WO2022039442A1 - 단열 부재를 포함하는 배터리 모듈 - Google Patents

단열 부재를 포함하는 배터리 모듈 Download PDF

Info

Publication number
WO2022039442A1
WO2022039442A1 PCT/KR2021/010732 KR2021010732W WO2022039442A1 WO 2022039442 A1 WO2022039442 A1 WO 2022039442A1 KR 2021010732 W KR2021010732 W KR 2021010732W WO 2022039442 A1 WO2022039442 A1 WO 2022039442A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
insulating member
battery cell
heat insulating
Prior art date
Application number
PCT/KR2021/010732
Other languages
English (en)
French (fr)
Inventor
홍성곤
조상현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21858529.7A priority Critical patent/EP4131584A1/en
Priority to CN202180031538.7A priority patent/CN115485911A/zh
Priority to US17/921,857 priority patent/US20230178824A1/en
Priority to JP2022566246A priority patent/JP7508173B2/ja
Publication of WO2022039442A1 publication Critical patent/WO2022039442A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module including a thermal insulation member having a composite structure capable of preventing heat transfer to an adjacent battery cell even during thermal runaway of a battery cell.
  • the types of secondary batteries currently widely used include lithium ion batteries, lithium polymer batteries, nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and the like.
  • the operating voltage of the unit secondary battery cell that is, the unit battery cell, is about 2.0V to 5.0V. Therefore, when a higher output voltage is required, a plurality of battery cells may be connected in series to form a battery cell assembly, and the battery cell assembly may be connected in series or parallel according to the required output voltage or charge/discharge capacity.
  • a battery module may be configured, and it is common to manufacture a battery pack by adding additional components using at least one battery module.
  • an insulating material is added between battery cells to prevent heat transfer and prevent direct contact between battery cells.
  • the conventional insulator functions as a heat absorbing material whose physical properties are changed by heat generated during thermal runaway of the battery cell, for example, it cannot serve to support the battery cell after thermal runaway and to block between the battery cells.
  • the present invention includes a thermal insulation member of a composite structure capable of preventing heat transfer to adjacent battery cells even during thermal runaway of a battery cell and cooling a battery cell in which a thermal runaway phenomenon has occurred.
  • An object of the present invention is to provide a battery module.
  • a battery module according to the present invention for achieving the above object is positioned between a plurality of battery cells each having an electrode lead, a case in which the plurality of battery cells are accommodated, and a plurality of battery cells so that heat is transferred to adjacent battery cells.
  • the battery module according to the present invention is characterized in that the battery cell is a pouch-type battery cell in which two electrode leads of a positive electrode and a negative electrode protrude in a direction facing each other.
  • the battery module according to the present invention is characterized in that the case includes a lower case in which the battery cells and the heat insulating member are accommodated, and a cover located on the upper portion of the lower case.
  • the battery module according to the present invention is characterized in that it further includes a bus bar for electrical connection between the electrode leads.
  • the battery module according to the present invention is characterized in that the insulating member is additionally provided between the battery cell and the case.
  • the battery module according to the present invention is characterized in that the support retains its shape even when thermal runaway occurs to form an air layer between the battery cells.
  • the battery module according to the present invention is characterized in that the support is one of a metal or a high heat-resistant polyamide-based plastic.
  • the battery module according to the present invention is a battery module, characterized in that the support is in the form of a plurality of protrusions formed on both sides of the thin plate.
  • the battery module according to the present invention is characterized in that the support has a ring-bonded shape.
  • the battery pack according to the present invention is characterized in that it includes the battery module of the present invention.
  • the device according to the present invention is characterized in that it comprises the battery pack of the present invention.
  • the battery module of the present invention is provided with a thermal insulation member having a composite structure, so that only the internal support is maintained during thermal runaway of the battery cells to form an air layer between the battery cells, thereby maximizing the effect of insulation and cooling while maintaining the distance from the adjacent battery cells.
  • FIG. 1 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a heat insulating member positioned between battery cells in a battery module according to an embodiment of the present invention.
  • FIG. 3 is a plan view illustrating a heat insulating member positioned between a battery cell and a case in a battery module according to an embodiment of the present invention.
  • FIG. 4 is a front view showing the shape of the heat insulating member before and after thermal runaway according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing various shapes of a support according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • the battery module 1000 includes a plurality of battery cells 100 each having electrode leads, and a case 200 in which the battery cells 100 are accommodated. ) and a heat insulating member 300 positioned between the battery cells 100 .
  • the battery cell 100 exists in various ways, such as a cylindrical battery cell, a prismatic battery cell, and a pouch-type battery cell. want to
  • the pouch-type battery cell 100 is configured to include a battery case accommodating an electrode assembly and a pair of electrode leads.
  • the electrode assembly is a jelly-roll type assembly having a structure in which a separator is interposed between a long sheet-shaped positive electrode and a negative electrode and then wound, or a stacked assembly having a structure in which a rectangular positive electrode and a negative electrode are stacked with a separator interposed therebetween , a stack-folding assembly in which unit cells are wound by a long separation film, or a lamination-stacking assembly in which battery cells are stacked and attached to each other with a separator interposed therebetween, but is not limited thereto.
  • the electrode assembly as described above is accommodated in a battery case, and the battery case typically has a laminate sheet structure of an inner layer/metal layer/outer layer. Since the inner layer is in direct contact with the electrode assembly, it must have insulation and electrolyte resistance, and for sealing with the outside, the sealing property, that is, the sealing portion where the inner layers are thermally bonded to each other must have excellent thermal bonding strength.
  • the material of the inner layer may be selected from polyolefin resins such as polypropylene, polyethylene, polyethylene acrylic acid, polybutylene, etc., polyurethane resins and polyimide resins having excellent chemical resistance and good sealing properties, but is not limited thereto, Polypropylene excellent in mechanical properties such as tensile strength, rigidity, surface hardness, and impact resistance and chemical resistance is the most preferable.
  • polyolefin resins such as polypropylene, polyethylene, polyethylene acrylic acid, polybutylene, etc.
  • polyurethane resins and polyimide resins having excellent chemical resistance and good sealing properties, but is not limited thereto
  • Polypropylene excellent in mechanical properties such as tensile strength, rigidity, surface hardness, and impact resistance and chemical resistance is the most preferable.
  • the metal layer in contact with the inner layer corresponds to a barrier layer that prevents moisture or various gases from penetrating into the battery from the outside.
  • an outer layer is provided on the other side of the metal layer, and this outer layer can be made of a heat-resistant polymer excellent in tensile strength, moisture permeability and air permeability to secure heat resistance and chemical resistance while protecting the electrode assembly,
  • a heat-resistant polymer excellent in tensile strength, moisture permeability and air permeability to secure heat resistance and chemical resistance while protecting the electrode assembly
  • nylon or polyethylene terephthalate may be used, but is not limited thereto.
  • the pair of electrode leads 110 are made of a positive electrode lead and a negative electrode lead, and are exposed to the outside of the battery case after the positive tab and the negative tab of the cell assembly are electrically connected, respectively, or directly connected to the cell assembly without the tab it is free to be
  • the pouch-type battery cell 100 may be a unidirectional lead cell in which the electrode lead 110 has a shape in which the positive lead and the negative lead protrude in the same direction, and the positive lead and the negative lead protrude in the opposite direction. It may be a bidirectional read cell.
  • the battery cell 100 of the present invention will focus on the case of the bidirectional lead cell 100 among the pouch-type battery cells 100 .
  • the bidirectional read cell 100 as described above generally has a longer length in the direction in which the lead protrudes compared to the unidirectional read cell, and requires a member for supporting the battery cell 100 when stored in the module as the length increases.
  • the case 200 is positioned above the lower case 210 and the lower case 210 in which the battery cell 100 and the heat insulating member 300 are accommodated, so that the battery cell 100 and the heat insulating member 300 are installed therein. and a cover 220 covering the upper part after being accommodated.
  • various components such as a bus bar for electrically connecting between electrode leads and a sensing board for sensing voltage information of battery cells may be added to the battery module 1000 of the present invention as needed.
  • FIG. 2 is a plan view illustrating a heat insulating member positioned between battery cells in a battery module according to an embodiment of the present invention
  • FIG. 3 is a heat insulating member positioned between a battery cell and a case in the battery module according to an embodiment of the present invention. It is a plan view showing the member.
  • the heat insulating member 300 is located between the battery cell 100 and the battery cell 100, or It may be positioned between the battery cell 100 and the battery cell 100 and between the outermost battery cell 100 and the side of the lower case 210 accommodated therein.
  • the shape of the heat insulating member 300 is not particularly limited, but considering the energy density of the battery module 1000 , it is preferable to have a shape that can be in close contact with the side surface of the battery cell 100 in contact with the heat insulating member 300 . Do.
  • the side area of the heat insulating member 300 is shown to be the same as the side area of the portion in which the electrode assembly of the battery cell 100 is accommodated, but the side area of the heat insulating member 300 is not limited thereto. It can function as the heat insulating member 300 described in the present invention, and can be selected in various ways within a range that does not interfere with other components of the battery module 1000 .
  • FIG. 4 is a front view showing the shape of the heat insulating member before and after thermal runaway according to an embodiment of the present invention
  • FIG. 5 is a perspective view showing various shapes of a support according to an embodiment of the present invention.
  • the heat insulating member 300 is a plastic having a melting point lower than that of the outside temperature during thermal runaway. It is formed as a composite structure including a support 310 formed of a heat-resistant material having a melting point higher than the temperature at the time of thermal runaway.
  • the shape of the support 310 a structure in which a protrusion is formed on a thin plate and a structure in which a thin band having a certain width is connected in a ring or square shape is disclosed, but the shape of the support 310 is a battery As long as the contact area with the battery cell 100 can be as narrow as possible in a range capable of supporting the cell 100 , the present invention is not limited thereto, and various shapes are possible.
  • the possibility of heat transfer to the adjacent battery cell 100 through the support 310 increases as the contact area between the support 310 and the battery cell 100 increases.
  • the smaller the contact area of the more advantageous in terms of heat insulation.
  • the material of the support 310 is a heat-resistant material having a melting point higher than the temperature during thermal runaway
  • various known materials such as metal, ceramic, and high heat-resistant plastic can be used, but the support 310 and the support 310 are used.
  • the heat insulating member 300 including the support 310 inside has a form in which the external plastic is maintained and is in close contact with the adjacent battery cell 100 over a large area when the battery cell 100 is at a normal temperature, but the heat During runaway, the external plastic is melted and only the internal support 310 remains to support the adjacent battery cell 100 with a minimum area.
  • an air layer is formed between the battery cell 100 and the battery cell 100 or between the battery cell 100 and the case 200 to improve thermal insulation performance, and heat generated due to thermal runaway is discharged through convection of the air layer. By doing so, it is possible to simultaneously perform a function of cooling the battery cell 100 in which thermal runaway has occurred.
  • the support 310 serves as an insulator that blocks heat transfer by itself during thermal runaway, or as an absorber that absorbs heat, unlike the conventional insulator, in case of thermal runaway, the battery cell 100 It is different in that it supports with a minimum contact area and functions to form an air layer that functions as insulation and cooling between the battery cells 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 배터리 셀에서 열폭주 발생 시 인접 배터리 셀로 열이 전달되는 것을 방지하기 위하여 각각 전극 리드를 구비한 복수개의 배터리 셀, 복수개의 배터리 셀이 수납되는 케이스 및 복수개의 배터리 셀들 사이에 위치하여 인접 배터리 셀로 열이 전달되는 것을 차단하는 단열 부재를 포함하고, 단열 부재는 외부가 열폭주 시의 온도보다 낮은 녹는점을 가진 플라스틱으로 형성되고, 내부에는 열폭주 시의 온도보다 높은 녹는점을 가진 내열 재료로 형성된 지지대를 포함하는 복합 구조인 것을 특징으로 하는 배터리 모듈에 관한 것이다.

Description

단열 부재를 포함하는 배터리 모듈
본 출원은 2020년 8월20일자 한국 특허 출원 제2020-0104768호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 배터리 셀의 열폭주 시에도 인접한 배터리 셀로 열이 전이되는 것을 방지할 수 있는 복합 구조의 단열 부재를 포함하는 배터리 모듈에 관한 것이다.
스마트폰, 노트북, 디지털 카메라 등 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 충방전이 가능한 이차전지에 관한 기술이 활발해지고 있다. 또한, 이차 전지는 대기오염 물질을 유발하는 화석 연료의 대체 에너지원으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 및 에너지 저장 디바이스(ESS) 등에 적용되고 있다.
현재 널리 사용되는 이차전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차전지 셀, 즉, 단위 배터리 셀의 작동 전압은 약 2.0V ~ 5.0V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리 셀을 직렬로 연결하여 배터리 셀 어셈블리를 구성하기도 하며, 또한 배터리 셀 어셈블리를 요구되는 출력 전압 또는 충방전 용량에 따라 직렬이나 병렬로 연결하여 배터리 모듈을 구성할 수도 있으며, 이러한 적어도 하나의 배터리 모듈을 이용하여 추가적인 구성요소를 부가하여 배터리 팩을 제작하는 것이 일반적이다.
이러한 배터리 모듈은 에너지 밀도를 높이기 위하여 케이스 내에 밀집된 형태로 제조하기 때문에, 특정 배터리 셀에서 열폭주 현상 등이 발생하는 경우 인접한 배터리 셀들로 열이 전이되는 위험이 있다.
한편, 종래에는 열이 전이되는 것을 방지하고, 배터리 셀들이 직접적인 접촉을 하지 않도록 하는 역할을 하기 위하여 배터리 셀 사이에 단열재를 부가하기도 한다.
그러나, 종래의 단열재는 예를 들면 배터리 셀의 열폭주 시 발생하는 열에 의하여 물성이 변하는 흡열재로서 기능을 하는 경우에는 열폭주 후 배터리 셀을 지지하고, 배터리 셀 사이를 차단하는 역할을 하지 못하는 문제가 있다.
또한, 종래의 열폭주 후에 그 형태를 그대로 유지하고 있는 단열재의 경우에는 열폭주 현상이 발생한 배터리 셀과 밀착되어 있어 배터리 셀에서 발생한 열의 배출이 어려워 고온 상태를 유지하게 되고, 이에 따라 일정 시점에서 인접 배터리 셀로 열이 전이되는 문제가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 배터리 셀의 열폭주 시에도 인접한 배터리 셀로 열이 전이되는 것을 방지하고, 열폭주 현상이 발생한 배터리 셀을 냉각할 수 있는 복합 구조의 단열 부재를 포함하는 배터리 모듈을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은 각각 전극 리드를 구비한 복수개의 배터리 셀, 복수개의 배터리 셀이 수납되는 케이스 및 복수개의 배터리 셀들 사이에 위치하여 인접 배터리 셀로 열이 전달되는 것을 차단하는 단열 부재를 포함하고, 상기 단열 부재는 외부가 열폭주 시의 온도보다 낮은 녹는점을 가진 플라스틱으로 형성되고, 내부에는 열폭주 시의 온도보다 높은 녹는점을 가진 내열 재료로 형성된 지지대를 포함하는 복합 구조인 것을 특징으로 하는 배터리 모듈.
또한 본 발명에 따른 배터리 모듈은 배터리 셀이 양극과 음극의 두 전극 리드가 서로 마주보는 방향으로 돌출된 파우치형 배터리 셀인 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈은 케이스가 배터리 셀과 단열 부재가 수납되는 하부 케이스 및 하부 케이스의 상부에 위치하는 커버를 포함하는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈은 전극 리드 간의 전기적 연결을 위한 버스바를 더 포함하는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈은 단열 부재가 배터리 셀과 케이스 사이에 추가로 구비되는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈은 지지대가 열폭주 발생 시에도 형상을 유지하여 배터리 셀 사이에 공기층을 형성하는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈은 지지대가 금속 또는 고내열성 폴리아미드계 플라스틱 중 하나인 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈은 지지대가 얇은 플레이트의 양면에 복수의 돌기가 형성된 형태인 것을 특징으로 하는 배터리 모듈.
또한 본 발명에 따른 배터리 모듈은 지지대가 링이 접합된 형상인 것을 특징으로 한다.
또한 본 발명에 따른 배터리 팩은 본 발명의 배터리 모듈을 포함하는 것을 특징으로 한다.
또한 본 발명에 따른 디바이스는 본 발명의 배터리 팩을 포함하는 것을 특징으로 한다.
본 발명의 배터리 모듈은 복합 구조의 단열 부재를 구비하여 배터리 셀의 열폭주 시 내부의 지지대만 유지되어 배터리 셀 사이에 공기층을 형성함으로써 인접 배터리 셀과의 간격은 유지하면서 단열 및 냉각의 효과를 극대화할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 분해 사시도이다.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈에서 배터리 셀 사이에 위치한 단열 부재를 나타낸 평면도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈에서 배터리 셀과 케이스 사이에 위치한 단열 부재를 나타낸 평면도이다.
도 4는 본 발명의 일 실시예에 따른 단열 부재의 열폭주 전후의 형상을 나타낸 정면도이다.
도 5는 본 발명의 일 실시예에 따른 지지대의 다양한 형상을 나타낸 사시도이다.
본 출원에서 "포함한다", "가지다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명에 따른 배터리 모듈에 관하여 첨부한 도면을 참조하여 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 분해 사시도이다.
도 1을 참조하여 본 발명의 배터리 모듈(1000)에 대하여 상세하게 살펴보면, 배터리 모듈(1000)은 각각 전극 리드를 구비한 복수의 배터리 셀(100), 배터리 셀(100)이 수납되는 케이스(200) 및 배터리 셀(100) 사이에 위치하는 단열 부재(300)를 포함한다.
여기서, 배터리 셀(100)은 원통형 배터리 셀, 각형 배터리 셀, 파우치형 배터리 셀 등 다양하게 존재하나, 본 발명의 배터리 모듈(1000)은 그 중에서 파우치형 배터리 셀(100)인 경우를 중점적으로 설명하고자 한다.
파우치형 배터리 셀(100)이란 전극 조립체를 수납하는 전지 케이스 및 한 쌍의 전극 리드를 포함하여 구성된다.
여기서, 전극 조립체는 긴 시트형의 양극 및 음극 사이에 분리막이 개재된 후 권취되는 구조로 이루어지는 젤리-롤형 조립체, 또는 장방형의 양극 및 음극이 분리막을 사이에 개재한 상태로 적층되는 구조의 스택형 조립체, 단위셀들이 긴 분리 필름에 의해 권취되는 스택-폴딩형 조립체, 또는 전지 셀들이 분리막을 사이에 개재한 상태로 적층되어 서로 간에 부착되는 라미네이션-스택형 조립체 등으로 이루어질 수 있으나 이에 제한하지 않는다.
또한, 전해질은 일반적으로 통용되는 액체전해질 외에도, 고체전해질이나, 고체전해질에 첨가제를 부가하여 액체와 고체 중간형태를 띄는 겔 형태의 준고체 전해질로 치환되어도 문제가 없음은 당연하다.
상기와 같은 전극 조립체는 전지 케이스에 수납되며, 전지 케이스는 통상적으로 내부층/금속층/외부층의 라미네이트 시트 구조로 이루어져 있다. 내부층은 전극 조립체와 직접적으로 접촉하므로 절연성과 내전해액성을 가져야 하고, 또 외부와의 밀폐를 위하여 실링성 즉, 내부층끼리 열 접착된 실링 부위는 우수한 열접착 강도를 가져야 한다.
이러한 내부층의 재료로는 내화학성이 우수하면서도 실링성이 좋은 폴리프로필렌, 폴리에틸렌, 폴리에틸렌아크릴산, 폴리부틸렌 등의 폴리올레핀계 수지, 폴리우레탄수지 및 폴리이미드수지로부터 선택될 수 있으나 이에 한정하지 않으며, 인장강도, 강성, 표면경도, 내충격 강도 등의 기계적 물성과 내화학성이 뛰어난 폴리프로필렌이 가장 바람직하다.
내부층과 접하고 있는 금속층은 외부로부터 수분이나 각종 가스가 전지 내부로 침투하는 것을 방지하는 배리어층에 해당되고, 이러한 금속층의 바람직한 재료로는 가벼우면서도 성형성이 우수한 알루미늄 박막을 사용할 수 있다.
그리고 금속층의 타측면에는 외부층이 구비되며, 이러한 외부층은 전극 조립체를 보호하면서 내열성과 내화학성을 확보할 수 있도록 인장강도, 투습방지성 및 공기 투과 방지성이 우수한 내열성 폴리머를 사용할 수 있고, 일 예로 나일론 또는 폴리에틸렌테레프탈레이트를 사용할 수 있으나 이에 제한하지 않는다.
한편, 한 쌍의 전극 리드(110)는 양극 리드와 음극 리드로 이루어지며, 셀 조립체의 양극 탭과 음극 탭이 각각 전기적으로 연결된 후 전지 케이스 외부로 노출되거나, 탭을 생략하고 셀 조립체와 직접 연결되어도 무방하다.
또한, 파우치형 배터리 셀(100)은 전극 리드(110)가 양극 리드와 음극 리드가 같은 방향으로 돌출된 형태인 단방향 리드 셀일 수도 있고, 양극 리드와 음극 리드가 서로 마주보는 방향으로 돌출된 형태인 양방향 리드 셀일 수도 있다.
특히, 본 발명의 배터리 셀(100)은 파우치형 배터리 셀(100) 중 양방향 리드 셀(100)인 경우를 중심으로 살펴보고자 한다.
위와 같은 양방향 리드 셀(100)은 일반적으로 단방향 리드 셀에 비하여 리드가 돌출된 방향으로 길이가 긴 형태이고, 길이가 길어진 만큼 모듈 내에 수납 시 배터리 셀(100)을 지지하는 부재를 필요로 한다.
다음으로, 케이스(200)는 배터리 셀(100)과 단열 부재(300)가 수납되는 하부 케이스(210) 및 하부 케이스(210)의 상부에 위치하여 배터리 셀(100)과 단열 부재(300)가 수납된 후 상부를 덮는 커버(220)를 포함한다.
또한, 본 발명의 배터리 모듈(1000)은 이외에도 전극 리드 사이를 전기적으로 연결하기 위한 버스바, 배터리 셀의 전압 정보를 센싱하는 센싱 기판 등의 다양한 부품들을 필요에 따라 부가할 수도 있다.
한편, 도 2는 본 발명의 일 실시예에 따른 배터리 모듈에서 배터리 셀 사이에 위치한 단열 부재를 나타낸 평면도이고, 도 3은 본 발명의 일 실시예에 따른 배터리 모듈에서 배터리 셀과 케이스 사이에 위치한 단열 부재를 나타낸 평면도이다.
도 2 및 도 3을 참조하여 배터리 모듈(1000) 내에서 단열 부재(300)가 구비되는 위치에 대하여 살펴보면, 단열 부재(300)는 배터리 셀(100)과 배터리 셀(100) 사이에 위치하거나, 배터리 셀(100)과 배터리 셀(100) 사이 및 최외곽 배터리 셀(100)과 수납된 하부 케이스(210)의 측면 사이에 위치할 수 있다.
이와 같이 위치함으로써 정상 온도에서는 배터리 셀(100) 사이의 절연 및 지지부의 역할을 하고, 배터리 셀(100)의 열폭주 시에는 단열 부재(300)로서의 역할을 하게 된다.
한편, 단열 부재(300)의 형상은 특별히 한정되지 않으나, 배터리 모듈(1000)의 에너지 밀도 등을 고려할 때 단열 부재(300)와 접하는 배터리 셀(100)의 측면과 밀착될 수 있는 형상인 것이 바람직하다.
또한, 본 발명에서는 단열 부재(300)의 측면 면적이 배터리 셀(100)의 전극 조립체가 수납된 부분의 측면 면적과 동일한 것으로 도시되어 있으나, 단열 부재(300)의 측면 면적은 이에 한정되지 않고 본 발명에서 설명한 단열 부재(300)로서의 기능을 할 수 있고, 배터리 모듈(1000)의 다른 부품들과 간섭을 일으키지 않는 범위에서 다양하게 선택될 수 있다.
도 4는 본 발명의 일 실시예에 따른 단열 부재의 열폭주 전후의 형상을 나타낸 정면도이고, 도 5는 본 발명의 일 실시예에 따른 지지대의 다양한 형상을 나타낸 사시도이다.
도 4 및 도 5를 참조하여 본 발명의 단열 부재(300)의 구조 및 열폭주 시의 거동에 대하여 상세하게 살펴보면, 단열 부재(300)는 외부가 열폭주 시의 온도보다 낮은 녹는점을 가진 플라스틱으로 형성되고, 내부에는 열폭주 시의 온도보다 높은 녹는점을 가진 내열 재료로 형성된 지지대(310)를 포함하는 복합 구조로 형성되어 있다.
한편, 도 5에서는 지지대(310)의 형상의 일 예로 얇은 플레이트에 돌기가 형성된 구조, 일정 폭을 가진 얇은 띠가 링 형태 또는 각형 모양으로 이어진 구조가 개시되어 있으나, 지지대(310)의 형상은 배터리 셀(100)을 지지할 수 있는 범위에서 배터리 셀(100)과 접촉 면적이 가능한 좁을 수 있는 형상이면 이에 한정되지 않고 다양한 형상이 가능하다.
만약, 지지대(310)와 배터리 셀(100)과의 접촉 면적이 넓을수록 지지대(310)를 통하여 인접 배터리 셀(100)로 열 전달의 가능성이 높아지므로, 지지대(310)와 배터리 셀(100)의 접촉 면적은 가능한 좁을수록 단열 측면에서 유리하다.
또한, 지지대(310)의 재료는 열폭주 시의 온도보다 높은 녹는점을 가진 내열 재료라면 금속, 세라믹, 고내열성 플라스틱 등 공지의 다양한 재료를 사용할 수 있으나, 지지대(310) 및 지지대(310)를 포함하는 단열 부재(300) 제작의 용이성 및 비용 등을 고려할 때, 금속 또는 고내열성 폴리아미드계 플라스틱 중 하나인 것이 바람직하다.
이러한 지지대(310)를 내부에 포함한 단열 부재(300)는 배터리 셀(100)이 정상 온도일 경우에는 외부의 플라스틱이 유지되어 인접한 배터리 셀(100)과 넓은 면적에 걸쳐서 밀착되어 있는 형태이나, 열폭주 시에는 외부의 플라스틱이 용융되고 내부의 지지대(310) 만이 남아 인접한 배터리 셀(100)을 최소한의 면적으로 지지하게 된다.
따라서, 배터리 셀(100)과 배터리 셀(100) 사이 또는 배터리 셀(100)과 케이스(200) 사이에 공기층이 형성됨으로써 단열 성능을 향상시키고, 공기층의 대류를 통하여 열폭주로 인하여 발생한 열을 배출시킴으로써 열폭주가 일어난 배터리 셀(100)을 냉각하는 기능도 동시에 할 수 있게 된다.
즉, 본 발명에서 지지대(310)는 열폭주 시 자체로 열 전달을 차단하는단열재로서의 기능을 하거나, 열을 흡수하는 흡수재로서의 기능을 하는 기존의 단열재와는 달리, 열폭주 시 배터리 셀(100)을 최소한의 접촉 면적으로 지지하고, 배터리 셀(100) 사이에 단열 및 냉각의 기능을 하는 공기층을 형성하는 기능을 한다는 점에서 차이가 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니며, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
(부호의 설명)
1000 : 배터리 모듈
100 : 배터리 셀
110 : 전극 리드
200 : 케이스
210 : 하부 케이스
220 : 커버
300 : 단열 부재
310 : 지지대

Claims (11)

  1. 배터리 셀(100)에서 열폭주 발생 시 인접 배터리 셀(100)로 열이 전달되는 것을 방지할 수 있는 배터리 모듈(1000)로서,
    상기 배터리 모듈(1000)은 각각 전극 리드(110)를 구비한 복수개의 배터리 셀(100);
    상기 복수개의 배터리 셀(100)이 수납되는 케이스(200); 및
    상기 복수개의 배터리 셀(100)들 사이에 위치하여 인접 배터리 셀(100)로 열이 전달되는 것을 차단하는 단열 부재(300)를 포함하고,
    상기 단열 부재(300)는 외부가 상기 열폭주 시의 온도보다 낮은 녹는점을 가진 플라스틱으로 형성되고, 내부에는 상기 열폭주 시의 온도보다 높은 녹는점을 가진 내열 재료로 형성된 지지대(310)를 포함하는 복합 구조인 것을 특징으로 하는 배터리 모듈(1000).
  2. 제1항에 있어서, 상기 배터리 셀(100)은 양극과 음극의 두 전극 리드(110)가 서로 마주보는 방향으로 돌출된 파우치형 배터리 셀(100)인 것을 특징으로 하는 배터리 모듈(1000).
  3. 제1항에 있어서, 상기 케이스(200)는 상기 배터리 셀(100)과 상기 단열 부재(300)가 수납되는 하부 케이스(210) 및 상기 하부 케이스(210)의 상부에 위치하는 커버(220)를 포함하는 것을 특징으로 하는 배터리 모듈(1000).
  4. 제3항에 있어서, 상기 배터리 모듈(1000)은 상기 전극 리드(110) 간의 전기적 연결을 위한 버스바를 더 포함하는 것을 특징으로 하는 배터리 모듈(1000).
  5. 제1항에 있어서, 상기 단열 부재(300)는 상기 배터리 셀(100)과 상기 케이스(200) 사이에 추가로 구비되는 것을 특징으로 하는 배터리 모듈(1000).
  6. 제1항에 있어서, 상기 지지대(310)는 열폭주 발생 시에도 형상을 유지하여 상기 배터리 셀(100) 사이에 공기층을 형성하는 것을 특징으로 하는 배터리 모듈(1000).
  7. 제6항에 있어서, 상기 지지대(310)는 금속 또는 고내열성 폴리아미드계 플라스틱 중 하나인 것을 특징으로 하는 배터리 모듈(1000).
  8. 제7항에 있어서, 상기 지지대(310)는 얇은 플레이트의 양면에 복수의 돌기가 형성된 형태인 것을 특징으로 하는 배터리 모듈(1000).
  9. 제7항에 있어서, 상기 지지대(310)는 링이 접합된 형상인 것을 특징으로 하는 배터리 모듈(1000).
  10. 제1항 내지 제9항 중 어느 한 항의 배터리 모듈(1000)을 포함하는 배터리 팩.
  11. 제10항의 배터리 팩을 포함하는 디바이스.
PCT/KR2021/010732 2020-08-20 2021-08-12 단열 부재를 포함하는 배터리 모듈 WO2022039442A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21858529.7A EP4131584A1 (en) 2020-08-20 2021-08-12 Battery module comprising heat insulating member
CN202180031538.7A CN115485911A (zh) 2020-08-20 2021-08-12 包括热绝缘构件的电池模块
US17/921,857 US20230178824A1 (en) 2020-08-20 2021-08-12 Battery module including thermal insulation member
JP2022566246A JP7508173B2 (ja) 2020-08-20 2021-08-12 断熱部材を含むバッテリーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0104768 2020-08-20
KR1020200104768A KR20220023191A (ko) 2020-08-20 2020-08-20 단열 부재를 포함하는 배터리 모듈

Publications (1)

Publication Number Publication Date
WO2022039442A1 true WO2022039442A1 (ko) 2022-02-24

Family

ID=80323578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010732 WO2022039442A1 (ko) 2020-08-20 2021-08-12 단열 부재를 포함하는 배터리 모듈

Country Status (5)

Country Link
US (1) US20230178824A1 (ko)
EP (1) EP4131584A1 (ko)
KR (1) KR20220023191A (ko)
CN (1) CN115485911A (ko)
WO (1) WO2022039442A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024521611A (ja) * 2022-04-25 2024-06-04 エルジー エナジー ソリューション リミテッド バッテリーモジュール、バッテリーパック及びこれを含む自動車
KR20240031474A (ko) * 2022-08-29 2024-03-08 주식회사 엘지에너지솔루션 안전성이 향상된 배터리 팩

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023355A (ja) * 2009-07-17 2011-02-03 Tesla Motors Inc 二重膨張性材料層を使用したセルの熱暴走の防止
JP2013187119A (ja) * 2012-03-09 2013-09-19 Toyoda Gosei Co Ltd 電池ホルダ
JP3191519U (ja) * 2010-12-08 2014-06-26 Jmエナジー株式会社 蓄電デバイス
JP6041443B2 (ja) * 2010-11-05 2016-12-07 エルジー・ケム・リミテッド 安全性が向上した二次電池
KR20180060997A (ko) * 2016-11-29 2018-06-07 삼성에스디아이 주식회사 전지 셀, 전지 서브모듈, 전지 모듈 또는 전지 시스템의 벽 구조
KR20200104768A (ko) 2019-02-26 2020-09-04 현대자동차주식회사 배기 가스 후처리 시스템 및 방법과, 차량 및 차량의 작동 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023355A (ja) * 2009-07-17 2011-02-03 Tesla Motors Inc 二重膨張性材料層を使用したセルの熱暴走の防止
JP6041443B2 (ja) * 2010-11-05 2016-12-07 エルジー・ケム・リミテッド 安全性が向上した二次電池
JP3191519U (ja) * 2010-12-08 2014-06-26 Jmエナジー株式会社 蓄電デバイス
JP2013187119A (ja) * 2012-03-09 2013-09-19 Toyoda Gosei Co Ltd 電池ホルダ
KR20180060997A (ko) * 2016-11-29 2018-06-07 삼성에스디아이 주식회사 전지 셀, 전지 서브모듈, 전지 모듈 또는 전지 시스템의 벽 구조
KR20200104768A (ko) 2019-02-26 2020-09-04 현대자동차주식회사 배기 가스 후처리 시스템 및 방법과, 차량 및 차량의 작동 방법

Also Published As

Publication number Publication date
KR20220023191A (ko) 2022-03-02
US20230178824A1 (en) 2023-06-08
EP4131584A1 (en) 2023-02-08
JP2023524706A (ja) 2023-06-13
CN115485911A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2019208911A1 (ko) 가스배출수단이 구비된 파우치형 이차전지
WO2017104878A1 (ko) 배터리 팩
WO2019235724A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
WO2022080908A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022039442A1 (ko) 단열 부재를 포함하는 배터리 모듈
WO2017039181A1 (ko) 이차 전지용 카트리지
WO2019098522A1 (ko) 미실링부를 갖는 파우치 타입 이차 전지
WO2022158782A1 (ko) 화재 전이 방지 구조가 구비된 전지 모듈 및 이를 포함하는 전지 팩
WO2022039508A1 (ko) 안전성이 향상된 전지 셀 및 이의 제조방법
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
WO2018016774A1 (ko) 이차 전지 및 그 모듈
WO2022250287A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022211250A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022098024A1 (ko) 주행 방향을 따라 가스 포켓부가 형성되는 전지케이스용 시트, 이를 이용하여 제조된 전지셀, 및 상기 전지셀 제조방법
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023038338A1 (ko) 전극 리드와 리드필름 사이에 안전 소자를 구비한 파우치형 전지 셀
WO2022080918A1 (ko) 냉각성능이 향상된 전지 팩 및 이를 포함하는 디바이스
WO2021215712A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022065708A1 (ko) 응력 완화부가 형성된 전극 탭을 포함하는 배터리 셀
WO2022231202A1 (ko) 전지 팩 및 이를 포함하는 디바이스
JP7508173B2 (ja) 断熱部材を含むバッテリーモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021858529

Country of ref document: EP

Effective date: 20221104

NENP Non-entry into the national phase

Ref country code: DE