WO2022041068A1 - 一种标准试样尺寸测量方法、***及应用 - Google Patents

一种标准试样尺寸测量方法、***及应用 Download PDF

Info

Publication number
WO2022041068A1
WO2022041068A1 PCT/CN2020/111872 CN2020111872W WO2022041068A1 WO 2022041068 A1 WO2022041068 A1 WO 2022041068A1 CN 2020111872 W CN2020111872 W CN 2020111872W WO 2022041068 A1 WO2022041068 A1 WO 2022041068A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measuring
code
rail mechanism
electrically connected
Prior art date
Application number
PCT/CN2020/111872
Other languages
English (en)
French (fr)
Inventor
吴博
庞承焕
程春锋
李卫领
肖星
Original Assignee
国高材高分子材料产业创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国高材高分子材料产业创新中心有限公司 filed Critical 国高材高分子材料产业创新中心有限公司
Priority to PCT/CN2020/111872 priority Critical patent/WO2022041068A1/zh
Publication of WO2022041068A1 publication Critical patent/WO2022041068A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the invention relates to the field of material performance detection, in particular to a standard sample size measurement method, system and application.
  • a standard sample is actually a "reference value” that provides one or more quantities of a substance as a “reference value” for the accuracy of other measurements. Therefore, the measurement requirements for the sample are relatively high.
  • the existing measurement methods for samples have the problem that the samples cannot be classified, resulting in confusion of data and inconvenience of query and management.
  • the present invention provides a standard sample size measurement method, system and application, which can effectively solve the above problems.
  • the specific scheme adopted in the present invention is: a standard sample size measurement method, comprising the following steps:
  • step S2 Position the sample scanned in step S1;
  • step S3 Spray the QR code on the sample positioned in step S2;
  • step S4 The size data obtained in step S4 is uploaded to the control terminal, and the type of the sample is obtained by comparing the database in the control terminal; at the same time, the type information of the sample is associated with the two-dimensional code information sprayed in step S3.
  • the specific process of the S5 step is:
  • step S4 The size data obtained in step S4 is uploaded to the control terminal, and the type of the sample is obtained by comparing the database in the control terminal; at the same time, the type information of the sample is associated with the two-dimensional code information sprayed in step S3.
  • a standard sample size measurement system comprising a frame, a conveying manipulator, a host computer, and a code scanning component, a fixed component, a coding component, and a measuring component arranged on the frame; wherein, the host computer and the scanning code component are The electrical connection is used to collect the incoming material information of the sample; wherein, the upper computer is electrically connected with the fixing component to detect whether the sample is in place and control the fixing component to fix the sample; wherein, the upper computer and the fixing component are electrically connected.
  • the spray code component is connected to control the spray code component to spray a unique two-dimensional code on the sample; wherein, the upper computer is electrically connected with the measurement component to collect the size data of the sample, and judge the size of the sample according to the size information.
  • Type wherein, the upper computer is electrically connected with the conveying manipulator, and is used for conveying the sample to the next station after the sample is placed on the fixed component to complete the positioning and after the type of the sample is judged.
  • the code scanning assembly includes a code scanning gun electrically connected to the upper computer or a code scanning unit that is electrically connected to the upper computer and a door-shaped code scanning bracket disposed on the rack; wherein , the scanning unit is arranged on the beam of the scanning bracket and the detection end is arranged downward.
  • the fixing assembly includes a bottom plate, a negative pressure unit, and a positioning unit arranged on the rack; wherein, the edge of the bottom plate is provided with a row of at least two positioning units, and the middle part of the bottom plate is provided with a row of at least two positioning units.
  • a ventilation hole is provided for adsorbing the sample; the ventilation hole is connected with the output end of the negative pressure unit;
  • the positioning unit cooperates with the positioning device on the conveying manipulator, and is used to place the sample in the required position; wherein, the negative pressure unit is electrically connected with the upper machine, and is used for placing the sample in the conveying manipulator. After specifying the position, the negative pressure unit is controlled to work.
  • the measuring assembly includes a first sliding rail mechanism for measuring the thickness of the sample, a second sliding rail mechanism for measuring the length and width of the sample, and a first sliding rail mechanism for setting the first sliding rail mechanism, the first sliding rail mechanism
  • the fixed frame body of two sliding rail mechanisms; wherein, the fixed frame body is arranged on the frame and can move linearly along the frame; the side of the fixed frame body perpendicular to the ground is provided with a first sliding rail mechanism; A second sliding rail mechanism is arranged on the side of the frame body away from the fixing component, and the second sliding rail mechanism can move linearly along the fixing frame body, and the movement direction of the second sliding rail mechanism is perpendicular to the movement direction of the fixing frame body.
  • the first slide rail mechanism and the second slide rail mechanism include a drive motor, a first guide rail, a second guide rail, a slider, a screw rod, and a measuring element; wherein, the first slide rail mechanism A guide rail and a second guide rail are detachably arranged on the fixed frame body; a slider is arranged in the gap between the first guide rail and the second guide rail; a measuring element is arranged at one end of the slider toward the sample and a threaded hole is arranged at the end away from the sample; The threaded holes on the sliding block are arranged corresponding to the screw rods; one end of the screw rods is connected with the output end of the driving motor, and the other end is arranged on the fixed frame body through the fixed seat.
  • the fixing assembly includes a transparent bottom plate and a positioning unit and a lighting unit arranged on the rack;
  • the measuring assembly includes a CCD line array
  • the edge of the bottom plate is provided with at least two positioning units in a row;
  • the positioning unit cooperates with the positioning device on the conveying manipulator to place the sample in the object-side field of view of the imaging objective lens and set the CCD line array image sensitive surface on the optimal image surface position of the imaging objective lens ;
  • the CCD line array is electrically connected with the host computer for uploading the measurement results to the host computer.
  • the fixing assembly includes a transparent bottom plate and a positioning unit and a lighting unit arranged on the rack;
  • the measuring assembly includes a CCD linear array for measuring the length and width of the sample, and a screw driving mechanism for measuring the thickness of the sample; wherein, the edge of the bottom plate is provided with a row of at least two positioning units and is connected with the conveying manipulator.
  • the positioning device cooperates to place the sample in the object-side field of view of the imaging objective lens and set the CCD line array image sensitive surface on the optimal image surface position of the imaging objective lens; wherein, the CCD line array and the upper electromechanical sexual connection is used to upload the measurement results to the upper computer;
  • the screw drive mechanism drives the screw to cooperate with the slider through a stepping motor, so that the slider moves on the corresponding guide rail, so as to complete the thickness measurement of the sample.
  • the method of the present invention communicates with the component for measuring the sample by setting the spraying equipment, sprays the code on the surface of the sample, and stores the size data of the sample obtained by the measuring component at the same time, and then compares it with the standard data in the database, To obtain the type of the sample, complete the classification of the sample.
  • the system of the invention presets a sample type database through a visual device or a workstation, and through the comparison of the measurement results and the database, solves the problems of sample type identification, classification, coding and the like when different types of samples are simultaneously measured for size, and reduces the number of samples. Human recognition time and errors.
  • Figure 1 is a flow chart of the method of the present invention.
  • FIG. 2 is a structural block diagram of the system according to the present invention.
  • FIG. 3 is a schematic structural diagram of the system according to the present invention.
  • FIG. 4 is a schematic structural diagram of the code scanning component in FIG. 3 .
  • FIG. 5 is an embodiment of the fixing assembly and the measuring assembly in FIG. 3 .
  • FIG. 6 is a left side view of FIG. 5 .
  • FIG. 7 is a screenshot taken along the line A-A in FIG. 6 .
  • FIG. 8 is a front view of the fixing assembly of FIG. 3 .
  • FIG. 9 is a plan view of FIG. 8 .
  • FIG. 10 is another embodiment of the fixing assembly and the measuring assembly in FIG. 3 .
  • FIG. 11 is a partial view of the top view of FIG. 10 .
  • the direction of the arrow in FIG. 5 is the direction of the airflow, which means to generate negative pressure.
  • the present invention provides the following standard sample size measurement method in order to solve the problem that the sample cannot be classified in the prior art measurement method.
  • the described method for measuring the size of a standard sample includes the following steps:
  • step S2 Position the sample scanned in step S1;
  • step S3 Spray the QR code on the sample positioned in step S2;
  • step S5 Upload the size data obtained in step S4 to the control terminal, and obtain the type of the sample by comparing the database in the control terminal; at the same time, associate the type information of the sample with the QR code information sprayed in step S3.
  • the control terminal described in step S5 internally stores a database constructed by sample standard data; after receiving the length, width and thickness data of the sample to be detected, it is compared with the data in the above database to find the corresponding sample type and complete the sample. classification process.
  • Mechanical property spline is a commonly used strip sample.
  • manual classification is also used, which has the problems of slow classification speed and error-prone problems.
  • the samples are not coded after being classified, it is impossible to know whether their size is qualified or not.
  • manual recording is used, which is time-consuming and labor-intensive, has a high error rate, and is difficult to count later.
  • the method of the present invention is adopted in the classification and measurement process of the splines for measuring mechanical properties, which can effectively improve the efficiency, control the error rate, and facilitate the later data statistics, which greatly improves the production efficiency.
  • This embodiment also provides an application of the aforementioned standard sample size measurement method in measuring the size of a mechanical property spline.
  • the present invention provides a standard sample size measurement system.
  • a standard sample size measurement system as described above includes a rack 1, a conveying manipulator 2, a host computer 3, and a scanning code set on the rack 1 for collecting the incoming material information of the sample 8 Component 4, a fixing component 5 for fixing the sample, a coding component 6 for spraying a unique two-dimensional code on the sample 8, a measuring component 7 for collecting the dimensional data of the sample 8;
  • the machine 3 is electrically connected to the scanning component 4, the fixing component 5, the spraying component 6 and the measuring component 7, and after receiving the code scanning completion signal sent by the scanning component 4, it controls the transmission manipulator 2 to place the sample 8 on the
  • the fixing component 5 is positioned, and after measuring the size of the sample 8 by the measuring component 7, the type of the sample 8 is judged in the host computer 3, and then the sample 8 is transported to the next station by the conveying robot 2, such as a sorting storage box.
  • the code scanning component 4 can be a code scanning gun 401; the code scanning gun 401 is held in the hands of the staff to scan the code of the sample 8 to obtain the factory information of the sample 8, and This information is stored in the upper computer 3 .
  • the code scanning assembly 4 may include a code scanning unit 402 and a door-shaped code scanning support 403 disposed on the rack 1; the code scanning unit 402 is disposed on the beam of the code scanning support 403; when When the sample 8 passes under the code scanning bracket 403 , the code scanning unit 402 acquires the encoded information on the sample 8 and sends it to the upper computer 3 .
  • the sample 8 may be transported by a conveyor belt and pass through the code scanning unit 402 , or the sample 8 may be placed under the code scanning unit 402 manually.
  • the sample 8 is transferred to the fixed component 5 through the transfer robot 2.
  • the transfer robot 2 uses the CCD to locate the pixel points, and cooperates with the transfer robot 2 to grasp.
  • Embodiment 1 Since the sample 8 needs to be measured after the fixing assembly 5 is fixed, if the laser head is used for linear scanning measurement, the sample 8 needs to be fixed to prevent the sample 8 from moving and affecting the measurement. result.
  • the measuring assembly 7 can measure the length, width and thickness of the sample 8 through the laser ranging unit; at the same time, in the process of using the laser ranging, in order to ensure the measurement results Accurately, the sample 8 is in a static state through the fixing assembly 5, while the laser ranging unit on the measuring assembly 7 can move linearly to measure the dimensional data of the sample 8 by scanning.
  • the fixing assembly 5 includes a bottom plate 501, a negative pressure unit 502, and a positioning unit 503, which are arranged on the rack 1 by bolts; wherein, the edge of the bottom plate 501 is provided with at least two positioning units 503 in a row and The bottom plate 501 is provided with a ventilation hole in the middle; the ventilation hole is connected with the output end of the negative pressure unit 502; wherein, the positioning unit 503 cooperates with the positioning device on the conveying robot 2 for placing the sample 8 In the required position; wherein, the negative pressure unit 502 is electrically connected with the upper computer 3, and is used to control the negative pressure unit 502 to work after the transfer robot 2 places the sample 8 in the designated position, and adsorb the sample 8 on the bottom plate 501. superior.
  • the bottom plate 501 is provided with a raised plane; the plane is used to set the samples 8; in order to adapt to different samples 8, if there are several small ventilation holes, in the negative pressure unit 502 At the moment of work, the position of the sample 8 may be shifted, making the measurement result inaccurate. Therefore, several ventilation holes can be set as one long hole 502A; the length direction of the long hole 502A is consistent with the length direction of the sample 8 . When placed, the sample 8 is located above the long hole 502A. When the negative pressure unit 502 is working, the sample 8 can be adsorbed smoothly, which solves the problem of measurement inaccuracy caused by the displacement of the sample 8 .
  • the base plate 501 is provided with a raised plane, which can make the height of the sample 8 higher than the supporting surface of the rack 1 , which is convenient for measuring the thickness of the sample 8 .
  • a negative pressure unit 502 can be arranged below the raised plane, which is convenient for sealing with a sealant.
  • the positioning unit 503 can be an infrared transmitting end; and the positioning device arranged on the transmission manipulator 2 can be an infrared receiving end; when the infrared transmitting end and the infrared receiving end are completely corresponding, the signal is sent to the host computer In step 3, the upper computer 3 sends a control signal to control the conveying manipulator 2 to release the sample 8, and then controls the negative pressure unit 502 to work to adsorb the sample 8 on the bottom plate 501 through the long hole 502A.
  • the above-mentioned measuring assembly 7 includes a first sliding rail mechanism 701 for measuring the thickness of the sample 8, a second sliding rail mechanism 702 for measuring the length and width of the sample 8, and a first sliding rail mechanism 701 and a second sliding rail mechanism for setting the the fixed frame body 703 of the slide rail mechanism 702;
  • the fixed frame 703 is arranged on the rack 1 through the guide rails; the side of the fixed frame 703 perpendicular to the ground is provided with a first sliding rail mechanism 701; the side of the fixed frame 703 away from the fixing assembly 5 is provided with The second sliding rail mechanism 702 and the second sliding rail mechanism 702 can move linearly along the fixed frame body 703 and the movement direction of the second sliding rail mechanism 702 is perpendicular to the movement direction of the fixed frame body 703 .
  • first slide rail mechanism 701 and second slide rail mechanism 702 are both linear motion guide rail structures, and their structures are the same, but the running directions are different, and they all include a drive motor a, a first guide rail b, a second guide rail c, and a slider. d, screw e and measuring element g;
  • the first guide rail b and the second guide rail c are detachably arranged on the fixed frame 703 ; a slider d is set in the gap between the first guide rail b and the second guide rail c; the slider d faces One end of the sample 8 is provided with a measuring element g, and one end away from the sample 8 is provided with a threaded hole; the threaded hole on the slider d is set corresponding to the screw e; one end of the screw e is connected with the output end of the drive motor a, and the other end It is set on the fixed frame body 703 through the bearing seat.
  • Embodiment II As shown in Figures 10-11, in actual work, the measuring assembly 7 can measure the length, width and thickness of the sample 8 through CCD; The sample 8 can be placed in the designated position.
  • the fixing assembly 5 includes a transparent bottom plate 501, a positioning unit 503 and a lighting unit arranged on the frame 1;
  • the measuring assembly 7 includes a CCD line array 704; wherein, the bottom plate
  • the edge of 501 is provided with at least two positioning units 503 in a row; wherein, the positioning units 503 cooperate with the positioning device on the conveying manipulator 2 to place the sample 8 in the object-side field of view of the imaging objective lens and place the CCD
  • the linear array image sensitive surface is set at the optimal image surface position of the imaging objective lens, and the measurement is completed by the illumination of the illumination unit; wherein, the CCD linear array 704 is electrically connected to the host computer 3 for measuring the size data of the sample 8 .
  • the base plate 501 is a transparent object, such as glass, and the sample 8 is placed on the base plate 501 after being positioned by the conveying robot 2 through the positioning unit 503 .
  • the CCD line array 704 can be arranged on the bottom plate 501 and on the opposite side of the sample 8 or on the side of the fixed frame 703 facing the sample 8.
  • a required lighting unit can also be arranged as required.
  • the CCD line array 704 selects two CCDs that are respectively arranged at both ends of the base plate 501; two CCDs are used to calculate the length of the product, and CCD detection: the accuracy is field of view/(pixel*5), according to 200 fields of view, 2000W pixels The accuracy of the camera is calculated to be about 0.02mm.
  • the use of 2 CCDs can narrow the field of view for detection, thereby improving the accuracy of the detection.
  • the product needs to be front-lit. When placing the product, it is necessary to face the burr side up. , to prevent burrs from affecting the detection accuracy.
  • a beam 1A can be set on the frame 1 for placing the required CCD line array 704 or lighting unit, which can be adjusted according to the actual situation.
  • the fixing assembly 5 includes a transparent bottom plate 501, a positioning unit 503 and an illumination unit arranged on the rack 1;
  • the measuring assembly 7 includes a CCD line array 704 for measuring the length and width of the sample 8, a The first slide rail mechanism 701 for measuring the thickness of the sample 8;
  • the edge of the bottom plate 501 is provided with at least two positioning units 503 in a row and cooperates with the positioning device on the conveying manipulator 2, for placing the sample 8 in the object-side field of view of the imaging objective lens and CCD line array
  • the image sensitive surface is set at the optimal image surface position of the imaging objective lens, and the measurement is completed by the illumination of the illumination unit; wherein, the CCD line array 704 is electrically connected with the host computer 3 .
  • a second sliding rail mechanism 702 for measuring the length and width of the sample 8 and a CCD line array 704 for measuring the thickness of the sample 8 can also be provided as required.
  • the system of the present invention reduces the size measurement time from the original average of about 45s to test the size of a sample to 3s-5s to test the size of a sample through the measuring components, which improves the size measurement efficiency by nearly 100%. 9-15 times, which solves the problem that the existing sample testing method cannot meet the requirements of low investment in large batch sample testing due to the low dimensional measurement efficiency.
  • it due to the adoption of a reasonable classification process to complete automatic classification, it can be linked with subsequent automation units, such as pressure detection units, to form a complete automatic assembly line.
  • the host computer 3 can be set on the rack 1 or set in the control room as required.
  • a negative pressure suction cup can be used to move the sample 8 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

为了解决现有技术中针对试样的测量方式存在无法对试样分类的问题,提供一种标准试样尺寸测量方法、***及应用,包括以下步骤:S1.通过扫码组件(4)确定样品来料信息,并将信息发送至控制端,由控制端形成对应样品的二维码;S2.将S1步骤已扫描的样品进行定位;S3.将S2步骤中已定位的样品喷涂二维码;S4.对喷涂二维码的样品进行尺寸测量;S5.通过S4步骤获得的尺寸数据对样品进行类型分类。***通过视觉装置或工作站预置样品类型数据库,通过测量结果及数据库的对照,解决了不同类型样品同时进行尺寸测量时的试样类型识别,分类,打码等问题,减少了人工识别的时间及失误。

Description

一种标准试样尺寸测量方法、***及应用 技术领域
本发明涉及材料性能检测领域,尤其涉及一种标准试样尺寸测量方法、***及应用。
背景技术
标准试样实际上就是对物质提供一个或多个量值作为其他测量值是否准确的"参照值"。所以,对于试样的测量要求较高。
现有检测试样的尺寸测量,一种是采用千分尺、游标卡尺,另一种自动测量装置,通过将光栅尺、千分表等集成到自动控制机构上,实现了高精度,自动化的测量。但是,现有的测量方法及装置无法对试样进行分类,需要通过人工进行分类,导致数据杂乱,后期管理混乱。
总之,现有的针对试样的测量方式存在无法对试样分类的问题,造成了数据混乱,不便于查询和管理。
发明内容
为了解决现有技术中针对试样的测量方式存在无法对试样分类的问题,本发明提供一种标准试样尺寸测量方法、***及应用,能够有效解决上述问题。
为了实现上述目的,本发明采用的具体方案为:一种标准试样尺寸测量方法,包括以下步骤:
S1.通过扫码组件确定样品来料信息,并将该信息发送至控制端,由控制端形成对应该样品的二维码;
S2.将S1步骤已扫描的样品进行定位;
S3.将S2步骤中已定位的样品喷涂二维码;
S4.对喷涂二维码的样品进行尺寸测量;
S5.通过S4步骤获得的尺寸数据对上述样品进行类型分类。
所述的S5步骤的具体过程为:
将S4步骤所获得的尺寸数据上传至控制端,在控制端内通过对比数据库得到该样品的类型;同时,将该样品的类型信息与S3步骤中所喷涂的二维码信息进行关联。
在一个具体的实施例中,所述的S5步骤的具体过程为:
将S4步骤所获得的尺寸数据上传至控制端,在控制端内通过对比数据库得到该样品的类型;同时,将该样品的类型信息与S3步骤中所喷涂的二维码信息进行关联。
一种前述标准试样尺寸测量方法在测量机械性能样条尺寸方面的应用。
一种标准试样尺寸测量***,包括机架、传送机械手、上位机以及设置在机架上的扫码组件、固定组件、喷码组件、测量组件;其中,所述的上位机与扫码组件电性连接,用于采集样品的来料信息;其中,所述的上位机与固定组件电性连接,用于检测样品是否到位并控制固定组件对样品进行固定;其中,所述的上位机与喷码组件连接,用于控制喷码组件向样品喷涂唯一的二维码;其中,所述的上位机与测量组件电性连接,用于采集样品的尺寸数据,并根据该尺寸信息判断样品的类型;其中,所述的上位机与传送机械手电性连接,用于在样品放置在固定组件上完成定位后和判断样品的类型后,将样品输送到下一个工位。
在一个具体的实施例中,所述的扫码组件包括与上位机电性连接的扫码枪或包括与上位机电性连接的扫码单元和设置在机架上的门型的扫码支架;其中,扫码单元设置在扫码支架的横梁上且检测端朝向下方设置。
在一个具体的实施例中,所述的固定组件包括设置在机架上的底板、负压单元、定位单元;其中,所述的底板的边沿设置有一列至少两个定位单元且该底板的中部设置有用于吸附样品的通风孔;所述的通风孔与负压单元的输出端连接;
其中,所述的定位单元与传送机械手上的定位装置进行配合,用于将样品放置在需要的位置;其中,所述的负压单元与上位机电性连接,用于在传送机械手将样品放置在指定位置后控制负压单元工作。
在一个具体的实施例中,所述的测量组件包括用于测量样品厚度的第一滑轨机构、用于测量样品长度和宽度的第二滑轨机构以及用于设置第一滑轨机构、第二滑轨机构的固定框体;其中,所述的固定框体设置在机架上且可沿着机架作直线运动;该固定框体垂直地面的侧面上设置有第一滑轨机构;固定框体远离固定组件的侧面上设置有第二滑轨机构且该第二滑轨机构可沿固定框体作直线运动且第二滑轨机构的运动方向与固定框体的运动方向垂直。
在一个具体的实施例中,所述的第一滑轨机构、第二滑轨机构中均包括驱动电机、第一导轨、第二导轨、滑块、螺杆以及测量元件;其中,所述的第一导轨、第二导轨可拆卸的设置在固定框体上;第一导轨、第二导轨之间间隙设置滑块;滑块朝向样品的一端设置测量元件且远离样品的一端设置有螺纹孔;所述的滑块上的螺纹孔与螺杆对应设置;螺杆的一端与驱动电机的输出端连接,另一端通过固定座设置在固定框体上。
在一个具体的实施例中,所述的固定组件包括设置在机架上的透明的底板和定位单元以及照明单元;
所述的测量组件包括CCD线阵;
其中,所述的底板的边沿设置有一列至少两个定位单元;
其中,所述的定位单元与传送机械手上的定位装置进行配合,用于将样品放置在成像物镜的物方视场中并将CCD线阵像敏面设置在成像物镜的最佳像面位置上;其中,所述的CCD线阵与上位机电性连接,用于将测量结果上传至上位机中。
在一个具体的实施例中,所述的固定组件包括设置在机架上的透明的底板和定位单元以及照明单元;
所述的测量组件包括用于测量样品长度和宽度的CCD线阵、用于测量样品厚度的螺杆驱动机构;其中,所述的底板的边沿设置有一列至少两个定位单元且与传送机械手上的定位装置进行配合,用于将样品放置在成像物镜的物方视场中并将CCD线阵像敏面设置在成像物镜的最佳像面位置上;其中,所述的CCD线阵与上位机电性连接,用于将测量结果上传至上位机中;所述的螺杆驱动机构通过步进电机驱动螺杆与滑块配合,使滑块在对应的导轨上移动,从而完成对样品的厚度测量。
有益效果:本发明所述方法通过设置喷涂设备与测量样品的组件进行通信,在样品的表面喷码,同时将测量组件获得的样品的尺寸数据进行存储,然后与数据库中的标准数据进行对比,以获得样品的种类,完成样品的分类。
本发明所述的***通过视觉装置或工作站预置样品类型数据库,通过测量结果及数据库的对照,解决了不同类型样品同时进行尺寸测量时的试样类型识别,分类,打码等问题,减少了人工识别的时间及失误。
附图说明
图1为本发明所述方法的流程图。
图2为本发明所述***的结构框图。
图3为本发明所述***的结构示意图。
图4为图3中扫码组件的结构示意图。
图5为图3中固定组件与测量组件的一种实施例。
图6为图5的左视图。
图7为图6中的A-A向截图。
图8为图3中固定组件的主视图。
图9为图8的俯视图。
图10为图3中固定组件与测量组件的另一种实施例。
图11为图10的俯视图中的部分视图。
其中,需要明确的是:图5中的箭头方向为气流方向,意为产生负压。
附图标记说明:1-机架;2-传送机械手;3-上位机;4-扫码组件;5-固定组件;6-喷码组件;7-测量组件;401-扫码枪;402-扫码单元;402-扫码支架;501-底板;502-负压单元;503-定位单元;502A-长孔;701-第一滑轨机构;702-第二滑轨机构;703-固定框体;704-CCD线阵;1A-横梁;8-样本;a-驱动电机、b-第一导轨、c-第二导轨、d-滑块、e-螺杆、g-测量元件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明为了解决现有技术中针对试样的测量方式存在无法对试样分类的问题,特提供以下标准试样尺寸测量方法。
如图1,所述的一种标准试样尺寸测量方法,包括以下步骤:
S1.通过扫码组件确定样品来料信息,并将该信息发送至控制端,由控制端形成对应该样品的二维码;
S2.将S1步骤已扫描的样品进行定位;
S3.将S2步骤中已定位的样品喷涂二维码;
S4.对喷涂二维码的样品进行尺寸测量;
S5.将S4步骤所获得的尺寸数据上传至控制端,在控制端内通过对比数据库得到该样品的类型;同时,将该样品的类型信息与S3步骤中所喷涂的二维码信息进行关联。
S5步骤中所述的控制端内部存储有样品标准数据构建的数据库;在接收到待检测样品的长、宽、厚度数据后,与上述数据库中的数据进行对比,找到对应的样品类型,完成样品分类过程。
机械性能样条是常用的一种条状样品,在传统的分类过程中,同样采用人工分类的方式,存在分类速度慢,容易出错的问题。同时,由于样品在分类后,并未喷码,其尺寸是否合格,无法知晓,一般通过人工记录的方式,费时费力,错误率高,而且后期统计困难。
为了解决上述问题,在测量机械性能样条的分类和测量过程中采用本发明所述的方法,可以有效的提升效率,控制错误率,而且后期数据统计方便,大大提升了生产效率。
本实施例还提供了一种前述标准试样尺寸测量方法在测量机械性能样条尺寸方面的应用。
为了满足上述测量方法在实际生产中的应用,本发明特提供一种标准试样尺寸测量***。
如图2~3,所述的一种标准试样尺寸测量***,包括机架1、传送机械手2、上位机3以及设置在机架1上的用于采集样品8的来料信息的扫码组件4、用于对样品进行固定的固定组件5、用于向样品8喷涂唯一的二维码的喷码组件6、用于采集样品8的尺寸数据的测量组件7;其中,所述的上位机3与扫码组件4、 固定组件5、喷码组件6连接和测量组件7均电性连接,并在接收扫码组件4发出扫码完成的信号后,控制传送机械手2将样品8放置在固定组件5进行定位,然后通过测量组件7测量样品8的尺寸后,在上位机3内判断样品8的类型,然后通过传送机械手2将样品8输送到下一个工位,如分类存储箱。
根据实际生产需要,所述的扫码组件4可以是扫码枪401;所述的扫码枪401通过握持在工作人员的手中,对样品8进行扫码,获取样品8的出厂信息,并将该信息存储在上位机3内。
或者,如图4,所述的扫码组件4可以包括扫码单元402、设置在机架1上的门型的扫码支架403;扫码单元402设置在扫码支架403的横梁上;当样本8在扫码支架403下方通过时,扫码单元402获取样本8上的编码的信息,发送至上位机3。样本8可以通过传送带运送并经过扫码单元402,也可以通过人工将样品8放置在扫码单元402下方。
需要明确的是:工作人员进行扫码工序后,样品8通过传送机械手2传送至固定组件5,在该过程中,传送机械手2通过CCD利用像素点进行定位,配合传送机械手2进行抓取。
实施例I:由于在固定组件5进行固定后,需要对样品8进行测量,如果采用的是激光头进行直线扫描测量的方式,则需要对样品8进行固定,以防样品8发生移动,影响测量结果。
在实际工作中,如图5~6,所述的测量组件7可以通过激光测距单元进行样品8的长度、宽度以及厚度的测量;同时,在使用激光测距的过程中,为了保证测量结果准确,样品8通过固定组件5处于静止状态,而测量组件7上的激光测距单元可以直线运动,通过扫描的方式测量样品8的尺寸数据。
具体的,所述的固定组件5包括通过螺栓设置在机架1上的底板501、负压 单元502、定位单元503;其中,所述的底板501的边沿设置有一列至少两个定位单元503且该底板501的中部设置有通风孔;所述的通风孔与负压单元502的输出端连接;其中,所述的定位单元503与传送机械手2上的定位装置进行配合,用于将样品8放置在需要的位置;其中,所述的负压单元502与上位机3电性连接,用于在传送机械手2将样品8放置在指定位置后控制负压单元502工作,将样品8吸附在底板501上。
优选的,如图8~9,所述的底板501上设置有凸起的平面;该平面用于设置样品8;为了适应不同的样品8,如果存在若干细小的通风孔,在负压单元502工作的瞬间,样品8可能发生位置偏移,使测量结果不准确。所以,可以将若干通风孔设置为一个长孔502A;该长孔502A的长度方向与样品8的长度方向一致。在放置时,样品8位于长孔502A的上方,在负压单元502工作时,可以平稳的将样品8吸附,解决了因样品8发生位移,而造成的测量失准的问题。
同时,底板501上设置有凸起的平面,可以使样品8的高度高于机架1的支撑面,方便测量样品8的厚度。而且,该凸起的平面的下方可以设置负压单元502,方便使用密封胶进行密封。
需要明确的是:所述的定位单元503可以是红外发射端;而设置在传送机械手2上的定位装置可以是红外接收端;当红外发射端与红外接收端完全对应后,发送信号至上位机3中,由上位机3发出控制信号控制传送机械手2松开样品8,再控制负压单元502工作通过长孔502A将样品8吸附在底板501上。
其中,上述的测量组件7包括用于测量样品8厚度的第一滑轨机构701、用于测量样品8长度和宽度的第二滑轨机构702以及用于设置第一滑轨机构701、第二滑轨机构702的固定框体703;
其中,所述的固定框体703通过导轨设置在机架1上;该固定框体703垂 直地面的侧面上设置有第一滑轨机构701;固定框体703远离固定组件5的侧面上设置有第二滑轨机构702且该第二滑轨机构702可沿固定框体703作直线运动且第二滑轨机构702的运动方向与固定框体703的运动方向垂直。
上述的第一滑轨机构701、第二滑轨机构702均为直线运动的导轨结构,其结构相同,只是运行方向不同,均包括驱动电机a、第一导轨b、第二导轨c、滑块d、螺杆e以及测量元件g;
其中,如图7,所述的第一导轨b、第二导轨c可拆卸的设置在固定框体703上;第一导轨b、第二导轨c之间间隙设置滑块d;滑块d朝向样品8的一端设置测量元件g且远离样品8的一端设置有螺纹孔;所述的滑块d上的螺纹孔与螺杆e对应设置;螺杆e的一端与驱动电机a的输出端连接,另一端通过轴承座设置在固定框体703上。
实施例II:如图10~11,在实际工作中,所述的测量组件7可以通过CCD进行样品8的长度、宽度以及厚度的测量;由于用CCD对物体进行尺寸测量无需进行直线运动,所以样品8放置在指定位置即可。
为完成CCD尺寸测量,所述的固定组件5包括设置在机架1上的透明的底板501和定位单元503以及照明单元;所述的测量组件7包括CCD线阵704;其中,所述的底板501的边沿设置有一列至少两个定位单元503;其中,所述的定位单元503与传送机械手2上的定位装置进行配合,用于将样品8放置在成像物镜的物方视场中并将CCD线阵像敏面设置在成像物镜的最佳像面位置上,通过照明单元的照明完成测量;其中,所述的CCD线阵704与上位机3电性连接,用于测量样品8的尺寸数据。
在本实施例中,底板501采用透明质物体,如玻璃,样品8由传送机械手2通过定位单元503定位后,放置在底板501上。优选的,CCD线阵704可以设 置在底板501上且位于样品8的相对侧或者设置在固定框体703朝向样品8的一侧,为了方便使用,还可以根据需要设置所需的照明单元。
优选的,CCD线阵704选择两个分设在底板501的两端的两个CCD;采用2个CCD来计算产品的长度,CCD检测:精度是视野/(像素*5),按照200视野,2000W像素的相机计算得出精度在0.02mm左右,采用2个CCD可以缩小视野进行检测,从而提高检测的精度,为了保证测量的精度,产品需打前光,在放置产品时,需要把毛刺面朝上,防止毛刺对检测的精度有影响。
在安装的过程中,如果需要,可以在机架1上设置横梁1A,用于放置所需的CCD线阵704或者照明单元,可根据实际情况自行调整。
具体实施例III:当然,在具体实施的过程中,还可以采用直线扫描法与CCD线阵704混合使用的方式。
如:所述的固定组件5包括设置在机架1上的透明的底板501和定位单元503以及照明单元;所述的测量组件7包括用于测量样品8长度和宽度的CCD线阵704、用于测量样品8厚度的第一滑轨机构701;
其中,所述的底板501的边沿设置有一列至少两个定位单元503且与传送机械手2上的定位装置进行配合,用于将样品8放置在成像物镜的物方视场中并将CCD线阵像敏面设置在成像物镜的最佳像面位置上,通过照明单元的照明完成测量;其中,所述的CCD线阵704与上位机3电性连接。
同样的,也可以根据需要,设置测量样品8长度和宽的第二滑轨机构702以及测量样品8厚度的CCD线阵704。
与现有技术相比,本发明所述***通过测量组件,将尺寸测量时间由原来平均45s左右测试一根试样尺寸,降到3s-5s测试一根试样尺寸,将尺寸测量效率提高近9-15倍,解决了现有试样测试方式因为尺寸测量效率低下,不能满足 大批量样品测试下低投入的要求。同时,由于采用了合理的分类过程,完成自动分类,可以与后续自动化单元,如压力检测单元进行联动,形成完备的自动化流水线。
需要明确的是:本文所述的喷码组件6可以选择如申请号CN205467924所述的技术方案。
需要明确的是:所述的上位机3可以设置在机架1上,或者根据需要设置在控制室内。
需要明确的是:本文中所述的传送机械手2在传送样品8的过程中,为保护样品8的表面,可采用负压吸盘移动样品8。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易变化或替换,都属于本发明的保护范围之内。因此本发明的保护范围所述以权利要求的保护范围为准。

Claims (10)

  1. 一种标准试样尺寸测量方法,其特征在于:包括以下步骤:
    S1.通过扫码组件确定样品来料信息,并将该信息发送至控制端,由控制端形成对应该样品的二维码;
    S2.将S1步骤已扫描的样品进行定位;
    S3.将S2步骤中已定位的样品喷涂二维码;
    S4.对喷涂二维码的样品进行尺寸测量;
    S5.通过S4步骤获得的尺寸数据对上述样品进行类型分类。
  2. 根据权利要求1所述的一种标准试样尺寸测量方法,其特征在于:所述的S5步骤的具体过程为:
    将S4步骤所获得的尺寸数据上传至控制端,在控制端内通过对比数据库得到该样品的类型;同时,将该样品的类型信息与S3步骤中所喷涂的二维码信息进行关联。
  3. 一种如权利要求1所述标准试样尺寸测量方法在测量机械性能样条尺寸方面的应用。
  4. 一种标准试样尺寸测量***,其特征在于:包括机架(1)、传送机械手(2)、上位机(3)以及设置在机架(1)上的扫码组件(4)、固定组件(5)、喷码组件(6)、测量组件(7);
    其中,所述的上位机(3)与扫码组件(4)电性连接,用于采集样品(8)的来料信息;
    其中,所述的上位机(3)与固定组件(5)电性连接,用于检测样品(8)是否到位并控制固定组件(5)对样品进行固定;
    其中,所述的上位机(3)与喷码组件(6)连接,用于控制喷码组件(6)向样品(8)喷涂唯一的二维码;
    其中,所述的上位机(3)与测量组件(7)电性连接,用于采集样品(8)的尺寸数据,并根据该尺寸信息判断样品(8)的类型;
    其中,所述的上位机(3)与传送机械手(2)电性连接,用于在样品(8)放置在固定组件(5)上完成定位后、判断样品(8)的类型后,将样品(8)输送到下一个工位。
  5. 根据权利要求4所述的一种标准试样尺寸测量***,其特征在于:所述的扫码组件(4)包括与上位机(3)电性连接的扫码枪(401)或包括与上位机(3)电性连接的扫码单元(402)和设置在机架(1)上的门型的扫码支架(403);其中,扫码单元(402)设置在扫码支架(403)的横梁上且检测端朝向下方设置。
  6. 根据权利要求4所述的一种标准试样尺寸测量***,其特征在于:所述的固定组件(5)包括设置在机架(1)上的底板(501)、负压单元(502)、定位单元(503);
    其中,所述的底板(501)的边沿设置有一列至少两个定位单元(503)且该底板(501)的中部设置有用于吸附样品(8)的通风孔;所述的通风孔与负压单元(502)的输出端连接;
    其中,所述的定位单元(503)与传送机械手(2)上的定位装置进行配合,用于将样品(8)放置在需要的位置;
    其中,所述的负压单元(502)与上位机(3)电性连接,用于在传送机械手(2)将样品(8)放置在指定位置后控制负压单元(502)工作。
  7. 根据权利要求4所述的一种标准试样尺寸测量***,其特征在于:所述的测量组件(7)包括用于测量样品(8)厚度的第一滑轨机构(701)、用于测量样品(8)长度和宽度的第二滑轨机构(702)以及用于设置第一滑轨机构(701)、 第二滑轨机构(702)的固定框体(703);
    其中,所述的固定框体(703)设置在机架(1)上且可沿着机架(1)作直线运动;该固定框体(703)垂直地面的侧面上设置有第一滑轨机构(701);固定框体(703)远离固定组件(5)的侧面上设置有第二滑轨机构(702)且该第二滑轨机构(702)可沿固定框体(703)作直线运动且第二滑轨机构(702)的运动方向与固定框体(703)的运动方向垂直。
  8. 根据权利要求7所述的一种标准试样尺寸测量***,其特征在于:所述的第一滑轨机构(701)、第二滑轨机构(702)中均包括驱动电机(a)、第一导轨(b)、第二导轨(c)、滑块(d)、螺杆(e)以及测量元件(g);
    其中,所述的第一导轨(b)、第二导轨(c)可拆卸的设置在固定框体(703)上;第一导轨(b)、第二导轨(c)之间间隙设置滑块(d);滑块(d)朝向样品(8)的一端设置测量元件(g)且远离样品(8)的一端设置有螺纹孔;所述的滑块(d)上的螺纹孔与螺杆(e)对应设置;螺杆(e)的一端与驱动电机(a)的输出端连接,另一端通过固定座设置在固定框体(703)上。
  9. 根据权利要求4所述的一种标准试样尺寸测量***,其特征在于:所述的固定组件(5)包括设置在机架(1)上的透明的底板(501)和定位单元(503)以及照明单元;
    所述的测量组件(7)包括CCD线阵(704);
    其中,所述的底板(501)的边沿设置有一列至少两个定位单元(503);
    其中,所述的定位单元(503)与传送机械手(2)上的定位装置进行配合,用于将样品(8)放置在成像物镜的物方视场中并将CCD线阵像敏面设置在成像物镜的最佳像面位置上;
    其中,所述的CCD线阵(704)与上位机(3)电性连接,用于将测量结果上传 至上位机(3)中。
  10. 根据权利要求8所述的一种标准试样尺寸测量***,其特征在于:所述的固定组件(5)包括设置在机架(1)上的透明的底板(501)和定位单元(503)以及照明单元;
    所述的测量组件(7)包括用于测量样品(8)长度和宽度的CCD线阵(704)、用于测量样品(8)厚度的螺杆驱动机构;
    其中,所述的底板(501)的边沿设置有一列至少两个定位单元(503)且与传送机械手(2)上的定位装置进行配合,用于将样品(8)放置在成像物镜的物方视场中并将CCD线阵像敏面设置在成像物镜的最佳像面位置上;其中,所述的CCD线阵(704)与上位机(3)电性连接,用于将测量结果上传至上位机(3)中;
    所述的螺杆驱动机构通过步进电机驱动螺杆与滑块配合,使滑块在对应的导轨上移动,从而完成对样品(8)的厚度测量。
PCT/CN2020/111872 2020-08-27 2020-08-27 一种标准试样尺寸测量方法、***及应用 WO2022041068A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111872 WO2022041068A1 (zh) 2020-08-27 2020-08-27 一种标准试样尺寸测量方法、***及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111872 WO2022041068A1 (zh) 2020-08-27 2020-08-27 一种标准试样尺寸测量方法、***及应用

Publications (1)

Publication Number Publication Date
WO2022041068A1 true WO2022041068A1 (zh) 2022-03-03

Family

ID=80352347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111872 WO2022041068A1 (zh) 2020-08-27 2020-08-27 一种标准试样尺寸测量方法、***及应用

Country Status (1)

Country Link
WO (1) WO2022041068A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357273A (zh) * 2017-07-05 2017-11-17 宁夏共享机床辅机有限公司 一种缸盖传送过程中的数据采集与防错的plc控制方法
US20180144168A1 (en) * 2016-11-24 2018-05-24 Sick Ag Detection apparatus and method for detecting an object using a plurality of optoelectronic sensors
CN208948334U (zh) * 2018-08-28 2019-06-07 领胜城科技(江苏)有限公司 一种超窄框胶尺寸与形变检测喷码分拣设备
CN109978453A (zh) * 2019-03-14 2019-07-05 济南千一智能科技有限公司 物料自动化识别和仿真装配***
CN110560582A (zh) * 2019-08-23 2019-12-13 惠州市龙海科技有限公司 一种多轴模组全自动电芯入壳机
CN111054644A (zh) * 2019-12-27 2020-04-24 广东天行测量技术有限公司 一种多工位自动测量设备
CN211238417U (zh) * 2019-12-12 2020-08-11 广东鸿宝科技有限公司 固态电池自动二封成型生产线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180144168A1 (en) * 2016-11-24 2018-05-24 Sick Ag Detection apparatus and method for detecting an object using a plurality of optoelectronic sensors
CN107357273A (zh) * 2017-07-05 2017-11-17 宁夏共享机床辅机有限公司 一种缸盖传送过程中的数据采集与防错的plc控制方法
CN208948334U (zh) * 2018-08-28 2019-06-07 领胜城科技(江苏)有限公司 一种超窄框胶尺寸与形变检测喷码分拣设备
CN109978453A (zh) * 2019-03-14 2019-07-05 济南千一智能科技有限公司 物料自动化识别和仿真装配***
CN110560582A (zh) * 2019-08-23 2019-12-13 惠州市龙海科技有限公司 一种多轴模组全自动电芯入壳机
CN211238417U (zh) * 2019-12-12 2020-08-11 广东鸿宝科技有限公司 固态电池自动二封成型生产线
CN111054644A (zh) * 2019-12-27 2020-04-24 广东天行测量技术有限公司 一种多工位自动测量设备

Similar Documents

Publication Publication Date Title
CN104111260A (zh) 陶瓷砖无损检测设备及检测方法
CN201644407U (zh) 三维尺寸自动分选机
CN211401103U (zh) 一种实时在线水平度检测***
CN107238955A (zh) 液晶模组屏检测***
CN111947577A (zh) 一种标准试样尺寸测量方法、***及应用
CN210734805U (zh) 一种自动定位装置及含有该自动定位装置的自动检测线
CN114234827B (zh) 一种石墨舟整舟检测***及检测方法
CN108759676A (zh) 基于棋盘格的传动箱端面大尺寸形位公差检测装置与方法
CN109848571B (zh) 全自动双工位激光标刻装置及方法
CN108387178A (zh) 高精度幅宽自动化测量装置
CN209706751U (zh) 一种智能化陶瓷石材板尺寸变形综合测试仪
WO2022041068A1 (zh) 一种标准试样尺寸测量方法、***及应用
WO2017157043A1 (zh) 一种基于点激光成像的测量***
CN205333535U (zh) 一种金属应变计缺陷自动检测***
CN213444551U (zh) 一种fv-aoi检测仪的进料输送装置
CN212059883U (zh) 一种丝印网版aoi检查机
CN212083460U (zh) 一种自动化检测***
CN116929209A (zh) 一种用于棒状物料的检测设备和检测方法
CN212082286U (zh) 一种标准试样尺寸测量***
CN114392940B (zh) 一种异型元器件的针脚检测方法及装置
CN214407363U (zh) 板材尺寸测量装置
CN207946061U (zh) 高精度幅宽自动化测量装置
CN209147926U (zh) 一种冰箱门体检测***
CN113405476A (zh) 一种用于工件尺寸测量的工业线扫相机测量装置
CN220160598U (zh) 一种oled模组aoi检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20950739

Country of ref document: EP

Kind code of ref document: A1