전극(117)이 동맥을 감싼 후 측정한 임피던스는 동맥 내부에서 흐르는 혈액과 동맥의 내경-외경 사이의 동맥벽의 임피던스로 이루어진다. 동맥의 외경이 동일한 경우, 혈액량이 증가하면(즉, 동맥벽이 얇아지면) 임피던스는 낮아지고, 혈액량이 감소하면(즉, 동맥벽이 두꺼워지면) 임피던스는 커지게 된다. 여기서, 동맥의 외경은 전극을 감싸는 전극의 직경으로 간주할 수 있다. 이와 같은 논리를 기초로 관의 내경 및 외경을 산출할 수 있게 된다.For example, the impedance analyzer 112 may calculate the inner diameter and the outer diameter of the tube by analyzing the measured impedance when the electrode 117, which will be described later, measures the impedance. Specifically, for example, the impedance measured after the electrode 117 wraps the artery is composed of the impedance of the artery wall between the inside diameter and the outside diameter of the blood flowing inside the artery. When the outer diameter of the artery is the same, the impedance decreases as the blood volume increases (ie, the artery wall becomes thinner), and increases when the blood volume decreases (ie the artery wall becomes thicker). Here, the outer diameter of the artery may be regarded as the diameter of the electrode surrounding the electrode. Based on this logic, it is possible to calculate the inner diameter and outer diameter of the pipe.
함수 발생기(113) 및 증폭기(114)는 중앙제어장치(111)의 제어에 따라 신경 차단술을 위해 필요한 고주파 에너지를 발생시키기 위한 것이다.The function generator 113 and the amplifier 114 are for generating high-frequency energy required for nerve block according to the control of the central controller 111 .
코덱(115)은 신호 변환을 위한 것으로, 아날로그 신호를 디지털 신호로 변환하는 ADC(Analog-to-Digital Converter)로 구현될 수 있다.The codec 115 is for signal conversion and may be implemented as an analog-to-digital converter (ADC) that converts an analog signal into a digital signal.
데이터 통신부(116)는 수술 기기(110)와 연산 장치(120) 사이의 데이터 통신을 위한 것으로, 통상의 기술자에게 알려진 유선 방식, 무선 방식 또는 유무선 방식을 모두 적용하여 구현할 수 있다.The data communication unit 116 is for data communication between the surgical device 110 and the computing device 120 , and may be implemented by applying a wired method, a wireless method, or a wired/wireless method known to those of ordinary skill in the art.
전극(117)은 동맥 혹은 기관지와 같은 관의 외벽을 감싸고 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하기 위한 것으로, 예를 들어, 양극성 평행 전극으로 구현될 수 있다.The electrode 117 surrounds the outer wall of a tube such as an artery or a bronchus and selectively performs any one of impedance measurement and high-frequency energy transfer, and may be implemented as, for example, a bipolar parallel electrode.
이와 같이 양극성 평행 전극을 사용할 경우, 고주파 에너지를 관의 외벽에 집중시킬 수 있다. 또한, 양극성 평행 전극이 관을 완전히 감을 경우 외벽에서 발생한 열이 전체적으로 균일하게 형성될 수 있다. 이 경우, 관 내부에 흐르는 혈액 또는 공기에 의한 쿨링 효과에 의해 내벽의 열 손상을 방지할 수 있다. In this way, when the bipolar parallel electrode is used, high-frequency energy can be concentrated on the outer wall of the tube. In addition, when the bipolar parallel electrode completely winds the tube, heat generated from the outer wall can be uniformly formed as a whole. In this case, it is possible to prevent thermal damage to the inner wall by the cooling effect of blood or air flowing inside the tube.
또한, 전극(117)은 관의 외벽을 감을 수 있도록 형상기억합금(Shape memory alloy)과 결합한 형태로 구현될 수 있다. 이와 같이 형상기억합금과 결합된 형태의 전극을 사용함으로써, 전극(117)이 관의 외벽을 스스로 감을 수 있고 시술 후에는 감고 있던 관을 부드럽게 풀고 나올 수 있게 된다.In addition, the electrode 117 may be implemented in a form combined with a shape memory alloy so as to wind the outer wall of the tube. By using the shape memory alloy and the combined electrode as described above, the electrode 117 can wind the outer wall of the tube by itself, and after the procedure, it is possible to gently unwind the wound tube and come out.
또한, 전극(117)은 MEMS 유연전극과 플렉서블 PCB가 결합된 전극(도 5 참조) 또는 직경 조절이 가능한 통합형 플렉서블 PCB 전극(도 9 참조)으로 구현될 수 있는 바, 해당 도면을 참조하여 구체적으로 후술하기로 한다.In addition, the electrode 117 may be implemented as an electrode in which a MEMS flexible electrode and a flexible PCB are combined (see FIG. 5 ) or an integrated flexible PCB electrode with an adjustable diameter (see FIG. 9 ). to be described later.
온도계(118)는 관 외벽의 온도를 측정하기 위한 것으로, 적어도 하나의 온도센서가 상술한 전극(117)에 내장된 형태로 구현될 수 있다. 일 예에 따르면, 온도계(118)는 전극(117)의 복수의 지점에 위치한 복수의 온도센서를 포함할 수 있다. 여기서, 온도 센서는 예를 들어 RTD(Resistance Temperature Detector), 써미스터(Thermistor), 금속 기판 접촉식 온도센서(Thermocouple)일 수 있고, 금속 기판 접촉식 온도센서는 타입 종류에 따라 K 타입(Chromel과 Alumel), J타입(Fe와 Constantan), E 타입(Chromel 과 Constantan), T 타입(Cu와 Constantan) 또는 R 타입 (Pt와 Pt-Rh(13%))일 수 있다.The thermometer 118 is for measuring the temperature of the outer wall of the tube, and at least one temperature sensor may be implemented in a form in which the electrode 117 is embedded. According to an example, the thermometer 118 may include a plurality of temperature sensors located at a plurality of points of the electrode 117 . Here, the temperature sensor may be, for example, a resistance temperature detector (RTD), a thermistor, or a metal substrate contact temperature sensor (Thermocouple), and the metal substrate contact temperature sensor is a K type (Chromel and Alumel) depending on the type. ), type J (Fe and Constantan), type E (Chromel and Constantan), type T (Cu and Constantan), or type R (Pt and Pt-Rh (13%)).
온도계(118)에 의해 측정된 관의 온도는 코덱(115)을 통해 중앙제어장치(111)로 입력되고, 또한 연산 장치(120)에 전달될 수 있다. The temperature of the tube measured by the thermometer 118 may be input to the central control unit 111 through the codec 115 , and may also be transmitted to the calculation unit 120 .
연산 장치(120)는 수술 기기(110)로부터 수신한 데이터에 대한 연산을 수행하기 위한 것으로, 예를 들어 병렬 처리를 수행할 수 있는 FPGA(Field Programmable Gate Array)(121)를 포함할 수 있다. The computing device 120 is for performing an operation on data received from the surgical device 110 , and may include, for example, a Field Programmable Gate Array (FPGA) 121 capable of performing parallel processing.
예를 들어, 연산 장치(120)는 데이터 통신부(122)를 통해 수술 기기(110)로부터 신경 차단술 진행과 관련된 실시간 데이터(예를 들어, 온도 값)를 전달받고, FPGA(121)에서 실시간 데이터에 대해 병렬 처리를 수행하여 관의 내벽 및 외벽 사이의 온도 분포를 계산할 수 있으며, 이 경우 선택적으로 입력된 환자의 정보를 추가적으로 고려할 수 있다. 여기서, 관의 내벽 및 외벽 사이의 온도 분포를 모니터링하기 위해 유한차분법(FDM), 유한체적법(FVM), 유한요소법(FEM), 경계요소법(BEM)과 같은 다양한 수치적 분석 방법이 사용될 수 있다. 이와 같이 FPGA(121)를 이용하여 병렬 처리를 수행하는 경우 신경 차단술의 시행 중에 획득한 실시간 데이터를 기초로 빠른 시간내에 결과를 도출할 수 있다. 한편, FPGA(121)는 고성능 MCU의 멀티 프로세서로 대체될 수도 있다.For example, the computing device 120 receives real-time data (eg, temperature value) related to the nerve block procedure from the surgical device 110 through the data communication unit 122 , and receives the real-time data from the FPGA 121 . The temperature distribution between the inner wall and the outer wall of the tube can be calculated by performing parallel processing on the data, and in this case, optionally input patient information can be additionally considered. Here, various numerical analysis methods such as finite difference method (FDM), finite volume method (FVM), finite element method (FEM), and boundary element method (BEM) can be used to monitor the temperature distribution between the inner and outer walls of the tube. there is. In this way, when parallel processing is performed using the FPGA 121, results can be derived within a short time based on real-time data obtained during the execution of nerve block. Meanwhile, the FPGA 121 may be replaced with a multi-processor of a high-performance MCU.
영상 장치(130)는 연산 장치(120)로부터 전달받은 정보를 출력하기 위한 것이다.The imaging device 130 is for outputting information received from the computing device 120 .
예를 들어, 영상 장치(130)는 연산 장치(120)에 의해 계산된 관의 내벽 및 외벽 사이의 온도 분포를 이미지 등의 형태로 출력할 수 있다.For example, the imaging device 130 may output the temperature distribution between the inner wall and the outer wall of the tube calculated by the calculating device 120 in the form of an image or the like.
또한, 영상 장치(130)는 신경 차단술 시행과 관련된 각종 정보, 예를 들어 환자 정보, 에너지 전달 정보, 수술 진행 시간 정보 등을 출력할 수도 있다.In addition, the imaging apparatus 130 may output various types of information related to the nerve block operation, for example, patient information, energy transfer information, operation time information, and the like.
도 2는 도 1에 도시된 고주파 수술 기기 및 시스템의 동작 순서도이다.FIG. 2 is an operation flowchart of the high-frequency surgical instrument and system shown in FIG. 1 .
도 2를 참조하면, 고주파 수술 기기 및 시스템의 동작은 크게 동맥을 감는 과정(S210), 동맥 모델링 과정(S220) 및 신경 차단술 진행 과정(S230)으로 구분될 있다.Referring to FIG. 2 , the operation of the high-frequency surgical device and system may be largely divided into an artery winding process ( S210 ), an artery modeling process ( S220 ), and a nerve block operation process ( S230 ).
우선, 동맥을 감는 과정(S210)에서는, 타겟 동맥에 전극을 놓아서 접촉시키고(S211), 임피던스 분석, 즉 저항이 변했는지 여부를 확인하여(S212) 전극의 접촉 여부를 판단할 수 있다. 이후, 전극의 끝부터 타겟 동맥에 접촉하여 전극 끝 부분에 위치한 첫 번째 온도계 값이 상승하면(S213) 전극에 RF 에너지를 인가하고(S214), 전극이 원형으로 감기면서 전극 중간 부분에 위치한 두 번째 온도계 값이 상승하면(S215) 동맥 모델링 과정(S220)으로 진행할 수 있다. 이와 같이, 전극의 접촉이 확인되면 전극에 고주파 에너지를 인가하여 열을 올리고, 이 열을 이용하여 형상기억합금의 형상을 변형시켜서 전극이 동맥을 완전히 감싸도록 한다.First, in the process of winding the artery (S210), the electrode is placed and brought into contact with the target artery (S211), and impedance analysis, that is, whether the resistance has changed (S212), is checked to determine whether the electrode is in contact. After that, when the first thermometer value located at the end of the electrode rises by contacting the target artery from the tip of the electrode (S213), RF energy is applied to the electrode (S214), and the second electrode located in the middle of the electrode is wound in a circle while the electrode is wound in a circle. When the thermometer value increases (S215), the arterial modeling process (S220) may proceed. In this way, when the electrode contact is confirmed, high-frequency energy is applied to the electrode to increase heat, and the shape of the shape memory alloy is deformed using this heat so that the electrode completely surrounds the artery.
이후, 동맥 모델링 과정(S220)에서는, 전극으로의 RF 에너지 인가를 멈추고(S221), 광범위 주파수 대역에서 임피던스를 측정하여(S222), 동맥의 내경 및 외경을 구할 수 있다(S223). 이후, 계산된 동맥의 내경 및 외경에 따라 이에 맞는 수술 온도 및 시간을 정하고(S224), 계산된 동맥의 내경 및 외경으로 시뮬레이션 모델(즉, 동맥 모델)을 만든 후(S225), 이에 맞는 RF 에너지를 전극에 인가하여 신경 차단술을 진행할 수 있다(S226). 이와 같이, 신경 차단술을 진행하는 수술 온도 및 시간은 1차적으로 임피던스 분석을 통해 결정한 동맥 모델에서 정해질 수 있으며, 1차적으로 정해진 바에 따라 RF 에너지를 전달하여 신경 차단술을 진행할 수 있다.Thereafter, in the arterial modeling process ( S220 ), the application of RF energy to the electrodes is stopped ( S221 ), and impedance is measured in a wide frequency band ( S222 ) to obtain the inner and outer diameters of the artery ( S223 ). Thereafter, the appropriate surgical temperature and time are determined according to the calculated inner and outer diameters of the artery (S224), and a simulation model (ie, the artery model) is created with the calculated inner and outer diameters of the artery (S225), and then the RF energy can be applied to the electrode to proceed with nerve block (S226). In this way, the operating temperature and time for performing the nerve block may be determined in the arterial model primarily determined through impedance analysis, and the nerve block may be performed by transmitting RF energy according to the primary determination.
이후, 신경 차단술 진행 과정(S230)에서는, 일정한 전극 온도(즉, 일정한 관의 표면 온도)를 유지하도록 RF 에너지를 조절하고(S231), 첫 번째 및 두 번째 온도계 값을 측정하여(S232), 측정된 온도를 모델의 경계 조건으로 설정할 수 있다(S233). 이후, 수치 해석으로 관 내부의 온도 분포를 계산한 후(S234), 온도 분포를 이미지로 표현하여 출력할 수 있다(S235). 이후, 실제 온도 분포를 이용하여 수술 온도와 시간을 재 설정하고 동맥 모델을 수정할 수 있다(S236). 이와 같이, 신경 차단술 진행 중에 실시간으로 측정되는 첫 번째 및 두 번째 온도계 값을 기초로 2차적으로 수술 온도 및 시간을 결정할 수 있으며, 이에 따라 신경 차단술을 진행할 수 있다.Thereafter, in the nerve block procedure (S230), RF energy is adjusted to maintain a constant electrode temperature (ie, a constant surface temperature of the tube) (S231), and the first and second thermometer values are measured (S232), and the measurement The measured temperature may be set as a boundary condition of the model (S233). Thereafter, after calculating the temperature distribution inside the tube by numerical analysis (S234), the temperature distribution can be expressed and output as an image (S235). Thereafter, the operation temperature and time may be reset using the actual temperature distribution and the arterial model may be modified (S236). In this way, the surgical temperature and time can be determined secondarily based on the values of the first and second thermometers measured in real time during the nerve block operation, and accordingly, the nerve block operation can be performed.
도 3은 본 발명의 일 실시예에 따른 MEMS 유연 전극을 도시하는 도면이고, 도 4는 본 발명의 일 실시예에 따른 MEMS 유연 전극의 제조 과정을 도시하는 도면이다.Figure 3 is a view showing a MEMS flexible electrode according to an embodiment of the present invention, Figure 4 is a view showing a manufacturing process of the MEMS flexible electrode according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 MEMS 유연 전극은 생체적합성 폴리머 기판 상에 고주파 에너지를 전달하기 위한 양극성 평행 전극과 금속 기판 접촉식 온도센서가 동일 평면 상에 일체형으로 형성되도록 구현될 수 있다. 이와 같이 양극형 평행 전극과 온도 센서가 일체형으로 형성됨으로써 집적화에 보다 유리할 수 있다.3 and 4, in the MEMS flexible electrode according to an embodiment of the present invention, a bipolar parallel electrode for transmitting high-frequency energy on a biocompatible polymer substrate and a metal substrate contact-type temperature sensor are integrally formed on the same plane. It may be implemented to be formed. As such, since the bipolar parallel electrode and the temperature sensor are integrally formed, it may be more advantageous for integration.
일 예에 따르면, 도 4의 (a)에 도시된 바와 같이 실리콘 기판(41) 상에 희생층(42) 및 폴리머(43)를 차례로 형성할 수 있다. 여기서, 희생층(42)은 금속, 산화물, 폴리머, 실리콘일 수 있고, 본 발명의 실시예에서는 금속 티타늄(Ti) 희생층을 사용하였다. 폴리머(43)는 생체 적합성이 있는 파릴렌(Parylene)일 수 있으며, 폴리머(43)는 예를 들어 화학기상증착법(Chemical Vapor Deposition, CVD)에 의해 형성될 수 있다.According to an example, as shown in FIG. 4A , the sacrificial layer 42 and the polymer 43 may be sequentially formed on the silicon substrate 41 . Here, the sacrificial layer 42 may be a metal, oxide, polymer, or silicon, and in the embodiment of the present invention, a metal titanium (Ti) sacrificial layer is used. The polymer 43 may be biocompatible parylene, and the polymer 43 may be formed by, for example, chemical vapor deposition (CVD).
이후, 도 4의 (b)에 도시된 바와 같이 리프트 오프(lift-off) 공정을 이용하여 양극성 평행 전극(44)으로 사용되는 금속(예를 들어, Au) 필름과 금속 기판 접촉식 온도센서(44)로 사용될 구리(Cu) 및 구리니켈합금(CuNi)을 증착할 수 있다. Thereafter, as shown in (b) of FIG. 4, using a lift-off process, a metal (eg, Au) film used as the bipolar parallel electrode 44 and a metal substrate contact type temperature sensor ( 44), copper (Cu) and copper nickel alloy (CuNi) may be deposited.
이후, 도 4의 (c)에 도시된 바와 같이 금속 필름 상에 파릴렌(45)을 증착하여 패키징한 후, 반응성 이온 에칭기(RIE)를 사용하여 파릴렌의 일부 영역(46)을 식각할 수 있다. 여기서, 파릴렌은 도 4의 (a)에서와 동일한 두께일 수 있다. 또한, 식각된 영역(46)은 전기적 신호의 전달 및 획득을 위해 사용될 수 있다. Thereafter, as shown in (c) of FIG. 4 , after depositing and packaging parylene 45 on a metal film, a partial region 46 of parylene is etched using a reactive ion etcher (RIE). can Here, the parylene may have the same thickness as in (a) of FIG. 4 . In addition, the etched region 46 may be used for transmission and acquisition of electrical signals.
이후, 도 4의 (d)에 도시된 바와 같이 희생층을 용해시킴으로써 실리콘 기판 상에 형성된 유연 전극을 분리할 수 있다.Thereafter, the flexible electrode formed on the silicon substrate may be separated by dissolving the sacrificial layer as shown in FIG. 4(d).
상술한 바와 같은 MEMS 공정은 다양한 금속 필름을 증착할 수 있고, 반도체 공정과 호환이 가능한 다양한 기판 재료를 이용할 수 있으며, 소형화 및 집적화에 유리하다는 장점이 있다.The MEMS process as described above has advantages in that various metal films can be deposited, various substrate materials compatible with the semiconductor process can be used, and it is advantageous for miniaturization and integration.
도 5는 본 발명의 일 실시예에 따른 MEMS 유연 전극과 플렉서블 PCB를 도시하는 도면으로, MEMS 유연 전극과 플렉서블 PCB는 ACF(Anisotropic Conductive Film)를 이용하여 접합이 이루어질 수 있다.5 is a view showing a MEMS flexible electrode and a flexible PCB according to an embodiment of the present invention, the MEMS flexible electrode and the flexible PCB may be bonded using an ACF (Anisotropic Conductive Film).
도 6은 본 발명의 일 실시예에 따른 플렉서블 PCB의 적층 구조를 설명하는 도면이다.6 is a view for explaining a stacked structure of a flexible PCB according to an embodiment of the present invention.
도 5 및 도 6을 참조하면, 도 3에 도시된 바와 같은 MEMS 유연 전극을 연결하기 위해 전극선 및 온도선이 포함된 일체형의 플렉서블 PCB를 사용할 수 있다. 일 예에 따르면, 플렉서블 PCB는 도 6에 도시된 적층 구조를 가지도록 형성될 수 있다. 5 and 6 , an integrated flexible PCB including an electrode wire and a temperature wire may be used to connect the MEMS flexible electrode as shown in FIG. 3 . According to an example, the flexible PCB may be formed to have the stacked structure shown in FIG. 6 .
또한, MEMS 유연 전극과 플렉서블 PCB는 형상기억합금의 표면 위에서 예를 들어 ACF 본딩을 이용하여 연결될 수 있다. In addition, the MEMS flexible electrode and the flexible PCB can be connected using, for example, ACF bonding on the surface of the shape memory alloy.
도 7은 본 발명의 일 실시예에 따라 플렉서블 PCB의 직경을 다양한 크기의 동맥에 맞추어 조절하는 개념을 도시하는 도면이고, 도 8은 본 발명의 일 실시예에 따라 플렉서블 PCB 내부에 온도선을 삽입할 수 있도록 분리 가능하게 구현된 끝단의 형태를 도시하는 도면이다.7 is a diagram illustrating a concept of adjusting the diameter of a flexible PCB according to arteries of various sizes according to an embodiment of the present invention, and FIG. 8 is a view showing a temperature line inserted into the flexible PCB according to an embodiment of the present invention It is a diagram showing the shape of the end that is detachably implemented so as to be able to do so.
사람들의 동맥의 크기는 다양하므로 이를 고려하여 도 7에 도시된 바와 같이 플렉서블 PCB의 직경을 다양한 크기의 동맥(Artery)에 맞추어 조절 가능하도록 구현할 수 있다. Since the size of the arteries of people varies, taking this into account, as shown in FIG. 7 , the diameter of the flexible PCB may be embodied to be adjustable to fit arteries of various sizes.
또한, 도 8에 도시된 바와 같이 플렉서블 PCB 내부에 실시간 RF 에너지 인가를 위한 전극선과 온도 측정을 위한 온도선이 삽입될 수 있도록 분리 가능하게 구현될 수 있으며 제어 시스템과의 연결을 위해 끝단을 분리할 수 있다.In addition, as shown in Fig. 8, it can be implemented to be detachable so that an electrode wire for real-time RF energy application and a temperature wire for temperature measurement can be inserted inside the flexible PCB, and the end can be separated for connection with the control system. can
도 9는 본 발명의 일 실시예에 따라 직경 조절이 가능한 통합형 플렉서블 PCB를 도시하는 도면이고, 도 10은 본 발명의 일 실시예에 따라 직경 조절이 가능한 통합형 플렉서블 PCB의 적층 구조를 설명하는 도면이다.9 is a diagram illustrating an integrated flexible PCB with adjustable diameter according to an embodiment of the present invention, and FIG. 10 is a diagram illustrating a stacked structure of an integrated flexible PCB with adjustable diameter according to an embodiment of the present invention. .
도 9 및 도 10을 참조하면, 본 발명의 일 실시예에 따라 직경 조절이 가능하며 전극선 및 온도선이 포함되고, 양극성 평행 전극과 금속 기판 접촉식 온도 센서가 일체형으로 형성된 통합형 플렉서블 PCB를 사용할 수 있다. 일 예에 따르면, 직경 조절이 가능한 통합형 플렉서블 PCB는 도 10에 도시된 적층 구조를 가지도록 형성될 수 있다.9 and 10 , according to an embodiment of the present invention, an integrated flexible PCB having an adjustable diameter, including an electrode wire and a temperature wire, and having a bipolar parallel electrode and a metal substrate contact temperature sensor integrally formed can be used. there is. According to an example, the integrated flexible PCB capable of adjusting a diameter may be formed to have the stacked structure shown in FIG. 10 .
도 11은 본 발명의 실시예에 따른 신경 차단을 위한 고주파 수술 기기의 전체 구조를 도시하는 단면도이고, 도 12는 도 11에 도시된 신경 차단을 위한 고주파 수술 기기의 핸들부를 확대하여 도시한 단면도이다. 또한, 도 13은 도 11에 도시된 신경 차단을 위한 고주파 수술 기기에 MEMS 유연 전극을 적용한 경우의 전극부를 확대하여 도시한 단면도이고, 도 14는 도 11에 도시된 신경 차단을 위한 고주파 수술 기기에 직경 조절이 가능한 통합형 플렉서블 PCB를 적용한 경우의 전극부를 확대하여 도시한 단면도이다.11 is a cross-sectional view showing the overall structure of the high-frequency surgical device for nerve block according to an embodiment of the present invention, and FIG. 12 is an enlarged cross-sectional view of the handle part of the high-frequency surgical device for nerve block shown in FIG. 11 . In addition, FIG. 13 is an enlarged cross-sectional view of the electrode part when the MEMS flexible electrode is applied to the high-frequency surgical device for nerve block shown in FIG. 11, and FIG. 14 is the high-frequency surgical device for nerve block shown in FIG. It is a cross-sectional view showing an enlarged electrode part when an integrated flexible PCB with adjustable diameter is applied.
도 11을 참조하면, 본 발명의 일 실시예에 따른 고주파 수술 기기는 크게 전극부(1100), 연결부(1200) 및 핸들부(1300)로 구성될 수 있다. 여기서, 전극부(1100)는 형상기억합금과 전극이 결합된 형태일 수 있으며, 전극은 MEMS 유연전극과 플렉서블 PCB가 결합된 전극(도 5 참조) 또는 직경 조절이 가능한 통합형 플렉서블 PCB 전극(도 9 참조)으로 구현될 수 있다. 또한, 연결부(1200)는 전극부(1100)와 핸들부(1300) 사이를 연결하며 전극부(1100)가 움직이지 않도록 고정할 수 있다. 연결부(1200)는 생체적합성 고분자 소재(PC, PP 등) 및 금속 스테인레스 소재 등을 사용할 수 있다. 연결부(1200)는 예를 들어 5 ㎜의 트로카를 사용할 수 있는 직경을 가지고 있어 복강경 및 로봇 수술에 사용할 수 있다. 또한, 연결부(1200)는 핸들부(1300)와 분리될 수 있으며 동맥의 크기에 따라 전극부(1100)의 전극(MEMS 전극) 크기를 선정하여 핸들부(1300)와 연결부(1200)가 결합되는 부분에서 연결부(1200)에 형성된 홈에 클램핑 형식으로 전극부(1100)를 선택적으로 장착하여 사용할 수 있다.Referring to FIG. 11 , the high frequency surgical device according to an embodiment of the present invention may be largely composed of an electrode unit 1100 , a connection unit 1200 , and a handle unit 1300 . Here, the electrode unit 1100 may be in a form in which a shape memory alloy and an electrode are combined, and the electrode is an electrode in which a MEMS flexible electrode and a flexible PCB are combined (see FIG. 5 ) or an integrated flexible PCB electrode with an adjustable diameter ( FIG. 9 ). see) can be implemented. In addition, the connection part 1200 connects between the electrode part 1100 and the handle part 1300 and may be fixed so that the electrode part 1100 does not move. The connection part 1200 may use a biocompatible polymer material (PC, PP, etc.) and a metallic stainless material. The connection part 1200 has a diameter that can use a trocar of, for example, 5 mm, so it can be used for laparoscopic and robotic surgery. In addition, the connection part 1200 can be separated from the handle part 1300, and the size of the electrode (MEMS electrode) of the electrode part 1100 is selected according to the size of the artery so that the handle part 1300 and the connection part 1200 are combined. The electrode part 1100 may be selectively mounted in the groove formed in the connection part 1200 in the clamping type and used.
도 12를 참조하면, 핸들부(1300)는 전극부(1100)의 구동을 위해 슬라이드 구조로 이루어질 수 있으며, 예를 들어 핸들 외부를 구성하는 케이스(1310), 피치 간격에 따른 멈춤 기능을 구비하고 슬라이드를 밀고 당기는 기능으로 플렉서블 PCB(1360)를 이동시키기 위한 플렉서블 PCB 이동부(1320), 형상기억합금 가이드(1340)를 고정하기 위한 가이드 고정부(1330), 형상기억합금 막대(1350)를 가이드하기 위한 형상기억합금 가이드(1340), 형상기억합금 막대(1350), 플렉서블 PCB(1360) 및 플렉서블 PCB 이동부(1320)를 지지하기 위한 플렉서블 PCB 이동부 지지부(1370)를 포함하여 구성될 수 있다. 여기서, 플렉서블 PCB 이동부(1320)에 의해 플렉서블 PCB(1360)를 이동시킴으로써 관의 크기에 따라 전극의 직경을 조절할 수 있다. 이와 같은 핸들부의 구성은 일 예에 불과한 것으로 플렉서블 PCB(1360)를 이동시킬 수 있는 구조라면 다양한 형태로 변형되어 구현될 수도 있다.12 , the handle unit 1300 may have a slide structure for driving the electrode unit 1100, for example, a case 1310 constituting the outside of the handle, and a stop function according to the pitch interval. A flexible PCB moving unit 1320 for moving the flexible PCB 1360 with a function of pushing and pulling a slide, a guide fixing unit 1330 for fixing the shape memory alloy guide 1340, and a shape memory alloy rod 1350 guide For supporting the shape memory alloy guide 1340, the shape memory alloy rod 1350, the flexible PCB 1360 and the flexible PCB moving unit 1320 to . Here, by moving the flexible PCB 1360 by the flexible PCB moving unit 1320 , the diameter of the electrode may be adjusted according to the size of the tube. Such a configuration of the handle portion is merely an example, and if it is a structure capable of moving the flexible PCB 1360 , it may be implemented by being modified in various forms.
도 13을 참조하면, MEMS 유연 전극을 적용한 경우의 전극부(1100)는 MEMS 유연 전극(1110), 형상기억합금(1120), MEMS 유연 전극(1110)을 보호하기 위한 팁 캡(Tip cap)(1130) 및 팁 캡(1130)의 고정 및 분리를 위한 팁 캡 레버(Tip cap lever)(1140)를 포함하여 구성될 수 있다. 이처럼, 전극의 유연성을 고려하여 견고한 구조를 가지는 팁 캡(1130)과, 팁 캡(1130)이 임의의 충격에 의해 분리되지 않도록 하기 위해 팁 캡 레버(1140)를 포함할 수 있다. 또한, 팁 캡(1130)의 내부면과 연결부(1200)가 접촉되는 면은 마찰력을 최대로 하여 팁 캡(1130)이 쉽게 분리되지 않도록 하고, 팁 캡(1130)과 팁 캡 레버(1140)의 직경은 가능한 최소화할 수 있다.13, the electrode part 1100 in the case of applying the MEMS flexible electrode is a MEMS flexible electrode 1110, a shape memory alloy 1120, a tip cap for protecting the MEMS flexible electrode 1110 (Tip cap) ( 1130 and a tip cap lever 1140 for fixing and separating the tip cap 1130 may be included. As such, the tip cap 1130 having a rigid structure in consideration of the flexibility of the electrode and the tip cap lever 1140 may be included to prevent the tip cap 1130 from being separated by any impact. In addition, the surface in which the inner surface of the tip cap 1130 and the connection part 1200 is in contact with the maximum frictional force to prevent the tip cap 1130 from being easily separated, the tip cap 1130 and the tip cap lever 1140 The diameter can be minimized as much as possible.
도 14를 참조하면, 직경 조절이 가능한 통합형 플렉서블 PCB를 적용한 경우의 전극부(1100)는 형상기억합금(1120), 팁 캡(1130) 및 팁 캡 레버(Tip cap lever)(1140) 및 플렉서블 PCB(1150)를 포함하여 구성될 수 있다.Referring to FIG. 14 , the electrode part 1100 in the case of applying an integrated flexible PCB with adjustable diameter is a shape memory alloy 1120 , a tip cap 1130 and a tip cap lever 1140 , and a flexible PCB. 1150 may be included.
도 14에 도시된 전극부(110)는 MEMS 유연전극(1110) 대신 직경 조절이 가능한 통합형 플렉서블 PCB(1150)로 구성되는 점을 제외하면 도 13에 도시된 전극부(1100)와 동일하게 구현될 수 있다.The electrode part 110 shown in FIG. 14 is implemented in the same way as the electrode part 1100 shown in FIG. 13 except that it is composed of an integrated flexible PCB 1150 with an adjustable diameter instead of the MEMS flexible electrode 1110. can
상술한 본 발명의 실시예에 따르면, 전극이 관의 외벽을 360도로 완전히 감을 수 있고, 관의 외벽에 열을 집중시키고 내벽을 보호하여 관 손상을 최소화할 수 있다. 또한, 관의 외벽의 온도를 직접 측정할 수 있고, 관 내부의 온도를 모니터링할 수 있다. 이를 통해 관의 외벽에서 신경 차단술을 진행할 수 있게 된다.According to the above-described embodiment of the present invention, the electrode can completely wind the outer wall of the tube by 360 degrees, and it is possible to minimize damage to the tube by concentrating heat on the outer wall of the tube and protecting the inner wall. In addition, the temperature of the outer wall of the tube can be directly measured, and the temperature inside the tube can be monitored. This makes it possible to proceed with nerve block on the outer wall of the tube.
또한, 상술한 본 발명의 실시예에 따르면, 관 주위를 지나는 모든 신경신호를 차단할 수 있다. 예를 들어, 교감신경신호를 차단하여 난치성 고혈압, 부정맥 등 심장질환 치료를 위한 신장신경 차단술에 적용할 수 있다. 또한, 부교감신경신호를 차단하여 만성 폐쇄성 폐질환을 치료하기 위한 폐신경 차단술에도 적용할 수 있다.In addition, according to the embodiment of the present invention described above, it is possible to block all neural signals passing around the tube. For example, by blocking the sympathetic nerve signal, it can be applied to renal nerve block surgery for the treatment of heart diseases such as intractable hypertension and arrhythmia. In addition, it can be applied to pulmonary nerve block to treat chronic obstructive pulmonary disease by blocking parasympathetic nerve signals.
본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명에 따른 구성요소를 치환, 변형 및 변경할 수 있다는 것이 명백할 것이다.The present invention is not limited by the above embodiments and the accompanying drawings. For those of ordinary skill in the art to which the present invention pertains, it will be apparent that the components according to the present invention can be substituted, modified and changed without departing from the technical spirit of the present invention.

Claims (19)

  1. 관의 외벽을 감싸고, 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하는 전극;an electrode surrounding the outer wall of the tube and selectively performing any one of impedance measurement and high-frequency energy transfer;
    상기 전극에 내장되며 관의 표면 온도를 측정하는 온도계;a thermometer embedded in the electrode and measuring the surface temperature of the tube;
    상기 전극을 통해 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하도록 동작을 제어하는 중앙제어장치;a central control unit for controlling an operation to selectively perform any one of impedance measurement and high-frequency energy transfer through the electrode;
    상기 전극에 의해 측정된 임피던스를 분석하여 관의 내경 및 외경을 산출하는 임피던스 분석기; 및an impedance analyzer for calculating an inner diameter and an outer diameter of a tube by analyzing the impedance measured by the electrode; and
    신경 차단술을 위해 필요한 고주파 에너지를 발생시키는 함수 발생기를 포함하는 고주파 수술 기기.A high-frequency surgical instrument comprising a function generator for generating high-frequency energy required for nerve block.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 전극은 형상기억합금과 결합되어 관의 외벽을 감을 수 있는 것을 특징으로 하는 고주파 수술 기기.The electrode is a high-frequency surgical device, characterized in that it can wind the outer wall of the tube is combined with a shape memory alloy.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 전극은 MEMS 유연전극과 플렉서블 PCB가 결합된 것을 특징으로 하는 고주파 수술 기기.The electrode is a high-frequency surgical device, characterized in that the MEMS flexible electrode and a flexible PCB are combined.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 MEMS 유연 전극은 생체적합성 폴리머 기판 상에 고주파 에너지를 전달하기 위한 양극성 평행 전극과 금속 기판 접촉식 온도센서가 동일 평면 상에 일체형으로 형성된 것을 특징으로 하는 고주파 수술 기기.The MEMS flexible electrode is a high-frequency surgical device, characterized in that the bipolar parallel electrode for transmitting high-frequency energy on a biocompatible polymer substrate and a metal substrate contact-type temperature sensor are integrally formed on the same plane.
  5. 제 3 항에 있어서,4. The method of claim 3,
    상기 플렉서블 PCB는 내부에 전극선 및 온도선이 삽입될 수 있도록 분리 가능하며 끝단의 소정 영역이 분리된 형태인 것을 특징으로 하는 고주파 수술 기기.The flexible PCB is detachable so that an electrode wire and a temperature wire can be inserted therein, and a predetermined area at the end is separated.
  6. 제 3 항에 있어서,4. The method of claim 3,
    상기 MEMS 유연 전극과 상기 플렉서블 PCB는 상기 형상기억합금의 표면 위에서 연결된 것을 특징으로 하는 고주파 수술 기기.The MEMS flexible electrode and the flexible PCB are high frequency surgical instruments, characterized in that connected on the surface of the shape memory alloy.
  7. 제 2 항에 있어서,3. The method of claim 2,
    상기 전극은 양극성 평행 전극과 금속 기판 접촉식 온도센서가 일체형으로 형성되고, 전극선 및 온도선이 포함된 직경 조절이 가능한 통합형 플렉서블 PCB 전극인 것을 특징으로 하는 고주파 수술 기기.The electrode is a high-frequency surgical device, characterized in that the bipolar parallel electrode and the metal substrate contact-type temperature sensor are integrally formed, and an integrated flexible PCB electrode capable of adjusting the diameter including the electrode wire and the temperature wire.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 중앙제어장치는 상기 관의 내경 및 외경에 따라 수술 온도 및 시간을 정하고 시뮬레이션 모델을 생성하며 이에 상응하는 고주파 에너지를 상기 전극에 인가하도록 제어하는 것을 특징으로 하는 고주파 수술 기기.The central controller determines the operating temperature and time according to the inner and outer diameters of the tube, generates a simulation model, and controls to apply the corresponding high-frequency energy to the electrodes.
  9. 제 8 항에 있어서, 9. The method of claim 8,
    상기 중앙제어장치는 고주파 에너지 전달 시에 상기 온도계에 의해 측정된 온도 값을 기초로 상기 전극으로 인가되는 고주파 에너지의 양을 조절하여 신경 차단술 시행 중에 관의 온도가 일정하게 유지되도록 하는 것을 특징으로 하는 고주파 수술 기기.The central control device adjusts the amount of high-frequency energy applied to the electrode based on the temperature value measured by the thermometer during transmission of high-frequency energy so that the temperature of the tube is maintained constant during nerve block surgery. high-frequency surgical instruments.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 중앙제어장치는 신경 차단술 시행 중에 상기 온도계에 의해 실시간으로 측정되는 온도 값을 기초로 수술 온도 및 시간을 재 설정하고 상기 시뮬레이션 모델을 수정하는 것을 특징으로 하는 고주파 수술 기기.The central control unit resets the operating temperature and time based on the temperature value measured in real time by the thermometer during the nerve block operation and corrects the simulation model.
  11. 관의 외벽을 감싸고 고주파 에너지를 전달하여 관의 외벽에서 신경 차단을 수행하며, 상기 관의 표면 온도를 측정하는 고주파 수술 기기; 및a high-frequency surgical device that surrounds the outer wall of the tube and transmits high-frequency energy to block the nerve at the outer wall of the tube, and measures the surface temperature of the tube; and
    상기 수술 기기로부터 수신한 실시간 데이터에 대한 연산을 수행하여 관의 내벽 및 외벽 사이의 온도 분포를 계산하는 연산 장치를 포함하는 고주파 수술 시스템.and a computing device for calculating a temperature distribution between an inner wall and an outer wall of a tube by performing an operation on the real-time data received from the surgical device.
  12. 제 11 항에 있어서, 상기 고주파 수술 기기는,The method of claim 11, wherein the high-frequency surgical instrument,
    관의 외벽을 감싸고, 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하는 전극;an electrode surrounding the outer wall of the tube and selectively performing any one of impedance measurement and high-frequency energy transfer;
    상기 전극에 내장되며 관의 표면 온도를 측정하는 온도계;a thermometer embedded in the electrode and measuring the surface temperature of the tube;
    상기 전극을 통해 임피던스 측정 및 고주파 에너지 전달 중 어느 하나를 선택적으로 수행하도록 동작을 제어하는 중앙제어장치;a central control unit for controlling an operation to selectively perform any one of impedance measurement and high-frequency energy transfer through the electrode;
    상기 전극에 의해 측정된 임피던스를 분석하여 관의 내경 및 외경을 산출하는 임피던스 분석기; 및an impedance analyzer for calculating an inner diameter and an outer diameter of a tube by analyzing the impedance measured by the electrode; and
    신경 차단술을 위해 필요한 고주파 에너지를 발생시키는 함수 발생기를 포함하는 것을 특징으로 하는 고주파 수술 시스템.A high-frequency surgical system comprising a function generator for generating high-frequency energy required for nerve block.
  13. 제 11 항에 있어서,12. The method of claim 11,
    상기 연산 장치는 유한차분법(FDM), 유한체적법(FVM), 유한요소법(FEM) 및 경계요소법(BEM) 중 적어도 하나의 분석 방법을 사용하여 온도 분포를 모니터링하는 것을 특징으로 하는 고주파 수술 시스템.The calculation device is a high-frequency surgical system, characterized in that monitoring the temperature distribution using at least one analysis method of a finite difference method (FDM), a finite volume method (FVM), a finite element method (FEM), and a boundary element method (BEM) .
  14. 제 11 항에 있어서,12. The method of claim 11,
    상기 연산 장치에 의해 계산된 관의 내벽 및 외벽 사이의 온도 분포 이미지를 출력하는 영상 장치를 더 포함하는 것을 특징으로 하는 고주파 수술 시스템.The high-frequency surgical system further comprising an imaging device for outputting an image of a temperature distribution between the inner and outer walls of the tube calculated by the calculation device.
  15. 형상기억합금과 전극이 결합된 전극부;an electrode in which a shape memory alloy and an electrode are combined;
    상기 전극부의 구동을 위해 슬라이드 구조로 이루어지는 핸들부; 및a handle part having a slide structure for driving the electrode part; and
    상기 전극부와 상기 핸들부 사이를 연결하며 상기 전극부가 움직이지 않도록 고정하는 연결부를 포함하며,and a connection part connecting the electrode part and the handle part and fixing the electrode part not to move,
    상기 전극에 의해 관의 외벽을 감싸고 고주파 에너지를 전달하여 관의 외벽에서 신경 차단을 수행하며, 상기 관의 표면 온도를 측정하는 것을 특징으로 하는 고주파 수술 기기.A high-frequency surgical device, characterized in that the electrode surrounds the outer wall of the tube, transmits high-frequency energy to block the nerve at the outer wall of the tube, and measures the surface temperature of the tube.
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 전극은 MEMS 유연전극과 플렉서블 PCB가 결합된 전극 또는 직경 조절이 가능한 통합형 플렉서블 PCB 전극인 것을 특징으로 하는 고주파 수술 기기.The electrode is a high-frequency surgical device, characterized in that the MEMS flexible electrode and a flexible PCB are combined or an integrated flexible PCB electrode capable of adjusting the diameter.
  17. 제 16 항에 있어서,17. The method of claim 16,
    상기 핸들부는 피치 간격에 따른 멈춤 기능을 구비하며, 슬라이드를 밀고 당기는 기능으로 상기 플렉서블 PCB를 이동시켜 상기 관의 크기에 따라 전극의 직경을 조절하는 것을 특징으로 하는 고주파 수술 기기.The handle part has a stop function according to the pitch interval, and moves the flexible PCB with a function of pushing and pulling a slide to adjust the diameter of the electrode according to the size of the tube.
  18. 제 15 항에 있어서,16. The method of claim 15,
    상기 전극부 및 상기 연결부는 상기 핸들부와 분리 가능하며, 상기 연결부와 상기 핸들부가 결합되는 부분에서 상기 연결부에 형성된 홈에 클램핑 형식으로 상기 전극부를 선택적으로 장착 가능한 것을 특징으로 하는 고주파 수술 기기.The electrode part and the connection part are separable from the handle part, and the electrode part can be selectively mounted in a clamping manner in a groove formed in the connection part at a portion where the connection part and the handle part are coupled.
  19. 제 15 항에 있어서, 상기 전극부는, The method of claim 15, wherein the electrode part,
    상기 전극을 보호하기 위한 팁 캡(Tip cap) 및 상기 팁 캡의 고정 및 분리를 위한 팁 캡 레버(Tip cap lever)를 더 포함하는 것을 특징으로 하는 고주파 수술 기기.A high-frequency surgical device further comprising a tip cap for protecting the electrode and a tip cap lever for fixing and separating the tip cap.
PCT/KR2021/006363 2020-08-28 2021-05-21 High-frequency surgical apparatus and system for nerve blocking WO2022045530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0109378 2020-08-28
KR1020200109378 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022045530A1 true WO2022045530A1 (en) 2022-03-03

Family

ID=80353429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006363 WO2022045530A1 (en) 2020-08-28 2021-05-21 High-frequency surgical apparatus and system for nerve blocking

Country Status (2)

Country Link
KR (1) KR102559664B1 (en)
WO (1) WO2022045530A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196164A2 (en) * 2014-06-21 2015-12-23 Accelemed, Llc Method and apparatus for neuromodulation treatments of pain and other conditions
US20190133681A1 (en) * 2016-09-07 2019-05-09 Chang Wook Jeong Systems and methods for perivascular nerve denervation
US10368775B2 (en) * 2014-10-01 2019-08-06 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for evaluating neuromodulation therapy via hemodynamic responses
US20200179045A1 (en) * 2016-07-29 2020-06-11 Axon Therapies, Inc. Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation
JP2020089718A (en) * 2018-12-07 2020-06-11 アヴェント インコーポレイテッド Device and method for selectively and reversibly modulating nervous system structure to inhibit pain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196164A2 (en) * 2014-06-21 2015-12-23 Accelemed, Llc Method and apparatus for neuromodulation treatments of pain and other conditions
US10368775B2 (en) * 2014-10-01 2019-08-06 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for evaluating neuromodulation therapy via hemodynamic responses
US20200179045A1 (en) * 2016-07-29 2020-06-11 Axon Therapies, Inc. Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation
US20190133681A1 (en) * 2016-09-07 2019-05-09 Chang Wook Jeong Systems and methods for perivascular nerve denervation
JP2020089718A (en) * 2018-12-07 2020-06-11 アヴェント インコーポレイテッド Device and method for selectively and reversibly modulating nervous system structure to inhibit pain

Also Published As

Publication number Publication date
KR102559664B1 (en) 2023-07-27
KR20220041055A (en) 2022-03-31

Similar Documents

Publication Publication Date Title
CN102137620B (en) Device, apparatus and method for obtaining physiological signals by way of feeding tube
JP4771638B2 (en) Biomask with integrated sensor
WO2020218741A1 (en) Ring-shaped biometric signal sensing device
US4475555A (en) Universal measuring attachment for esophageal stethoscopes
WO2009100432A2 (en) Whole body infrared thermography systems and methods
KR20010012163A (en) A High Speed Accurate Temperature Measurement Device
WO2022045530A1 (en) High-frequency surgical apparatus and system for nerve blocking
JPH06181882A (en) Scope for endoscope device
US10765377B2 (en) Heartbeat-signal detecting device
CN109717822A (en) A kind of capsule enteroscope aided positioning system
WO2022114975A1 (en) A probe for the spatial testing of pressure forces, a method of producing the probe, a diagnostic kit for the spatial testing of pressure forces and a method of calibrating the probe
WO2024093827A1 (en) Watch device, physiological sound measurement method and apparatus, and computer storage medium
EP1206922A1 (en) Device for measuring body cavity temperature
CN112263233A (en) Human body internal pressure sensing array based on catheter
Alam et al. Flexible heterogeneously integrated low form factor wireless multi-channel surface electromyography (sEMG) device
WO2017073822A1 (en) Device and method for measuring meridian impedance
WO2020204639A1 (en) Digestive canal scanning device, body scanning device, body scanning method and acoustic-based digestive organ monitoring system
CN113081027A (en) Gastrointestinal peristalsis sound and patient sign monitoring device
WO2020036256A1 (en) Method and apparatus for monitoring state of consciousness
JPH06189915A (en) Sensor device for surgery operation
US20200315593A1 (en) Method and apparatus for direct in-vivo, electrical and chemical monitoring and stimulation of the endometrial cavity
WO2015167256A1 (en) Catheter assembly
WO2023158082A1 (en) Wearable apparatus for biometric parameter measurement and/or transcranial electrical stimulation and operation method thereof
CN115191924B (en) Multi-modality nasopharyngeal laryngoscope system for assessing upper airway collapse
US20220252467A1 (en) Temperature sensor devices and methods for the use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861831

Country of ref document: EP

Kind code of ref document: A1