WO2022041360A1 - 一种氮化硅陶瓷微珠批量加工方法 - Google Patents

一种氮化硅陶瓷微珠批量加工方法 Download PDF

Info

Publication number
WO2022041360A1
WO2022041360A1 PCT/CN2020/116651 CN2020116651W WO2022041360A1 WO 2022041360 A1 WO2022041360 A1 WO 2022041360A1 CN 2020116651 W CN2020116651 W CN 2020116651W WO 2022041360 A1 WO2022041360 A1 WO 2022041360A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
silicon nitride
nitride ceramic
microbeads
processing
Prior art date
Application number
PCT/CN2020/116651
Other languages
English (en)
French (fr)
Inventor
张伟儒
徐金梦
孙峰
袁磊
董廷霞
徐学敏
宋健
荆赫
吕沛远
李洪浩
张晶
魏文钊
Original Assignee
中材高新氮化物陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材高新氮化物陶瓷有限公司 filed Critical 中材高新氮化物陶瓷有限公司
Publication of WO2022041360A1 publication Critical patent/WO2022041360A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/02Lapping machines or devices; Accessories designed for working surfaces of revolution
    • B24B37/025Lapping machines or devices; Accessories designed for working surfaces of revolution designed for working spherical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/02Lapping machines or devices; Accessories designed for working surfaces of revolution
    • B24B37/022Lapping machines or devices; Accessories designed for working surfaces of revolution characterised by the movement of the work between two lapping plates

Definitions

  • the invention relates to the technical field of mechanical processing, in particular to a batch processing method of silicon nitride ceramic microbeads.
  • Silicon nitride ceramics have high strength, high hardness, wear resistance, corrosion resistance, high temperature resistance, thermal shock resistance, anti-magnetic, oxidation resistance and other properties, especially self-lubricating properties, which make it have low friction coefficient and maintenance-free properties. Therefore, it is of great significance to realize the mass and efficient preparation of silicon nitride ceramic microbeads, meet the application of domestic miniature bearings, break the monopoly of foreign technology, and narrow the gap with the United States, Japan and other powerful silicon nitride ceramic microbead manufacturing countries.
  • the high hardness and high wear resistance of silicon nitride ceramics lead to high processing difficulty, low grinding efficiency, and high processing costs.
  • the grinding process of ceramic microbeads is processed by a single machine, a single disc, and a small batch, and each processing batch is processed.
  • the processing volume is small, the processing efficiency is low, and frequent loading and unloading of materials is required, which seriously restricts the batch processing efficiency of silicon nitride ceramic microbeads. Therefore, improving processing equipment and optimizing processing technology to greatly improve the production efficiency of silicon nitride microbeads has attracted more and more attention. Cheng Zhiming et al.
  • the high-efficiency grinding device of the bead double-rotating grinding disc although this device has low requirements on the coaxiality of the upper and lower grinding discs, can achieve uniform grinding/polishing of the surface of the bead blank, and has high processing accuracy, but this method has low processing efficiency, high cost, and technological processing.
  • the cycle is long, which is not suitable for the needs of mass production.
  • the purpose of the present invention is to provide a batch processing method of silicon nitride ceramic microbeads to solve the problems existing in the prior art, which is efficient and reasonable in design, low in cost, simple in operation and high in processing efficiency.
  • the present invention provides the following scheme:
  • the invention provides a batch processing method of silicon nitride ceramic microbeads, comprising the following steps:
  • Step 1 rough grinding: put the silicon nitride blank beads into the grooves between the upper and lower grinding plates, add grinding media for processing, and as the lower grinding plate rotates, the silicon nitride ceramics between the upper and lower grinding plates
  • the microbeads enter the first storage device through the bead outlet, start the vacuum pump, and rely on its pumping force to input the silicon nitride ceramic microbeads in the first storage device into the second storage device, and at the same time, the silicon nitride stored in the second storage device Under the action of gravity, the ceramic microbeads return to the upper and lower grinding plates through the bead inlet for repeated cyclic grinding;
  • Step 2 fine grinding: adjust the pressure and rotational speed between the upper and lower grinding plates, load the silicon nitride ceramic microbeads obtained in step 1 between the upper and lower grinding plates, and add grinding media for processing and grinding;
  • Step 3 fine grinding: select silicon nitride ceramic microbeads with no obvious processing defects on the surface from the silicon nitride ceramic microbeads obtained in step 2, add them between the upper and lower grinding plates, and adjust the pressure between the upper and lower grinding plates and speed, and then add grinding media for processing and grinding;
  • Step 4 fine grinding: adjust the pressure and rotational speed between the upper and lower grinding plates, load the silicon nitride ceramic microbeads obtained in step 3 between the upper and lower grinding plates, and add grinding media for processing and grinding;
  • Step 5 ultra-fine grinding: adjust the pressure and rotation speed between the upper and lower grinding plates, put the silicon nitride ceramic microbeads obtained in step 4 between the upper and lower grinding plates, and add grinding media for processing and grinding.
  • the applied pressure is between 0.8 ⁇ 10KN and 1 ⁇ 10KN; the rotation speed of the lower grinding disc is 100-120r/min; the grinding medium is oleic acid with a mass percentage of 17%-20% A mixed solution of sodium soap aqueous solution and food grade sodium benzoate aqueous solution with a mass percentage of 2%; the grinding medium is added with 5-7L per batch of silicon nitride ceramic microbeads processed, and replaced every 5-8 batches of processing.
  • the applied pressure is between 0.6 ⁇ 10KN and 0.9 ⁇ 10KN; the rotational speed of the lower grinding disc is 80-100r/min; the grinding medium is oleic acid with a mass percentage of 17%-20% A mixed solution of a sodium soap aqueous solution and a food grade sodium benzoate aqueous solution with a mass percentage of 2%; the grinding medium is added with 4-6L per batch of silicon nitride ceramic microbeads processed, and replaced every 5-8 batches of processing.
  • the applied pressure is between 0.4 ⁇ 10KN and 0.7 ⁇ 10KN; the rotational speed of the lower grinding disc is 70-80r/min; the grinding medium is made of diamond micropowder, stearic acid, oleic acid and W5-W30 diamond abrasive paste prepared from kerosene.
  • the applied pressure is between 0.3 ⁇ 10KN and 0.6 ⁇ 10KN; the rotational speed of the lower grinding disc is 60-70r/min; the grinding medium is prepared from diamond micropowder, lithium-based grease and oil. W5-W10 diamond paste.
  • the applied pressure is between 0 and 0.3 ⁇ 10KN; the rotational speed of the lower grinding disc is 50-60 r/min; the grinding medium is W5 prepared from diamond micropowder, lithium grease and oil. The following diamond paste.
  • the grinding medium is added at a frequency of 5-10 g per batch of processed silicon nitride ceramic microbeads, and added once every 8-9 hours.
  • the batch processing method for silicon nitride ceramic microbeads provided by the invention can not only realize a larger amount of beads, but also have higher processing precision and processing efficiency.
  • the traditional silicon nitride ceramic microbeads are processed in a small cycle, with a small amount of beads, small bead size, and high hardness. During the rough grinding and rounding process, it is easy to cause the cast iron plate to wear too fast, resulting in the occurrence of the upper and lower plates.
  • the processing of silicon nitride microbeads has higher requirements on the microbead blanks, and if broken beads occur during the processing, it will also cause the upper and lower plates to be laminated, thereby increasing the processing difficulty and causing waste of personnel and time;
  • the structure of the invention is simple, and Compared with the traditional small-cycle processing device, two ceramic micro-bead storage devices are added, and the ceramic micro-beads are circulated between the upper and lower grinding discs and the storage device by the vacuum pump and the gravity of the ceramic micro-beads. 6-8 times.
  • the grinding accuracy and grinding efficiency of silicon nitride microbeads can be improved, the waste of personnel and time caused by frequent loading and unloading of beads can be reduced, and the batch processing of silicon nitride microbeads can be realized efficiently.
  • the purpose of the present invention is to provide a batch processing method of silicon nitride ceramic microbeads to solve the problems existing in the prior art, which is efficient and reasonable in design, low in cost, simple in operation and high in processing efficiency.
  • the invention provides a batch processing method of silicon nitride ceramic microbeads.
  • the method relies on a batch processing device of silicon nitride ceramic microbeads.
  • the device includes a main shaft part, a pressure feeding part, a silicon nitride ceramic microbead storage part, a conveying part and a conveying part. part, bed part and electrical part.
  • the main shaft part includes a lower main shaft
  • the pressure feed part includes a hydraulic box, a pressure gauge, and a pressurizing mechanism
  • a compression spring is arranged on the pressurizing mechanism.
  • the silicon nitride ceramic microbead storage part contains a first storage device and a second storage device.
  • the part includes the conveying channel
  • the bed part includes the upper grinding plate, the lower grinding plate, the hydraulic box, the unloading pulley mechanism, the bead inlet, the bead outlet, the upper beam, the fastening bolts, the bed
  • the electrical part includes the gear motor, vacuum pump
  • the upper grinding plate and the lower grinding plate are cast iron plates made of wear-resistant cast iron, and the size of the silicon nitride ceramic microbeads that can be processed is 0.4mm-2mm, including symmetrically arranged columns, and upper beams are fixed on the top of the columns.
  • a pressing mechanism is fixedly connected below, an upper grinding plate is installed at the bottom of the pressing mechanism, a lower grinding plate is symmetrically arranged below the upper grinding plate, the lower grinding plate is fixedly arranged on the bed, and the bottom of the bed is connected with an unloading through the lower spindle Pulley mechanism, the unloading pulley mechanism is respectively connected with a deceleration motor and a hydraulic box;
  • the upper grinding plate is provided with a bead inlet on one side
  • the bottom side of the lower grinding plate is provided with a bead outlet, a bead inlet and a bead outlet They are respectively communicated with the storage device, and a vacuum pump is installed on the storage device;
  • the silicon nitride ceramic microbeads are placed between the upper grinding plate and the lower grinding plate, and the silicon nitride microbeads form three-point contact with the upper grinding plate and the lower grinding plate.
  • the first groove of the upper grinding plate with an inner concave arc is in contact with a part of the ceramic beads, and the two sides of the lower grinding plate are in contact with the second groove of the outer convex arc with another part of the ceramic beads.
  • the upper grinding plate is equipped with a pressurizing mechanism and fastening bolts
  • the pressurizing mechanism includes a pressure gauge
  • the pressurizing mechanism is used for pressurization between the upper and lower grinding plates and the ceramic beads
  • the pressure gauge is used to display
  • the pressing mechanism applies pressure to the grinding plate
  • the fastening bolts are used to fasten the upper grinding plate
  • the upper beam is connected to the bed through the column to ensure the balance of the bed;
  • the lower grinding plate is installed on the lower main shaft, the lower main shaft is connected with the unloading pulley mechanism, the bed is also connected with a gear motor and a hydraulic box, and the lower grinding plate is also connected with a first storage device through the inclined bead outlet, and the first storage device is connected There is a conveying channel and a second storage device, the second storage device is connected to the vacuum pump, and the first storage device and the second storage device are used for storing a larger number of ceramic microbeads.
  • the batch processing method of silicon nitride ceramic microbeads comprises the following steps:
  • Coarse grinding put a certain number of silicon nitride rough beads between the upper and lower grinding plates, add grinding media for processing, and as the lower grinding plate rotates, the ceramic beads between the upper and lower grinding plates will pass through
  • the bead outlet enters the first storage device, and enters the second storage device under the action of the vacuum pump.
  • the ceramic beads stored in the second storage device return to the upper and lower grinding plates through the bead inlet under the action of gravity for repeated circular grinding. .
  • the upper grinding plate is a wear-resistant cast iron plate with a size of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the lower grinding plate is a wear-resistant cast iron plate with a size of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ 360 Or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the first storage device is made of plastic with a volume of 2.0-2.5L
  • the second storage device is made of plastic with a volume of 10-11L
  • the pressure exerted by the large circulation equipment is (0.8- 1) ⁇ 10KN
  • the second storage device is connected to an external vacuum pump by negative pressure vacuum suction to make the ceramic microbeads in the first storage device overcome gravity and enter the second storage device, set the vacuum pump to work for 5-8s, stop for 5-8s, and circulate in turn
  • the spindle speed is 100-120r/min
  • the size of the bead inlet is 15cm ⁇ 20cm
  • the size of the bead outlet is 15cm
  • step (1) Fine grinding: the ceramic microbeads obtained in step (1) are loaded between the upper and lower grinding plates, and grinding medium is added for processing.
  • the upper grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the lower grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the applied pressure is (0.6-0.9) ⁇ 10KN
  • the spindle speed is 80-100r/min
  • the grinding medium is sodium oleate soap with a mass percentage of 17%-20%
  • the grinding medium is added with 4-6L per batch of silicon nitride ceramic microbeads processed, and replaced every 5-8 batches; After grinding, the ceramic microbeads were placed in an ultrasonic cleaner for 30 minutes, then placed in an oven, dried at 90°C, and then cooled to room temperature naturally;
  • the upper grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the lower grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the pressure applied by the equipment is (0.4-0.7) ⁇ 10KN
  • the spindle speed is 70-80r/min
  • the grinding medium is prepared from diamond powder, stearic acid, oleic acid and kerosene W5-W30 diamond abrasive paste
  • the grinding medium is added at a frequency of 5-10g per batch of silicon nitride ceramic microbeads processed, and added once every 8-9h; the ceramic microbeads after fine grinding are placed in ultrasonic cleaning After cleaning in the instrument for 30 minutes, 100% appearance sorting under the microscope was carried out;
  • step (3) the silicon nitride microbeads obtained in step (3) are loaded between the upper and lower grinding plates, and a grinding medium is added for processing;
  • the upper grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the lower grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the pressure applied by the grinding equipment is (0.3-0.6) ⁇ 10KN
  • the spindle speed is 60-70r/min
  • the grinding medium is prepared from diamond powder, lithium base grease and oil.
  • the frequency of adding grinding medium is 5-10g for each batch of silicon nitride ceramic microbeads processed, and once every 8-9h.
  • step (4) ultra-fine grinding: the ceramic microbeads obtained in step (4) are loaded between the upper and lower grinding plates, and then a grinding medium is added for processing;
  • the upper grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the lower grinding plate is a wear-resistant cast iron plate with a specification of ⁇ 720 ⁇ 290 or ⁇ 800 ⁇ ⁇ 360 or ⁇ 660 ⁇ 420 or ⁇ 360 ⁇ 164
  • the pressure exerted by the ultra-finishing equipment is (0-0.3) ⁇ 10KN
  • the spindle speed is 50-60r/min
  • the grinding medium is prepared from diamond powder, diesel lithium grease and oil.
  • the frequency of adding grinding media is 5-10 g per batch of silicon nitride ceramic microbeads processed, and once every 8-9 hours.
  • the diameter size of the silicon nitride microbeads that can be processed by the processing device and method of the present invention is 0.4-2mm, and the technical indicators can reach GB/T308.2-2010/ISO3290-2:2008 "Rolling Bearing Ball Part 2: Silicon Nitride”
  • the G5 and G3 standards required by the "Ceramic Microbeads" standard have high processing efficiency.
  • Example 1 Processing of silicon nitride microbeads with a size of ⁇ 0.4mm
  • the silicon nitride microbeads with a size of ⁇ 0.4mm are processed by the batch processing method of the silicon nitride microbeads of the present invention.
  • Coarse grinding Put 5.5-6kg ⁇ 0.4mm silicon nitride microbeads into the pressure plate notch in turn, the upper and lower plates are cast iron plates, add grinding medium for rough grinding, and grind the ceramic microbeads before loading the beads.
  • the beads are sorted and cleaned; the pressing button of the upper grinding plate is turned on, the upper grinding plate is stopped when it moves to the appropriate position, and the lower grinding plate is jogged, so that the silicon nitride ceramic beads are evenly distributed in the grooves of the lower grinding plate Full. Turn on the pressing button of the upper grinding plate, and slightly pressurize the silicon nitride ceramic beads to rotate.
  • step (2) Fine grinding: put the ceramic microbeads obtained in step (1) into a batch processing device of silicon nitride ceramic microbeads, add grinding media for processing, when the size of the silicon nitride ceramic microbeads reaches 0.48-0.53mm , the finely ground ceramic microbeads were placed in an ultrasonic cleaner for 30 minutes, then placed in an oven, dried at 90°C, and then cooled to room temperature naturally.
  • the specific parameters are as follows.
  • Fine grinding select ceramic microbeads without obvious machining defects on the surface from the ceramic microbeads obtained in step (2) and add them to a silicon nitride ceramic microbead batch processing device, and then add grinding media for processing.
  • the size of the ceramic microbeads reaches 0.41-0.42mm, the beads are placed, and the finely ground ceramic microbeads are placed in an ultrasonic cleaner for 30 minutes and then subjected to 100% appearance sorting under a microscope.
  • the specific parameters are as follows.
  • the finely ground silicon nitride ceramic microbeads were visually inspected under a microscope to separate the defective beads.
  • Fine grinding put the silicon nitride microbeads obtained in step (3) into the silicon nitride ceramic microbead batch processing device, and add grinding media for processing.
  • the size of the silicon nitride ceramic microbeads reaches 0.401-0.402mm
  • select the silicon nitride ceramic microbeads with no obvious scratches and other processing defects on the surface from the finely ground silicon nitride ceramic microbeads and place them in an ultrasonic cleaner for cleaning, and then use aviation kerosene to clean them. .
  • the specific parameters are as follows.
  • step (4) Ultra-fine grinding: the ceramic microbeads obtained in step (4) are loaded into a silicon nitride ceramic microbead batch processing device, and then a grinding medium is added for processing.
  • the specific parameters are as follows.
  • Example 2 Processing of silicon nitride microbeads with a size of ⁇ 1mm
  • the silicon nitride ceramic microbead batch processing device and method according to the present invention are used to process silicon nitride microbeads with a size of ⁇ 1mm.
  • Rough grinding put 7kg 1mm silicon nitride beads into the gap of the pressure plate in turn, wherein the upper plate is a cast iron plate, and the lower plate is a diamond plate. Add grinding liquid for rough grinding, and before loading the beads, the silicon nitride ceramics The microbeads are sorted and cleaned.
  • the press button on the upper grinding plate is turned on. When the upper grinding plate is moved to an appropriate position, it stops, and the lower grinding plate is jogged to make the silicon nitride ceramic microbeads evenly distributed in the grooves of the lower grinding plate. Full. Turn on the pressing button of the upper grinding plate, and slightly pressurize the silicon nitride ceramic beads to rotate.
  • step (2) Fine grinding: put the ceramic microbeads obtained in step (1) into a batch processing device of silicon nitride ceramic microbeads, add grinding medium for processing, when the size of silicon nitride ceramic microbeads reaches 1.10-1.11mm
  • the finely ground ceramic microbeads were placed in an ultrasonic cleaner for 30 minutes, then placed in an oven, dried at 90 °C, and then cooled to room temperature naturally; the specific parameters are as follows.
  • Fine grinding select ceramic microbeads without obvious machining defects on the surface from the ceramic microbeads obtained in step (2) and add them to a silicon nitride ceramic microbead batch processing device, and then add grinding media for processing.
  • the size of the ceramic microbeads reaches 1.01-1.02mm, the beads are placed, and the finely ground ceramic microbeads are placed in an ultrasonic cleaner for 30 minutes and then subjected to 100% appearance sorting under a microscope; the specific parameters are as follows.
  • the finely ground silicon nitride ceramic microbeads were visually inspected under a microscope to separate the defective beads.
  • Fine grinding put the silicon nitride microbeads obtained in step (3) into the silicon nitride ceramic microbead batch processing device, and add grinding media for processing, when the size of the silicon nitride ceramic microbeads reaches 1.001-1.002mm
  • For the current beads select the silicon nitride ceramic microbeads with no obvious scratches and other processing defects on the surface from the finely ground silicon nitride ceramic microbeads, and place them in an ultrasonic cleaner for cleaning, and then use aviation kerosene to clean them. ; The specific parameters are shown in the table below.
  • Example 3 Processing of silicon nitride microbeads with a size of ⁇ 2mm
  • the silicon nitride ceramic microbead batch processing device and method of the present invention are used to process silicon nitride microbeads with a size of ⁇ 2mm.
  • Rough grinding Put 8kg 2mm silicon nitride beads into the gap of the pressure plate in turn, wherein the upper plate is a cast iron plate, and the lower plate is a diamond plate, add grinding liquid for rough grinding, and before loading the beads, the silicon nitride ceramics
  • the microbeads are sorted and cleaned; the pressing button of the upper grinding plate is turned on, the upper grinding plate is stopped when it moves to the appropriate position, and the lower grinding plate is jogged, so that the silicon nitride ceramic microbeads are evenly distributed in the grooves of the lower grinding plate. covered. Turn on the pressing button of the upper grinding plate, and slightly pressurize the silicon nitride ceramic beads to rotate.
  • step (2) Fine grinding: put the ceramic microbeads obtained in step (1) into a batch processing device of silicon nitride ceramic microbeads, add grinding medium for processing, when the size of silicon nitride ceramic microbeads reaches 2.12-2.14mm
  • the finely ground ceramic microbeads were placed in an ultrasonic cleaner for 30 minutes, then placed in an oven, dried at 90 °C, and then cooled to room temperature naturally; the specific parameters are as follows.
  • Fine grinding select ceramic microbeads without obvious machining defects on the surface from the ceramic microbeads obtained in step (2) and add them to a silicon nitride ceramic microbead batch processing device, and then add grinding media for processing.
  • the size of the ceramic microbeads reaches 2.01-2.015mm, the beads are placed.
  • the ceramic microbeads are placed in an ultrasonic cleaner for 30 minutes, and then subjected to 100% appearance sorting under a microscope; the specific parameters are as follows.
  • Fine grinding put the silicon nitride microbeads obtained in step (3) into the silicon nitride ceramic microbead batch processing device, and add grinding media for processing.
  • the size of the silicon nitride ceramic microbeads reaches 2.001-2.002mm
  • the specific parameters are shown in the table below.
  • silicon nitride ceramic microbead batch processing device and processing method of the present invention has the characteristics of high efficiency and low cost, and the surface roughness Ra of silicon nitride microbeads with a processing specification of ⁇ 0.4mm can reach 0.008 -0.010, the bead shape error ⁇ can reach 0.02-0.024, the surface roughness Ra of silicon nitride microbeads with a processing specification of ⁇ 1mm can reach 0.008-0.010, and the bead shape error ⁇ can reach 0.018-0.02, and the processing specification is ⁇ 2mm.
  • the surface roughness Ra of silicon nitride microbeads can reach 0.006-0.008, and the bead shape error ⁇ can reach 0.016-0.02. All performance indicators of silicon nitride ceramic microbeads conform to GB/T308.2-2010/ISO3290-2: 2008 "Rolling Bearing Balls Part 2: Silicon Nitride Ceramic Microbeads" standard requirements for G5 and G3 grades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

一种氮化硅陶瓷微珠批量加工方法,包括如下步骤:步骤一,粗磨:将氮化硅毛坯珠装入上、下研磨板之间的凹槽内,加入磨削介质进行加工,在上、下研磨板间进行反复循环研磨;步骤二,细磨:调整上、下研磨板之间的压力和转速,将步骤一得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨;步骤三,精磨:从步骤二得到的氮化硅陶瓷微珠中选择表面无明显加工缺陷的氮化硅陶瓷微珠进行加工研磨;步骤四,精研,步骤五,超精研。所述加工方法高效且设计合理,成本低廉,操作简便,加工效率高。

Description

一种氮化硅陶瓷微珠批量加工方法 技术领域
本发明涉及机械加工技术领域,特别是涉及一种氮化硅陶瓷微珠批量加工方法。
背景技术
随着精密制造业的快速发展,轴承,尤其是微型轴承的需求量越来越大,对轴承用滚动体的要求也越来越高。氮化硅陶瓷具有高强度、高硬度、耐磨、耐腐蚀、耐高温、抗热冲击、抗磁、抗氧化性等性能,特别是自润滑特性,使其具有低摩擦系数、免维护特性。因此,实现氮化硅陶瓷微珠的批量化高效制备,满足国内微型轴承的应用,打破国外技术垄断,缩小与美国、日本等氮化硅陶瓷微珠制造强国的差距具有重要意义。
氮化硅陶瓷的高硬度、高耐磨性,导致其加工难度高,磨削效率低,加工成本高,而且目前陶瓷微珠的研磨加工均采用单机单盘小批量加工,每个加工批次的加工量少,加工效率低,需要频繁的装卸物料,严重制约了氮化硅陶瓷微珠的批量化加工效率。因此,改进加工设备及优化加工工艺以大幅提高氮化硅微珠生产效率越来越受到人们关注。程志明等人在CN 206084683 U中采用包含上磨盘与下磨盘的氮化硅陶瓷微珠循环加工装置进行氮化硅陶瓷微珠加工,其中,磨削面设置有喇叭口,喇叭口内设置有珠分流装置,虽然此分流装置能够使珠坯均匀的的分布在V型槽内进行磨削,解决珠坯分布不均导致的各沟槽磨损不均以及加工精度低,但该专利所述装置为单机单盘小批量加工,装珠量小,只适用于单盘加工,生产效率低;袁巨龙等人在CN 1015524824A中描述了一种包含上研磨盘及下研磨盘内盘和下研磨盘外盘的高精度珠双自转研磨盘高效研磨装置,虽然此装置对上下研磨盘的同轴度要求低,能够实现珠坯表面的均匀研磨/抛光,加工精度高,但此方法加工效率低,成本高,工艺加工周期长,不适合批量生产的需要。
发明内容
本发明的目的是提供一种氮化硅陶瓷微珠批量加工方法,以解决上述现有技术存在的问题,高效且设计合理,成本低廉,操作简便,加工效率高。
为实现上述目的,本发明提供了如下方案:
本发明提供一种氮化硅陶瓷微珠批量加工方法,包括如下步骤:
步骤一,粗磨:将氮化硅毛坯珠装入上、下研磨板之间的凹槽内,加入磨削介质进行加工,随着下磨盘转动,上、下研磨盘间的氮化硅陶瓷微珠通过出珠口进入第一存储装置,启动真空泵,依靠其抽力将第一存储装置内的氮化硅陶瓷微珠输入第二存储装置,同时,第二存储装置中存储的氮化硅陶瓷微珠在重力作用下通过进珠口回到上、下研磨板间进行反复循环研磨;
步骤二,细磨:调整上、下研磨板之间的压力和转速,将步骤一得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨;
步骤三,精磨:从步骤二得到的氮化硅陶瓷微珠中选择表面无明显加工缺陷的氮化硅陶瓷微珠加入上、下研磨板之间,调整上、下研磨板之间的压力和转速,然后加入磨削介质进行加工研磨;
步骤四,精研:调整上、下研磨板之间的压力和转速,将步骤三得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨;
步骤五,超精研:调整上、下研磨板之间的压力和转速,将步骤四得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨。
可选的,所述步骤一中,施加的压力为0.8×10KN~1×10KN之间;下研磨盘转速为100-120r/min;磨削介质为质量百分比为17%-20%的油酸钠皂水溶液和质量百分比为2%的食用级苯甲酸钠水溶液的混合溶液;所述磨削介质每加工1批次氮化硅陶瓷微珠加入5-7L,每加工5-8批次更换一次。
可选的,所述步骤二中,施加的压力为0.6×10KN~0.9×10KN之间;下研磨盘转速为80-100r/min;磨削介质为质量百分比为17%-20%的油酸钠皂水溶液和质量百分比为2%的食用级苯甲酸钠水溶液的混合溶液;所述磨削介质每加工1批次氮化硅陶瓷微珠加入4-6L,每加工5-8批次更 换一次。
可选的,所述步骤三中,施加的压力为0.4×10KN~0.7×10KN之间;下研磨盘转速为70-80r/min;磨削介质为由金刚石微粉,硬脂酸,油酸及煤油配制得到的W5-W30金刚石研磨膏。
可选的,所述步骤四中,施加的压力为0.3×10KN~0.6×10KN之间;下研磨盘转速为60-70r/min;磨削介质为由金刚石微粉,锂基脂及机油配制得到的W5-W10金刚石研磨膏。
可选的,所述步骤五中,施加的压力为0~0.3×10KN之间;下研磨盘转速为50-60r/min;磨削介质为由金刚石微粉,锂基脂及机油配制得到的W5以下金刚石研磨膏。
可选的,所述磨削介质添加频次为每加工1批次氮化硅陶瓷微珠加入5-10g,每8-9h添加一次。
本发明相对于现有技术取得了以下技术效果:
本发明提供的氮化硅陶瓷微珠批量加工方法,既能实现更大装珠量,又具备较高的加工精度和加工效率。传统氮化硅陶瓷微珠均采用小循环加工方式,装珠量小,且微珠尺寸小,硬度高,粗磨找圆过程中极易造成铸铁板磨损过快从而导致上下板合板情况出现;同时,氮化硅微珠加工对微珠毛坯要求较高,若加工过程中出现碎珠也会造成上下板合板情况,从而加大加工难度并且造成人员及时间的浪费;本发明结构简单,与传统小循环加工装置相比,增加两个陶瓷微珠存储装置,依靠真空泵与陶瓷微珠自身重力作用实现陶瓷微珠在上下磨盘与存储装置间的循环,装珠量比普通小循环装置提高约6-8倍,通过控制加工设备参数,提高氮化硅微珠的研磨精度和研磨效率,可降低因频装卸珠造成的人员及时间浪费,实现氮化硅微珠批量高效加工。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种氮化硅陶瓷微珠批量加工方法,以解决上述现有技术存在的问题,高效且设计合理,成本低廉,操作简便,加工效率高。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施方式对本发明作进一步详细的说明。
本发明提供一种氮化硅陶瓷微珠批量加工方法,该方法依托于氮化硅陶瓷微珠批量加工装置,该装置包括主轴部分、压力进给部分、氮化硅陶瓷微珠存储部分、输送部分、床身部分和电器部分。主轴部分包含下主轴,压力进给部分包含液压箱、压力表、加压机构,加压机构上设置有压缩弹簧,氮化硅陶瓷微珠存储部分包含第一存储装置、第二存储装置,输送部分包含输送通道,床身部分包含上研磨板、下研磨板、液压箱、卸荷带轮机构、进珠口、出珠口、上横梁、紧固螺栓、床身,电器部分包含减速电机、真空泵;
具体的,上研磨板、下研磨板均为耐磨铸铁材质铸铁板,可加工氮化硅陶瓷微珠尺寸为0.4mm-2mm,包括对称设置的立柱,立柱顶部固定设置有上横梁,上横梁下方固定连接有加压机构,加压机构底部安装有上研磨板,上研磨板下方对称设置有下研磨板,所述下研磨板固定设置于床身上,床身底部通过下主轴连接有卸荷带轮机构,所述卸荷带轮机构分别连接有减速电机和液压箱;上研磨板一侧设置有进珠口,下研磨板底部一侧设置有出珠口,进珠口和出珠口分别与存储装置连通,存储装置上安装有真空泵;上研磨板和下研磨板之间用于放置研磨氮化硅陶瓷微珠,氮化硅微珠与上研磨板、下研磨板构成三点接触,上研磨板截面为内凹圆弧的第一凹槽与陶瓷微珠一部分接触,下研磨板截面的两条侧边为外凸圆弧的第二凹槽与陶瓷微珠另一部分接触,构成点接触进行研磨,上研磨板上端安装有加压机构,紧固螺栓,加压机构包含压力表,加压机构用于上、下研磨板及陶瓷微珠间的加压,压力表用于显示加压机构对磨板施加压力值,紧固螺栓用于紧固上研磨盘,上横梁通过立柱与床身连接以保证床身平衡;
下研磨板安装在下主轴,下主轴连接卸荷带轮机构,床身还连接有减速电机及液压箱,下研磨板还通过倾斜设置的出珠口连接有第一存储装 置,第一存储装置连接有输送通道及第二存储装置,第二存储装置连接真空泵,第一存储装置和第二存储装置用于存储数量更多的陶瓷微珠。
本发明提供的氮化硅陶瓷微珠批量加工方法包括如下步骤:
(1)粗磨:将一定数量氮化硅毛坯珠装入上、下研磨板之间,加入磨削介质进行加工,随下研磨板转动,上、下研磨板间的陶瓷微珠就会通过出珠口进入第一存储装置,并在真空泵作用下进入第二存储装置,同时,第二存储装置中存储的陶瓷微珠在重力作用下通过进珠口回到上下研磨板间进行反复循环研磨。
其中,上研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,下研磨板耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,第一存储装置为塑料材质,容积为2.0-2.5L,第二存储装置为塑料材质,容积为10-11L,所述大循环设备施加的压力为(0.8-1)×10KN,第二存储装置外接真空泵靠负压真空抽力使第一存储装置内的陶瓷微珠克服重力进入第二存储装置,设置真空泵工作5-8s,停止5-8s,依次循环;主轴转速为100-120r/min,进珠口尺寸为15cm×20cm,出珠口尺寸为15cm×20cm,磨削介质为质量百分比为17%-20%的油酸钠皂水溶液和质量百分比为2%的食用级苯甲酸钠水溶液的混合溶液,磨削介质每加工1批次氮化硅陶瓷微珠加入5-7L,每加工5-8批次更换一次;将粗磨后陶瓷微珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温;
(2)细磨:将步骤(1)得到的陶瓷微珠装入上、下研磨板之间,加入磨削介质进行加工。
其中,上研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,下研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,施加的压力为(0.6-0.9)×10KN,主轴转速为80-100r/min,所述磨削介质为质量百分比为17%-20%的油酸钠皂水溶液和质量百分比为2%的食用级苯甲酸钠水溶液的混合溶液,所述磨削介质每加工1批次氮化硅陶瓷微珠加入4-6L,每加工5-8批次更换一次;将细磨后陶瓷微 珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温;
(3)精磨:从步骤(2)得到的陶瓷微珠中选择表面无明显加工缺陷的陶瓷微珠加入精磨上、下研磨板之间,然后加入磨削介质进行加工;
其中,上研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,下研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,设备施加的压力为(0.4-0.7)×10KN,主轴转速为70-80r/min,磨削介质为由金刚石微粉,硬脂酸,油酸及煤油配制得到的W5-W30金刚石研磨膏,所述磨削介质添加频次为每加工1批次氮化硅陶瓷微珠加入5-10g,每8-9h添加一次;将精磨后陶瓷微珠置于超声波清洗仪中清洗30min后进行100%显微镜下外观分选;
(4)精研:将步骤(3)得到的氮化硅微珠装入上、下研磨板之间,并加入磨削介质进行加工;
其中,上研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,下研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,精研设备施加的压力为(0.3-0.6)×10KN,主轴转速为60-70r/min,磨削介质为由金刚石微粉,锂基脂及机油配制得到的W5-W10金刚石研磨膏,磨削介质添加频次为每加工1批次氮化硅陶瓷微珠加入5-10g,每8-9h添加一次。从精研后的氮化硅陶瓷微珠中选择表面外观无明显划条擦伤等加工缺陷的氮化硅陶瓷微珠,并置于超声波清洗仪中清洗后,再使用航空煤油清洗;
(5)超精研:将步骤(4)得到的陶瓷微珠装入上、下研磨板之间,然后加入磨削介质进行加工;
其中,上研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,下研磨板为耐磨铸铁材质铸铁板,规格为φ720×φ290或φ800×φ360或φ660×φ420或φ360×φ164,超精研设备施加的压力为(0-0.3)×10KN,主轴转速为50-60r/min,磨削介质为由金刚石微粉,柴锂基脂及机油配制得到的W5 以下金刚石研磨膏,磨削介质添加频次为每加工1批次氮化硅陶瓷微珠加入5-10g,每8-9h添加一次。采用本发明加工装置及方法可加工的氮化硅微珠直径尺寸在:0.4-2mm,技术指标可达到GB/T308.2-2010/ISO3290-2:2008《滚动轴承珠第2部分:氮化硅陶瓷微珠》标准要求的G5及G3级标准要求,具有较高的加工效率。
实施例1:规格为φ0.4mm的氮化硅微珠的加工
采用本发明所述的氮化硅微珠批量加工方法加工规格为φ0.4mm的氮化硅微珠。
(1)粗磨:将5.5-6kgφ0.4mm氮化硅微珠依次装入压板缺口内,其中,上、下板均为铸铁板,加入磨削介质进行粗磨加工,装珠前对陶瓷微珠进行分选,并清洗干净;上研磨板加压按钮接通,上研磨板移至适当位置时停止,点动下研磨板,使氮化硅陶瓷微珠在下研磨板各沟槽中均布满。接通上研磨板加压按钮,轻微加压带动氮化硅陶瓷微珠转动。接通冷却泵,启动下研磨板,上研磨板加压至0.8×10KN,当氮化硅陶瓷微珠尺寸达到0.67-0.72mm时下珠,将粗磨后陶瓷微珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温。具体参数如下表。
Figure PCTCN2020116651-appb-000001
(2)细磨:将步骤(1)得到的陶瓷微珠装入氮化硅陶瓷微珠批量加工装置,加入磨削介质进行加工,当氮化硅陶瓷微珠尺寸达到 0.48-0.53mm时下珠,将细磨后陶瓷微珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温。具体参数如下表。
Figure PCTCN2020116651-appb-000002
(3)精磨:从步骤(2)得到的陶瓷微珠中选择表面无明显加工缺陷的陶瓷微珠加入氮化硅陶瓷微珠批量加工装置,然后加入磨削介质进行加工,当氮化硅陶瓷微珠尺寸达到0.41-0.42mm时下珠,将精磨后陶瓷微珠置于超声波清洗仪中清洗30min后进行100%显微镜下外观分选。具体参数如下表。
Figure PCTCN2020116651-appb-000003
将精磨得到的氮化硅陶瓷微珠在显微镜下目测,将缺陷珠分离。
(4)精研:将步骤(3)得到的氮化硅微珠装入氮化硅陶瓷微珠批量加工装置,并加入研磨介质进行加工,当氮化硅陶瓷微珠尺寸达到0.401-0.402mm时下珠,从精研后的氮化硅陶瓷微珠中选择表面外观无明显划条擦伤等加工缺陷的氮化硅陶瓷微珠,并置于超声波清洗仪中清洗后,再使用航空煤油清洗。具体参数如下表。
Figure PCTCN2020116651-appb-000004
(5)超精研:将步骤(4)得到的陶瓷微珠装入氮化硅陶瓷微珠批量加工装置,然后加入磨削介质进行加工。具体参数如下表。
Figure PCTCN2020116651-appb-000005
实施例2:规格为φ1mm的氮化硅微珠的加工
采用本发明所述的氮化硅陶瓷微珠批量加工装置及方法加工规格为φ1mm的氮化硅微珠。
(1)粗磨:将7kg 1mm氮化硅珠依次装入压板缺口内,其中,上板为铸铁板,下板为金刚石板,加入研磨液进行粗磨加工,装珠前对氮化硅陶瓷微珠进行分选,并清洗干净上研磨板加压按钮接通,上研磨板移至适当位置时停止,点动下研磨板,使氮化硅陶瓷微珠在下研磨板各沟槽中均布满。接通上研磨板加压按钮,轻微加压带动氮化硅陶瓷微珠转动。接通冷却泵,启动下研磨板,上研磨板加压至0.8×10KN,当氮化硅陶瓷微珠尺寸达到1.25-1.30mm时下珠,将粗磨后陶瓷微珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温;具体参数如下表。
Figure PCTCN2020116651-appb-000006
(2)细磨:将步骤(1)得到的陶瓷微珠装入氮化硅陶瓷微珠批量加工装置,加入磨削介质进行加工,当氮化硅陶瓷微珠尺寸达到1.10-1.11mm时下珠将细磨后陶瓷微珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温;具体参数如下表。
Figure PCTCN2020116651-appb-000007
Figure PCTCN2020116651-appb-000008
(3)精磨:从步骤(2)得到的陶瓷微珠中选择表面无明显加工缺陷的陶瓷微珠加入氮化硅陶瓷微珠批量加工装置,然后加入磨削介质进行加工,当氮化硅陶瓷微珠尺寸达到1.01-1.02mm时下珠,将精磨后陶瓷微珠置于超声波清洗仪中清洗30min后进行100%显微镜下外观分选;具体参数如下表。
Figure PCTCN2020116651-appb-000009
将精磨得到的氮化硅陶瓷微珠在显微镜下目测,将缺陷珠分离。
(4)精研:将步骤(3)得到的氮化硅微珠装入氮化硅陶瓷微珠批量加工装置,并加入研磨介质进行加工,当氮化硅陶瓷微珠尺寸达到1.001-1.002mm时下珠,从精研后的氮化硅陶瓷微珠中选择表面外观无明显划条擦伤等加工缺陷的氮化硅陶瓷微珠,并置于超声波清洗仪中清洗后,再使用航空煤油清洗;具体参数如下表。
Figure PCTCN2020116651-appb-000010
Figure PCTCN2020116651-appb-000011
(5)超精研:将步骤(4)得到的陶瓷微珠装入氮化硅陶瓷微珠批量加工装置,然后加入磨削介质进行加工;具体参数如下表。
Figure PCTCN2020116651-appb-000012
实施例3:规格为φ2mm的氮化硅微珠的加工
采用本发明所述的氮化硅陶瓷微珠批量加工装置及方法加工规格为φ2mm的氮化硅微珠。
(1)粗磨:将8kg 2mm氮化硅珠依次装入压板缺口内,其中,上板为铸铁板,下板为金刚石板,加入研磨液进行粗磨加工,装珠前对氮化硅陶瓷微珠进行分选,并清洗干净;上研磨板加压按钮接通,上研磨板移至适当位置时停止,点动下研磨板,使氮化硅陶瓷微珠在下研磨板各沟槽中均布满。接通上研磨板加压按钮,轻微加压带动氮化硅陶瓷微珠转动。接通冷却泵,启动下研磨板,上研磨板加压至0.8×10KN,当氮化硅陶瓷微珠尺寸达到2.20-2.30mm时下珠,将粗磨后陶瓷微珠置于超声波清洗仪中 清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温;具体参数如下表。
Figure PCTCN2020116651-appb-000013
(2)细磨:将步骤(1)得到的陶瓷微珠装入氮化硅陶瓷微珠批量加工装置,加入磨削介质进行加工,当氮化硅陶瓷微珠尺寸达到2.12-2.14mm时下珠将细磨后陶瓷微珠置于超声波清洗仪中清洗30min后置于烘箱中并于90℃烘干后自然冷却至室温;具体参数如下表。
Figure PCTCN2020116651-appb-000014
(3)精磨:从步骤(2)得到的陶瓷微珠中选择表面无明显加工缺陷的陶瓷微珠加入氮化硅陶瓷微珠批量加工装置,然后加入磨削介质进行加 工,当氮化硅陶瓷微珠尺寸达到2.01-2.015mm时下珠,将精磨后陶瓷微珠置于超声波清洗仪中清洗30min后进行100%显微镜下外观分选;具体参数如下表。
Figure PCTCN2020116651-appb-000015
(4)精研:将步骤(3)得到的氮化硅微珠装入氮化硅陶瓷微珠批量加工装置,并加入研磨介质进行加工,当氮化硅陶瓷微珠尺寸达到2.001-2.002mm时下珠,从精研后的氮化硅陶瓷微珠中选择表面外观无明显划条擦伤等加工缺陷的氮化硅陶瓷微珠,并置于超声波清洗仪中清洗后,再使用航空煤油清洗;具体参数如下表。
Figure PCTCN2020116651-appb-000016
(5)超精研:将步骤(4)得到的陶瓷微珠装入氮化硅陶瓷微珠批量加工装置,然后加入磨削介质进行加工;具体参数如下表。
Figure PCTCN2020116651-appb-000017
采用本发明所述氮化硅微珠氮化硅陶瓷微珠批量加工装置及加工方法具有效率高,成本低的特点,加工规格为φ0.4mm的氮化硅微珠表面粗糙度Ra可达到0.008-0.010,珠形误差△δ可达到0.02-0.024,加工规格为φ1mm的氮化硅微珠表面粗糙度Ra可达到0.008-0.010,珠形误差△δ可达到0.018-0.02,加工规格为φ2mm的氮化硅微珠表面粗糙度Ra可达到0.006-0.008,珠形误差△δ可达到0.016-0.02,氮化硅陶瓷微珠各项性能指标均符合GB/T308.2-2010/ISO3290-2:2008《滚动轴承珠第2部分:氮化硅陶瓷微珠》标准要求的G5及G3级标准要求。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

  1. 一种氮化硅陶瓷微珠批量加工方法,其特征在于:包括如下步骤:
    步骤一,粗磨:将氮化硅毛坯珠装入上、下研磨板之间的凹槽内,加入磨削介质进行加工,随着下磨盘转动,上、下研磨盘间的氮化硅陶瓷微珠通过出珠口进入第一存储装置,启动真空泵,依靠其抽力将第一存储装置内的氮化硅陶瓷微珠输入第二存储装置,同时,第二存储装置中存储的氮化硅陶瓷微珠在重力作用下通过进珠口回到上、下研磨板间进行反复循环研磨;
    步骤二,细磨:调整上、下研磨板之间的压力和转速,将步骤一得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨;
    步骤三,精磨:从步骤二得到的氮化硅陶瓷微珠中选择表面无明显加工缺陷的氮化硅陶瓷微珠加入上、下研磨板之间,调整上、下研磨板之间的压力和转速,然后加入磨削介质进行加工研磨;
    步骤四,精研:调整上、下研磨板之间的压力和转速,将步骤三得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨;
    步骤五,超精研:调整上、下研磨板之间的压力和转速,将步骤四得到的氮化硅陶瓷微珠装入上下研磨板之间,加入磨削介质进行加工研磨。
  2. 根据权利要求1所述的氮化硅陶瓷微珠批量加工方法,其特征在于:所述步骤一中,施加的压力为0.8×10KN~1×10KN之间;下研磨盘转速为100-120r/min;磨削介质为质量百分比为17%-20%的油酸钠皂水溶液和质量百分比为2%的食用级苯甲酸钠水溶液的混合溶液;所述磨削介质每加工1批次氮化硅陶瓷微珠加入5-7L,每加工5-8批次更换一次。
  3. 根据权利要求1所述的氮化硅陶瓷微珠批量加工方法,其特征在于:所述步骤二中,施加的压力为0.6×10KN~0.9×10KN之间;下研磨盘转速为80-100r/min;磨削介质为质量百分比为17%-20%的油酸钠皂水溶液和质量百分比为2%的食用级苯甲酸钠水溶液的混合溶液;所述磨削介质每加工1批次氮化硅陶瓷微珠加入4-6L,每加工5-8批次更换一次。
  4. 根据权利要求1所述的氮化硅陶瓷微珠批量加工方法,其特征在于:所述步骤三中,施加的压力为0.4×10KN~0.7×10KN之间;下研磨 盘转速为70-80r/min;磨削介质为由金刚石微粉,硬脂酸,油酸及煤油配制得到的W5-W30金刚石研磨膏。
  5. 根据权利要求1所述的氮化硅陶瓷微珠批量加工方法,其特征在于:所述步骤四中,施加的压力为0.3×10KN~0.6×10KN之间;下研磨盘转速为60-70r/min;磨削介质为由金刚石微粉,锂基脂及机油配制得到的W5-W10金刚石研磨膏。
  6. 根据权利要求5所述的氮化硅陶瓷微珠批量加工方法,其特征在于:所述步骤五中,施加的压力为0~0.3×10KN之间;下研磨盘转速为50-60r/min;磨削介质为由金刚石微粉,锂基脂及机油配制得到的W5以下金刚石研磨膏。
  7. 根据权利要求4~6任一项所述的氮化硅陶瓷微珠批量加工方法,其特征在于:所述磨削介质添加频次为每加工1批次氮化硅陶瓷微珠加入5-10g,每8-9h添加一次。
PCT/CN2020/116651 2020-08-28 2020-09-22 一种氮化硅陶瓷微珠批量加工方法 WO2022041360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010883255.2A CN112025541A (zh) 2020-08-28 2020-08-28 一种氮化硅陶瓷微珠批量加工方法
CN202010883255.2 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022041360A1 true WO2022041360A1 (zh) 2022-03-03

Family

ID=73587594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116651 WO2022041360A1 (zh) 2020-08-28 2020-09-22 一种氮化硅陶瓷微珠批量加工方法

Country Status (2)

Country Link
CN (1) CN112025541A (zh)
WO (1) WO2022041360A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736611A (zh) * 2022-03-23 2022-07-12 通辽精工蓝宝石有限公司 用于蓝宝石方砖平面加工的抛光膏及抛光方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118059A (ja) * 1990-07-23 1992-04-20 Yakushin Kikai Seisakusho:Kk 精穀機の精白筒構造
CN101049676A (zh) * 2007-05-15 2007-10-10 山东东阿钢球集团有限公司 G3级氮化硅球加工工艺
CN101524824A (zh) * 2009-03-31 2009-09-09 浙江工业大学 高精度球双自转研磨盘高效研磨装置
CN103567856A (zh) * 2013-10-10 2014-02-12 浙江工业大学 一种基于变曲率沟槽研磨的高精度球体加工方法
CN103991025A (zh) * 2014-05-21 2014-08-20 浙江工业大学 一种偏心式变曲率沟槽加工高精度球体的方法
CN103991018A (zh) * 2014-05-21 2014-08-20 浙江工业大学 基于偏心式变曲率v型沟槽盘的高精度球体加工设备
CN203993504U (zh) * 2014-07-04 2014-12-10 浙江工业大学 高精度球体加工设备的球体输送机构
CN106625191A (zh) * 2016-10-27 2017-05-10 中材高新氮化物陶瓷有限公司 一种氮化硅陶瓷球的加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222988A (ja) * 2006-02-23 2007-09-06 Ntn Corp ラッピング加工方法および加工装置
CN101704208A (zh) * 2009-06-01 2010-05-12 浙江工业大学 一种高精度陶瓷球高效研磨/抛光加工工艺
CN103387394A (zh) * 2013-07-27 2013-11-13 上海高越精密陶瓷有限公司 一种高精度陶瓷球制备方法
CN103567855A (zh) * 2013-10-10 2014-02-12 浙江工业大学 基于变曲率沟槽研磨的高精度陶瓷球加工设备
CN206084683U (zh) * 2016-03-08 2017-04-12 江苏金盛陶瓷科技有限公司 一种新型陶瓷球循环加工装置
CN108312053B (zh) * 2018-02-14 2020-08-28 威海双格新材料科技有限公司 一种气流内循环陶瓷滚珠高精度智能研磨装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118059A (ja) * 1990-07-23 1992-04-20 Yakushin Kikai Seisakusho:Kk 精穀機の精白筒構造
CN101049676A (zh) * 2007-05-15 2007-10-10 山东东阿钢球集团有限公司 G3级氮化硅球加工工艺
CN101524824A (zh) * 2009-03-31 2009-09-09 浙江工业大学 高精度球双自转研磨盘高效研磨装置
CN103567856A (zh) * 2013-10-10 2014-02-12 浙江工业大学 一种基于变曲率沟槽研磨的高精度球体加工方法
CN103991025A (zh) * 2014-05-21 2014-08-20 浙江工业大学 一种偏心式变曲率沟槽加工高精度球体的方法
CN103991018A (zh) * 2014-05-21 2014-08-20 浙江工业大学 基于偏心式变曲率v型沟槽盘的高精度球体加工设备
CN203993504U (zh) * 2014-07-04 2014-12-10 浙江工业大学 高精度球体加工设备的球体输送机构
CN106625191A (zh) * 2016-10-27 2017-05-10 中材高新氮化物陶瓷有限公司 一种氮化硅陶瓷球的加工方法

Also Published As

Publication number Publication date
CN112025541A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN106826411B (zh) 一种凸轮驱动磁体式磁流变流体动压抛光装置及抛光方法
CN105904333A (zh) 一种集群动态磁场控制抛光垫刚度的双面抛光装置及方法
WO2022041360A1 (zh) 一种氮化硅陶瓷微珠批量加工方法
CN106238730A (zh) 一种金属粉末冶金自动上料装置
CN112322256B (zh) 一种氧化镓晶片精细研磨液及其制备方法
CN206643753U (zh) 一种金属块抛光用抛光机夹紧装置
CN206998591U (zh) 高精密件表面研磨抛光机构
WO2022041359A1 (zh) 一种氮化硅陶瓷微珠批量加工的装置
CN108340255A (zh) 一种金属打磨装置
CN208358463U (zh) 一种机械加工用钢管端面平整机
CN208556930U (zh) 一种端面打磨设备
CN206578653U (zh) 一种转盘式电池钢壳自动磨边装置
CN108081112A (zh) 一种金属制品加工用抛光装置
CN204429409U (zh) 一种磨釉机
CN108838761A (zh) 用于磨床加工曲轴的夹紧装置
CN206185678U (zh) 一种晶片研磨加工装置
CN208601243U (zh) 一种新型滚动轴承钢球磨球机
CN108000243A (zh) 一种双平面研抛加工方法
TW528658B (en) Beveling wheel for processing silicon wafer outer periphery
CN109759966B (zh) 一种柔性抛光粒子磁性排布抛光盘的制作方法
CN102284908A (zh) 一种双端面研磨机的自动夹紧与卸料装置
CN208132648U (zh) 一种皮带轮模具打磨装置
CN209648380U (zh) 干式柔性磨抛设备
CN216359463U (zh) 一种轴承滚子表面打磨装置
CN110900407A (zh) 一种钢片综停经片半成品抛光研磨装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951028

Country of ref document: EP

Kind code of ref document: A1