WO2022042749A1 - 一种显示面板、掩膜组件和显示装置 - Google Patents

一种显示面板、掩膜组件和显示装置 Download PDF

Info

Publication number
WO2022042749A1
WO2022042749A1 PCT/CN2021/115759 CN2021115759W WO2022042749A1 WO 2022042749 A1 WO2022042749 A1 WO 2022042749A1 CN 2021115759 W CN2021115759 W CN 2021115759W WO 2022042749 A1 WO2022042749 A1 WO 2022042749A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
display panel
subpixel
Prior art date
Application number
PCT/CN2021/115759
Other languages
English (en)
French (fr)
Inventor
关新兴
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/922,382 priority Critical patent/US20230247883A1/en
Priority to CN202180002382.XA priority patent/CN114450802B/zh
Publication of WO2022042749A1 publication Critical patent/WO2022042749A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a mask assembly and a display device.
  • OLED organic light-emitting diode
  • the structure of the OLED display device mainly includes: a base substrate, and sub-pixels arranged in a matrix are fabricated on the base substrate.
  • each sub-pixel generally uses an organic material to pass through a high-precision metal mask using an evaporation film-forming technology to form an organic electroluminescence structure at the corresponding sub-pixel position of the array substrate.
  • Embodiments of the present application provide a display panel, a mask assembly, and a display device.
  • the display panel of the embodiment of the present application includes a plurality of pixel units arranged in an array, each of the pixel units includes a first sub-pixel, a second sub-pixel and two third sub-pixels located within a virtual polygon, the The number of sides of the virtual polygon is greater than or equal to five; the first sub-pixel and the second sub-pixel are adjacent, and the two third sub-pixels are both adjacent to the first sub-pixel and the second sub-pixel ; The pixel units adjacent in the column extension direction share the first sub-pixel and the second sub-pixel, and the pixel units adjacent in the row extension direction share one of the third sub-pixels.
  • the distance between the geometric center of each third sub-pixel and the geometric center of the first sub-pixel in the pixel unit is the same as the geometric center of the third sub-pixel and the geometric center of the second sub-pixel.
  • the center distances are equal.
  • the virtual polygon is a virtual hexagon
  • the virtual hexagon includes two short sides that extend in a vertical column direction and are opposite to each other, the first sub-pixel and the second sub-pixel
  • the two third sub-pixels are respectively arranged at two opposite corners formed by the other four sides of the virtual hexagon.
  • the two third sub-pixels are distributed in a mirror image with respect to the center line of the short side; or the two third sub-pixels are distributed symmetrically with respect to the center of the virtual hexagon.
  • the first sub-pixels and the second sub-pixels of the plurality of pixel units are alternately arranged in a row extension direction, and the center of the first sub-pixels in the same row and the The centers of the two sub-pixels are on the same line; and the first sub-pixels and the second sub-pixels of the plurality of pixel units are alternately arranged in the column extension direction and the centers of the first sub-pixels in the same column and the center of the second sub-pixel is on the same straight line.
  • the spacing between the first subpixel and the second subpixel is equal to the spacing between the first subpixel and the third subpixel.
  • the distance between the second subpixel and the third subpixel is equal to the distance between the first subpixel and the third subpixel.
  • the first subpixel and the second subpixel are hexagonal, and the third subpixel is quadrilateral.
  • the color of the light emitted by the first sub-pixel is different from the color of the light emitted by the second sub-pixel and the color of the light emitted by the third pixel.
  • the first subpixel emits red light, the second subpixel emits blue light and the third subpixel emits green light; or the first subpixel emits blue light, the The second subpixel emits red light and the third subpixel emits green light.
  • the pixel units are arranged in a rectangular lattice, the virtual polygons where the pixel units sharing the first sub-pixel or the second sub-pixel are located in the display panel intersect, and two adjacent columns are arranged in a virtual polygon.
  • the first sub-pixels and the second sub-pixels of the pixel units in the same row are arranged in opposite order along a column extension direction.
  • a display panel includes a plurality of pixel units arranged in an array, each of the pixel units includes a first sub-pixel, a second sub-pixel and two third sub-pixels located within a virtual polygon, The number of sides of the virtual polygon is greater than or equal to five; the first subpixel and the second subpixel are adjacent, and the two third subpixels are both adjacent to the first subpixel and the second subpixel Adjacent; the geometric center of the first sub-pixel in the pixel unit has the same first distance from the geometric center of the two third sub-pixels, and the geometric center of the second sub-pixel is two The geometric centers of the third sub-pixels have the same second distance; the geometric centers of the two third sub-pixels of the pixel unit have a first connection line, and the center of the first sub-pixel is connected to the second distance.
  • the ratio of the distance of a connecting line to the distance from the geometric center of the second sub-pixel to the first connecting line is a first preset value, and the maximum size of the first sub-pixel in the row extension direction is the same as the The ratio of the maximum size of the second sub-pixel in the row extension direction is a second preset value, and the first preset value is smaller than the second preset value; the first sub-pixel in the pixel unit
  • the geometric center of the second sub-pixel and the geometric center of the second sub-pixel have a second connecting line, passing through the first sub-pixel and the second sub-pixel in a direction parallel to the second connecting line but not passing through all the
  • the farthest distance between the two straight lines of the third sub-pixel is the third distance
  • the geometric center of the first sub-pixel and the geometric center of the third sub-pixel in the pixel unit have a third connecting line, which is parallel to the The longest distance of two straight lines passing through the first sub-pixel and the third sub-pixel but not passing through the second sub-pixel in the
  • the first distance and the second distance are equal.
  • the spacing between the first subpixel and the second subpixel in the pixel unit is greater than the spacing between the first subpixel and the third subpixel, and/or Or the distance between the first sub-pixel and the second sub-pixel is greater than the distance between the second sub-pixel and the third sub-pixel.
  • the distance between the first sub-pixel and the third sub-pixel in the pixel unit is equal to the distance between the second sub-pixel and the third sub-pixel.
  • the shape of the pixel unit is designed to be axisymmetric.
  • the two third sub-pixels in the pixel unit are designed symmetrically with respect to a straight line where the geometric center of the first sub-pixel and the geometric center of the second sub-pixel are located.
  • the shape and size of two of the third sub-pixels in the pixel unit are the same.
  • the shape of the first sub-pixel is designed to be axisymmetric.
  • the shape of the second sub-pixel is designed to be axisymmetric.
  • the first sub-pixel in the pixel unit includes a side edge adjacent to the third sub-pixel, and the side edge and the extension direction of the adjacent third sub-pixel form a clip
  • the angle range of the included angle is greater than or equal to 0° and less than or equal to 30°.
  • a side of the first sub-pixel close to the second sub-pixel in the pixel unit is smaller in size in the row extending direction than the first sub-pixel is far from the second sub-pixel The size of the pixel side in the direction in which the row extends.
  • the size of the side of the first sub-pixel close to the second sub-pixel in the row extending direction is smaller than the size of the first sub-pixel in the row extending direction in the pixel unit maximum size on .
  • a line connecting the geometric center of one of the third sub-pixels and the geometric center of the second sub-pixel in the pixel unit and the geometric center of the second sub-pixel and the other of the first sub-pixels forms a first angle, and the first angle ranges from 60° to 150°.
  • a line connecting the geometric center of one of the third sub-pixels and the geometric center of the first sub-pixel in the pixel unit and the geometric center of the first sub-pixel and the other of the first sub-pixels forms a second angle, and the second angle is greater than the first angle.
  • the shape of the first sub-pixel includes a triangle, a quadrilateral, a pentagon, a fan-shaped or an irregular figure
  • the shape of the second sub-pixel includes a quadrilateral, a pentagon, a fan-shaped or an irregular figure
  • the shape of the third sub-pixel includes a quadrilateral or an irregular figure.
  • the range of the sum of the interior angles of the first sub-pixel, the second sub-pixel and the two third sub-pixels adjacent to each other in the pixel unit is 300° to 400°.
  • the projection of the first sub-pixel along the row extending direction in the pixel unit overlaps the projection of the third sub-pixel along the row extending direction, the first sub-pixel
  • the portion of the projection along the row extending direction that overlaps the projection of the third sub-pixel along the row extending direction is larger than the projection of the first sub-pixel along the row extending direction that does not overlap the third sub-pixel. The portion where the projections along the row extending direction overlap.
  • the virtual polygon is a virtual pentagon
  • the first side of the first sub-pixel is arranged along the first side of the virtual pentagon
  • the second side and the third side of the first sub-pixel are arranged along the first side of the virtual pentagon.
  • the sides are respectively disposed relative to the first sides of the two third sub-pixels
  • the second sides of the two third sub-pixels are respectively disposed along the second and third sides of the virtual pentagon
  • the two third sub-pixels are respectively disposed along the second and third sides of the virtual pentagon.
  • the third sides of the three sub-pixels are respectively disposed along the fourth and fifth sides of the virtual pentagon
  • the fourth sides of the two third sub-pixels are disposed opposite to the second sub-pixels.
  • the second sub-pixels are substantially quadrilateral, and adjacent first sides and second sides of the second sub-pixels are respectively disposed opposite to the fourth sides of the two third sub-pixels, so The third side and the fourth side adjacent to the second sub-pixel are respectively set relative to the fourth side and the fifth side of the virtual pentagon.
  • the lengths of the fourth sides of the two third sub-pixels are equal or unequal.
  • the second sub-pixel is substantially fan-shaped, and two straight sides of the second sub-pixel are respectively disposed opposite to the fourth sides of the two third sub-pixels.
  • the virtual polygon is a virtual pentagon
  • the first side of the first sub-pixel is arranged along the first side of the virtual pentagon
  • the second side and the third side of the first sub-pixel are arranged along the first side of the virtual pentagon.
  • the sides are respectively arranged relative to the first sides of the two third sub-pixels
  • the fourth sides of the first sub-pixels are arranged relative to the first sides of the second sub-pixels
  • the first sides of the two third sub-pixels are arranged respectively.
  • the two sides are respectively arranged along the second side and the third side of the virtual pentagon
  • the third sides of the two third sub-pixels are respectively arranged along the fourth side and the fifth side of the virtual pentagon
  • the two The fourth side of the third sub-pixel is respectively disposed opposite to the second side and the third side of the second sub-pixel
  • the fourth side and the fifth side of the second sub-pixel are respectively along the third side of the virtual pentagon.
  • the virtual polygon is a virtual hexagon
  • the first side of the first sub-pixel is arranged along the first side of the virtual hexagon
  • the second side and the third side of the first sub-pixel are arranged along the first side of the virtual hexagon.
  • the sides are respectively disposed relative to the first sides of the two third sub-pixels
  • the second sides of the two third sub-pixels are respectively disposed along the second and third sides of the virtual hexagon
  • the two third sub-pixels are respectively disposed along the second and third sides of the virtual hexagon.
  • the third sides of the three sub-pixels are respectively disposed along the fourth and fifth sides of the virtual hexagon, and the fourth sides of the two third sub-pixels are opposite to the first and second sides of the second sub-pixels setting, the third side and the fourth side of the second sub-pixel are respectively arranged along the fourth side and the fifth side of the virtual hexagon, and the fifth side of the second sub-pixel is along the virtual hexagon
  • the sixth side is set.
  • the third sub-pixel is substantially rectangular or trapezoidal.
  • the length ratio of the second side of the third sub-pixel to the fourth side of the third sub-pixel ranges from 0.5 to 2.
  • a line connecting the midpoint of the second side and the midpoint of the fourth side in the third subpixel passes through the geometric center of the third subpixel.
  • the color of the light emitted by the first sub-pixel is different from the color of the light emitted by the second sub-pixel and the color of the light emitted by the third sub-pixel.
  • the first subpixel emits blue light
  • the second subpixel emits red light
  • the third subpixel emits green light
  • the first subpixel has a larger area than the third subpixel
  • the area of the sub-pixel, the area of the third sub-pixel is larger than the area of the second sub-pixel.
  • the pixel units are arranged in a rectangular lattice, the virtual polygons in which the pixel units are located in the display panel do not intersect with each other, and the first sub-pixel and the second sub-pixel in the pixel unit The arrangement order of the two sub-pixels along the extending direction of the columns is the same.
  • the pixel units are arranged in a rectangular lattice, the virtual polygons where each pixel unit is located in the display panel do not intersect with each other, and the pixels in the same row of the pixel units in two adjacent columns The arrangement order of the first sub-pixels and the second sub-pixels of the unit along the column extension direction is reversed.
  • the pixel units are arranged in a triangular lattice, the virtual polygons in which the pixel units are located in the display panel do not intersect with each other, and the first sub-pixel and the first sub-pixel in the pixel unit The arrangement order of the two sub-pixels along the extending direction of the columns is the same.
  • the mask assembly of the embodiments of the present application is used to manufacture the display panel described in any of the above embodiments, the mask assembly includes a first mask, a second mask and a third mask, the first mask The mask includes a first substrate and a first opening formed on the first substrate, the first opening corresponds to the first sub-pixel, and the second mask includes a second substrate and a first opening formed on the first substrate. A second opening of the second substrate, the second opening corresponds to the second sub-pixel, the third mask includes a third substrate and a third opening opened in the third substrate, the third The opening corresponds to the third sub-pixel.
  • the display device includes the display panel according to any of the above-mentioned embodiments.
  • four sub-pixels together constitute an independent light-emitting unit, and within the virtual pentagon, the geometric center of the first sub-pixel and the The geometric center has the same first distance, the geometric center of the second sub-pixel and the geometric center of the two third sub-pixels have the same second distance, so that the sub-pixel distribution is uniform, through the distribution of the sub-pixels in the pixel unit and the first
  • the design of distance and second distance ensures the display effect.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first mask according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a second mask according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a third mask according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a pixel arrangement structure of a display panel according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another pixel arrangement structure of the display panel according to the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another pixel arrangement structure of the display panel according to the embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 18 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 19 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 20 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 21 is another schematic structural diagram of a pixel unit according to an embodiment of the present application.
  • FIG. 22 is another schematic structural diagram of the first mask according to the embodiment of the present application.
  • FIG. 23 is another schematic structural diagram of the second mask according to the embodiment of the present application.
  • FIG. 24 is another schematic structural diagram of a third mask according to an embodiment of the present application.
  • FIG. 25 is a schematic diagram of a film layer structure of a display panel according to an embodiment of the present application.
  • FIG. 26 is a schematic diagram of another film layer structure of the display panel according to the embodiment of the present application.
  • an embodiment of the present application provides a display panel 10 , the display panel 10 includes a plurality of pixel units 12 arranged in an array, and each pixel unit 12 includes a virtual hexagonal One first sub-pixel 122, one second sub-pixel 124 and two third sub-pixels 126 in the The pixel 122 and the second sub-pixel 124 are adjacent; the pixel units 12 adjacent in the column extension direction share the first sub-pixel 122 and the second sub-pixel 124, and the adjacent pixel units 12 in the row extension direction share one first sub-pixel 124. Three sub-pixels 126 .
  • any one of the first sub-pixels 122 may be connected to a second sub-pixel 124 adjacent to the first sub-pixel 122 and to the first sub-pixel 122 and the second sub-pixel 124
  • Two adjacent third sub-pixels 126 form an independent pixel unit 12, so that a high-resolution display effect can be achieved from a low-resolution physical resolution between the sub-pixels through the color borrowing principle.
  • the adjacent sub-pixels and sub-pixels means that the connection line with the minimum distance between the two sub-pixels does not pass through other sub-pixels.
  • the pixel unit 12 refers to the smallest repeating unit in the display panel 10 that can be used to achieve the same light-emitting effect and function, and the arrangement of a plurality of pixel units 12 in an array means that the centers of the plurality of pixel units 12 are along at least two directions Cross-arranged to form an array.
  • a plurality of pixel units 12 may be arranged in an array by being staggered along two mutually perpendicular directions.
  • the two mutually perpendicular directions may be the row extending direction and the column extending direction of the pixel units 12, respectively.
  • the pixel units 12 arranged in the extension direction form pixel rows, and the pixels arranged in the column extension direction form pixel columns.
  • the rows and columns of the pixel units 12 in the display panel 10 are opposite.
  • the pixel units 12 arranged in rows may be pixel units 12 arranged in columns in other embodiments. Do not expand in detail.
  • the current pixel unit 12 that is not at the start and end positions in each pixel column may have two adjacent pixel units 12, the current pixel unit 12 may share the first sub-pixel 122 with one adjacent pixel unit 12, while the current pixel unit 12 may share the first sub-pixel 122 with one adjacent pixel unit 12.
  • the pixel unit 12 may share the second sub-pixel 124 with another adjacent pixel unit 12 .
  • the current pixel unit 12 that is not at the start and end positions in each pixel row may have two adjacent adjacent pixel units 12, and the current pixel unit 12 may share a third sub-section of the current pixel unit 12 with one adjacent pixel unit 12.
  • pixel 126 while the current pixel unit 12 may share another third sub-pixel 126 of the current pixel unit 12 with another adjacent pixel unit 12 .
  • the Sharing so that the sub-pixels can achieve a high-resolution display effect from a low-resolution physical resolution through the principle of color borrowing.
  • the virtual polygons where the pixel units 12 sharing the first sub-pixel 122 or the second sub-pixel 124 in the display panel 10 are intersected.
  • the virtual polygon is a virtual hexagon.
  • the first sub-pixels 122 and the second sub-pixels 124 of the plurality of pixel units 12 are alternately arranged in the row extension direction, and the center of the first sub-pixel 122 and the center of the second sub-pixel 124 in the same row On the same straight line; or the first sub-pixels 122 and the second sub-pixels 124 of the plurality of pixel units 12 are alternately arranged in the column extension direction and the center of the first sub-pixel 122 and the center of the second sub-pixel 124 of the same column are at on the same straight line.
  • the pixel units 12 are arranged in a rectangular lattice, and the first sub-pixel 122 and the second sub-pixel 124 of the same row of pixel units 12 in two adjacent columns of pixel units 12 extend along the columns The directions are arranged in reverse order.
  • the first sub-pixel 122 and the second sub-pixel 124 of one pixel unit 12 in the same row of two adjacent columns of pixel units 12 are arranged from top to bottom along the column extension direction, and the first sub-pixel 122 of the other pixel unit 12 and the second subpixels 124 are arranged from bottom to top along the column extension direction, so that the first subpixels 122 and the second subpixels 124 of the plurality of pixel units 12 in the same row in the entire display panel 10 are alternately arranged in the row extension direction.
  • the distance D1 from the geometric center of each third sub-pixel 126 in the pixel unit 12 to the geometric center of the first sub-pixel 122 and the geometric center of the third sub-pixel 126 to the second The distances D2 of the geometric centers of the sub-pixels 124 are equal.
  • the display panel 10 can make the third sub-pixel 126, the first sub-pixel 122 and the second sub-pixel 124 closely arranged in a predetermined regularity through the design of the distance between the geometric centers of the sub-pixels in the pixel unit 12, so that the Possibly reduce the spacing between adjacent pixels.
  • the distance D3 between the geometric center of the first sub-pixel 122 and the geometric center of the second sub-pixel 124 may be greater than the distance between the geometric center of the third sub-pixel 126 and the geometric center of the first sub-pixel 122 D1 and the distance D2 from the geometric center of the third sub-pixel 126 to the geometric center of the second sub-pixel 124, or the distance D3 between the geometric center of the first sub-pixel 122 and the geometric center of the second sub-pixel 124 may be equal to the third The distance D1 from the geometric center of the sub-pixel 126 to the geometric center of the first sub-pixel 122 and the distance D2 from the geometric center of the third sub-pixel 126 to the geometric center of the second sub-pixel 124, or the geometric center of the first sub-pixel 122 to The distance D3 between the geometric centers of the second subpixels 124 may be smaller than the distance D1 between the geometrical centers of the third subpixels 126 and the geometrical centers of the first subpixels 122 and the geometrical centers
  • the first sub-pixels 122 and the second sub-pixels 124 in the embodiments of the present application are arranged along the column direction and realize the sharing of the first sub-pixels 122 or the second sub-pixels 124 in the adjacent pixel units 12 in the column direction, while the third sub-pixels 126 realizes the sharing of the third sub-pixels in the adjacent pixel units 12 in the row direction. It can be understood that the distance D3 between the geometric center of the first sub-pixel 122 and the geometric center of the second sub-pixel 124 may be the same as that of the third sub-pixel 126.
  • the distance D1 from the geometric center to the geometric center of the first subpixel 122 and the distance D2 from the geometric center of the third subpixel 126 to the geometric center of the second subpixel 124 are equal or unequal.
  • the distance D3 between the geometric center of the first sub-pixel 122 and the geometric center of the second sub-pixel 124 may be based on the size of the virtual hexagon, the shapes and sizes of the first sub-pixel 122 and the second sub-pixel 124 and The relative positions of the first sub-pixel 122, the second sub-pixel 124, and the third sub-pixel 126, etc. are determined.
  • the distance design between the centers of the respective sub-pixels in the pixel unit 12 may also be the center of the pixel emitting color, which is not specifically limited here.
  • the virtual hexagon includes two short sides that are perpendicular to the extending direction of the columns and are disposed opposite to each other.
  • the pixels 126 are respectively disposed at two opposite corners formed by the other four sides of the virtual hexagon.
  • one side of the first sub-pixel 122 may overlap with one short side of the virtual hexagon
  • one side of the second sub-pixel 124 may overlap with the other short side of the virtual hexagon.
  • the adjacent sides of the second sub-pixels 124 are respectively opposite to the two short sides of the virtual hexagon.
  • a third sub-pixel 126 is arranged in the virtual hexagon, one corner of the third sub-pixel 126 coincides with one of the two diagonal corners formed by the other four sides of the virtual hexagon, and another third sub-pixel 126 The corner coincides with the other of the two diagonal corners formed by the other four sides of the virtual hexagon.
  • the third sub-pixel 126 forms the two sides corresponding to the included angle and the virtual hexagon forms the two sides corresponding to the opposite corner. respectively parallel.
  • the other four sides of the virtual hexagon form two opposite right angles.
  • the two third sub-pixels 126 are distributed in a mirror image relative to the center line X of the short side, or the two third sub-pixels 126 are symmetrically distributed relative to the center O of the virtual hexagon .
  • the two third sub-pixels 126 are distributed in mirror images relative to the center line X of the short side. In the embodiment of FIG. 3 , the two third sub-pixels 126 are symmetrically distributed with respect to the center O of the virtual hexagon.
  • the distance L1 between the first subpixel 122 and the second subpixel 124 is equal to the distance L2 between the first subpixel 122 and the third subpixel 126 .
  • the distance L between the sub-pixels refers to the minimum distance between the edges of the sub-pixels that are close to each other, and the distance is smaller than the distance D between the geometric centers of the two sub-pixels.
  • the distance L1 between the first sub-pixel 122 and the adjacent second sub-pixel 124 needs to be greater than or equal to the process limit distance
  • the distance L2 between the first sub-pixel 122 and the adjacent third sub-pixel 126 needs to be greater than or equal to Process limit distance to meet process requirements.
  • the distance L between the sub-pixels is generally a process limit distance.
  • the display panel 10 can minimize the distance between the first sub-pixel 122 and the second sub-pixel 124, so that the first sub-pixel 122 and the second sub-pixel 124 are adjacent to each other under the condition of the same resolution.
  • the adjacent positions of the first sub-pixel 122 and the third sub-pixel 126 can increase the pixel opening area, reduce the driving current of the display device, and further increase the lifespan of the display device.
  • the distance L3 between the second subpixel 124 and the third subpixel 126 is equal to the distance L1 between the first subpixel 122 and the third subpixel 126 .
  • the distance L3 between the second sub-pixel 124 and the adjacent third sub-pixel 126 needs to be greater than or equal to the process limit distance to meet the process requirements.
  • the second sub-pixel 124 and the The adjacent positions of the third sub-pixel 126 and the adjacent positions of the first sub-pixel 122 and the third sub-pixel 126 can increase the pixel opening area, reduce the driving current of the display device, and further increase the life of the display device.
  • the distance L2 between the first subpixel 122 and the third subpixel 126 is equal to the distance L3 between the second subpixel 124 and the third subpixel 126 .
  • the adjacent positions of the first sub-pixel 122 and the third sub-pixel 126 and the adjacent positions of the second sub-pixel 124 and the third sub-pixel 126 can increase the pixel opening area and reduce the display device. drive current, thereby increasing the life of the display device.
  • the distance L1 between the first sub-pixel 122 and the second sub-pixel 124 , the distance L2 between the first sub-pixel 122 and the third sub-pixel 126 , and the distance between the second sub-pixel 124 and the third sub-pixel 124 are all equal.
  • the opening area of all sub-pixels can be further increased, the driving current of the display device can be reduced, and the lifespan of the display device can be increased.
  • the first subpixel 122 and the second subpixel 124 are hexagonal, and the third subpixel 126 is quadrilateral. Therefore, in the display panel 10 , two opposite sides of the first sub-pixel 122 are adjacent to the two second sub-pixels 124 respectively, and the other four sides of the first sub-pixel 122 are respectively adjacent to the four third sub-pixels. 126 adjacent. Likewise, two opposite sides of the second sub-pixel 124 are adjacent to the two first sub-pixels 122 respectively, and the other four sides of the second sub-pixel 124 are respectively adjacent to the four third sub-pixels 126 . The third sub-pixels 126 are respectively adjacent to the two first sub-pixels 122 on one set of opposite sides, and the third sub-pixels 126 are respectively adjacent to the two second sub-pixels 124 on the other set of opposite sides.
  • the first sub-pixel 122, the second sub-pixel 124 and the third sub-pixel 126 are not limited to the shapes discussed above, and one of quadrilateral, hexagonal, and octagonal can be selected according to actual needs. one or more, which are not specifically limited here.
  • each sub-pixel may be provided with a chamfer at the edge chamfer.
  • the color of the light emitted by the first subpixel 122 is different from the color of the light emitted by the second subpixel 124 and the color of the light emitted by the third subpixel 126 .
  • the light emitted by the sub-pixels in each pixel unit 12 includes red light, green light and blue light.
  • the display panel 10 can achieve normal display of full-color images by uniformly distributing sub-pixels with different colors.
  • the first subpixel 122 emits red light
  • the second subpixel 124 emits blue light
  • the third subpixel 126 emits green light.
  • the first subpixel 122 emits blue light
  • the second subpixel 124 emits red light
  • the third subpixel 126 emits green light.
  • the area of the first sub-pixel 122 is larger than that of the second sub-pixel 124
  • the area of the second sub-pixel 124 is larger than that of the third sub-pixel 126 .
  • the blue sub-pixel area can be larger than the red and green sub-pixel areas.
  • the green sub-pixel area can be minimized.
  • the corresponding relationship between the emission colors of the first sub-pixel 122 , the second sub-pixel 124 and the third sub-pixel 126 may not be limited to the above-discussed embodiments, but may be transformed according to actual needs. Make specific restrictions.
  • the mask assembly (not shown) provided by the embodiment of the present application can be used to manufacture the display panel 10 of any of the above-mentioned embodiments.
  • the mask assembly includes a first mask plate 20 , a second mask plate 20 The mask 30 and the third mask 40.
  • the first mask 20 includes a first substrate 22 and a first opening 24 opened in the first substrate 22.
  • the first opening 24 corresponds to the first sub-pixel 122
  • the mask 30 includes a second substrate 32 and a second opening 34 formed in the second substrate 32
  • the second opening 34 corresponds to the second sub-pixel 124
  • the third mask 40 includes a third substrate 42 and a second opening 34 formed in the third substrate 32 .
  • the third opening 44 of the substrate 42 corresponds to the third sub-pixel 126 .
  • the mask assembly of the embodiments of the present application can be fabricated to form the display panel 10 , and any one of the first sub-pixels 122 of the display panel 10 can be connected to a second sub-pixel 124 adjacent to the first sub-pixel 122 and a second sub-pixel 124 adjacent to the first sub-pixel 122 .
  • the pixel 122 and the two third sub-pixels 126 adjacent to the second sub-pixel 124 form an independent pixel unit 12, so that the sub-pixels can achieve high-resolution display from low-resolution physical resolution through the color borrowing principle. Effect.
  • the first substrate 22 , the second substrate 32 and the third substrate 42 are made of metal material.
  • the first mask plate 20, the second mask plate 30 and the third mask plate 40 can be high-precision metal masks, which can be applied to the evaporation process, and the corresponding organic light-emitting materials corresponding to the pixel patterns are formed by evaporation the display panel 10.
  • the mask assembly further includes a cover mask (Cover Mask), a support mask (Howling Mask) and an alignment mask (Align Mask).
  • Cover Mask a cover mask
  • Support Mask Howling Mask
  • Align Mask an alignment mask
  • the first mask plate 20, the second mask plate 30 and the third mask plate 40 can all be combined with the cover mask plate, the support mask plate and the alignment mask plate to form a Mask Frame Assembly (MFA).
  • MFA Mask Frame Assembly
  • the combined mask integration frame can be put into the corresponding evaporation chambers respectively to evaporate the organic light-emitting material corresponding to the sub-pixel.
  • one sub-pixel pattern can be formed each time by evaporation, and another sub-pixel pattern is formed after one sub-pixel pattern is formed.
  • the display panel 10 is not limited to be formed by an evaporation process, and the display panel 10 may be formed by a photolithography process, an etching process, etc., as required.
  • the display device includes the display panel 10 according to any of the above-mentioned embodiments.
  • any one of the first sub-pixels 122 of the display panel 10 may be connected to a second sub-pixel 124 adjacent to the first sub-pixel 122 and to the first sub-pixel 122 and the second sub-pixel 124
  • the two third sub-pixels 126 adjacent to the pixel 124 form an independent pixel unit 12, so that the sub-pixels can achieve a high-resolution display effect from a low-resolution physical resolution through the color borrowing principle.
  • the embodiment of the present application further provides a display panel 10 ′, the display panel 10 ′ includes a plurality of pixel units 12 ′ arranged in an array, and each pixel unit 12 ′ Including one first sub-pixel 122', one second sub-pixel 124' and two third sub-pixels 126' located within the virtual polygon, the first sub-pixel 122' and the second sub-pixel 124' are adjacent, and the sides of the virtual polygon The number is greater than or equal to five, and the two third sub-pixels 126' are adjacent to the first sub-pixel 122' and the second sub-pixel 124'; the geometric center P1' of the first sub-pixel 122' in the pixel unit 12' to two The geometric centers P3' of the second sub-pixels 126' have the same first distance D1', and the geometric centers P2' of the second sub-pixels 124' to the geometric centers P3' of the two third sub-pixels 126' have
  • a first sub-pixel 122 ′, a second sub-pixel 124 ′ adjacent to the first sub-pixel 122 ′, and a second sub-pixel 124 ′ adjacent to the first sub-pixel 122 ′ and the second sub-pixel 122 ′ The two third sub-pixels 126' adjacent to the pixel 124' form an independent pixel unit 12', so that the sub-pixels are evenly distributed. The design ensures the display effect.
  • the size matching between the sub-pixels makes the ratio of the distances between the geometric center P1' of the first sub-pixel 122' and the geometric center P2' of the second sub-pixel 124' to the first connecting line P3'P4' satisfy the preset condition , so that the pixel unit 12 ′ is flat, and the geometric center P1 ′ of the first sub-pixel 122 ′ is closer to the geometric center of the pixel unit 12 ′, which can reduce the jaggedness in the display effect.
  • the sub-pixels are adjacent to the sub-pixels means that the connecting line with the smallest distance between the two sub-pixels does not pass through other sub-pixels.
  • the size of the first distance D1 ′ and the second distance D2 ′ may be based on the shape and size of the first sub-pixel 122 ′ and the second sub-pixel 124 ′ and the first sub-pixel 122 ′, the second sub-pixel 124 ′ and the third sub-pixel 122 ′
  • the relative positions of the pixels 126' are determined, which are not specifically limited herein. In other embodiments, the distance design between the centers of the respective sub-pixels in the pixel unit 12' may also be the center of the pixel's emission color.
  • the pixel unit 12 ′ refers to the smallest repeating unit in the display panel 10 ′ that can be used to achieve the same light-emitting effect and function, and a plurality of pixel units 12 ′ are arranged in an array to indicate the central edge of the plurality of pixel units 12 ′ At least two directions are arranged crosswise to form an array.
  • the plurality of pixel units 12 ′ can be arranged in an array by being staggered in two directions perpendicular to each other. In this case, the two directions that are perpendicular to each other can be the row extending direction and the column extending direction of the pixel units 12 ′, respectively.
  • the pixel units 12' arranged along the row extension direction form pixel rows, and the pixel units 12' arranged along the column extension direction form pixel columns.
  • the rows and columns of the pixel units 12 ′ arranged in the display panel 10 ′ are opposite.
  • the pixel units 12 ′ arranged in rows may be pixel units 12 arranged in columns in other embodiments. ', which will not be expanded in detail here.
  • the first distance D1' and the second distance D2' may not be equal.
  • first distance D1' and the second distance D2' may be equal, which are not specifically limited herein.
  • the first sub-pixels 122 ′ and the second sub-pixels 124 ′ of the plurality of pixel units 12 ′ are respectively arranged in sequence in the row extension direction to form a plurality of rows of the first sub-pixels 122 ′. and a plurality of rows of second sub-pixels 124', the first sub-pixels 122' and the second sub-pixels 124' of the plurality of pixel units 12' are alternately arranged in the column extension direction.
  • the display panel 10' forms a plurality of first sub-pixel rows and second sub-pixel rows alternately arranged in the column direction, and correspondingly, the third sub-pixels 126' form a plurality of third sub-pixel rows.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' arranged alternately in the extending direction of the columns may be on the same straight line.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' arranged alternately in the row extension direction may be on the same straight line.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' that are alternately arranged in the extending direction of the columns may not be on the same straight line.
  • the pixel units 12' are arranged in a rectangular lattice, the virtual polygons where each pixel unit 12' is located in the display panel 10' do not intersect with each other, and the first sub-pixel 122' and the second sub-pixel 122' in the pixel unit 12'
  • the sub-pixels 124' are arranged in the same order along the column extension direction.
  • the first sub-pixel 122' and the second sub-pixel 124' in the pixel unit 12' are arranged from top to bottom along the column extension direction.
  • the first sub-pixels 122' and the second sub-pixels 124' of the plurality of pixel units 12' are alternately arranged in the row extension direction, and the plurality of pixel units 12' The first subpixels 122' and the second subpixels 124' are alternately arranged in the column extension direction.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' arranged alternately in the column extension direction may be on the same straight line.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' alternately arranged in the row extension direction may not be on the same straight line.
  • the third sub-pixels 126 ′ of the pixel units 12 ′ in two adjacent columns corresponding to the adjacent pixel units 12 ′ are arranged along the row extending direction.
  • the pixel units 12 ′ Arranged in a rectangular lattice, the virtual polygons where each pixel unit 12' is located in the display panel 10' do not intersect with each other, and the first sub-pixel 122' and the second sub-pixel 122' and the second
  • the arrangement order of the sub-pixels 1224 ′ along the column extension direction is reversed, for example, the first sub-pixel 122 ′ and the second sub-pixel 1224 ′ of a pixel unit 12 ′ in the same row in two adjacent columns of pixel units 12 ′ are arranged along the column extension direction Arranged from top to bottom, the first subpixel 122' and the second subpixel 1224' of another pixel unit 12' are arranged from bottom to top along the column extension direction, so that the first subpixel 122'
  • the third sub-pixels 126 ′ of the pixel units 12 ′ in two adjacent columns corresponding to the adjacent pixel units 12 ′ are arranged along the column extension direction. At this time, the pixel units 12 ′ form a triangle.
  • the virtual polygons where each pixel unit 12' is located in the display panel 10' do not intersect with each other, and the first sub-pixel 122' and the second sub-pixel 124' in the pixel unit 12' are arranged in the same order along the column extension direction, for example , the first sub-pixel 122' and the second sub-pixel 124' in the pixel unit 12' are arranged from top to bottom along the column extension direction, so that the first sub-pixel 122' of the pixel unit 12' in the current row and the pixel unit 12 in the adjacent row are arranged from top to bottom.
  • ' of the second sub-pixels 124' are alternately arranged in the row direction.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' that are alternately arranged in the extending direction of the columns may not be on the same straight line.
  • the geometric centers P1' of the first sub-pixels 122' and the geometric centers P2' of the second sub-pixels 124' which are alternately arranged in the row extension direction may be on the same straight line.
  • first sub-pixel 122' and the second sub-pixel 124' can be determined according to the size and arrangement of the pixel unit 12' and the size and position of the first sub-pixel 122' and the second sub-pixel 124' , which is not specifically limited here.
  • the virtual polygons in which the pixel units 12' are located in the display panel 10' do not intersect with each other.
  • the 'interval L3' may be equal.
  • the distance L2' between the first sub-pixel 122' and the adjacent third sub-pixel 126' needs to be greater than or equal to the process limit distance
  • the distance between the second sub-pixel 124' and the adjacent third sub-pixel 126' needs to be greater than or equal to the process limit distance to meet the process requirements.
  • the distance L between the sub-pixels is generally a process limit distance.
  • the display panel 10 ′ can minimize the spacing between the sub-pixels, so that the first sub-pixel 122 ′ and the third sub-pixel 126 ′ are adjacent to each other and the second sub-pixel 124 ′ under the condition of the same resolution
  • the position adjacent to the third sub-pixel 126 ′ can increase the pixel opening area, reduce the driving current of the display device, and further increase the lifespan of the display device.
  • the distance L2 ′ between the first sub-pixel 122 ′ and the third sub-pixel 126 ′ in the pixel unit 12 ′ and the distance between the second sub-pixel 124 ′ and the third sub-pixel 126 ′ L3' may also be unequal, and can be flexibly configured according to actual needs, which is not specifically limited here.
  • the distance L1' between the first sub-pixel 122' and the second sub-pixel 124' in the pixel unit 12' is greater than the distance L2 between the first sub-pixel 122' and the third sub-pixel 126' ', and/or the distance L1' between the first subpixel 122' and the second subpixel 124' is greater than the distance L3' between the second subpixel 124' and the third subpixel 126'.
  • the distance L2' between the first sub-pixel 122' and the adjacent second sub-pixel 126' needs to be greater than or equal to the process limit distance.
  • the shape of the first sub-pixel 122 ′ includes a triangle, a quadrilateral, a pentagon, a fan shape or an irregular shape, etc.
  • the shape of the second sub-pixel 124 ′ includes a quadrilateral, a pentagon, a fan, or an irregular shape, and the like.
  • the shape of the pixel unit 12' is axisymmetrically designed.
  • the shape of the pixel unit 12' may be symmetrically arranged with respect to a line X' parallel to the column extension direction and passing through the geometric center of the pixel unit 12'.
  • the shape of the pixel unit 122' is not designed to be axisymmetric.
  • the two third sub-pixels 126' in the pixel unit 12' are symmetrically designed with respect to a straight line where the geometric center P1' of the first sub-pixel 122' and the geometric center P2' of the second sub-pixel 124' are located.
  • the straight line where the geometric center P1 ′ of the first sub-pixel 122 and the geometric center P2 ′ of the second sub-pixel 124 ′ are located can be designed along the column extension direction.
  • the axes of symmetry of the two third sub-pixels 126' may be the same as the axes of symmetry of the pixel unit 12'.
  • the two third sub-pixels 126' in the pixel unit 12' are the same shape and size. Therefore, the light-emitting effects of the two third sub-pixels 126' in the pixel unit 12' are the same, which is beneficial to realize the uniform display of the display panel 10'.
  • the shape of the first sub-pixel 122' is designed to be axisymmetric.
  • the first sub-pixels 122' may be symmetrically disposed with respect to a line parallel to the column extension direction and passing through the geometric center P1' of the first sub-pixels 122'.
  • the axis of symmetry of the first sub-pixel 122' may be the same as the axis of symmetry of the pixel unit 12'.
  • the shape of the second sub-pixel 124' is axisymmetrically designed.
  • the second sub-pixels 122' may be symmetrically arranged with respect to a line parallel to the column extension direction and passing through the geometric center of the second sub-pixels 122'.
  • the axis of symmetry of the second sub-pixel 12' may be the same as the axis of symmetry of the pixel unit 12'.
  • the axis of symmetry of the second sub-pixel 122' may not be limited to the above-discussed embodiments, but may be changed according to actual conditions, which is not specifically limited herein.
  • the first sub-pixel 122 ′ in the pixel unit 12 includes a side adjacent to the third sub-pixel 126 ′, and the side of the first sub-pixel 122 ′ set relative to the virtual polygon is adjacent to the adjacent third sub-pixel 126 ′.
  • the extension direction of the pixel 122 ′ forms an included angle, and the angle range of the included angle is greater than or equal to 0° and less than or equal to 30°.
  • the first sub-pixel 122' is opposite to the side adjacent to the third sub-pixel 126', and the extension direction of the third sub-pixel 126' may be the side of the third sub-pixel 126' relative to the first sub-pixel 122'.
  • the direction of the straight line connecting the midpoints of two adjacent opposite sides For example, the side of the third sub-pixel 126' relative to the first sub-pixel 122' is b1, the two adjacent opposite sides are the second side b2 and the fourth side b4, and the midpoint of the second side b2 is the same as the fourth side b2.
  • the direction of the straight line connecting the midpoints of the side b4 is the extension direction of the third sub-pixel 126 ′.
  • the size of the side of the pixel unit 12 ′ on the side of the first sub-pixel 122 ′ close to the second sub-pixel 124 ′ in the row extension direction is smaller than that of the first sub-pixel 122 ′ far from the second sub-pixel 124 ′ The dimension of one side in the row extension direction.
  • the size of the side of the pixel unit 12 ′ close to the second sub-pixel 124 ′ in the row extension direction of the first sub-pixel 122 ′ is smaller than that of the first sub-pixel 122 ′ in the row extension direction maximum size.
  • the size of the first sub-pixel 122 ′ is designed to be embedded in the pixel unit 12 ′ to be opposite to the second sub-pixel 124 ′, so that the cooperation between the sub-pixels is closer, and the geometry of the first sub-pixel 122 ′ is designed.
  • the center P1' is closer to the geometric center of the pixel unit 12', which can reduce the jaggedness in the display effect. .
  • the geometric center P3' of a third sub-pixel 126' in the pixel unit 12' is connected with the geometric center P2' of the second sub-pixel 124' and the geometric center P2' of the second sub-pixel 124'
  • the line connecting with the geometric center P4 ′ of the other third sub-pixel 126 ′ forms a first angle, and the first angle ranges from 60° to 150°.
  • the geometric center P3 ′ of a third sub-pixel 126 ′ in the pixel unit 12 is connected with the geometric center P1 ′ of the first sub-pixel 122 ′ and the geometric center of the first sub-pixel 122 ′ is connected
  • a line connecting with the geometric center P4' of the other third sub-pixel 126' forms a second angle, and the second angle is greater than the first angle.
  • the line connecting the geometric center P3' of a third sub-pixel 126' and the geometric center P2' of the second sub-pixel 124' is P3' P2', and the geometric center P2' of the second sub-pixel 124' is connected to another third sub-pixel 124'.
  • the connection line of the geometric center P4' of the sub-pixel 126' is P2'P4', and the first angle is the size of ⁇ P3'P2'P4', that is to say, 60° ⁇ P3'P2'P4' ⁇ 150° .
  • the geometric center P3' of a third sub-pixel 126' and the geometric center P1' of the first sub-pixel 122' are connected by P3' P1', and the geometric center P1' of the first sub-pixel 122' is connected to another third sub-pixel 122'.
  • the connection line of the geometric center P4' of the pixel 126' is P1'P4', and the second angle is the size of ⁇ P3'P1'P4', that is to say, ⁇ P3'P1'P4' is smaller than ⁇ P3'P2'P4' .
  • the first sub-pixel 122', the second sub-pixel 124' and the two third sub-pixels 126' in the pixel unit 12' all include an inner corner adjacent to each other.
  • the sum of the interior angles of the two sub-pixels 124' and the two third sub-pixels 126' adjacent to each other ranges from 300° to 400°.
  • first sub-pixel 122 ′, the second sub-pixel 124 ′ and the two third sub-pixels 126 ′ may not be limited to include only one inner corner adjacent to each other.
  • first sub-pixel 126 ′ The pixel 122 ′ and the second sub-pixel 124 ′ may respectively include two inner corners adjacent to the third sub-pixel 126 ′, so that the first sub-pixel 122 ′, the second sub-pixel 124 ′ and the two third sub-pixels 126 '
  • the range of the sum of adjacent interior angles may not be limited to the above-discussed embodiments, but may be flexibly configured according to actual needs, which is not specifically limited herein.
  • the projection of the first sub-pixel 122' in the row extension direction of the pixel unit 12' overlaps the projection of the third sub-pixel 126' in the row extension direction, and the first sub-pixel 122' in the row extension direction
  • the portion of the projection of the third sub-pixel 126' that overlaps the projection of the third sub-pixel 126' along the row extension direction is larger than the portion of the projection of the first sub-pixel 122' along the row extension direction that does not overlap the projection of the third sub-pixel 126' along the row extension direction.
  • the geometric center P1' of the first sub-pixel 122' is closer to the geometric center of the pixel unit 12', which can reduce the jaggedness in the display effect.
  • the virtual polygon is a virtual pentagon
  • the first side a1 of the first sub-pixel 122 ′ is arranged along the first side D1 ′ of the virtual pentagon
  • the first sub-pixel 122 ′ The second side a2 and the third side a3 are respectively arranged along the second side d2 and the third side d3 of the virtual pentagon
  • the fourth side a4 and the fifth side a5 of the first sub-pixel 122' are respectively opposite to two third sides.
  • the first side b1 of the sub-pixel 126' is arranged, the second side b2 of the two third sub-pixels 126' is arranged along the second side D2' and the third side D3' of the virtual pentagon, respectively, and the two third sub-pixels
  • the third side b3 of the 126' is respectively arranged along the fourth side d4 and the fifth side d5 of the virtual pentagon, and the fourth side b4 of the two third sub-pixels 126' is arranged opposite to the second sub-pixel 124'.
  • the first sub-pixel 122' may be substantially pentagonal, and the third sub-pixel 126' may be substantially quadrilateral. In this way, the first sub-pixel 122' and the third sub-pixel 126' may cooperate with each other and be compactly arranged Within the virtual pentagon, the display effect is guaranteed.
  • the virtual polygon is a virtual pentagon
  • the first sub-pixel 122' includes an arc-shaped first side a1
  • the first side a1 of the first sub-pixel 122' is relatively virtual.
  • the first side d1 of the pentagon is arranged
  • the second side a2 and the third side a3 of the first sub-pixel 122' are respectively arranged along the second side d2 and the third side d3 of the virtual pentagon
  • the fourth side a4 and the fifth side a5 are respectively disposed opposite to the first sides b1 of the two third sub-pixels 126 ′
  • the second sides b2 of the two third sub-pixels 126 ′ are respectively along the second sides of the virtual pentagon D2' and the third side D3' are arranged
  • the third sides b3 of the two third sub-pixels 126' are respectively arranged along the fourth side d4 and the fifth side d5 of the virtual pen
  • the first sub-pixel 122' may be substantially a quadrilateral with rounded corners and the rounded corners are disposed relative to the first side d1 of the virtual pentagon, and the third sub-pixel 126' may be substantially quadrilateral.
  • the first sub-pixel 122 ' and the third sub-pixel 126' can cooperate with each other, and are compactly arranged in the virtual pentagon to ensure the display effect.
  • the virtual polygon is a virtual pentagon
  • the first sub-pixel 122' includes an arc-shaped first side a1
  • the first side a1 of the first sub-pixel 122' is relatively virtual.
  • the first side d1 of the pentagon is arranged
  • the second side a2 and the third side a3 of the first sub-pixel 122 ′ are respectively arranged opposite to the first side b1 of the two third sub-pixels 126 ′
  • the two third sub-pixels 126 The second side b2 of ' is respectively arranged along the second side D2' and the third side D3' of the virtual pentagon
  • the third side b3 of the two third sub-pixels 126' is respectively along the fourth side d4 of the virtual pentagon and the fifth side d5, and the fourth side b4 of the two third sub-pixels 126' is arranged opposite to the second sub-pixel 124'.
  • the first sub-pixel 122' may be substantially fan-shaped, and the third sub-pixel 126' may be substantially quadrilateral. In this way, the first sub-pixel 122' and the third sub-pixel 126' may cooperate with each other and be compactly arranged in the virtual Within the pentagon, the display effect is guaranteed.
  • the virtual polygon is a virtual pentagon
  • the first side a1 of the first sub-pixel 122 ′ is arranged along the first side d1 of the virtual pentagon
  • the second side a2 and the third side a3 of the two third sub-pixels 126' are respectively disposed opposite to the first sides b1 of the two third sub-pixels 126'
  • the second sides b2 of the two third sub-pixels 126' are respectively along the first side of the virtual pentagon.
  • the second side d2 and the third side d3 are arranged, the third side b3 of the two third sub-pixels 126' are respectively arranged along the fourth side d4 and the fifth side d5 of the virtual pentagon, and the two third sub-pixels 126'
  • the fourth side b4 is disposed opposite to the second sub-pixel 124'.
  • the first sub-pixel 122' may be substantially triangular, and the third sub-pixel 126' may be substantially quadrilateral. In this way, the first sub-pixel 122' and the third sub-pixel 126' may cooperate with each other and be compactly arranged in the virtual Within the pentagon, the display effect is guaranteed.
  • the two third sub-pixels 126' may be symmetrically arranged relative to a line X where the geometric center P1' of the first sub-pixel 122' and the geometric center P2' of the second sub-pixel 124' are located.
  • the second sub-pixels 124 ′ may be substantially quadrilateral, and the adjacent first sides c1 and second sides c2 of the second sub-pixels 124 ′ are opposite to the two third sub-pixels 126 respectively.
  • the fourth side b4 of ' is set, and the adjacent third side c3 and the fourth side c4 of the second sub-pixel 124' are respectively set relative to the fifth side d5 and the fourth side d4 of the virtual pentagon.
  • the second sub-pixel 124 ′ is formed with each side opposite to the fourth side b4 of the two third sub-pixels 126 ′ and corresponding to the fourth side d4 and the fifth side d5 of the virtual pentagon, wherein the second sub-pixel 124
  • the third side c3 and the fourth side c4 of ' are respectively located on the extension line of the third side b3 of the two third sub-pixels 126', and the included angle formed by the first side c1 and the second side c2 of the second sub-pixel 124' It is disposed opposite to the included angle formed by the second side a2 and the third side a3 of the first sub-pixel 122 ′.
  • the second sub-pixel 124' may cooperate with the first sub-pixel 122' and the third sub-pixel 126', and be compactly arranged in the virtual pentagon to ensure the display effect.
  • the third sub-pixels 126' in the pixel unit 12' are the same size and shape.
  • the light-emitting effect of the third sub-pixel 126' in each pixel unit 12' is the same, which is beneficial to ensure the display effect of the display panel 10'.
  • the lengths of the second side b2 and the fourth side b4 opposite to the third sub-pixel 126' are not equal.
  • the lengths of the fourth sides b4 of the two third sub-pixels 126' may be equal.
  • the lengths of the first side c1 and the second side c2 of the second sub-pixel 124' may be equal, and the second sub-pixel 124' may be substantially square.
  • the lengths of the fourth sides b4 of the two third sub-pixels 126 ′ are equal, the lengths of the second sides b2 of the corresponding two third sub-pixels 126 ′ are the same.
  • the virtual five sides The lengths of the second side D2' and the third side D3' of the shape are the same.
  • the length of the second side b2 of each third sub-pixel 126' may be shorter than the length of the fourth side b4, or, as shown in FIG. 11 As shown, the length of the second side b2 of each third sub-pixel 126' may be longer than the length of the fourth side b4.
  • the included angle between the second side a2 and the third side a3 of the first sub-pixel 122' is 90°.
  • the included angle between the first side c1 and the second side c2 of the second sub-pixel 124' is 90°, and the included angle between the first side b1 and the fourth side b4 of the third sub-pixel 126' is 90°.
  • the angle between the second side a2 and the third side a3 of the first sub-pixel 122 ′, the angle between the first side c1 and the second side c2 of the second sub-pixel 124 ′, and the two third sub-pixels 126 The included angles of the first side b1 and the fourth side b4 of ' are arranged around each other, and the four right angles are arranged in cooperation with each other, so that the four sub-pixels are arranged in close cooperation within the virtual pentagon to ensure the display effect.
  • the second side b2 and the fourth side b4 of the third subpixel 126' are parallel to each other.
  • the third sub-pixel 126' may have a trapezoid shape.
  • the third sub-pixel 126' may have a right-angled trapezoid, and the first side b1 of the third sub-pixel 126' may be a right-angled waist of the right-angled trapezoid.
  • the lengths of the fourth sides b4 of the two third sub-pixels 126' may not be equal.
  • the second side b2 of any third sub-pixel 126' of the two third sub-pixels 126' of the pixel unit 12' may be equal to the fourth side b4 of the other third sub-pixel 126', and accordingly,
  • the lengths of the second side D2' and the third side D3' of the virtual pentagon may be different, and the second sub-pixel 124' may be substantially rectangular.
  • the geometric centers P2 ′ of the plurality of first sub-pixels 122 ′ and the plurality of second sub-pixels 124 ′ arranged along the column extension direction may not be on the same straight line superior.
  • the second sub-pixel 124' is substantially fan-shaped, and the two straight sides of the second sub-pixel 124' are respectively disposed opposite to the fourth side b4 of the two third sub-pixels 126'.
  • the second sub-pixel 124 ′ is formed with a straight line matched with the fourth side b4 of the two third sub-pixels 126 ′, and the angle formed by the two straight lines of the second sub-pixel 124 ′ and the first sub-pixel
  • the angle formed by the second side a2 and the third side a3 of the 122' is set opposite to each other, and the arc side of the second sub-pixel 124' is set opposite to the fourth side d4 and the fifth side d5 of the virtual pentagon.
  • the second sub-pixel 124' may cooperate with the first sub-pixel 122' and the third sub-pixel 126', and be compactly arranged in the virtual pentagon to ensure the display effect.
  • the lengths of the second side b2 and the fourth side b4 of each third sub-pixel 126' may also be the same.
  • one first sub-pixel 122', one second sub-pixel 124' and two third sub-pixels 126' of each pixel unit 12' are located on the virtual pentagon
  • the first side a1 of the first sub-pixel 122' is arranged along the first side d1 of the virtual pentagon
  • the second side a2 and the third side a3 of the first sub-pixel 122' are respectively opposite to the two third sub-pixels
  • the first side b1 of the 126' is set
  • the fourth side a4 of the first sub-pixel 122' is set relative to the first side c1 of the second sub-pixel 124'
  • the second sides b2 of the two third sub-pixels 126' are along the virtual
  • the second side d2 and the third side d3 of the pentagon are arranged
  • the third side b3 of the two third sub-pixels 126' are respectively arranged along the fourth side d4 and the fifth side d5 of
  • the first sub-pixel 122' may be substantially quadrilateral, in particular, the first sub-pixel 122' may be substantially trapezoidal, and the first side a1 and the fourth side a4 of the first sub-pixel 122' are the bottom sides of the trapezoid, The second side a3 and the third side a4 of the first sub-pixel 122' are the waists of the trapezoid.
  • the second subpixel 124' may have a pentagon shape.
  • the third subpixel 126' may be substantially quadrilateral. Wherein, in the example of FIG. 18 , the third sub-pixels 126' may be arranged in a substantially trapezoidal shape. In the example of Figure 19, the third subpixel 126' may be substantially rectangular.
  • one first subpixel 122', one second subpixel 124', and two third subpixels 126' of each pixel unit 12' are located within a virtual hexagon, the first subpixel 122
  • the first side a1 of ' is arranged along the first side d1 of the virtual hexagon
  • the second side a2 and the third side a3 of the first sub-pixel 122' are respectively arranged relative to the first side b1 of the two third sub-pixels 126'
  • the second sides b2 of the two third sub-pixels 126' are respectively arranged along the second side d2 and the third side d3 of the virtual hexagon
  • the third sides b3 of the two third sub-pixels 126' are respectively arranged along the virtual hexagon
  • the fourth side d4 and the fifth side d5 of the shape are arranged, the fourth side b4 of the two third sub-pixels 126' is arranged opposite to the first side c1 and the second side c2 of the second sub-pixel 124', and
  • the first sub-pixel 122' may be substantially triangular, and the second sub-pixel 124' may be substantially pentagonal.
  • the third subpixel 126' may be substantially quadrilateral. Wherein, in the example of FIG. 20 , the third sub-pixels 126' may be arranged in a substantially trapezoidal shape. In the example of FIG. 21, the third subpixel 126' may be substantially rectangular.
  • the first sub-pixel 122', the second sub-pixel 124' and the third sub-pixel 126' are not limited to the shapes discussed above, but quadrilateral, hexagonal, and octagonal can be selected according to actual needs One or more of these, correspondingly, the design of each side of the first sub-pixel 122', the second sub-pixel 124' and the third sub-pixel 126' and the angular relationship between each side are also flexibly configured as required. This is not specifically limited. It should be noted that when each sub-pixel is designed as a polygon, the sides of the polygon are not limited to strictly flat line segments. Due to process errors, each side can extend along a predetermined direction within a certain range, which is not specifically limited here. .
  • the length ratio of the second side b2 of the third sub-pixel 126' to the fourth side b4 of the third sub-pixel 126' is in the range of 0.5-2.
  • a line connecting the midpoint of the second side b2 and the midpoint of the fourth side b4 in the third subpixel 126' passes through the geometric center P3' (P4') of the third subpixel 126'.
  • each sub-pixel may be designed with rounded corners at the intersection of each side.
  • each sub-pixel may be designed in a chamfered manner or in other manners at the intersection of each side. This is not specifically limited.
  • the color of the light emitted by the first subpixel 122' is different from the color of the light emitted by the second subpixel 124' and the color of the light emitted by the third subpixel 126'.
  • each pixel unit 12' includes red light, green light and blue light.
  • the display panel 10' can uniformly distribute sub-pixels with different colors to realize normal display of full-color images.
  • the first sub-pixel 122' emits blue light
  • the second sub-pixel 124' emits red light
  • the third sub-pixel 126' emits green light
  • the area of the first sub-pixel 122' is larger than that of the third sub-pixel 126'
  • the area of the third sub-pixel 126' is larger than that of the second sub-pixel 124'.
  • each sub-pixel may be the area of the luminescent material of the pixel, for example, the area of the anode material of the organic light emitting diode.
  • the area of each sub-pixel may also be the area of the opening through which the pixel placement material emits light through the opening, for example, the area of the opening corresponding to the pixel defining layer and the sub-pixel in the organic light emitting diode display panel 10 ′, which is not described here. Specific restrictions.
  • the blue sub-pixel area may be larger than the red and green sub-pixel areas because the blue light-emitting material generally has the lowest luminous efficiency and relatively short lifetime compared to red and green.
  • the green sub-pixel area can be minimized.
  • the corresponding relationship between the emission colors of the first sub-pixel 122', the second sub-pixel 124' and the third sub-pixel 126' may not be limited to the above-discussed embodiments, but may be transformed according to actual needs.
  • the first sub-pixel 122' emits red light
  • the second sub-pixel 124' emits blue light
  • the third sub-pixel 126' emits green light, which is not specifically limited herein.
  • the mask assembly (not shown) of the embodiment of the present application is used to manufacture the display panel 10 ′ of any of the above-mentioned embodiments, and the mask assembly includes a first mask The board 20', the second mask 30' and the third mask 40', the first mask 20' includes a first substrate 22' and a first opening 24' opened in the first substrate 22', the first The opening 24' corresponds to the first sub-pixel 122', the second mask 30' includes a second substrate 32' and a second opening 34' opened on the second substrate 32', the second opening 34' and the second sub-pixel Corresponding to 124', the third mask 40' includes a third substrate 42' and a third opening 44' opened in the third substrate 42', and the third opening 44' corresponds to the third sub-pixel 126'.
  • the mask assembly according to the embodiment of the present application can be fabricated to form the display panel 10'.
  • the four sub-pixels in the display panel 10' together form an independent light-emitting unit.
  • the geometric center P1' of the first sub-pixel 122' and the geometric center P3' of the two third sub-pixels 126' have the same first distance D1'
  • the geometric center P2' of the second sub-pixel 124' and the geometric center P3' of the two third sub-pixels 126' have The same second distance D2' makes the distribution of sub-pixels uniform, and the display effect is guaranteed by the distribution of sub-pixels in the pixel unit 12' and the design of the first distance D1' and the second distance D2'.
  • the first substrate 22', the second substrate 32' and the third substrate 42' are made of metal material.
  • the first mask plate 20', the second mask plate 30' and the third mask plate 40' can be high-precision metal masks, which can be applied to the evaporation process, and the organic light emission corresponding to the pixel pattern can be evaporated
  • the material forms the corresponding display panel 10'.
  • the combined mask integration frame can be put into the corresponding evaporation chambers respectively to evaporate the organic light-emitting material corresponding to the sub-pixel.
  • one type of sub-pixel pattern can be formed each time by evaporation, and after one type of sub-pixel pattern is formed, another sub-pixel pattern is formed, and three sub-pixel patterns are sequentially formed to obtain the display panel 10 ′ according to the embodiment of the present application. .
  • the correspondence between the first opening 24 ′ and the first sub-pixel 122 ′ refers to the shape, size and relative position distribution of the first opening 24 ′ and the shape and size of the first sub-pixel 122 ′ in the display panel 10 ′
  • the evaporation material can pass through the first opening 24' to form the first sub-pixel 122' having a predetermined shape, size and relative position distribution on the array substrate, that is, the first sub-pixel 122'.
  • Graphics for pixel 122' is
  • the correspondence between the second opening 34 ′ and the second sub-pixel 124 ′ refers to the shape, size and relative position distribution of the second opening 34 ′ and the shape, size and relative position distribution of the second sub-pixel 124 ′ in the display panel 10 ′
  • the third opening 44' corresponds to the third sub-pixel 126' refers to the shape, size and relative position distribution of the third opening 44' and the shape and size of the third sub-pixel 126' in the display panel 10' corresponds to the relative position distribution.
  • the display panel 10' is not limited to be formed by an evaporation process, and the display panel 10' may be formed by a photolithography process, an etching process, etc. as required.
  • the display device of the embodiment of the present application includes the display panel 10' of any of the above-mentioned embodiments.
  • any one of the first sub-pixels 122 ′ of the display panel 10 ′ may be connected to a second sub-pixel 124 ′ adjacent to the first sub-pixel 122 ′ and to the first sub-pixel 122 ′ '
  • the two third sub-pixels 126' adjacent to the second sub-pixel 124' form an independent pixel unit 12', so that the sub-pixels are evenly distributed, through the distribution of the sub-pixels in the pixel unit 12' and the first distance D1',
  • the design of the second distance D2' ensures the display effect.
  • the size matching between the sub-pixels makes the ratio of the distances between the geometric center P1' of the first sub-pixel 122' and the geometric center P2' of the second sub-pixel 124' to the first connecting line P3'P4' satisfy the preset condition , so that the pixel unit 12 ′ is flat, and the geometric center P1 ′ of the first sub-pixel 122 ′ is closer to the geometric center of the pixel unit 12 ′, which can reduce the jaggedness in the display effect.
  • the specific display panel 10 (10') may be formed by a multilayer film structure
  • FIG. 25 is a schematic diagram of an exemplary film structure of the display panel 10 (10')
  • the pixel array in the display panel 10 ( 10 ′) may include a base substrate 101 , a driving structure layer 102 , a flat layer 103 , a first electrode pattern layer 104 , a pixel definition layer 105 , a spacer column 106 , and an organic functional layer that are stacked in sequence. 107 , the second electrode 108 and the encapsulation layer 109 .
  • the base substrate 101 may be a flexible base substrate, for example, including a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer, and a second flexible material layer stacked on a glass carrier Inorganic material layer.
  • the materials of the first flexible material layer and the second flexible material layer are polyimide (PI), polyethylene terephthalate (PET), or a surface-treated soft polymer film.
  • the materials of the first inorganic material layer and the second inorganic material layer are silicon nitride (SiNx) or silicon oxide (SiOx), etc., which are used to improve the water and oxygen resistance of the substrate.
  • the layer is also referred to as a barrier layer.
  • the material of the semiconductor layer is amorphous silicon (a-Si).
  • the preparation process includes: firstly coating a layer of polyimide on a glass carrier, and after curing to form a film forming a first flexible (PI1) layer; then depositing a barrier film on the first flexible layer to form a first barrier (Barrier1) layer covering the first flexible layer; then depositing a layer of amorphous silicon on the first barrier layer film to form an amorphous silicon (a-Si) layer covering the first barrier layer; then a layer of polyimide is coated on the amorphous silicon layer, and a second flexible (PI2) layer is formed after curing into a film; then A barrier film is deposited on the second flexible layer to form a second barrier (Barrier2) layer covering the second flexible layer, and the preparation of the base substrate 101 is completed.
  • the driving structure layer 102 is prepared on the base substrate 101 .
  • the driving structure layer 102 includes a plurality of driving circuits, each of which includes a plurality of transistors and at least one storage capacitor, eg, a 2T1C, 3T1C or 7T1C design. Three sub-pixels are taken as an example for illustration, and the driving circuit of each sub-pixel is only illustrated by taking one transistor and one storage capacitor as an example.
  • the preparation process of the driving structure layer may refer to the following description.
  • the manufacturing process of the driving circuit of the red sub-pixel is taken as an example for description.
  • a first insulating film and an active layer film are sequentially deposited on the base substrate 101, and the active layer film is patterned through a patterning process to form a first insulating layer 1021 covering the entire base substrate 101, and is disposed on the first insulating layer
  • the active layer pattern on 1021, the active layer pattern includes at least the first active layer.
  • a gate metal layer pattern, the first gate metal layer pattern at least includes a first gate electrode and a first capacitor electrode.
  • a third insulating film and a second metal film are sequentially deposited, and the second metal film is patterned through a patterning process to form a third insulating layer 1023 covering the first gate metal layer, and a third insulating layer 1023 disposed on the third insulating layer 1023.
  • the second gate metal layer pattern at least includes a second capacitor electrode, and the position of the second capacitor electrode corresponds to the position of the first capacitor electrode.
  • a fourth insulating film is deposited, and the fourth insulating film is patterned through a patterning process to form a pattern of a fourth insulating layer 1024 covering the second gate metal layer, and at least two first via holes are opened on the fourth insulating layer 1024, The fourth insulating layer 1024, the third insulating layer 1023 and the second insulating layer 1022 in the two first via holes are etched away to expose the surface of the first active layer.
  • a third metal film is deposited, the third metal film is patterned through a patterning process, and a source-drain metal layer pattern is formed on the fourth insulating layer 1024, where the source-drain metal layer at least includes the first source electrode and the first source electrode located in the display area. drain electrode.
  • the first source electrode and the first drain electrode may be connected to the first active layer through first via holes, respectively.
  • the first active layer, the first gate electrode, the first source electrode and the first drain electrode can form the first transistor 1025, and the first capacitor electrode and the second capacitor electrode can form the first transistor 1025.
  • a storage capacitor 1026 In the above preparation process, the driving circuit of the green sub-pixel and the driving circuit of the blue sub-pixel can be formed at the same time.
  • the first insulating layer 1021, the second insulating layer 1022, the third insulating layer 1023 and the fourth insulating layer 1024 are silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride ( Any one or more of SiON), which may be a single layer, a multi-layer or a composite layer.
  • the first insulating layer 1021 is called a buffer layer, which is used to improve the water and oxygen resistance of the base substrate;
  • the second insulating layer 1022 and the third insulating layer 1023 are called gate insulating (GI, Gate Insulator) layers;
  • the fourth insulating layer 1024 is called an interlayer insulating (ILD, Interlayer Dielectric) layer.
  • the first metal film, the second metal film and the third metal film are made of metal materials, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • metal materials such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • Various, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • the active layer film is made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si), One or more materials such as hexathiophene and polythiophene, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • One or more materials such as hexathiophene and polythiophene, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a flat layer 103 is formed on the base substrate 101 on which the aforementioned pattern is formed.
  • a planar thin film of organic material is coated on the base substrate on which the aforementioned patterns are formed, to form a planarization (PLN, Planarization) layer 103 covering the entire base substrate, and through masking, exposing, and developing processes , a plurality of second via holes are formed on the flat layer 103 in the display area.
  • the flat layer 103 in the plurality of second via holes is developed away, exposing the surface of the first drain electrode of the first transistor 1025 of the driving circuit of the first sub-pixel 122 ( 122 ′) and the surface of the first drain electrode of the second sub-pixel 124 ( 124 ′) respectively.
  • a first electrode pattern layer 104 is formed on the base substrate 101 on which the aforementioned pattern is formed.
  • the first electrode is an anode.
  • a conductive thin film is deposited on the base substrate 101 on which the aforementioned patterns are formed, and the conductive thin film is patterned through a patterning process to form the first electrode pattern 104 .
  • the first anode 1041 of the first sub-pixel 122 (122') is connected to the first drain electrode of the first transistor 1025 through the second via hole, and the second anode 1042 of the second sub-pixel 124 (124') is connected through the second via hole It is connected to the first drain electrode of the first transistor 1025 of the second sub-pixel 124 (124'), and the third anode 1043 of the third sub-pixel 126 (126') is connected to the third sub-pixel 126 (126') through the second via hole. ) is connected to the first drain electrode of the first transistor 1025.
  • the first electrode may employ a metallic material, such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • a metallic material such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • Various, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb) can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti, etc., or, a metal and Stacked structures formed of transparent conductive materials, such as reflective materials such as ITO/Ag/ITO, Mo/AlNd/ITO, etc.
  • a pattern of a pixel definition layer (PDL, Pixel Definition Layer) 105 is formed on the base substrate 101 on which the aforementioned pattern is formed.
  • a pixel definition film is coated on the base substrate 101 on which the aforementioned patterns are formed, and a pattern of the pixel definition layer 105 is formed by masking, exposing, and developing processes.
  • the pixel definition layer 105 in the display area includes a plurality of sub-pixel definition parts 1052, a plurality of pixel openings 1051 are formed between adjacent sub-pixel definition parts 1052, and the pixel definition layer 105 in the plurality of pixel openings 1051 is developed and exposed, respectively.
  • the pixel definition layer 105 may employ polyimide, acrylic, polyethylene terephthalate, or the like.
  • each sub-pixel discussed in the embodiments of the present application may refer to the shape and size of the corresponding anode exposed from the pixel opening 1051 of the pixel definition layer 105, and further, the geometry of each sub-pixel The center may be the geometric center of the portion of the corresponding anode exposed from the pixel opening 1051 of the pixel definition layer 105 .
  • a pattern of spacer posts (PS, Post Spacer) 106 is formed on the base substrate 101 on which the aforementioned pattern is formed.
  • a thin film of an organic material is coated on the base substrate 101 on which the aforementioned pattern is formed, and a spacer column pattern is formed by masking, exposing, and developing processes.
  • the spacer posts 106 may act as a support layer configured to support the FMM (high-precision mask) during the evaporation process.
  • a repeating unit is spaced between two adjacent spacer columns 106.
  • the spacer columns 106 may be located in adjacent first sub-pixels 122 (122'). ) and the second sub-pixel 124 (124').
  • An organic functional layer 107 and a second electrode 108 are sequentially formed on the base substrate 101 on which the aforementioned pattern is formed.
  • the second electrode 10 is a transparent cathode.
  • the light-emitting element can emit light from the side away from the base substrate 101 through the transparent cathode to realize top emission.
  • the organic functional layer 107 of the light emitting element includes: a hole injection layer 1071 , a hole transport layer 1072 , a light emitting layer 1073 and an electron transport layer 1074 .
  • the hole injection layer 1071 and the hole transport layer 1072 are sequentially formed by vapor deposition using an open mask on the base substrate 101 on which the aforementioned patterns are formed, and then the FMM is sequentially vapor deposited.
  • the first light emitting layer 10731, the second light emitting layer 10732 and the third light emitting layer 1073 are formed, and then the electron transport layer 1074, the cathode 108 and the light coupling layer are formed by successive evaporation using an open mask.
  • the hole injection layer 1071 , the hole transport layer 1072 , the electron transport layer 1074 and the cathode are all common layers of a plurality of sub-pixels.
  • the organic functional layer may further include: a microcavity adjustment layer between the hole transport layer 1072 and the light emitting layer 1073 .
  • a microcavity adjustment layer between the hole transport layer 1072 and the light emitting layer 1073 .
  • the first microcavity adjustment layer, the first light-emitting layer 10731 , the second microcavity adjustment layer, the second light-emitting layer 10732 , and the third microcavity adjustment layer can be formed by successively vapor deposition using FMM. , the third light-emitting layer 10733.
  • FIG. 26 is a schematic diagram of the film layer structure of another exemplary display panel 10 ( 10 ′). As can be seen from FIG. 26 , due to the limitation of the FMM opening, the adjacent first light-emitting layers formed by evaporation are formed. There may also be overlap between the 10731, the second light emitting layer 10732 and the third light emitting layer 10733.
  • the organic functional layer 107 is formed in the sub-pixel region to realize the connection between the organic functional layer 107 and the anode.
  • the cathode is formed on the pixel definition layer 105 and connected to the organic functional layer 107 .
  • the cathode may employ any one or more of magnesium (Mg), silver (Ag), aluminum (Al), or an alloy made of any one or more of the foregoing metals , or a transparent conductive material, such as indium tin oxide (ITO), or a multi-layer composite structure of metal and transparent conductive material.
  • Mg magnesium
  • Ag silver
  • Al aluminum
  • ITO indium tin oxide
  • a light coupling layer may be formed on the side of the cathode away from the base substrate 101 , and the light coupling layer may be a common layer of a plurality of sub-pixels.
  • the light coupling layer can cooperate with the transparent cathode to increase the light output.
  • the material of the light coupling layer can be a semiconductor material. However, this embodiment does not limit this.
  • an encapsulation layer 109 is formed on the base substrate 101 on which the aforementioned patterns are formed, and the encapsulation layer 109 may include a first encapsulation layer 1091 , a second encapsulation layer 1092 and a third encapsulation layer 1093 that are stacked.
  • the first encapsulation layer 1091 is made of inorganic material and covers the cathode in the display area.
  • the second encapsulation layer 1092 adopts an organic material.
  • the third encapsulation layer 1093 is made of inorganic material and covers the first encapsulation layer 1091 and the second encapsulation layer 1092 .
  • the encapsulation layer may adopt a five-layer structure of inorganic/organic/inorganic/organic/inorganic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(10)包括呈阵列设置的多个像素单元(12),每个像素单元(12)包括位于虚拟六边形内的一个第一子像素(122)、一个第二子像素(124)和两个第三子像素(126);第一子像素(122)和第二子像素(124)相邻,两个第三子像素(126)均与第一子像素(122)和第二子像素(124)相邻;在列延伸方向上相邻的像素单元(12)共用第一子像素(122)和第二子像素(124),且在行延伸方向上相邻的像素单元(12)共用一个第三子像素(126)。本申请还公开了一种掩膜组件和显示装置。

Description

一种显示面板、掩膜组件和显示装置
优先权信息
本申请请求2020年8月31日向中国国家知识产权局提交的、专利申请号为202010900933.1的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及显示技术领域,特别涉及一种显示面板、掩膜组件和显示装置。
背景技术
在相关技术中,用户对移动终端设备的要求越来越高,更轻更薄更亮更节能依然成为大部分用户的要求,其中有机发光二极管(Organic light-emitting diode;OLED)显示器件凭借着其自主发光的特点,无需背光源即可实现显示功能,成为更轻,更薄的首选显示器件。OLED显示器件的结构主要包括:衬底基板,制作在衬底基板上呈矩阵排列的子像素。其中,各子像素一般都是将有机材料利用蒸镀成膜技术透过高精度金属掩模板,在阵列基板的相应子像素位置形成有机电致发光结构。目前传统的RGB像素排布结构很难得到高分辨率的显示器件。
发明内容
本申请的实施方式提供了一种显示面板、掩膜组件和显示装置。
本申请实施方式的显示面板包括呈阵列设置的多个像素单元,每个所述像素单元包括位于虚拟多边形内的一个第一子像素、一个第二子像素和两个第三子像素,所述虚拟多边形的边数量大于等于五;所述第一子像素和所述第二子像素相邻,两个所述第三子像素均与所述第一子像素和所述第二子像素相邻;在列延伸方向上相邻的所述像素单元共用所述第一子像素和所述第二子像素,且在行延伸方向上相邻的所述像素单元共用一个所述第三子像素。
在某些实施方式中,所述像素单元中每个所述第三子像素几何中心到所述第一子像素几何中心的距离与所述第三子像素几何中心到所述第二子像素几何中心的距离相等。
在某些实施方式中,所述虚拟多边形为虚拟六边形,所述虚拟六边形包括垂直列延伸方向且相对设置的两条短边,所述第一子像素和所述第二子像素分别贴合所述两条短边设置,两个所述第三子像素分别设置在所述虚拟六边形另外四条边形成的两个对角。
在某些实施方式中,两个所述第三子像素相对所述短边的中线呈镜像分布;或两个所述第三子像素相对所述虚拟六边形的中心对称分布。
在某些实施方式中,多个所述像素单元的所述第一子像素和所述第二子像素在行延伸方向上交替排列且相同行的所述第一子像素的中心和所述第二子像素的中心在同一直线上;和多个所述像素单元的所述第一子像素和所述第二子像素在列延伸方向上交替排列且相同列的所述第一子像素的中心和所述第二子像素的中心在同一直线上。
在某些实施方式中,所述第一子像素与所述第二子像素之间的间距和所述第一子像素与所述第三子像素之间的间距相等。
在某些实施方式中,所述第二子像素与所述第三子像素之间的间距和所述第一子像素与所述第三子像素之间的间距相等。
在某些实施方式中,所述第一子像素和所述第二子像素呈六边形,所述第三子像素呈四边形。
在某些实施方式中,所述第一子像素发射的光的颜色与所述第二子像素发射的光的颜色以及所述第三像素发射的光的颜色均互不相同。
在某些实施方式中,所述第一子像素发射红色光,所述第二子像素发射蓝色光和所述第三子像素发射绿色光;或所述第一子像素发射蓝色光,所述第二子像素发射红色光和所述第三子像素发射绿色光。
在某些实施方式中,所述像素单元成矩形点阵排列,所述显示面板内共用所述第一子像素或所述第二子像素的像素单元所在的虚拟多边形相交,相邻两列所述像素单元中同一行的所述像素单元的所述第一子像素和所述第二子像素沿列延伸方向排列顺序相反。
本申请另一实施方式的显示面板包括呈阵列设置的多个像素单元,每个所述像素单元包括位于虚拟 多边形内的一个第一子像素、一个第二子像素和两个第三子像素,所述虚拟多边形的边数量大于等于五;所述第一子像素和所述第二子像素相邻,两个所述第三子像素均与所述第一子像素和所述第二子像素相邻;所述像素单元中的所述第一子像素的几何中心到两个所述第三子像素的几何中心具有相同的第一距离,且所述第二子像素的几何中心到两个所述第三子像素的几何中心具有相同的第二距离;所述像素单元的两个所述第三子像素的几何中心具有第一连线,所述第一子像素的中心到所述第一连线的距离与所述第二子像素的几何中心到所述第一连线的距离的比值为第一预设值,所述第一子像素在行延伸方向上的最大尺寸与所述第二子像素在所述行延伸方向上的最大尺寸的比值为第二预设值,所述第一预设值小于所述第二预设值;所述像素单元内所述第一子像素的几何中心和所述第二子像素的几何中心具有第二连线,沿平行于所述第二连线的方向穿过所述第一子像素和所述第二子像素但不穿过所述第三子像素的两条直线的最远距离为第三距离,所述像素单元内所述第一子像素的几何中心和所述第三子像素的几何中心具有第三连线,沿平行于所述第三连线的方向经过所述第一子像素和所述第三子像素但不经过所述第二子像素的两条直线的最远距离为第四距离,所述第三距离和所述第四距离的比值小于1.5。。
在某些实施方式中,所述第一距离和所述第二距离相等。
在某些实施方式中,所述像素单元中所述第一子像素与所述第二子像素之间的间距大于所述第一子像素与所述第三子像素之间的间距,和/或所述第一子像素与所述第二子像素之间的间距大于所述第二子像素与所述第三子像素之间的间距。
在某些实施方式中,所述像素单元中所述第一子像素与所述第三子像素之间的间距和所述第二子像素与所述第三子像素之间的间距相等。
在某些实施方式中,所述像素单元的形状呈轴对称设计。
在某些实施方式中,所述像素单元中的两个所述第三子像素相对所述第一子像素的几何中心和所述第二子像素的几何中心所在直线对称设计。
在某些实施方式中,所述像素单元中的两个所述第三子像素的形状和尺寸相同。
在某些实施方式中,所述第一子像素的形状呈轴对称设计。
在某些实施方式中,所述第二子像素的形状呈轴对称设计。
在某些实施方式中,所述像素单元中所述第一子像素包括与所述第三子像素相邻的侧边,所述侧边与邻近的所述第三子像素的延长方向形成夹角,所述夹角的角度范围大于等于0°且小于等于30°。
在某些实施方式中,所述像素单元中所述第一子像素靠近所述第二子像素的一侧在所述行延伸方向上的尺寸小于所述第一子像素远离所述第二子像素一侧在所述行延伸方向上的尺寸。
在某些实施方式中,所述像素单元中所述第一子像素靠近所述第二子像素的一侧在所述行延伸方向上的尺寸小于所述第一子像素在所述行延伸方向上的最大尺寸。
在某些实施方式中,所述像素单元内一个所述第三子像素的几何中心与所述第二子像素的几何中心连线和所述第二子像素的几何中心与另一个所述第三子像素的几何中心的连线呈第一角度,所述第一角度的范围为60°至150°。
在某些实施方式中,所述像素单元内一个所述第三子像素的几何中心与所述第一子像素的几何中心连线和所述第一子像素的几何中心与另一个所述第三子像素的几何中心的连线呈第二角度,所述第二角度大于所述第一角度。
在某些实施方式中,所述第一子像素的形状包括三角形、四边形、五边形、扇形或不规则图形,所述第二子像素的形状包括四边形、五边形、扇形或不规则图形,所述第三子像素的形状包括四边形或不规则图形。
在某些实施方式中,所述像素单元中所述第一子像素、所述第二子像素和两个所述第三子像素相互邻近的内角之和的范围为300°至400°。
在某些实施方式中,所述像素单元中所述第一子像素沿所述行延伸方向的投影与所述第三子像素沿所述行延伸方向的投影交叠,所述第一子像素沿所述行延伸方向的投影与所述第三子像素沿所述行延伸方向的投影交叠的部分大于所述第一子像素沿所述行延伸方向的投影未与所述第三子像素沿所述行延伸方向的投影交叠的部分。
在某些实施方式中,所述虚拟多边形为虚拟五边形,所述第一子像素的第一边沿虚拟五边形的第一边设置,所述第一子像素的第二边和第三边分别相对两个所述第三子像素的第一边设置,两个所述第三 子像素的第二边分别沿虚拟五边形的第二边和第三边设置,两个所述第三子像素的第三边分别沿虚拟五边形的第四边和第五边设置,两个所述第三子像素的第四边相对所述第二子像素设置。
在某些实施方式中,所述第二子像素基本呈四边形,所述第二子像素相邻的第一边和第二边分别相对两个所述第三子像素的第四边设置,所述第二子像素相邻的第三边和第四边分别相对所述虚拟五边形的第四边和第五边设置。
在某些实施方式中,两个所述第三子像素的第四边长度相等或不相等。
在某些实施方式中,所述第二子像素基本呈扇形,所述第二子像素两直线边分别相对两个所述第三子像素的第四边设置。
在某些实施方式中,所述虚拟多边形为虚拟五边形,所述第一子像素的第一边沿虚拟五边形的第一边设置,所述第一子像素的第二边和第三边分别相对两个所述第三子像素的第一边设置,所述第一子像素的第四边相对所述第二子像素的第一边设置,两个所述第三子像素的第二边分别沿虚拟五边形的第二边和第三边设置,两个所述第三子像素的第三边分别沿虚拟五边形的第四边和第五边设置,两个所述第三子像素的第四边分别相对所述第二子像素的第二边和第三边设置,所述第二子像素的第四边和第五边分别沿所述虚拟五边形的第四边和第五边设置。
在某些实施方式中,所述虚拟多边形为虚拟六边形,所述第一子像素的第一边沿虚拟六边形的第一边设置,所述第一子像素的第二边和第三边分别相对两个所述第三子像素的第一边设置,两个所述第三子像素的第二边分别沿虚拟六边形的第二边和第三边设置,两个所述第三子像素的第三边分别沿虚拟六边形的第四边和第五边设置,两个所述第三子像素的第四边相对所述第二子像素的第一边和第二边设置,所述第二子像素的第三边和第四边分别沿所述虚拟六边形的第四边和第五边设置,所述第二子像素的第五边沿所述虚拟六边形的第六边设置。
在某些实施方式中,所述第三子像素基本呈矩形或梯形。
在某些实施方式中,所述第三子像素中的第二边与所述第三子像素的第四边的长度比范围为0.5-2。
在某些实施方式中,所述第三子像素中所述第二边的中点与所述第四边的中点的连线经过所述第三子像素的几何中心。
在某些实施方式中,所述第一子像素发射的光的颜色与所述第二子像素发射的光的颜色以及所述第三子像素发射的光的颜色均互不相同。
在某些实施方式中,所述第一子像素发射蓝色光,所述第二子像素发射红色光和所述第三子像素发射绿色光,所述第一子像素的面积大于所述第三子像素的面积,所述第三子像素的面积大于所述第二子像素的面积。
在某些实施方式中,所述像素单元成矩形点阵排列,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交,所述像素单元中所述第一子像素和所述第二子像素沿列延伸方向的排列顺序相同。
在某些实施方式中,所述像素单元成矩形点阵排列,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交,相邻两列所述像素单元中同一行的所述像素单元的所述第一子像素和所述第二子像素沿列延伸方向的排列顺序相反。
在某些实施方式中,所述像素单元成三角形点阵排列,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交,所述像素单元中所述第一子像素和所述第二子像素沿列延伸方向的排列顺序相同。
本申请实施方式的掩膜组件用于制作上述任一实施方式所述的显示面板,所述掩膜组件包括第一掩膜板、第二掩膜板和第三掩膜板,所述第一掩膜板包括第一基板和开设于所述第一基板的第一开口,所述第一开口与所述第一子像素对应,所述第二掩膜板包括第二基板和开设于所述第二基板的第二开口,所述第二开口与所述第二子像素对应,所述第三掩膜板包括第三基板和开设于所述第三基板的第三开口,所述第三开口与所述第三子像素对应。
本申请实施方式的显示装置包括上述任一实施方式的显示面板。
本申请实施方式通过掩膜组件制作的显示面板和显示装置中,四个子像素共同构成一个独立的发光单元,在虚拟五边形内,第一子像素的几何中心和两个第三子像素的几何中心的具有相同的第一距离,第二子像素的几何中心和两个第三子像素的几何中心具有相同的第二距离,使得子像素分布均匀,通过像素单元内子像素的分布和第一距离、第二距离的设计,保证了显示效果。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的显示面板的结构示意图。
图2是本申请实施方式的像素单元的结构示意图。
图3是本申请实施方式的像素单元的另一结构示意图。
图4是本申请实施方式的第一掩膜板的结构示意图。
图5是本申请实施方式的第二掩膜板的结构示意图。
图6是本申请实施方式的第三掩膜板的结构示意图。
图7是本申请实施方式的显示面板的像素排列结构示意图。
图8是本申请实施方式的像素单元的结构示意图。
图9是本申请实施方式的显示面板的另一像素排列结构示意图。
图10是本申请实施方式的显示面板的另一像素排列结构示意图。
图11是本申请实施方式的像素单元的另一结构示意图。
图12是本申请实施方式的像素单元的另一结构示意图。
图13是本申请实施方式的像素单元的另一结构示意图。
图14是本申请实施方式的像素单元的另一结构示意图。
图15是本申请实施方式的像素单元的另一结构示意图。
图16是本申请实施方式的像素单元的另一结构示意图。
图17是本申请实施方式的像素单元的另一结构示意图。
图18是本申请实施方式的像素单元的另一结构示意图。
图19是本申请实施方式的像素单元的另一结构示意图。
图20是本申请实施方式的像素单元的另一结构示意图。
图21是本申请实施方式的像素单元的另一结构示意图。
图22是本申请实施方式的第一掩膜板的另一结构示意图。
图23是本申请实施方式的第二掩膜板的另一结构示意图。
图24是本申请实施方式的第三掩膜板的另一结构示意图。
图25是本申请实施方式的显示面板的膜层结构示意图。
图26是本申请实施方式的显示面板的另一膜层结构示意图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1和图2,在一个实施例中,本申请实施方式提供一种显示面板10,显示面板10包括呈阵列设置的多个像素单元12,每个像素单元12包括位于虚拟六边形内的一个第一子像素122、一个第 二子像素124和两个第三子像素126;第一子像素122和第二子像素124相邻,两个第三子像素126均与第一子像素122和第二子像素124相邻;在列延伸方向上相邻的像素单元12共用第一子像素122和第二子像素124,且在行延伸方向上相邻的像素单元12共用一个第三子像素126。
本申请实施方式的显示面板10中,任意一个第一子像素122均可以和与该第一子像素122相邻的一个第二子像素124以及与该第一子像素122和第二子像素124相邻的两个第三子像素126组成一个独立的像素单元12,从而子像素之间可以通过借色原理由低分辨率的物理分辨率达到高分辨率的显示效果。其中,子像素与子像素相邻指的是两个子像素之间最小距离的连线不经过其他子像素。
需要说明的是,像素单元12指的是显示面板10中可以用于实现相同发光效果和功能的最小重复单元,多个像素单元12呈阵列设置表示多个像素单元12的中心沿至少两个方向交叉排列而形成阵列。特别地,多个像素单元12可以沿相互垂直的两个方向交错设置而呈阵列排布,此时,相互垂直的两个方向可以分别是像素单元12的行延伸方向和列延伸方向,沿行延伸方向排布的像素单元12形成像素行,沿列延伸方向排布的像素形成像素列。其中,显示面板10中像素单元12排布的行和列是相对的,本实施方式中,呈行排布的像素单元12在其他实施方式中可以是呈列排布的像素单元12,在此不做详细展开。
在一些例子中,每个像素列中不在起始和结束位置的当前像素单元12可以有两个邻近像素单元12,当前像素单元12可以与一个邻近像素单元12共用第一子像素122,同时当前像素单元12可以与另一个邻近像素单元12共用第二子像素124。相应地,每个像素行中不在起始和结束位置的当前像素单元12可以有两个邻近邻像素单元12,当前像素单元12可以与一个邻近像素单元12共用当前像素单元12的一个第三子像素126,同时当前像素单元12可以与另一个邻近像素单元12共用当前像素单元12的另一个第三子像素126。
此时,对于不位于像素行和像素列起始和结束位置的像素单元12内的第一子像素122、第二子像素124和两个第三子像素126均实现与相邻像素单元12的共用,从而子像素之间可以通过借色原理由低分辨率的物理分辨率达到高分辨率的显示效果。
在某些实施例中,显示面板10内共用第一子像素122或第二子像素124的像素单元12所在的虚拟多边形相交。
进一步地,在某些实施方式中,虚拟多边形为虚拟六边形。
在某些实施方式中,多个像素单元12的第一子像素122和第二子像素124在行延伸方向上交替排列且相同行的第一子像素122的中心和第二子像素124的中心在同一直线上;或多个像素单元12的第一子像素122和第二子像素124在列延伸方向上交替排列且相同列的第一子像素122的中心和第二子像素124的中心在同一直线上。
请再次参阅图1,在某些实施方式中,像素单元12成矩形点阵排列,相邻两列像素单元12中同一行像素单元12的第一子像素122和第二子像素124沿列延伸方向排列顺序相反。例如,相邻两列像素单元12中同一行的一个像素单元12的第一子像素122和第二子像素124沿列延伸方向自上而下排列,另一个像素单元12的第一子像素122和第二子像素124沿列延伸方向自下而上排列,从而整个显示面板10中同一行的多个像素单元12的第一子像素122和第二子像素124在行延伸方向上交替排列。
请结合图2,在某些实施方式中,像素单元12中每个第三子像素126的几何中心到第一子像素122的几何中心的距离D1与第三子像素126的几何中心到第二子像素124的几何中心的距离D2相等。
如此,显示面板10通过像素单元12内各个子像素的几何中心之间的距离设计,可以使第三子像素126与第一子像素122、第二子像素124之间呈预定规律紧密排列,尽可能的减小相邻像素之间的间距。
在某些实施方式中,第一子像素122的几何中心到第二子像素124的几何中心之间的距离D3可以大于第三子像素126的几何中心到第一子像素122的几何中心的距离D1和第三子像素126的几何中心到第二子像素124的几何中心的距离D2,或者第一子像素122的几何中心到第二子像素124的几何中心之间的距离D3可以等于第三子像素126的几何中心到第一子像素122的几何中心的距离D1和第三子像素126的几何中心到第二子像素124的几何中心的距离D2,或者第一子像素122的几何中心到第二子像素124的几何中心之间的距离D3可以小于第三子像素126的几何中心到第一子像素122的几何中心的距离D1和第三子像素126的几何中心到第二子像素124的几何中心的距离D2。
本申请实施方式的第一子像素122和第二子像素124沿列方向排列并实现列方向上相邻像素单元12 中第一子像素122或第二子像素124的共用,而第三子像素126实现行方向上相邻像素单元12中第三子像素的共用,可以理解,第一子像素122的几何中心到第二子像素124的几何中心之间的距离D3可以与第三子像素126的几何中心到第一子像素122的几何中心的距离D1以及第三子像素126的几何中心到第二子像素124的几何中心的距离D2相等或不相等。具体地,第一子像素122的几何中心到第二子像素124的几何中心之间的距离D3可以根据虚拟六边形的尺寸,第一子像素122和第二子像素124的形状和尺寸以及第一子像素122、第二子像素124和第三子像素126的相对位置等确定。
当然,在其他实施方式中,像素单元12内各个子像素的中心之间的距离设计还可以是像素发光颜色的中心,在此不做具体限定。
在某些实施方式中,虚拟六边形包括垂直列延伸方向且相对设置的两条短边,第一子像素122和第二子像素124分别贴合两条短边设置,两个第三子像素126分别设置在虚拟六边形另外四条边形成的两个对角。
可以理解,第一子像素122的一条边可以与虚拟六边形的一条短边重合,第二子像素124的一条边可以与虚拟六边形的另一条短边重合,第一子像素122的第二子像素124相邻的边分别与虚拟六边形的两条短边相对。一个第三子像素126设置在虚拟六边形内,第三子像素126的一个角与虚拟六边形另外四条边形成的两个对角中的一个重合,另一个第三子像素126的一个角与虚拟六边形另外四条边形成的两个对角中的另一个重合,此时,第三子像素126形成对应夹角的两条边与虚拟六边形形成对应对角的两条边分别平行。
在一些实施方式中,虚拟六边形另外四条边形成的两个相对的直角。
请参阅图2和图3,在某些实施方式中,两个第三子像素126相对短边的中线X呈镜像分布,或者两个第三子像素126相对虚拟六边形的中心O对称分布。
在图2所示的实施例中,两个第三子像素126相对短边的中线X呈镜像分布。在图3的实施例中,两个第三子像素126相对虚拟六边形的中心O对称分布。
请再次参阅图2,在某些实施方式中,第一子像素122与第二子像素124之间的间距L1和第一子像素122与第三子像素126之间的间距L2相等。
具体地,子像素之间的间距L指的是子像素之间相互靠近的边缘之间的最小距离,且该距离小于两子像素的几何中心之间的距离D。第一子像素122与相邻的第二子像素124之间的间距L1需要大于或等于工艺极限距离,第一子像素122与相邻的第三子像素126之间的间距L2需要大于或等于工艺极限距离,以满足工艺需求。并且,子像素之间的间距L一般为工艺极限距离。如此,显示面板10能够以最大限度减小第一子像素122和第二子像素124之间的间距,从而在同等分辨率的条件下第一子像素122与第二子像素124相邻位置以及第一子像素122与第三子像素126相邻位置可以增大像素开口面积,降低显示器件的驱动电流,进而增加显示器件的寿命。
在某些实施方式中,第二子像素124与第三子像素126之间的间距L3和第一子像素122与第三子像素126之间的间距L1相等。
其中,第二子像素124与相邻的第三子像素126之间的间距L3需要大于或等于工艺极限距离,以满足工艺需求,同样地,在同等分辨率的条件下第二子像素124与第三子像素126相邻位置以及第一子像素122与第三子像素126相邻位置可以增大像素开口面积,降低显示器件的驱动电流,进而增加显示器件的寿命。
在某些实施方式中,第一子像素122与第三子像素126之间的间距L2和第二子像素124与第三子像素126之间的间距L3相等。
同样地,在同等分辨率的条件下第一子像素122与第三子像素126相邻位置以及第二子像素124与第三子像素126相邻位置可以增大像素开口面积,降低显示器件的驱动电流,进而增加显示器件的寿命。
在某些实施方式中,第一子像素122与第二子像素124之间的间距L1、第一子像素122与第三子像素126之间的间距L2和第二子像素124与第三子像素126之间的间距L3均相等。
此时,L1=L2=L3,也即是说,任意相邻的两个子像素之间的间距相等。如此,可以进一步增加所有子像素的开口面积,降低显示器件的驱动电流,进而增加显示器件的寿命。
在某些实施方式中,第一子像素122和第二子像素124呈六边形,第三子像素126呈四边形。从而在显示面板10中,第一子像素122在六条边中相对的两条边分别与两个第二子像素124相邻,第一子 像素122的另外四条边分别与四个第三子像素126相邻。同样地,第二子像素124在六条边中相对的两条边分别与两个第一子像素122相邻,第二子像素124的另外四条边分别与四个第三子像素126相邻。而第三子像素126在一组对边分别与两个第一子像素122相邻,第三子像素126在另一组对边分别与两个第二子像素124相邻。
当然,在其他实施方式中,第一子像素122、第二子像素124和第三子像素126不限于上述讨论的形状,而可以根据实际需要选择四边形、六边形、八边形中的一种或多种,在此不做具体限定。
在一些实施方式中,各个子像素可以在边缘折角处可以设置有倒角。
在某些实施方式中,第一子像素122发射的光的颜色与第二子像素124发射的光的颜色以及第三子像素126发射的光的颜色均互不相同。
进一步地,每个像素单元12中的子像素发出的光均包括红色光、绿色光和蓝色光。显示面板10能够通过颜色各不相同的子像素均匀分布,实现全彩图像的正常显示。
在一个例子中,第一子像素122发射红色光、第二子像素124发射蓝色光、第三子像素126发射绿色光。在另一个例子中,第一子像素122发射蓝色光、第二子像素124发射红色光、第三子像素126发射绿色光。
在某些实施方式中,第一子像素122的面积大于第二子像素124的面积,第二子像素124的面积大于第三子像素126的面积。
特别的,对于有机发光二极管显示器件,因为相比红色和绿色,蓝色发光材料通常发光效率最低且寿命相对较短,因此蓝色子像素面积可以大于红色子像素和绿色子像素面积。此外,由于人眼对绿色更敏感,而且绿色发光材料效率最高,因此绿色子像素面积可以做成最小。
当然,在其他实施方式中,第一子像素122、第二子像素124和第三子像素126发光颜色的对应关系可以不限于上述讨论的实施方式,而可以根据实际需要进行变换,在此不做具体限定。
请结合图1至图5,本申请实施方式提供的掩膜组件(图未示出)可以用于制作上述任一实施方式的显示面板10,掩膜组件包括第一掩膜板20、第二掩膜板30和第三掩膜板40,第一掩膜板20包括第一基板22和开设于第一基板22的第一开口24,第一开口24与第一子像素122对应,第二掩膜板30包括第二基板32和开设于第二基板32的第二开口34,第二开口34与第二子像素124对应,第三掩膜板40包括第三基板42和开设于第三基板42的第三开口44,第三开口44与第三子像素126对应。
本申请实施方式的掩膜组件可以制作形成显示面板10,显示面板10任意一个第一子像素122均可以和与该第一子像素122相邻的一个第二子像素124以及与该第一子像素122和第二子像素124相邻的两个第三子像素126组成一个独立的像素单元12,从而子像素之间可以通过借色原理由低分辨率的物理分辨率达到高分辨率的显示效果。
在某些实施方式中,第一基板22、第二基板32和第三基板42由金属材质制成。
如此,第一掩膜板20、第二掩膜板30和第三掩膜板40可以是高精度金属掩膜板,可以应用于蒸镀工艺,通过蒸镀像素图形对应的有机发光材料形成相应的显示面板10。
在某些实施方式中,掩膜组件还包括覆盖掩模板(Cover Mask)、支撑掩模板(Howling Mask)和对位掩模板(Align Mask)。第一掩膜板20、第二掩膜板30和第三掩膜板40均可以与覆盖掩模板、支撑掩模板和对位掩模板组合形成掩膜集成框架(Mask Frame Assembly;MFA)。
如此,组合后的掩膜集成框架可以分别放入相应的蒸镀腔室中蒸镀与该子像素对应的有机发光材料。具体地,每次蒸镀可形成一种子像素的图形,形成完一种子像素的图形后再形成另一种子像素的图形,三种子像素的图形依次形成后得到本申请实施方式的显示面板10。
当然,在其他实施方式中,不限于采用蒸镀工艺形成显示面板10,而可以根据需要采用光刻工艺、蚀刻工艺等方式形成显示面板10。
本申请实施方式的显示装置包括上述任一实施方式的显示面板10。
本申请实施方式显示装置中,显示面板10的任意一个第一子像素122均可以和与该第一子像素122相邻的一个第二子像素124以及与该第一子像素122和第二子像素124相邻的两个第三子像素126组成一个独立的像素单元12,从而子像素之间可以通过借色原理由低分辨率的物理分辨率达到高分辨率的显示效果。
在另一个实施例中,请参阅图7和图8,本申请实施方式还提供一种显示面板10’,显示面板10’包括呈阵列设置的多个像素单元12’,每个像素单元12’包括位于虚拟多边形内的一个第一子像素122’、一个第二子像素124’和两个第三子像素126’第一子像素122’和第二子像素124’相邻,虚拟多边形的边数量大于等于五,两个第三子像素126’均与第一子像素122’和第二子像素124’相邻;像素单元12’中的第一子像素122’的几何中心P1’到两个第三子像素126’的几何中心P3’具有相同的第一距离D1’,且第二子像素124’的几何中心P2’到两个第三子像素126’的几何中心P3’具有相同的第二距离D2’,像素单元12’的两个第三子像素126’的几何中心P3’和P4’具有第一连线P3’P4’,第一子像素122’的几何中心P1’到第一连线P3’P4’的距离C1与第二子像素124’的几何中心P2’到第一连线P3’P4’的距离C2的比值为第一预设值,第一子像素122’在行延伸方向上的最大尺寸与第二子像素124’在行延伸方向上的最大尺寸的比值为第二预设值,第一预设值小于第二预设值;像素单元12’内第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’具有第二连线P1’P2’,沿平行于第二连线P1’P2’的方向穿过第一子像素122’和第二子像素124’但不穿过第三子像素126’的两条直线的最远距离为第三距离D3’,像素单元12’内第一子像素122’的几何中心P1’和第三子像素126’的几何中心P3’(P4’)具有第三连线P1’P3’(P1’P4’),沿平行于第三连线P1’P3’(P1’P4’)的方向经过第一子像素122’和第三子像素126’但不经过第二子像素124’的两条直线的最远距离为第四距离D4’,第三距离D3’和第四距离D4’的比值小于1.5。
本申请实施方式的显示面板10’中,一个第一子像素122’和与该第一子像素122’相邻的一个第二子像素124’以及与该第一子像素122’和第二子像素124’相邻的两个第三子像素126’组成一个独立的像素单元12’,使得子像素分布均匀,通过像素单元12’内子像素的分布和第一距离D1’、第二距离D2’的设计,保证了显示效果。而且,各个子像素之间的尺寸配合使得第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’到第一连线P3’P4’的距离比值满足预设条件,从而像素单元12’呈扁平状,第一子像素122’的几何中心P1’更靠近像素单元12’的几何中心,显示效果上可以减少锯齿感。
具体地,子像素与子像素相邻指的是两个子像素之间最小距离的连线不经过其他子像素。第一距离D1’和第二距离D2’的大小可以根据第一子像素122’和第二子像素124’的形状和尺寸以及第一子像素122’、第二子像素124’和第三子像素126’的相对位置等确定,在此不作具体限定。在其他实施方式中,像素单元12’内各个子像素的中心之间的距离设计还可以是像素发光颜色的中心。
需要说明的是,像素单元12’指的是显示面板10’中可以用于实现相同发光效果和功能的最小重复单元,多个像素单元12’呈阵列设置表示多个像素单元12’的中心沿至少两个方向交叉排列而形成阵列。特别地,多个像素单元12’可以沿相互垂直的两个方向交错设置而呈阵列排布,此时,相互垂直的两个方向可以分别是像素单元12’的行延伸方向和列延伸方向,沿行延伸方向排布的像素单元12’形成像素行,沿列延伸方向排布的像素单元12’形成像素列。其中,显示面板10’中像素单元12’排布的行和列是相对的,本实施方式中,呈行排布的像素单元12’在其他实施方式中可以是呈列排布的像素单元12’,在此不做详细展开。
在某些实施方式中,第一距离D1’和第二距离D2’可以不相等。
如此,通过像素单元12’内子像素的分布和第一距离D1’、第二距离D2’的设计,保证了显示效果。
当然,在其他实施方式中,第一距离D1’和第二距离D2’可以相等,在此不做具体限定。
如图7所示,在某些实施方式中,多个像素单元12’的第一子像素122’和第二子像素124’分别在行延伸方向上依次设置形成多行第一子像素122’和多行第二子像素124’,多个像素单元12’的第一子像素122’和第二子像素124’在列延伸方向上交替排列。如此,显示面板10’形成多行在列方向上交替排列的第一子像素行和第二子像素行,相应地,第三子像素126’形成多行第三子像素行。
进一步地,在一些实施例中,列延伸方向上交替排列的第一子像素122’的几何中心P1’与第二子像素124’的几何中心P2’可以在同一直线上。行延伸方向上交替排列的第一子像素122’的几何中心P1’与第二子像素124’的几何中心P2’可以在同一个直线上。
当然,在其他实施例中,列延伸方向上交替排列的第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’可以不在同一直线上。
在图1的实施方式中,像素单元12’成矩形点阵排列,显示面板10’内各个像素单元12’所在的虚拟多边形互不相交,像素单元12’中第一子像素122’和第二子像素124’沿列延伸方向的排列顺序相同。例如,像素单元12’中第一子像素122’和第二子像素124’沿列延伸方向均自上而下排列。
请参阅图9和图10,在某些实施方式中,多个像素单元12’的第一子像素122’和第二子像素124’在行延伸方向上交替排列,多个像素单元12’的第一子像素122’和第二子像素124’在列延伸方向上交替排列。
相应地,在一些实施例中,列延伸方向上交替排列的第一子像素122’的几何中心P1’与第二子像素124’的几何中心P2’可以在同一直线上。行延伸方向上交替排列的第一子像素122’的几何中心P1’与第二子像素124’的几何中心P2’可以不在同一个直线上。
其中,在图9所示的实施例中,相邻两列的像素单元12’中对应相邻的像素单元12’的第三子像素126’沿行延伸方向设置,此时,像素单元12’成矩形点阵排列,显示面板10’内各个像素单元12’所在的虚拟多边形互不相交,相邻两列像素单元12’中同一行的像素单元12’的第一子像素122’和第二子像素1224’沿列延伸方向的排列顺序相反,例如,相邻两列像素单元12’中同一行的一个像素单元12’的第一子像素122’和第二子像素1224’沿列延伸方向自上而下排列,另一个像素单元12’的第一子像素122’和第二子像素1224’沿列延伸方向自下而上排列,从而当前行像素单元12’的第一子像素122’与当前行像素单元12’的第二子像素124’沿行延伸方向交替排列。
在图10所示的实施例中,相邻两列的像素单元12’中对应相邻的像素单元12’的第三子像素126’沿列延伸方向设置,此时,像素单元12’成三角形点阵排列,显示面板10’内各个像素单元12’所在的虚拟多边形互不相交,像素单元12’中第一子像素122’和第二子像素124’沿列延伸方向的排列顺序相同,例如,像素单元12’中第一子像素122’和第二子像素124’沿列延伸方向自上而下排列,从而当前行像素单元12’的第一子像素122’与相邻行像素单元12’的第二子像素124’沿行方向交替排列。
当然,在其他实施例中,列延伸方向上交替排列的第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’可以不在同一直线上。行延伸方向上交替排列的第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’可以在同一直线上。
可以理解,第一子像素122’和第二子像素124’的具体排列方式可以根据像素单元12’的尺寸和排列方式以及第一子像素122’和第二子像素124’的尺寸和位置确定,在此不作具体限定。
在某些实施方式中,显示面板10’内各个像素单元12’所在的虚拟多边形互不相交。
请再次参阅图8,在某些实施方式中,像素单元12’中第一子像素122’与第三子像素126’之间的间距L2’和第二子像素124’与第三子像素126’之间的间距L3’可以相等。
具体地,第一子像素122’与相邻的第三子像素126’之间的间距L2’需要大于或等于工艺极限距离,第二子像素124’与相邻的第三子像素126’之间的间距L3’需要大于或等于工艺极限距离,以满足工艺需求。并且,子像素之间的间距L一般为工艺极限距离。如此,显示面板10’能够以最大限度减小子像素之间的间距,从而在同等分辨率的条件下第一子像素122’与第三子像素126’相邻位置以及第二子像素124’与第三子像素126’相邻位置可以增大像素开口面积,降低显示器件的驱动电流,进而增加显示器件的寿命。
当然,在其他实施方式中,像素单元12’中第一子像素122’与第三子像素126’之间的间距L2’和第二子像素124’与第三子像素126’之间的间距L3’还可以不相等,而可以根据实际需要灵活配置,在此不作具体限定。
在某些实施方式中,像素单元12’中第一子像素122’与第二子像素124’之间的间距L1’大于第一子像素122’与第三子像素126’之间的间距L2’,和/或第一子像素122’与第二子像素124’之间的间距L1’大于第二子像素124’与第三子像素126’之间的间距L3’。
具体地,第一子像素122’与相邻的第二子像素126’之间的间距L2’需要大于或等于工艺极限距离。
请参阅图8和图11-图21,在某些实施方式中,第一子像素122’的形状包括三角形、四边形、五边形、扇形或不规则图形等,第二子像素124’的形状包括四边形、五边形、扇形或不规则图形等,第三子像素126’的形状包括四边形或不规则图形等。
在某些实施方式中,像素单元12’的形状呈轴对称设计。
例如,在图8所示的实施方式中,像素单元12’的形状可以相对平行于列延伸方向且经过像素单元12’的几何中心的直线X’对称设置。
当然,在其他实施方式中,如图15所示,像素单元122’的形状不呈轴对称设计。
在某些实施方式中,像素单元12’中的两个第三子像素126’相对第一子像素122’的几何中心P1’和 第二子像素124’的几何中心P2’所在直线对称设计。
其中,第一子像素122的几何中心P1’和第二子像素124’的几何中心P2’所在直线可以沿列延伸方向设计,此时,在像素单元12’的形状呈轴对称设计的情况下,两个第三子像素126’的对称轴可以与像素单元12’的对称轴相同。
在某些实施方式中,像素单元12’中的两个第三子像素126’的形状和尺寸相同。从而,像素单元12’中两个第三子像素126’的发光效果相同,有利于实现显示面板10’的均匀显示。
在某些实施方式中,第一子像素122’的形状呈轴对称设计。
具体地,第一子像素122’可以相对平行于列延伸方向且经过第一子像素122’的几何中心P1’的直线对称设置。在像素单元12’的形状呈轴对称设计的情况下,第一子像素122’的对称轴可以与像素单元12’的对称轴相同。
在某些实施方式中,第二子像素124’的形状呈轴对称设计。
具体地,第二子像素122’可以相对平行于列延伸方向且经过第二子像素122’的几何中心的直线对称设置。在像素单元12’的形状呈轴对称设计的情况下,第二子像素12’的对称轴可以与像素单元12’的对称轴相同。
当然,第二子像素122’的对称轴可以不限于上述讨论的实施方式,而可以根据实际情况进行变化,在此不做具体限定。
在某些实施方式中,像素单元12中第一子像素122’包括与第三子像素126’相邻的侧边,第一子像素122’相对虚拟多边形设置的侧边与邻近的第三子像素122’的延长方向形成夹角,夹角的角度范围大于等于0°且小于等于30°。
其中,第一子像素122’相对与第三子像素126’相邻的侧边,第三子像素126’的延长方向可以是第三子像素126’相对第一子像素122’设置的侧边相邻的两条对边中点的连线所在的直线方向。例如,第三子像素126’相对第一子像素122’设置的侧边为b1,相邻的两条对边为第二边b2和第四边b4,第二边b2的中点与第四边b4的中点的连线所在的直线方向为第三子像素126’的延长方向。
在某些实施方式中,像素单元12’中第一子像素122’靠近第二子像素124’的一侧在行延伸方向上的尺寸小于第一子像素122’远离第二子像素124’的一侧在行延伸方向上的尺寸。
进一步地,在某些实施方式中,像素单元12’中第一子像素122’靠近第二子像素124’的一侧在行延伸方向上的尺寸小于第一子像素122’在行延伸方向上的最大尺寸。
如此,第一子像素122’的尺寸设计呈嵌入的方式设计在像素单元12’内与第二子像素124’相对,使得各个子像素之间的配合更加紧密,第一子像素122’的几何中心P1’更靠近像素单元12’的几何中心,显示效果上可以减少锯齿感。。
在某些实施方式中,像素单元12’内一个第三子像素126’的几何中心P3’与第二子像素124’的几何中心P2’连线和第二子像素124’的几何中心P2’与另一个第三子像素126’的几何中心P4’的连线呈第一角度,第一角度的范围为60°至150°。
进一步地,在某些实施方式中,像素单元12内一个第三子像素126’的几何中心P3’与第一子像素122’的几何中心P1’连线和第一子像素122’的几何中心与另一个第三子像素126’的几何中心P4’的连线呈第二角度,第二角度大于第一角度。
其中,一个第三子像素126’的几何中心P3’与第二子像素124’的几何中心P2’连线为P3’P2’,第二子像素124’的几何中心P2’与另一个第三子像素126’的几何中心P4’的连线为P2’P4’,第一角度为∠P3’P2’P4’的大小,也即是说,60°≤∠P3’P2’P4’≤150°。而一个第三子像素126’的几何中心P3’与第一子像素122’的几何中心P1’连线为P3’P1’,第一子像素122’的几何中心P1’与另一个第三子像素126’的几何中心P4’的连线为P1’P4’,第二角度为∠P3’P1’P4’的大小,也即是说∠P3’P1’P4’小于∠P3’P2’P4’。
在某些实施方式中,像素单元12’中第一子像素122’、第二子像素124’和两个第三子像素126’均包括一个相互邻近的内角,第一子像素122’、第二子像素124’和两个第三子像素126’相互邻近的内角之和的范围为300°至400°。
需要说明的是,第一子像素122’、第二子像素124’和两个第三子像素126’可以不限于只包括一个相互邻近的内角,如图18和图19所示,第一子像素122’、第二子像素124’可以分别包括两个与第三子像素126’相互邻近的内角,如此,第一子像素122’、第二子像素124’和两个第三子像素126’相互邻近的 内角之和的范围可以不限于上述讨论的实施方式,而可以根据实际需要灵活配置,在此不做具体限定。
在某些实施方式中,像素单元12’中第一子像素122’沿行延伸方向的投影与第三子像素126’沿行延伸方向的投影交叠,第一子像素122’沿行延伸方向的投影与第三子像素126’沿行延伸方向的投影交叠的部分大于第一子像素122’沿行延伸方向的投影未与第三子像素126’沿行延伸方向的投影交叠的部分。
如此,第一子像素122’的几何中心P1’更靠近像素单元12’的几何中心,显示效果上可以减少锯齿感。
请参阅图11,在某些实施方式中,虚拟多边形为虚拟五边形,第一子像素122’的第一边a1沿虚拟五边形的第一边D1’设置,第一子像素122’的第二边a2和第三边a3分别沿虚拟五边形的第二边d2和第三边d3设置,第一子像素122’第四边a4和第五边a5分别相对相对两个第三子像素126’的第一边b1设置,两个第三子像素126’的第二边b2分别沿虚拟五边形的第二边D2’和第三边D3’设置,两个第三子像素126’的第三边b3分别沿虚拟五边形的第四边d4和第五边d5设置,两个第三子像素126’的第四边b4相对第二子像素124’设置。
具体的,第一子像素122’可以基本呈五边形,第三子像素126’可以基本呈四边形,如此,第一子像素122’和第三子像素126’可以相互配合,并且紧凑地设置在虚拟五边形内,保证显示效果。
请参阅图12,在某些实施方式中,虚拟多边形为虚拟五边形,第一子像素122’包括呈弧形的的第一边a1,第一子像素122’的第一边a1相对虚拟五边形的第一边d1设置,第一子像素122’的第二边a2和第三边a3分别沿虚拟五边形的第二边d2和第三边d3设置,第一子像素122’第四边a4和第五边a5分别相对相对两个第三子像素126’的第一边b1设置,两个第三子像素126’的第二边b2分别沿虚拟五边形的第二边D2’和第三边D3’设置,两个第三子像素126’的第三边b3分别沿虚拟五边形的第四边d4和第五边d5设置,两个第三子像素126’的第四边b4相对第二子像素124’设置。
具体的,第一子像素122’可以基本呈一个圆角的四边形且圆角相对虚拟五边形的第一边d1设置,第三子像素126’可以基本呈四边形,如此,第一子像素122’和第三子像素126’可以相互配合,并且紧凑地设置在虚拟五边形内,保证显示效果。
请参阅图12,在某些实施方式中,虚拟多边形为虚拟五边形,第一子像素122’包括呈弧形的的第一边a1,第一子像素122’的第一边a1相对虚拟五边形的第一边d1设置,第一子像素122’的第二边a2和第三边a3分别相对两个第三子像素126’的第一边b1设置,两个第三子像素126’的第二边b2分别沿虚拟五边形的第二边D2’和第三边D3’设置,两个第三子像素126’的第三边b3分别沿虚拟五边形的第四边d4和第五边d5设置,两个第三子像素126’的第四边b4相对第二子像素124’设置。
具体的,第一子像素122’可以基本呈扇形,第三子像素126’可以基本呈四边形,如此,第一子像素122’和第三子像素126’可以相互配合,并且紧凑地设置在虚拟五边形内,保证显示效果。
请参阅图14-图17,在某些实施方式中,虚拟多边形为虚拟五边形,第一子像素122’的第一边a1沿虚拟五边形的第一边d1设置,第一子像素122’的第二边a2和第三边a3分别相对两个第三子像素126’的第一边b1设置,两个第三子像素126’的第二边b2分别沿虚拟五边形的第二边d2和第三边d3设置,两个第三子像素126’的第三边b3分别沿虚拟五边形的第四边d4和第五边d5设置,两个第三子像素126’的第四边b4相对第二子像素124’设置。
具体的,第一子像素122’可以基本呈三角形,第三子像素126’可以基本呈四边形,如此,第一子像素122’和第三子像素126’可以相互配合,并且紧凑地设置在虚拟五边形内,保证显示效果。
在一些实施例中,两个第三子像素126’可以相对第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’的所在直线X对称设置。
请参阅图8,在某些实施方式中,第二子像素124’可以基本呈四边形,第二子像素124’相邻的第一边c1和第二边c2分别相对两个第三子像素126’的第四边b4设置,第二子像素124’相邻的第三边c3和第四边c4分别相对虚拟五边形的第五边d5和第四边d4设置。
即第二子像素124’形成有与两个第三子像素126’第四边b4相对且与虚拟五边形第四边d4和第五边d5对应的各边,其中,第二子像素124’的第三边c3和第四边c4分别位于两个第三子像素126’第三边b3的延长线上,第二子像素124’的第一边c1和第二边c2形成的夹角与第一子像素122’的第二边a2和第三边a3形成的夹角相对设置。相应的,第二子像素124’可以与第一子像素122’、第三子像素126’相互配合,,并且紧凑地设置在虚拟五边形内,保证显示效果。
在某些实施方式中,像素单元12’中第三子像素126’的尺寸和形状相同。
如此,每个像素单元12’中第三子像素126’的发光效果相同,有利于保证显示面板10’的显示效果。
在一些实施例中,第三子像素126’相对的第二边b2和第四边b4长度不相等。
在某些实施方式中,两个第三子像素126’的第四边b4长度可以相等。此时,第二子像素124’的第一边c1和第二边c2的长度可以相等,第二子像素124’可以基本呈方形。
进一步地,在一些实例中,两个第三子像素126’的第四边b4长度相等情况下,对应的两个第三子像素126’的第二边b2长度相等,此时,虚拟五边形的第二边D2’和第三边D3’长度相同,如图8所示,每个第三子像素126’的第二边b2长度可以比第四边b4长度短,或者,如图11所示,每个第三子像素126’的第二边b2长度可以比第四边b4的长度长。
请参阅图14,在某些实施方式中,第一子像素122’的第二边a2和第三边a3的夹角呈90°。第二子像素124’的第一边c1和第二边c2的夹角呈90°,第三子像素126’的第一边b1和第四边b4的夹角呈90°。
具体的,第一子像素122’的第二边a2和第三边a3的夹角、第二子像素124’的第一边c1和第二边c2的夹角和两个第三子像素126’的第一边b1和第四边b4的夹角围绕设置,四个直角相互配合设置,使得四个子像素紧密配合设置在虚拟五边形内,保证显示效果。
在某些实施方式中,第三子像素126’的第二边b2和第四边b4相互平行。如此,第三子像素126’可以呈梯形。特别地,第三子像素126’可以呈直角梯形,第三子像素126’的第一边b1可以为直角梯形的直角腰。
请参阅图15,在另一些实施方式中,两个第三子像素126’的第四边b4长度可以不相等。此时,像素单元12’的两个第三子像素126’中任意一个第三子像素126’的第二边b2和另一个第三子像素126’的第四边b4可以相等,相应地,虚拟五边形的第二边D2’和第三边D3’长度可以不相同,第二子像素124’可以基本呈矩形。
需要说明的是,第二子像素124’基本呈矩形的情况下,沿列延伸方向排列的多个第一子像素122’和多个第二子像素124’的几何中心P2’可以不在同一直线上。
请参阅图16,在某些实施方式中,第二子像素124’基本呈扇形,第二子像素124’两直线边分别相对两个第三子像素126’的第四边b4设置。
同样地,第二子像素124’形成有与两个第三子像素126’的第四边b4相配合的直线边,第二子像素124’的两直线边形成的夹角与第一子像素122’的第二边a2和第三边a3形成的夹角相对设置,第二子像素124’的弧线边相对虚拟五边形的第四边d4和第五边d5设置。相应的,第二子像素124’可以与第一子像素122’、第三子像素126’相互配合,并且紧凑地设置在虚拟五边形内,保证显示效果。
请参阅图17,在某些实施方式中,每个第三子像素126’的第二边b2和第四边b4的长度还可以相同。
请参阅图18和图19,在某些实施方式中,每个像素单元12’的一个第一子像素122’、一个第二子像素124’和两个第三子像素126’位于虚拟五边形内,第一子像素122’的第一边a1沿虚拟五边形的第一边d1设置,第一子像素122’的第二边a2和第三边a3分别相对两个第三子像素126’的第一边b1设置,第一子像素122’的第四边a4相对第二子像素124’的第一边c1设置,两个第三子像素126’的第二边b2分别沿虚拟五边形的第二边d2和第三边d3设置,两个第三子像素126’的第三边b3分别沿虚拟五边形的第四边d4和第五边d5设置,两个第三子像素126’的第四边b4分别相对第二子像素124’的第二边c2和第三边c3设置,第二子像素124’的第四边c4和第五边c5分别沿虚拟五边形的第四边d4和第五边d5设置。
此时,第一子像素122’可以基本呈四边形,特别地,第一子像素122’可以基本呈梯形,第一子像素122’的第一边a1和第四边a4为梯形的底边,第一子像素122’的第二边a3和第三边a4为梯形的腰。第二子像素124’可以呈五边形。第三子像素126’可以基本呈四边形。其中,在图18的示例中,第三子像素126’可以基本呈梯形设置。在图19的示例中,第三子像素126’可以基本呈矩形。
在某些实施方式中,每个像素单元12’的一个第一子像素122’、一个第二子像素124’和两个第三子像素126’位于虚拟六边形内,第一子像素122’的第一边a1沿虚拟六边形的第一边d1设置,第一子像素122’的第二边a2和第三边a3分别相对两个第三子像素126’的第一边b1设置,两个第三子像素126’的第二边b2分别沿虚拟六边形的第二边d2和第三边d3设置,两个第三子像素126’的第三边b3分别沿虚 拟六边形的第四边d4和第五边d5设置,两个第三子像素126’的第四边b4相对第二子像素124’的第一边c1和第二边c2设置,第二子像素124’的第三边c3和第四边c4分别沿虚拟六边形的第四边d4和第五边d5设置,第二子像素124’的第五边c5沿虚拟六边形的第六边d6设置。
此时,第一子像素122’可以基本呈三角形,第二子像素124’可以基本呈五边形。第三子像素126’可以基本呈四边形。其中,在图20的示例中,第三子像素126’可以基本呈梯形设置。在图21的示例中,第三子像素126’可以基本呈矩形。
当然,在其他实施方式中,第一子像素122’、第二子像素124’和第三子像素126’不限于上述讨论的形状,而可以根据实际需要选择四边形、六边形、八边形中的一种或多种,相应的,第一子像素122’、第二子像素124’和第三子像素126’各个边以及各个边之间的角度关系的设计也根据需要灵活配置,在此不作具体限定。需要说明的是,各个子像素呈多边形设计的情况下,多边形的各边不限于严格的平直线段,由于工艺误差,各边可以在一定范围内沿预定方向延伸即可,在此不作具体限定。
在某些实施方式中,第三子像素126’中的第二边b2与第三子像素126’的第四边b4的长度比范围为0.5-2。
在某些实施方式中,第三子像素126’中第二边b2的中点与第四边b4的中点的连线经过第三子像素126’的几何中心P3’(P4’)。
在图示的实施方式中,各个子像素可以在各边相交处呈圆角方式设计,当然,在其他实施方式中,各个子像素可以在各边相交处呈倒角方式或其他方式设计,在此不作具体限定。
在某些实施方式中,第一子像素122’发射的光的颜色与第二子像素124’发射的光的颜色以及第三子像素126’发射的光的颜色均互不相同。
进一步地,每个像素单元12’中的子像素发出的光均包括红色光、绿色光和蓝色光。显示面板10’能够通过颜色各不相同的子像素均匀分布,实现全彩图像的正常显示。
在某些实施方式中,第一子像素122’发射蓝色光、第二子像素124’发射红色光、第三子像素126’发射绿色光,第一子像素122’的面积大于第三子像素126’的面积,第三子像素126’的面积大于第二子像素124’的面积。
需要说明的是,在一个例子中,各个子像素的面积可以是像素发光材料的面积,例如,有机发光二极管的阳极材料的面积。在另一个例子中,各个子像素的面积还可以是像素放材料透过开口出射光线的开口面积,例如,有机发光二极管显示面板10’中像素界定层与子像素对应的开口面积,在此不作具体限定。
对于有机发光二极管显示器件,因为相比红色和绿色,蓝色发光材料通常发光效率最低且寿命相对较短,因此蓝色子像素面积可以大于红色子像素和绿色子像素面积。此外,由于人眼对绿色更敏感,而且绿色发光材料效率最高,因此绿色子像素面积可以做成最小。
当然,在其他实施方式中,第一子像素122’、第二子像素124’和第三子像素126’发光颜色的对应关系可以不限于上述讨论的实施方式,而可以根据实际需要进行变换,例如,第一子像素122’发射红色光、第二子像素124’发射蓝色光、第三子像素126’发射绿色光,在此不作具体限定。
请结合图7、图8以及图22至图24,本申请实施方式的掩膜组件(图未示出)用于制作上述任一实施方式的显示面板10’,掩膜组件包括第一掩膜板20’、第二掩膜板30’和第三掩膜板40’,第一掩膜板20’包括第一基板22’和开设于第一基板22’的第一开口24’,第一开口24’与第一子像素122’对应,第二掩膜板30’包括第二基板32’和开设于第二基板32’的第二开口34’,第二开口34’与第二子像素124’对应,第三掩膜板40’包括第三基板42’和开设于第三基板42’的第三开口44’,第三开口44’与第三子像素126’对应。
本申请实施方式的掩膜组件可以制作形成显示面板10’,显示面板10’中四个子像素共同构成一个独立的发光单元,在虚拟五边形内,第一子像素122’的几何中心P1’和两个第三子像素126’的几何中心P3’的具有相同的第一距离D1’,第二子像素124’的几何中心P2’和两个第三子像素126’的几何中心P3’具有相同的第二距离D2’,使得子像素分布均匀,通过像素单元12’内子像素的分布和第一距离D1’、第二距离D2’的设计,保证了显示效果。
在某些实施方式中,第一基板22’、第二基板32’和第三基板42’由金属材质制成。
如此,第一掩膜板20’、第二掩膜板30’和第三掩膜板40’可以是高精度金属掩膜板,可以应用于蒸 镀工艺,通过蒸镀像素图形对应的有机发光材料形成相应的显示面板10’。
如此,组合后的掩膜集成框架可以分别放入相应的蒸镀腔室中蒸镀与该子像素对应的有机发光材料。具体地,每次蒸镀可形成一种子像素的图形,形成完一种子像素的图形后再形成另一种子像素的图形,三种子像素的图形依次形成后得到本申请实施方式的显示面板10’。
需要说明的是,第一开口24’与第一子像素122’对应指的是第一开口24’的形状、尺寸和相对位置分布与显示面板10’中第一子像素122’的形状、尺寸和相对位置分布相对应,如此,在蒸镀过程中,蒸镀材料可以通过第一开口24’在阵列基板形成具有预定形状、尺寸和相对位置分布的第一子像素122’,即第一子像素122’的图形。相应地,第二开口34’与第二子像素124’对应指的是第二开口34’的形状、尺寸和相对位置分布与显示面板10’中第二子像素124’的形状、尺寸和相对位置分布相对应,第三开口44’与第三子像素126’对应指的是第三开口44’的形状、尺寸和相对位置分布与显示面板10’中第三子像素126’的形状、尺寸和相对位置分布相对应。
当然,在其他实施方式中,不限于采用蒸镀工艺形成显示面板10’,而可以根据需要采用光刻工艺、蚀刻工艺等方式形成显示面板10’。
本申请实施方式的显示装置包括上述任一实施方式的显示面板10’。
本申请实施方式显示装置中,显示面板10’的任意一个第一子像素122’均可以和与该第一子像素122’相邻的一个第二子像素124’以及与该第一子像素122’和第二子像素124’相邻的两个第三子像素126’组成一个独立的像素单元12’,使得子像素分布均匀,通过像素单元12’内子像素的分布和第一距离D1’、第二距离D2’的设计,保证了显示效果。而且,各个子像素之间的尺寸配合使得第一子像素122’的几何中心P1’和第二子像素124’的几何中心P2’到第一连线P3’P4’的距离比值满足预设条件,从而像素单元12’呈扁平状,第一子像素122’的几何中心P1’更靠近像素单元12’的几何中心,显示效果上可以减少锯齿感。
对于显示面板10(10’)的结构,具体的显示面板10(10’)可以由多层膜层结构形成,图25为一种示例性的显示面板10(10’)的膜层结构示意图,显示面板10(10’)中像素阵列可以包括依次层叠设置的衬底基板101、驱动结构层102、平坦层103、第一电极图案层104、像素定义层105、隔垫柱106、有机功能层107、第二电极108和封装层109。
对于显示面板10(10’)的制作,具体可以包括如下步骤:
(1)、在玻璃载板上制备衬底基板101。
在一些实施方式中,衬底基板101可以为柔性衬底基板,例如包括在玻璃载板上叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层。第一柔性材料层、第二柔性材料层的材料采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料。第一无机材料层、第二无机材料层的材料采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高衬底基板的抗水氧能力,第一无机材料层、第二无机材料层也称之为阻挡(Barrier)层。半导体层的材料采用非晶硅(a-Si)。在一些示例性实施方式中,以叠层结构PI1/Barrier1/a-Si/PI2/Barrier2为例,其制备过程包括:先在玻璃载板上涂布一层聚酰亚胺,固化成膜后形成第一柔性(PI1)层;随后在第一柔性层上沉积一层阻挡薄膜,形成覆盖第一柔性层的第一阻挡(Barrier1)层;然后在第一阻挡层上沉积一层非晶硅薄膜,形成覆盖第一阻挡层的非晶硅(a-Si)层;然后在非晶硅层上再涂布一层聚酰亚胺,固化成膜后形成第二柔性(PI2)层;然后在第二柔性层上沉积一层阻挡薄膜,形成覆盖第二柔性层的第二阻挡(Barrier2)层,完成衬底基板101的制备。
(2)、在衬底基板101上制备驱动结构层102。
驱动结构层102包括多个驱动电路,每个驱动电路包括多个晶体管和至少一个存储电容,例如2T1C、3T1C或7T1C设计。以三个子像素为例进行示意,且每个子像素的驱动电路仅以一个晶体管和一个存储电容为例进行示意。
在一些实施例中,驱动结构层的制备过程可以参照以下说明。以红色子像素的驱动电路的制备过程为例进行说明。
在衬底基板101上依次沉积第一绝缘薄膜和有源层薄膜,通过构图工艺对有源层薄膜进行构图,形成覆盖整个衬底基板101的第一绝缘层1021,以及设置在第一绝缘层1021上的有源层图案,有源层图 案至少包括第一有源层。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖有源层图案的第二绝缘层1022,以及设置在第二绝缘层1022上的第一栅金属层图案,第一栅金属层图案至少包括第一栅电极和第一电容电极。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过构图工艺对第二金属薄膜进行构图,形成覆盖第一栅金属层的第三绝缘层1023,以及设置在第三绝缘层1023上的第二栅金属层图案,第二栅金属层图案至少包括第二电容电极,第二电容电极的位置与第一电容电极的位置相对应。
随后,沉积第四绝缘薄膜,通过构图工艺对第四绝缘薄膜进行构图,形成覆盖第二栅金属层的第四绝缘层1024图案,第四绝缘层1024上开设有至少两个第一过孔,两个第一过孔内的第四绝缘层1024、第三绝缘层1023和第二绝缘层1022被刻蚀掉,暴露出第一有源层的表面。
随后,沉积第三金属薄膜,通过构图工艺对第三金属薄膜进行构图,在第四绝缘层1024上形成源漏金属层图案,源漏金属层至少包括位于显示区域的第一源电极和第一漏电极。第一源电极和第一漏电极可以分别通过第一过孔与第一有源层连接。
显示区域的红色子像素的驱动电路中,第一有源层、第一栅电极、第一源电极和第一漏电极可以组成第一晶体管1025,第一电容电极和第二电容电极可以组成第一存储电容1026。在上述制备过程中,可以同时形成绿色子像素的驱动电路以及蓝色子像素的驱动电路。
在一些示例性实施方式中,第一绝缘层1021、第二绝缘层1022、第三绝缘层1023和第四绝缘层1024采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。第一绝缘层1021称之为缓冲(Buffer)层,用于提高衬底基板的抗水氧能力;第二绝缘层1022和第三绝缘层1023称之为栅绝缘(GI,Gate Insulator)层;第四绝缘层1024称之为层间绝缘(ILD,Interlayer Dielectric)层。第一金属薄膜、第二金属薄膜和第三金属薄膜采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、聚噻吩等一种或多种材料,即本公开适用于基于氧化物(Oxide)技术、硅技术以及有机物技术制造的晶体管。
(3)、在形成前述图案的衬底基板101上形成平坦层103。
在一些示例性实施方式中,在形成前述图案的衬底基板上涂覆有机材料的平坦薄膜,形成覆盖整个衬底基板的平坦(PLN,Planarization)层103,并通过掩膜、曝光、显影工艺,在显示区域的平坦层103上形成多个第二过孔。多个第二过孔内的平坦层103被显影掉,分别暴露出第一子像素122(122’)的驱动电路的第一晶体管1025的第一漏电极的表面、第二子像素124(124’)的驱动电路的第一晶体管1025的第一漏电极的表面以及第三子像素126(126’)的驱动电路的第一晶体管1025的第一漏电极的表面。
(4)、在形成前述图案的衬底基板101上,形成第一电极图案层104。在一些示例中,第一电极为阳极。
在一些示例性实施方式中,在形成前述图案的衬底基板101上沉积导电薄膜,通过构图工艺对导电薄膜进行构图,形成第一电极图案104。第一子像素122(122’)的第一阳极1041通过第二过孔与第一晶体管1025的第一漏电极连接,第二子像素124(124’)的第二阳极1042通过第二过孔与第二子像素124(124’)的第一晶体管1025的第一漏电极连接,第三子像素126(126’)的第三阳极1043通过第二过孔与第三子像素126(126’)的第一晶体管1025的第一漏电极连接。
在一些示例中,第一电极可以采用金属材料,如镁(Mg)、银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等,或者,是金属和透明导电材料形成的堆栈结构,如ITO/Ag/ITO、Mo/AlNd/ITO等反射型材料。
(5)、在形成前述图案的衬底基板101上,形成像素定义(PDL,Pixel Definition Layer)层105图案。
在一些示例性实施例方式中,在形成前述图案的衬底基板101上涂覆像素定义薄膜,通过掩膜、曝 光、显影工艺,形成像素定义层105图案。显示区域的像素定义层105包括多个子像素定义部1052,相邻子像素定义部1052之间形成有多个像素开口1051,多个像素开口1051内的像素定义层105被显影掉,分别暴露出第一子像素122(122’)的第一阳极1041的至少部分表面、第二子像素124(124’)的第二阳极1042的至少部分表面以及第三子像素126(126’)的第三阳极1043的至少部分表面。
在一些示例中,像素定义层105可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
需要说明的是,本申请实施方式所讨论的各个子像素的形状和尺寸大小可以是指相应的阳极自像素定义层105的像素开口1051露出的形状和尺寸大小,进一步的,各个子像素的几何中心可以是相应的阳极自自像素定义层105的像素开口1051露出的部分的几何中心。
(6)、在形成前述图案的衬底基板101上,形成隔垫柱(PS,Post Spacer)106图案。
在一些示例性实施方式中,在形成前述图案的衬底基板101上涂覆有机材料薄膜,通过掩膜、曝光、显影工艺,形成隔垫柱图案。隔垫柱106可以作为支撑层,配置为在蒸镀过程中支撑FMM(高精度掩膜版)。在一些示例中,沿着子像素的行排布方向上,相邻两个隔垫柱106之间间隔一个重复单元,例如,隔垫柱106可以位于相邻的第一子像素122(122’)和第二子像素124(124’)之间。
(7)、在形成前述图案的衬底基板101上,依次形成有机功能层107以及第二电极108。在一些示例中,第二电极10为透明阴极。发光元件可以通过透明阴极从远离衬底基板101一侧出光,实现顶发射。在一些示例中,发光元件的有机功能层107包括:空穴注入层1071、空穴传输层1072、发光层1073以及电子传输层1074。
在一些示例性实施方式中,在形成前述图案的衬底基板101上采用开放式掩膜版(Open Mask)依次蒸镀形成空穴注入层1071和空穴传输层1072,然后采用FMM依次蒸镀形成第一发光层10731、第二发光层10732和第三发光层1073,然后采用开放式掩膜版依次蒸镀形成电子传输层1074、阴极108以及光耦合层。空穴注入层1071、空穴传输层1072、电子传输层1074以及阴极均为多个子像素的共通层。在一些示例中,有机功能层还可以包括:位于空穴传输层1072和发光层1073之间的微腔调节层。例如,可以在形成空穴传输层1072之后,采用FMM依次蒸镀形成第一微腔调节层、第一发光层10731、第二微腔调节层、第二发光层10732、第三微腔调节层、第三发光层10733。
在一些示例性实施例中,如图25所示,相邻设置的第一发光层10731、第二发光层10732和第三发光层10733之间可以无交叠,也就是说,通过选用不同的开口尺寸的FMM,所形成的发光层1073的尺寸也不同。图26为另一种示例性的显示面板10(10’)的膜层结构示意图,由图26可以看出的是,由于FMM开口的限制,蒸镀所形成的相邻设置的第一发光层10731、第二发光层10732和第三发光层10733之间还可以存在交叠。在一些示例性实施方式中,有机功能层107形成在子像素区域内,实现有机功能层107与阳极连接。阴极形成在像素定义层105上,并与有机功能层107连接。
在一些示例性实施方式中,阴极可以采用镁(Mg)、银(Ag)、铝(Al)中的任意一种或更多种,或采用上述金属中任意一种或多种制成的合金,或者采用透明导电材料,例如,氧化铟锡(ITO),或者,金属与透明导电材料的多层复合结构。
在一些示例性实施方式中,可以在阴极远离衬底基板101的一侧形成光耦合层,光耦合层可以为多个子像素的共通层。光耦合层可以与透明阴极配合,起到增加光输出的作用。例如,光耦合层的材料可以采用半导体材料。然而,本实施例对此并不限定。
(8)、在形成前述图案的衬底基板101上,形成封装层109。
在一些示例性实施方式中,在形成前述图案的衬底基板101上形成封装层109,封装层109可以包括叠设的第一封装层1091、第二封装层1092和第三封装层1093。第一封装层1091采用无机材料,在显示区域覆盖阴极。第二封装层1092采用有机材料。第三封装层1093采用无机材料,覆盖第一封装层1091和第二封装层1092。然而,本实施例对此并不限定。在一些示例中,封装层可以采用无机/有机/无机/有机/无机的五层结构。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (45)

  1. 一种显示面板,其中,包括呈阵列设置的多个像素单元,每个所述像素单元包括位于虚拟多边形内的一个第一子像素、一个第二子像素和两个第三子像素,所述虚拟多边形的边数量大于等于五;
    所述第一子像素和所述第二子像素相邻,两个所述第三子像素均与所述第一子像素和所述第二子像素相邻;
    在列延伸方向上相邻的所述像素单元共用所述第一子像素和所述第二子像素,且在行延伸方向上相邻的所述像素单元共用一个所述第三子像素。
  2. 根据权利要求1所述的显示面板,其中,所述像素单元中每个所述第三子像素的几何中心到所述第一子像素的几何中心的距离与所述第三子像素的几何中心到所述第二子像素的几何中心的距离相等。
  3. 根据权利要求1所述的显示面板,其中,所述虚拟多边形为虚拟六边形,所述虚拟六边形包括垂直列延伸方向且相对设置的两条短边,所述第一子像素和所述第二子像素分别贴合所述两条短边设置,两个所述第三子像素分别设置在所述虚拟六边形另外四条边形成的两个对角。
  4. 根据权利要求3所述的显示面板,其中,两个所述第三子像素相对所述短边的中线呈镜像分布;或
    两个所述第三子像素相对所述虚拟六边形的中心对称分布。
  5. 根据权利要求3所述的显示面板,其中,所述第一子像素和所述第二子像素呈六边形,所述第三子像素呈四边形。
  6. 根据权利要求1所述的显示面板,其中,多个所述像素单元的所述第一子像素和所述第二子像素在行延伸方向上交替排列且相同行的所述第一子像素的中心和所述第二子像素的中心在同一直线上;或
    多个所述像素单元的所述第一子像素和所述第二子像素在列延伸方向上交替排列且相同列的所述第一子像素的中心和所述第二子像素的中心在同一直线上。
  7. 根据权利要求1所述的显示面板,其中,所述第一子像素与所述第二子像素之间的间距和所述第一子像素与所述第三子像素之间的间距相等。
  8. 根据权利要求1所述的显示面板,其中,所述第二子像素与所述第三子像素之间的间距和所述第一子像素与所述第三子像素之间的间距相等。
  9. 根据权利要求1所述的显示面板,其中,所述第一子像素发射的光的颜色与所述第二子像素发射的光的颜色以及所述第三子像素发射的光的颜色均互不相同。
  10. 根据权利要求9所述的显示面板,其中,所述第一子像素发射红色光,所述第二子像素发射蓝色光和所述第三子像素发射绿色光;或
    所述第一子像素发射蓝色光,所述第二子像素发射红色光和所述第三子像素发射绿色光。
  11. 根据权利要求1所述的显示面板,其中,所述像素单元成矩形点阵排列,所述显示面板内共用所述第一子像素或所述第二子像素的像素单元所在的虚拟多边形相交,相邻两列所述像素单元中同一行的所述像素单元的所述第一子像素和所述第二子像素沿列延伸方向排列顺序相反。
  12. 一种显示面板,其中,包括呈阵列设置的多个像素单元,每个所述像素单元包括位于虚拟多边形内的一个第一子像素、一个第二子像素和两个第三子像素,所述虚拟多边形的边数量大于等于五;
    所述第一子像素和所述第二子像素相邻,两个所述第三子像素均与所述第一子像素和所述第二子像素相邻;
    所述像素单元中的所述第一子像素的几何中心到两个所述第三子像素的几何中心具有相同的第一距离,且所述第二子像素的几何中心到两个所述第三子像素的几何中心具有相同的第二距离;
    所述像素单元的两个所述第三子像素的几何中心具有第一连线,所述第一子像素的几何中心到所述第一连线的距离与所述第二子像素的几何中心到所述第一连线的距离的比值为第一预设值,所述第一子像素在行延伸方向上的最大尺寸与所述第二子像素在所述行延伸方向上的最大尺寸的比值为第二预设值,所述第一预设值小于所述第二预设值;
    所述像素单元内所述第一子像素的几何中心和所述第二子像素的几何中心具有第二连线,沿平行于所述第二连线的方向穿过所述第一子像素和所述第二子像素但不穿过所述第三子像素的两条直线的最远距离为第三距离,所述像素单元内所述第一子像素的几何中心和所述第三子像素的几何中心具有第三连线,沿平行于所述第三连线的方向经过所述第一子像素和所述第三子像素但不经过所述第二子像素的 两条直线的最远距离为第四距离,所述第三距离和所述第四距离的比值小于1.5。
  13. 根据权利要求12所述的显示面板,其中,所述第一距离和所述第二距离不相等。
  14. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素与所述第三子像素之间的间距和所述第二子像素与所述第三子像素之间的间距相等。
  15. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素与所述第二子像素之间的间距大于所述第一子像素与所述第三子像素之间的间距,和/或所述第一子像素与所述第二子像素之间的间距大于所述第二子像素与所述第三子像素之间的间距。
  16. 根据权利要求12所述的显示面板,其中,所述像素单元的形状呈轴对称设计。
  17. 根据权利要求12所述的显示面板,其中,所述像素单元中的两个所述第三子像素相对所述第一子像素的几何中心和所述第二子像素的几何中心所在直线对称设计。
  18. 根据权利要求12所述的显示面板,其中,所述像素单元中的两个所述第三子像素的形状和尺寸相同。
  19. 根据权利要求12所述的显示面板,其中,所述第一子像素的形状呈轴对称设计。
  20. 根据权利要求12所述的显示面板,其中,所述第二子像素的形状呈轴对称设计。
  21. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素包括与所述第三子像素相邻的侧边,所述侧边与邻近的所述第三子像素的延长方向形成夹角,所述夹角的角度范围大于等于0°且小于等于30°。
  22. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素靠近所述第二子像素的一侧在所述行延伸方向上的尺寸小于所述第一子像素远离所述第二子像素一侧在所述行延伸方向上的尺寸。
  23. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素靠近所述第二子像素的一侧在所述行延伸方向上的尺寸小于所述第一子像素在所述行延伸方向上的最大尺寸。
  24. 根据权利要求12所述的显示面板,其中,所述像素单元内一个所述第三子像素的几何中心与所述第二子像素的几何中心连线和所述第二子像素的几何中心与另一个所述第三子像素的几何中心的连线呈第一角度,所述第一角度的范围为60°至150°。
  25. 根据权利要求24所述的显示面板,其中,所述像素单元内一个所述第三子像素的几何中心与所述第一子像素的几何中心连线和所述第一子像素的几何中心与另一个所述第三子像素的几何中心的连线呈第二角度,所述第二角度大于所述第一角度。
  26. 根据权利要求12所述的显示面板,其中,所述第一子像素的形状包括三角形、四边形、五边形、扇形或不规则图形,所述第二子像素的形状包括四边形、五边形、扇形或不规则图形,所述第三子像素的形状包括四边形或不规则图形。
  27. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素、所述第二子像素和两个所述第三子像素相互邻近的内角之和的范围为300°至400°。
  28. 根据权利要求12所述的显示面板,其中,所述像素单元中所述第一子像素沿所述行延伸方向的投影与所述第三子像素沿所述行延伸方向的投影交叠,所述第一子像素沿所述行延伸方向的投影与所述第三子像素沿所述行延伸方向的投影交叠的部分大于所述第一子像素沿所述行延伸方向的投影未与所述第三子像素沿所述行延伸方向的投影交叠的部分。
  29. 根据权利要求12所述的显示面板,其中,所述虚拟多边形为虚拟五边形,所述第一子像素的第一边沿虚拟五边形的第一边设置,所述第一子像素的第二边和第三边分别相对两个所述第三子像素的第一边设置,两个所述第三子像素的第二边分别沿虚拟五边形的第二边和第三边设置,两个所述第三子像素的第三边分别沿虚拟五边形的第四边和第五边设置,两个所述第三子像素的第四边相对所述第二子像素设置。
  30. 根据权利要求29所述的显示面板,其中,所述第二子像素基本呈四边形,所述第二子像素相邻的第一边和第二边分别相对两个所述第三子像素的第四边设置,所述第二子像素相邻的第三边和第四边分别相对所述虚拟五边形的第四边和第五边设置。
  31. 根据权利要求30所述的显示面板,其中,两个所述第三子像素的第四边长度相等或不相等。
  32. 根据权利要求29所述的显示面板,其中,所述第二子像素基本呈扇形,所述第二子像素两直线 边分别相对两个所述第三子像素的第四边设置。
  33. 根据权利要求12所述的显示面板,其中,所述虚拟多边形为虚拟五边形,所述第一子像素的第一边沿虚拟五边形的第一边设置,所述第一子像素的第二边和第三边分别相对两个所述第三子像素的第一边设置,所述第一子像素的第四边相对所述第二子像素的第一边设置,两个所述第三子像素的第二边分别沿虚拟五边形的第二边和第三边设置,两个所述第三子像素的第三边分别沿虚拟五边形的第四边和第五边设置,两个所述第三子像素的第四边分别相对所述第二子像素的第二边和第三边设置,所述第二子像素的第四边和第五边分别沿所述虚拟五边形的第四边和第五边设置。
  34. 根据权利要求12所述的显示面板,其中,所述虚拟多边形为虚拟六边形,所述第一子像素的第一边沿虚拟六边形的第一边设置,所述第一子像素的第二边和第三边分别相对两个所述第三子像素的第一边设置,两个所述第三子像素的第二边分别沿虚拟六边形的第二边和第三边设置,两个所述第三子像素的第三边分别沿虚拟六边形的第四边和第五边设置,两个所述第三子像素的第四边相对所述第二子像素的第一边和第二边设置,所述第二子像素的第三边和第四边分别沿所述虚拟六边形的第四边和第五边设置,所述第二子像素的第五边沿所述虚拟六边形的第六边设置。
  35. 根据权利要求33或34所述的显示面板,其中,所述第三子像素基本呈矩形或梯形。
  36. 根据权利要求35所述的显示面板,其中,所述第三子像素中的第二边与所述第三子像素的第四边的长度比范围为0.5-2。
  37. 根据权利要求35所述的显示面板,其中,所述第三子像素中所述第二边的中点与所述第四边的中点的连线经过所述第三子像素的几何中心。
  38. 根据权利要求12所述的显示面板,其中,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交。
  39. 根据权利要求12所述的显示面板,其中,所述第一子像素发射的光的颜色与所述第二子像素发射的光的颜色以及所述第三子像素发射的光的颜色均互不相同。
  40. 根据权利要求12所述的显示面板,其中,所述第一子像素发射蓝色光,所述第二子像素发射红色光和所述第三子像素发射绿色光,所述第一子像素的面积大于所述第三子像素的面积,所述第三子像素的面积大于所述第二子像素的面积。
  41. 根据权利要求12所述的显示面板,其中,所述像素单元成矩形点阵排列,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交,所述像素单元中所述第一子像素和所述第二子像素沿列延伸方向的排列顺序相同。
  42. 根据权利要求12所述的显示面板,其中,所述像素单元成矩形点阵排列,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交,相邻两列所述像素单元中同一行的所述像素单元的所述第一子像素和所述第二子像素沿列延伸方向的排列顺序相反。
  43. 根据权利要求12所述的显示面板,其中,所述像素单元成三角形点阵排列,所述显示面板内各个所述像素单元所在的虚拟多边形互不相交,所述像素单元中所述第一子像素和所述第二子像素沿列延伸方向的排列顺序相同。
  44. 一种掩膜组件,用于制作权利要求1-11任一项所述的显示面板或权利要求12-43任一项所述的显示面板,其中,所述掩膜组件包括:
    第一掩膜板,所述第一掩膜板包括第一基板和开设于所述第一基板的第一开口,所述第一开口与所述第一子像素对应;
    第二掩膜板,所述第二掩膜板包括第二基板和开设于所述第二基板的第二开口,所述第二开口与所述第二子像素对应;和
    第三掩膜板,所述第三掩膜板包括第三基板和开设于所述第三基板的第三开口,所述第三开口与所述第三子像素对应。
  45. 一种显示装置,其中,包括权利要求1-11任一项所述的显示面板或权利要求12-43任一项所述的显示面板。
PCT/CN2021/115759 2020-08-31 2021-08-31 一种显示面板、掩膜组件和显示装置 WO2022042749A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/922,382 US20230247883A1 (en) 2020-08-31 2021-08-31 Display panel, mask assembly and display device
CN202180002382.XA CN114450802B (zh) 2020-08-31 2021-08-31 一种显示面板、掩膜组件和显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010900933.1 2020-08-31
CN202010900933.1A CN111987130A (zh) 2020-08-31 2020-08-31 一种显示面板、掩膜组件和显示装置

Publications (1)

Publication Number Publication Date
WO2022042749A1 true WO2022042749A1 (zh) 2022-03-03

Family

ID=73448580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115759 WO2022042749A1 (zh) 2020-08-31 2021-08-31 一种显示面板、掩膜组件和显示装置

Country Status (3)

Country Link
US (1) US20230247883A1 (zh)
CN (2) CN111987130A (zh)
WO (1) WO2022042749A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987130A (zh) * 2020-08-31 2020-11-24 京东方科技集团股份有限公司 一种显示面板、掩膜组件和显示装置
CN114141834B (zh) * 2021-11-24 2023-05-09 武汉华星光电半导体显示技术有限公司 显示面板
CN115101561A (zh) * 2022-06-24 2022-09-23 京东方科技集团股份有限公司 显示基板、掩膜组件以及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311266A (zh) * 2012-03-06 2013-09-18 三星显示有限公司 用于有机发光显示装置的像素排列结构
US20180088260A1 (en) * 2016-02-18 2018-03-29 Boe Technology Group Co., Ltd. Pixel arrangement structure, display panel and display device
CN109686778A (zh) * 2019-01-31 2019-04-26 武汉华星光电半导体显示技术有限公司 显示面板
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN110277436A (zh) * 2019-06-28 2019-09-24 云谷(固安)科技有限公司 像素排列结构及显示面板
CN111987130A (zh) * 2020-08-31 2020-11-24 京东方科技集团股份有限公司 一种显示面板、掩膜组件和显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994509A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN113851513A (zh) * 2018-01-02 2021-12-28 京东方科技集团股份有限公司 一种显示基板、高精度金属掩模板组及显示装置
CN212412057U (zh) * 2020-08-31 2021-01-26 京东方科技集团股份有限公司 一种显示面板、掩膜组件和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311266A (zh) * 2012-03-06 2013-09-18 三星显示有限公司 用于有机发光显示装置的像素排列结构
US20180088260A1 (en) * 2016-02-18 2018-03-29 Boe Technology Group Co., Ltd. Pixel arrangement structure, display panel and display device
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN109686778A (zh) * 2019-01-31 2019-04-26 武汉华星光电半导体显示技术有限公司 显示面板
CN110277436A (zh) * 2019-06-28 2019-09-24 云谷(固安)科技有限公司 像素排列结构及显示面板
CN111987130A (zh) * 2020-08-31 2020-11-24 京东方科技集团股份有限公司 一种显示面板、掩膜组件和显示装置

Also Published As

Publication number Publication date
US20230247883A1 (en) 2023-08-03
CN114450802A (zh) 2022-05-06
CN111987130A (zh) 2020-11-24
CN114450802B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
US11812648B2 (en) Pixel array and display device
WO2022042749A1 (zh) 一种显示面板、掩膜组件和显示装置
CN112470287B (zh) 一种显示基板及相关装置
US11864447B2 (en) Display substrate, display device and high-precision metal mask
WO2022110173A1 (zh) 显示基板、显示装置及高精度金属掩模板
WO2022052390A1 (zh) 像素阵列及显示装置
WO2022052194A1 (zh) 一种显示基板及相关装置
CN111430445A (zh) 一种显示基板及其制备方法、显示装置
WO2022110169A1 (zh) 一种显示基板及相关装置
CN219087721U (zh) 一种显示面板和显示装置
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
WO2022141628A1 (zh) 一种显示基板及相关装置
WO2022052011A1 (zh) 显示基板、显示装置及高精度金属掩模板
WO2022052192A1 (zh) 像素阵列及显示装置
US20240032376A1 (en) Pixel array and display device
RU2779136C1 (ru) Пиксельный массив и устройство отображения
WO2022193152A1 (zh) 显示面板及其制作方法以及显示装置
US20240237463A1 (en) Display substrate and related devices
CN118215352A (zh) 一种显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860581

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21860581

Country of ref document: EP

Kind code of ref document: A1