WO2022042732A1 - 双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法 - Google Patents

双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法 Download PDF

Info

Publication number
WO2022042732A1
WO2022042732A1 PCT/CN2021/115434 CN2021115434W WO2022042732A1 WO 2022042732 A1 WO2022042732 A1 WO 2022042732A1 CN 2021115434 W CN2021115434 W CN 2021115434W WO 2022042732 A1 WO2022042732 A1 WO 2022042732A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
channel
secondary air
pulverized coal
burner
Prior art date
Application number
PCT/CN2021/115434
Other languages
English (en)
French (fr)
Inventor
牛芳
罗伟
王翰锋
张红顺
王乃继
纪任山
石亮
梁兴
龚艳艳
王鹏涛
魏琰荣
刘鹏中
李小炯
崔豫泓
裘星
贾楠
王志星
郑祥玉
刘刚
闫黎黎
刘振宇
苗鹏
颜淑娟
杜伯犀
孟长芳
王学文
王诗珺
崔名双
王建朋
陈怀俊
董智
于海鹏
陈喆
张松
马慧艳
Original Assignee
煤科院节能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010896256.0A external-priority patent/CN111895399A/zh
Priority claimed from CN202021858293.4U external-priority patent/CN212657706U/zh
Priority claimed from CN202021858248.9U external-priority patent/CN212841554U/zh
Priority claimed from CN202021858246.XU external-priority patent/CN212657705U/zh
Priority claimed from CN202010895168.9A external-priority patent/CN111895397A/zh
Priority claimed from CN202021857105.6U external-priority patent/CN213178315U/zh
Priority claimed from CN202010895193.7A external-priority patent/CN111895398A/zh
Priority claimed from CN202010896271.5A external-priority patent/CN111895400A/zh
Application filed by 煤科院节能技术有限公司 filed Critical 煤科院节能技术有限公司
Priority to US18/002,070 priority Critical patent/US20230272906A1/en
Publication of WO2022042732A1 publication Critical patent/WO2022042732A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices

Definitions

  • the embodiments of the present application relate to the technical field of pulverized coal burners, and more particularly, to a dual-channel burner and a method of using the same, and a multi-channel single-cone burner and a method of using the same.
  • an embodiment of the present application proposes a dual-pass burner with wide load adjustment range, stable combustion and low nitrogen characteristics.
  • Another embodiment of the present application provides a method of using a dual-pass burner.
  • Another embodiment of the present application provides yet another method of using a dual-pass burner.
  • Yet another embodiment of the present application proposes a multi-channel single-cone burner with an extremely wide load adjustment range, strong coal adaptability and low nitrogen characteristics.
  • Yet another embodiment of the present application provides a method for using a multi-channel single-cone burner.
  • Yet another embodiment of the present application provides yet another method of using a multi-channel single-cone burner.
  • the dual-channel burner includes: a pulverized coal supply mechanism, a transition channel, an inner secondary air duct, an outer secondary air duct, a combustion stabilization chamber and a rectifying chamber; wherein, The outer secondary air guide duct, the combustion stabilization chamber and the rectification chamber are connected in sequence to form a burner body, the pulverized coal supply mechanism runs through the inside of the burner body, and the transition passage is sleeved on the pulverized coal.
  • the inner secondary air guide is arranged between the transition channel and the outer secondary air guide, and the inner secondary air guide and the transition channel are An inner secondary air channel is formed between the inner and secondary air guide tubes, and an outer secondary air channel is formed between the inner secondary air guide tube and the outer secondary air guide tube; A flared opening is formed, and the angle of the flared opening is the same as that of the combustion stabilization chamber, so that the direction of the outlet end of the inner secondary air passage is parallel to the wall surface of the combustion stabilization chamber.
  • the method of using the dual-channel heat exchanger includes: 1) the air is divided into two paths and enters the burner body, and one path of the air passes through the movable axial impeller assembly and the inner secondary air passage.
  • the rotating inner secondary air with tangential velocity is formed to directly enter the stable combustion chamber, and the inner secondary air channel and the transition channel work together to form a nested high temperature return area; 2)
  • the pulverized coal airflow passes through the air powder
  • the return channel composed of the pipe and the return cap enters the high temperature return area, and the pulverized coal exhibits a concentration distribution of outer thick and inner thin.
  • the method of using the dual-channel heat exchanger includes: 1) selecting a corresponding concentration separator according to the type of coal and installing it on the air-powder pipe; 2) dividing the air into two paths and entering the burner body, One way in the air passes through the movable axial impeller assembly and the inner secondary air channel to form a rotating inner secondary air with a tangential speed and directly enters the combustion stabilization chamber, and the inner secondary air channel and the transition channel work together to form a nest 3)
  • the pulverized coal airflow is injected into the stable combustion chamber through the air-powder pipe and the concentration separator, and the pulverized coal in the stable combustion chamber presents the concentration distribution of the inner rich and the outer thin or the inner thin and the outer rich concentration distribution.
  • the pulverized coal is preheated to 900-1000 °C through the high temperature recirculation zone, and the pulverized coal is pyrolyzed in the low oxygen and hot high temperature recirculation zone, and is mixed with the internal secondary air to form the main flame; 4) Another way in the air
  • the outer secondary air is formed through the outer secondary air channel, and a part of the outer secondary air forms a cooling air layer that flows along the wall of the combustion stabilization chamber after being flared by the outer secondary air duct to cool the combustion stabilization chamber and the rectification chamber ;
  • the other part of the outer secondary air and the main flame enter the furnace through the rectifier cavity to form a high-speed jet flame of the wind packet fire.
  • the application has the following advantages due to the adoption of the above technical solutions: 1.
  • the application is provided with an inner secondary air duct and an outer secondary air duct, so that the air can be divided into the inner secondary air and the outer secondary air to enter respectively.
  • the burner body not only makes the air graded into the burner to reduce nitrogen oxides, the combination of the inner secondary air and the transition channel makes the pulverized coal and air fully mix and stably burn, and the outer secondary air can form a stable combustion chamber in the stable combustion chamber.
  • the cooling air layer flowing on the wall of the combustion chamber is used to cool the combustion stabilization chamber and the rectification chamber, so that the wall temperature of the combustion stabilization chamber and the rectification chamber is always lower than 40 °C, which can not only cancel the water cooling device of the combustion stabilization chamber, but also avoid the combustion stabilization chamber wall The occurrence of area ash coking phenomenon.
  • the cross-sectional area of the outer secondary air passage can be adjusted by the movable positioning component, thereby adjusting the wind speed of the outer secondary air, and controlling the mixing rate of the inner secondary air and the outer secondary air, thereby controlling the pulverized coal airflow during combustion.
  • a low-oxygen, high-temperature, external high-oxygen, low-temperature environment is formed in the stable combustion chamber.
  • This temperature distribution and atmosphere distribution can not only achieve the effect of high combustion efficiency and low nitrogen, but also Widen the load adjustment range and coal type adaptability of the burner, and can effectively solve the phenomenon of high temperature corrosion, fouling and coking on the wall of the stable combustion chamber, reduce the maintenance frequency of the burner, and prolong the service life of the burner.
  • the application also adopts the design of the transition channel.
  • the transition channel can not only have built-in ignition oil guns and igniters, but also the transition channel can cooperate with the inner secondary air channel with the built-in movable axial impeller to produce a high turbulent flow intensity. In the recirculation zone, the mixing rate of pulverized coal and air is enhanced, and the burnout rate of pulverized coal under low load conditions is improved.
  • the multi-channel heat exchanger includes a pulverized coal supply mechanism, a transition channel, a multi-stage air distribution assembly, a deflector, a combustion stabilization chamber and a rectification chamber;
  • the multi-stage air distribution assembly includes N air guide tubes arranged coaxially from the inside to the outside, and N is a natural number not less than 2; wherein, the Nth air guide tube is sequentially connected with the combustion stabilization chamber and the rectification chamber to form a burner body, the The pulverized coal supply mechanism runs through the inside of the burner body, the transition channel is sleeved on the pulverized coal supply mechanism, and the first air guide tube is sleeved outside the transition channel at intervals, so that the adjacent two A total of N air inlet channels are formed between the air guide tubes and between the first air guide tube and the transition channel; at the same time, except for the Nth air guide tube, the other air guide tubes
  • the cylinders are all double-layer hollow structures, that
  • At least one direct current channel is formed between each of the baffles and the stable combustion chamber, and the other end of each of the baffles is formed with a flare, and the angle of the flare is The angle is the same as that of the combustion stabilization chamber, so that the direction of the outlet end of the straight passage is parallel to the wall surface of the combustion stabilization chamber.
  • the method of using the multi-channel heat exchanger includes: 1) according to the coal type, selecting a suitable length and quantity of guide plates to insert into the corresponding air guide tubes, and record the innermost guide plate
  • the position of the plate is the mth air guide tube, and the axial impeller is installed along the circumferential direction in the 1st to mth air inlet channels; 2)
  • the air is divided into N strands by the grading air distribution component and enters the burner body, of which the first ⁇ m strands of air pass through the axial impeller to form m strands of rotating wind beams with tangential velocity and enter the stable combustion chamber, and the m strands of rotating wind beams interact to form a multi-layer nested high temperature recirculation zone; 3)
  • the air flow of pulverized coal enters the high temperature recirculation zone through the recirculation channel composed of the air pulverized pipe and the recirculation cap.
  • the hot high temperature recirculation zone is pyrolyzed, and mixed with multiple rotating wind beams under the joint action of the transition channel to form a multi-layer main flame; 4)
  • the m+1 ⁇ Nth air inlet channel is formed In the DC channel, the m+1 ⁇ Nth air passes through each DC channel to form a DC wind beam with different speeds.
  • the DC wind beam has two functions.
  • the cooling air layer flowing on the wall of the combustion chamber is used to cool the stable combustion chamber and the rectification chamber; the second function is to form a high-speed jet of multi-layer flame with the main flame through the rectification chamber and enter the furnace.
  • the method of using the multi-channel heat exchanger according to the embodiment of the sixth aspect of the present application includes: 1) selecting a corresponding concentration separator and installing it on the pulverized air pipe according to the type of coal, and selecting suitable length and quantity of guide tubes according to the type of coal. Insert the flow plate into the corresponding air guide tube, and record the position of the innermost guide plate as the mth air guide tube, and install the axial impeller in the circumferential direction in the 1st to mth air inlet channels; 2) The air is The graded air distribution component is divided into N strands and enters the burner body.
  • the 1st to m strands of air pass through the axial impeller to form m strands of rotating wind beams with tangential velocity and enter the combustion stabilization chamber, and the m strands of rotating wind beams interact with each other.
  • a multi-layer nested high-temperature recirculation zone is formed; 3)
  • the pulverized coal airflow is injected into the stable combustion chamber through the air-powder pipe and the concentration-lean separator, and the pulverized coal in the stable combustion chamber is thick inside and thin on the outside or thin on the inside.
  • the pulverized coal is preheated to 900-1000 °C through the high-temperature recirculation zone, and the pulverized coal is pyrolyzed in the low-oxygen, hot high-temperature recirculation zone, and mixed with multiple rotating air beams under the joint action of the transition channel Together, they form a multi-layer main flame; 4)
  • the m+1 ⁇ Nth air inlet channels form a DC channel, and the m+1 ⁇ Nth air passes through each DC channel to form a DC wind beam with different speeds.
  • the DC air beam has two functions: the first function is to form a cooling air layer flowing along the wall of the combustion stabilization chamber after the flaring of the deflector to cool the combustion stabilization chamber and the rectification chamber; the second function is to interact with the main combustion chamber.
  • the flame passes through the rectification cavity to form a high-speed jet of multi-layer flame that forms an air-packed fire and enters the furnace.
  • the application has the following advantages due to the adoption of the above technical solutions: 1.
  • the application adopts the design of a multi-stage air distribution assembly, and the air is divided into N shares into the burner body through the multi-stage air distribution assembly, and the turbulent intensity at the airflow boundary is strong, strengthening
  • the air-powder mixing rate is improved, which not only makes the pulverized coal ignite stably, but also ensures the efficient and low-nitrogen combustion of the pulverized coal. 2.
  • the multi-stage air distribution assembly of the present application is composed of multiple air guide tubes arranged coaxially from the inside to the outside, and the air guide tube adopts a double-layer hollow structure, and the guide plate can be inserted into the double-layer hollow structure of any air guide tube, As a result, a multi-layer flame structure with wall-mounted cooling air on the walls of the stabilizing chamber and the rectifying chamber can be formed, and the combustion-supporting air slowly penetrates into the main flame, ensuring that the middle of the main flame is a high temperature, high CO and low oxygen environment, prolonging the high temperature of the pulverized coal. , the residence time in a reducing atmosphere, to achieve the purpose of high combustion efficiency and low nitrogen.
  • the DC air beam formed between the deflector and the combustion stabilization chamber can form a cooling air layer flowing along the wall of the combustion stabilization chamber in the combustion stabilization chamber to cool the combustion stabilization chamber and the rectification chamber, so that the combustion stabilization chamber and the rectification chamber can be cooled.
  • the temperature of the wall surface is always lower than 40 °C, which can not only cancel the water cooling device of the stable combustion chamber, but also avoid the occurrence of ash coking in the wall area of the stable combustion chamber. 3.
  • the application can mechanically control the mixing rate of the combustion-supporting air and the main flame by adjusting the length and number of the deflectors.
  • the load adjustment range is 10% to 110%, and the load adjustment range is extremely wide.
  • the application also adopts a transition channel design, which can not only have a built-in ignition oil gun and an igniter, but also can cooperate with the inner secondary air channel with a built-in movable axial impeller to produce a high turbulent flow intensity.
  • a transition channel design which can not only have a built-in ignition oil gun and an igniter, but also can cooperate with the inner secondary air channel with a built-in movable axial impeller to produce a high turbulent flow intensity.
  • the mixing rate of pulverized coal and air is enhanced, and the burnout rate of pulverized coal under low load conditions is improved.
  • a movable axial impeller assembly is arranged in the inner secondary air passage, so that the inner secondary air passes through the movable axial impeller assembly to form a rotating airflow with a tangential velocity.
  • the movable axial impeller assembly includes: an axial impeller, which is circumferentially disposed in the inner secondary air channel and can move in the axial direction; an adjustable telescopic rod, the adjustable telescopic rod One end of the pull rod is connected with the axial impeller through a first hinge pair; the locking pull rod is connected with the other end of the adjustable telescopic pull rod through a second hinge pair.
  • the swirl number of the swirling airflow generated by the movable axial impeller assembly should be controlled within the range of 0-2.
  • the inner secondary air air guide tube and the outer secondary air air guide tube are connected by several movable positioning assemblies distributed along the circumferential direction, and the movable positioning assemblies are used for adjusting the outer two air guide tubes.
  • the cross-sectional area of the secondary channel is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to a movable positioning assemblies.
  • the inner secondary air guide tube is provided with a number of threaded holes along the circumferential direction
  • the outer secondary air guide tube is provided with a number of light holes along the circumferential direction
  • the air guide tube is a flexible tube wall; at the same time, the movable positioning assembly is mainly composed of an adjustment bolt and a sealing washer, and the adjustment bolt passes through the sealing washer and the light hole of the outer secondary air guide tube. It is threadedly connected with the threaded hole of the inner secondary air guide tube.
  • the wind speed of the outer secondary air should be controlled within the range of 20-50 m/s, and the ratio of the inner secondary air to the outer secondary air is 1:2.
  • the pulverized coal supply mechanism is mainly composed of a pulverized coal pipe and a return cap, the pulverized air pipe is placed on the central axis of the burner body, and the return cap is arranged on the pulverized air pipe
  • the outlet end of the combustion stabilizing cavity is located at the outlet section of the combustion stabilizing cavity, and a plurality of through holes are opened on the combustion stabilizing cavity.
  • the pulverized coal supply mechanism includes a pulverized coal pipe and a concentration separator, the pulverized air pipe is arranged on the central axis of the burner body and communicates with the combustion stabilization chamber, and the concentration
  • the separator is detachably connected to the air-powder pipe, and is used to make the pulverized coal fed into the combustion-stabilizing chamber to have a concentration distribution that is rich inside and lean outside or lean inside and rich outside.
  • the density separator is a throat type density separator, a gear type density separator or a petal-shaped density separator, and an outer thread is formed on the outer wall of the density separator, and at the same time, the density separator is located in the An inner thread is formed on the inner wall of the outlet section of the air-powder pipe, and the concentration separator is inserted into the air-powder pipe from the outlet end of the air-powder pipe, and is threadedly connected with the air-powder pipe.
  • the transition channel is a cylindrical structure with one end open and the other end closed, the air powder pipe extends through the closed end of the transition channel and then extends into the burner body, the transition channel An igniter and/or a flame detector is installed inside; the transition channel is a conical, elliptical or cylindrical bluff body, and the widest diameter of the transition channel should be smaller than the inner diameter of the inner secondary air guide tube, The narrowest diameter should be larger than the largest diameter of the igniter and/or flame detector.
  • the concentration separator selects throat type concentration separator or gear type concentration separator; if it is coal with low volatile content and low calorific value type, the shade separator is a petal-shaped shade separator.
  • the cross-sectional area of the outer secondary air passage is adjusted by the movable positioning assembly, thereby adjusting the wind speed of the outer secondary air, and controlling the inner secondary air and the outer secondary air.
  • the mixing rate of the secondary air is adjusted by the movable positioning assembly, thereby adjusting the wind speed of the outer secondary air, and controlling the inner secondary air and the outer secondary air.
  • the radial widths of the N air inlet passages are different from each other, so that corresponding air guide tubes are selected to be inserted into the air guide plate according to different coal types and loads.
  • the number of the baffles is controlled between 1 and 4, and when the number of the baffles is more than two, the length of the baffles located on the inner side should be shorter than all the baffles located on the outer side. Describe the length of the deflector.
  • the length of the deflector is lengthened and/or the number of the deflector is increased; if it is coal with low volatile content and low calorific value If the type of coal is used, the length of the deflector is shortened and/or the number of the deflector is reduced.
  • an axial impeller is circumferentially installed in the air inlet channel located inside the baffle plate, so that the air passes through the axial impeller to form a rotating wind beam with a tangential velocity.
  • the swirl number of the rotating wind beam generated by the axial impeller should be controlled within the range of 0.6-2.
  • the pulverized coal supply mechanism is mainly composed of a pulverized coal pipe and a return cap, the pulverized air pipe is placed on the central axis of the burner body, and the return cap is arranged on the pulverized air pipe The outlet end is located in the outlet section of the stable combustion chamber.
  • the pulverized coal supply mechanism includes a pulverized coal pipe and a concentration separator, the pulverized air pipe is arranged on the central axis of the burner body and communicates with the combustion stabilization chamber, and the concentration
  • the separator is detachably connected to the air-powder pipe, and is used to make the pulverized coal fed into the combustion-stabilizing chamber to have a concentration distribution that is rich inside and lean outside or lean inside and rich outside.
  • the density separator is a throat type density separator, a gear type density separator or a petal-shaped density separator, and an outer thread is formed on the outer wall of the density separator, and at the same time, the density separator is located in the An inner thread is formed on the inner wall of the outlet section of the air-powder pipe, and the concentration separator is inserted into the air-powder pipe from the outlet end of the air-powder pipe, and is threadedly connected with the air-powder pipe.
  • the concentration separator selects throat type concentration separator or gear type concentration separator; if it is coal with low volatile content and low calorific value type, the shade separator is a petal-shaped shade separator.
  • the transition channel is a cylindrical structure with one end open and the other end closed, the air powder pipe extends through the closed end of the transition channel and then extends into the burner body, the transition channel An igniter and/or flame detector is installed inside.
  • the transition channel is a conical, elliptical or cylindrical bluff body, and the widest diameter of the transition channel should be smaller than the inner diameter of the first air guide tube, and the narrowest diameter should be larger than all the maximum diameter of the igniter and/or flame detector.
  • the wind speed of the DC wind beam should be controlled within the range of 30-50 m/s.
  • FIG. 1 is a schematic diagram of a three-dimensional longitudinal cross-sectional structure of a dual-channel burner according to an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of a movable axial impeller assembly of a dual-channel combustor according to an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a movable positioning assembly of a dual-channel burner according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of an internal flow field of a dual-channel burner according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a three-dimensional longitudinal cross-sectional structure of a dual-channel burner according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a movable axial impeller assembly of a dual-channel combustor according to an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a movable positioning assembly of a dual-channel burner according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a throat-type concentration separator of a dual-channel burner according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a gear-type rich-lean separator of a dual-channel burner according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a petal-shaped concentration separator of a dual-channel burner according to an embodiment of the application;
  • FIG. 11 is a schematic diagram of an internal flow field of a dual-channel burner according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of a three-dimensional longitudinal cross-sectional structure of a multi-channel single-cone combustor according to an embodiment of the application;
  • FIG. 13 is a schematic diagram of a two-dimensional longitudinal cross-sectional structure of a multi-channel single-cone combustor according to an embodiment of the application;
  • FIG. 14 is a schematic diagram of an internal flow field of a multi-channel single-cone combustor according to an embodiment of the application.
  • FIG. 15 is a schematic diagram of a three-dimensional longitudinal cross-sectional structure of a multi-channel single-cone combustor according to another embodiment of the present application.
  • 16 is a schematic diagram of a two-dimensional longitudinal cross-sectional structure of a multi-channel single-cone combustor according to another embodiment of the present application.
  • 17 is a schematic structural diagram of a throat-type rich-lean separator of a multi-channel single-cone combustor according to an embodiment of the application;
  • FIG. 18 is a schematic structural diagram of a gear-type rich-lean separator of a multi-channel single-cone combustor according to an embodiment of the application;
  • FIG. 19 is a schematic structural diagram of a petal-shaped concentration separator of a multi-channel single-cone burner according to an embodiment of the application.
  • FIG. 20 is a schematic diagram of the internal flow field of the multi-channel single-cone combustor according to the embodiment of the present application.
  • the dual-channel burner includes a pulverized coal supply mechanism 1, a transition channel 2, an inner secondary air guide duct 3, an outer secondary air guide duct 4, and a combustion stabilization chamber. 5 and rectifier cavity 6.
  • the outer secondary air guide duct 4, the combustion stabilization chamber 5 and the rectification chamber 6 are connected in sequence to form the burner body, the pulverized coal supply mechanism 1 runs through the inside of the burner body, and the transition channel 2 is sleeved in the pulverized coal supply mechanism 1. outside of the entry port.
  • the inner secondary air guide duct 3 is arranged between the transition channel 2 and the outer secondary air guide duct 4, and an inner secondary air channel is formed between the inner secondary air guide duct 3 and the transition channel 2, and the inner secondary air
  • An outer secondary air channel is formed between the air guide duct 3 and the outer secondary air air guide duct 4 .
  • a flare is formed at the outlet end of the inner secondary air guide duct 3, and the angle of the flare is the same as the angle of the combustion stabilization chamber 5, so that the direction of the outlet end of the inner secondary air passage is parallel to the combustion stabilization chamber 5. wall of cavity 5.
  • a movable axial impeller assembly 7 is arranged in the inner secondary air channel, so that the inner secondary air passes through the movable axial impeller assembly 7 to form a movable axial impeller assembly 7 . Rotating airflow at tangential velocity.
  • the movable axial impeller assembly 7 includes: an axial impeller 71, which is arranged in the inner secondary air channel in the circumferential direction and can move in the axial direction; an adjustable telescopic pull rod 72, which can be adjusted. One end of the 72 is connected to the axial impeller 71 through a first hinge pair; the locking pull rod 73 is connected to the other end of the adjustable telescopic pull rod 72 through a second hinge pair. Therefore, the axial impeller 71 can be moved in the axial direction by pushing and pulling the locking rod 73 to enter and exit the inner secondary air passage, and the hinge pair can ensure the smooth movement of the axial impeller 71 .
  • the inner secondary air guide duct 3 and the outer secondary air guide duct 4 are connected by several movable positioning assemblies 8 distributed along the circumferential direction.
  • the assembly 8 is used to adjust the cross-sectional area of the outer secondary channel.
  • the inner secondary air guide duct 3 is provided with a number of threaded holes 31 along the circumferential direction
  • the outer secondary air guide duct 4 is provided with a number of light holes 41 along the circumferential direction
  • the air guide duct 4 is a flexible cylinder wall
  • the movable positioning assembly 8 is mainly composed of an adjusting bolt 81 and a sealing washer 82. It is threadedly connected with the threaded hole 31 of the inner secondary air guide tube 3 . In this way, by screwing in or out the adjusting bolt 81, the cylinder wall of the outer secondary air guide tube 4 is deformed, so as to adjust the cross-sectional area of the outer secondary passage.
  • the pulverized coal supply mechanism 1 is mainly composed of an air-powder pipe 11 and a return cap 13.
  • the air-powder pipe 11 is placed on the central axis of the burner body, and the return cap 13 is arranged on the central axis of the burner body.
  • the outlet end of the air powder pipe 11 is located in the outlet section of the combustion stabilization chamber 5 .
  • the structure of the pulverized coal supply mechanism 1 is not limited to that shown in FIG. 1 , for example, as shown in FIG. 5 , the pulverized coal supply mechanism 1 may further include an air powder pipe 11 and a concentration separator 12 , and the air powder pipe 11 is arranged in the The burner body is on the central axis and communicated with the combustion stabilization chamber 5.
  • the concentration separator 12 is detachably connected to the air powder pipe 11 to make the pulverized coal fed into the combustion stabilization chamber 5 in the form of rich inside and lean outside or inside. Concentration distribution of light and dark.
  • the density separator 12 can be a throat type density separator (as shown in FIG. 8 ), a gear type density separator (as shown in FIG. 9 ) or a petal-shaped density separator (as shown in FIG. 10 ). shown), and an outer thread is formed on the outer wall of the concentration separator 12, and an inner thread is formed on the inner wall located at the outlet section of the air powder pipe 11, and the concentration separator 12 can be inserted into the air powder pipe from the outlet end of the air powder pipe 11. 11, and threadedly connected with the air powder pipe 11. Therefore, the corresponding concentration separator 12 can be replaced according to the coal type, so as to widen the load adjustment range of the burner and the adaptability of the coal type.
  • the transition channel 2 is a cylindrical structure with one end open and the other end closed.
  • the air powder pipe 11 extends through the closed end of the transition channel 2 and extends into the burner body.
  • the transition channel 2 can be installed with ignition. and/or flame detectors (not shown).
  • the transition channel 2 is a conical, elliptical, cylindrical or other arbitrary curved bluff body, and the widest diameter of the transition channel 2 should be smaller than the inner diameter of the inner secondary air guide duct 3, and the narrowest The diameter should be larger than the maximum diameter of the igniter and/or flame detector.
  • the present application also provides a method for using the dual-channel burner, including the following steps:
  • the air enters the burner body in two ways, and one way in the air passes through the movable axial impeller assembly 7 and the inner secondary air passage to form a rotating inner secondary air with a tangential speed and directly enters the steady state.
  • the combustion chamber 5, and the inner secondary air channel and the transition channel 2 work together to form a nested high-temperature recirculation zone;
  • the pulverized coal air flow enters the high temperature recirculation zone through the recirculation channel composed of the air pulverized pipe 11 and the recirculation cap 13, and the pulverized coal presents a concentration distribution of dense outer and inner thin, and the pulverized coal is preheated to 900-1000 through the high temperature recirculation zone.
  • the pulverized coal is pyrolyzed in the low-oxygen, hot high-temperature recirculation zone, and mixed with the inner secondary air at the closed end of the transition channel 2 to form the main flame, and the pulverized coal gas flow is swirling in the burner body;
  • the present application also provides a method of using the dual-channel burner, Include the following steps:
  • the air is divided into two paths and enters the burner body, and one path of the air passes through the movable axial impeller assembly 7 and the inner secondary air passage to form a rotating inner secondary air with a tangential speed and directly enters the combustion stabilization chamber 5, and the inner secondary air flows directly into the combustion chamber 5.
  • the secondary air channel and the transition channel 2 work together to form a nested high-temperature recirculation zone;
  • the pulverized coal airflow is injected into the stable combustion chamber 5 through the air-powder pipe 11 and the concentration separator 12.
  • the pulverized coal is pyrolyzed in the low oxygen and hot high temperature recirculation zone, and is mixed with the internal secondary air to form the main flame;
  • the concentration separator 12 selects a throat type concentration separator or a gear type concentration separator, so that it can be The concentration distribution of pulverized coal that is thick inside and outside is thin, and the rigidity of the main flame is enhanced, thereby increasing the flame length of the main flame, which is conducive to improving combustion efficiency and reducing nitrogen oxide emissions; if it is coal with low volatile content and low calorific value, then The petal-shaped concentration separator is selected for the concentration separator 12, which can not only generate the concentration distribution of coal powder that is dense on the outside and thin on the inside, but also can form several small high-temperature flue gas recirculation areas near the outlet of the petal-shaped concentration separator, which is helpful for coal Powder ignition and stable combustion.
  • the swirl number of the swirling airflow generated by the movable axial impeller assembly 7 should be controlled within the range of 0-2.
  • the cross-sectional area of the outer secondary air channel can be adjusted by the movable positioning assembly 8, and then the wind speed of the outer secondary air can be adjusted, and the inner and outer secondary air can be controlled.
  • the mixing rate is controlled to control the combustion process of the pulverized coal gas flow in the burner body, thereby forming an internal low-oxygen, high-temperature, external high-oxygen, low-temperature environment in the stable combustion chamber 5, which not only has the effect of high efficiency and low nitrogen, but also It can also effectively avoid the occurrence of fouling and coking in the burner body and the furnace.
  • the wind speed of the external secondary air should be controlled within the range of 20-50 m/s.
  • the ratio of the inner secondary air and the outer secondary air is preferably 1:2, which can ensure stable combustion of pulverized coal, and mix the inner secondary air with the main flame layer by layer to reduce nitrogen oxidation. It can also make the secondary air outside the wall have enough momentum to cool the combustion stabilization chamber 5 and the rectification chamber 6.
  • the multi-channel reverse jet swirl single-cone burner provided by the present application includes a pulverized coal supply mechanism 1, a transition channel 2, a multi-stage air distribution assembly 14, a deflector 15, a stable combustion Cavity 5 and rectifier cavity 6.
  • the multi-stage air distribution assembly 14 includes N air guide tubes (N is a natural number not less than 2) coaxially arranged from the inside to the outside, wherein the Nth (ie the outermost) air guide tube is connected to the combustion stabilization chamber 5 and the rectifier.
  • the cavities 6 are connected in sequence to form the burner body, the pulverized coal supply mechanism 1 runs through the inside of the burner body, the transition channel 2 is sleeved outside the inlet end of the pulverized coal supply mechanism 1, and the first (ie the innermost) air duct
  • the spacers are sleeved on the outside of the transition channel 2 , so that N air inlet channels are formed between two adjacent air guide tubes and between the first air guide tube and the transition channel 2 .
  • the other air guide tubes are of double-layer hollow structure, that is, the inner side of the other air guide tubes is provided with an annular groove extending along the axial direction, and one end of at least one air guide plate 15 It can be inserted into the annular groove of the corresponding air guide tube to be fixed with it. Therefore, at least one direct current channel is formed between each baffle plate 15 and the combustion stabilization chamber 5 , and the other end of each baffle plate 15 is formed with a flare, and the angle of the flare is the same as that of the combustion stabilization chamber 5 , So that the direction of the outlet end of the direct-flow channel is parallel to the wall surface of the combustion stabilization chamber 5 .
  • the radial widths of the N air inlet passages are different, so that the corresponding air guide tubes can be selected to be inserted into the guide plate 15 according to different coal types and loads, thereby controlling the air and the main flame. Adjust the high-temperature recirculation zone, thereby widening the load adjustment range of the burner and the adaptability of coal types.
  • the number of the guide plates 15 is controlled between 1 and 4, and when there are more than two guide plates 15, the length of the guide plates 15 located on the inner side should be smaller than the length of the guide plates 15 located on the outside. Board 15 length.
  • the length of the deflector 15 can be lengthened and/or the number of deflectors 15 can be increased, thereby delaying the combustion-supporting wind (including The mixing time of the air beam and the DC air beam) with the main flame enhances the reducing atmosphere in the main flame, which is conducive to reducing nitrogen oxides; if it is coal with low volatile content and low calorific value, the deflector 15 can be shortened.
  • the length and/or reduce the number of deflectors 15 (or even cancel the deflectors 15), thereby enhancing the mixing of combustion-supporting air and the main flame, which is conducive to the ignition of pulverized coal and enables stable combustion of pulverized coal. It can be seen that, by adjusting the length and quantity of the baffles 15, the mixing rate of air and the main flame can be mechanically controlled, and the load adjustment range can reach 10% to 110%.
  • an axial impeller (not shown in the figure) can be installed in the air inlet channel located on the inner side of the deflector 15, so that the air passes through the axial impeller to form a tangential velocity. Rotating wind beam.
  • the number of swirls generated by the axial impeller to generate the rotating wind beam should be controlled within the range of 0.6-2.
  • the pulverized coal supply mechanism 1 is mainly composed of an air-powder pipe 11 and a return cap 13, the air-powder pipe 11 is placed on the central axis of the burner body, and the return cap 13 is arranged at the outlet of the air-powder pipe 11. It is located at the outlet section of the combustion stabilization chamber 5 .
  • the pulverized coal supply mechanism 1 is not limited to the structure shown in FIG. 12 .
  • the pulverized coal supply mechanism 1 includes a pulverized coal pipe 11 and a concentration separator 12 , and the pulverized coal pipe 11 is arranged on the burner.
  • the central axis of the main body is connected with the combustion stabilization chamber 5, and the concentration separator 12 is detachably connected to the air powder pipe 11, which is used to make the coal powder fed into the combustion stabilization chamber 5 in the form of rich inside and lean outside or lean inside and outside. Thick concentration distribution.
  • the density separator 12 can be a throat type density separator (as shown in FIG. 17 ), a gear type density separator (as shown in FIG. 18 ) or a petal-shaped density separator (as shown in FIG. 19 ). shown), and an outer thread is formed on the outer wall of the concentration separator 12, and an inner thread is formed on the inner wall located at the outlet section of the air powder pipe 11, and the concentration separator 12 can be inserted into the air powder pipe from the outlet end of the air powder pipe 11. 11, and threadedly connected with the air powder pipe 11. Therefore, the corresponding concentration separator 12 can be replaced according to the coal type, so as to widen the load adjustment range of the burner and the adaptability of coal types
  • the transition channel 2 is a cylindrical structure with one end open and the other end closed.
  • the air powder pipe 11 extends through the closed end of the transition channel 2 and extends into the burner body.
  • the transition channel 2 can be installed with ignition. and/or flame detectors (not shown).
  • the transition channel 2 is a conical, elliptical, cylindrical or other arbitrary curved bluff body, and the widest diameter of the transition channel 2 should be smaller than the inner diameter of the first air guide tube, and the narrowest diameter should be Greater than the maximum diameter of the igniter and/or flame detector.
  • the air is divided into N strands by the graded air distribution component 3 and enters the burner body, wherein the 1st to m strands of air pass through the axial impeller to form m strands of rotating air beams with tangential velocity and enter the combustion stabilization chamber 5, and m
  • the interaction of the rotating wind beams forms a multi-layer nested high temperature recirculation zone;
  • the pulverized coal gas flow enters the high temperature recirculation zone through the recirculation channel composed of the air pulverized pipe 11 and the recirculation cap 13, and the pulverized coal presents a concentration distribution of dense outer and inner thin, and the pulverized coal is preheated to 900-1000 through the high temperature recirculation zone.
  • the pulverized coal is pyrolyzed in the low-oxygen, hot high-temperature recirculation zone, and mixed with multiple rotating wind beams under the combined action of the transition channel 2 to form a multi-layered main flame;
  • the m+1 ⁇ Nth air inlet channels form a DC channel, and the m+1 ⁇ Nth air passes through each DC channel to form a DC wind beam with different speeds (the wind speed decreases in turn from the outside to the inside).
  • the air beam has two functions: the first function is to form a cooling air layer flowing along the wall of the combustion stabilization chamber 5 after the expansion of the deflector 15 to cool the combustion stabilization chamber 5 and the rectification chamber 6, so that the combustion stabilization chamber 5 and the wall temperature of the rectification cavity 6 is lower than 40 °C; the second function is to form a high-speed jet of multi-layer flame with the main flame through the rectification cavity 6 to enter the furnace, which not only makes the pulverized coal burn stably, but also avoids burning. The occurrence of fouling and coking in the main body and furnace.
  • the pulverized coal supply mechanism 1 includes the pulverized coal pipe 11 and the concentration separator 12, when the multi-channel single-cone burner provided by the present application is in use, its work flow is as follows:
  • the air is divided into N strands by the graded air distribution component 3 and enters the burner body, wherein the 1st to m strands of air pass through the axial impeller to form m strands of rotating air beams with tangential velocity and enter the combustion stabilization chamber 5, and m
  • the interaction of the rotating wind beams forms a multi-layer nested high temperature recirculation zone;
  • the pulverized coal airflow is injected into the stable combustion chamber 5 through the air-powder pipe 11 and the concentration separator 12.
  • the pulverized coal After being preheated to 900-1000°C in the high-temperature recirculation zone, the pulverized coal is pyrolyzed in the low-oxygen, hot high-temperature recirculation zone, and mixed with multiple rotating wind beams under the combined action of the transition channel 2 to form a multi-layered the main flame;
  • the m+1 ⁇ Nth air inlet channels form a DC channel, and the m+1 ⁇ Nth air passes through each DC channel to form a DC wind beam with different speeds (the wind speed decreases sequentially from the outside to the inside).
  • the air beam has two functions: the first function is to form a cooling air layer flowing along the wall of the combustion stabilization chamber 5 after the expansion of the deflector 15 to cool the combustion stabilization chamber 5 and the rectification chamber 6, so that the combustion stabilization chamber 5 and the wall temperature of the rectification cavity 6 is lower than 40 °C; the second function is to form a high-speed jet of multi-layer flame with the main flame through the rectification cavity 6 to enter the furnace, which not only makes the pulverized coal burn stably, but also avoids burning. The occurrence of fouling and coking in the main body and furnace.
  • the concentration separator 12 selects a throat type concentration separator or a gear type concentration separator, so that it can be The concentration distribution of pulverized coal that is thick inside and outside is thin, and the rigidity of the main flame is enhanced, thereby increasing the flame length of the main flame, which is conducive to improving combustion efficiency and reducing nitrogen oxide emissions; if it is coal with low volatile content and low calorific value, then The petal-shaped concentration separator is selected for the concentration separator 12, which can not only generate the concentration distribution of coal powder that is dense on the outside and thin on the inside, but also can form several small high-temperature flue gas recirculation areas near the outlet of the petal-shaped concentration separator, which is helpful for coal Powder ignition and stable combustion.
  • plural means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • installed installed
  • connected connected
  • fixed a detachable connection
  • it can be a mechanical connection or an electrical connection or can communicate with each other
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature is level less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

一种双通道燃烧器和多通道单锥燃烧器,所述双通道燃烧器包括煤粉供应机构(1)、过渡通道(2)、内二次风导风筒(3)、外二次风导风筒(4)、稳燃腔(5)和整流腔(6),外二次风导风筒(4)、稳燃腔(5)和整流腔(6)顺次连接组成燃烧器本体,煤粉供应机构(1)贯穿在燃烧器本体内部,过渡通道(2)套设在煤粉供应机构(1)上,内二次风导风筒(3)设置在过渡通道(2)与外二次风导风筒(4)之间,且与过渡通道(2)之间形成内二次风通道,与外二次风导风筒(4)之间形成外二次风通道,内二次风导风筒(3)的出口端形成有一个扩口,且扩口的角度与稳燃腔(5)的角度相同。该装置可以使空气分成内、外二次风分别进入燃烧器,使煤粉和空气充分混合,外二次风可以在稳燃腔(5)内形成沿稳燃腔(5)壁面流动的冷却空气层,避免稳燃腔壁(5)面积灰结焦现象的发生。

Description

双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法
相关申请的交叉引用
本申请要求申请号为CN202021857105.6、CN202021858293.4、CN202021858248.9、CN202010896256.0、CN202021858246.X、CN202010895168.9、CN202010895193.7和CN202010896271.5,申请日为2020年8月31日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请的实施例涉及煤粉燃烧器技术领域,更具体地,涉及一种双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法。
背景技术
目前,在煤粉工业锅炉领域,出现了诸如钝体燃烧器、旋流燃烧器以及逆喷燃烧器等多种燃烧器,其共同点在于利用高温回流区作为点火源,点燃煤粉气流,达到煤粉高效低氮燃烧的目的。但是由于煤粉在燃烧器内部进行着剧烈的燃烧,燃烧器内部的温度可达1100℃以上,燃烧器长期处于高温燃烧区,因此存在高温热腐蚀的现象;而且煤粉工业锅炉相比链条炉和循环流化床,存在负荷调节范围窄且低负荷运行的过程中容易出现燃尽率低的问题。
申请内容
为此,本申请的一个实施例提出了一种具有负荷调节范围宽、稳燃和低氮特点的双通道燃烧器。
本申请的另一个实施例提出了一种双通道燃烧器的使用方法。
本申请的另一个实施例提出了又一种双通道燃烧器的使用方法。
本申请的又一个实施例提出了一种具有负荷调节范围极宽、煤种适应性强和低氮特点的多通道单锥燃烧器。
本申请的再一个实施例提出了一种多通道单锥燃烧器的使用方法。
本申请的再一个实施例提出了又一种多通道单锥燃烧器的使用方法。
根据本申请的第一方面的实施例的双通道燃烧器包括:煤粉供应机构、过渡通道、内二次风导风筒、外二次风导风筒、稳燃腔和整流腔;其中,所述外二次风导风筒、稳燃腔和整流腔顺次连接组成燃烧器本体,所述煤粉供应机构贯穿在所述燃烧器本体内部,所述过渡通道套设在所述煤粉供应机构的入口端外部;所述内二次风导风筒设置在所述过渡通道与所述外二次风导风筒之间,所述内二次风导风筒与所述过渡通道之间形成内二次风通道,所述内二次风导风筒与所述外二次风导风筒之间形成外二次风通道;同时,所述内二次风导风筒的出口端形成有一个扩口,且所述扩口的角度与所述稳燃腔的角度相同,由此使所述内二次风通道的出口端方向平行于所述稳燃腔的壁面。
根据本申请的第二方面的实施例的双通道换热器的使用方法包括:1)空气分成两路进入燃烧器本体,空气中的一路经过可动轴向叶轮组件和内二次风通道后形成具有切向速度的旋转内二次风直接进入稳燃腔,且内二次风通道与过渡通道共同作用形成一个嵌套型的高温回流区;2)与此同时,煤粉气流经过风粉管和回流帽组成的回流通道进入高温回流区,煤粉呈现外浓内淡的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与内二次风在过渡通道的封闭端混合在一起后形成主火焰,煤粉气流在燃烧器本体内回旋焚烧;3)空气中的另一路通过外二次风通道形成外二次风,外二次风的一部分经外二次风导风筒的扩口后形成沿稳燃腔壁面流动的冷却空气层,以冷却稳燃腔和整流腔,使稳燃腔和整流腔的壁面温度低于40℃;外二次风的另一部分则与主火焰经整流腔形成风包火的高速喷射火焰进入炉膛。
根据本申请的第三方面的实施例的双通道换热器的使用方法包括:1)根据煤种选择相应的浓淡分离器安装至风粉管上;2)空气分成两路进入燃烧器本体,空气中的一路经过可动轴向叶轮组件和内二次风通道后形成具有切向速度的旋转内二次风直接进入稳燃腔,且内二次风通道与过渡通道共同作用形成一个嵌套型的高温回流区;3)与此同时,煤粉气流经过风粉管和浓淡分离器喷射进入稳燃腔,煤粉在稳燃腔内呈现内浓外淡或内淡外浓的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与内二次风混合在一起后形成主火焰;4)空气中的另一路通过外二次风通道形成外二次风,外二次风的一部分经外二次风导风筒的扩口后形成沿稳燃腔壁面流动的冷却空气层,以冷却稳燃腔和整流腔;外二次风的另一部分则与主火焰经整流腔形成风包火的高速喷射火焰进入炉膛。
本申请由于采取以上技术方案,其具有以下优点:1、本申请设置了内二次风导风筒和外二次风导风筒,可以使空气分成内二次风和外二次风分别进入燃烧器本体,不仅使空气分级给入燃烧器降低氮氧化物,内二次风与过渡通道相结合使煤粉和空气充分混合稳定燃 烧,而且外二次风可以在稳燃腔内形成沿稳燃腔壁面流动的冷却空气层,以冷却稳燃腔和整流腔,使稳燃腔和整流腔的壁面温度始终低于40℃,不仅可以取消稳燃腔的水冷装置,而且避免稳燃腔壁面积灰结焦现象的发生。2、本申请可以通过可动定位组件调节外二次风通道的截面积,进而调整外二次风的风速,控制内二次风和外二次风的混合速率,从而控制煤粉气流在燃烧器本体内的燃烧进程,由此在稳燃腔内形成一个内部低氧、高温,外部高氧、低温的环境,这种温度分布和气氛分布,不仅可以达到高燃烧效率和低氮的效果,拓宽燃烧器的负荷调整范围和煤种适应性,而且能有效的解决稳燃室壁面高温腐蚀、积灰及结焦等现象,减少燃烧器的维修频率,延长燃烧器的使用寿命。3、本申请还采用了过渡通道的设计,该过渡通道不仅可以内置点火油枪和点火器,而且过渡通道还可以与内置可动轴向叶轮的内二次风通道共同作用产生一个高湍流强度的回流区,增强煤粉与空气的混合速率,提高煤粉在低负荷工况下的燃尽率。
根据本申请的第四方面的实施例的多通道换热器包括煤粉供应机构、过渡通道、多级配风组件、导流板、稳燃腔和整流腔;所述多级配风组件包括由内至外同轴设置的N个导风筒,且N为不小于2的自然数;其中,第N个导风筒与所述稳燃腔和整流腔顺次连接组成燃烧器本体,所述煤粉供应机构贯穿在所述燃烧器本体内部,所述过渡通道套设在所述煤粉供应机构上,第1个导风筒间隔套设在所述过渡通道的外部,由此相邻两所述导风筒之间以及所述第1个导风筒与所述过渡通道之间共形成N个进风通道;同时,除所述第N个导风筒外,其余各所述导风筒均为双层空心结构,即其余各所述导风筒的内侧设置有沿轴向延伸的环形凹槽,至少一个所述导流板的一端***相应所述导风筒的环形凹槽内以与之固定;由此,各所述导流板与所述稳燃腔之间形成至少一个直流通道,且各所述导流板的另一端形成有一个扩口,所述扩口的角度与所述稳燃腔的角度相同,以使所述直流通道的出口端方向平行于所述稳燃腔的壁面。
根据本申请的第五方面的实施例的多通道换热器的使用方法包括:1)根据煤种选择适合长度及数量的导流板***相应的导风筒内,并记最内侧的导流板所在位置为第m个导风筒,在第1~m个进风通道内沿周向安装轴向叶轮;2)空气由分级配风组件分为N股进入燃烧器本体,其中第1~m股空气经过轴向叶轮后形成具有切向速度的m股旋转风束进入稳燃腔,且m股旋转风束相互作用形成一个多层嵌套式的高温回流区;3)与此同时,煤粉气流经过风粉管和回流帽组成的回流通道进入高温回流区,煤粉呈现外浓内淡的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与多股旋转风束在过渡通道的共同作用下混合在一起后形成一个多层的主火焰;4)第m+1~N个进风通道则形成直流通道,第m+1~N股空气经过各直流通道后形成具有不同速度的直流风束,该直流风束有两个作用:第一个作用是经导流板的扩口后形成沿稳燃腔壁面流动的冷 却空气层,以冷却稳燃腔和整流腔;第二个作用是与主火焰经整流腔形成风包火的高速喷射多层火焰进入炉膛。
根据本申请的第六方面的实施例的多通道换热器的使用方法包括:1)根据煤种选择相应的浓淡分离器安装至风粉管上,同时根据煤种选择适合长度及数量的导流板***相应的导风筒内,并记最内侧的导流板所在位置为第m个导风筒,在第1~m个进风通道内沿周向安装轴向叶轮;2)空气由分级配风组件分为N股进入燃烧器本体,其中第1~m股空气经过轴向叶轮后形成具有切向速度的m股旋转风束进入稳燃腔,且m股旋转风束相互作用形成一个多层嵌套式的高温回流区;3)与此同时,煤粉气流经过风粉管和浓淡分离器喷射进入稳燃腔,煤粉在稳燃腔内呈现内浓外淡或内淡外浓的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与多股旋转风束在过渡通道的共同作用下混合在一起后形成一个多层的主火焰;4)第m+1~N个进风通道则形成直流通道,第m+1~N股空气经过各直流通道后形成具有不同速度的直流风束,该直流风束有两个作用:第一个作用是经导流板的扩口后形成沿稳燃腔壁面流动的冷却空气层,以冷却稳燃腔和整流腔;第二个作用是与主火焰经整流腔形成风包火的高速喷射多层火焰进入炉膛。
本申请由于采取以上技术方案,其具有以下优点:1、本申请采用多级配风组件的设计,空气经多级配风组件分为N股进入燃烧器本体,气流边界处湍流强度强烈,加强了风粉混合速率,不仅使煤粉稳定着火,还能保证煤粉高效低氮燃烧。2、本申请的多级配风组件由内至外同轴设置的多个导风筒组成,且导风筒采用双层空心结构,导流板可以***任意导风筒的双层空心结构,由此可以形成稳燃腔和整流腔壁面有贴壁冷却风的多层火焰结构,助燃风缓缓渗入主火焰,确保主火焰中间是高温、高CO和低氧的环境,延长煤粉在高温、还原性气氛下的停留时间,达到高燃烧效率和低氮的目的。同时,导流板与稳燃腔之间形成的直流风束可以在稳燃腔内形成沿稳燃腔壁面流动的冷却空气层,以冷却稳燃腔和整流腔,使稳燃腔和整流腔的壁面温度始终低于40℃,不仅可以取消稳燃腔的水冷装置,而且避免稳燃腔壁面积灰结焦现象的发生。3、本申请通过调整导流板的长度和数量可以机械的控制助燃风与主火焰的掺混速率,负荷调节范围为10%~110%,具有负荷调整范围极宽,此外还具有煤种适应性广、良好的稳燃和低氮的特点。4、本申请还采用了过渡通道设计,该过渡通道不仅可以内置点火油枪和点火器,而且过渡通道还可以与内置可动轴向叶轮的内二次风通道共同作用产生一个高湍流强度的回流区,增强煤粉与空气的混合速率,提高煤粉在低负荷工况下的燃尽率。
在一些实施例中,在所述内二次风通道内设置有可动轴向叶轮组件,用于使内二次风经过所述可动轴向叶轮组件后形成具有切向速度的旋转气流。
在一些实施例中,所述可动轴向叶轮组件包括:轴向叶轮,沿周向设置在所述内二次 风通道内且可沿轴向移动;可调节伸缩拉杆,所述可调节伸缩拉杆的一端通过第一铰接副与所述轴向叶轮连接;锁紧拉杆,通过第二铰接副与所述可调节伸缩拉杆的另一端连接。
在一些实施例中,所述可动轴向叶轮组件产生旋转气流的旋流数应控制在0~2范围内。
在一些实施例中,所述内二次风导风筒和外二次风导风筒通过沿周向分布的若干个可动定位组件连接,所述可动定位组件用于调节所述外二次通道的截面积。
在一些实施例中,所述内二次风导风筒上沿周向开设有若干螺纹孔,所述外二次风导风筒上沿周向开设有若干光孔,且所述外二次风导风筒为柔性筒壁;同时,所述可动定位组件主要由调节螺栓和密封垫圈组成,所述调节螺栓穿过所述密封垫圈和所述外二次风导风筒的光孔后与所述内二次风导风筒的螺纹孔螺纹连接。
在一些实施例中,所述外二次风的风速应控制在20~50m/s范围内,所述内二次风和外二次风的比例为1:2。
在一些实施例中,所述煤粉供应机构主要由风粉管和回流帽组成,所述风粉管置于所述燃烧器本体的中心轴线上,所述回流帽设置在所述风粉管的出口端且位于所述稳燃腔的出口段,所述稳燃腔上开设有若干通孔。
在一些实施例中,所述煤粉供应机构包括风粉管和浓淡分离器,所述风粉管布置于所述燃烧器本体的中心轴线上且与所述稳燃腔相连通,所述浓淡分离器可拆卸地连接在所述风粉管上,用于使给入所述稳燃腔的煤粉呈内浓外淡或内淡外浓的浓度分布。
在一些实施例中,所述浓淡分离器为喉口型浓淡分离器、齿轮型浓淡分离器或花瓣形浓淡分离器,且所述浓淡分离器的外壁上形成有外螺纹,同时在位于所述风粉管出口段的内壁上形成有内螺纹,所述浓淡分离器由所述风粉管的出口端***所述风粉管内,并与所述风粉管螺纹连接。
在一些实施例中,所述过渡通道为一端敞口、另一端封闭的筒形结构,所述风粉管贯穿所述过渡通道的封闭端后伸入所述燃烧器本体内部,所述过渡通道内安装有点火器和/或火焰检测器;所述过渡通道为圆锥形、椭圆形或圆柱形钝体,且所述过渡通道的最宽直径应小于所述内二次风导风筒的内径,最窄直径应大于所述点火器和/或火焰检测器的最大直径。
在一些实施例中,如果是挥发分高且热值高的煤种,则所述浓淡分离器选择喉口型浓淡分离器或齿轮型浓淡分离器;如果是挥发分低且热值低的煤种,则所述浓淡分离器选择花瓣形浓淡分离器。
在一些实施例中,在上述步骤中,通过所述可动定位组件调节所述外二次风通道的截面积,进而调整所述外二次风的风速,控制所述内二次风和外二次风的混合速率。
在一些实施例中,所述N个进风通道的径向宽度各不相同,以根据不同的煤种、负荷选择相应的导风筒***所述导流板。
在一些实施例中,所述导流板的数量控制在1~4个之间,且当所述导流板为两个以上时,位于内侧的所述导流板长度应小于位于外侧的所述导流板长度。
在一些实施例中,如果是挥发分高且热值高的煤种,则加长所述导流板的长度和/或增加所述导流板的数量;如果是挥发分低且热值低的煤种,则缩短所述导流板的长度和/或减少所述导流板的数量。
在一些实施例中,在位于所述导流板内侧的进风通道内沿周向安装轴向叶轮,用于使空气经过所述轴向叶轮后形成具有切向速度的旋转风束。
在一些实施例中,所述轴向叶轮产生旋转风束的旋流数应控制在0.6~2范围内。
在一些实施例中,所述煤粉供应机构主要由风粉管和回流帽组成,所述风粉管置于所述燃烧器本体的中心轴线上,所述回流帽设置在所述风粉管的出口端且位于所述稳燃腔的出口段。
在一些实施例中,所述煤粉供应机构包括风粉管和浓淡分离器,所述风粉管布置于所述燃烧器本体的中心轴线上且与所述稳燃腔相连通,所述浓淡分离器可拆卸地连接在所述风粉管上,用于使给入所述稳燃腔的煤粉呈内浓外淡或内淡外浓的浓度分布。
在一些实施例中,所述浓淡分离器为喉口型浓淡分离器、齿轮型浓淡分离器或花瓣形浓淡分离器,且所述浓淡分离器的外壁上形成有外螺纹,同时在位于所述风粉管出口段的内壁上形成有内螺纹,所述浓淡分离器由所述风粉管的出口端***所述风粉管内,并与所述风粉管螺纹连接。
在一些实施例中,如果是挥发分高且热值高的煤种,则所述浓淡分离器选择喉口型浓淡分离器或齿轮型浓淡分离器;如果是挥发分低且热值低的煤种,则所述浓淡分离器选择花瓣形浓淡分离器。
在一些实施例中,所述过渡通道为一端敞口、另一端封闭的筒形结构,所述风粉管贯穿所述过渡通道的封闭端后伸入所述燃烧器本体内部,所述过渡通道内安装有点火器和/或火焰检测器。
在一些实施例中,所述过渡通道为圆锥形、椭圆形或圆柱形钝体,且所述过渡通道的最宽直径应小于所述第1个导风筒的内径,最窄直径应大于所述点火器和/或火焰检测器的最大直径。
在一些实施例中,所述直流风束的风速应控制在30~50m/s范围内。
附图说明
图1为本申请实施例的双通道燃烧器的三维纵剖结构示意图;
图2为本申请实施例的双通道燃烧器的可动轴向叶轮组件的结构示意图;
图3为本申请实施例的双通道燃烧器的可动定位组件的结构示意图;
图4为本申请实施例的双通道燃烧器的内部流场示意图;
图5为本申请另一实施例的双通道燃烧器的三维纵剖结构示意图;
图6为本申请实施例的双通道燃烧器的可动轴向叶轮组件的结构示意图;
图7为本申请实施例的双通道燃烧器的可动定位组件的结构示意图;
图8为本申请实施例的双通道燃烧器的喉口型浓淡分离器的结构示意图;
图9为本申请实施例的双通道燃烧器的齿轮型浓淡分离器的结构示意图;
图10为本申请实施例的双通道燃烧器的花瓣形浓淡分离器的结构示意图;
图11为本申请实施例的双通道燃烧器的的内部流场示意图;
图12为本申请实施例的多通道单锥燃烧器的三维纵剖结构示意图;
图13为本申请实施例的多通道单锥燃烧器的二维纵剖结构示意图;
图14为本申请实施例的多通道单锥燃烧器的内部流场示意图;
图15为本申请另一实施例的多通道单锥燃烧器的三维纵剖结构示意图;
图16为本申请另一实施例的多通道单锥燃烧器的二维纵剖结构示意图;
图17为本申请实施例的多通道单锥燃烧器的喉口型浓淡分离器的结构示意图;
图18为本申请实施例的多通道单锥燃烧器的齿轮型浓淡分离器的结构示意图;
图19为本申请实施例的多通道单锥燃烧器的花瓣形浓淡分离器的结构示意图;
图20为本申请实施例的多通道单锥燃烧器的内部流场示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元夹具必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
如图1-图11所示,本申请提供的双通道燃烧器,包括煤粉供应机构1、过渡通道2、内二次风导风筒3、外二次风导风筒4、稳燃腔5和整流腔6。其中,外二次风导风筒4、 稳燃腔5和整流腔6顺次连接组成燃烧器本体,煤粉供应机构1贯穿在燃烧器本体内部,过渡通道2套设在煤粉供应机构1的入口端外部。内二次风导风筒3设置在过渡通道2与外二次风导风筒4之间,内二次风导风筒3与过渡通道2之间形成内二次风通道,内二次风导风筒3与外二次风导风筒4之间形成外二次风通道。同时,内二次风导风筒3的出口端形成有一个扩口,且该扩口的角度与稳燃腔5的角度相同,由此使内二次风通道的出口端方向平行于稳燃腔5的壁面。
上述实施例中,优选地,如图2所示,在内二次风通道内设置有可动轴向叶轮组件7,用于使内二次风经过该可动轴向叶轮组件7后形成具有切向速度的旋转气流。
上述实施例中,优选地,可动轴向叶轮组件7包括:轴向叶轮71,沿周向设置在内二次风通道内且可沿轴向移动;可调节伸缩拉杆72,可调节伸缩拉杆72的一端通过第一铰接副与轴向叶轮71连接;锁紧拉杆73,通过第二铰接副与可调节伸缩拉杆72的另一端连接。由此,通过推拉锁紧拉杆73可以使轴向叶轮71沿轴向移动以进入和退出内二次风通道,同时铰接副可以保证轴向叶轮71顺滑的移动。
上述实施例中,优选地,如图3所示,内二次风导风筒3和外二次风导风筒4通过沿周向分布的若干个可动定位组件8连接,该可动定位组件8用于调节外二次通道的截面积。
上述实施例中,优选地,内二次风导风筒3上沿周向开设有若干螺纹孔31,外二次风导风筒4上沿周向开设有若干光孔41,且外二次风导风筒4为柔性筒壁;同时,可动定位组件8主要由调节螺栓81和密封垫圈82组成,调节螺栓81穿过密封垫圈82和外二次风导风筒4的光孔41后与内二次风导风筒3的螺纹孔31螺纹连接。由此,通过旋进或旋出调节螺栓81使外二次风导风筒4的筒壁产生形变,从而调节外二次通道的截面积。
上述实施例中,优选地,如图1所示,煤粉供应机构1主要由风粉管11和回流帽13组成,风粉管11置于燃烧器本体的中心轴线上,回流帽13设置在风粉管11的出口端且位于稳燃腔5的出口段。
进一步地,煤粉供应机构1的结构不限于如图1所示,例如,如图5所示,煤粉供应机构1还可以包括风粉管11和浓淡分离器12,风粉管11布置于燃烧器本体的中心轴线上且与稳燃腔5相连通,浓淡分离器12可拆卸地连接在风粉管11上,用于使给入稳燃腔5的煤粉呈内浓外淡或内淡外浓的浓度分布。
上述实施例中,优选地,浓淡分离器12可以为喉口型浓淡分离器(如图8所示)、齿轮型浓淡分离器(如图9所示)或花瓣形浓淡分离器(如图10所示),且浓淡分离器12的外壁上形成有外螺纹,同时在位于风粉管11出口段的内壁上形成有内螺纹,浓淡分离器12可由风粉管11的出口端***风粉管11内,并与风粉管11螺纹连接。由此,可以根据煤种更换相应的浓淡分离器12,以拓宽燃烧器的负荷调整范围和煤种适应性。
上述实施例中,优选地,过渡通道2为一端敞口、另一端封闭的筒形结构,风粉管11贯穿过渡通道2的封闭端后伸入燃烧器本体内部,过渡通道2内可以安装点火器和/或火焰检测器(图中未示出)。
上述实施例中,优选地,过渡通道2为圆锥形、椭圆形、圆柱形或者其他任意曲线钝体,且过渡通道2的最宽直径应小于内二次风导风筒3的内径,最窄直径应大于点火器和/或火焰检测器的最大直径。
上述实施例中,优选地,可以在稳燃腔5上开设若干通孔(图中未示出),以避免由于意外因素导致稳燃腔5过热而引起稳燃腔5变形。
基于上述实施例提供的双通道燃烧器,当煤粉供应机构1主要由风粉管11和回流帽13组成时,本申请还提供了一种双通道燃烧器的使用方法,包括以下步骤:
1)如图4所示,空气分成两路进入燃烧器本体,空气中的一路经过可动轴向叶轮组件7和内二次风通道后形成具有切向速度的旋转内二次风直接进入稳燃腔5,且内二次风通道与过渡通道2共同作用形成一个嵌套型的高温回流区;
2)与此同时,煤粉气流经过风粉管11和回流帽13组成的回流通道进入高温回流区,煤粉呈现外浓内淡的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与内二次风在过渡通道2的封闭端混合在一起后形成主火焰,煤粉气流在燃烧器本体内回旋焚烧;
3)空气中的另一路通过外二次风通道形成外二次风,外二次风的一部分经外二次风导风筒4的扩口后形成沿稳燃腔5壁面流动的冷却空气层,以冷却稳燃腔5和整流腔6,使稳燃腔5和整流腔6的壁面温度低于40℃;外二次风的另一部分则与主火焰经整流腔6形成风包火的高速喷射火焰进入炉膛,由此不仅使煤粉稳定燃烧,而且避免了燃烧器本体和炉膛内积灰结焦现象的发生。
上述实施例中,基于上述实施例提供的双通道燃烧器,当煤粉供应机构1由风粉管11和浓淡分离器12组成时,本申请还提供了一种双通道燃烧器的使用方法,包括以下步骤:
1)根据煤种选择相应的浓淡分离器12安装至风粉管11上;
2)空气分成两路进入燃烧器本体,空气中的一路经过可动轴向叶轮组件7和内二次风通道后形成具有切向速度的旋转内二次风直接进入稳燃腔5,且内二次风通道与过渡通道2共同作用形成一个嵌套型的高温回流区;
3)与此同时,煤粉气流经过风粉管11和浓淡分离器12喷射进入稳燃腔5,煤粉在稳燃腔5内呈现内浓外淡或内淡外浓的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与内二次风混合在一起后形成主火焰;
4)空气中的另一路通过外二次风通道形成外二次风,外二次风的一部分经外二次风导 风筒4的扩口后形成沿稳燃腔5壁面流动的冷却空气层,以冷却稳燃腔5和整流腔6,使稳燃腔5和整流腔6的壁面温度低于40℃;外二次风的另一部分则与主火焰经整流腔6形成风包火的高速喷射火焰进入炉膛,由此不仅使煤粉稳定燃烧,而且避免了燃烧器本体和炉膛内积灰结焦现象的发生。
上述实施例中,优选地,在上述步骤1)中,如果是挥发分高且热值高的煤种,则浓淡分离器12选择喉口型浓淡分离器或齿轮型浓淡分离器,由此可以产生内浓外淡的煤粉浓度分布,主火焰刚性增强,从而增加主火焰的火焰长度,有利于提高燃烧效率和降低氮氧化物排放;如果是挥发分低且热值低的煤种,则浓淡分离器12选择花瓣形浓淡分离器,不仅能产生外浓内淡的煤粉浓度分布,而且能在花瓣形浓淡分离器的出口附近形成若干个小的高温烟气回流区,有助于煤粉点火和稳定燃烧。
上述实施例中,优选地,在上述步骤中,可动轴向叶轮组件7产生旋转气流的旋流数应控制在0~2范围内。
上述实施例中,优选地,在上述步骤中,可以通过可动定位组件8调节外二次风通道的截面积,进而调整外二次风的风速,控制内二次风和外二次风的混合速率,从而控制煤粉气流在燃烧器本体内的燃烧进程,由此在稳燃腔5内形成一个内部低氧、高温,外部高氧、低温的环境,不仅具有高效、低氮的作用,还可以有效的避免燃烧器本体和炉膛积灰、结焦现象的发生。
上述实施例中,优选地,外二次风的风速应控制在20~50m/s范围内。
上述实施例中,优选地,内二次风和外二次风的比例优选为1:2,此比例既可以保证煤粉稳定燃烧,使内二次风逐层与主火焰混合以降低氮氧化物,也能使贴壁外二次风有足够的动量冷却稳燃腔5和整流腔6。
下面参考图12-20,详细描述本申请实施例的多通道单锥燃烧器的具体结构。
如图12、图13所示,本申请提供的多通道逆喷式旋流单锥燃烧器,包括煤粉供应机构1、过渡通道2、多级配风组件14、导流板15、稳燃腔5和整流腔6。多级配风组件14包括由内至外同轴设置的N个导风筒(N为不小于2的自然数),其中第N个(即最外侧的)导风筒与稳燃腔5和整流腔6顺次连接组成燃烧器本体,煤粉供应机构1贯穿在燃烧器本体内部,过渡通道2套设在煤粉供应机构1的入口端外部,第1个(即最内侧的)导风筒间隔套设在过渡通道2的外部,由此相邻两导风筒之间以及第1个导风筒与过渡通道2之间共形成N个进风通道。同时,除第N个导风筒外,其余各导风筒均为双层空心结构,即其余各导风筒的内侧设置有沿轴向延伸的环形凹槽,至少一个导流板15的一端可***相应导风筒的环形凹槽内以与之固定。由此,各导流板15与稳燃腔5之间形成至少一个直流通道,且各导流板15的另一端形成有一个扩口,该扩口的角度与稳燃腔5的角度相同,以使直流 通道的出口端方向平行于稳燃腔5的壁面。
上述实施例中,优选地,N个进风通道的径向宽度各不相同,由此可以根据不同的煤种、负荷选择相应的导风筒***导流板15,由此控制空气与主火焰的掺混速率,调整高温回流区,从而拓宽燃烧器的负荷调整范围和煤种适应性。
上述实施例中,优选地,导流板15的数量控制在1~4个之间,且当导流板15为两个以上时,位于内侧的导流板15长度应小于位于外侧的导流板15长度。
上述实施例中,优选地,如果是挥发分高且热值高的煤种,则可以加长导流板15的长度和/或增加导流板15的数量,由此以推迟助燃风(包括旋转风束和直流风束)与主火焰混合的时间,使主火焰内还原性气氛增强,有利于降低氮氧化物;如果是挥发分低且热值低的煤种,则可以缩短导流板15的长度和/或减少导流板15的数量(甚至取消导流板15),由此加强助燃风与主火焰的混合,有利于煤粉着火,使煤粉稳定燃烧。由此可见,通过调整导流板15的长度和数量可以机械的控制空气与主火焰的掺混速率,负荷调节范围可达10%~110%。
上述实施例中,优选地,可以在位于导流板15内侧的进风通道内沿周向安装轴向叶轮(图中未示出),以使得空气经过轴向叶轮后形成具有切向速度的旋转风束。
上述实施例中,优选地,轴向叶轮产生旋转风束的旋流数应控制在0.6~2范围内。
上述实施例中,优选地,煤粉供应机构1主要由风粉管11和回流帽13组成,风粉管11置于燃烧器本体的中心轴线上,回流帽13设置在风粉管11的出口端且位于稳燃腔5的出口段。
进一步地,煤粉供应机构1不限于如图12所示的结构,例如,如图15所示,煤粉供应机构1包括风粉管11和浓淡分离器12,风粉管11布置于燃烧器本体的中心轴线上且与稳燃腔5相连通,浓淡分离器12可拆卸地连接在风粉管11上,用于使给入稳燃腔5的煤粉呈内浓外淡或内淡外浓的浓度分布。
上述实施例中,优选地,浓淡分离器12可以为喉口型浓淡分离器(如图17所示)、齿轮型浓淡分离器(如图18所示)或花瓣形浓淡分离器(如图19所示),且浓淡分离器12的外壁上形成有外螺纹,同时在位于风粉管11出口段的内壁上形成有内螺纹,浓淡分离器12可由风粉管11的出口端***风粉管11内,并与风粉管11螺纹连接。由此,可以根据煤种更换相应的浓淡分离器12,以拓宽燃烧器的负荷调整范围和煤种适应性
上述实施例中,优选地,过渡通道2为一端敞口、另一端封闭的筒形结构,风粉管11贯穿过渡通道2的封闭端后伸入燃烧器本体内部,过渡通道2内可以安装点火器和/或火焰检测器(图中未示出)。
上述实施例中,优选地,过渡通道2为圆锥形、椭圆形、圆柱形或者其他任意曲线钝 体,且过渡通道2的最宽直径应小于第1个导风筒的内径,最窄直径应大于点火器和/或火焰检测器的最大直径。
当煤粉供应机构1主要由风粉管11和回流帽13组成时,本申请提供的多通道单锥燃烧器在使用时,其工作流程如下:
1)根据煤种选择适合长度及数量的导流板15***相应的导风筒内,并记最内侧的导流板15所在位置为第m个导风筒,在第1~m个进风通道内沿周向安装轴向叶轮;
2)空气由分级配风组件3分为N股进入燃烧器本体,其中第1~m股空气经过轴向叶轮后形成具有切向速度的m股旋转风束进入稳燃腔5,且m股旋转风束相互作用形成一个多层嵌套式的高温回流区;
3)与此同时,煤粉气流经过风粉管11和回流帽13组成的回流通道进入高温回流区,煤粉呈现外浓内淡的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与多股旋转风束在过渡通道2的共同作用下混合在一起后形成一个多层的主火焰;
4)第m+1~N个进风通道则形成直流通道,第m+1~N股空气经过各直流通道后形成具有不同速度的直流风束(风速由外到内依次递减),该直流风束有两个作用:第一个作用是经导流板15的扩口后形成沿稳燃腔5壁面流动的冷却空气层,以冷却稳燃腔5和整流腔6,使稳燃腔5和整流腔6的壁面温度低于40℃;第二个作用是与主火焰经整流腔6形成风包火的高速喷射多层火焰进入炉膛,由此不仅使煤粉稳定燃烧,而且避免了燃烧器本体和炉膛内积灰结焦现象的发生。
当煤粉供应机构1包括风粉管11和浓淡分离器12时,本申请提供的多通道单锥燃烧器在使用时,其工作流程如下:
1)根据煤种选择相应的浓淡分离器12安装至风粉管11上,同时根据煤种选择适合长度及数量的导流板15***相应的导风筒内,并记最内侧的导流板15所在位置为第m个导风筒,在第1~m个进风通道内沿周向安装轴向叶轮(图中未示出);
2)空气由分级配风组件3分为N股进入燃烧器本体,其中第1~m股空气经过轴向叶轮后形成具有切向速度的m股旋转风束进入稳燃腔5,且m股旋转风束相互作用形成一个多层嵌套式的高温回流区;
3)与此同时,煤粉气流经过风粉管11和浓淡分离器12喷射进入稳燃腔5,煤粉在稳燃腔5内呈现内浓外淡或内淡外浓的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与多股旋转风束在过渡通道2的共同作用下混合在一起后形成一个多层的主火焰;
4)第m+1~N个进风通道则形成直流通道,第m+1~N股空气经过各直流通道后形成具 有不同速度的直流风束(风速由外到内依次递减),该直流风束有两个作用:第一个作用是经导流板15的扩口后形成沿稳燃腔5壁面流动的冷却空气层,以冷却稳燃腔5和整流腔6,使稳燃腔5和整流腔6的壁面温度低于40℃;第二个作用是与主火焰经整流腔6形成风包火的高速喷射多层火焰进入炉膛,由此不仅使煤粉稳定燃烧,而且避免了燃烧器本体和炉膛内积灰结焦现象的发生。
上述实施例中,优选地,在上述步骤1)中,如果是挥发分高且热值高的煤种,则浓淡分离器12选择喉口型浓淡分离器或齿轮型浓淡分离器,由此可以产生内浓外淡的煤粉浓度分布,主火焰刚性增强,从而增加主火焰的火焰长度,有利于提高燃烧效率和降低氮氧化物排放;如果是挥发分低且热值低的煤种,则浓淡分离器12选择花瓣形浓淡分离器,不仅能产生外浓内淡的煤粉浓度分布,而且能在花瓣形浓淡分离器的出口附近形成若干个小的高温烟气回流区,有助于煤粉点火和稳定燃烧。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
在本说明书的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下 面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (30)

  1. 一种双通道燃烧器,其特征在于,包括煤粉供应机构(1)、过渡通道(2)、内二次风导风筒(3)、外二次风导风筒(4)、稳燃腔(5)和整流腔(6);
    其中,所述外二次风导风筒(4)、稳燃腔(5)和整流腔(6)顺次连接组成燃烧器本体,所述煤粉供应机构(1)贯穿在所述燃烧器本体内部,所述过渡通道(2)套设在所述煤粉供应机构(1)的入口端外部;
    所述内二次风导风筒(3)设置在所述过渡通道(2)与所述外二次风导风筒(4)之间,所述内二次风导风筒(3)与所述过渡通道(2)之间形成内二次风通道,所述内二次风导风筒(3)与所述外二次风导风筒(4)之间形成外二次风通道;
    同时,所述内二次风导风筒(3)的出口端形成有一个扩口,且所述扩口的角度与所述稳燃腔(5)的角度相同,由此使所述内二次风通道的出口端方向平行于所述稳燃腔(5)的壁面。
  2. 根据权利要求1所述的双通道燃烧器,其特征在于,在所述内二次风通道内设置有可动轴向叶轮组件(7),用于使内二次风经过所述可动轴向叶轮组件(7)后形成具有切向速度的旋转气流。
  3. 根据权利要求2所述的双通道燃烧器,其特征在于,所述可动轴向叶轮组件(7)包括:
    轴向叶轮(71),沿周向设置在所述内二次风通道内且可沿轴向移动;
    可调节伸缩拉杆(72),所述可调节伸缩拉杆(72)的一端通过第一铰接副与所述轴向叶轮(71)连接;
    锁紧拉杆(73),通过第二铰接副与所述可调节伸缩拉杆(72)的另一端连接。
  4. 根据权利要求3所述的双通道燃烧器,其特征在于,所述可动轴向叶轮组件(7)产生旋转气流的旋流数应控制在0~2范围内。
  5. 根据权利要求1所述的双通道燃烧器,其特征在于,所述内二次风导风筒(3)和外二次风导风筒(4)通过沿周向分布的若干个可动定位组件(8)连接,所述可动定位组件(8)用于调节所述外二次通道的截面积。
  6. 根据权利要求5所述的双通道燃烧器,其特征在于,所述内二次风导风筒(3)上沿周向开设有若干螺纹孔(31),所述外二次风导风筒(4)上沿周向开设有若干光孔(41),且所述外二次风导风筒(4)为柔性筒壁;
    同时,所述可动定位组件(8)主要由调节螺栓(81)和密封垫圈(82)组成,所述调节螺栓(81)穿过所述密封垫圈(82)和所述外二次风导风筒(4)的光孔(41)后与所述内二次风导风筒(3)的螺纹孔(31)螺纹连接。
  7. 根据权利要求6所述的双通道燃烧器,其特征在于,所述外二次风的风速应控制在20~50m/s范围内,所述内二次风和外二次风的比例为1:2。
  8. 根据权利要求1至7任一项所述的双通道燃烧器,其特征在于,所述煤粉供应机构(1)主要由风粉管(11)和回流帽(13)组成,所述风粉管(11)置于所述燃烧器本体的中心轴线上,所述回流帽(13)设置在所述风粉管(11)的出口端且位于所述稳燃腔(5)的出口段,所述稳燃腔(5)上开设有若干通孔。
  9. 根据权利要求1至7任一项所述的双通道燃烧器,其特征在于,所述煤粉供应机构(1)包括风粉管(11)和浓淡分离器(12),所述风粉管(11)布置于所述燃烧器本体的中心轴线上且与所述稳燃腔(5)相连通,所述浓淡分离器(12)可拆卸地连接在所述风粉管(11)上,用于使给入所述稳燃腔(5)的煤粉呈内浓外淡或内淡外浓的浓度分布。
  10. 根据权利要求9所述的双通道燃烧器,其特征在于,所述浓淡分离器(12)为喉口型浓淡分离器、齿轮型浓淡分离器或花瓣形浓淡分离器,且所述浓淡分离器(12)的外壁上形成有外螺纹,同时在位于所述风粉管(11)出口段的内壁上形成有内螺纹,所述浓淡分离器(12)由所述风粉管(11)的出口端***所述风粉管(11)内,并与所述风粉管(11)螺纹连接。
  11. 根据权利要求8或9所述的双通道燃烧器,其特征在于,所述过渡通道(2)为一端敞口、另一端封闭的筒形结构,所述风粉管(11)贯穿所述过渡通道(2)的封闭端后伸入所述燃烧器本体内部,所述过渡通道(2)内安装有点火器和/或火焰检测器;
    所述过渡通道(2)为圆锥形、椭圆形或圆柱形钝体,且所述过渡通道(2)的最宽直径应小于所述内二次风导风筒(3)的内径,最窄直径应大于所述点火器和/或火焰检测器的最大直径。
  12. 一种如权利要求9所述的双通道燃烧器的使用方法,其特征在于,所述煤粉供应机构(1)包括风粉管(11)和浓淡分离器(12),所述使用方法包括以下步骤:
    1)根据煤种选择相应的浓淡分离器(12)安装至风粉管(11)上;
    2)空气分成两路进入燃烧器本体,空气中的一路经过可动轴向叶轮组件(7)和内二次风通道后形成具有切向速度的旋转内二次风直接进入稳燃腔(5),且内二次风通道与过渡通道(2)共同作用形成一个嵌套型的高温回流区;
    3)与此同时,煤粉气流经过风粉管(11)和浓淡分离器(12)喷射进入稳燃腔(5),煤粉在稳燃腔(5)内呈现内浓外淡或内淡外浓的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与内二次风混合在一起后形成主火焰;
    4)空气中的另一路通过外二次风通道形成外二次风,外二次风的一部分经外二次风导风筒(4)的扩口后形成沿稳燃腔(5)壁面流动的冷却空气层,以冷却稳燃腔(5)和整流腔(6);外二次风的另一部分则与主火焰经整流腔(6)形成风包火的高速喷射火焰进入炉膛。
  13. 一种如权利要求11所述的双通道燃烧器的使用方法,其特征在于,所述煤粉供应机构(1)主要由风粉管(11)和回流帽(13)组成,所述使用方法包括:
    1)空气分成两路进入燃烧器本体,空气中的一路经过可动轴向叶轮组件(7)和内二次风通道后形成具有切向速度的旋转内二次风直接进入稳燃腔(5),且内二次风通道与过渡通道(2)共同作用形成一个嵌套型的高温回流区;
    2)与此同时,煤粉气流经过风粉管(11)和回流帽(13)组成的回流通道进入高温回流区,煤粉呈现外浓内淡的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与内二次风在过渡通道(2)的封闭端混合在一起后形成主火焰,煤粉气流在燃烧器本体内回旋焚烧;
    3)空气中的另一路通过外二次风通道形成外二次风,外二次风的一部分经外二次风导风筒(4)的扩口后形成沿稳燃腔(5)壁面流动的冷却空气层,以冷却稳燃腔(5)和整流腔(6),使稳燃腔(5)和整流腔(6)的壁面温度低于40℃;外二次风的另一部分则与主火焰经整流腔(6)形成风包火的高速喷射火焰进入炉膛。
  14. 根据权利要求12所述的双通道燃烧器的使用方法,其特征在于,在上述步骤1)中,如果是挥发分高且热值高的煤种,则所述浓淡分离器(12)选择喉口型浓淡分离器或齿轮型浓淡分离器;如果是挥发分低且热值低的煤种,则所述浓淡分离器(12)选择花瓣形浓淡分离器。
  15. 根据权利要求12或13所述的双通道燃烧器的使用方法,其特征在于,在上述步骤中,通过所述可动定位组件(8)调节所述外二次风通道的截面积,进而调整所述外二次风的风速,控制所述内二次风和外二次风的混合速率。
  16. 一种多通道单锥燃烧器,其特征在于,包括煤粉供应机构(1)、过渡通道(2)、多级配风组件(14)、导流板(15)、稳燃腔(5)和整流腔(6);
    所述多级配风组件(14)包括由内至外同轴设置的N个导风筒,且N为不小于2的自然数;其中,第N个导风筒与所述稳燃腔(5)和整流腔(6)顺次连接组成燃烧器本体,所述煤粉供应机构(1)贯穿在所述燃烧器本体内部,所述过渡通道(2)套设在所述煤粉供应机构(1)上,第1个导风筒间隔套设在所述过渡通道(2)的外部,由此相邻两所述导风筒之间以及所述第1个导风筒与所述过渡通道(2)之间共形成N个进风通道;
    同时,除所述第N个导风筒外,其余各所述导风筒均为双层空心结构,即其余各所述导风筒的内侧设置有沿轴向延伸的环形凹槽,至少一个所述导流板(15)的一端***相应所述导风筒的环形凹槽内以与之固定;
    由此,各所述导流板(15)与所述稳燃腔(5)之间形成至少一个直流通道,且各所述导流板(15)的另一端形成有一个扩口,所述扩口的角度与所述稳燃腔(5)的角度相同,以使所述 直流通道的出口端方向平行于所述稳燃腔(5)的壁面。
  17. 根据权利要求16所述的多通道单锥燃烧器,其特征在于,所述N个进风通道的径向宽度各不相同,以根据不同的煤种、负荷选择相应的导风筒***所述导流板(15)。
  18. 根据权利要求16所述的多通道单锥燃烧器,其特征在于,所述导流板(15)的数量控制在1~4个之间,且当所述导流板(15)为两个以上时,位于内侧的所述导流板(15)长度应小于位于外侧的所述导流板(15)长度。
  19. 根据权利要求18所述的多通道单锥燃烧器,其特征在于,如果是挥发分高且热值高的煤种,则加长所述导流板(15)的长度和/或增加所述导流板(15)的数量;
    如果是挥发分低且热值低的煤种,则缩短所述导流板(15)的长度和/或减少所述导流板(15)的数量。
  20. 根据权利要求16所述的多通道单锥燃烧器,其特征在于,在位于所述导流板(15)内侧的进风通道内沿周向安装轴向叶轮,用于使空气经过所述轴向叶轮后形成具有切向速度的旋转风束。
  21. 根据权利要求19所述的多通道单锥燃烧器,其特征在于,所述轴向叶轮产生旋转风束的旋流数应控制在0.6~2范围内。
  22. 根据权利要求16至21任一项所述的多通道单锥燃烧器,其特征在于,所述煤粉供应机构(1)主要由风粉管(11)和回流帽(13)组成,所述风粉管(11)置于所述燃烧器本体的中心轴线上,所述回流帽(13)设置在所述风粉管(11)的出口端且位于所述稳燃腔(5)的出口段。
  23. 根据权利要求16至21任一项所述的多通道单锥燃烧器,其特征在于,所述煤粉供应机构(1)包括风粉管(11)和浓淡分离器(12),所述风粉管(11)布置于所述燃烧器本体的中心轴线上且与所述稳燃腔(5)相连通,所述浓淡分离器(12)可拆卸地连接在所述风粉管(11)上,用于使给入所述稳燃腔(5)的煤粉呈内浓外淡或内淡外浓的浓度分布。
  24. 根据权利要求23所述的多通道单锥燃烧器,所述浓淡分离器(12)为喉口型浓淡分离器、齿轮型浓淡分离器或花瓣形浓淡分离器,且所述浓淡分离器(12)的外壁上形成有外螺纹,同时在位于所述风粉管(11)出口段的内壁上形成有内螺纹,所述浓淡分离器(12)由所述风粉管(11)的出口端***所述风粉管(11)内,并与所述风粉管(11)螺纹连接。
  25. 根据权利要求24所述的多通道单锥燃烧器,其特征在于,如果是挥发分高且热值高的煤种,则所述浓淡分离器(12)选择喉口型浓淡分离器或齿轮型浓淡分离器;如果是挥发分低且热值低的煤种,则所述浓淡分离器(12)选择花瓣形浓淡分离器。
  26. 根据权利要求22或23所述的多通道单锥燃烧器,其特征在于,所述过渡通道(2)为一端敞口、另一端封闭的筒形结构,所述风粉管(11)贯穿所述过渡通道(2)的封闭端后伸 入所述燃烧器本体内部,所述过渡通道(2)内安装有点火器和/或火焰检测器。
  27. 根据权利要求26所述的多通道单锥燃烧器,其特征在于,所述过渡通道(2)为圆锥形、椭圆形或圆柱形钝体,且所述过渡通道(2)的最宽直径应小于所述第1个导风筒的内径,最窄直径应大于所述点火器和/或火焰检测器的最大直径。
  28. 一种如权利要求26所述的多通道单锥燃烧器的使用方法,其特征在于,所述煤粉供应机构(1)主要由风粉管(11)和回流帽(13)组成,所述使用方法包括以下步骤:
    1)根据煤种选择适合长度及数量的导流板(15)***相应的导风筒内,并记最内侧的导流板(15)所在位置为第m个导风筒,在第1~m个进风通道内沿周向安装轴向叶轮;
    2)空气由分级配风组件(3)分为N股进入燃烧器本体,其中第1~m股空气经过轴向叶轮后形成具有切向速度的m股旋转风束进入稳燃腔(5),且m股旋转风束相互作用形成一个多层嵌套式的高温回流区;
    3)与此同时,煤粉气流经过风粉管(11)和回流帽(13)组成的回流通道进入高温回流区,煤粉呈现外浓内淡的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与多股旋转风束在过渡通道(2)的共同作用下混合在一起后形成一个多层的主火焰;
    4)第m+1~N个进风通道则形成直流通道,第m+1~N股空气经过各直流通道后形成具有不同速度的直流风束,该直流风束有两个作用:第一个作用是经导流板(15)的扩口后形成沿稳燃腔(5)壁面流动的冷却空气层,以冷却稳燃腔(5)和整流腔(6);第二个作用是与主火焰经整流腔(6)形成风包火的高速喷射多层火焰进入炉膛。
  29. 一种如权利要求26所述的多通道单锥燃烧器的使用方法,其特征在于,所述煤粉供应机构(1)包括风粉管(11)和浓淡分离器(12),所述使用方法包括:
    1)根据煤种选择相应的浓淡分离器(12)安装至风粉管(11)上,同时根据煤种选择适合长度及数量的导流板(15)***相应的导风筒内,并记最内侧的导流板(15)所在位置为第m个导风筒,在第1~m个进风通道内沿周向安装轴向叶轮;
    2)空气由分级配风组件(3)分为N股进入燃烧器本体,其中第1~m股空气经过轴向叶轮后形成具有切向速度的m股旋转风束进入稳燃腔(5),且m股旋转风束相互作用形成一个多层嵌套式的高温回流区;
    3)与此同时,煤粉气流经过风粉管(11)和浓淡分离器(12)喷射进入稳燃腔(5),煤粉在稳燃腔(5)内呈现内浓外淡或内淡外浓的浓度分布,煤粉经过高温回流区预热到900~1000℃,煤粉在低氧、炙热的高温回流区内热解,并与多股旋转风束在过渡通道(2)的共同作用下混合在一起后形成一个多层的主火焰;
    4)第m+1~N个进风通道则形成直流通道,第m+1~N股空气经过各直流通道后形成具 有不同速度的直流风束,该直流风束有两个作用:第一个作用是经导流板(15)的扩口后形成沿稳燃腔(5)壁面流动的冷却空气层,以冷却稳燃腔(5)和整流腔(6);第二个作用是与主火焰经整流腔(6)形成风包火的高速喷射多层火焰进入炉膛。
  30. 根据权利要求28或29所述的多通道单锥燃烧器的使用方法,其特征在于,所述直流风束的风速应控制在30~50m/s范围内。
PCT/CN2021/115434 2020-08-31 2021-08-30 双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法 WO2022042732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/002,070 US20230272906A1 (en) 2020-08-31 2021-08-30 Two-channel burner and method of use therefor, and multi-channel single-cone burner and method of use therefor

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202010896256.0 2020-08-31
CN202021858248.9 2020-08-31
CN202010896256.0A CN111895399A (zh) 2020-08-31 2020-08-31 一种双通道逆喷式旋流燃烧器及其使用方法
CN202021858293.4 2020-08-31
CN202021857105.6 2020-08-31
CN202021858293.4U CN212657706U (zh) 2020-08-31 2020-08-31 一种多通道浓淡分离式单锥燃烧器
CN202021858246.X 2020-08-31
CN202010895168.9 2020-08-31
CN202021858248.9U CN212841554U (zh) 2020-08-31 2020-08-31 一种双通道逆喷式旋流燃烧器
CN202021858246.XU CN212657705U (zh) 2020-08-31 2020-08-31 一种多通道逆喷式旋流单锥燃烧器
CN202010895168.9A CN111895397A (zh) 2020-08-31 2020-08-31 一种双通道浓淡分离式燃烧器及其使用方法
CN202010896271.5 2020-08-31
CN202010895193.7 2020-08-31
CN202021857105.6U CN213178315U (zh) 2020-08-31 2020-08-31 一种双通道浓淡分离式燃烧器
CN202010895193.7A CN111895398A (zh) 2020-08-31 2020-08-31 一种多通道浓淡分离式单锥燃烧器及其使用方法
CN202010896271.5A CN111895400A (zh) 2020-08-31 2020-08-31 一种多通道逆喷式旋流单锥燃烧器及其使用方法

Publications (1)

Publication Number Publication Date
WO2022042732A1 true WO2022042732A1 (zh) 2022-03-03

Family

ID=80354700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115434 WO2022042732A1 (zh) 2020-08-31 2021-08-30 双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法

Country Status (2)

Country Link
US (1) US20230272906A1 (zh)
WO (1) WO2022042732A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2731277Y (zh) * 2004-06-29 2005-10-05 东南大学 旋流燃烧器的花瓣稳燃器
JP2005273973A (ja) * 2004-03-24 2005-10-06 Hitachi Ltd バーナと燃料燃焼方法及びボイラの改造方法
CN101576255A (zh) * 2009-06-10 2009-11-11 煤炭科学研究总院 一种煤粉燃烧器
JP2013194994A (ja) * 2012-03-21 2013-09-30 Kawasaki Heavy Ind Ltd 微粉炭バイオマス混焼バーナ
CN204165044U (zh) * 2014-08-26 2015-02-18 山西蓝天环保设备有限公司 一种逆流预混式煤粉低氮燃烧器
CN206274163U (zh) * 2016-12-16 2017-06-23 神华集团有限责任公司 煤粉燃烧器
CN107575861A (zh) * 2017-10-09 2018-01-12 上海锅炉厂有限公司 一种宽煤种适应性的工业锅炉用煤粉燃烧器
CN207514904U (zh) * 2017-10-09 2018-06-19 上海锅炉厂有限公司 宽煤种适应性的工业锅炉用煤粉燃烧器
CN208025506U (zh) * 2018-01-26 2018-10-30 山东大学 一种煤粉燃烧器
CN111895399A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种双通道逆喷式旋流燃烧器及其使用方法
CN111895397A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种双通道浓淡分离式燃烧器及其使用方法
CN111895398A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种多通道浓淡分离式单锥燃烧器及其使用方法
CN111895400A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种多通道逆喷式旋流单锥燃烧器及其使用方法
CN212657705U (zh) * 2020-08-31 2021-03-05 煤科院节能技术有限公司 一种多通道逆喷式旋流单锥燃烧器
CN212657706U (zh) * 2020-08-31 2021-03-05 煤科院节能技术有限公司 一种多通道浓淡分离式单锥燃烧器
CN212841554U (zh) * 2020-08-31 2021-03-30 煤科院节能技术有限公司 一种双通道逆喷式旋流燃烧器
CN213178315U (zh) * 2020-08-31 2021-05-11 煤科院节能技术有限公司 一种双通道浓淡分离式燃烧器

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273973A (ja) * 2004-03-24 2005-10-06 Hitachi Ltd バーナと燃料燃焼方法及びボイラの改造方法
CN2731277Y (zh) * 2004-06-29 2005-10-05 东南大学 旋流燃烧器的花瓣稳燃器
CN101576255A (zh) * 2009-06-10 2009-11-11 煤炭科学研究总院 一种煤粉燃烧器
JP2013194994A (ja) * 2012-03-21 2013-09-30 Kawasaki Heavy Ind Ltd 微粉炭バイオマス混焼バーナ
CN204165044U (zh) * 2014-08-26 2015-02-18 山西蓝天环保设备有限公司 一种逆流预混式煤粉低氮燃烧器
CN206274163U (zh) * 2016-12-16 2017-06-23 神华集团有限责任公司 煤粉燃烧器
CN107575861A (zh) * 2017-10-09 2018-01-12 上海锅炉厂有限公司 一种宽煤种适应性的工业锅炉用煤粉燃烧器
CN207514904U (zh) * 2017-10-09 2018-06-19 上海锅炉厂有限公司 宽煤种适应性的工业锅炉用煤粉燃烧器
CN208025506U (zh) * 2018-01-26 2018-10-30 山东大学 一种煤粉燃烧器
CN111895399A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种双通道逆喷式旋流燃烧器及其使用方法
CN111895397A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种双通道浓淡分离式燃烧器及其使用方法
CN111895398A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种多通道浓淡分离式单锥燃烧器及其使用方法
CN111895400A (zh) * 2020-08-31 2020-11-06 煤科院节能技术有限公司 一种多通道逆喷式旋流单锥燃烧器及其使用方法
CN212657705U (zh) * 2020-08-31 2021-03-05 煤科院节能技术有限公司 一种多通道逆喷式旋流单锥燃烧器
CN212657706U (zh) * 2020-08-31 2021-03-05 煤科院节能技术有限公司 一种多通道浓淡分离式单锥燃烧器
CN212841554U (zh) * 2020-08-31 2021-03-30 煤科院节能技术有限公司 一种双通道逆喷式旋流燃烧器
CN213178315U (zh) * 2020-08-31 2021-05-11 煤科院节能技术有限公司 一种双通道浓淡分离式燃烧器

Also Published As

Publication number Publication date
US20230272906A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
KR100826263B1 (ko) 오버에어포트, 애프터에어포트, 보일러, 보일러설비,보일러설비의 운전방법 및 보일러설비의 개수방법
JP2544662B2 (ja) バ―ナ―
CA2496644C (en) Burner, fuel combustion method and boiler retrofit method
JP4264004B2 (ja) NOx低放出の改良型バーナーシステム
CN111895400A (zh) 一种多通道逆喷式旋流单锥燃烧器及其使用方法
CN101644431B (zh) 具有自稳能力的三级配风低NOx煤粉燃烧器
CN111895397A (zh) 一种双通道浓淡分离式燃烧器及其使用方法
WO2012163107A1 (zh) 一种浓相旋流煤粉燃烧器
CN109882841B (zh) 一种解耦燃气燃烧器
JP4444791B2 (ja) 燃料燃焼用空気ポート、その製造方法及びボイラ
JP6490698B2 (ja) リーンガスバーナ
WO2015103831A1 (zh) 一种节油/气点火稳燃低氮旋流煤粉燃烧器
EP2738461A1 (en) Solid fuel burner
CN102679337B (zh) 一种火焰形状与混合强度可调的旋流燃烧器
CN111780106B (zh) 轧钢加热炉无焰燃烧器及其应用
CN111895399A (zh) 一种双通道逆喷式旋流燃烧器及其使用方法
CN111895398A (zh) 一种多通道浓淡分离式单锥燃烧器及其使用方法
JP3239142B2 (ja) 放射状層化火炎中心バーナの制御を行う方法
CN213178315U (zh) 一种双通道浓淡分离式燃烧器
CN212657705U (zh) 一种多通道逆喷式旋流单锥燃烧器
CN212657706U (zh) 一种多通道浓淡分离式单锥燃烧器
CN212841554U (zh) 一种双通道逆喷式旋流燃烧器
WO2022042732A1 (zh) 双通道燃烧器及其使用方法和多通道单锥燃烧器及其使用方法
AU2011332718B2 (en) Pulverized fuel fired boiler equipment
CN212456826U (zh) 一种高效低NOx双涡旋流煤粉燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860564

Country of ref document: EP

Kind code of ref document: A1