WO2022042321A1 - 高清视频的调度方法、基站、调度***和存储介质 - Google Patents

高清视频的调度方法、基站、调度***和存储介质 Download PDF

Info

Publication number
WO2022042321A1
WO2022042321A1 PCT/CN2021/112317 CN2021112317W WO2022042321A1 WO 2022042321 A1 WO2022042321 A1 WO 2022042321A1 CN 2021112317 W CN2021112317 W CN 2021112317W WO 2022042321 A1 WO2022042321 A1 WO 2022042321A1
Authority
WO
WIPO (PCT)
Prior art keywords
definition video
bandwidth flow
scheduling
air interface
bandwidth
Prior art date
Application number
PCT/CN2021/112317
Other languages
English (en)
French (fr)
Inventor
张勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21860160.7A priority Critical patent/EP4192017A4/en
Publication of WO2022042321A1 publication Critical patent/WO2022042321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/752Media network packet handling adapting media to network capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2402Monitoring of the downstream path of the transmission network, e.g. bandwidth available
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/262Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
    • H04N21/26208Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists the scheduling operation being performed under constraints
    • H04N21/26216Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists the scheduling operation being performed under constraints involving the channel capacity, e.g. network bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems

Definitions

  • the embodiments of the present application relate to the technical field of 5G wireless communication, and in particular, to a scheduling method, base station, scheduling system, and storage medium for high-definition video.
  • Embodiments of the present application provide a scheduling method, base station, scheduling system, and storage medium for high-definition video, so as to solve one of the related technical problems at least to a certain extent, including simultaneously performing FTP, UDP, etc., can easily lead to the problem that the picture of the streaming video is stuck or the picture is not smooth or the download is time-consuming.
  • an embodiment of the present application provides a method for scheduling high-definition video, the method comprising: determining whether multiple detected packets correspond to high-definition video, and estimating the bandwidth flow required by the high-definition video; Determine the service quality of the high-definition video based on the high-definition video and bandwidth traffic, and schedule the high-definition video according to the service quality.
  • an embodiment of the present application further provides a base station, including a memory and a processor, where the memory is used to store a computer program; the processor is used to execute the computer program and implement the aforementioned high-definition when executing the computer program The steps of the video scheduling method.
  • an embodiment of the present application further proposes a scheduling system, including a base station and a terminal, where the base station executes the aforementioned scheduling method for high-definition video to schedule the high-definition video, and sends it to the terminal.
  • an embodiment of the present application further provides a computer-readable storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors , so as to realize the steps of the aforementioned scheduling method for high-definition video.
  • FIG. 1 is a schematic flowchart of a method for scheduling a high-definition video provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first scenario of a base station and a terminal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a second scenario of a base station and a terminal according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another high-definition video scheduling method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a call provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of the structure of a base station according to an embodiment of the present application.
  • the embodiments of the present application provide a scheduling method, a base station, a calling system and a storage medium for a high-definition video.
  • FIG. 1 is a schematic flowchart of a method for scheduling high-definition video provided by an embodiment of the present application.
  • this embodiment provides a method for scheduling high-definition video, and the method includes the following steps:
  • Step S110 Determine whether the detected multiple packets correspond to high-definition videos, and estimate the bandwidth flow required by the high-definition videos.
  • multiple packets are detected, and it is determined whether the detected multiple packets correspond to high-definition videos. For example, based on what is shown in FIG. 2 , the base station detects multiple packets of one terminal. Or, based on what is shown in FIG. 3 , the base station detects packets of multiple terminals. When multiple packets of one terminal or packets of multiple terminals are detected, the type of each packet is acquired. According to the type of each packet, it is determined whether there is a corresponding high-definition video in the packet. An exemplary example is, when detecting a downlink packet received in the terminal, the type of the downlink packet is identified through the PDCP layer.
  • the base station includes a CU side, which is a centralized unit, and the CU side includes a PDCP layer, a PDCP layer (Packet Data Convergence Protocol), and the PDCP layer is an abbreviation for the packet data convergence protocol.
  • the PDCP layer decodes the downlink message to identify the type of the downlink message. If it is detected that the type of the downlink packet is an RTP protocol packet, it is determined that the downlink packet corresponds to a high-definition video.
  • RTP Real-time Transport Protocol
  • the bandwidth traffic required by the high-definition videos is estimated.
  • An example is obtaining the packet length and the number of packets of the high-definition video, and obtaining the estimated bandwidth flow of the high-definition video through the packet length and the number of packets. For example, when a packet of a high-definition video is obtained, the packet length and the number of packets of the high-definition video are counted from the packet. Estimate the bandwidth flow of the high-definition video by calculating the packet length and the number of packets.
  • determining whether the detected multiple packets correspond to high-definition video includes: determining the type of each packet in the detected multiple packets; if it is determined that the type is a real-time transmission protocol packet, obtaining the real-time transmission protocol The download rate of the packet; when the download rate is greater than the preset download rate, it is determined that the video corresponding to the real-time transmission protocol packet is a high-definition video.
  • multiple packets are detected, and it is determined whether the detected multiple packets correspond to high-definition videos. For example, based on what is shown in FIG. 2 , the base station detects multiple packets of one terminal. Or, based on what is shown in FIG. 3, the base station detects the packets of multiple terminals. When multiple packets of one terminal or packets of multiple terminals are detected, the type of each packet is acquired. According to the type of each packet, it is determined whether there is a corresponding high-definition video in the packet. An exemplary example is, when detecting a downlink packet received in the terminal, the type of the downlink packet is identified through the PDCP layer.
  • the base station includes a CU side, which is a centralized unit, and the CU side includes a PDCP layer, a PDCP layer (Packet Data Convergence Protocol), and the PDCP layer is an abbreviation for the packet data convergence protocol.
  • the downlink message is decoded by the PDCP layer to obtain the type of the downlink message. If it is detected that the type of the downlink packet is an RTP protocol packet, obtain the download rate of the real-time transport protocol packet, where RTP (Real-time Transport Protocol).
  • RTP Real-time Transport Protocol
  • the PDCP layer counts the bit stream and the incoming packet rate of the downlink packet, and obtains the download rate of the real-time transport protocol packet by calculating the bit stream and the incoming packet rate.
  • the download rate is compared with the preset download rate, and if the download rate is greater than the preset download rate, it is determined that the video corresponding to the real-time transmission protocol message is a high-definition video. For example, when the obtained download rate of the real-time transmission protocol packet is 30 Mbps, and the obtained preset download rate is 10 Mbps, it is determined that the video corresponding to the real-time transmission protocol packet is a high-definition video.
  • estimating the bandwidth flow required by the high-definition video includes: estimating the bandwidth flow required by the high-definition video based on the download rate of the high-definition video.
  • the bandwidth flow required by the high-definition video is estimated by the download rate of the high-definition video.
  • the download rate of the acquired high-definition video is 20Mbps
  • the estimated bandwidth required by the high-definition video is 20Mbps
  • the acquired download rate of the high-definition video is 30Mbps
  • the estimated bandwidth required by the high-definition video is Traffic is 30Mbps.
  • Step S120 Determine the service quality of the high-definition video based on the high-definition video and bandwidth traffic, and schedule the high-definition video according to the service quality.
  • An exemplary example is, when it is determined to be a high-definition video, the bearer level and air interface bandwidth traffic of the high-definition video are obtained.
  • the base station includes a DU side, and the DU side is a distributed unit.
  • the CU side determines that the multiple packets correspond to the high-definition video, it sends the multiple packets to the DU side corresponding to the high-definition video, so as to obtain the estimated air interface bandwidth flow of the high-definition video uploaded by the DU side.
  • the service quality of the high-definition video is determined according to the air interface bandwidth flow and the bandwidth flow, wherein the service quality includes the priority level and/or scheduling information of the high-definition video.
  • the air interface bandwidth traffic and the bandwidth traffic are compared. If the bandwidth flow of the air interface is greater than or equal to the bandwidth flow, the bearer levels of multiple packets are obtained, and the priority level is obtained. service quality. Or, if the air interface bandwidth flow is less than the bandwidth flow, obtain the difference bandwidth flow between the air interface bandwidth flow and the bandwidth flow, and use the difference bandwidth flow as the service quality of the high-definition video.
  • the DU side includes the MAC layer, and the MAC (media access control) layer is the data link layer in the seven-layer protocol of the open system interconnection.
  • the MAC layer obtains the service quality, and schedules the high-definition video according to the obtained service quality.
  • the control plane obtains the service quality of the high-definition video determined by the CU side
  • the MAC layer obtains the service data for scheduling the high-definition video according to the quality of service delivered by the control plane.
  • the obtained quality of service is a priority level
  • the DU side will schedule the bearer level of the high-definition video according to the priority level.
  • the bearer level of the high-definition video when the bearer level of the high-definition video is the third level, modify the bearer level of the high-definition video to the first level.
  • the quality of service is scheduling information
  • the DU side will schedule the air interface bandwidth traffic of the high-definition video according to the scheduling information.
  • the scheduling information is 10 Mbps
  • the air interface bandwidth flow of the high-definition video is 10 Mbps
  • the air interface bandwidth flow of the high-definition video is modified to 20 Mbps through the scheduling information 10 Mbps.
  • the quality of service includes priority levels and scheduling information
  • determining the service quality of the high-definition video based on the high-definition video and bandwidth traffic includes: sorting multiple packets to obtain a priority level, wherein the high-definition video in the priority level is: The corresponding packet has a higher level than other packets in the multiple packets; obtains the air interface bandwidth traffic of the high-definition video, and determines the scheduling information of the high-definition video according to the air interface bandwidth traffic and the bandwidth traffic.
  • the example is to obtain the bearer levels of multiple packets, and sort the bearer levels of multiple packets to obtain the optimal level.
  • the packets corresponding to the high-definition video in the priority level are higher than other packets in the multiple packets. load rating. For example, the bearer level of the first packet, the bearer level of the second packet, and the bearer level of the high-definition video corresponding to the third packet are obtained, and the bearer level of the first level is obtained, wherein the bearer level of the first level is higher than The bearer level of other packets.
  • the base station includes a DU side, and the air interface bandwidth traffic of the high-definition video is estimated through the DU side.
  • the air interface bandwidth traffic of the terminal is 100Mbps and the number of packets is 4, the air interface bandwidth traffic of each packet is estimated to be 25Mbps, that is, the packet corresponds to The air interface bandwidth traffic of the high-definition video of the video is 25Mbps.
  • the air interface bandwidth flow of the terminal is 100 Mbps, that is, the air interface bandwidth flow of the high-definition video corresponding to the video is 100 Mbps.
  • the scheduling information of the high-definition video is determined. For example, when the bandwidth flow is 20 Mbps and the air interface bandwidth flow is 25 Mbps, it is determined that the scheduling information of the high-definition video is 25 Mbps. Or, when the bandwidth flow is 20 Mbps and the air interface bandwidth flow is 100 Mbps, it is determined that the scheduling information of the high-definition video is 100 Mbps.
  • determining the scheduling information of the high-definition video according to the air interface bandwidth traffic and the bandwidth traffic includes:
  • the difference bandwidth flow between the air interface bandwidth flow and the bandwidth flow is obtained; based on the difference bandwidth flow, the scheduling information of the high-definition video is determined.
  • An exemplary example is to compare the obtained air interface bandwidth flow with the bandwidth flow, and if the air interface bandwidth flow is less than the bandwidth flow, obtain the difference bandwidth flow between the air interface bandwidth flow and the bandwidth flow. For example, when the bandwidth flow is 50Mbps and the air interface bandwidth flow is 20Mbps, the difference bandwidth flow between the air interface bandwidth flow and the bandwidth flow is obtained as 30Mbps, and the difference bandwidth flow of 30Mbps is determined as the scheduling information of the high-definition video.
  • scheduling high-definition video according to service quality includes: scheduling the bearer level of high-definition video based on priority;
  • An exemplary example is that the control plane obtains the service quality of the high-definition video in the CU side, and delivers the service quality to the DU side.
  • the DU side schedules the bearer level of the high-definition video according to the priority level in the quality of service, so that the bearer level of the high-definition video is the first level.
  • schedule the air interface bandwidth traffic of the high-definition video according to the scheduling information so that the scheduled air interface bandwidth traffic is consistent with the wide traffic.
  • the traffic is 20Mbps
  • the air interface bandwidth traffic of the second packet is 50Mbps
  • the differential bandwidth traffic is 30Mbps through the scheduling information
  • the air interface bandwidth traffic of HD video is scheduled to 50Mbps from 20Mbps.
  • the air interface bandwidth flow of the second packet is 20 Mbps, and the second packet does not correspond to high-definition video.
  • the corresponding high-definition video exists in the packet is determined by the type, the bandwidth traffic of the high-definition video is estimated, and the service quality is determined according to the high-definition video and the bandwidth traffic, Scheduling the bearer level of HD video according to the priority level in the quality of service and scheduling the air interface bandwidth traffic of HD video according to the scheduling information in the quality of service, so that the download time can be saved by scheduling the bearer level of HD video, or the bandwidth flow of the air interface can be increased by scheduling The smoothness of the picture in HD video.
  • FIG. 4 is a schematic flowchart of another high-definition video scheduling method provided by an embodiment of the present application.
  • this embodiment provides a method for scheduling high-definition video, and the method includes the following steps:
  • Step S210 Determine whether the detected multiple packets correspond to high-definition video, and estimate the bandwidth flow required by the high-definition video.
  • multiple packets are detected, and it is determined whether the detected multiple packets correspond to high-definition videos. For example, based on what is shown in FIG. 2 , the base station detects multiple packets of one terminal. Or, based on what is shown in FIG. 3 , the base station detects packets of multiple terminals. When multiple packets of one terminal or packets of multiple terminals are detected, the type of each packet is acquired. According to the type of each packet, it is determined whether there is a corresponding high-definition video in the packet. An exemplary example is, when detecting a downlink packet received in the terminal, the type of the downlink packet is identified through the PDCP layer.
  • the base station includes a CU side, which is a centralized unit, and the CU side includes a PDCP layer, a PDCP layer (Packet Data Convergence Protocol), and the PDCP layer is an abbreviation for the packet data convergence protocol.
  • the downlink message is decoded by the PDCP layer to obtain the type of the downlink message. If it is detected that the type of the downlink packet is an RTP protocol packet, it is determined that the downlink packet corresponds to a high-definition video.
  • RTP Real-time Transport Protocol
  • the bandwidth traffic required by the high-definition videos is estimated.
  • An example is obtaining the packet length and the number of packets of the high-definition video, and obtaining the estimated bandwidth flow of the high-definition video through the packet length and the number of packets. For example, when a packet of a high-definition video is obtained, the packet length and the number of packets of the high-definition video are counted from the packet. Estimate the bandwidth flow of the high-definition video by calculating the packet length and the number of packets.
  • Step S220 Acquire the air interface bandwidth flow of the high-definition video.
  • the base station includes a DU side, and the DU side is a distributed unit.
  • the CU side determines that the multiple packets correspond to the high-definition video, it sends the multiple packets to the DU side corresponding to the high-definition video, so as to obtain the estimated air interface bandwidth flow of the high-definition video uploaded by the DU side.
  • Step S230 If it is determined that the bandwidth flow of the air interface is less than the bandwidth flow, it is determined that the high-definition video needs to be scheduled.
  • the air interface bandwidth flow is compared with the bandwidth flow, and if it is determined that the air interface bandwidth flow is less than the bandwidth flow, it is determined that high-definition video needs to be scheduled. For example, when the bandwidth traffic is 50 Mbps and the air interface bandwidth traffic is 20 Mbps, it is determined that the air interface bandwidth traffic is smaller than the bandwidth traffic.
  • the scheduling of the high-definition video includes scheduling the bearer level of the high-definition video and scheduling the air interface bandwidth traffic of the high-definition video.
  • Step S240 Determine the service quality of the high-definition video based on the high-definition video and the bandwidth traffic, and schedule the high-definition video according to the service quality.
  • An exemplary example is to rank multiple packets to obtain a priority level, wherein in the priority level, the packets corresponding to the high-definition video are higher than other packets in the multiple packets; to obtain the air interface bandwidth traffic of the high-definition video, Determine the scheduling information of the high-definition video according to the air interface bandwidth traffic and the bandwidth traffic.
  • the base station includes a DU side, and the air interface bandwidth traffic of the high-definition video is estimated through the DU side.
  • the air interface bandwidth traffic of the terminal is 100Mbps and the number of packets is 4, the air interface bandwidth traffic of each packet is estimated to be 25Mbps, that is, the packet corresponds to The air interface bandwidth traffic of the high-definition video of the video is 25Mbps.
  • the air interface bandwidth flow of the terminal is 100 Mbps, that is, the air interface bandwidth flow of the high-definition video corresponding to the video is 100 Mbps.
  • the scheduling information of the high-definition video is determined. For example, when the bandwidth flow is 20 Mbps and the air interface bandwidth flow is 25 Mbps, it is determined that the scheduling information of the high-definition video is 25 Mbps. Or, when the bandwidth flow is 20 Mbps and the air interface bandwidth flow is 100 Mbps, it is determined that the scheduling information of the high-definition video is 100 Mbps.
  • the difference bandwidth flow between the air interface bandwidth flow and the bandwidth flow is obtained as 30Mbps, and the difference bandwidth flow of 30Mbps is determined as the scheduling information of the high-definition video.
  • the control plane obtains the service quality of the high-definition video in the CU side, and delivers the service quality to the DU side.
  • the DU side schedules the bearer level of the high-definition video according to the priority level in the quality of service, so that the bearer level of the high-definition video is the first level.
  • schedule the air interface bandwidth traffic of the high-definition video according to the scheduling information so that the scheduled air interface bandwidth traffic is consistent with the wide traffic.
  • the traffic is 20Mbps
  • the air interface bandwidth traffic of the second packet is 50Mbps
  • the differential bandwidth traffic is 30Mbps through the scheduling information
  • the air interface bandwidth traffic of HD video is scheduled to 50Mbps from 20Mbps.
  • the air interface bandwidth flow of the second packet is 20 Mbps, and the second packet does not correspond to high-definition video.
  • the bandwidth flow of the high-definition video is estimated, the air interface bandwidth flow of the high-definition video is obtained, and the high-definition video is determined according to the bandwidth flow and the air interface bandwidth flow. If the video needs to be scheduled, the service quality is determined based on the high-definition video and air interface bandwidth traffic.
  • the video bearer level saves the download time, and improves the picture fluency of high-definition video by scheduling air interface bandwidth traffic.
  • the scheduling system 500 includes: a base station 501 , a first type of user equipment 502 and a second type of user equipment 503 , wherein the first type of user equipment 502 and the first type of user equipment 502
  • the second type of user equipment 503 may be a mobile phone, a tablet, a notebook, a desktop computer, a TV, etc., and the number may be multiple, which is not limited.
  • FIG. 6 is a schematic structural block diagram of a base station provided by an embodiment of the present application.
  • the base station further includes a processor and a memory for storing the computer program.
  • the processor is configured to execute the computer program and implement the aforementioned scheduling method for high-definition video provided by the embodiments of the present application when the computer program is executed.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated circuits) Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor or the like.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by the processor, enables the processor to realize the scheduling of any one of the high-definition videos provided in the embodiments of the present application method.
  • the embodiments of the present application disclose a scheduling method, a base station, a calling system and a storage medium for high-definition video.
  • determining whether multiple detected packets correspond to high-definition video, and estimating the bandwidth flow required by the high-definition video; based on the high-definition video Determine the service quality of high-definition video and bandwidth traffic, schedule high-definition video according to the quality of service, so as to determine the existence of corresponding high-definition video in multiple packets, and schedule high-definition video and air interface bandwidth traffic of high-definition video according to the obtained service quality to improve high-definition video.
  • the video picture is smooth and saves the download time of HD video.
  • computer-readable storage medium includes volatile and non-volatile and non-volatile storage media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules or other data. Volatile, removable and non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
  • the computer-readable storage medium may be an internal storage unit of the electronic device of the foregoing embodiments, such as a hard disk or a memory of the electronic device.
  • the computer-readable storage medium can also be an external storage device of the electronic device, such as a plug-in hard disk equipped on the electronic device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card ( Flash Card), etc.
  • the electronic equipment and computer-readable storage medium provided by the foregoing embodiments can obtain a corresponding smart contract by contracting the acquired artificial intelligence model, and deploy the smart contract in the blockchain.
  • the smart contract by converting the artificial intelligence model into a smart contract, the smart contract can be smoothly deployed into the blockchain network, and the deployment of the artificial intelligence model into the smart contract on the blockchain can be completed, thereby ensuring the data reasoning process.
  • the whole process is traceable and verifiable, while ensuring the security of data, models and transactions of two or more users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

一种高清视频的调度方法、基站、调用***和存储介质,属于5G无线通讯技术领域。该方法包括:确定检测到多个报文是否对应有高清视频,并预估高清视频所需的带宽流量(S110);基于高清视频和带宽流量确定高清视频的服务质量,根据服务质量调度高清视频(S120)。

Description

高清视频的调度方法、基站、调度***和存储介质
相关申请的交叉引用
本申请基于申请号为202010899552.6、申请日为2020年08月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及5G无线通讯技术领域,尤其涉及一种高清视频的调度方法、基站、调度***和存储介质。
背景技术
随着5G无线通讯技术的逐步成熟商用,高清视频等业务作为5G的关键业务场景,而流媒体视频点播等对空口带宽的要求也逐步提高,流媒体视频由于片源不一样,其需要的带宽从几M到几百M不等。而在点播流媒体视频的过程中也同时进行FTP(File Transfer Protocol文件传输协议)、UDP(User Datagram Protocol用户数据报协议)等,容易导致流媒体视频的画面卡顿或下载耗时。
发明内容
本申请实施例提供了一种高清视频的调度方法、基站、调度***和存储介质,以至少在一定程度上解决相关的技术问题之一,包括在进行流媒体视频的过程中也同时进行FTP、UDP等,容易导致流媒体视频的画面卡顿或画面不流畅或下载耗时的问题。
有鉴于此,第一方面,本申请实施例提供了一种高清视频的调度方法,该方法包括:确定检测到多个报文是否对应有高清视频,并预估高清视频所需的带宽流量;基于高清视频和带宽流量确定高清视频的服务质量,根据服务质量调度高清视频。
第二方面,本申请实施例还提出了一种基站,包括存储器和处理器,存储器用于存储计算机程序;所述处理器,用于执行计算机程序并在执行所述计算机程序时实现前述的高清视频的调度方法的步骤。
第三方面,本申请实施例还提出了一种调度***,包括基站和终端,基站执行前述的高清视频的调度方法对高清视频进行调度,并发送给终端。
第四方面,本申请实施例还提出了一种计算机可读存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现前述的高清视频的调度方法的步骤。
附图说明
图1是本申请实施例提供的一种高清视频的调度方法的示意流程图。
图2为本申请实施例的基站与终端的第一场景示意图。
图3是本申请实施例的基站与终端的第二场景示意图。
图4是本申请实施例提供的另一种高清视频的调度方法的示意流程图。
图5是本申请一实施例提供的一种调用的示意性框图。
图6为本申请实施例提供的一种基站的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请实施例的一部分,而不是全部的实施例。基于本申请实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请实施例提供了一种高清视频的调度方法、基站、调用***和存储介质。
下面结合附图,对一些本申请实施方式作详细说明。在不冲突的情况下,下述的发明实施例及发明实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种高清视频的调度方法的示意流程图。
如图1所示,本实施例提供了一种高清视频的调度方法,该方法包括以下步骤:
步骤S110:确定检测到多个报文是否对应有高清视频,并预估高清视频所需的带宽流量。
示范性的,检测多个报文,确定检测到多个报文是否对应有高清视频。例如,基于图2所示,基站检测到一个终端的多个报文。或者,基于图3所示,基站检测到多个终端的报文。当检测到一个终端的多个报文或多个终端的报文时,获取每一个报文的类型。通过每一个报文的类型,确定该报文中是否存在对应有高清视频。示范例为,检测接收到终端中的下行报文时,通过该PDCP层识别出该下行报文的类型。例如,基站包括CU侧,该CU侧为集中式单元,且该CU侧包括PDCP层,PDCP层(Packet Data Convergence Protocol分组数据汇聚协议),PDCP层是对分组数据汇聚协议的一个简称。当检测接收到终端中的下行报文时,通过该PDCP层对该下行报文进行解码,识别该下行报文的类型。若检测到该下行报文的类型为RTP协议报文时,确定该下行报文对应为高清视频。RTP(Real-time Transport Protocol实时传输协议)。
当确定该多个报文中存在对应的高清视频,预估该高清视频所需的带宽流量。示范例为,获取该高清视频的包长和包数,通过该包长和包数得到预估该高清视频的带宽流量。例如,在获取到高清视频的报文时,从该报文中统计该高清视频的包长和包数。通过计算该包长和包数预估该高清视频的带宽流量。
在一实施例中,确定检测到多个报文是否对应有高清视频包括:确定检测到的多个报文中各个报文的类型;若确定类型为实时传输协议报文,则获取实时传输协议报文的下载速率;当下载速率大于预置下载速率,确定实时传输协议报文对应的视频为高清视频。
示范性的,检测多个报文,确定检测到多个报文是否对应有高清视频。例如,基于图2所示,基站检测到一个终端的多个报文。或者,基于图3所示,基站检测到多个终端的 报文。当检测到一个终端的多个报文或多个终端的报文时,获取每一个报文的类型。通过每一个报文的类型,确定该报文中是否存在对应有高清视频。示范例为,检测接收到终端中的下行报文时,通过该PDCP层识别出该下行报文的类型。例如,基站包括CU侧,该CU侧为集中式单元,且该CU侧包括PDCP层,PDCP层(Packet Data Convergence Protocol分组数据汇聚协议),PDCP层是对分组数据汇聚协议的一个简称。当检测接收到终端中的下行报文时,通过该PDCP层对该下行报文进行解码,得到该下行报文的类型。若检测到该下行报文的类型为RTP协议报文时,获取该实时传输协议报文的下载速率,其中,RTP(Real-time Transport Protocol实时传输协议)。例如,PDCP层统计该下行报文的比特流和来包速度,通过计算该比特流和来包速度,得到该实时传输协议报文的下载速率。
将该下载速率与预置下载速率进行比对,若该下载速率大于预置下载速率,则确定该实时传输协议报文对应的视频为高清视频。例如,当得到实时传输协议报文的下载速率为30Mbps,获取到的预置下载速率为10Mbps,则确定该实时传输协议报文对应的视频为高清视频。
在一实施例中,预估高清视频所需的带宽流量,包括:基于高清视频的下载速率,预估高清视频所需的带宽流量。
示范例为,在得到该高清视频的下载速率时,通过该高清视频的下载速率预估该高清视频所需的带宽流量。例如,当获取到高清视频的下载速率为20Mbps时,预估该高清视频所需的带宽流量为20Mbps;或者,当获取到高清视频的下载速率为30Mbps时,预估该高清视频所需的带宽流量为30Mbps。
步骤S120:基于高清视频和带宽流量确定所述高清视频的服务质量,根据服务质量调度所述高清视频。
示范例为,当确定为高清视频时,获取高清视频的承载等级和空口带宽流量。例如,基站包括DU侧,DU侧为分布式单元。当CU侧确定该多个报文中对应有高清视频时,向该DU侧发送该多个报文中对应有高清视频,从而获取该DU侧上传的预估该高清视频的空口带宽流量。当获取到空口带宽流量时,根据空口带宽流量和带宽流量确定该高清视频的服务质量,其中,该服务质量包括该高清视频的优先等级和/或调度信息。例如,当获取到空口带宽流量和带宽流量时,将空口带宽流量和带宽流量进行比对。若空口带宽流量大于或等于带宽流量时,获取多个报文的承载等级,得到优先等级,该优先等级中高清视频的承载等级高于其它报文的承载等级,将该优先等级作为高清视频的服务质量。或者,若空口带宽流量小于带宽流量时,获取空口带宽流量与带宽流量之间的差异带宽流量,将该差异带宽流量作为高清视频的服务质量。
DU侧包括MAC层,MAC(media access control)层是开放式***互联七层协议中数据链路层。MAC层得到服务质量,根据得到的服务质量调度该高清视频。例如,控制面得到CU侧确定高清视频的服务质量,MAC层得到控制面下发的服务质量调度高清视频的业务数据。当得到的服务质量为优先等级时,DU侧将根据该优先等级调度高清视频的承载等级。例如,该高清视频的承载等级为第三等级时,修改该高清视频的承载等级为第一等级。或者,该服务质量为调度信息时,DU侧将根据该调度信息调度高清视频的空口带宽流量。例如,该调度信息为10Mbps,该高清视频的空口带宽流量为10Mbps,通过该调度信息10Mbps修改该高清视频的空口带宽流量为20Mbps。
在一实施例中,服务质量包括优先等级和调度信息,基于高清视频和带宽流量确定高清视频的服务质量,包括:将多个报文进行等级排序,得到优先等级,其中在优先等级中高清视频对应的报文高于多个报文中的其他报文的等级;获取高清视频的空口带宽流量,根据空口带宽流量和带宽流量确定高清视频的调度信息。
示范例为,获取多个报文的承载级别,将多个报文的承载级别进行等级排序,得到最优等级,优先等级中高清视频对应的报文高于多个报文中的其他报文的承载等级。例如,获取到第一报文的承载等级、第二报文的承载等级以及第三报文对应的高清视频的承载等级,得到第一级别的承载等级,其中,第一级别的承载等级高于其它报文的承载等级。
基站包括DU侧,通过该DU侧预估该高清视频的空口带宽流量。例如,当检测到一个终端的多个报文时,该终端的空口带宽流量为100Mbps、报文的数量为4个时,预估每一个报文的空口带宽流量为25Mbps,即该报文对应视频的高清视频的空口带宽流量为25Mbps。或者,当检测到多个终端的报文,其中每个终端之后一个报文时,该终端的空口带宽流量为100Mbps,即该报文对应视频的高清视频的空口带宽流量为100Mbps。根据该空口带宽流量和带宽流量,确定该高清视频的调度信息。例如,该带宽流量为20Mbps、空口带宽流量为25Mbps时,确定该高清视频的调度信息为25Mbps。或者,该带宽流量为20Mbps、空口带宽流量为100Mbps时,确定该高清视频的调度信息为100Mbps。
在一实施例中,根据空口带宽流量和所述带宽流量确定所述高清视频的调度信息,包括:
若空口带宽流量小于带宽流量,则获取空口带宽流量与带宽流量之间的差异带宽流量;基于差异带宽流量,确定高清视频的调度信息。
示范例为,将得到的空口带宽流量与带宽流量进行比对,若空口带宽流量小于带宽流量,则获取空口带宽流量与带宽流量之间的差异带宽流量。例如,带宽流量为50Mbps、空口带宽流量为20Mbps时,获取空口带宽流量与带宽流量之间的差异带宽流量为30Mbps,将该差异带宽流量为30Mbps确定为高清视频的调度信息。
在一实施例中,根据服务质量调度高清视频,包括:基于优先等级,调度高清视频的承载级别;基于调度信息,调度高清视频的空口带宽流量,使调度后的空口带宽流量与宽流量一致。
示范例为,控制面得到CU侧中高清视频的服务质量,将该服务质量下发至DU侧。DU侧根据该服务质量中的优先等级调度该高清视频的承载等级,使高清视频的承载等级为第一等级。在获取到服务质量中调度信息时,根据该调度信息调度高清视频的空口带宽流量,使调度后的空口带宽流量与宽流量一致,例如,调度信息为差异带宽流量为30Mbps,高清视频的空口带宽流量为20Mbps,第二报文的空口带宽流量为50Mbps,通过调度信息为差异带宽流量为30Mbps,将高清视频的空口带宽流量为20Mbps调度至50Mbps。第二报文的空口带宽流量为20Mbps,其中,第二报文对应的不是高清视频。
在本申请实施例中,确定检测多个报文的类型,通过类型确定该报文中存在对应的高清视频,并预估该高清视频的带宽流量,根据该高清视频和带宽流量确定服务质量,根据该服务质量中的优先等级调度高清视频的承载等级以及根据服务质量中的调度信息调度高清视频的空口带宽流量,从而通过调度高清视频的承载等级而节省下载时长,或通过调度空口带宽流量提高高清视频的画面流畅性。
请参阅图4,图4是本申请实施例提供的另一种高清视频的调度方法的示意流程图。
如图4所示,本实施例提供了一种高清视频的调度方法,该方法包括以下步骤:
步骤S210:确定检测到多个报文是否对应有高清视频,并预估高清视频所需的带宽流量。
示范性的,检测多个报文,确定检测到多个报文是否对应有高清视频。例如,基于图2所示,基站检测到一个终端的多个报文。或者,基于图3所示,基站检测到多个终端的报文。当检测到一个终端的多个报文或多个终端的报文时,获取每一个报文的类型。通过每一个报文的类型,确定该报文中是否存在对应有高清视频。示范例为,检测接收到终端中的下行报文时,通过该PDCP层识别出该下行报文的类型。例如,基站包括CU侧,该CU侧为集中式单元,且该CU侧包括PDCP层,PDCP层(Packet Data Convergence Protocol分组数据汇聚协议),PDCP层是对分组数据汇聚协议的一个简称。当检测接收到终端中的下行报文时,通过该PDCP层对该下行报文进行解码,得到该下行报文的类型。若检测到该下行报文的类型为RTP协议报文时,确定该下行报文对应为高清视频。RTP(Real-time Transport Protocol实时传输协议)。
当确定该多个报文中存在对应的高清视频,预估该高清视频所需的带宽流量。示范例为,获取该高清视频的包长和包数,通过该包长和包数得到预估该高清视频的带宽流量。例如,在获取到高清视频的报文时,从该报文中统计该高清视频的包长和包数。通过计算该包长和包数预估该高清视频的带宽流量。
步骤S220:获取高清视频的空口带宽流量。
基站包括DU侧,DU侧为分布式单元。当CU侧确定该多个报文中对应有高清视频时,向该DU侧发送该多个报文中对应有高清视频,从而获取该DU侧上传的预估该高清视频的空口带宽流量。
步骤S230:若确定空口带宽流量小于带宽流量,则确定需要调度高清视频。
当获取空口带宽流量时,将该空口带宽流量与带宽流量进行比对,若确定空口带宽流量小于带宽流量,则确定需要调度高清视频。例如,带宽流量为50Mbps、空口带宽流量为20Mbps时,确定空口带宽流量小于带宽流量。其中调度高清视频包括调度高清视频的承载等级和调度高清视频的空口带宽流量。
步骤S240:基于所述高清视频和所述带宽流量确定所述高清视频的服务质量,根据所述服务质量调度所述高清视频。
示范例为,将多个报文进行等级排序,得到优先等级,其中在优先等级中高清视频对应的报文高于多个报文中的其他报文的等级;获取高清视频的空口带宽流量,根据空口带宽流量和带宽流量确定高清视频的调度信息。
基站包括DU侧,通过该DU侧预估该高清视频的空口带宽流量。例如,当检测到一个终端的多个报文时,该终端的空口带宽流量为100Mbps、报文的数量为4个时,预估每一个报文的空口带宽流量为25Mbps,即该报文对应视频的高清视频的空口带宽流量为25Mbps。或者,当检测到多个终端的报文,其中每个终端之后一个报文时,该终端的空口带宽流量为100Mbps,即该报文对应视频的高清视频的空口带宽流量为100Mbps。根据该空口带宽流量和带宽流量,确定该高清视频的调度信息。例如,该带宽流量为20Mbps、空口带宽流量为25Mbps时,确定该高清视频的调度信息为25Mbps。或者,该带宽流量为20Mbps、空 口带宽流量为100Mbps时,确定该高清视频的调度信息为100Mbps。
将得到的空口带宽流量与带宽流量进行比对,若空口带宽流量小于带宽流量,则获取空口带宽流量与带宽流量之间的差异带宽流量。例如,带宽流量为50Mbps、空口带宽流量为20Mbps时,获取空口带宽流量与带宽流量之间的差异带宽流量为30Mbps,将该差异带宽流量为30Mbps确定为高清视频的调度信息。
控制面得到CU侧中高清视频的服务质量,将该服务质量下发至DU侧。DU侧根据该服务质量中的优先等级调度该高清视频的承载等级,使高清视频的承载等级为第一等级。在获取到服务质量中调度信息时,根据该调度信息调度高清视频的空口带宽流量,使调度后的空口带宽流量与宽流量一致,例如,调度信息为差异带宽流量为30Mbps,高清视频的空口带宽流量为20Mbps,第二报文的空口带宽流量为50Mbps,通过调度信息为差异带宽流量为30Mbps,将高清视频的空口带宽流量为20Mbps调度至50Mbps。第二报文的空口带宽流量为20Mbps,其中,第二报文对应的不是高清视频。
在本申请实施例中,在通过确定检测多个报文中存在高清视频,预估该高清视频的带宽流量,获取该高清视频的空口带宽流量,根据该带宽流量和空口带宽流量,确定该高清视频需要调度,则基于高清视频和空口带宽流量确定服务质量,根据该服务质量中的优先等级调度高清视频的承载等级以及根据服务质量中的调度信息调度高清视频的空口带宽流量,从而通过调度高清视频的承载等级而节省下载时长,通过调度空口带宽流量提高高清视频的画面流畅性。
如图5所示,本实施例提供了调用***的场景示意图,该调度***500包括:基站501、第一类别用户设备502和第二类别用户设备503,其中,第一类别用户设备502和第二类别用户设备503可以为手机、平板、笔记本、台式机、电视等,且数量可以为多个,对此不做限定。
请参阅图6,图6是本申请实施例提供的一种基站的结构示意性框图。
在一些实施例中,基站还包括处理器、存储器,存储器用于存储计算机程序。
处理器,用于执行计算机程序并在执行计算机程序时实现本申请实施例提供的前述高清视频的调度方法。
应当理解的是,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时,使处理器实现本申请实施例提供的任一项高清视频的调度方法。
本申请实施例公开了一种高清视频的调度方法、基站、调用***和存储介质,通过确定检测到多个报文是否对应有高清视频,并预估高清视频所需的带宽流量;基于高清视频和带宽流量确定高清视频的服务质量,根据服务质量调度高清视频,从而确定多个报文中存在对应的高清视频,并通过得到的服务质量调度高清视频以及调度高清视频的空口带宽 流量,提高高清视频的画面流畅和节省高清视频的下载时长。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读存储介质上,计算机可读存储介质可以包括计算机可读存储介质(或非暂时性介质)和通信介质(或暂时性介质)。
如本领域普通技术人员公知的,术语计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机可读存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
示例性的,计算机可读存储介质可以是前述实施例的电子设备的内部存储单元,例如电子设备的硬盘或内存。计算机可读存储介质也可以是电子设备的外部存储设备,例如电子设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
前述各实施例提供的电子设备和计算机可读存储介质,通过将获取的人工智能模型进行合约化,得到对应的智能合约,并将智能合约部署在区块链中。本申请实施例通过将人工智能模型转换为智能合约,从而可以平滑得将该智能合约部署到区块链网络中,完成人工智能模型部署到区块链上的智能合约中,从而保证数据推理过程的自动化,全过程可追溯、可验证,同时保证双方或多方用户的数据、模型及交易的安全。
以上仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种高清视频的调度方法,包括:
    确定检测到多个报文是否对应有高清视频,并预估所述高清视频所需的带宽流量;
    基于所述高清视频和所述带宽流量确定所述高清视频的服务质量,根据所述服务质量调度所述高清视频。
  2. 根据权利要求1所述的高清视频的调度方法,其中,所述确定检测到多个报文是否对应有高清视频包括:
    确定检测到的多个报文中各个报文的类型;
    若确定所述类型为实时传输协议报文,则获取所述实时传输协议报文的下载速率;
    当所述下载速率大于预置下载速率,确定所述实时传输协议报文对应的视频为高清视频。
  3. 根据权利要求2所述的高清视频的调度方法,其中,所述预估所述高清视频所需的带宽流量,包括:
    基于所述高清视频的下载速率,预估所述高清视频所需的带宽流量。
  4. 根据权利要求1所述的高清视频的调度方法,其中,所述服务质量包括优先等级和调度信息,所述基于所述高清视频和所述带宽流量确定所述高清视频的服务质量,包括:
    将所述多个报文进行等级排序,得到优先等级,其中在所述优先等级中所述高清视频对应的报文高于多个所述报文中的其他报文的等级;
    获取所述高清视频的空口带宽流量,根据所述空口带宽流量和所述带宽流量确定所述高清视频的调度信息。
  5. 根据权利要求4所述的高清视频的调度方法,其中,所述根据所述空口带宽流量和所述带宽流量确定所述高清视频的调度信息,包括:
    若所述空口带宽流量小于所述带宽流量,则获取所述空口带宽流量与所述带宽流量之间的差异带宽流量;
    基于所述差异带宽流量,确定所述高清视频的调度信息。
  6. 根据权利要求4所述的高清视频的调度方法,其中,根据所述服务质量调度所述高清视频,包括:
    基于所述优先等级,调度所述高清视频的承载级别;
    基于所述调度信息,调度所述高清视频的空口带宽流量,使调度后的所述空口带宽流量与所述带宽流量一致。
  7. 根据权利要求1所述的高清视频的调度方法,其中,所述基于所述高清视频和所述带宽流量确定所述高清视频的服务质量之前,还包括:
    获取所述高清视频的空口带宽流量;
    若所述空口带宽流量小于所述带宽流量,则确定需要调度所述高清视频。
  8. 一种基站,包括存储器和处理器,所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如权利要求1至7中任一项所述的高清视频的调度方法的步骤。
  9. 一种调度***,包括基站和终端,所述基站执行权利要求1-7任一项所述的高清 视频的调度方法对高清视频进行调度,并发送给终端。
  10. 一种计算机可读存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至7中任一项所述的高清视频的调度方法的步骤。
PCT/CN2021/112317 2020-08-31 2021-08-12 高清视频的调度方法、基站、调度***和存储介质 WO2022042321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21860160.7A EP4192017A4 (en) 2020-08-31 2021-08-12 PLANNING METHOD FOR HIGH-RESOLUTION VIDEO, BASE STATION, PLANNING SYSTEM AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010899552.6A CN114125259A (zh) 2020-08-31 2020-08-31 高清视频的调度方法、基站、调度***和存储介质
CN202010899552.6 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022042321A1 true WO2022042321A1 (zh) 2022-03-03

Family

ID=80354542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112317 WO2022042321A1 (zh) 2020-08-31 2021-08-12 高清视频的调度方法、基站、调度***和存储介质

Country Status (3)

Country Link
EP (1) EP4192017A4 (zh)
CN (1) CN114125259A (zh)
WO (1) WO2022042321A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356945B1 (en) * 1991-09-20 2002-03-12 Venson M. Shaw Method and apparatus including system architecture for multimedia communications
CN101039214A (zh) * 2006-03-17 2007-09-19 华为技术有限公司 一种动态带宽资源分配方法及***
US20100110207A1 (en) * 1998-06-22 2010-05-06 Memorylink Corporation Self-Contained Wireless Camera Device, Wireless Camera System and Method
CN103957470A (zh) * 2014-05-14 2014-07-30 浙江水利水电学院 面向视频的流量控制和优化方法及***
CN106412628A (zh) * 2015-07-30 2017-02-15 华为技术有限公司 一种带宽调整方法及相关设备
CN106714318A (zh) * 2015-11-12 2017-05-24 北京信威通信技术股份有限公司 带宽分配方法及基站
CN109495326A (zh) * 2018-12-28 2019-03-19 北京东土科技股份有限公司 网络带宽分配方法和***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717890B2 (en) * 2009-01-30 2014-05-06 Movik Networks Application, usage and radio link aware transport network scheduler
US8665724B2 (en) * 2009-06-12 2014-03-04 Cygnus Broadband, Inc. Systems and methods for prioritizing and scheduling packets in a communication network
KR20140123753A (ko) * 2013-04-15 2014-10-23 삼성전자주식회사 무선 통신 시스템에서 비디오 트래픽 스케줄링 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356945B1 (en) * 1991-09-20 2002-03-12 Venson M. Shaw Method and apparatus including system architecture for multimedia communications
US20100110207A1 (en) * 1998-06-22 2010-05-06 Memorylink Corporation Self-Contained Wireless Camera Device, Wireless Camera System and Method
CN101039214A (zh) * 2006-03-17 2007-09-19 华为技术有限公司 一种动态带宽资源分配方法及***
CN103957470A (zh) * 2014-05-14 2014-07-30 浙江水利水电学院 面向视频的流量控制和优化方法及***
CN106412628A (zh) * 2015-07-30 2017-02-15 华为技术有限公司 一种带宽调整方法及相关设备
CN106714318A (zh) * 2015-11-12 2017-05-24 北京信威通信技术股份有限公司 带宽分配方法及基站
CN109495326A (zh) * 2018-12-28 2019-03-19 北京东土科技股份有限公司 网络带宽分配方法和***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4192017A4 *

Also Published As

Publication number Publication date
EP4192017A1 (en) 2023-06-07
EP4192017A4 (en) 2023-10-25
CN114125259A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN111937364A (zh) 无线网络***中处理数据路径创建的方法和***
US10205908B2 (en) Multi-media quality of service and quality of user experience optimization through voice prioritization
US9014048B2 (en) Dynamic bandwidth re-allocation
CN105765925B (zh) 在由网络设备运行的进行中业务会话之间分布网络的可用带宽的方法以及相应设备
WO2020083263A1 (zh) WiFi网络中的数据传输方法、装置及设备
CN113938945B (zh) 数据包发送的方法、装置
WO2023035894A1 (zh) 一种数据处理方法、设备、可读存储介质和程序产品
US20170127268A1 (en) Wireless Communication Device
CN113747489B (zh) Udp通信质量评估方法、装置及电子设备
KR20170110621A (ko) WiFi 미라캐스트에서의 스케일러블 멀티미디어 데이터 배포를 위한 피어-지원 애플리케이션 레벨 피드백에 의한 중앙집중형 애플리케이션 레벨 멀티캐스팅
CN104601521A (zh) 用于动态选择通信传输协议的方法、装置和***
CN113784397A (zh) 一种数据处理方法、设备以及可读存储介质
US20230379747A1 (en) Method and apparatus to synchronize radio bearers
EP3254490B1 (en) Unified service discovery with peer-assisted resource management for service mediation and addressing control in wifi-miracast
CN113194134A (zh) 节点确定方法及装置
FR3016108B1 (fr) Gestion de la qualite des applications dans un systeme de communication cooperatif
CN110138502B (zh) 一种确定盲检次数的方法及装置
WO2022042321A1 (zh) 高清视频的调度方法、基站、调度***和存储介质
US10827400B2 (en) Allocating radio resources in a cellular network
CN108347579B (zh) 带宽控制方法和装置
CN114828050A (zh) 业务容量的确定方法、装置、设备及介质
JP2015050591A (ja) 情報処理装置、情報処理方法およびプログラム
US10728911B2 (en) Wireless communication device
US20230397038A1 (en) Traffic engineering for real-time applications
WO2019232681A1 (en) Method for providing services and corresponding gateway, storage medium and computer program product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860160

Country of ref document: EP

Effective date: 20230303

WWE Wipo information: entry into national phase

Ref document number: 202327021184

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE