WO2022039078A1 - Designed film and designed molded body - Google Patents

Designed film and designed molded body Download PDF

Info

Publication number
WO2022039078A1
WO2022039078A1 PCT/JP2021/029592 JP2021029592W WO2022039078A1 WO 2022039078 A1 WO2022039078 A1 WO 2022039078A1 JP 2021029592 W JP2021029592 W JP 2021029592W WO 2022039078 A1 WO2022039078 A1 WO 2022039078A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing element
layer
absorption
semi
film
Prior art date
Application number
PCT/JP2021/029592
Other languages
French (fr)
Japanese (ja)
Inventor
祥一 松田
恵美 宮井
麻未 川口
雄大 沼田
稔 宮武
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022039078A1 publication Critical patent/WO2022039078A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques

Definitions

  • the present invention relates to a design film and a design molded body including the design film.
  • the present invention has been made to solve the above problems, and a main object thereof is to realize a film in which the design when viewed from one side and the design when viewed from the other side are different. ..
  • a design film having a ⁇ E * ab of 10 or more is provided.
  • the design film comprises a first semi-transmissive light absorbing layer and a semi-transmissive light reflecting layer.
  • the semi-transmissive light reflective layer does not have polarization.
  • the first semi-transmissive light absorption layer is a first absorption type polarizing element.
  • the first semi-transmissive light absorbing layer is a first absorption type polarizing element
  • the semi-transmissive light reflecting layer is a reflective polarizing element
  • the reflective polarizing element is used.
  • the transmission axis direction is substantially parallel to the transmission axis direction of the first absorption type polarizing element.
  • the first semi-transmissive light absorbing layer is a first absorbent polarizing element, further comprising a second absorbent polarizing element, the first absorbing polarizing element and the half.
  • the transmissive light-reflecting layer and the second absorption-type polarizing element are substantially parallel to the transmission axis direction of the first absorption-type polarizing element and the transmission axis direction of the second absorption-type polarizing element. As shown above, they are laminated in this order.
  • the second absorbent polarizing element has a non-uniform transmittance in the plane.
  • the second absorption type modulator has an in-plane non-uniform hue.
  • the design film has a transmittance of 1% to 95% and a degree of polarization of 30% or more.
  • the first semi-transmissive light absorbing layer is a first absorbent polarizing element, further including a retardation layer, the first absorbing polarizing element and the semi-transmissive light reflection.
  • the angle between the layer and the retardation layer between the absorption axis direction of the first absorption type polarizing element and the slow axis direction of the retardation layer is 35 ° to 55 ° or 125 ° to 145 °. In this order, they are laminated.
  • the first semi-transmissive light absorbing layer is a first absorbing polarizing element, further including a second absorbing polarizing element and a retardation layer, and the first absorbing polarizing layer.
  • the transmission axis direction of the first absorption type polarizing element and the second The angle between the absorption axis direction of the first absorption type polarizing element and the slow axis direction of the retardation layer is 35 ° so that the transmission axis direction of the absorption type polarizing element is substantially parallel to each other. They are laminated so as to be ⁇ 55 ° or 125 ° to 145 °.
  • the retardation layer substantially functions as a quarter wave plate.
  • a designable molded product including the designable film.
  • the design molded body is eyeglasses.
  • the design molded body is a flat plate.
  • the color difference ⁇ E * between the L * a * b * color space of the reflected light for the light incident from one direction and the L * a * b * color space of the reflected light for the light incident from the opposite direction Since the ab is 10 or more, it is possible to recognize different designs when viewed from one side and when viewed from the other side.
  • Refractive index (nx, ny, nz) "Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the slow-phase axis direction), and "ny” is the direction orthogonal to the slow-phase axis in the plane (that is, the phase-advancing axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • the expression "substantially orthogonal” includes the case where the angle formed by the two directions is 90 ° ⁇ 10 °, preferably 90 ° ⁇ 7 °, and more preferably 90 ° ⁇ 5 °. Is. Further, the term “orthogonal" in the present specification may include a substantially orthogonal state.
  • substantially parallel includes the case where the angle formed by the two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, and more preferably 0 ° ⁇ 5 °. Is. Further, the term “parallel” in the present specification may include substantially parallel states.
  • the designable film according to the embodiment of the present invention is the L * a * b * color of the reflected light for the light incident from one direction and the L * a * b * color of the reflected light for the light incident from the opposite direction to the color space.
  • the upper limit of the color difference ⁇ E * ab is not particularly limited, but may be, for example, 100 or less, or 90 or less, for example.
  • the design film according to the embodiment of the present invention typically includes at least a first translucent light absorbing layer having transparency and a first translucent light reflecting layer having at least transparency.
  • first semi-transmissive light absorbing layer and the semi-transmissive light reflecting layer those having polarization property may be used or those having no polarization property may be used, respectively, depending on the intended use.
  • “having no polarization” means that the degree of polarization is less than 15%, preferably less than 10%.
  • the design film of the embodiment of the present invention contains two or more films having polarization (also referred to as a polarizing element), these films have substantially mutual transmission axis directions unless otherwise specified. They are stacked so as to be parallel.
  • FIG. 1 is a schematic cross-sectional view of a design film according to one embodiment of the present invention.
  • the designable film 100a shown in FIG. 1 includes a first semi-transmissive light absorbing layer 10 and a semi-transmissive light reflecting layer 20.
  • a part of the light incident on the first semi-transmissive light absorption layer 10 is absorbed by the first semi-transmissive light absorption layer 10, and the remaining light is absorbed.
  • a part of the light is reflected by the semi-transmissive light-reflecting layer 20 and emitted from the first semi-transmissive light absorption layer 10, and another part of the remaining light is incident on the semi-transmissive light-reflecting layer 20.
  • a part of the light incident on the semi-transmissive light reflection layer 20 is emitted from the semi-transmissive light reflection layer 20 as reflected light, and the remaining light is transmitted through the semi-transmissive light reflection layer 20.
  • the effect may change depending on the transmittance of each layer and the like, but when the design film 100a is viewed from the first semi-transmissive light absorbing layer 10 side at the same brightness, the semi-transmissive light is obtained.
  • the light reflected by the reflective layer 20 and emitted from the first semi-transmissive light absorbing layer 10 (as a result, the design derived from the first semi-transmissive light absorbing layer 10) can be visually recognized preferentially and is semi-transmissive.
  • the light reflected by the semi-transmissive light-reflecting layer 20 (as a result, the design derived from the semi-transmissive light-reflecting layer 20) can be visually recognized preferentially.
  • Such a designable film 100a is useful as a film in which the design when viewed from one side and the design when viewed from the other side are different.
  • the design film 100a is placed on the first semi-transmissive light absorbing layer 10 side.
  • the light incident on the semi-transmissive light-reflecting layer 20 and transmitted through the semi-transmissive light-reflecting layer 20 can be preferentially visually recognized, and the semi-transmissive light-reflecting layer can be visually recognized.
  • the design derived from the semi-transmissive light-reflecting layer 20 can be visually recognized preferentially. Therefore, by using such a designable film 100a, a designable molded product (for example, sunglasses) having excellent designability and excellent visibility when worn can be obtained.
  • the first semi-transmissive light absorption layer and the semi-transmissive light reflection layer may have polarization property or may not have polarization property, respectively. ..
  • the first semi-transmissive light absorption layer has polarization property and selectively absorbs light in a specific wavelength range (specifically, the first semi-transmissive light absorption layer is absent).
  • the first semi-transmissive light absorption layer has polarization property and selectively absorbs light in a specific wavelength range (specifically, the first semi-transmissive light absorption layer is absent).
  • an absorption-type polarizing element that is not colored
  • light having a wavelength other than the absorption wavelength passes through the absorption axis of the first semi-transmissive light absorption layer and is reflected by the semi-transmissive light-reflecting layer.
  • the design derived from the first semi-transmissive light absorption layer can be visually recognized. Further, when both the first semi-transmissive light absorbing layer and the semi-transmissive light reflecting layer have polarization property (specifically, the first semi-transmissive light absorbing layer is an absorption type polarizing element).
  • the transflective light-reflecting layer is a reflective polarizing element
  • these layers are arranged so that the transmission axis directions are substantially parallel to each other. With such a configuration, high transmittance can be ensured, and the absorption axis direction of the absorption type polarizing element and the reflection axis direction of the reflection type polarizing element are substantially parallel to each other, so that the absorption type polarization can be ensured.
  • the light transmitted through the absorption axis of the child can be reflected by the reflection axis of the reflective polarizing element.
  • FIG. 2A is a schematic cross-sectional view of a design film according to another embodiment of the present invention.
  • the design film 100b shown in FIG. 2A includes a first semitransparent light absorbing layer 10, a semitransparent light reflecting layer 20, and a second semitransparent light absorbing layer 30 in this order.
  • a part of the light incident on the first semi-transmissive light absorbing layer 10 is absorbed by the semi-transmissive light absorbing layer 10, and a part of the remaining light.
  • Is emitted from the first semi-transmissive light absorption layer 10 as reflected light reflected by the semi-transmissive light reflection layer 20, and another part of the remaining light is incident on the semi-transmissive light reflection layer 20. ..
  • a part of the light incident on the second semi-transmissive light absorption layer 30 is absorbed by the second semi-transmissive light absorption layer 30, and a part of the remaining light is a semi-transmissive light reflection layer.
  • the reflected light reflected by the 20 is emitted from the second semi-transmissive light absorbing layer 30, and another part of the remaining light is incident on the semi-transmissive light reflecting layer 20.
  • the effect may change depending on the transmittance of each layer and the like, but when the design film 100b is viewed from the first semi-transmissive light absorption layer 10 side at the same brightness, the first half
  • the design derived from the transmissive light absorption layer 10 can be visually recognized preferentially, and when viewed from the side of the second semi-transmissive light absorption layer 30, the design derived from the second semi-transmissive light absorption layer 30 has priority. Can be visually recognized.
  • Such a designable film 100b is useful as a film in which the design when viewed from one side and the design when viewed from the other side are different.
  • the design film 100b absorbs the first semi-transmissive light.
  • the light incident from the second semi-transmissive light absorption layer 30 side and transmitted through the semi-transmissive light reflection layer 20 (for example, external light) can be preferentially visually recognized.
  • the design derived from the second semi-transmissive light absorption layer 30 can be visually recognized. Therefore, by using such a designable film 100b, a designable molded product (for example, sunglasses) having excellent designability and excellent visibility when worn can be obtained.
  • the first semi-transmissive light absorbing layer, the semi-transmissive light reflecting layer, and the second semi-transmissive light absorbing layer may each have polarization property, and may be polarized. It may not have.
  • the first semi-transmissive light absorption layer (or the second semi-transmissive light absorption layer) has polarization property and selectively absorbs light in a specific wavelength range (specific example).
  • the first semi-transmissive light absorption layer (or the second semi-transmissive light absorption layer) is an absorption-type polarizing element that is not achromatic
  • light having a wavelength other than the absorption wavelength is the first half.
  • the first semi-transmissive light absorption layer (or the second).
  • the design derived from the first semi-transmissive light absorption layer (or the second semi-transmissive light absorption layer) can be visually recognized.
  • the layers having polarization are arranged so that the transmission axis directions are substantially parallel to each other. With such a configuration, high transmittance can be ensured.
  • FIG. 2B shows a configuration in which both the first semi-transmissive light absorption layer and the second semi-transmissive light absorption layer have polarization in the embodiment shown in FIG. 2A.
  • the designable film 100c shown in FIG. 2B has a first absorbent polarizing element 12 which is a first semi-transmissive light absorbing layer having a polarizing property, a semi-transmissive light reflecting layer 20, and a second polarized light having a polarizing property.
  • a second absorption type polarizing element 32 which is a semi-transmissive light absorption layer, is included in this order.
  • the first absorption type polarizing element 12 and the second absorption type polarizing element 32 are laminated so that their respective transmission axis directions are substantially parallel to each other.
  • the design film 100c having such a configuration, similarly to the design film 100b, when viewed from the first absorption type polarizing element 12 side at the same brightness, the first absorption type polarization is obtained.
  • the design derived from the child 12 can be visually recognized preferentially, and when viewed from the side of the second absorption type polarizing element 32, the design derived from the second absorption type polarizing element 32 can be visually recognized preferentially. Further, even under the condition that the first absorption type polarizing element 12 side is dark and the second absorption type polarizing element 32 side is bright, when viewed from the first absorption type polarizing element 12 side as in the design film 100b.
  • the design derived from the second absorption type polarizing element 32 can be visually recognized preferentially.
  • the first absorption-type polarizing element 12 and the second absorption-type polarizing element 32 are laminated so that their respective transmission axis directions are substantially parallel to each other, the first absorption-type polarizing element is polarized. It is possible to avoid coloring derived from the second absorption type polarizing element in the light visually recognized when viewed from the child 12 side.
  • a designable molded product for example, sunglasses having excellent designability and particularly excellent visibility when worn can be obtained.
  • the semi-transmitting light reflection is performed.
  • the layer 20 is also polarized (for example, when the semi-transmissive light reflecting layer 20 is a reflective polarizing element)
  • the transmission axis direction thereof is the first absorbing type polarizing element 12 and the second absorbing type polarizing element 32.
  • the absorption axis direction of the first absorption type and the second absorption type polarizing element and the reflection axis direction of the reflection type polarizing element are aligned with each other.
  • the light transmitted through the transmission axis of one absorption type polarizing element can be transmitted through the transmission axis of the reflection type polarizing element and the other absorption type polarizing element, while being absorption type.
  • the light transmitted through the absorption axis of the polarizing element can be reflected by the reflection axis of the reflective classifier.
  • FIG. 3A is a schematic cross-sectional view of a design film according to still another embodiment of the present invention.
  • the designable film 100d shown in FIG. 3A has a first absorbent polarizing element 12, a semitransparent light reflecting layer 20, and a retardation layer 40, which are first semitransparent light absorbing layers having polarization properties. Included in this order.
  • the absorption axis direction of the first absorption type polarizing element 12 and the slow axis direction of the retardation layer 40 are 35 ° to 55 ° or 125 ° to 145. Arranged to form an angle of °.
  • the retardation layer 40 preferably functions substantially as a ⁇ / 4 plate.
  • the semi-transmissive light reflecting layer 20 may have a polarizing property or may not have a polarizing property.
  • the design film 100d having such a configuration the following effects can be obtained in addition to the effects of the design film of the embodiment shown in FIG. That is, by mounting the design film 100d on the right eye lens region and the left eye lens region of the spectacles so that the retard axis directions of the retardation layer 40 are substantially orthogonal to each other, circular polarization is performed. It is possible to obtain stereoscopic eyeglasses of the type.
  • FIG. 3B is a schematic cross-sectional view of a design film according to still another embodiment of the present invention.
  • the design film 100e shown in FIG. 3B includes a first absorption type polarizing element 12, a semitransparent light reflecting layer 20, a second absorption type polarizing element 32, and a retardation layer 40 in this order.
  • the first absorption type polarizing element 12 and the second absorption type polarizing element 32 are arranged so that their respective transmission axis directions are substantially parallel to each other.
  • the absorption axis direction of the first absorption type polarizing element 12 and the slow axis direction of the retardation layer 40 are 35 ° to 55 ° or 125 °.
  • the retardation layer 40 preferably functions substantially as a ⁇ / 4 plate.
  • the semi-transmissive light reflecting layer 20 may have a polarizing property or may not have a polarizing property.
  • the design film 100e having such a configuration the following effects can be obtained in addition to the effects of the design film of the embodiment shown in FIG. 2B. That is, by mounting the design film 100e on the right eye lens region and the left eye lens region of the spectacles so that the retard axis directions of the retardation layer 40 are substantially orthogonal to each other, circular polarization is performed. It is possible to obtain stereoscopic eyeglasses of the type.
  • each component constituting the design film is typically bonded via any suitable adhesive layer or pressure-sensitive adhesive layer.
  • the designable film may further contain any suitable component depending on the purpose, as long as the effect of the present invention can be obtained.
  • the outermost layer of the design film may be provided with a protective layer and / or a hard coat layer, if necessary.
  • the transmittance of the design film can be set to an appropriate value depending on the application and the like.
  • the transmittance is, for example, 1% or more, preferably 5% or more, more preferably 10% or more, and for example, 95% or less, preferably 80% or less, more preferably 50% or less.
  • its transmittance can be, for example, 1% to 80%, preferably 5% to 50%, and more preferably 10% to 50%.
  • the design film may have polarization property depending on the composition.
  • the degree of polarization of the designable film having polarization is, for example, 30% or more, preferably 60% or more, more preferably 90% or more, and for example, 100% or less.
  • the transmittance (single transmittance: Ts) and the degree of polarization referred to in the present specification can be measured using a spectrophotometer.
  • Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor.
  • the thickness of the design film may be, for example, 10 ⁇ m to 1000 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m, and more preferably 100 ⁇ m to 500 ⁇ m.
  • the first semi-transmissive light absorption layer has a transmittance of, for example, 1% or more, preferably 5% or more, more preferably 10% or more, and has a specific wavelength range. Selectively absorbs light (that is, has an absorption maximum wavelength in a specific wavelength band), or absorbs all wavelengths in the visible light region.
  • the transmittance of the first semi-transmissive light absorption layer can be, for example, 90% or less, for example, 50% or less.
  • the first semi-transmissive light absorption layer may have a polarization property or may not have a polarization property.
  • polarized sunglasses can be obtained as a designable molded product.
  • a designable molded product having desired designability and / or visibility can be obtained.
  • the first semi-transmissive light absorption layer having polarization is typically an absorption-type polarizing element (hereinafter, the first half having polarization).
  • An absorption-type polarizing element which is a transmissive light-absorbing layer, may be referred to as a first absorption-type polarizing element).
  • the first absorbent polarizing element contains a dichroic substance.
  • the dichroic substance can be appropriately selected according to the color, pattern, etc. of the design desired for the polarizing element. As the dichroic substance, one kind of dichroic substance may be used alone, or two or more kinds of dichroic substances may be used in combination.
  • iodine or a dichroic dye other than iodine can be used as the dichroic substance.
  • iodine a dichroic substance
  • polarized sunglasses that impart good designability, polarization property and visibility can be obtained as a designable molded product.
  • the bicolor dye other than iodine include a bicolor direct dye composed of a disazo compound, a bicolor direct dye composed of a trisazo and a tetrakisazo compound, a liquid crystal azo dye, a polycyclic dye, and a sulfone.
  • Examples thereof include (azo) dyes having an acid group.
  • Specific examples of the dichroic dye include C.I. I. direct. Yellow 12, C.I. I. direct. Yellow 28, C.I. I. direct. Yellow 44, C.I. I. direct. Yellow 142; C.I. I. direct. Orange 26, C.I. I. direct. Orange 39, C.I. I. direct. Orange 71, C.I. I. direct. Orange 107; C.I.
  • Direct Brown 223 can be mentioned. Further, depending on the purpose, dyes developed for polarizing films as disclosed in WO2009 / 057676, WO2007 / 145210, WO2006 / 057214 and JP-A-2004-251963 can also be used. These dyes are used as free acids, alkali metal salts (for example, Na salt, K salt, Li salt), ammonium salts, and amine salts.
  • alkali metal salts for example, Na salt, K salt, Li salt
  • ammonium salts for example, sodium salt, K salt, Li salt
  • amine salts for example, sodium salt, K salt, Li salt
  • the first absorbent polarizing element is composed of a resin film. Any suitable configuration can be adopted as the resin film.
  • the resin film forming the first absorption-type polarizing element may be a single-layer resin film or a laminated body having two or more layers.
  • the first absorption-type decoder composed of a single-layer resin film include a polyvinyl alcohol (PVA) -based resin film, a partially formalized PVA-based resin film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • PVA polyvinyl alcohol
  • Examples thereof include those obtained by subjecting a hydrophilic polymer film such as, etc. to a dyeing treatment and a stretching treatment with a bicolor substance.
  • the dyeing process can be performed, for example, by applying a dyeing solution containing a dichroic substance, printing using the dyeing solution, immersing in the dyeing solution, or the like. These methods may be combined. According to coating or printing, a plurality of dyeing solutions containing different types and / or different concentrations of dichroic substances are used to stain a plurality of regions such as region A, region B, and region C so as to form a plurality of regions. As a result, any design (design, letter, pattern, etc.) containing two or more hues and / or shades of color can be freely (i.e., without being limited to a particular pattern) a modulator. Can be granted. Further, according to the immersion, a polarizing element having substantially no color difference and transmittance difference in the plane and having uniform optical characteristics can be preferably obtained.
  • the coating method and the printing method are not particularly limited as long as the effects of the present invention can be obtained, but from the viewpoint of freely imparting any design including two or more hues and / or shades of color, dyeing by printing is performed. It is more preferable to carry out the treatment.
  • the printing method may be a plateless printing method such as an inkjet printing method, or a plate printing method such as a screen printing method, an offset printing method, a gravure printing method, or a flexographic printing method. It is preferably a plateless type, and an inkjet printing method is more preferable.
  • a extruder suitable for mass production can be obtained.
  • the dyeing treatment is performed before or after the stretching treatment. It is preferably performed after the stretching treatment. Further, it may be printed directly on a resin film, or it may be transferred on another film or the like.
  • the content of the bicolor substance in the dyeing solution is, for example, 1 ⁇ 10 -4 parts by weight to 10 parts by weight, preferably 1 ⁇ 10 -3 parts by weight to 10 parts by weight, and further, per 100 parts by weight of water. It is preferably 1 ⁇ 10-2 parts by weight to 10 parts by weight.
  • This dyeing solution may contain a surfactant, a viscosity regulator, a drying inhibitor, a pH regulator, a dyeing aid such as sodium sulfate, or the like, depending on the coating method.
  • the stretching ratio of the stretching treatment is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment, while dyeing, or before the dyeing treatment.
  • the PVA-based resin film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based resin film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based resin film, but also to swell and dye the PVA-based resin film. It is possible to prevent unevenness and the like.
  • the first absorption-type polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin.
  • a polarizing element obtained by using a laminate of a base material and a PVA-based resin layer coated and formed on the resin base material examples thereof include a polarizing element obtained by using a laminate of a base material and a PVA-based resin layer coated and formed on the resin base material.
  • the polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained laminated body of the resin base material / polarizing element may be used as it is without peeling off the resin base material, or by laminating the resin base material on the protective film and then peeling off the resin base material, the polarizing material / the protective film can be obtained. It may be in the form (as a result, a polarizing plate containing a resin base material or a protective film as a protective layer is obtained). Further, as the dyeing method, the same method as the dyeing method for a polarizing element composed of a single-layer resin film, for example, coating or printing can be used.
  • the first absorption type polarizing element may be a liquid crystal coated type polarizing element formed of a liquid crystal compound.
  • the liquid crystal coating type polarizing element can be produced, for example, by coating a liquid crystal composition containing a liquid crystal compound on a substrate.
  • An alignment film may be formed on the substrate before the liquid crystal composition is applied.
  • the alignment film can be formed, for example, by imparting orientation to a coating film formed by applying an alignment film forming composition on a substrate by rubbing, polarization irradiation, or the like.
  • the liquid crystal composition may contain a liquid crystal compound and a dichroic substance, or may contain a liquid crystal compound having a dichroism (in the latter, the liquid crystal compound has two colors. Also serves as a sex substance).
  • the liquid crystal composition can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like. Any compound contained in the liquid crystal composition may have a polymerizable functional group.
  • an azo dye exhibiting a lyotropic liquid crystal property can be preferably used as the liquid crystal compound having a dichroism.
  • Specific examples of the azo dye exhibiting lyotropic liquid crystal properties and a method for producing a liquid crystal-coated polarizing element using the azo dye are described in JP-A-2019-079040, JP-A-2019-079041 and JP-A-2019-079042. It is described in Japanese Patent Laid-Open No. 2019-08676, etc., and the entire description of these publications is incorporated herein by reference.
  • the thickness of the first absorbent polarizing element when made of a resin film is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 10 ⁇ m or less. Further, the lower limit of the thickness may be, for example, 2 ⁇ m.
  • the thickness of the first absorption-type polarizing element in the case of a liquid crystal-coated type polarizing element is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 500 nm or less.
  • the lower limit of the thickness is 10 nm in one embodiment.
  • the first absorption type polarizing element has an absorption axis in one direction in the plane and a transmission axis in a direction orthogonal to the absorption axis direction.
  • the first absorption type polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm in any region randomly sampled in the plane.
  • the single transmittance in the region is, for example, 1% to 90%, preferably 5% to 80%, and more preferably 10% to 70%.
  • the degree of polarization in the region is, for example, 15% or more, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • the first absorption type polarizing element has substantially no color difference and transmittance difference in the plane, and has uniform optical characteristics.
  • the first absorbent polarizing element preferably contains iodine as a dichroic substance.
  • the simple substance transmittance of the first absorbent polarizing element containing iodine as a dichroic substance is preferably 1% to 46%, more preferably 5% to 46%, still more preferably 10% to 46%.
  • the degree of polarization is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the first non-polarizing semi-transmissive light absorption layer is typically a coloring layer containing a matrix and a coloring material.
  • a coloring layer containing a matrix and a coloring material.
  • any suitable color material can be selected depending on the purpose.
  • the colored layer first translucent light-absorbing layer
  • coloring materials include anthraquinone-based, triphenylmethane-based, naphthoquinone-based, thioindigo-based, perinone-based, perylene-based, squarylium-based, cyanine-based, porphyrin-based, azaporphyrin-based, phthalocyanine-based, subphthalocyanine-based, and quinizarin.
  • a pigment may be used as the above-mentioned coloring material.
  • the pigment include black pigments (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, etc.).
  • the matrix examples include resins and adhesives.
  • the colored layer is a resin film, and when it is a pressure-sensitive adhesive, the colored layer is a pressure-sensitive adhesive layer.
  • the matrix preferably has transparency and optical isotropic properties.
  • the colored layer may be formed as a resin coating film (printing layer) by applying (printing) a resin liquid containing a coloring material on a base material.
  • the resin constituting the resin film may be a thermoplastic resin, a thermosetting resin, or an active energy ray-curable resin.
  • the active energy ray-curable resin include an electron beam curable resin, an ultraviolet curable resin, and a visible light curable resin.
  • Specific examples of the resin include epoxy, (meth) acrylate (eg, methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly (vinyl butyral), poly (vinyl acetate), polyurea, polyurethane, aminosilicone (AMS), and the like.
  • styrene-based polymers eg, polystyrene, aminopolystyrene (APS), poly (eg, polystyrene
  • any suitable pressure-sensitive adhesive can be used.
  • the pressure-sensitive adhesive include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, and cellulose-based pressure-sensitive adhesives.
  • a rubber-based pressure-sensitive adhesive or an acrylic-based pressure-sensitive adhesive is preferable.
  • the content ratio of the coloring material can be any appropriate ratio depending on the type of coloring material, desired light absorption characteristics, and the like.
  • the content ratio of the coloring material in the colored layer is preferably 0.01% by weight to 5.00% by weight, more preferably 0.05% by weight to 3.00% by weight.
  • the thickness of the colored layer is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 30 ⁇ m.
  • the semi-transmissive light reflection layer has transmission characteristics and reflection characteristics that reflect a part of incident light and transmit the rest of the light.
  • the transmittance of the semi-transmissive light reflecting layer is preferably 10% to 80%, more preferably 15% to 70%, and even more preferably 20% to 60%.
  • the reflectance of the semi-transmissive light reflecting layer is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more.
  • the transflective light reflecting layer may have a polarizing property or may not have a polarizing property.
  • the semi-transmissive light reflecting layer having no polarization property for example, a half mirror, a louver film, or the like can be used.
  • a reflective polarizing element is preferably used as the translucent light reflecting layer having polarization property.
  • the degree of polarization of the reflective polarizing element is, for example, 30% to 100%, preferably 60% to 100%.
  • half mirror for example, a multi-layer laminate in which two or more dielectric films having different refractive indexes are laminated can be used. Such half mirrors preferably have a metallic luster.
  • the material for forming the dielectric film examples include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (for example, polyethylene terephthalate (PET)) and the like.
  • the multilayer laminate of the dielectric films reflects a part of the incident light at the interface due to the difference in the refractive index of the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light according to the thickness of the dielectric film and adjusting the degree of interference between the two lights.
  • the thickness of the half mirror made of a multi-layered laminate of dielectric films can be, for example, 50 ⁇ m to 200 ⁇ m. As such a half mirror, for example, a commercially available product such as the trade name "Picassus" manufactured by Toray Industries, Inc. can be used.
  • the half mirror includes, for example, aluminum (Al), indium (In), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof on a resin film such as PET.
  • a metal-deposited film on which a metal such as the above is vapor-deposited can be used.
  • the metal-deposited film has a metal-like luster due to reflection when observed from the vapor-film-deposited film side, but can transmit light from the resin film side, and by changing the vapor-film-deposited film, the light transmittance. Can be controlled.
  • the vapor deposition film thickness is preferably 1 nm to 50 nm, more preferably 10 nm to 30 nm.
  • the film thickness of the resin film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the reflective classifier has a function of transmitting polarized light in a specific polarized state (polarization direction) and reflecting light in other polarized states.
  • the reflective polarizing element may be a linear polarization separation type or a circular polarization separation type, but a linear polarization separation type is preferable.
  • the linear polarization separation type reflection type deflector is such that the direction of the reflection axis is substantially parallel to the direction of the absorption axis of the first absorption type polarizing element (as a result, the direction of the transmission axis of the reflection type substituent is the first). It is arranged so as to be substantially parallel to the transmission axis direction of the absorption type polarizing element.
  • the linearly polarized light transmitted through the reflective polarizing element can be transmitted through the first absorption type polarizing element as it is, and as a result, the design film is observed from the first absorption type polarizing element side. At that time, the light incident from the opposite side can be well recognized.
  • a linearly polarized light separation type reflective classifier will be described.
  • the circularly polarized light separation type reflective polarizing element include a laminate of a film on which a cholesteric liquid crystal is immobilized and a ⁇ / 4 plate.
  • FIG. 4 is a schematic perspective view of an example of a reflective polarizing element.
  • the reflective splitter in the illustrated example is a multilayer thin film type reflective splitter, and is a multilayer laminate in which a layer A having birefringence and a layer B having substantially no birefringence are alternately laminated. Is.
  • the total number of layers of such a multi-layer laminate can be 50-1000.
  • the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction of the B layer and the refractive index ny in the y-axis direction are substantially the same.
  • the difference in refractive index between the A layer and the B layer is large in the x-axis direction and substantially zero in the y-axis direction.
  • the x-axis direction becomes the reflection axis
  • the y-axis direction becomes the transmission axis.
  • the difference in refractive index between the A layer and the B layer in the x-axis direction is preferably 0.2 to 0.3.
  • the x-axis direction corresponds to the stretching direction of the reflective polarizing element in the manufacturing method described later.
  • the layer A is preferably composed of a material that exhibits birefringence by stretching.
  • Representative examples of such materials include polyester naphthalenedicarboxylic acid (eg, polyethylene naphthalate), polycarbonate and acrylic resins (eg, polymethylmethacrylate). Polyethylene naphthalate is preferred.
  • the B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched.
  • a typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
  • the reflective polarizing element transmits light having a first polarization direction (for example, a p wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects the light it has (for example, s wave). At the interface between the A layer and the B layer, the reflected light is partially transmitted as light having a first polarization direction and partially reflected as light having a second polarization direction. By repeating such reflection and transmission in large numbers inside the reflective polarizing element, it is possible to improve the efficiency of light utilization.
  • a first polarization direction for example, a p wave
  • the reflective polarizing element may include the reflective layer R as the outermost layer on the side opposite to the visual viewing side, as shown in FIG.
  • the reflective layer R By providing the reflective layer R, it is possible to further utilize the light that has returned to the outermost side of the reflective polarizing element without being finally utilized, so that the efficiency of light utilization can be further improved.
  • the reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.
  • the total thickness of the reflective classifier can be appropriately set according to the purpose, the total number of layers included in the reflective classifier, and the like.
  • the total thickness of the reflective polarizing element is preferably 10 ⁇ m to 150 ⁇ m.
  • the reflection type deflector can be typically produced by combining coextrusion and transverse stretching. Coextrusion can be done in any suitable manner. For example, it may be a feed block system or a multi-manifold system. For example, the material constituting the A layer and the material constituting the B layer are extruded in the feed block, and then multi-layered using a multiplier. It should be noted that such a multilayer device is known to those skilled in the art. Next, the obtained elongated multilayer laminate is typically stretched in a direction orthogonal to the transport direction (TD).
  • TD transport direction
  • the material constituting the layer A for example, polyethylene naphthalate
  • the material constituting the B layer for example, copolyester of naphthalene dicarboxylic acid and terephthalic acid
  • TD reflection axis in the stretching direction
  • MD transmission axis in the transport direction
  • TD corresponds to the x-axis direction in FIG. 4
  • MD corresponds to the y-axis. Corresponds to the direction).
  • the stretching operation can be performed using any suitable device.
  • the reflective polarizing element for example, those described in Japanese Patent Publication No. 9-507308 may be used. Further, as the reflective polarizing element, a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of the commercially available product include the product name "APCF” manufactured by Nitto Denko Corporation, the product name "DBEF” manufactured by 3M Company, and the product name "APF” manufactured by 3M Company.
  • a thin metal wire type reflective classifier such as a wire grid classifier can be mentioned.
  • a wire grid splitter contains a plurality of wires arranged in a striped pattern, more specifically, in parallel at predetermined intervals, and is a straight line that oscillates in a direction orthogonal to the longitudinal direction (extending direction) of the wires. It is possible to transmit the polarization component and reflect the linear polarization component that vibrates in the longitudinal direction of the wire.
  • the wire grid deflector is oriented so that the direction of the reflection axis is substantially parallel to the direction of the absorption axis of the first absorption type polarizing element (as a result, the direction of the transmission axis of the wire grid polarizing element is the direction of the first absorption type polarizing element). (To be substantially parallel to the transmission axis direction of).
  • the wire is preferably made of metal.
  • the diameter of the wires and the spacing between the wires can be appropriately set according to the purpose.
  • the spacing between the wires can be set, for example, from 10 nm to 350 nm, preferably from 50 nm to 300 nm.
  • the polarization separation function can be suitably obtained at a wavelength of 350 nm to 2000 nm.
  • the second semi-transmissive light absorption layer has a transmittance of, for example, 1% or more, preferably 5% or more, more preferably 10% or more, and has a specific wavelength range. Selectively absorbs light (that is, has an absorption maximum wavelength in a specific wavelength band), or absorbs all wavelengths in the visible light region.
  • the transmittance of the second semi-transmissive light absorption layer can be, for example, 90% or less, for example, 50% or less.
  • the second translucent light absorption layer may have a polarization property or may not have a polarization property.
  • a second semi-transmissive light absorbing layer having polarization hereinafter, also referred to as a second absorption type polarizing element
  • the second absorption type polarizing element side becomes the first.
  • the second semi-transmissive light absorption layer having polarization and the second semi-transmissive light absorption layer having no polarization are described in Section A-1-1 according to the desired color difference ⁇ E * ab, respectively.
  • Select any appropriate one from the first semi-transmissive light absorption layer having the same polarization property and the first semi-transmissive light absorption layer having no polarization property described in Section A-1-2. can do.
  • a layer having different light absorption characteristics from the first semi-transmissive light absorption layer can be selected as the second semi-transmissive light absorption layer.
  • a first absorbent polarizing element containing iodine is used as the first semi-transmissive light-absorbing layer, and a second semi-transmissive light-absorbing layer is used. It is preferable to use a second absorption-type polarizing element that exhibits absorption dichroism different from that of the first absorption-type polarizing element.
  • the second absorption type polarizing element is arranged so that the transmission axis direction thereof is substantially parallel to the transmission axis direction of the first absorption type polarizing element.
  • the second absorption type polarizing element has substantially no color difference and transmittance difference in the plane, and has uniform optical characteristics.
  • the second absorbent polarizing element contains, for example, iodine as a dichroic substance.
  • the second absorbent polarizing element has an in-plane non-uniform hue and / or transmittance.
  • a second absorption-type polarizing element in combination with a first absorption-type polarizing element containing iodine and having uniform optical characteristics in the plane, the light is incident on the first absorption-type polarizing element side. It is possible to easily increase the value of the L * a * b * color space of the reflected light for the light incident on the second absorption type polarizing element side to the value of the L * a * b * color space of the reflected light with respect to the light. As a result, a designable film having a color difference of 10 or more ⁇ E * ab can be preferably obtained.
  • the second absorbent polarizing element which has a non-uniform hue and / or transmittance in the plane, is incident with a polarization having an electric field vector in the transmission axis direction, and has a constant wavelength interval (for example, in the wavelength region of 380 nm to 780 nm).
  • the absorbance spectrum measured at 5 nm intervals) is defined as k1
  • the absorbance spectrum measured at a constant wavelength interval (for example, 5 nm intervals) in the wavelength region of 380 nm to 780 nm by incident polarization having an electric field vector in the absorption axis direction is defined as k2.
  • AVERAGE (k) represents the average value of the spectra k in the entire measurement wavelength region
  • Ak1 and Ak2 represent k1 and k2 in the region A, respectively
  • Bk1 and Bk2 represent k1 and k2 in the region B, respectively.
  • the average value of the spectrum is a value obtained by arithmetically averaging the value of the absorbance measured at a constant wavelength interval (for example, 5 nm interval) in the wavelength region of 380 nm to 780 nm.)
  • the region A and the region B are regions in which dichroism is observed in the plane of the polarizing element, and are arbitrary two regions in which the difference in hue (a *, b *) of k2 is maximum. be.
  • the dichroism (absorption dichroism) means a property of transmitting light vibrating in a specific direction and absorbing light vibrating in a direction perpendicular to the transmission.
  • the region where dichroism is observed is (10 -k2-10 -k1 ) / (10 -k2 + 10- k1 ) of 0.01 or more, preferably 0.1 or more, more preferably. It can be a region of 0.3 or more.
  • the region A and the region B may have an arbitrary appropriate size (area) depending on the design applied to the polarizing element. The lower limit of the size of the area A and the area B may be the minimum measurable area of the measuring device, respectively.
  • both AVERAGE (Ak1) and AVERAGE (Bk1) are less than 1 means that the absorption intensity of the linearly polarized light vibrating in the transmission axis direction is measured in the region A and the region B. It means that it is small as a whole over the entire wavelength range, and as a result, it means that it is difficult for the light transmitted through the transmission axis to be colored.
  • AVERAGE (Ak1) and AVERAGE (Bk1) are independent of each other, preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0 to 0.3.
  • is an arithmetic calculation of the absolute value of the difference between the absorbance in the region A and the absorbance in the region B for light (linear polarization oscillating in the absorption axis direction) of each measurement wavelength. Represents the average value.
  • exceeds 0.15 the difference between the absorbance in the region A and the absorbance in the region B is constant for light of at least a part of the wavelength (linear polarization oscillating in the absorption axis direction). This means that, as a result, the light transmitted through the absorption axis in the region A and the region B has different hues and / or shades.
  • is preferably greater than 0.15, more preferably 0.2 or greater, and even more preferably 0.2 to 2.5 or 0.3 to 2.5.
  • the polarizing element satisfying the above equations (1) to (3) it is possible to suppress undesired coloring of the transmitted light when the linearly polarized light vibrating in the transmission axis direction is incident in the region A and the region B. can do. Further, according to the polarizing element, when linearly polarized light vibrating in the absorption axis direction is incident in the region A and the region B, the hue and / or the shade of the transmitted light can be different, and as a result, the hue and / or the shade of the transmitted light can be different. It is possible to display a design having two or more hues and / or shades of color.
  • the difference between the peak wavelength of k2 in region A and the peak wavelength of k2 in region B is less than 20 nm, preferably 15 nm or less, and the difference in absorbance at each peak wavelength is 0.2 or more. It is preferably 0.3 or more.
  • Such modulators may have the same or similar in-plane hues and may have different transmittances (resulting in shades).
  • the peak wavelength of the spectrum means the wavelength having the highest absorbance in the wavelength region of 380 nm to 780 nm.
  • the difference between the peak wavelength of k2 in the region A and the peak wavelength of k2 in the region B is 20 nm or more, preferably 25 nm or more.
  • Such a deflector may have an in-plane color difference.
  • the half width of the peak of k2 in the region A and / or the region B is 200 nm or more, preferably 250 nm or more.
  • a polarizing element is a design including an achromatic color such as black in the plane, and can display a design having two or more hues and / or shades of color.
  • the polarizing element may include one or more regions C in which dichroism is observed in addition to the regions A and B in the plane.
  • the splitter is , Preferably satisfying (5) or (6) together with the following formula (4).
  • AVERAGE ( Cn k1) is preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0 to 0.3. Further, AVERAGE
  • are independently, preferably larger than 0.15, more preferably 0.2 or more, and further preferably 0.2 to 0.2. It can be 2.5 or 0.3-2.5.
  • the polarizing element satisfying the above equations (1) to (6) it is desirable for transmitted light when linearly polarized light vibrating in the transmission axis direction is incident in the region A, the region B and one or more regions C. It is possible to suppress the occurrence of no coloring. Further, according to the polarizing element, when linearly polarized light vibrating in the absorption axis direction is incident in the region A, the region B and one or more regions C, the hue and / or the shade of the transmitted light are different from each other. As a result, it is possible to display a design having three or more hues and / or shades of color.
  • phase difference layer The phase difference layer preferably functions as a substantially ⁇ / 4 plate.
  • the retardation layer may be, for example, a single layer, or may be a laminated body in which a plurality of retardation layers are combined to exhibit a function as a ⁇ / 4 plate.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably 135 nm to 155 nm.
  • the Nz coefficient of the retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, and more preferably 1 to 1.3.
  • the thickness of the retardation layer can be set so that it can function most appropriately as a ⁇ / 4 plate. In other words, the thickness can be set to obtain the desired in-plane phase difference. Specifically, the thickness is preferably 10 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and most preferably 30 ⁇ m to 50 ⁇ m.
  • the retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measured light.
  • the retardation layer exhibits inverse dispersion wavelength characteristics.
  • Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
  • the retardation layer is preferably a stretched film of a polymer film.
  • a ⁇ / 4 plate can be obtained by appropriately selecting the type of polymer and the stretching treatment (for example, stretching method, stretching temperature, stretching ratio, stretching direction).
  • any suitable resin is used as the resin for forming the polymer film.
  • suitable resin include cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, polysulfone resins and other resins constituting a positive compound refraction film. Of these, norbornene-based resins and polycarbonate-based resins are preferable. Details of the resin forming the polymer film are described in, for example, Japanese Patent Application Laid-Open No. 2014-010291. This description is incorporated herein by reference.
  • Examples of the stretching method include horizontal uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching.
  • Specific examples of the fixed-end biaxial stretching include a method of stretching the polymer film in the lateral direction (lateral direction) while running the polymer film in the longitudinal direction. This method may apparently be laterally uniaxially stretched.
  • diagonal stretching can also be adopted. By adopting diagonal stretching, it is possible to obtain a long stretched film having an orientation axis (slow phase axis) at a predetermined angle with respect to the width direction.
  • a designed molded body including the designable film according to item A. At least a part of the designable molded product is a transparent region having light transmission, and the design film is attached to the transparent region. According to such a designable molded product, the design when the transparent region of the design film is viewed from one side and the design when viewed from the other side can be different.
  • the design molded body is sunglasses.
  • the design film By attaching the design film to the lens region so that the first semi-transmissive light absorption layer side is on the wearer side, the semi-transmissive light reflection layer or the second semi-transmissive light reflection layer or the second when observed from the opposite side to the wearer side.
  • the design derived from the semi-transmissive light absorption layer can be recognized, and sunglasses having excellent design can be obtained.
  • the sunglasses can be further imparted with a polarizing function.
  • the first absorption type polarizing element and the second absorption type polarizing element are arranged so that their transmission axis directions are parallel to each other.
  • the design derived from the second semi-transmissive light absorption layer can be recognized, and the wearer can recognize the design derived from the second semi-transmissive light absorption layer.
  • Designable sunglasses in which transmitted light with suppressed coloring can be observed can be obtained.
  • the axial direction of the polarizing element in the lens region for the right eye and the lens region for the left eye is not particularly limited.
  • the design molded body is stereoscopic eyeglasses.
  • a design film using a first absorption-type polarizing element as the first semi-transmissive light-absorbing layer (for example, in the embodiment shown in FIG. 1 or FIG. 2A, the first semi-transmissive light-absorbing layer is the first.
  • the design film using the absorption-type polarizing element (1) is first absorbed in the right-eye lens region and the left-eye lens region so that the first absorption-type polarizing element side is the wearer side.
  • a design film for example, the design film of the embodiment shown in FIG. 3A or FIG. 3B in which the first absorption type polarizing element is used as the first semi-transmissive light absorbing layer and the ⁇ / 4 plate is further provided.
  • the slow axis direction of the ⁇ / 4 plate is substantially orthogonal between the lens region for the right eye and the lens region for the left eye so that the first absorption type polarizing element side is the wearer side.
  • the design molded body is a flat plate.
  • the design molded body which is a flat plate, can be molded and mounted in an arbitrary transparent region such as a glass window or a partition in a desired shape.
  • the design when the transparent area is viewed from one side and the design when viewed from the other side can be different, and can function as a display medium or a decorative medium.
  • Thickness Measured using a digital gauge manufactured by Ozaki Seisakusho Co., Ltd., product name "PEACOCK”
  • PEACOCK product name "PEACOCK”
  • Single-unit transmittance and degree of polarization of the stator and design film was measured using an ultraviolet-visible near-infrared spectrophotometer (V-7100 manufactured by JASCO Corporation).
  • Ts, parallel transmittance Tp, and orthogonal transmittance Tc were defined as Ts, Tp, and Tc, respectively.
  • Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor.
  • thermoplastic resin base material an amorphous isophthal copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment. 100 parts by weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer”) are mixed at a ratio of 9: 1.
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared.
  • the obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water
  • a boric acid aqueous solution boric acid concentration 4% by weight, potassium iodide concentration 5% by weight
  • Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
  • the laminate was immersed in a washing bath having a liquid temperature of 20 ° C.
  • polarizing plate A having an iodine-based polarizing element / protective layer.
  • the simple substance transmittance of the polarizing plate A was 42.4%, and the degree of polarization was 99.99%.
  • a monomer syrup containing a partial polymer of the above-mentioned monomer mixture was prepared by irradiating with ultraviolet rays until the temperature (5 rotors, 10 rpm, measurement temperature: 30 ° C.) reached about 15 Pa ⁇ s and photopolymerizing.
  • this monomer syrup 17.6 parts of hydroxyethyl acrylate (HEA), 5.9 parts of acrylic oligomer, 0.088 part of 1,6-hexanediol diacrylate (HDDA), and 3-glyceride as a silane coupling agent.
  • HOA hydroxyethyl acrylate
  • HDDA 1,6-hexanediol diacrylate
  • 3-glyceride as a silane coupling agent.
  • a red pressure-sensitive adhesive composition was prepared by blending 0.05 parts by mass of aryline-7,14 (5H, 12H) -dione (manufactured by BLD Phasetech Ltd.).
  • acrylic oligomer one synthesized by the following method was used. 100 parts of toluene, 60 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Kasei Kogyo Co., Ltd.), 40 parts of methyl methacrylate (MMA), and 3.5 parts of ⁇ -thioglycerol as a chain transfer agent. was put into a four-necked flask. Then, after stirring at 70 ° C. under a nitrogen atmosphere for 1 hour, 0.2 part of AIBN was added as a thermal polymerization initiator, and the mixture was reacted at 70 ° C. for 2 hours and then at 80 ° C. for 2 hours.
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • reaction solution was put into a temperature atmosphere of 130 ° C., and toluene, a chain transfer agent, and an unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the Tg of this acrylic oligomer was 144 ° C. and the Mw was 4300.
  • the red adhesive composition obtained above was applied to a release film R1 (MRF # 38, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m in which one side of the polyester film was a release surface, and the polyester film was formed.
  • a release film R2 (MRE # 38 manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m, one of which is a release surface, is covered to block air, and the film is cured by irradiating with ultraviolet rays to obtain a thickness of 50 ⁇ m and a single permeability of 19.
  • a red pressure-sensitive adhesive sheet (red pressure-sensitive adhesive layer) having a degree of polarization of 3% and a degree of polarization of 0% was formed.
  • Example 1 A commercially available smoke film having an adhesive layer on one side (manufactured by Braintec, product name “Car Film Pro Smoke 50 UV Cut 99%", transmittance 43.9%) is halved through the adhesive layer.
  • a mirror a metal-deposited film in which an aluminum vapor-deposited film having a thickness of 13 nm is formed on the surface of a PET film having a thickness of 50 ⁇ m, transmittance: 11%) is attached to the [first semi-transparent light absorbing layer / semi-transmissive light reflecting layer].
  • a designable film 1 having the constitution of] was obtained. At this time, the smoke film and the half mirror were bonded so that the PET film surface faced the smoke film.
  • Example 2 Reflected through the adhesive layer on a commercially available smoke film (manufactured by Paintec, product name “Car Film Pro Smoke 50 UV Cut 99%”, transmittance 43.9%) provided with an adhesive layer on one side.
  • Sex film 2 was obtained.
  • Example 3 A commercially available half mirror (Magic mirror manufactured by KTJ), product name "Film window for window”, is placed on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). Insulation sheet Glass shatterproof supplies Magic mirror film Blindfold sheet Building building glass film Mekaku sheet Window film UV cut glass shatterproof film (60 cm x 200 cm, silver) ", transmission rate 31.3%) A designable film 3 having the structure of [1 absorption type polarizing element / semi-transmissive light reflecting layer] was obtained.
  • Example 4 A half mirror (a PET film having a thickness of 50 ⁇ m and an aluminum vapor-deposited film having a thickness of 13 nm was formed on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). A metal vapor-deposited film (transmittance: 11%) was laminated to obtain a designable film 4 having a structure of [first absorbent polarizing element / semi-transmissive light reflecting layer]. At this time, the polarizing plate A and the half mirror were bonded so that the PET film surface faced the iodine-based splitter.
  • Example 5 A half mirror (manufactured by Toray Co., Ltd., product name "Picassus", thickness 100 ⁇ m, transmittance 50) is placed on the surface of the iodine-based splitter of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). %) Are laminated to obtain a designable film 5 having a configuration of [first absorbent polarizing element / semi-transmissive light reflecting layer].
  • Example 6 Reflective polarizing element (manufactured by Nitto Denko Co., Ltd., product name "APCF", single transmittance) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). : 47%) were laminated to obtain a designable film 6 having a structure of [first absorbent polarizing element / semi-transmissive light reflecting layer]. At this time, the transmission axis of the reflective polarizing element and the transmission axis of the iodine-based polarizing element were bonded so as to be parallel to each other.
  • APCF acrylic pressure-sensitive adhesive layer
  • Example 7 Commercially available smoke film (manufactured by Braintec, product name “Car Film Pro Smoke 50 UV Cut 99%", transmission rate 43.9%) having an adhesive layer on one side is commercially available via the adhesive layer.
  • Half mirror Magnetic mirror made by KTJ, product name "Window film Window insulation sheet Glass shatterproof supplies Magic mirror film Blindfold sheet Building building glass film Mekaku sheet Window film UV cut glass fragment shatterproof film (60 cm x 200 cm, Silver) ”and 50% transmission rate
  • PX-105 an EPSON inkjet printer
  • Example 8 On the surface of the reflective polarizing element of the design film 2, red is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m) with an EPSON inkjet printer (product name “PX-105”). The obtained red resin film (transmittance 36.1%) is bonded to each other to have a structure of [first semi-transparent light absorbing layer / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. A design film 8 was obtained.
  • Example 9 It was obtained by printing red on the surface of the half mirror of the design film 3 with an inkjet printer (product name "PX-105”) manufactured by EPSON on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m).
  • a design film 9 having a structure of [first absorbent polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer] by laminating a red resin film (transmittance 36.1%).
  • Example 10 The red polarizing element obtained in Production Example B-1 was attached to the surface of the reflective polarizing element of the design film 2 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). A design film 10 having a structure of an absorbent layer / a semi-transmissive light reflecting layer / a second absorbent polarizing element] was obtained. At this time, the transmission axis of the reflective polarizing element and the transmission axis of the red polarizing element were bonded so as to be parallel to each other.
  • Example 11 The red pressure-sensitive adhesive layer obtained in Production Example C was transferred to the surface of the reflective classifier of the design film 6 to [first absorbent classifier / semi-transmissive light-reflecting layer / second semi-transmissive layer]. A design film 11 having a structure of [light absorption layer] was obtained.
  • red is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m) with an EPSON inkjet printer (product name “PX-105”).
  • the obtained red resin film (transmittance 36.1%) is bonded to each other to have a design having a structure of [first absorption type polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer].
  • Film 12 was obtained.
  • Example 13 On the surface of the reflective polarizing element of the design film 6, blue is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m) using an EPSON inkjet printer (product name “PX-105”). The obtained blue resin film (transmittance 27.9%) is bonded to each other, and the design has a structure of [first absorption type polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. Film 13 was obtained.
  • Example 14 On the surface of the reflective polarizing element of the design film 6, yellow is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m) using an EPSON inkjet printer (product name “PX-105”). The obtained yellow resin film (transmittance 78.3%) is bonded to each other, and the design has a structure of [first absorption type polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. Film 14 was obtained.
  • Example 15 The red polarizing element obtained in Production Example B-1 was bonded to the surface of the half mirror of the design film 4 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / half A designable film 15 having a structure of a transmissive light reflecting layer / a second absorbent polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
  • Example 16 The red polarizing element obtained in Production Example B-1 was bonded to the surface of the half mirror of the design film 5 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / half A designable film 16 having a structure of a transmissive light reflecting layer / a second absorbent polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
  • Example 17 The red polarizing element obtained in Production Example B-1 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [the first absorption type polarizing element was attached. A designable film 17 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
  • Example 18 The blue polarizing element obtained in Production Example B-2 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [the first absorption type polarizing element was attached. A designable film 18 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
  • Example 19 The yellow polarizing element obtained in Production Example B-3 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [the first absorption type polarizing element was attached. A designable film 19 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
  • Example 20 The green polarizing element obtained in Production Example B-4 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [the first absorption type polarizing element was attached.
  • Example 21 The two-color polarizing element obtained in Production Example B-5 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [the first absorption-type polarizing element].
  • Example 22 The retardation film obtained in Production Example D was bonded to the surface of the red polarizing element of the design film 17 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / semi-transmissive].
  • the retardation films were bonded so that the slow axis direction was at an angle of 45 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
  • Example 23 The retardation film obtained in Production Example D was bonded to the surface of the blue polarizing element of the design film 18 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / semi-transmissive].
  • the retardation films were bonded so that the slow axis direction was at an angle of 45 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
  • Example 24 The retardation film obtained in Production Example D was bonded to the surface of the yellow polarizing element of the design film 19 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / semi-transmissive].
  • the retardation films were bonded so that the slow axis direction was at an angle of 45 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
  • Example 25 The retardation film obtained in Production Example D was bonded to the surface of the red polarizing element of the design film 17 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / semi-transmissive].
  • the retardation films were bonded so that the slow axis direction was an angle of 135 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
  • Example 26 The retardation film obtained in Production Example D was bonded to the surface of the blue polarizing element of the design film 18 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / semi-transmissive].
  • the retardation films were bonded so that the slow axis direction was an angle of 135 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
  • Example 27 The retardation film obtained in Production Example D was bonded to the surface of the yellow polarizing element of the design film 19 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and [1st absorption type polarizing element / semi-transmissive].
  • the retardation films were bonded so that the slow axis direction was an angle of 135 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
  • Example 2 Manufactured via the adhesive layer on a commercially available smoke film (manufactured by Paintec, product name "Car Film Pro Smoke 50 UV Cut 99%", transmittance 43.9%) provided with an adhesive layer on one side.
  • the red polarizing elements obtained in Example B-1 were bonded together to obtain a laminated film C2 having the configuration of [first semi-transparent light absorbing layer / second absorbing type polarizing element].
  • the design film obtained in the examples has L * a * b * of reflected light with respect to the light incident on the main surface on the side of the first semi-transmissive light absorbing layer. It can be seen that the color difference ⁇ E * ab in the L * a * b * color space of the reflected light with respect to the light incident on the main surface opposite to the color space is 25 or more, and different designs are displayed on both sides of the film. .. On the other hand, the laminated film obtained in the comparative example had a color difference ⁇ E * ab of less than 10, and had almost the same design on both sides.
  • the design film 17 is attached to the right-eye lens and the left-eye lens of the spectacles so that the transmission axis directions of the first absorption-type polarizing element are orthogonal to each other, and the first absorption-type polarizing element side is the wearer side. As such, they were bonded together via an acrylic pressure-sensitive adhesive (thickness: 23 ⁇ m) to obtain stereoscopic eyeglasses. When the obtained stereoscopic glasses were attached and the 3D image displayed on the linearly polarized television was observed, the stereoscopic image could be visually recognized without unnecessary coloring. Further, when the spectacles were observed from the side opposite to the wearer, the lens portion to which the design film was attached was red.
  • Example 29 The design films 22 and 25 are attached to the right eye lens and the left eye lens of the spectacles, respectively, so that the transmission axis directions of the first absorption type polarizing element are parallel to each other (as a result, the slow axis of the retardation layer).
  • Stereoscopic eyeglasses were obtained by laminating them via an acrylic adhesive (thickness: 23 ⁇ m) so that the directions were orthogonal to each other) and the first absorption type polarizing element side was the wearer side. ..
  • the obtained stereoscopic glasses were attached and the 3D image displayed on the circularly polarized television was observed, the stereoscopic image could be visually recognized without unnecessary coloring. Further, when the spectacles were observed from the side opposite to the wearer, the lens portion to which the design film was attached was red.
  • the design film of the present invention can be suitably used as a display body attached to eyeglasses (including goggles), windowpanes, partitions, and the like.
  • First semi-transmissive light absorption layer 20 Semi-transmissive light reflection layer 30 Second semi-transmissive light absorption layer 40 Phase difference layer 100 Designable film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Eyeglasses (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention implements a film having a design that differs between when viewed from one surface and when viewed from the other surface. This designed film has a color difference ΔE*ab of 10 or more between the L*a*b* color space of reflected light with respect to light incident from one direction and the L*a*b* color space of reflected light with respect to light incident from a direction opposite thereto.

Description

意匠性フィルムおよび意匠性成形体Designable film and designable molded product
 本発明は、意匠性フィルムおよび該意匠性フィルムを含む意匠性成形体に関する。 The present invention relates to a design film and a design molded body including the design film.
 以前より、サングラス(ゴーグルを含む)のレンズ部分に絵柄を表示することで意匠性を向上させる試みがなされてきた(例えば、引用文献1および2)。しかし、これらの方法で得られたサングラスは、装着した際の視認性に改善の余地がある。 For some time, attempts have been made to improve the design by displaying a pattern on the lens portion of sunglasses (including goggles) (for example, References 1 and 2). However, the sunglasses obtained by these methods have room for improvement in visibility when worn.
 また、従来、一方の面から見た際の意匠と他方の面から見た際の意匠とが異なるフィルムに対する要求がある。例えば、このようなフィルムをガラス板や透明樹脂板等の透明基材に貼り付けることにより、両方の側から見た際に互いに異なる意匠を表示する表示体として用いることができる。 In addition, conventionally, there is a demand for a film in which the design when viewed from one side and the design when viewed from the other side are different. For example, by attaching such a film to a transparent base material such as a glass plate or a transparent resin plate, it can be used as a display body that displays different designs when viewed from both sides.
特開平8-248361号公報Japanese Unexamined Patent Publication No. 8-248361 特許第6026345号公報Japanese Patent No. 6026345
 本発明は上記課題を解決するためになされたものであり、その主たる目的は、一方の面から見た際の意匠と他方の面から見た際の意匠とが異なるフィルムを実現することにある。 The present invention has been made to solve the above problems, and a main object thereof is to realize a film in which the design when viewed from one side and the design when viewed from the other side are different. ..
 本発明の1つの局面によれば、一方向から入射した光に対する反射光のL*a*b*色空間と反対方向から入射した光に対する反射光のL*a*b*色空間とにおける色差ΔE*abが、10以上である、意匠性フィルムが提供される。
 1つの実施形態において、上記意匠性フィルムは、第1の半透過性光吸収層と半透過性光反射層とを含む。
 1つの実施形態において、上記半透過性光反射層が、偏光性を有さない。
 1つの実施形態において、上記第1の半透過性光吸収層が、第1の吸収型偏光子である。
 1つの実施形態において、上記第1の半透過性光吸収層が、第1の吸収型偏光子であり、上記半透過性光反射層が、反射型偏光子であり、該反射型偏光子の透過軸方向が、該第1の吸収型偏光子の透過軸方向と実質的に平行である。
 1つの実施形態において、上記第1の半透過性光吸収層が、第1の吸収型偏光子であり、第2の吸収型偏光子をさらに含み、該第1の吸収型偏光子と上記半透過性光反射層と該第2の吸収型偏光子とが、該第1の吸収型偏光子の透過軸方向と該第2の吸収型偏光子の透過軸方向とが実質的に平行となるように、この順に積層されている。
 1つの実施形態において、上記第2の吸収型偏光子が、面内で不均一な透過率を有する。
 1つの実施形態において、上記第2の吸収型偏光子が、面内で不均一な色相を有する。
 1つの実施形態において、上記意匠性フィルムの透過率が1%~95%であり、偏光度が30%以上である。
 1つの実施形態において、上記第1の半透過性光吸収層が、第1の吸収型偏光子であり、位相差層をさらに含み、該第1の吸収型偏光子と上記半透過性光反射層と該位相差層とが、該第1の吸収型偏光子の吸収軸方向と該位相差層の遅相軸方向とのなす角度が35°~55°または125°~145°となるように、この順に積層されている。
 1つの実施形態において、上記第1の半透過性光吸収層が、第1の吸収型偏光子であり、第2の吸収型偏光子および位相差層をさらに含み、該第1の吸収型偏光子、上記半透過性光反射層、該第2の吸収型偏光子および該位相差層が、この順に積層され、ここで、該第1の吸収型偏光子の透過軸方向と該第2の吸収型偏光子の透過軸方向とが実質的に平行となるように、かつ、該第1の吸収型偏光子の吸収軸方向と該位相差層の遅相軸方向とのなす角度が35°~55°または125°~145°となるように、積層されている。
 1つの実施形態において、上記位相差層が実質的に1/4波長板として機能する。
 本発明の別の局面によれば、以上意匠性フィルムを含む、意匠性成形体が提供される。
 1つの実施形態において、上記意匠性成形体は、眼鏡である。
 1つの実施形態において、上記意匠性成形体は、平板である。
According to one aspect of the present invention, the color difference between the L * a * b * color space of the reflected light for the light incident from one direction and the L * a * b * color space of the reflected light for the light incident from the opposite direction. A design film having a ΔE * ab of 10 or more is provided.
In one embodiment, the design film comprises a first semi-transmissive light absorbing layer and a semi-transmissive light reflecting layer.
In one embodiment, the semi-transmissive light reflective layer does not have polarization.
In one embodiment, the first semi-transmissive light absorption layer is a first absorption type polarizing element.
In one embodiment, the first semi-transmissive light absorbing layer is a first absorption type polarizing element, the semi-transmissive light reflecting layer is a reflective polarizing element, and the reflective polarizing element is used. The transmission axis direction is substantially parallel to the transmission axis direction of the first absorption type polarizing element.
In one embodiment, the first semi-transmissive light absorbing layer is a first absorbent polarizing element, further comprising a second absorbent polarizing element, the first absorbing polarizing element and the half. The transmissive light-reflecting layer and the second absorption-type polarizing element are substantially parallel to the transmission axis direction of the first absorption-type polarizing element and the transmission axis direction of the second absorption-type polarizing element. As shown above, they are laminated in this order.
In one embodiment, the second absorbent polarizing element has a non-uniform transmittance in the plane.
In one embodiment, the second absorption type modulator has an in-plane non-uniform hue.
In one embodiment, the design film has a transmittance of 1% to 95% and a degree of polarization of 30% or more.
In one embodiment, the first semi-transmissive light absorbing layer is a first absorbent polarizing element, further including a retardation layer, the first absorbing polarizing element and the semi-transmissive light reflection. The angle between the layer and the retardation layer between the absorption axis direction of the first absorption type polarizing element and the slow axis direction of the retardation layer is 35 ° to 55 ° or 125 ° to 145 °. In this order, they are laminated.
In one embodiment, the first semi-transmissive light absorbing layer is a first absorbing polarizing element, further including a second absorbing polarizing element and a retardation layer, and the first absorbing polarizing layer. The child, the semi-transmissive light reflecting layer, the second absorption type polarizing element and the retardation layer are laminated in this order, and here, the transmission axis direction of the first absorption type polarizing element and the second The angle between the absorption axis direction of the first absorption type polarizing element and the slow axis direction of the retardation layer is 35 ° so that the transmission axis direction of the absorption type polarizing element is substantially parallel to each other. They are laminated so as to be ~ 55 ° or 125 ° to 145 °.
In one embodiment, the retardation layer substantially functions as a quarter wave plate.
According to another aspect of the present invention, there is provided a designable molded product including the designable film.
In one embodiment, the design molded body is eyeglasses.
In one embodiment, the design molded body is a flat plate.
 本発明の意匠性フィルムは、一方向から入射した光に対する反射光のL*a*b*色空間と反対方向から入射した光に対する反射光のL*a*b*色空間とにおける色差ΔE*abが10以上であることから、一方の面から見た場合と他方の面から見た場合とにおいて異なる意匠を認識させることができる。 In the design film of the present invention, the color difference ΔE * between the L * a * b * color space of the reflected light for the light incident from one direction and the L * a * b * color space of the reflected light for the light incident from the opposite direction. Since the ab is 10 or more, it is possible to recognize different designs when viewed from one side and when viewed from the other side.
本発明の1つの実施形態による意匠性フィルムの概略断面図である。It is a schematic sectional drawing of the design film by one Embodiment of this invention. 本発明の1つの実施形態による意匠性フィルムの概略断面図である。It is a schematic sectional drawing of the design film by one Embodiment of this invention. 本発明の1つの実施形態による意匠性フィルムの概略断面図である。It is a schematic sectional drawing of the design film by one Embodiment of this invention. 本発明の1つの実施形態による意匠性フィルムの概略断面図である。It is a schematic sectional drawing of the design film by one Embodiment of this invention. 本発明の1つの実施形態による意匠性フィルムの概略断面図である。It is a schematic sectional drawing of the design film by one Embodiment of this invention. 本発明に用いられ得る反射型偏光子の一例の概略斜視図である。It is a schematic perspective view of an example of the reflection type polarizing element which can be used in this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
[用語の定義]
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)「実質的に直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。さらに、本明細書において単に「直交」というときは、実質的に直交な状態を含み得るものとする。
(6)「実質的に平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「平行」というときは、実質的に平行な状態を含み得るものとする。
[Definition of terms]
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the slow-phase axis direction), and "ny" is the direction orthogonal to the slow-phase axis in the plane (that is, the phase-advancing axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth = (nx-nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) The expression "substantially orthogonal" includes the case where the angle formed by the two directions is 90 ° ± 10 °, preferably 90 ° ± 7 °, and more preferably 90 ° ± 5 °. Is. Further, the term "orthogonal" in the present specification may include a substantially orthogonal state.
(6) The expression "substantially parallel" includes the case where the angle formed by the two directions is 0 ° ± 10 °, preferably 0 ° ± 7 °, and more preferably 0 ° ± 5 °. Is. Further, the term "parallel" in the present specification may include substantially parallel states.
A.意匠性フィルム
 本発明の実施形態による意匠性フィルムは、一方向から入射した光に対する反射光のL*a*b*色空間と反対方向から入射した光に対する反射光のL*a*b*色空間とにおける色差ΔE*ab(=〔(ΔL*)^2+(Δa*)^2+(Δb*)^2〕^(1/2))が10以上であり、好ましくは15以上であり、より好ましくは20以上である。色差ΔE*abが10以上であれば、一方の面から見た場合と他方の面から見た場合とにおいて異なる意匠を認識させることができる。色差ΔE*abの上限は、特に制限されるものではないが、例えば100以下、また例えば90以下であり得る。
A. Designable film The designable film according to the embodiment of the present invention is the L * a * b * color of the reflected light for the light incident from one direction and the L * a * b * color of the reflected light for the light incident from the opposite direction to the color space. The color difference ΔE * ab (= [(ΔL *) ^ 2 + (Δa *) ^ 2 + (Δb *) ^ 2] ^ (1/2)) in space is 10 or more, preferably 15 or more, and more. It is preferably 20 or more. When the color difference ΔE * ab is 10 or more, it is possible to recognize different designs when viewed from one surface and when viewed from the other surface. The upper limit of the color difference ΔE * ab is not particularly limited, but may be, for example, 100 or less, or 90 or less, for example.
 本発明の実施形態による意匠性フィルムは、代表的には、少なくとも透明性を有する第1の半透過性光吸収層と少なくとも透明性を有する第1の半透過性光反射層とを含む。第1の半透過性光吸収層および半透過性光反射層としてはそれぞれ、用途等に応じて、偏光性を有するものを用いてもよく、偏光性を有さないものを用いてもよい。なお、本明細書において、「偏光性を有さない」とは、偏光度が15%未満、好ましくは10%未満であることを意味する。また、本発明の実施形態の意匠性フィルムが偏光性を有するフィルム(偏光子とも称する)を2つ以上含む場合、特段の記載がない限り、これらのフィルムは、透過軸方向が互いに実質的に平行となるように積層されている。 The design film according to the embodiment of the present invention typically includes at least a first translucent light absorbing layer having transparency and a first translucent light reflecting layer having at least transparency. As the first semi-transmissive light absorbing layer and the semi-transmissive light reflecting layer, those having polarization property may be used or those having no polarization property may be used, respectively, depending on the intended use. In addition, in this specification, "having no polarization" means that the degree of polarization is less than 15%, preferably less than 10%. Further, when the design film of the embodiment of the present invention contains two or more films having polarization (also referred to as a polarizing element), these films have substantially mutual transmission axis directions unless otherwise specified. They are stacked so as to be parallel.
 図1は、本発明の1つの実施形態による意匠性フィルムの概略断面図である。図1に示される意匠性フィルム100aは、第1の半透過性光吸収層10と半透過性光反射層20とを含む。このような構成の意匠性フィルム100aによれば、第1の半透過性光吸収層10に入射した光は、その一部が第1の半透過性光吸収層10に吸収され、残りの光の一部が、半透過性光反射層20に反射されて第1の半透過性光吸収層10から出射し、残りの光の別の一部が半透過性光反射層20に入射する。また、半透過性光反射層20に入射した光は、その一部が反射光として半透過性光反射層20から出射し、残りの光が半透過性光反射層20を透過する。 FIG. 1 is a schematic cross-sectional view of a design film according to one embodiment of the present invention. The designable film 100a shown in FIG. 1 includes a first semi-transmissive light absorbing layer 10 and a semi-transmissive light reflecting layer 20. According to the design film 100a having such a configuration, a part of the light incident on the first semi-transmissive light absorption layer 10 is absorbed by the first semi-transmissive light absorption layer 10, and the remaining light is absorbed. A part of the light is reflected by the semi-transmissive light-reflecting layer 20 and emitted from the first semi-transmissive light absorption layer 10, and another part of the remaining light is incident on the semi-transmissive light-reflecting layer 20. Further, a part of the light incident on the semi-transmissive light reflection layer 20 is emitted from the semi-transmissive light reflection layer 20 as reflected light, and the remaining light is transmitted through the semi-transmissive light reflection layer 20.
 よって、各層の透過率等によってその効果は変化し得るが、同程度の明るさにおいて、意匠性フィルム100aを第1の半透過性光吸収層10側から見た場合には、半透過性光反射層20に反射されて第1の半透過性光吸収層10から出射した光(結果として、第1の半透過性光吸収層10由来の意匠)が優先的に視認され得、半透過性光反射層20側から見た場合には、半透過性光反射層20に反射された光(結果として、半透過性光反射層20由来の意匠)が優先的に視認され得る。このような意匠性フィルム100aは、一方の面から見た際の意匠と他方の面から見た際の意匠とが異なるフィルムとして有用である。 Therefore, the effect may change depending on the transmittance of each layer and the like, but when the design film 100a is viewed from the first semi-transmissive light absorbing layer 10 side at the same brightness, the semi-transmissive light is obtained. The light reflected by the reflective layer 20 and emitted from the first semi-transmissive light absorbing layer 10 (as a result, the design derived from the first semi-transmissive light absorbing layer 10) can be visually recognized preferentially and is semi-transmissive. When viewed from the light-reflecting layer 20 side, the light reflected by the semi-transmissive light-reflecting layer 20 (as a result, the design derived from the semi-transmissive light-reflecting layer 20) can be visually recognized preferentially. Such a designable film 100a is useful as a film in which the design when viewed from one side and the design when viewed from the other side are different.
 一方、異なる明るさにおいて、例えば、第1の半透過性光吸収層10側が暗く、半透過性光反射層20側が明るい条件において、意匠性フィルム100aを第1の半透過性光吸収層10側から見た場合には、半透過性光反射層20に入射し、当該半透過性光反射層20を透過した光(例えば、外光)が優先的に視認され得、半透過性光反射層20側から見た場合には、半透過性光反射層20に反射された光(結果として、半透過性光反射層20由来の意匠)が優先的に視認され得る。よって、このような意匠性フィルム100aを用いることにより、意匠性に優れ、かつ、装着した際の視認性に優れた意匠性成形体(例えば、サングラス)が得られ得る。 On the other hand, at different brightness, for example, under the condition that the first semi-transmissive light absorbing layer 10 side is dark and the semi-transmissive light reflecting layer 20 side is bright, the design film 100a is placed on the first semi-transmissive light absorbing layer 10 side. When viewed from above, the light incident on the semi-transmissive light-reflecting layer 20 and transmitted through the semi-transmissive light-reflecting layer 20 (for example, external light) can be preferentially visually recognized, and the semi-transmissive light-reflecting layer can be visually recognized. When viewed from the 20 side, the light reflected by the semi-transmissive light-reflecting layer 20 (as a result, the design derived from the semi-transmissive light-reflecting layer 20) can be visually recognized preferentially. Therefore, by using such a designable film 100a, a designable molded product (for example, sunglasses) having excellent designability and excellent visibility when worn can be obtained.
 図1に示す実施形態において、第1の半透過性光吸収層および半透過性光反射層はそれぞれ、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。例えば、第1の半透過性光吸収層が偏光性を有し、かつ、特定の波長範囲の光を選択的に吸収する場合(具体例としては、第1の半透過性光吸収層が無彩色ではない吸収型偏光子である場合)、吸収波長以外の波長の光が第1の半透過性光吸収層の吸収軸を透過して半透過性光反射層に反射されることから、第1の半透過性光吸収層側から見た場合に、当該第1の半透過性光吸収層由来の意匠が視認できる。また、第1の半透過性光吸収層および半透過性光反射層が共に偏光性を有するものである場合(具体例としては、第1の半透過性光吸収層が吸収型偏光子であり、半透過性光反射層が反射型偏光子である場合)、これらの層は、透過軸方向が互いに実質的に平行となるように配置される。このような構成とすることにより、高い透過率を確保することができるとともに、吸収型偏光子の吸収軸方向と反射型偏光子の反射軸方向とが実質的に平行となることから吸収型偏光子の吸収軸を透過した光を反射型偏光子の反射軸で反射することができる。 In the embodiment shown in FIG. 1, the first semi-transmissive light absorption layer and the semi-transmissive light reflection layer may have polarization property or may not have polarization property, respectively. .. For example, when the first semi-transmissive light absorption layer has polarization property and selectively absorbs light in a specific wavelength range (specifically, the first semi-transmissive light absorption layer is absent). (In the case of an absorption-type polarizing element that is not colored), light having a wavelength other than the absorption wavelength passes through the absorption axis of the first semi-transmissive light absorption layer and is reflected by the semi-transmissive light-reflecting layer. When viewed from the semi-transmissive light absorption layer side of No. 1, the design derived from the first semi-transmissive light absorption layer can be visually recognized. Further, when both the first semi-transmissive light absorbing layer and the semi-transmissive light reflecting layer have polarization property (specifically, the first semi-transmissive light absorbing layer is an absorption type polarizing element). , When the transflective light-reflecting layer is a reflective polarizing element), these layers are arranged so that the transmission axis directions are substantially parallel to each other. With such a configuration, high transmittance can be ensured, and the absorption axis direction of the absorption type polarizing element and the reflection axis direction of the reflection type polarizing element are substantially parallel to each other, so that the absorption type polarization can be ensured. The light transmitted through the absorption axis of the child can be reflected by the reflection axis of the reflective polarizing element.
 図2Aは、本発明の別の実施形態による意匠性フィルムの概略断面図である。図2Aに示される意匠性フィルム100bは、第1の半透過性光吸収層10と半透過性光反射層20と第2の半透過性光吸収層30とを、この順に含む。このような構成の意匠性フィルム100bによれば、第1の半透過性光吸収層10に入射した光は、その一部が半透過性光吸収層10に吸収され、残りの光の一部が、半透過性光反射層20に反射された反射光として第1の半透過性光吸収層10から出射し、残りの光の別の一部が、半透過性光反射層20に入射する。また、第2の半透過性光吸収層30に入射した光は、その一部が第2の半透過性光吸収層30に吸収され、残りの光の一部が、半透過性光反射層20に反射された反射光として第2の半透過性光吸収層30から出射し、残りの光の別の一部が、半透過性光反射層20に入射する。 FIG. 2A is a schematic cross-sectional view of a design film according to another embodiment of the present invention. The design film 100b shown in FIG. 2A includes a first semitransparent light absorbing layer 10, a semitransparent light reflecting layer 20, and a second semitransparent light absorbing layer 30 in this order. According to the design film 100b having such a configuration, a part of the light incident on the first semi-transmissive light absorbing layer 10 is absorbed by the semi-transmissive light absorbing layer 10, and a part of the remaining light. Is emitted from the first semi-transmissive light absorption layer 10 as reflected light reflected by the semi-transmissive light reflection layer 20, and another part of the remaining light is incident on the semi-transmissive light reflection layer 20. .. Further, a part of the light incident on the second semi-transmissive light absorption layer 30 is absorbed by the second semi-transmissive light absorption layer 30, and a part of the remaining light is a semi-transmissive light reflection layer. The reflected light reflected by the 20 is emitted from the second semi-transmissive light absorbing layer 30, and another part of the remaining light is incident on the semi-transmissive light reflecting layer 20.
 よって、各層の透過率等によってその効果は変化し得るが、同程度の明るさにおいて、意匠性フィルム100bを第1の半透過性光吸収層10側から見た場合には、第1の半透過性光吸収層10由来の意匠が優先的に視認され得、第2の半透過性光吸収層30側から見た場合には、第2の半透過性光吸収層30由来の意匠が優先的に視認され得る。このような意匠性フィルム100bは、一方の面から見た際の意匠と他方の面から見た際の意匠とが異なるフィルムとして有用である。 Therefore, the effect may change depending on the transmittance of each layer and the like, but when the design film 100b is viewed from the first semi-transmissive light absorption layer 10 side at the same brightness, the first half The design derived from the transmissive light absorption layer 10 can be visually recognized preferentially, and when viewed from the side of the second semi-transmissive light absorption layer 30, the design derived from the second semi-transmissive light absorption layer 30 has priority. Can be visually recognized. Such a designable film 100b is useful as a film in which the design when viewed from one side and the design when viewed from the other side are different.
 一方、異なる明るさにおいて、例えば、第1の半透過性光吸収層10側が暗く、第2の半透過性光吸収層30側が明るい条件において、意匠性フィルム100bを第1の半透過性光吸収層10側から見た場合には、第2の半透過性光吸収層30側から入射して半透過性光反射層20を透過した光(例えば、外光)が優先的に視認され得、第2の半透過性光吸収層30側から見た場合には、第2の半透過性光吸収層30由来の意匠が視認され得る。よって、このような意匠性フィルム100bを用いることにより、意匠性に優れ、かつ、装着した際の視認性に優れた意匠性成形体(例えば、サングラス)が得られ得る。 On the other hand, at different brightness, for example, under the condition that the first semi-transmissive light absorption layer 10 side is dark and the second semi-transmissive light absorption layer 30 side is bright, the design film 100b absorbs the first semi-transmissive light. When viewed from the layer 10 side, the light incident from the second semi-transmissive light absorption layer 30 side and transmitted through the semi-transmissive light reflection layer 20 (for example, external light) can be preferentially visually recognized. When viewed from the side of the second semi-transmissive light absorption layer 30, the design derived from the second semi-transmissive light absorption layer 30 can be visually recognized. Therefore, by using such a designable film 100b, a designable molded product (for example, sunglasses) having excellent designability and excellent visibility when worn can be obtained.
 図2Aに示す実施形態において、第1の半透過性光吸収層、半透過性光反射層および第2の半透過性光吸収層はそれぞれ、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。上述の通り、第1の半透過性光吸収層(または第2の半透過性光吸収層)が偏光性を有し、かつ、特定の波長範囲の光を選択的に吸収する場合(具体例としては、第1の半透過性光吸収層(または第2の半透過性光吸収層)が無彩色ではない吸収型偏光子である場合)、吸収波長以外の波長の光が第1の半透過性光吸収層(または第2の半透過性光吸収層)の吸収軸を透過して半透過性光反射層に反射されることから、第1の半透過性光吸収層(または第2の半透過性光吸収層)側から見た場合に、第1の半透過性光吸収層(または第2の半透過性光吸収層)由来の意匠が視認できる。なお、複数の層が偏光性を有する場合、偏光性を有する層は、透過軸方向が互いに実質的に平行となるように配置される。このような構成とすることにより、高い透過率を確保することができる。 In the embodiment shown in FIG. 2A, the first semi-transmissive light absorbing layer, the semi-transmissive light reflecting layer, and the second semi-transmissive light absorbing layer may each have polarization property, and may be polarized. It may not have. As described above, when the first semi-transmissive light absorption layer (or the second semi-transmissive light absorption layer) has polarization property and selectively absorbs light in a specific wavelength range (specific example). When the first semi-transmissive light absorption layer (or the second semi-transmissive light absorption layer) is an absorption-type polarizing element that is not achromatic), light having a wavelength other than the absorption wavelength is the first half. Since it passes through the absorption axis of the transmissive light absorption layer (or the second semi-transmissive light absorption layer) and is reflected by the semi-transmissive light-reflecting layer, the first semi-transmissive light absorption layer (or the second). When viewed from the semi-transmissive light absorption layer) side, the design derived from the first semi-transmissive light absorption layer (or the second semi-transmissive light absorption layer) can be visually recognized. When the plurality of layers have polarization, the layers having polarization are arranged so that the transmission axis directions are substantially parallel to each other. With such a configuration, high transmittance can be ensured.
 図2Bは、図2Aに示す実施形態において、第1の半透過性光吸収層および第2の半透過性光吸収層が共に偏光性を有する構成を示す。図2Bに示される意匠性フィルム100cは、偏光性を有する第1の半透過性光吸収層である第1の吸収型偏光子12と半透過性光反射層20と偏光性を有する第2の半透過性光吸収層である第2の吸収型偏光子32とを、この順に含む。上述の通り、第1の吸収型偏光子12および第2の吸収型偏光子32は、それぞれの透過軸方向が互いに実質的に平行となるように積層されている。 FIG. 2B shows a configuration in which both the first semi-transmissive light absorption layer and the second semi-transmissive light absorption layer have polarization in the embodiment shown in FIG. 2A. The designable film 100c shown in FIG. 2B has a first absorbent polarizing element 12 which is a first semi-transmissive light absorbing layer having a polarizing property, a semi-transmissive light reflecting layer 20, and a second polarized light having a polarizing property. A second absorption type polarizing element 32, which is a semi-transmissive light absorption layer, is included in this order. As described above, the first absorption type polarizing element 12 and the second absorption type polarizing element 32 are laminated so that their respective transmission axis directions are substantially parallel to each other.
 このような構成の意匠性フィルム100cによれば、意匠性フィルム100bと同様に、同程度の明るさにおいて、第1の吸収型偏光子12側から見た場合には、第1の吸収型偏光子12由来の意匠が優先的に視認され得、第2の吸収型偏光子32側から見た場合には、第2の吸収型偏光子32由来の意匠が優先的に視認され得る。また、第1の吸収型偏光子12側が暗く、第2の吸収型偏光子32側が明るい条件においても、意匠性フィルム100bと同様に、第1の吸収型偏光子12側から見た場合には、第2の吸収型偏光子32側から入射して半透過性光反射層20を透過した光(例えば、外光)が優先的に視認され得、第2の吸収型偏光子32側から見た場合には、第2の吸収型偏光子32由来の意匠が優先的に視認され得る。ここで、第1の吸収型偏光子12および第2の吸収型偏光子32が、それぞれの透過軸方向が互いに実質的に平行となるように積層されていることから、第1の吸収型偏光子12側から見た場合に視認される光に第2の吸収型偏光子由来の色付きを回避できる。よって、このような意匠性フィルム100cを用いることにより、意匠性に優れ、かつ、装着した際の視認性に特に優れた意匠性成形体(例えば、サングラス)が得られ得る。また、第1の半透過性光吸収層(第1の吸収型偏光子12)および第2の半透過性光吸収層(第2の吸収型偏光子32)に加えて、半透過性光反射層20も偏光性を有する場合(例えば、半透過性光反射層20が反射型偏光子である場合)、その透過軸方向が第1の吸収型偏光子12および第2の吸収型偏光子32の透過軸方向と実質的に平行になるように配置すること(結果として、第1の吸収型偏光子および第2の吸収型偏光子の吸収軸方向と反射型偏光子の反射軸方向とが実質的に平行となるように配置すること)により、一方の吸収型偏光子の透過軸を透過した光が反射型偏光子および他方の吸収型偏光子の透過軸を透過できる一方で、吸収型偏光子の吸収軸を透過した光を反射型偏光子の反射軸で反射することができる。 According to the design film 100c having such a configuration, similarly to the design film 100b, when viewed from the first absorption type polarizing element 12 side at the same brightness, the first absorption type polarization is obtained. The design derived from the child 12 can be visually recognized preferentially, and when viewed from the side of the second absorption type polarizing element 32, the design derived from the second absorption type polarizing element 32 can be visually recognized preferentially. Further, even under the condition that the first absorption type polarizing element 12 side is dark and the second absorption type polarizing element 32 side is bright, when viewed from the first absorption type polarizing element 12 side as in the design film 100b. , Light incident from the second absorption type polarizing element 32 side and transmitted through the semi-transmissive light reflecting layer 20 (for example, external light) can be visually recognized preferentially, and is viewed from the second absorption type polarizing element 32 side. In this case, the design derived from the second absorption type polarizing element 32 can be visually recognized preferentially. Here, since the first absorption-type polarizing element 12 and the second absorption-type polarizing element 32 are laminated so that their respective transmission axis directions are substantially parallel to each other, the first absorption-type polarizing element is polarized. It is possible to avoid coloring derived from the second absorption type polarizing element in the light visually recognized when viewed from the child 12 side. Therefore, by using such a designable film 100c, a designable molded product (for example, sunglasses) having excellent designability and particularly excellent visibility when worn can be obtained. Further, in addition to the first semi-transmissive light absorbing layer (first absorbing type polarizing element 12) and the second semi-transmissive light absorbing layer (second absorbing type polarizing element 32), the semi-transmitting light reflection is performed. When the layer 20 is also polarized (for example, when the semi-transmissive light reflecting layer 20 is a reflective polarizing element), the transmission axis direction thereof is the first absorbing type polarizing element 12 and the second absorbing type polarizing element 32. Arranged so as to be substantially parallel to the transmission axis direction of the light (as a result, the absorption axis direction of the first absorption type and the second absorption type polarizing element and the reflection axis direction of the reflection type polarizing element are aligned with each other. By arranging them so that they are substantially parallel to each other), the light transmitted through the transmission axis of one absorption type polarizing element can be transmitted through the transmission axis of the reflection type polarizing element and the other absorption type polarizing element, while being absorption type. The light transmitted through the absorption axis of the polarizing element can be reflected by the reflection axis of the reflective classifier.
 図3Aは、本発明のさらに別の実施形態による意匠性フィルムの概略断面図である。図3Aに示される意匠性フィルム100dは、偏光性を有する第1の半透過性光吸収層である第1の吸収型偏光子12と半透過性光反射層20と位相差層40とを、この順に含む。第1の吸収型偏光子12および位相差層40は、第1の吸収型偏光子12の吸収軸方向と位相差層40の遅相軸方向とが、35°~55°または125°~145°の角度をなすように配置されている。位相差層40は、好ましくは実質的にλ/4板として機能する。また、半透過性光反射層20は、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。このような構成の意匠性フィルム100dによれば、図1に示す実施形態の意匠性フィルムの効果に加えて、以下の効果が得られ得る。すなわち、意匠性フィルム100dを、位相差層40の遅相軸方向が互いに実質的に直交するように、眼鏡の右眼用レンズ領域と該左眼用レンズ領域とに装着することにより、円偏光方式の立体視用眼鏡を得ることができる。 FIG. 3A is a schematic cross-sectional view of a design film according to still another embodiment of the present invention. The designable film 100d shown in FIG. 3A has a first absorbent polarizing element 12, a semitransparent light reflecting layer 20, and a retardation layer 40, which are first semitransparent light absorbing layers having polarization properties. Included in this order. In the first absorption type polarizing element 12 and the retardation layer 40, the absorption axis direction of the first absorption type polarizing element 12 and the slow axis direction of the retardation layer 40 are 35 ° to 55 ° or 125 ° to 145. Arranged to form an angle of °. The retardation layer 40 preferably functions substantially as a λ / 4 plate. Further, the semi-transmissive light reflecting layer 20 may have a polarizing property or may not have a polarizing property. According to the design film 100d having such a configuration, the following effects can be obtained in addition to the effects of the design film of the embodiment shown in FIG. That is, by mounting the design film 100d on the right eye lens region and the left eye lens region of the spectacles so that the retard axis directions of the retardation layer 40 are substantially orthogonal to each other, circular polarization is performed. It is possible to obtain stereoscopic eyeglasses of the type.
 図3Bは、本発明のさらに別の実施形態による意匠性フィルムの概略断面図である。図3Bに示される意匠性フィルム100eは、第1の吸収型偏光子12と半透過性光反射層20と第2の吸収型偏光子32と位相差層40とを、この順に含む。上述の通り、第1の吸収型偏光子12および第2の吸収型偏光子32は、それぞれの透過軸方向が互いに実質的に平行となるように配置されている。また、第1の吸収型偏光子12および位相差層40は、第1の吸収型偏光子12の吸収軸方向と位相差層40の遅相軸方向とが、35°~55°または125°~145°の角度をなすように配置されている。位相差層40は、好ましくは実質的にλ/4板として機能する。また、半透過性光反射層20は、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。このような構成の意匠性フィルム100eによれば、図2Bに示す実施形態の意匠性フィルムの効果に加えて、以下の効果が得られ得る。すなわち、意匠性フィルム100eを、位相差層40の遅相軸方向が互いに実質的に直交するように、眼鏡の右眼用レンズ領域と該左眼用レンズ領域とに装着することにより、円偏光方式の立体視用眼鏡を得ることができる。 FIG. 3B is a schematic cross-sectional view of a design film according to still another embodiment of the present invention. The design film 100e shown in FIG. 3B includes a first absorption type polarizing element 12, a semitransparent light reflecting layer 20, a second absorption type polarizing element 32, and a retardation layer 40 in this order. As described above, the first absorption type polarizing element 12 and the second absorption type polarizing element 32 are arranged so that their respective transmission axis directions are substantially parallel to each other. Further, in the first absorption type polarizing element 12 and the retardation layer 40, the absorption axis direction of the first absorption type polarizing element 12 and the slow axis direction of the retardation layer 40 are 35 ° to 55 ° or 125 °. It is arranged so as to form an angle of about 145 °. The retardation layer 40 preferably functions substantially as a λ / 4 plate. Further, the semi-transmissive light reflecting layer 20 may have a polarizing property or may not have a polarizing property. According to the design film 100e having such a configuration, the following effects can be obtained in addition to the effects of the design film of the embodiment shown in FIG. 2B. That is, by mounting the design film 100e on the right eye lens region and the left eye lens region of the spectacles so that the retard axis directions of the retardation layer 40 are substantially orthogonal to each other, circular polarization is performed. It is possible to obtain stereoscopic eyeglasses of the type.
 図示しないが、上記意匠性フィルムを構成する各構成要素は、代表的には、任意の適切な接着剤層または粘着剤層を介して貼り合わせられている。また、意匠性フィルムは、本発明の効果が得られる限りにおいて、目的に応じて任意の適切な構成要素をさらに含むことができる。例えば、上記意匠性フィルムの最外層には、必要に応じて、保護層および/またはハードコート層が設けられ得る。 Although not shown, each component constituting the design film is typically bonded via any suitable adhesive layer or pressure-sensitive adhesive layer. In addition, the designable film may further contain any suitable component depending on the purpose, as long as the effect of the present invention can be obtained. For example, the outermost layer of the design film may be provided with a protective layer and / or a hard coat layer, if necessary.
 上記意匠性フィルムの透過率は、用途等に応じて適切な値に設定され得る。該透過率は、例えば1%以上、好ましくは5%以上、より好ましくは10%以上であり、また例えば95%以下、好ましくは80%以下、より好ましくは50%以下である。例えば、意匠性フィルムが眼鏡のレンズ部分に適用される場合、その透過率は、例えば1%~80%、好ましくは5%~50%、より好ましくは10%~50%とすることができる。 The transmittance of the design film can be set to an appropriate value depending on the application and the like. The transmittance is, for example, 1% or more, preferably 5% or more, more preferably 10% or more, and for example, 95% or less, preferably 80% or less, more preferably 50% or less. For example, when the design film is applied to the lens portion of spectacles, its transmittance can be, for example, 1% to 80%, preferably 5% to 50%, and more preferably 10% to 50%.
 上記意匠性フィルムは、構成に応じて偏光性を有するものであり得る。偏光性を有する意匠性フィルムの偏光度は、例えば30%以上、好ましくは60%以上、より好ましくは90%以上であり、また例えば100%以下である。 The design film may have polarization property depending on the composition. The degree of polarization of the designable film having polarization is, for example, 30% or more, preferably 60% or more, more preferably 90% or more, and for example, 100% or less.
 なお、本明細書で言及する透過率(単体透過率:Ts)および偏光度は、分光光度計を用いて測定することができる。具体的には、偏光度は、分光光度計を用いて偏光子の平行透過率Tpおよび直交透過率Tcを測定し、式:偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100より求めることができる。なお、これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。 The transmittance (single transmittance: Ts) and the degree of polarization referred to in the present specification can be measured using a spectrophotometer. Specifically, for the degree of polarization, the parallel transmittance Tp and the orthogonal transmittance Tc of the polarizing element are measured using a spectrophotometer, and the formula: degree of polarization (%) = {(Tp-Tc) / (Tp + Tc)}. It can be obtained from 1/2 × 100. These Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor.
 上記意匠性フィルムの厚みは、例えば10μm~1000μm、好ましくは50μm~500μm、より好ましくは100μm~500μmであり得る。 The thickness of the design film may be, for example, 10 μm to 1000 μm, preferably 50 μm to 500 μm, and more preferably 100 μm to 500 μm.
A-1.第1の半透過性光吸収層
 第1の半透過性光吸収層は、例えば1%以上、好ましくは5%以上、より好ましくは10%以上の透過率を有し、かつ、特定の波長範囲の光を選択的に吸収する(すなわち、特定範囲の波長帯域に吸収極大波長を有する)か、あるいは、可視光領域全波長を吸収する。第1の半透過性光吸収層の透過率は、例えば90%以下、また例えば50%以下であり得る。
A-1. First Semi-Transmissive Light Absorption Layer The first semi-transmissive light absorption layer has a transmittance of, for example, 1% or more, preferably 5% or more, more preferably 10% or more, and has a specific wavelength range. Selectively absorbs light (that is, has an absorption maximum wavelength in a specific wavelength band), or absorbs all wavelengths in the visible light region. The transmittance of the first semi-transmissive light absorption layer can be, for example, 90% or less, for example, 50% or less.
 上述の通り、第1の半透過性光吸収層は、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。偏光性を有する第1の半透過性光吸収層を用いることにより、意匠性成形体として偏光サングラスを得ることができる。また、後述する第2の半透過性光吸収層と組み合わせて用いることにより、所望の意匠性および/または視認性を有する意匠性成形体が得られ得る。 As described above, the first semi-transmissive light absorption layer may have a polarization property or may not have a polarization property. By using the first semi-transmissive light absorbing layer having polarization property, polarized sunglasses can be obtained as a designable molded product. Further, by using it in combination with the second semi-transmissive light absorption layer described later, a designable molded product having desired designability and / or visibility can be obtained.
A-1-1.偏光性を有する第1の半透過性光吸収層
 偏光性を有する第1の半透過性光吸収層は、代表的には、吸収型偏光子である(以下、偏光性を有する第1の半透過性光吸収層である吸収型偏光子を第1の吸収型偏光子と称する場合がある)。第1の吸収型偏光子は、二色性物質を含む。二色性物質は、偏光子に所望される意匠の色彩や図柄等に応じて適切に選択され得る。二色性物質としては、一種の二色性物質を単独で用いてもよく、二種以上の二色性物質を組み合わせて用いてもよい。二色性物質としては、ヨウ素またはヨウ素以外の二色性染料を用いることができる。例えば、二色性物質としてヨウ素を用いることにより、意匠性成形体として、良好な意匠性、偏光性および視認性を付与する偏光サングラスが得られ得る。
A-1-1. First Semi-Transmissive Light Absorbent Layer Having Polarity The first semi-transmissive light absorption layer having polarization is typically an absorption-type polarizing element (hereinafter, the first half having polarization). An absorption-type polarizing element, which is a transmissive light-absorbing layer, may be referred to as a first absorption-type polarizing element). The first absorbent polarizing element contains a dichroic substance. The dichroic substance can be appropriately selected according to the color, pattern, etc. of the design desired for the polarizing element. As the dichroic substance, one kind of dichroic substance may be used alone, or two or more kinds of dichroic substances may be used in combination. As the dichroic substance, iodine or a dichroic dye other than iodine can be used. For example, by using iodine as a dichroic substance, polarized sunglasses that impart good designability, polarization property and visibility can be obtained as a designable molded product.
 ヨウ素以外の二色性染料の具体例としては、例えば、ジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ化合物等からなる二色性直接染料、液晶性アゾ色素、多環式染料、スルホン酸基を有する(アゾ)染料が挙げられる。二色性染料の具体例としては、C.I.ダイレクト.イエロー12、C.I.ダイレクト.イエロー28、C.I.ダイレクト.イエロー44、C.I.ダイレクト.イエロー142;C.I.ダイレクト.オレンジ26、C.I.ダイレクト.オレンジ39、C.I.ダイレクト.オレンジ71、C.I.ダイレクト.オレンジ107;C.I.ダイレクト.レッド2、C.I.ダイレクト.レッド31、C.I.ダイレクト.レッド39、C.I.ダイレクト.レッド79、C.I.ダイレクト.レッド81、C.I.ダイレクト.レッド117、C.I.ダイレクト.レッド247;C.I.ダイレクト.グリーン80、C.I.ダイレクト.グリーン59;C.I.ダイレクト・ブルー1、C.I.ダイレクト・ブルー71、C.I.ダイレクト・ブルー78、C.I.ダイレクト・ブルー168、C.I.ダイレクト・ブルー202;C.I.ダイレクト・バイオレット9、C.I.ダイレクト・バイオレット51;C.I.ダイレクト・ブラウン106、C.I.ダイレクト・ブラウン223が挙げられる。また、目的に応じて、WO2009/057676、WO2007/145210、WO2006/057214および特開2004-251963号公報に開示されているような偏光フィルム用に開発された染料を用いることもできる。これらの色素(染料)は遊離酸、あるいはアルカリ金属塩(例えばNa塩、K塩、Li塩)、アンモニウム塩、アミン類の塩として用いられる。 Specific examples of the bicolor dye other than iodine include a bicolor direct dye composed of a disazo compound, a bicolor direct dye composed of a trisazo and a tetrakisazo compound, a liquid crystal azo dye, a polycyclic dye, and a sulfone. Examples thereof include (azo) dyes having an acid group. Specific examples of the dichroic dye include C.I. I. direct. Yellow 12, C.I. I. direct. Yellow 28, C.I. I. direct. Yellow 44, C.I. I. direct. Yellow 142; C.I. I. direct. Orange 26, C.I. I. direct. Orange 39, C.I. I. direct. Orange 71, C.I. I. direct. Orange 107; C.I. I. direct. Red 2, C.I. I. direct. Red 31, C.I. I. direct. Red 39, C.I. I. direct. Red 79, C.I. I. direct. Red 81, C.I. I. direct. Red 117, C.I. I. direct. Red 247; C.I. I. direct. Green 80, C.I. I. direct. Green 59; C.I. I. Direct Blue 1, C.I. I. Direct Blue 71, C.I. I. Direct Blue 78, C.I. I. Direct Blue 168, C.I. I. Direct Blue 202; C.I. I. Direct Violet 9, C.I. I. Direct Violet 51; C.I. I. Direct Brown 106, C.I. I. Direct Brown 223 can be mentioned. Further, depending on the purpose, dyes developed for polarizing films as disclosed in WO2009 / 057676, WO2007 / 145210, WO2006 / 057214 and JP-A-2004-251963 can also be used. These dyes are used as free acids, alkali metal salts (for example, Na salt, K salt, Li salt), ammonium salts, and amine salts.
 1つの実施形態において、第1の吸収型偏光子は、樹脂フィルムで構成される。樹脂フィルムとしては、任意の適切な構成が採用され得る。例えば、第1の吸収型偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。 In one embodiment, the first absorbent polarizing element is composed of a resin film. Any suitable configuration can be adopted as the resin film. For example, the resin film forming the first absorption-type polarizing element may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される第1の吸収型偏光子の具体例としては、ポリビニルアルコール(PVA)系樹脂フィルム、部分ホルマール化PVA系樹脂フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、二色性物質による染色処理および延伸処理が施されたものが挙げられる。 Specific examples of the first absorption-type decoder composed of a single-layer resin film include a polyvinyl alcohol (PVA) -based resin film, a partially formalized PVA-based resin film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those obtained by subjecting a hydrophilic polymer film such as, etc. to a dyeing treatment and a stretching treatment with a bicolor substance.
 上記染色処理は、例えば、二色性物質を含む染色液の塗布、当該染色液を用いた印刷、当該染色液への浸漬等によって行われ得る。これらの方法を組み合わせて行ってもよい。塗布または印刷によれば、それぞれ異なる種類および/または異なる濃度の二色性物質を含む複数の染色液を用いて、領域A、領域B、領域C等の複数の領域を形成するように染色することができ、結果として、2つ以上の色相および/または色の濃淡を含む任意の意匠(図柄、文字、模様等)を自由に(すなわち、特定のパターンに制限されることなく)偏光子に付与することができる。また、浸漬によれば、面内において、実質的に色差および透過率差を有さず、均一な光学特性を有する偏光子が好適に得られ得る。 The dyeing process can be performed, for example, by applying a dyeing solution containing a dichroic substance, printing using the dyeing solution, immersing in the dyeing solution, or the like. These methods may be combined. According to coating or printing, a plurality of dyeing solutions containing different types and / or different concentrations of dichroic substances are used to stain a plurality of regions such as region A, region B, and region C so as to form a plurality of regions. As a result, any design (design, letter, pattern, etc.) containing two or more hues and / or shades of color can be freely (i.e., without being limited to a particular pattern) a modulator. Can be granted. Further, according to the immersion, a polarizing element having substantially no color difference and transmittance difference in the plane and having uniform optical characteristics can be preferably obtained.
 塗布方法および印刷方法としては、本発明の効果が得られる限りにおいて特に制限されないが、2つ以上の色相および/または色の濃淡を含む任意の意匠を自由に付与する観点からは、印刷によって染色処理を行うことがより好ましい。印刷方法としては、インクジェット印刷法等の無版式であってもよく、スクリーン印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法等の有版式であってもよい。好ましくは無版式であり、インクジェット印刷法がより好ましい。スクリーン印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法等の有版式染色処理によれば、大量生産に向いた偏光子が得られ得る。なお、染色処理は、延伸処理の前であっても後であっても問題はない。好ましくは延伸処理の後に行われる。また、樹脂フィルムに直接印刷してもよいし、その他のフィルム等に印刷したものを転写させても良い。 The coating method and the printing method are not particularly limited as long as the effects of the present invention can be obtained, but from the viewpoint of freely imparting any design including two or more hues and / or shades of color, dyeing by printing is performed. It is more preferable to carry out the treatment. The printing method may be a plateless printing method such as an inkjet printing method, or a plate printing method such as a screen printing method, an offset printing method, a gravure printing method, or a flexographic printing method. It is preferably a plateless type, and an inkjet printing method is more preferable. According to a plate-type dyeing process such as a screen printing method, an offset printing method, a gravure printing method, and a flexographic printing method, a extruder suitable for mass production can be obtained. There is no problem whether the dyeing treatment is performed before or after the stretching treatment. It is preferably performed after the stretching treatment. Further, it may be printed directly on a resin film, or it may be transferred on another film or the like.
 染色液における二色性物質の含有量は、水100重量部あたり、例えば1×10-4重量部~10重量部であり、好ましくは1×10-3重量部~10重量部であり、さらに好ましくは1×10-2重量部~10重量部である。この染色液は、塗工方法に応じて界面活性剤、粘度調整剤、乾燥防止剤、pH調整剤、硫酸ナトリウム等の染色助剤等を含有していても良い。 The content of the bicolor substance in the dyeing solution is, for example, 1 × 10 -4 parts by weight to 10 parts by weight, preferably 1 × 10 -3 parts by weight to 10 parts by weight, and further, per 100 parts by weight of water. It is preferably 1 × 10-2 parts by weight to 10 parts by weight. This dyeing solution may contain a surfactant, a viscosity regulator, a drying inhibitor, a pH regulator, a dyeing aid such as sodium sulfate, or the like, depending on the coating method.
 上記延伸処理の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよく、染色しながら行ってもよく、染色処理前に行ってもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系樹脂フィルムを水に浸漬して水洗することで、PVA系樹脂フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系樹脂フィルムを膨潤させて染色ムラ等を防止することができる。 The stretching ratio of the stretching treatment is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment, while dyeing, or before the dyeing treatment. If necessary, the PVA-based resin film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based resin film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based resin film, but also to swell and dye the PVA-based resin film. It is possible to prevent unevenness and the like.
 積層体を用いて得られる第1の吸収型偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体は、樹脂基材を剥離することなくそのまま用いてもよく、保護フィルムに積層し、次いで樹脂基材を剥離することにより、偏光子/保護フィルムの形態にしてもよい(結果として、保護層としての樹脂基材または保護フィルムを含む偏光板が得られる)。また、染色方法としては、単層の樹脂フィルムから構成される偏光子の染色方法と同様の方法、例えば、塗布、印刷等を用いることができる。 Specific examples of the first absorption-type polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin. Examples thereof include a polarizing element obtained by using a laminate of a base material and a PVA-based resin layer coated and formed on the resin base material. The polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained laminated body of the resin base material / polarizing element may be used as it is without peeling off the resin base material, or by laminating the resin base material on the protective film and then peeling off the resin base material, the polarizing material / the protective film can be obtained. It may be in the form (as a result, a polarizing plate containing a resin base material or a protective film as a protective layer is obtained). Further, as the dyeing method, the same method as the dyeing method for a polarizing element composed of a single-layer resin film, for example, coating or printing can be used.
 樹脂フィルムにヨウ素による染色処理および延伸処理を施して得られる偏光子の製造方法の詳細は、例えば、特開2012-73580号公報、特許第6470455号等に記載されている。また、樹脂フィルムに二色性染料による染色処理および延伸処理を施して得られる偏光子の製造方法の詳細は、例えば特公平06-066001号公報、特開昭60-133401号公報に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Details of a method for producing a polarizing element obtained by subjecting a resin film to a dyeing treatment and a stretching treatment with iodine are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, Japanese Patent No. 6470455 and the like. Further, details of a method for producing a polarizing element obtained by subjecting a resin film to a dyeing treatment and a stretching treatment with a dichroic dye are described in, for example, Japanese Patent Application Laid-Open No. 06-666001 and Japanese Patent Application Laid-Open No. 60-133401. There is. The entire description of these publications is incorporated herein by reference.
 別の実施形態において、第1の吸収型偏光子は、液晶性化合物から形成される液晶塗布型偏光子であってもよい。液晶塗布型偏光子は、例えば、基材上に液晶性化合物を含む液晶組成物を塗布することで製造できる。液晶組成物を塗布する前に、基材に配向膜が形成されていてもよい。配向膜は、例えば基材上に配向膜形成組成物を塗布して形成した塗布膜に、ラビング、偏光照射等によって配向性を付与することで、形成することができる。 In another embodiment, the first absorption type polarizing element may be a liquid crystal coated type polarizing element formed of a liquid crystal compound. The liquid crystal coating type polarizing element can be produced, for example, by coating a liquid crystal composition containing a liquid crystal compound on a substrate. An alignment film may be formed on the substrate before the liquid crystal composition is applied. The alignment film can be formed, for example, by imparting orientation to a coating film formed by applying an alignment film forming composition on a substrate by rubbing, polarization irradiation, or the like.
 上記液晶組成物は、液晶性化合物と二色性物質とを含むものであってもよく、二色性を有する液晶性化合物を含むものであってもよい(後者において、液晶性化合物が二色性物質を兼ねる)。液晶組成物はさらに、開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤等を含むことができる。液晶組成物に含まれるいずれかの化合物が重合性官能基を有していてもよい。 The liquid crystal composition may contain a liquid crystal compound and a dichroic substance, or may contain a liquid crystal compound having a dichroism (in the latter, the liquid crystal compound has two colors. Also serves as a sex substance). The liquid crystal composition can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like. Any compound contained in the liquid crystal composition may have a polymerizable functional group.
 上記二色性を有する液晶性化合物としては、リオトロピック液晶性を示すアゾ色素が好ましく用いられ得る。リオトロピック液晶性を示すアゾ色素の具体例および当該アゾ色素を用いた液晶塗布型偏光子の製造方法については、特開2019-079040号公報、特開2019-079041号公報、特開2019-079042号公報および特開2019-086766号公報等に記載されており、これらの公報は、その全体の記載が本明細書に参考として援用される。また、ネマチック液晶性およびスメクチック液晶性、中でも特に、スメクチックB液晶性を有する液晶組成物を用いる優れた二色比を有する光吸収異方性膜の製造方法および液晶材料の具体例については、特許4937252号公報、特許5364304号公報等に記載されており、これらの公報は、その全体の記載が本明細書に参考として援用される。 As the liquid crystal compound having a dichroism, an azo dye exhibiting a lyotropic liquid crystal property can be preferably used. Specific examples of the azo dye exhibiting lyotropic liquid crystal properties and a method for producing a liquid crystal-coated polarizing element using the azo dye are described in JP-A-2019-079040, JP-A-2019-079041 and JP-A-2019-079042. It is described in Japanese Patent Laid-Open No. 2019-08676, etc., and the entire description of these publications is incorporated herein by reference. Further, regarding a method for producing a light absorption anisotropic film having an excellent two-color ratio and a specific example of a liquid crystal material using a liquid crystal composition having nematic liquid crystal property and smectic liquid crystal property, particularly smectic B liquid crystal property, a patent has been granted. It is described in Japanese Patent No. 4937252, Japanese Patent No. 5364304, etc., and the entire description thereof is incorporated herein by reference.
 樹脂フィルムで構成される場合の第1の吸収型偏光子の厚みは、好ましくは40μm以下であり、より好ましくは30μm以下であり、さらに好ましくは10μm以下である。また、当該厚みの下限は、例えば2μmであり得る。 The thickness of the first absorbent polarizing element when made of a resin film is preferably 40 μm or less, more preferably 30 μm or less, and further preferably 10 μm or less. Further, the lower limit of the thickness may be, for example, 2 μm.
 液晶塗布型偏光子である場合の第1の吸収型偏光子の厚みは、好ましくは5μm以下であり、より好ましくは1μm以下であり、さらに好ましくは500nm以下である。当該厚みの下限は、1つの実施形態においては10nmである。 The thickness of the first absorption-type polarizing element in the case of a liquid crystal-coated type polarizing element is preferably 5 μm or less, more preferably 1 μm or less, and further preferably 500 nm or less. The lower limit of the thickness is 10 nm in one embodiment.
 第1の吸収型偏光子は、面内の一方向に吸収軸を有し、当該吸収軸方向と直交する方向に透過軸を有する。第1の吸収型偏光子は、好ましくは、面内の無作為に抽出した任意の領域において、波長380nm~780nmのいずれかの波長で吸収二色性を示す。当該領域における単体透過率は、例えば1%~90%、好ましくは5%~80%であり、より好ましくは10%~70%である。当該領域における偏光度は、例えば15%以上であり、好ましくは30%以上であり、より好ましくは40%以上、さらに好ましくは50%以上である。 The first absorption type polarizing element has an absorption axis in one direction in the plane and a transmission axis in a direction orthogonal to the absorption axis direction. The first absorption type polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm in any region randomly sampled in the plane. The single transmittance in the region is, for example, 1% to 90%, preferably 5% to 80%, and more preferably 10% to 70%. The degree of polarization in the region is, for example, 15% or more, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
 1つの実施形態において、第1の吸収型偏光子は、面内において、実質的に色差および透過率差を有さず、均一な光学特性を有する。本実施形態において、第1の吸収型偏光子は、好ましくは二色性物質としてヨウ素を含む。二色性物質としてヨウ素を含む第1の吸収型偏光子の単体透過率は、好ましくは1%~46%であり、より好ましくは5%~46%であり、さらに好ましくは10%~46%であり、偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 In one embodiment, the first absorption type polarizing element has substantially no color difference and transmittance difference in the plane, and has uniform optical characteristics. In the present embodiment, the first absorbent polarizing element preferably contains iodine as a dichroic substance. The simple substance transmittance of the first absorbent polarizing element containing iodine as a dichroic substance is preferably 1% to 46%, more preferably 5% to 46%, still more preferably 10% to 46%. The degree of polarization is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
A-1-2.偏光性を有さない第1の半透過性光吸収層
 偏光性を有さない第1の半透過性光吸収層は、代表的には、マトリクスと色材とを含む着色層である。色材としては、目的に応じて、任意の適切な色材が選択され得る。例えば、着色層(第1の半透過性光吸収層)は、均一な単一色を呈していてもよく、あるいは、多色および/または濃淡を有し、図、柄、文字、模様等を表示するものであってもよいことから、目的の構成に応じて、1種または2種以上の色材が用いられ得る。
A-1-2. First non-polarizing semi-transmissive light absorption layer The first non-polarizing semi-transmissive light absorption layer is typically a coloring layer containing a matrix and a coloring material. As the color material, any suitable color material can be selected depending on the purpose. For example, the colored layer (first translucent light-absorbing layer) may exhibit a uniform single color, or may have multiple colors and / or shades to display figures, patterns, characters, patterns, and the like. Therefore, one kind or two or more kinds of coloring materials may be used depending on the desired configuration.
 上記色材の具体例としては、アントラキノン系、トリフェニルメタン系、ナフトキノン系、チオインジゴ系、ペリノン系、ペリレン系、スクアリリウム系、シアニン系、ポルフィリン系、アザポルフィリン系、フタロシアニン系、サブフタロシアニン系、キニザリン系、ポリメチン系、ローダミン系、オキソノール系、キノン系、アゾ系、キサンテン系、アゾメチン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系等の染料が挙げられる。 Specific examples of the above coloring materials include anthraquinone-based, triphenylmethane-based, naphthoquinone-based, thioindigo-based, perinone-based, perylene-based, squarylium-based, cyanine-based, porphyrin-based, azaporphyrin-based, phthalocyanine-based, subphthalocyanine-based, and quinizarin. System, Polymethin system, Rhodamine system, Oxonol system, Kinone system, Azo system, Xantene system, Azomethin system, Quinacridone system, Dioxazine system, Diketopyrrolopyrrole system, Anthraquinone system, Isodolinone system, Indanslon system, Indigo Examples thereof include dyes such as thioindigo, quinophthalone, quinoline, and triphenylmethane.
 また、上記色材として、顔料を用いてもよい。顔料の具体例としては、例えば、黒色顔料(カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等)、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)等が挙げられる。 Further, a pigment may be used as the above-mentioned coloring material. Specific examples of the pigment include black pigments (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, etc.). Isoindrinone-based, isoindolin-based, dioxazine-based, thioindigo-based, anthraquinone-based, quinophthalone-based, metal complex-based, diketopyrrolopyrrole-based, dye lake pigments, white / extender pigments (titanium oxide, zinc oxide, sulfide) Zinc, clay, talc, barium sulfate, calcium carbonate, etc.), chromatic pigments (yellow lead, cadmium, chrome vermillion, nickel titanium, chrome titanium, yellow iron oxide, red iron oxide, zinc chromate, lead tan, ultramarine, dark blue, Cobalt blue, chrome green, chromium oxide, bismuth vanadate, etc.), bright material pigments (pearl pigments, aluminum pigments, bronze pigments, etc.), fluorescent pigments (zinc sulfide, strontium sulfide, strontium aluminate, etc.) and the like can be mentioned.
 上記マトリクスとしては、樹脂または粘着剤が挙げられる。マトリクスが樹脂である場合、着色層は樹脂フィルムであり、粘着剤である場合、着色層は粘着剤層である。マトリクスは、好ましくは、透明性および光学的等方性を有する。着色層は、基材上に色材を含む樹脂液を塗布(印刷)すること等によって、樹脂塗膜(印刷層)として形成されてもよい。 Examples of the matrix include resins and adhesives. When the matrix is a resin, the colored layer is a resin film, and when it is a pressure-sensitive adhesive, the colored layer is a pressure-sensitive adhesive layer. The matrix preferably has transparency and optical isotropic properties. The colored layer may be formed as a resin coating film (printing layer) by applying (printing) a resin liquid containing a coloring material on a base material.
 上記樹脂としては、任意の適切な樹脂を用いることができる。具体的には、樹脂フィルムを構成する樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよく、活性エネルギー線硬化性樹脂であってもよい。活性エネルギー線硬化性樹脂としては、電子線硬化型樹脂、紫外線硬化型樹脂、可視光線硬化型樹脂が挙げられる。樹脂の具体例としては、エポキシ、(メタ)アクリレート(例えば、メチルメタクリレート、ブチルアクリレート)、ノルボルネン、ポリエチレン、ポリ(ビニルブチラール)、ポリ(ビニルアセテート)、ポリ尿素、ポリウレタン、アミノシリコーン(AMS)、ポリフェニルメチルシロキサン、ポリフェニルアルキルシロキサン、ポリジフェニルシロキサン、ポリジアルキルシロキサン、シルセスキオキサン、フッ化シリコーン、ビニルおよび水素化物置換シリコーン、スチレン系ポリマー(例えば、ポリスチレン、アミノポリスチレン(APS)、ポリ(アクリルニトリルエチレンスチレン)(AES))、二官能性モノマーと架橋したポリマー(例えば、ジビニルベンゼン)、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート)、セルロース系ポリマー(例えば、トリアセチルセルロース)、塩化ビニル系ポリマー、アミド系ポリマー、イミド系ポリマー、ビニルアルコール系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、アクリルウレタン系ポリマーが挙げられる。これらは、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。 Any suitable resin can be used as the above resin. Specifically, the resin constituting the resin film may be a thermoplastic resin, a thermosetting resin, or an active energy ray-curable resin. Examples of the active energy ray-curable resin include an electron beam curable resin, an ultraviolet curable resin, and a visible light curable resin. Specific examples of the resin include epoxy, (meth) acrylate (eg, methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly (vinyl butyral), poly (vinyl acetate), polyurea, polyurethane, aminosilicone (AMS), and the like. Polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, silsesquioxane, fluorinated silicones, vinyl and hydride substituted silicones, styrene-based polymers (eg, polystyrene, aminopolystyrene (APS), poly (eg, polystyrene, aminopolystyrene (APS), poly) Acrylic nitrile ethylene styrene) (AES)), polymers crosslinked with bifunctional monomers (eg, divinylbenzene), polyester-based polymers (eg, polyethylene terephthalate), cellulose-based polymers (eg, triacetyl cellulose), vinyl chloride-based polymers. , Amid-based polymer, imide-based polymer, vinyl alcohol-based polymer, epoxy-based polymer, silicone-based polymer, acrylic urethane-based polymer. These may be used alone or in combination (eg, blend, copolymer).
 上記粘着剤としては、任意の適切な粘着剤を用いることができる。粘着剤の具体例としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、セルロース系粘着剤が挙げられる。好ましくは、ゴム系粘着剤またはアクリル系粘着剤である。 As the above-mentioned pressure-sensitive adhesive, any suitable pressure-sensitive adhesive can be used. Specific examples of the pressure-sensitive adhesive include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, and cellulose-based pressure-sensitive adhesives. A rubber-based pressure-sensitive adhesive or an acrylic-based pressure-sensitive adhesive is preferable.
 上記色材の含有割合は、色材の種類、所望の光吸収特性等に応じて、任意の適切な割合とされ得る。着色層における色材の含有割合は、、好ましくは0.01重量%~5.00重量%であり、より好ましくは0.05重量%~3.00重量%である。 The content ratio of the coloring material can be any appropriate ratio depending on the type of coloring material, desired light absorption characteristics, and the like. The content ratio of the coloring material in the colored layer is preferably 0.01% by weight to 5.00% by weight, more preferably 0.05% by weight to 3.00% by weight.
 着色層の厚みは、好ましくは1μm~100μmであり、より好ましくは2μm~30μmである。 The thickness of the colored layer is preferably 1 μm to 100 μm, more preferably 2 μm to 30 μm.
A-2.半透過性光反射層
 半透過性光反射層は、入射する光の一部を反射し、残りの光を透過させる透過特性および反射特性を有する。半透過性光反射層の透過率は、好ましくは10%~80%、より好ましくは15%~70%、さらに好ましくは20%~60%である。半透過性光反射層の反射率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上である。上記の通り、半透過性光反射層は、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。偏光性を有さない半透過性光反射層としては、例えば、ハーフミラー、ルーバーフィルム等を用いることができる。また、偏光性を有する半透過性光反射層としては、反射型偏光子が好ましく用いられる。反射型偏光子の偏光度は、例えば30%~100%、好ましくは60%~100%である。
A-2. Semi-transmissive light reflection layer The semi-transmissive light reflection layer has transmission characteristics and reflection characteristics that reflect a part of incident light and transmit the rest of the light. The transmittance of the semi-transmissive light reflecting layer is preferably 10% to 80%, more preferably 15% to 70%, and even more preferably 20% to 60%. The reflectance of the semi-transmissive light reflecting layer is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more. As described above, the transflective light reflecting layer may have a polarizing property or may not have a polarizing property. As the semi-transmissive light reflecting layer having no polarization property, for example, a half mirror, a louver film, or the like can be used. Further, as the translucent light reflecting layer having polarization property, a reflective polarizing element is preferably used. The degree of polarization of the reflective polarizing element is, for example, 30% to 100%, preferably 60% to 100%.
 ハーフミラーとしては、例えば、屈折率の異なる2以上の誘電体膜が積層された多層積層体を用いることができる。このようなハーフミラーは、好ましくは金属様光沢を有する。 As the half mirror, for example, a multi-layer laminate in which two or more dielectric films having different refractive indexes are laminated can be used. Such half mirrors preferably have a metallic luster.
 上記誘電体膜の形成材料としては、金属酸化物、金属窒化物、金属フッ化物、熱可塑性樹脂(例えば、ポリエチレンテレフタレート(PET))等が挙げられる。誘電体膜の多層積層体は、積層した誘電体膜の屈折率差によって、界面で入射光の一部を反射させる。誘電体膜の厚さによって、入射光と反射光との位相を変化させ、2つの光の干渉の程度を調整することにより、反射率を調整することができる。誘電体膜の多層積層体からなるハーフミラーの厚みは、例えば50μm~200μmであり得る。このようなハーフミラーとしては、例えば、東レ社製の商品名「ピカサス」等の市販品を用いることができる。 Examples of the material for forming the dielectric film include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (for example, polyethylene terephthalate (PET)) and the like. The multilayer laminate of the dielectric films reflects a part of the incident light at the interface due to the difference in the refractive index of the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light according to the thickness of the dielectric film and adjusting the degree of interference between the two lights. The thickness of the half mirror made of a multi-layered laminate of dielectric films can be, for example, 50 μm to 200 μm. As such a half mirror, for example, a commercially available product such as the trade name "Picassus" manufactured by Toray Industries, Inc. can be used.
 また、ハーフミラーとしては、例えば、PET等の樹脂フィルム上にアルミニウム(Al)、インジウム(In)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、またはこれらの合金等の金属を蒸着した金属蒸着フィルムを用いることができる。当該金属蒸着フィルムは、蒸着膜側から観察した場合には、反射により金属様光沢を有するが、樹脂フィルム側からの光を透過することができ、蒸着膜厚を変化させることによって、光透過率を制御することができる。蒸着膜厚は、好ましくは1nm~50nm、より好ましくは10nm~30nmである。また、樹脂フィルムの膜厚は、好ましくは1μm~1000μm、より好ましくは20μm~100μmである。 The half mirror includes, for example, aluminum (Al), indium (In), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof on a resin film such as PET. A metal-deposited film on which a metal such as the above is vapor-deposited can be used. The metal-deposited film has a metal-like luster due to reflection when observed from the vapor-film-deposited film side, but can transmit light from the resin film side, and by changing the vapor-film-deposited film, the light transmittance. Can be controlled. The vapor deposition film thickness is preferably 1 nm to 50 nm, more preferably 10 nm to 30 nm. The film thickness of the resin film is preferably 1 μm to 1000 μm, more preferably 20 μm to 100 μm.
 反射型偏光子は、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。反射型偏光子は、直線偏光分離型または円偏光分離型であり得るが、直線偏光分離型が好ましい。直線偏光分離型の反射型偏光子は、反射軸方向が第1の吸収型偏光子の吸収軸方向と実質的に平行になるように(結果として、反射型偏光子の透過軸方向が第1の吸収型偏光子の透過軸方向と実質的に平行になるように)配置される。このように配置することにより、反射型偏光子を透過した直線偏光がそのまま第1の吸収型偏光子を透過することができ、結果として、第1の吸収型偏光子側から意匠性フィルムを観察した際に、その反対側から入射した光を良好に認識することができる。以下、一例として、直線偏光分離型の反射型偏光子について説明する。なお、円偏光分離型の反射型偏光子としては、例えば、コレステリック液晶を固定化したフィルムとλ/4板との積層体が挙げられる。 The reflective classifier has a function of transmitting polarized light in a specific polarized state (polarization direction) and reflecting light in other polarized states. The reflective polarizing element may be a linear polarization separation type or a circular polarization separation type, but a linear polarization separation type is preferable. The linear polarization separation type reflection type deflector is such that the direction of the reflection axis is substantially parallel to the direction of the absorption axis of the first absorption type polarizing element (as a result, the direction of the transmission axis of the reflection type substituent is the first). It is arranged so as to be substantially parallel to the transmission axis direction of the absorption type polarizing element. By arranging in this way, the linearly polarized light transmitted through the reflective polarizing element can be transmitted through the first absorption type polarizing element as it is, and as a result, the design film is observed from the first absorption type polarizing element side. At that time, the light incident from the opposite side can be well recognized. Hereinafter, as an example, a linearly polarized light separation type reflective classifier will be described. Examples of the circularly polarized light separation type reflective polarizing element include a laminate of a film on which a cholesteric liquid crystal is immobilized and a λ / 4 plate.
 図4は、反射型偏光子の一例の概略斜視図である。図示例の反射型偏光子は、多層薄膜タイプの反射型偏光子であり、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとが交互に積層された多層積層体である。例えば、このような多層積層体の層の総数は、50~1000であり得る。図示例では、A層のx軸方向の屈折率nxがy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一である。したがって、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となる。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。なお、x軸方向は、後述する製造方法における反射型偏光子の延伸方向に対応する。 FIG. 4 is a schematic perspective view of an example of a reflective polarizing element. The reflective splitter in the illustrated example is a multilayer thin film type reflective splitter, and is a multilayer laminate in which a layer A having birefringence and a layer B having substantially no birefringence are alternately laminated. Is. For example, the total number of layers of such a multi-layer laminate can be 50-1000. In the illustrated example, the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction of the B layer and the refractive index ny in the y-axis direction are substantially the same. be. Therefore, the difference in refractive index between the A layer and the B layer is large in the x-axis direction and substantially zero in the y-axis direction. As a result, the x-axis direction becomes the reflection axis, and the y-axis direction becomes the transmission axis. The difference in refractive index between the A layer and the B layer in the x-axis direction is preferably 0.2 to 0.3. The x-axis direction corresponds to the stretching direction of the reflective polarizing element in the manufacturing method described later.
 上記A層は、好ましくは、延伸により複屈折性を発現する材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。ポリエチレンナフタレートが好ましい。上記B層は、好ましくは、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。 The layer A is preferably composed of a material that exhibits birefringence by stretching. Representative examples of such materials include polyester naphthalenedicarboxylic acid (eg, polyethylene naphthalate), polycarbonate and acrylic resins (eg, polymethylmethacrylate). Polyethylene naphthalate is preferred. The B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched. A typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
 上記反射型偏光子は、A層とB層との界面において、第1の偏光方向を有する光(例えば、p波)を透過し、第1の偏光方向とは直交する第2の偏光方向を有する光(例えば、s波)を反射する。反射した光は、A層とB層との界面において、一部が第1の偏光方向を有する光として透過し、一部が第2の偏光方向を有する光として反射する。反射型偏光子の内部において、このような反射および透過が多数繰り返されることにより、光の利用効率を高めることができる。 The reflective polarizing element transmits light having a first polarization direction (for example, a p wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects the light it has (for example, s wave). At the interface between the A layer and the B layer, the reflected light is partially transmitted as light having a first polarization direction and partially reflected as light having a second polarization direction. By repeating such reflection and transmission in large numbers inside the reflective polarizing element, it is possible to improve the efficiency of light utilization.
 1つの実施形態においては、反射型偏光子は、図4に示すように、視認側と反対側の最外層として反射層Rを含んでいてもよい。反射層Rを設けることにより、最終的に利用されずに反射型偏光子の最外部に戻ってきた光をさらに利用することができるので、光の利用効率をさらに高めることができる。反射層Rは、代表的には、ポリエステル樹脂層の多層構造により反射機能を発現する。 In one embodiment, the reflective polarizing element may include the reflective layer R as the outermost layer on the side opposite to the visual viewing side, as shown in FIG. By providing the reflective layer R, it is possible to further utilize the light that has returned to the outermost side of the reflective polarizing element without being finally utilized, so that the efficiency of light utilization can be further improved. The reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.
 上記反射型偏光子の全体厚みは、目的、反射型偏光子に含まれる層の合計数等に応じて適切に設定され得る。上記反射型偏光子の全体厚みは、好ましくは10μm~150μmである。 The total thickness of the reflective classifier can be appropriately set according to the purpose, the total number of layers included in the reflective classifier, and the like. The total thickness of the reflective polarizing element is preferably 10 μm to 150 μm.
 上記反射型偏光子は、代表的には、共押出と横延伸とを組み合わせて作製され得る。共押出は、任意の適切な方式で行われ得る。例えば、フィードブロック方式であってもよく、マルチマニホールド方式であってもよい。例えば、フィードブロック中でA層を構成する材料とB層を構成する材料とを押出し、次いで、マルチプライヤーを用いて多層化する。なお、このような多層化装置は当業者に公知である。次いで、得られた長尺状の多層積層体を代表的には搬送方向に直交する方向(TD)に延伸する。A層を構成する材料(例えば、ポリエチレンナフタレート)は、当該横延伸により延伸方向においてのみ屈折率が増大し、結果として複屈折性を発現する。B層を構成する材料(例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステル)は、当該横延伸によってもいずれの方向にも屈折率は増大しない。結果として、延伸方向(TD)に反射軸を有し、搬送方向(MD)に透過軸を有する反射型偏光子が得られ得る(TDが図4のx軸方向に対応し、MDがy軸方向に対応する)。なお、延伸操作は、任意の適切な装置を用いて行われ得る。 The reflection type deflector can be typically produced by combining coextrusion and transverse stretching. Coextrusion can be done in any suitable manner. For example, it may be a feed block system or a multi-manifold system. For example, the material constituting the A layer and the material constituting the B layer are extruded in the feed block, and then multi-layered using a multiplier. It should be noted that such a multilayer device is known to those skilled in the art. Next, the obtained elongated multilayer laminate is typically stretched in a direction orthogonal to the transport direction (TD). The material constituting the layer A (for example, polyethylene naphthalate) has an increased refractive index only in the stretching direction due to the lateral stretching, and as a result, exhibits birefringence. The material constituting the B layer (for example, copolyester of naphthalene dicarboxylic acid and terephthalic acid) does not increase the refractive index in any direction by the transverse stretching. As a result, a reflective polarizing element having a reflection axis in the stretching direction (TD) and a transmission axis in the transport direction (MD) can be obtained (TD corresponds to the x-axis direction in FIG. 4 and MD corresponds to the y-axis. Corresponds to the direction). The stretching operation can be performed using any suitable device.
 上記反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。また、上記反射型偏光子としては、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。市販品としては、例えば、日東電工社製の商品名「APCF」、3M社製の商品名「DBEF」、3M社製の商品名「APF」が挙げられる。 As the reflective polarizing element, for example, those described in Japanese Patent Publication No. 9-507308 may be used. Further, as the reflective polarizing element, a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of the commercially available product include the product name "APCF" manufactured by Nitto Denko Corporation, the product name "DBEF" manufactured by 3M Company, and the product name "APF" manufactured by 3M Company.
 別方式の反射型偏光子としては、ワイヤーグリッド偏光子等の金属細線タイプの反射型偏光子が挙げられる。ワイヤーグリッド偏光子は、ストライプ状に、より具体的には、所定の間隔を空けて平行に、配列した複数のワイヤーを含み、当該ワイヤーの長手方向(延びる方向)と直交する方向に振動する直線偏光成分を透過させ、当該ワイヤーの長手方向に振動する直線偏光成分を反射することができる。ワイヤーグリッド偏光子は、反射軸方向が第1の吸収型偏光子の吸収軸方向と実質的に平行になるように(結果として、ワイヤーグリッド偏光子の透過軸方向が第1の吸収型偏光子の透過軸方向と実質的に平行になるように)配置される。 As another type of reflective classifier, a thin metal wire type reflective classifier such as a wire grid classifier can be mentioned. A wire grid splitter contains a plurality of wires arranged in a striped pattern, more specifically, in parallel at predetermined intervals, and is a straight line that oscillates in a direction orthogonal to the longitudinal direction (extending direction) of the wires. It is possible to transmit the polarization component and reflect the linear polarization component that vibrates in the longitudinal direction of the wire. The wire grid deflector is oriented so that the direction of the reflection axis is substantially parallel to the direction of the absorption axis of the first absorption type polarizing element (as a result, the direction of the transmission axis of the wire grid polarizing element is the direction of the first absorption type polarizing element). (To be substantially parallel to the transmission axis direction of).
 ワイヤーは、好ましくは金属製である。ワイヤーの直径およびワイヤー間の間隔は、目的に応じて適宜設定され得る。本発明の実施形態においては、ワイヤー間の間隔は、例えば10nm~350nm、好ましくは50nm~300nmに設定され得る。ワイヤー間の間隔を上記範囲とすることにより、波長350nm~2000nmで偏光分離機能が好適に得られ得る。 The wire is preferably made of metal. The diameter of the wires and the spacing between the wires can be appropriately set according to the purpose. In embodiments of the invention, the spacing between the wires can be set, for example, from 10 nm to 350 nm, preferably from 50 nm to 300 nm. By setting the distance between the wires in the above range, the polarization separation function can be suitably obtained at a wavelength of 350 nm to 2000 nm.
A-3.第2の半透過性光吸収層
 第2の半透過性光吸収層は、例えば1%以上、好ましくは5%以上、より好ましくは10%以上の透過率を有し、かつ、特定の波長範囲の光を選択的に吸収する(すなわち、特定範囲の波長帯域に吸収極大波長を有する)か、あるいは、可視光領域全波長を吸収する。第2の半透過性光吸収層の透過率は、例えば90%以下、また例えば50%以下であり得る。
A-3. Second Semi-Transmissive Light Absorption Layer The second semi-transmissive light absorption layer has a transmittance of, for example, 1% or more, preferably 5% or more, more preferably 10% or more, and has a specific wavelength range. Selectively absorbs light (that is, has an absorption maximum wavelength in a specific wavelength band), or absorbs all wavelengths in the visible light region. The transmittance of the second semi-transmissive light absorption layer can be, for example, 90% or less, for example, 50% or less.
 上述の通り、第2の半透過性光吸収層は、偏光性を有するものであってもよく、偏光性を有さないものであってもよい。偏光性を有する第2の半透過性光吸収層(以下、第2の吸収型偏光子とも称する)を第1の吸収型偏光子と組み合わせて用いることにより、第2の吸収型偏光子側が第1の吸収型偏光子側よりも明るい条件下で、第1の吸収型偏光子側から意匠性フィルムを観察した場合に、第2の吸収型偏光子由来の色付きが抑制された光を観察することができる。 As described above, the second translucent light absorption layer may have a polarization property or may not have a polarization property. By using a second semi-transmissive light absorbing layer having polarization (hereinafter, also referred to as a second absorption type polarizing element) in combination with the first absorption type polarizing element, the second absorption type polarizing element side becomes the first. When the design film is observed from the first absorption-type polarizing element side under a condition brighter than that of the first absorption-type polarizing element side, the light from the second absorption-type polarizing element whose coloring is suppressed is observed. be able to.
 偏光性を有する第2の半透過性光吸収層および偏光性を有さない第2の半透過性光吸収層はそれぞれ、所望の色差ΔE*abに応じて、A-1-1項で説明した偏光性を有する第1の半透過性光吸収層およびA-1-2項で説明した偏光性を有さない第1の半透過性光吸収層の中から、任意の適切なものを選択することができる。例えば、第2の半透過性光吸収層としては、第1の半透過性光吸収層とは光の吸収特性が異なるものが選択され得る。 The second semi-transmissive light absorption layer having polarization and the second semi-transmissive light absorption layer having no polarization are described in Section A-1-1 according to the desired color difference ΔE * ab, respectively. Select any appropriate one from the first semi-transmissive light absorption layer having the same polarization property and the first semi-transmissive light absorption layer having no polarization property described in Section A-1-2. can do. For example, as the second semi-transmissive light absorption layer, a layer having different light absorption characteristics from the first semi-transmissive light absorption layer can be selected.
 例えば、目的とする意匠性成形体がサングラスである場合、第1の半透過性光吸収層としてヨウ素を含む第1の吸収型偏光子が用いられ、第2の半透過性光吸収層として第1の吸収型偏光子とは異なる吸収二色性を示す第2の吸収型偏光子が用いられることが好ましい。所望の意匠と吸収二色性とを有する第2の吸収型偏光子を用いることにより、意匠性に優れ、かつ、装着した際の視認性に特に優れた偏光サングラスが得られ得る。なお、第2の吸収型偏光子は、その透過軸方向が第1の吸収型偏光子の透過軸方向と実質的に平行となるように配置される。 For example, when the target design molded body is sunglasses, a first absorbent polarizing element containing iodine is used as the first semi-transmissive light-absorbing layer, and a second semi-transmissive light-absorbing layer is used. It is preferable to use a second absorption-type polarizing element that exhibits absorption dichroism different from that of the first absorption-type polarizing element. By using the second absorption type polarizing element having a desired design and absorption dichroism, it is possible to obtain polarized sunglasses having excellent design and particularly excellent visibility when worn. The second absorption type polarizing element is arranged so that the transmission axis direction thereof is substantially parallel to the transmission axis direction of the first absorption type polarizing element.
 1つの実施形態において、第2の吸収型偏光子は、面内において、実質的に色差および透過率差を有さず、均一な光学特性を有する。本実施形態において、第2の吸収型偏光子は、例えば、二色性物質としてヨウ素を含む。 In one embodiment, the second absorption type polarizing element has substantially no color difference and transmittance difference in the plane, and has uniform optical characteristics. In the present embodiment, the second absorbent polarizing element contains, for example, iodine as a dichroic substance.
 別の実施形態において、第2の吸収型偏光子は、面内で不均一な色相および/または透過率を有する。このような第2の吸収型偏光子とヨウ素を含み、面内において均一な光学特性を有する第1の吸収型偏光子とを組み合わせて用いることにより、第1の吸収型偏光子側に入射した光に対する反射光のL*a*b*色空間の数値よりも第2の吸収型偏光子側に入射した光に対する反射光のL*a*b*色空間の数値を容易に大きくすることができ、結果として10以上の色差ΔE*abを有する意匠性フィルムが好適に得られ得る。 In another embodiment, the second absorbent polarizing element has an in-plane non-uniform hue and / or transmittance. By using such a second absorption-type polarizing element in combination with a first absorption-type polarizing element containing iodine and having uniform optical characteristics in the plane, the light is incident on the first absorption-type polarizing element side. It is possible to easily increase the value of the L * a * b * color space of the reflected light for the light incident on the second absorption type polarizing element side to the value of the L * a * b * color space of the reflected light with respect to the light. As a result, a designable film having a color difference of 10 or more ΔE * ab can be preferably obtained.
 面内で不均一な色相および/または透過率を有する第2の吸収型偏光子は、透過軸方向に電場ベクトルを有する偏光を入射させて、380nm~780nmの波長領域において一定の波長間隔(例えば5nm間隔)で測定した吸光度スペクトルをk1とし、吸収軸方向に電場ベクトルを有する偏光を入射させて、380nm~780nmの波長領域において一定の波長間隔(例えば5nm間隔)で測定した吸光度スペクトルをk2とした場合に、面内において、二色性が観察される領域であって、k2の色相(a*,b*)の差が最大となる領域Aおよび領域Bにおいて、以下の式(1)~(3)を満たし得る。
   AVERAGE(Ak1)<1    (1)
   AVERAGE(Bk1)<1    (2)
   AVERAGE|Ak2-Bk2|>0.15      (3)
(式中、AVERAGE(k)は全測定波長領域でのスペクトルkの平均値を表し、Ak1およびAk2はそれぞれ、領域Aにおけるk1およびk2を表し、Bk1およびBk2はそれぞれ、領域Bにおけるk1およびk2を表す。なお、スペクトルの平均値は380nm~780nmの波長領域において一定の波長間隔(例えば5nm間隔)で測定した吸光度の値を算術平均して求めた値である。)
The second absorbent polarizing element, which has a non-uniform hue and / or transmittance in the plane, is incident with a polarization having an electric field vector in the transmission axis direction, and has a constant wavelength interval (for example, in the wavelength region of 380 nm to 780 nm). The absorbance spectrum measured at 5 nm intervals) is defined as k1, and the absorbance spectrum measured at a constant wavelength interval (for example, 5 nm intervals) in the wavelength region of 380 nm to 780 nm by incident polarization having an electric field vector in the absorption axis direction is defined as k2. In this case, in the region where bichromaticity is observed in the plane, and in the region A and the region B where the difference in the hues (a *, b *) of k2 is maximum, the following equations (1) to (3) can be satisfied.
AVERAGE (Ak1) <1 (1)
AVERAGE (Bk1) <1 (2)
AVERAGE | Ak2-Bk2 |> 0.15 (3)
(In the equation, AVERAGE (k) represents the average value of the spectra k in the entire measurement wavelength region, Ak1 and Ak2 represent k1 and k2 in the region A, respectively, and Bk1 and Bk2 represent k1 and k2 in the region B, respectively. The average value of the spectrum is a value obtained by arithmetically averaging the value of the absorbance measured at a constant wavelength interval (for example, 5 nm interval) in the wavelength region of 380 nm to 780 nm.)
 上記領域Aおよび領域Bは、上記偏光子の面内において二色性が観察される領域であり、かつ、k2の色相(a*,b*)の差が最大となる任意の2つの領域である。なお、本明細書において、二色性(吸収二色性)とは、特定方向に振動する光を透過させ、これと垂直な方向に振動する光を吸収する性質を意味する。1つの実施形態において、二色性が観察される領域は、(10-k2-10-k1)/(10-k2+10-k1)が0.01以上、好ましくは0.1以上、より好ましくは0.3以上である領域であり得る。なお、領域Aおよび領域Bは、偏光子に付与される意匠に応じて任意の適切な大きさ(面積)であり得る。領域Aおよび領域Bの大きさの下限はそれぞれ、測定装置の最小測定可能面積であってよい。 The region A and the region B are regions in which dichroism is observed in the plane of the polarizing element, and are arbitrary two regions in which the difference in hue (a *, b *) of k2 is maximum. be. In the present specification, the dichroism (absorption dichroism) means a property of transmitting light vibrating in a specific direction and absorbing light vibrating in a direction perpendicular to the transmission. In one embodiment, the region where dichroism is observed is (10 -k2-10 -k1 ) / (10 -k2 + 10- k1 ) of 0.01 or more, preferably 0.1 or more, more preferably. It can be a region of 0.3 or more. The region A and the region B may have an arbitrary appropriate size (area) depending on the design applied to the polarizing element. The lower limit of the size of the area A and the area B may be the minimum measurable area of the measuring device, respectively.
 上記式(1)および(2)に関して、AVERAGE(Ak1)およびAVERAGE(Bk1)がいずれも1未満であることは、領域Aおよび領域Bにおいて、透過軸方向に振動する直線偏光の吸収強度が測定波長の全域に渡って全体的に小さいことを意味し、結果として、透過軸を透過する光に色付きを生じさせ難いことを表す。AVERAGE(Ak1)およびAVERAGE(Bk1)はそれぞれ独立して、好ましくは0.5以下であり、より好ましくは0.4以下であり、さらに好ましくは0~0.3である。 Regarding the above equations (1) and (2), the fact that both AVERAGE (Ak1) and AVERAGE (Bk1) are less than 1 means that the absorption intensity of the linearly polarized light vibrating in the transmission axis direction is measured in the region A and the region B. It means that it is small as a whole over the entire wavelength range, and as a result, it means that it is difficult for the light transmitted through the transmission axis to be colored. AVERAGE (Ak1) and AVERAGE (Bk1) are independent of each other, preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0 to 0.3.
 上記式(3)に関して、AVERAGE|Ak2-Bk2|は、各測定波長の光(吸収軸方向に振動する直線偏光)に対する領域Aでの吸光度と領域Bでの吸光度との差の絶対値の算術平均値を表す。AVERAGE|Ak2-Bk2|が0.15を超えることは、少なくとも一部の波長の光(吸収軸方向に振動する直線偏光)に関して、領域Aでの吸光度と領域Bでの吸光度との差が一定以上であることを意味し、結果として、領域Aと領域Bとにおいて吸収軸を透過する光が異なる色相および/または濃淡を有することを表す。AVERAGE|Ak2-Bk2|は、好ましくは0.15より大きく、より好ましくは0.2以上であり、さらに好ましくは0.2~2.5または0.3~2.5であり得る。 With respect to the above equation (3), AVERAGE | Ak2-Bk2 | is an arithmetic calculation of the absolute value of the difference between the absorbance in the region A and the absorbance in the region B for light (linear polarization oscillating in the absorption axis direction) of each measurement wavelength. Represents the average value. When AVERAGE | Ak2-Bk2 | exceeds 0.15, the difference between the absorbance in the region A and the absorbance in the region B is constant for light of at least a part of the wavelength (linear polarization oscillating in the absorption axis direction). This means that, as a result, the light transmitted through the absorption axis in the region A and the region B has different hues and / or shades. AVERAGE | Ak2-Bk2 | is preferably greater than 0.15, more preferably 0.2 or greater, and even more preferably 0.2 to 2.5 or 0.3 to 2.5.
 上記式(1)~(3)を満たす偏光子によれば、領域Aおよび領域Bにおいて、透過軸方向に振動する直線偏光を入射させた際に、透過光に望ましくない色付きが生じるのを抑制することができる。また、当該偏光子によれば、領域Aおよび領域Bにおいて、吸収軸方向に振動する直線偏光を入射させた際に、透過光の色相および/または濃淡を異なるものとすることができ、結果として、2以上の色相および/または色の濃淡を有する意匠を表示することができる。 According to the polarizing element satisfying the above equations (1) to (3), it is possible to suppress undesired coloring of the transmitted light when the linearly polarized light vibrating in the transmission axis direction is incident in the region A and the region B. can do. Further, according to the polarizing element, when linearly polarized light vibrating in the absorption axis direction is incident in the region A and the region B, the hue and / or the shade of the transmitted light can be different, and as a result, the hue and / or the shade of the transmitted light can be different. It is possible to display a design having two or more hues and / or shades of color.
 1つの実施形態において、領域Aにおけるk2のピーク波長と領域Bにおけるk2のピーク波長との差が、20nm未満、好ましくは15nm以下であり、各ピーク波長における吸光度の差が、0.2以上、好ましくは0.3以上である。このような偏光子は、面内の色相が同じまたは近似であって、透過率に差異を有し得る(結果として、濃淡を有し得る)。なお、本明細書において、スペクトルのピーク波長とは、380nm~780nmの波長領域において最も高い吸光度を有する波長を意味する。 In one embodiment, the difference between the peak wavelength of k2 in region A and the peak wavelength of k2 in region B is less than 20 nm, preferably 15 nm or less, and the difference in absorbance at each peak wavelength is 0.2 or more. It is preferably 0.3 or more. Such modulators may have the same or similar in-plane hues and may have different transmittances (resulting in shades). In the present specification, the peak wavelength of the spectrum means the wavelength having the highest absorbance in the wavelength region of 380 nm to 780 nm.
 別の実施形態において、領域Aにおけるk2のピーク波長と領域Bにおけるk2のピーク波長との差が、20nm以上、好ましくは25nm以上である。このような偏光子は、面内に色差を有し得る。 In another embodiment, the difference between the peak wavelength of k2 in the region A and the peak wavelength of k2 in the region B is 20 nm or more, preferably 25 nm or more. Such a deflector may have an in-plane color difference.
 別の実施形態において、領域Aおよび/または領域Bにおけるk2のピークの半値幅が200nm以上であり、好ましくは250nm以上である。このような偏光子は、面内に黒等の無彩色を含む意匠であって、2以上の色相および/または色の濃淡を有する意匠を表示することができる。 In another embodiment, the half width of the peak of k2 in the region A and / or the region B is 200 nm or more, preferably 250 nm or more. Such a polarizing element is a design including an achromatic color such as black in the plane, and can display a design having two or more hues and / or shades of color.
 上記偏光子は、面内において、領域Aおよび領域Bに加えて、二色性が観察される領域Cを1つ以上含むものであってよい。N個(Nは1以上の整数)の領域C~Cの各々におけるk1およびk2をそれぞれ、Ck1およびCk2とした場合(nは、1~Nの整数)、偏光子は、好ましくは以下の式(4)と共に(5)あるいは(6)を満たす。
   AVERAGE(Ck1)<1    (4)
   AVERAGE|Ck2-Bk2|>0.15      (5)
   AVERAGE|Ck2-Ak2|>0.15      (6)
The polarizing element may include one or more regions C in which dichroism is observed in addition to the regions A and B in the plane. When k1 and k2 in each of the regions C1 to CN of N (N is an integer of 1 or more) are set to Cn k1 and Cn k2 , respectively ( n is an integer of 1 to N), the splitter is , Preferably satisfying (5) or (6) together with the following formula (4).
AVERAGE (C n k1) <1 (4)
AVERAGE | C n k2-Bk2 |> 0.15 (5)
AVERAGE | C n k2-Ak2 |> 0.15 (6)
 AVERAGE(Ck1)は、好ましくは0.5以下であり、より好ましくは0.4以下であり、さらに好ましくは0~0.3である。また、AVERAGE|Ck2-Bk2|およびAVERAGE|Ck2-Ak2|はそれぞれ独立して、好ましくは0.15より大きく、より好ましくは0.2以上であり、さらに好ましくは0.2~2.5または0.3~2.5であり得る。 AVERAGE ( Cn k1) is preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0 to 0.3. Further, AVERAGE | C n k2-Bk2 | and AVERAGE | C n k2-Ak2 | are independently, preferably larger than 0.15, more preferably 0.2 or more, and further preferably 0.2 to 0.2. It can be 2.5 or 0.3-2.5.
 上記式(1)~(6)を満たす偏光子によれば、領域A、領域Bおよび1つ以上の領域Cにおいて、透過軸方向に振動する直線偏光を入射させた際に、透過光に望ましくない色付きが生じるのを抑制することができる。また、当該偏光子によれば、領域A、領域Bおよび1つ以上の領域Cにおいて、吸収軸方向に振動する直線偏光を入射させた際に、透過光の色相および/または濃淡をそれぞれ異なるものとすることができ、結果として、3以上の色相および/または色の濃淡を有する意匠を表示することができる。 According to the polarizing element satisfying the above equations (1) to (6), it is desirable for transmitted light when linearly polarized light vibrating in the transmission axis direction is incident in the region A, the region B and one or more regions C. It is possible to suppress the occurrence of no coloring. Further, according to the polarizing element, when linearly polarized light vibrating in the absorption axis direction is incident in the region A, the region B and one or more regions C, the hue and / or the shade of the transmitted light are different from each other. As a result, it is possible to display a design having three or more hues and / or shades of color.
A-4.位相差層
 位相差層は、好ましくは実質的にλ/4板として機能する。位相差層は、例えば、単一の層であってもよく、複数の位相差層を組み合せてλ/4板としての機能を発揮する積層体であってもよい。
A-4. Phase difference layer The phase difference layer preferably functions as a substantially λ / 4 plate. The retardation layer may be, for example, a single layer, or may be a laminated body in which a plurality of retardation layers are combined to exhibit a function as a λ / 4 plate.
 位相差層の面内位相差Re(550)は、例えば100nm~180nmであり、好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmであり、特に好ましくは135nm~155nmである。位相差層は、代表的にはnx>ny=nzまたはnx>ny>nzの屈折率楕円体を有する。なお、本明細書において例えば「ny=nz」は、厳密に等しいのみならず、実質的に等しいものを包含する。位相差層のNz係数は、例えば0.9~2であり、好ましくは1~1.5であり、より好ましくは1~1.3である。 The in-plane retardation Re (550) of the retardation layer is, for example, 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably 135 nm to 155 nm. The retardation layer typically has a refractive index ellipsoid of nx> ny = nz or nx> ny> nz. In addition, in this specification, for example, "ny = nz" includes not only exactly equal but also substantially equal. The Nz coefficient of the retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, and more preferably 1 to 1.3.
 位相差層の厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは10μm~80μmであり、さらに好ましくは10μm~60μmであり、最も好ましくは30μm~50μmである。 The thickness of the retardation layer can be set so that it can function most appropriately as a λ / 4 plate. In other words, the thickness can be set to obtain the desired in-plane phase difference. Specifically, the thickness is preferably 10 μm to 80 μm, more preferably 10 μm to 60 μm, and most preferably 30 μm to 50 μm.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。 The retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measured light. In one embodiment, the retardation layer exhibits inverse dispersion wavelength characteristics. In this case, Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
 位相差層は、好ましくは、高分子フィルムの延伸フィルムである。具体的には、ポリマーの種類、延伸処理(例えば、延伸方法、延伸温度、延伸倍率、延伸方向)を適切に選択することにより、λ/4板が得られる。 The retardation layer is preferably a stretched film of a polymer film. Specifically, a λ / 4 plate can be obtained by appropriately selecting the type of polymer and the stretching treatment (for example, stretching method, stretching temperature, stretching ratio, stretching direction).
 上記高分子フィルムを形成する樹脂としては、任意の適切な樹脂が用いられる。具体例としては、ポリノルボルネン等のシクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂等の正の複屈折フィルムを構成する樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が好ましい。なお、高分子フィルムを形成する樹脂の詳細は、例えば、特開2014-010291に記載されている。当該記載は、参考として本明細書に援用される。 Any suitable resin is used as the resin for forming the polymer film. Specific examples thereof include cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, polysulfone resins and other resins constituting a positive compound refraction film. Of these, norbornene-based resins and polycarbonate-based resins are preferable. Details of the resin forming the polymer film are described in, for example, Japanese Patent Application Laid-Open No. 2014-010291. This description is incorporated herein by reference.
 延伸方法としては、例えば、横一軸延伸、固定端二軸延伸、逐次二軸延伸が挙げられる。固定端二軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、短手方向(横方向)に延伸させる方法が挙げられる。この方法は、見かけ上は横一軸延伸であり得る。また、斜め延伸も採用することができる。斜め延伸を採用することにより、幅方向に対して所定の角度の配向軸(遅相軸)を有する長尺状の延伸フィルムを得ることができる。 Examples of the stretching method include horizontal uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching. Specific examples of the fixed-end biaxial stretching include a method of stretching the polymer film in the lateral direction (lateral direction) while running the polymer film in the longitudinal direction. This method may apparently be laterally uniaxially stretched. In addition, diagonal stretching can also be adopted. By adopting diagonal stretching, it is possible to obtain a long stretched film having an orientation axis (slow phase axis) at a predetermined angle with respect to the width direction.
B.成形体
 本発明の別の局面によれば、A項に記載の意匠性フィルムを含む意匠性成形体が提供される。当該意匠性成形体の少なくとも一部は、光透過性を有する透明領域とされており、上記意匠性フィルムは当該透明領域に装着される。このような意匠性成形体によれば、上記意匠性フィルムの透明領域を一方の側から見た場合の意匠と他方の側から見た場合の意匠とを異なるものとすることができる。
B. Molded Body According to another aspect of the present invention, there is provided a designed molded body including the designable film according to item A. At least a part of the designable molded product is a transparent region having light transmission, and the design film is attached to the transparent region. According to such a designable molded product, the design when the transparent region of the design film is viewed from one side and the design when viewed from the other side can be different.
B-1.サングラス
 1つの実施形態において、上記意匠性成形体はサングラスである。第1の半透過性光吸収層側が装着者側となるようにレンズ領域に意匠性フィルムを装着することにより、装着者側と反対から観察した場合には、半透過性光反射層または第2の半透過性光吸収層由来の意匠が認識でき、意匠性に優れたサングラスが得られ得る。
B-1. Sunglasses In one embodiment, the design molded body is sunglasses. By attaching the design film to the lens region so that the first semi-transmissive light absorption layer side is on the wearer side, the semi-transmissive light reflection layer or the second semi-transmissive light reflection layer or the second when observed from the opposite side to the wearer side. The design derived from the semi-transmissive light absorption layer can be recognized, and sunglasses having excellent design can be obtained.
 また、第1の半透過性光吸収層として第1の吸収型偏光子を用いることにより、上記サングラスにさらに偏光機能を付与することができる。 Further, by using the first absorption type polarizing element as the first semi-transmissive light absorbing layer, the sunglasses can be further imparted with a polarizing function.
 さらに、第1の半透過性光吸収層および第2の半透過性光吸収層として、第1の吸収型偏光子および第2の吸収型偏光子をそれらの透過軸方向が平行となるような位置関係で用いることにより、装着者側と反対から観察した場合には、第2の半透過性光吸収層由来の意匠が認識でき、装着者からは第2の半透過性光吸収層由来の色付きが抑制された透過光が観察できる意匠性サングラスが得られ得る。 Further, as the first semi-transmissive light absorption layer and the second semi-transmissive light absorption layer, the first absorption type polarizing element and the second absorption type polarizing element are arranged so that their transmission axis directions are parallel to each other. By using it in a positional relationship, when observed from the opposite side of the wearer, the design derived from the second semi-transmissive light absorption layer can be recognized, and the wearer can recognize the design derived from the second semi-transmissive light absorption layer. Designable sunglasses in which transmitted light with suppressed coloring can be observed can be obtained.
 なお、本実施形態において、右眼用レンズ領域と左眼用レンズ領域における偏光子の軸方向は特に制限されない。 In the present embodiment, the axial direction of the polarizing element in the lens region for the right eye and the lens region for the left eye is not particularly limited.
B-2.立体視用眼鏡
 1つの実施形態において、上記意匠性成形体は立体視用眼鏡である。例えば、第1の半透過性光吸収層として第1の吸収型偏光子を用いた意匠性フィルム(例えば、図1または図2Aに示す実施形態において、第1の半透過性光吸収層として第1の吸収型偏光子を用いた意匠性フィルム)を、第1の吸収型偏光子側が装着者側となるように、かつ、右眼用レンズ領域と左眼用レンズ領域とにおいて第1の吸収型偏光子の透過軸方向が実質的に直交となるように装着した眼鏡を用いることにより、直線偏光方式の立体画像表示装置(プロジェクター、テレビ等)によって表示された画像を立体画像として認識することができる。
B-2. Stereoscopic Eyeglasses In one embodiment, the design molded body is stereoscopic eyeglasses. For example, a design film using a first absorption-type polarizing element as the first semi-transmissive light-absorbing layer (for example, in the embodiment shown in FIG. 1 or FIG. 2A, the first semi-transmissive light-absorbing layer is the first. The design film using the absorption-type polarizing element (1) is first absorbed in the right-eye lens region and the left-eye lens region so that the first absorption-type polarizing element side is the wearer side. Recognizing an image displayed by a linearly polarized stereoscopic image display device (projector, television, etc.) as a stereoscopic image by using glasses worn so that the transmission axis directions of the type polarizing element are substantially orthogonal to each other. Can be done.
 また例えば、第1の半透過性光吸収層として第1の吸収型偏光子を用い、さらにλ/4板を備えた意匠性フィルム(例えば、図3Aまたは図3Bに示す実施形態の意匠性フィルム)を、第1の吸収型偏光子側が装着者側となるように、かつ、右眼用レンズ領域と左眼用レンズ領域とにおいてλ/4板の遅相軸方向が実質的に直交となるように装着した眼鏡を用いることにより、円偏光方式の立体画像表示装置(プロジェクター、テレビ等)によって表示された画像を立体画像として認識することができる。 Further, for example, a design film (for example, the design film of the embodiment shown in FIG. 3A or FIG. 3B) in which the first absorption type polarizing element is used as the first semi-transmissive light absorbing layer and the λ / 4 plate is further provided. ), The slow axis direction of the λ / 4 plate is substantially orthogonal between the lens region for the right eye and the lens region for the left eye so that the first absorption type polarizing element side is the wearer side. By using the glasses worn in the above manner, the image displayed by the circularly polarized light stereoscopic image display device (projector, television, etc.) can be recognized as a stereoscopic image.
B-3.平板
 1つの実施形態において、上記意匠性成形体は平板である。平板である意匠性成形体は、ガラス窓やパーテーション等の任意の透明領域に、所望の形状に成形および装着され得る。これにより、当該透明領域を一方の側から見た場合の意匠と他方の側から見た場合の意匠とを異なるものとすることができ、表示媒体または装飾媒体として機能し得る。
B-3. Flat plate In one embodiment, the design molded body is a flat plate. The design molded body, which is a flat plate, can be molded and mounted in an arbitrary transparent region such as a glass window or a partition in a desired shape. As a result, the design when the transparent area is viewed from one side and the design when viewed from the other side can be different, and can function as a display medium or a decorative medium.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1)厚み
 デジタルゲージ((株)尾崎製作所製、製品名「PEACOCK」)を用いて測定した。
(2)偏光子および意匠性フィルムの単体透過率、偏光度
 偏光子および意匠性フィルムについては、紫外可視近赤外分光光度計(日本分光社製 V-7100)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、Ts、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光度を求めた。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 
(3)偏光子および意匠性フィルム以外のフィルム(層)の透過率
 紫外可視近赤外分光光度計(日立ハイテクサイエンス社製 U-4100またはUH-4150)を用いて測定した時の波長380nm~780nmの単体透過率Tsを、透過率とした。この透過率は、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
(4)色差ΔE*abの測定
 サンプルの測定面と反対側に迷光防止のため光学粘着剤を介して黒色材料を練りこんだ厚み50μmの黒色PETフィルム(東レ製「ルミラーX30」)を貼合した後、分光測色計(CM-2600d,コニカミノルタ社製)を用いて、下記測定条件にて分光反射率を測定し、L*a*b*を求めた。
(測定条件)
受光光学系の種類:SCI(正反射光込み)
測定波長範囲:360nm-740nm
光源:D65
測定径 MAV:φ8mm
 また、色差(ΔE)は下式で算出した。
ΔE=〔(ΔL*)^2+(Δa*)^2+(Δb*)^2〕^(1/2)
(1) Thickness Measured using a digital gauge (manufactured by Ozaki Seisakusho Co., Ltd., product name "PEACOCK").
(2) Single-unit transmittance and degree of polarization of the stator and design film The single-unit transmittance of the splitter and design film was measured using an ultraviolet-visible near-infrared spectrophotometer (V-7100 manufactured by JASCO Corporation). Ts, parallel transmittance Tp, and orthogonal transmittance Tc were defined as Ts, Tp, and Tc, respectively. These Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor. From the obtained Tp and Tc, the degree of polarization was determined using the following formula.
Degree of polarization (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
(3) Transmittance of films (layers) other than polarizing elements and design films Wavelengths from 380 nm when measured using an ultraviolet-visible near-infrared spectrophotometer (U-4100 or UH-4150 manufactured by Hitachi High-Tech Science Co., Ltd.) The single transmittance Ts at 780 nm was defined as the transmittance. This transmittance is a Y value measured by a double field of view (C light source) of JIS Z8701 and corrected for luminosity factor.
(4) Measurement of color difference ΔE * ab A black PET film (Toray's "Lumirror X30") with a thickness of 50 μm, in which a black material is kneaded through an optical adhesive to prevent stray light, is attached to the side opposite to the measurement surface of the sample. After that, the spectral reflectance was measured under the following measurement conditions using a spectrocolorimeter (CM-2600d, manufactured by Konica Minolta) to determine L * a * b *.
(Measurement condition)
Type of light-receiving optical system: SCI (including specularly reflected light)
Measurement wavelength range: 360nm-740nm
Illuminant: D65
Measurement diameter MAV: φ8 mm
The color difference (ΔE) was calculated by the following formula.
ΔE = [(ΔL *) ^ 2 + (Δa *) ^ 2 + (Δb *) ^ 2] ^ (1/2)
[作製例A:ヨウ素系偏光子]
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/ヨウ素系偏光子の構成を有する積層体を得た。
 上記で得られた偏光子の表面(樹脂基材とは反対側の面)に、保護層としてラクトン環構造を有するアクリル系樹脂フィルム(厚み:40μm)を、紫外線硬化型接着剤を介して貼り合せた。次いで、樹脂基材を剥離し、ヨウ素系偏光子/保護層の構成を有する偏光板Aを得た。当該偏光板A(実質的には、ヨウ素系偏光子)の単体透過率は42.4%、偏光度は99.999%であった。
[Production Example A: Iodine-based polarizing element]
As the thermoplastic resin base material, an amorphous isophthal copolymerized polyethylene terephthalate film (thickness: 100 μm) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm, and a laminate was prepared.
The obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizing element finally obtained is charged. It was immersed for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) became a desired value (staining treatment).
Then, it was immersed in a cross-linked bath having a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, a splitter having a thickness of about 5 μm was formed on the resin substrate, and a laminate having a resin substrate / iodine-based polarizing element was obtained.
An acrylic resin film (thickness: 40 μm) having a lactone ring structure as a protective layer is attached to the surface of the polarizing element obtained above (the surface opposite to the resin base material) via an ultraviolet curable adhesive. I matched it. Next, the resin substrate was peeled off to obtain a polarizing plate A having an iodine-based polarizing element / protective layer. The simple substance transmittance of the polarizing plate A (substantially an iodine-based polarizing element) was 42.4%, and the degree of polarization was 99.99%.
[作製例B-1:赤色偏光子]
 水100重量部に対して、二色性色素として、Direct Red 81(東京化成工業社製)4部をヨウ素の代わりに染色浴に添加したこと以外は作製例Aと同様にして、赤色偏光子(実質的には、赤色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は44.4%、偏光度は58.6%であった。
[Production Example B-1: Red Polarizer]
Red polarizing element in the same manner as in Production Example A, except that 4 parts of Direct Red 81 (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the dyeing bath instead of iodine with respect to 100 parts by weight of water. (Substantially, a polarizing plate having a red polarizing element / protective layer configuration) was obtained. The simple substance transmittance of the substituent was 44.4%, and the degree of polarization was 58.6%.
[製造例B-2:青色偏光子の作製]
 二色性色素として、Direct Blue 1(東京化成工業社製)4部を用いたこと以外は作製例B-1と同様にして、青色偏光子(実質的には、青色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は42.1%、偏光度は68.9%であった。
[Manufacturing Example B-2: Preparation of Blue Polarizer]
Similar to Production Example B-1 except that 4 parts of Direct Blue 1 (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as the dichroic dye, the blue polarizing element (substantially, the blue polarizing element / protective layer). A polarizing plate having a structure) was obtained. The simple substance transmittance of the substituent was 42.1%, and the degree of polarization was 68.9%.
[製造例B-3:黄色偏光子の作製]
 二色性色素として、Direct Yellow 4(東京化成工業社製)4部を用いたこと以外は作製例B-1と同様にして、黄色偏光子(実質的には、黄色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は79.9%、偏光度は17.9%であった。
[Manufacturing Example B-3: Preparation of Yellow Polarizer]
Similar to Production Example B-1 except that 4 parts of Direct Yellow 4 (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as the dichroic dye, the yellow polarizing element (substantially, the yellow polarizing element / protective layer). A polarizing plate having a structure) was obtained. The simple substance transmittance of the substituent was 79.9%, and the degree of polarization was 17.9%.
[製造例B-4:緑色偏光子の作製]
 二色性色素として、Direct Blue 1(東京化成社製)2部とDirect Yellow 4(東京化成社製)2部を用いたこと以外は作製例B-1と同様にして、緑色偏光子(実質的には、緑色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は60.3%、偏光度は42.9%であった。
[Manufacturing Example B-4: Preparation of Green Polarizer]
Similar to Production Example B-1, the green polarizing element (substantially) was used as the dichroic dye, except that two parts of Direct Blue 1 (manufactured by Tokyo Kasei Co., Ltd.) and two parts of Direct Yellow 4 (manufactured by Tokyo Kasei Co., Ltd.) were used. Specifically, a polarizing plate having a green polarizing element / protective layer configuration) was obtained. The simple substance transmittance of the substituent was 60.3%, and the degree of polarization was 42.9%.
[製造例B-5:二色偏光子の作製]
 TACフィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)上に光学粘着剤を介して作製例B-1で作製した赤色偏光子と製造例B-2で作製した青色偏光子を切り出した後に切り出し面が接するように(結果として、互いの吸収軸方向が一致するように)並べて貼合することにより、右半分が赤色であり、左半分が青色である二色偏光子(実質的には、二色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の赤色部分の単体透過率は44.4%、偏光度は58.6%であり、青色部分の単体透過率は42.1%、偏光度は68.9%であった。
[Manufacturing Example B-5: Fabrication of Bicolor Polarizer]
On a TAC film (manufactured by Fuji Film Co., Ltd., product name "TG60UL", thickness: 60 μm), a red polarizing element produced in Production Example B-1 and a blue polarizing element produced in Production Example B-2 were placed on a TAC film (thickness: 60 μm) via an optical pressure-sensitive adhesive. By arranging and pasting them side by side so that the cutout surfaces are in contact with each other after cutting out (as a result, the absorption axis directions of each other match), the right half is red and the left half is blue. Specifically, a polarizing plate having a two-color splitter / protective layer configuration) was obtained. The single transmittance of the red portion of the polarizing element was 44.4% and the degree of polarization was 58.6%, and the single transmittance of the blue portion was 42.1% and the degree of polarization was 68.9%.
[製造例C:赤色粘着剤層の作製]
1.粘着剤組成物の調製
 2-エチルヘキシルアクリレート(2EHA)、NVP、ヒドロキシエチルアクリレート(HEA)を78/18/4の重量比で含むモノマー混合物100部を、光重合開始剤としての商品名:イルガキュア651(チバスペシャルティケミカルズ社製)0.035部および商品名:イルガキュア184(チバスペシャルティケミカルズ社製)0.035部ととともに4つ口フラスコに投入し、窒素雰囲気下で粘度(BH粘度計、No.5ローター、10rpm、測定温度30℃)が約15Pa・sになるまで紫外線を照射して光重合させることにより、上記モノマー混合物の部分重合物を含むモノマーシロップを調製した。
 このモノマーシロップ100部に、ヒドロキシエチルアクリレート(HEA)17.6部、アクリル系オリゴマー5.9部、1,6-ヘキサンジオールジアクリレート(HDDA)0.088部、シランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(商品名:KBM-403、信越化学工業社製)0.35部および分散剤として味の素ファインテクノ社製アジスパーPB821、顔料として2,9-Dimethylquinolino[2,3-b]acridine-7,14(5H,12H)-dione(BLD Pharmatech Ltd.社製)を0.05質量部配合して、赤色粘着剤組成物を調製した。
[Manufacturing Example C: Preparation of Red Adhesive Layer]
1. 1. Preparation of Adhesive Composition 100 parts of a monomer mixture containing 2-ethylhexyl acrylate (2EHA), NVP, and hydroxyethyl acrylate (HEA) in a weight ratio of 78/18/4 as a photopolymerization initiator is used as a trade name: Irgacure 651. Put it into a four-necked flask together with 0.035 parts (manufactured by Ciba Specialty Chemicals) and 0.035 parts of trade name: Irgacure 184 (manufactured by Ciba Specialty Chemicals). A monomer syrup containing a partial polymer of the above-mentioned monomer mixture was prepared by irradiating with ultraviolet rays until the temperature (5 rotors, 10 rpm, measurement temperature: 30 ° C.) reached about 15 Pa · s and photopolymerizing.
In 100 parts of this monomer syrup, 17.6 parts of hydroxyethyl acrylate (HEA), 5.9 parts of acrylic oligomer, 0.088 part of 1,6-hexanediol diacrylate (HDDA), and 3-glyceride as a silane coupling agent. Sidoxypropyltrimethoxysilane (trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.35 part, Ajinomoto Fine Techno Co., Ltd. Azisper PB821 as a dispersant, 2,9-Dimethylquinolino [2,3-b] as a pigment A red pressure-sensitive adhesive composition was prepared by blending 0.05 parts by mass of aryline-7,14 (5H, 12H) -dione (manufactured by BLD Phasetech Ltd.).
 なお、上記アクリル系オリゴマーとしては、以下の方法で合成したものを使用した。
 トルエン100部、ジシクロペンタニルメタクリレート(DCPMA)(商品名:FA-513M、日立化成工業社製)60部、メチルメタクリレート(MMA)40部、および連鎖移動剤としてα-チオグリセロール3.5部を4つ口フラスコに投入した。そして、70℃にて窒素雰囲気下で1時間攪拌した後、熱重合開始剤としてAIBN0.2部を投入し、70℃で2時間反応させ、続いて80℃で2時間反応させた。その後、反応液を130℃の温度雰囲気下に投入し、トルエン、連鎖移動剤、および未反応モノマーを乾燥除去することにより、固形状のアクリル系オリゴマーを得た。このアクリル系オリゴマーのTgは144℃であり、Mwは4300であった。
As the acrylic oligomer, one synthesized by the following method was used.
100 parts of toluene, 60 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Kasei Kogyo Co., Ltd.), 40 parts of methyl methacrylate (MMA), and 3.5 parts of α-thioglycerol as a chain transfer agent. Was put into a four-necked flask. Then, after stirring at 70 ° C. under a nitrogen atmosphere for 1 hour, 0.2 part of AIBN was added as a thermal polymerization initiator, and the mixture was reacted at 70 ° C. for 2 hours and then at 80 ° C. for 2 hours. Then, the reaction solution was put into a temperature atmosphere of 130 ° C., and toluene, a chain transfer agent, and an unreacted monomer were dried and removed to obtain a solid acrylic oligomer. The Tg of this acrylic oligomer was 144 ° C. and the Mw was 4300.
2.粘着剤層の作製
 ポリエステルフィルムの片面が剥離面となっている厚み38μmの剥離フィルムR1(三菱樹脂社製、MRF#38)に、上記で得た赤色粘着剤組成物を塗布し、ポリエステルフィルムの片面が剥離面となっている厚み38μmの剥離フィルムR2(三菱樹脂社製、MRE#38)を被せて空気を遮断し、紫外線を照射して硬化させることにより、厚み50μm、単体透過率19.3%、偏光度0%の赤色粘着剤シート(赤色粘着剤層)を形成した。
2. 2. Preparation of Adhesive Layer The red adhesive composition obtained above was applied to a release film R1 (MRF # 38, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm in which one side of the polyester film was a release surface, and the polyester film was formed. A release film R2 (MRE # 38 manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm, one of which is a release surface, is covered to block air, and the film is cured by irradiating with ultraviolet rays to obtain a thickness of 50 μm and a single permeability of 19. A red pressure-sensitive adhesive sheet (red pressure-sensitive adhesive layer) having a degree of polarization of 3% and a degree of polarization of 0% was formed.
[作製例D:位相差フィルム]
 逆分散の波長依存性を示す市販の位相差フィルム(帝人社製、商品名「ピュアエースWR」、厚み50μm)を用いた。この位相差フィルムの面内位相差Re(550)は147nmであり、Re(450)/Re(550)は0.89であった。
[Production Example D: Phase Difference Film]
A commercially available retardation film (manufactured by Teijin Corporation, trade name "Pure Ace WR", thickness 50 μm) showing wavelength dependence of inverse dispersion was used. The in-plane retardation Re (550) of this retardation film was 147 nm, and Re (450) / Re (550) was 0.89.
[実施例1]
 片面に粘着剤層が設けられている市販のスモークフィルム(Braintec社製、製品名「カーフィルム プロ・スモーク50 紫外線カット99%」、透過率43.9%)に当該粘着剤層を介してハーフミラー(厚み50μmのPETフィルム表面に厚み13nmのアルミニウム蒸着膜を形成した金属蒸着フィルム、透過率:11%)を貼り合わせて、[第1の半透性光吸収層/半透過性光反射層]の構成を有する意匠性フィルム1を得た。このとき、PETフィルム面がスモークフィルムと対向するようにスモークフィルムとハーフミラーとを貼り合わせた。
[Example 1]
A commercially available smoke film having an adhesive layer on one side (manufactured by Braintec, product name "Car Film Pro Smoke 50 UV Cut 99%", transmittance 43.9%) is halved through the adhesive layer. A mirror (a metal-deposited film in which an aluminum vapor-deposited film having a thickness of 13 nm is formed on the surface of a PET film having a thickness of 50 μm, transmittance: 11%) is attached to the [first semi-transparent light absorbing layer / semi-transmissive light reflecting layer]. ], A designable film 1 having the constitution of] was obtained. At this time, the smoke film and the half mirror were bonded so that the PET film surface faced the smoke film.
[実施例2]
 片面に粘着剤層が設けられている市販のスモークフィルム(Braintec社製、製品名「カーフィルム プロ・スモーク50 紫外線カット99%」、透過率43.9%)に当該粘着剤層を介して反射型偏光子(日東電工社製、製品名「APCF」、単体透過率:47%)を貼り合わせて、[第1の半透性光吸収層/半透過性光反射層]の構成を有する意匠性フィルム2を得た。
[Example 2]
Reflected through the adhesive layer on a commercially available smoke film (manufactured by Paintec, product name "Car Film Pro Smoke 50 UV Cut 99%", transmittance 43.9%) provided with an adhesive layer on one side. A design having a structure of [first semi-transparent light absorbing layer / semi-transmissive light reflecting layer] by laminating a type polarizing element (manufactured by Nitto Denko Co., Ltd., product name "APCF", single transmittance: 47%). Sex film 2 was obtained.
[実施例3]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のハーフミラー(KTJ社製のマジックミラー、製品名「窓用フィルム 窓断熱シート ガラス飛散防止用品 マジックミラーフィルム 目隠しシート 建築建物ガラスフィルム めかくしシート窓フィルム 紫外線カット ガラス破片飛散防止フィルム(60cm×200cm、シルバー)」、透過率31.3%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層]の構成を有する意匠性フィルム3を得た。
[Example 3]
A commercially available half mirror (Magic mirror manufactured by KTJ), product name "Film window for window", is placed on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). Insulation sheet Glass shatterproof supplies Magic mirror film Blindfold sheet Building building glass film Mekaku sheet Window film UV cut glass shatterproof film (60 cm x 200 cm, silver) ", transmission rate 31.3%) A designable film 3 having the structure of [1 absorption type polarizing element / semi-transmissive light reflecting layer] was obtained.
[実施例4]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介してハーフミラー(厚み50μmのPETフィルム表面に厚み13nmのアルミニウム蒸着膜を形成した金属蒸着フィルム、透過率:11%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層]の構成を有する意匠性フィルム4を得た。このとき、PETフィルム面がヨウ素系偏光子と対向するように偏光板Aとハーフミラーとを貼り合わせた。
[Example 4]
A half mirror (a PET film having a thickness of 50 μm and an aluminum vapor-deposited film having a thickness of 13 nm was formed on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A metal vapor-deposited film (transmittance: 11%) was laminated to obtain a designable film 4 having a structure of [first absorbent polarizing element / semi-transmissive light reflecting layer]. At this time, the polarizing plate A and the half mirror were bonded so that the PET film surface faced the iodine-based splitter.
[実施例5]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介してハーフミラー(東レ社製、製品名「ピカサス」、厚み100μm、透過率50%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層]の構成を有する意匠性フィルム5を得た。
[Example 5]
A half mirror (manufactured by Toray Co., Ltd., product name "Picassus", thickness 100 μm, transmittance 50) is placed on the surface of the iodine-based splitter of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). %) Are laminated to obtain a designable film 5 having a configuration of [first absorbent polarizing element / semi-transmissive light reflecting layer].
[実施例6]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して反射型偏光子(日東電工社製、製品名「APCF」、単体透過率:47%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層]の構成を有する意匠性フィルム6を得た。このとき、反射型偏光子の透過軸とヨウ素系偏光子の透過軸とが平行となるように貼り合わせた。
[Example 6]
Reflective polarizing element (manufactured by Nitto Denko Co., Ltd., product name "APCF", single transmittance) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). : 47%) were laminated to obtain a designable film 6 having a structure of [first absorbent polarizing element / semi-transmissive light reflecting layer]. At this time, the transmission axis of the reflective polarizing element and the transmission axis of the iodine-based polarizing element were bonded so as to be parallel to each other.
[実施例7]
 片面に粘着剤層が設けられている市販のスモークフィルム(Braintec社製、製品名「カーフィルム プロ・スモーク50 紫外線カット99%」、透過率43.9%)に当該粘着剤層を介して市販のハーフミラー(KTJ社製のマジックミラー、製品名「窓用フィルム 窓断熱シート ガラス飛散防止用品 マジックミラーフィルム 目隠しシート 建築建物ガラスフィルム めかくしシート窓フィルム 紫外線カット ガラス破片飛散防止フィルム(60cm×200cm, シルバー)」、透過率50%)を貼り合わせた。得られた積層体のハーフミラー表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で赤色を印刷して得た赤色樹脂フィルム(透過率36.1%)を貼り合わせて、[第1の半透性光吸収層/半透過性光反射層/第2の半透性光吸収層]の構成を有する意匠性フィルム7を得た。
[Example 7]
Commercially available smoke film (manufactured by Braintec, product name "Car Film Pro Smoke 50 UV Cut 99%", transmission rate 43.9%) having an adhesive layer on one side is commercially available via the adhesive layer. Half mirror (Magic mirror made by KTJ, product name "Window film Window insulation sheet Glass shatterproof supplies Magic mirror film Blindfold sheet Building building glass film Mekaku sheet Window film UV cut glass fragment shatterproof film (60 cm x 200 cm, Silver) ”and 50% transmission rate) were pasted together. Obtained by printing red on the surface of the half mirror of the obtained laminate with an EPSON inkjet printer (product name "PX-105") on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A design having a structure of [first semi-transparent light absorbing layer / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer] by laminating a red resin film (transmittance 36.1%). A sex film 7 was obtained.
[実施例8]
 意匠性フィルム2の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で赤色を印刷して得た赤色樹脂フィルム(透過率36.1%)を貼り合わせて、[第1の半透性光吸収層/半透過性光反射層/第2の半透性光吸収層]の構成を有する意匠性フィルム8を得た。
[Example 8]
On the surface of the reflective polarizing element of the design film 2, red is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) with an EPSON inkjet printer (product name “PX-105”). The obtained red resin film (transmittance 36.1%) is bonded to each other to have a structure of [first semi-transparent light absorbing layer / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. A design film 8 was obtained.
[実施例9]
 意匠性フィルム3のハーフミラー表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で赤色を印刷して得た赤色樹脂フィルム(透過率36.1%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の半透性光吸収層]の構成を有する意匠性フィルム9を得た。
[Example 9]
It was obtained by printing red on the surface of the half mirror of the design film 3 with an inkjet printer (product name "PX-105") manufactured by EPSON on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A design film 9 having a structure of [first absorbent polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer] by laminating a red resin film (transmittance 36.1%). Got
[実施例10]
 意匠性フィルム2の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-1で得られた赤色偏光子を貼り合わせて、[第1の半透性光吸収層/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム10を得た。このとき、反射型偏光子の透過軸と赤色偏光子の透過軸とが平行となるように貼り合わせた。
[Example 10]
The red polarizing element obtained in Production Example B-1 was attached to the surface of the reflective polarizing element of the design film 2 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A design film 10 having a structure of an absorbent layer / a semi-transmissive light reflecting layer / a second absorbent polarizing element] was obtained. At this time, the transmission axis of the reflective polarizing element and the transmission axis of the red polarizing element were bonded so as to be parallel to each other.
[実施例11]
 意匠性フィルム6の反射型偏光子表面に、作製例Cで得られた赤色粘着剤層を転写して、[第1の吸収型偏光子/半透過性光反射層/第2の半透過性光吸収層]の構成を有する意匠性フィルム11を得た。
[Example 11]
The red pressure-sensitive adhesive layer obtained in Production Example C was transferred to the surface of the reflective classifier of the design film 6 to [first absorbent classifier / semi-transmissive light-reflecting layer / second semi-transmissive layer]. A design film 11 having a structure of [light absorption layer] was obtained.
[実施例12]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で赤色を印刷して得た赤色樹脂フィルム(透過率36.1%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の半透性光吸収層]の構成を有する意匠性フィルム12を得た。
[Example 12]
On the surface of the reflective polarizing element of the design film 6, red is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) with an EPSON inkjet printer (product name “PX-105”). The obtained red resin film (transmittance 36.1%) is bonded to each other to have a design having a structure of [first absorption type polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. Film 12 was obtained.
[実施例13]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で青色を印刷して得た青色樹脂フィルム(透過率27.9%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の半透性光吸収層]の構成を有する意匠性フィルム13を得た。
[Example 13]
On the surface of the reflective polarizing element of the design film 6, blue is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) using an EPSON inkjet printer (product name “PX-105”). The obtained blue resin film (transmittance 27.9%) is bonded to each other, and the design has a structure of [first absorption type polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. Film 13 was obtained.
[実施例14]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で黄色を印刷して得た黄色樹脂フィルム(透過率78.3%)を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の半透性光吸収層]の構成を有する意匠性フィルム14を得た。
[Example 14]
On the surface of the reflective polarizing element of the design film 6, yellow is printed on a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) using an EPSON inkjet printer (product name “PX-105”). The obtained yellow resin film (transmittance 78.3%) is bonded to each other, and the design has a structure of [first absorption type polarizing element / semi-transmissive light reflecting layer / second semi-transparent light absorbing layer]. Film 14 was obtained.
[実施例15]
 意匠性フィルム4のハーフミラー表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-1で得られた赤色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム15を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 15]
The red polarizing element obtained in Production Example B-1 was bonded to the surface of the half mirror of the design film 4 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / half A designable film 15 having a structure of a transmissive light reflecting layer / a second absorbent polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例16]
 意匠性フィルム5のハーフミラー表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-1で得られた赤色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム16を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 16]
The red polarizing element obtained in Production Example B-1 was bonded to the surface of the half mirror of the design film 5 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / half A designable film 16 having a structure of a transmissive light reflecting layer / a second absorbent polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例17]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-1で得られた赤色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム17を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 17]
The red polarizing element obtained in Production Example B-1 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [the first absorption type polarizing element was attached. A designable film 17 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例18]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-2で得られた青色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム18を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 18]
The blue polarizing element obtained in Production Example B-2 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [the first absorption type polarizing element was attached. A designable film 18 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例19]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-3で得られた黄色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム19を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 19]
The yellow polarizing element obtained in Production Example B-3 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [the first absorption type polarizing element was attached. A designable film 19 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例20]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-4で得られた緑色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム20を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 20]
The green polarizing element obtained in Production Example B-4 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [the first absorption type polarizing element was attached. A designable film 20 having a structure of / semi-transmissive light reflecting layer / second absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例21]
 意匠性フィルム6の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-5で得られた二色偏光子を貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子]の構成を有する意匠性フィルム21を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Example 21]
The two-color polarizing element obtained in Production Example B-5 was bonded to the surface of the reflective polarizing element of the design film 6 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [the first absorption-type polarizing element]. A design film 21 having a configuration of [child / semi-transmissive light reflecting layer / second absorbent type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[実施例22]
 意匠性フィルム17の赤色偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Dで得られた位相差フィルムを貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子/位相差層]の構成を有する意匠性フィルム22を得た。このとき、位相差フィルムの遅相軸方向が第1の吸収型偏光子の透過軸方向に対して時計回りに45°の角度をなすように貼り合わせた。
[Example 22]
The retardation film obtained in Production Example D was bonded to the surface of the red polarizing element of the design film 17 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / semi-transmissive]. A designable film 22 having a structure of a sex-reflecting layer / a second absorbent polarizing element / a retardation layer] was obtained. At this time, the retardation films were bonded so that the slow axis direction was at an angle of 45 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
[実施例23]
 意匠性フィルム18の青色偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Dで得られた位相差フィルムを貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子/位相差層]の構成を有する意匠性フィルム23を得た。このとき、位相差フィルムの遅相軸方向が第1の吸収型偏光子の透過軸方向に対して時計回りに45°の角度をなすように貼り合わせた。
[Example 23]
The retardation film obtained in Production Example D was bonded to the surface of the blue polarizing element of the design film 18 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / semi-transmissive]. A designable film 23 having a structure of a sex-reflecting layer / a second absorbent polarizing element / a retardation layer] was obtained. At this time, the retardation films were bonded so that the slow axis direction was at an angle of 45 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
[実施例24]
 意匠性フィルム19の黄色偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Dで得られた位相差フィルムを貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子/位相差層]の構成を有する意匠性フィルム24を得た。このとき、位相差フィルムの遅相軸方向が第1の吸収型偏光子の透過軸方向に対して時計回りに45°の角度をなすように貼り合わせた。
[Example 24]
The retardation film obtained in Production Example D was bonded to the surface of the yellow polarizing element of the design film 19 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / semi-transmissive]. A designable film 24 having a structure of a sex-reflecting layer / a second absorbent polarizing element / a retardation layer] was obtained. At this time, the retardation films were bonded so that the slow axis direction was at an angle of 45 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
[実施例25]
 意匠性フィルム17の赤色偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Dで得られた位相差フィルムを貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子/位相差層]の構成を有する意匠性フィルム25を得た。このとき、位相差フィルムの遅相軸方向が第1の吸収型偏光子の透過軸方向に対して時計回りに135°の角度をなすように貼り合わせた。
[Example 25]
The retardation film obtained in Production Example D was bonded to the surface of the red polarizing element of the design film 17 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / semi-transmissive]. A designable film 25 having a structure of a sex-reflecting layer / a second absorbent polarizing element / a retardation layer] was obtained. At this time, the retardation films were bonded so that the slow axis direction was an angle of 135 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
[実施例26]
 意匠性フィルム18の青色偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Dで得られた位相差フィルムを貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子/位相差層]の構成を有する意匠性フィルム26を得た。このとき、位相差フィルムの遅相軸方向が第1の吸収型偏光子の透過軸方向に対して時計回りに135°の角度をなすように貼り合わせた。
[Example 26]
The retardation film obtained in Production Example D was bonded to the surface of the blue polarizing element of the design film 18 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / semi-transmissive]. A designable film 26 having a structure of a sex-reflecting layer / a second absorbent polarizing element / a retardation layer] was obtained. At this time, the retardation films were bonded so that the slow axis direction was an angle of 135 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
[実施例27]
 意匠性フィルム19の黄色偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Dで得られた位相差フィルムを貼り合わせて、[第1の吸収型偏光子/半透過性光反射層/第2の吸収型偏光子/位相差層]の構成を有する意匠性フィルム27を得た。このとき、位相差フィルムの遅相軸方向が第1の吸収型偏光子の透過軸方向に対して時計回りに135°の角度をなすように貼り合わせた。
[Example 27]
The retardation film obtained in Production Example D was bonded to the surface of the yellow polarizing element of the design film 19 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and [1st absorption type polarizing element / semi-transmissive]. A designable film 27 having a structure of a sex-reflecting layer / a second absorbent polarizing element / a retardation layer] was obtained. At this time, the retardation films were bonded so that the slow axis direction was an angle of 135 ° clockwise with respect to the transmission axis direction of the first absorption type polarizing element.
[比較例1]
 片面に粘着剤層が設けられている市販のスモークフィルム(Braintec社製、製品名「カーフィルム プロ・スモーク50 紫外線カット99%」、透過率43.9%)に当該粘着剤層を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で赤色を印刷して得た赤色樹脂フィルム(透過率36.1%)を貼り合わせて、[第1の半透性光吸収層/第2の半透性光吸収層]の構成を有する積層フィルムC1を得た。
[Comparative Example 1]
Commercially available smoke film (manufactured by Braintec, product name "Car Film Pro Smoke 50 UV Cut 99%", transmittance 43.9%) having an adhesive layer on one side is commercially available via the adhesive layer. A red resin film (transmittance 36.1%) obtained by printing red with an EPSON inkjet printer (product name "PX-105") was attached to the OHP film of No. 1 and [1st translucent light]. A laminated film C1 having an absorption layer / second semi-transparent light absorption layer] was obtained.
[比較例2]
 片面に粘着剤層が設けられている市販のスモークフィルム(Braintec社製、製品名「カーフィルム プロ・スモーク50 紫外線カット99%」、透過率43.9%)に当該粘着剤層を介して作製例B-1で得られた赤色偏光子を貼り合わせて、[第1の半透性光吸収層/第2の吸収型偏光子]の構成を有する積層フィルムC2を得た。
[Comparative Example 2]
Manufactured via the adhesive layer on a commercially available smoke film (manufactured by Paintec, product name "Car Film Pro Smoke 50 UV Cut 99%", transmittance 43.9%) provided with an adhesive layer on one side. The red polarizing elements obtained in Example B-1 were bonded together to obtain a laminated film C2 having the configuration of [first semi-transparent light absorbing layer / second absorbing type polarizing element].
[比較例3]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、作製例Cで得られた赤色粘着剤層を転写して、[第1の吸収型偏光子/第2の半透過性光吸収層]の構成を有する積層フィルムC3を得た。
[Comparative Example 3]
The red pressure-sensitive adhesive layer obtained in Production Example C was transferred to the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A, and [1st absorption type polarizing element / second semi-transmissive light] was transferred. A laminated film C3 having a structure of [absorbent layer] was obtained.
[比較例4]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で赤色を印刷して得た赤色樹脂フィルム(透過率36.1%)を貼り合わせて、[第1の吸収型偏光子/第2の半透性光吸収層]の構成を有する積層フィルムC4を得た。
[Comparative Example 4]
An inkjet printer manufactured by EPSON (product name "PX-105") is applied to a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A. A laminated film C4 having a structure of [first absorbent polarizing element / second translucent light absorbing layer] by laminating a red resin film (transmittance 36.1%) obtained by printing red in the above. Got
[比較例5]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で青色を印刷して得た青色樹脂フィルム(透過率27.9%)を貼り合わせて、[第1の吸収型偏光子/第2の半透性光吸収層]の構成を有する積層フィルムC5を得た。
[Comparative Example 5]
An inkjet printer manufactured by EPSON (product name "PX-105") is applied to a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A. A laminated film C5 having a structure of [first absorbent polarizing element / second translucent light absorbing layer] by laminating a blue resin film (transmittance 27.9%) obtained by printing blue in the above. Got
[比較例6]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して市販のOHPフィルムにEPSON社製インクジェットプリンタ(製品名「PX-105」)で黄色を印刷して得た黄色樹脂フィルム(透過率78.3%)を貼り合わせて、[第1の吸収型偏光子/第2の半透性光吸収層]の構成を有する積層フィルムC6を得た。
[Comparative Example 6]
An inkjet printer manufactured by EPSON (product name "PX-105") is applied to a commercially available OHP film via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A. A laminated film C6 having a structure of [first absorbent polarizing element / second translucent light absorbing layer] by laminating a yellow resin film (transmittance 78.3%) obtained by printing yellow in Got
[比較例7]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-1で得られた赤色偏光子を貼り合わせて、[第1の吸収型偏光子/第2の吸収型偏光子]の構成を有する積層フィルムC7を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Comparative Example 7]
The red polarizing element obtained in Production Example B-1 was bonded to the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A laminated film C7 having the configuration of 1 absorption type polarizing element / 2nd absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[比較例8]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-2で得られた青色偏光子を貼り合わせて、[第1の吸収型偏光子/第2の吸収型偏光子]の構成を有する積層フィルムC8を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Comparative Example 8]
The blue polarizing element obtained in Production Example B-2 was bonded to the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A laminated film C8 having the configuration of 1 absorption type polarizing element / 2nd absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
[比較例9]
 作製例Aで得られた偏光板Aのヨウ素系偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例B-3で得られた黄色偏光子を貼り合わせて、[第1の吸収型偏光子/第2の吸収型偏光子]の構成を有する積層フィルムC8を得た。このとき、第1の吸収型偏光子の透過軸方向と第2の吸収型偏光子の透過軸方向とが平行となるように貼り合わせた。
[Comparative Example 9]
The yellow polarizing element obtained in Production Example B-3 was bonded to the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example A via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). A laminated film C8 having the configuration of 1 absorption type polarizing element / 2nd absorption type polarizing element] was obtained. At this time, they were bonded so that the transmission axis direction of the first absorption type polarizing element and the transmission axis direction of the second absorption type polarizing element were parallel to each other.
 上記実施例で得られた意匠性フィルムおよび比較例で得られた積層フィルムの透過率、偏光度およびL*a*b*色空間の値を測定した。結果を各フィルムの構成と併せて表1~表4に示す。 The transmittance, degree of polarization and L * a * b * color space values of the design film obtained in the above example and the laminated film obtained in the comparative example were measured. The results are shown in Tables 1 to 4 together with the composition of each film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表4に示される通り、実施例で得られた意匠性フィルムは、第1の半透過性光吸収層側の主面に対して入射した光に対する反射光のL*a*b*色空間と反対の主面に対して入射した光に対する反射光のL*a*b*色空間とにおける色差ΔE*abが25以上であり、フィルムの両面で互いに異なる意匠を表示することがわかる。一方、比較例で得られた積層フィルムは、当該色差ΔE*abが10未満であり、両面ともほぼ同様の意匠であった。 As shown in Tables 1 to 4, the design film obtained in the examples has L * a * b * of reflected light with respect to the light incident on the main surface on the side of the first semi-transmissive light absorbing layer. It can be seen that the color difference ΔE * ab in the L * a * b * color space of the reflected light with respect to the light incident on the main surface opposite to the color space is 25 or more, and different designs are displayed on both sides of the film. .. On the other hand, the laminated film obtained in the comparative example had a color difference ΔE * ab of less than 10, and had almost the same design on both sides.
[実施例28]
 意匠性フィルム17を眼鏡の右眼用レンズおよび左眼用レンズに、第1の吸収型偏光子の透過軸方向が直交となるように、かつ、第1の吸収型偏光子側が装着者側となるように、アクリル系粘着剤(厚み:23μm)を介して貼り合わせて立体視用眼鏡を得た。得られた立体視用眼鏡を装着して直線偏光方式のテレビに表示される3D映像を観察したところ、不要な色付きが生じることなく、立体的な画像を視認することができた。また、装着者と反対側から当該眼鏡を観察したところ、意匠性フィルムが貼着されたレンズ部分は赤色を呈していた。
[Example 28]
The design film 17 is attached to the right-eye lens and the left-eye lens of the spectacles so that the transmission axis directions of the first absorption-type polarizing element are orthogonal to each other, and the first absorption-type polarizing element side is the wearer side. As such, they were bonded together via an acrylic pressure-sensitive adhesive (thickness: 23 μm) to obtain stereoscopic eyeglasses. When the obtained stereoscopic glasses were attached and the 3D image displayed on the linearly polarized television was observed, the stereoscopic image could be visually recognized without unnecessary coloring. Further, when the spectacles were observed from the side opposite to the wearer, the lens portion to which the design film was attached was red.
[実施例29]
 意匠性フィルム22および25をそれぞれ眼鏡の右眼用レンズおよび左眼用レンズに、第1の吸収型偏光子の透過軸方向が互いに平行となるように(結果として、位相差層の遅相軸方向が互いに直交となるように)、かつ、第1の吸収型偏光子側が装着者側となるように、アクリル系粘着剤(厚み:23μm)を介して貼り合わせて立体視用眼鏡を得た。得られた立体視用眼鏡を装着して円偏光方式のテレビに表示される3D映像を観察したところ、不要な色付きが生じることなく、立体的な画像を視認することができた。また、装着者と反対側から当該眼鏡を観察したところ、意匠性フィルムが貼着されたレンズ部分は赤色を呈していた。
[Example 29]
The design films 22 and 25 are attached to the right eye lens and the left eye lens of the spectacles, respectively, so that the transmission axis directions of the first absorption type polarizing element are parallel to each other (as a result, the slow axis of the retardation layer). Stereoscopic eyeglasses were obtained by laminating them via an acrylic adhesive (thickness: 23 μm) so that the directions were orthogonal to each other) and the first absorption type polarizing element side was the wearer side. .. When the obtained stereoscopic glasses were attached and the 3D image displayed on the circularly polarized television was observed, the stereoscopic image could be visually recognized without unnecessary coloring. Further, when the spectacles were observed from the side opposite to the wearer, the lens portion to which the design film was attached was red.
 本発明の意匠性フィルムは、眼鏡(ゴーグルを含む)、窓ガラスやパーテーション等に付される表示体等として好適に用いられ得る。 The design film of the present invention can be suitably used as a display body attached to eyeglasses (including goggles), windowpanes, partitions, and the like.
10  第1の半透過性光吸収層
20  半透過性光反射層
30  第2の半透過性光吸収層
40  位相差層
100 意匠性フィルム
10 First semi-transmissive light absorption layer 20 Semi-transmissive light reflection layer 30 Second semi-transmissive light absorption layer 40 Phase difference layer 100 Designable film

Claims (15)

  1.  一方向から入射した光に対する反射光のL*a*b*色空間と反対方向から入射した光に対する反射光のL*a*b*色空間とにおける色差ΔE*abが、10以上である、意匠性フィルム。 The color difference ΔE * ab between the L * a * b * color space of the reflected light for the light incident from one direction and the L * a * b * color space of the reflected light for the light incident from the opposite direction is 10 or more. Design film.
  2.  第1の半透過性光吸収層と半透過性光反射層とを含む、請求項1に記載の意匠性フィルム。 The design film according to claim 1, which includes a first semi-transmissive light absorbing layer and a semi-transmissive light reflecting layer.
  3.  前記半透過性光反射層が、偏光性を有さない、請求項2に記載の意匠性フィルム。 The designable film according to claim 2, wherein the semi-transmissive light reflecting layer does not have polarization property.
  4.  前記第1の半透過性光吸収層が、第1の吸収型偏光子である、請求項2または3に記載の意匠性フィルム。 The design film according to claim 2 or 3, wherein the first semi-transmissive light absorption layer is a first absorption type polarizing element.
  5.  前記第1の半透過性光吸収層が、第1の吸収型偏光子であり、
     前記半透過性光反射層が、反射型偏光子であり、
     該反射型偏光子の透過軸方向が、該第1の吸収型偏光子の透過軸方向と実質的に平行である、請求項2に記載の意匠性フィルム。
    The first semi-transmissive light absorption layer is a first absorption type polarizing element.
    The semi-transmissive light reflecting layer is a reflective polarizing element.
    The design film according to claim 2, wherein the transmission axis direction of the reflective polarizing element is substantially parallel to the transmission axis direction of the first absorption type polarizing element.
  6.  前記第1の半透過性光吸収層が、第1の吸収型偏光子であり、
     第2の吸収型偏光子をさらに含み、
     該第1の吸収型偏光子と前記半透過性光反射層と該第2の吸収型偏光子とが、該第1の吸収型偏光子の透過軸方向と該第2の吸収型偏光子の透過軸方向とが実質的に平行となるように、この順に積層されている、請求項2に記載の意匠性フィルム。
    The first semi-transmissive light absorption layer is a first absorption type polarizing element.
    Further including a second absorbent polarizing element,
    The first absorption-type polarizing element, the semi-transmissive light reflecting layer, and the second absorption-type polarizing element are used in the transmission axis direction of the first absorption-type polarizing element and the second absorption-type polarizing element. The design film according to claim 2, which is laminated in this order so as to be substantially parallel to the transmission axis direction.
  7.  前記第2の吸収型偏光子が、面内で不均一な透過率を有する、請求項6に記載の意匠性フィルム。 The design film according to claim 6, wherein the second absorption type polarizing element has a non-uniform transmittance in the plane.
  8.  前記第2の吸収型偏光子が、面内で不均一な色相を有する、請求項6または7に記載の意匠性フィルム。 The design film according to claim 6 or 7, wherein the second absorption type polarizing element has a non-uniform hue in the plane.
  9.  透過率が1%~95%であり、偏光度が30%以上である、請求項1から8のいずれかに記載の意匠性フィルム。 The design film according to any one of claims 1 to 8, which has a transmittance of 1% to 95% and a degree of polarization of 30% or more.
  10.  前記第1の半透過性光吸収層が、第1の吸収型偏光子であり、
     位相差層をさらに含み、
     該第1の吸収型偏光子と前記半透過性光反射層と該位相差層とが、該第1の吸収型偏光子の吸収軸方向と該位相差層の遅相軸方向とのなす角度が35°~55°または125°~145°となるように、この順に積層されている、請求項2に記載の意匠性フィルム。
    The first semi-transmissive light absorption layer is a first absorption type polarizing element.
    Including a retardation layer
    The angle between the first absorption type polarizing element, the semi-transmissive light reflecting layer, and the retardation layer between the absorption axis direction of the first absorption type polarizing element and the slow axis direction of the retardation layer. The design film according to claim 2, wherein the films are laminated in this order so that the temperature is 35 ° to 55 ° or 125 ° to 145 °.
  11.  前記第1の半透過性光吸収層が、第1の吸収型偏光子であり、
     第2の吸収型偏光子および位相差層をさらに含み、
     該第1の吸収型偏光子、前記半透過性光反射層、該第2の吸収型偏光子および該位相差層が、この順に積層され、ここで、該第1の吸収型偏光子の透過軸方向と該第2の吸収型偏光子の透過軸方向とが実質的に平行となるように、かつ、該第1の吸収型偏光子の吸収軸方向と該位相差層の遅相軸方向とのなす角度が35°~55°または125°~145°となるように、積層されている、請求項2に記載の意匠性フィルム。
    The first semi-transmissive light absorption layer is a first absorption type polarizing element.
    It further includes a second absorbent polarizing element and a retardation layer.
    The first absorption type polarizing element, the semi-transmissive light reflecting layer, the second absorption type polarizing element and the retardation layer are laminated in this order, and here, the transmission of the first absorption type polarizing element is performed. The axial direction and the transmission axis direction of the second absorption type polarizing element are substantially parallel to each other, and the absorption axis direction of the first absorption type polarizing element and the slow axis direction of the retardation layer. The designable film according to claim 2, which is laminated so that the angle formed with the light is 35 ° to 55 ° or 125 ° to 145 °.
  12.  前記位相差層が実質的に1/4波長板として機能する、請求項10または11に記載の意匠性フィルム。 The design film according to claim 10 or 11, wherein the retardation layer substantially functions as a 1/4 wave plate.
  13.  請求項1から12のいずれかに記載の意匠性フィルムを含む、意匠性成形体。 A design molded product containing the design film according to any one of claims 1 to 12.
  14.  眼鏡である、請求項13に記載の意匠性成形体。 The design molded body according to claim 13, which is eyeglasses.
  15.  平板である、請求項13に記載の意匠性成形体。
     
    The designable molded product according to claim 13, which is a flat plate.
PCT/JP2021/029592 2020-08-21 2021-08-11 Designed film and designed molded body WO2022039078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140360A JP2022035801A (en) 2020-08-21 2020-08-21 Design film and design molded body
JP2020-140360 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022039078A1 true WO2022039078A1 (en) 2022-02-24

Family

ID=80322815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029592 WO2022039078A1 (en) 2020-08-21 2021-08-11 Designed film and designed molded body

Country Status (3)

Country Link
JP (1) JP2022035801A (en)
TW (1) TW202212116A (en)
WO (1) WO2022039078A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022168709A1 (en) * 2021-02-05 2022-08-11
WO2024090308A1 (en) * 2022-10-26 2024-05-02 富士フイルム株式会社 Decorative sheet, display device, and interior decoration for automobile interior

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152305A (en) * 1997-08-07 1999-02-26 Etsumi Kogaku:Kk Fashion lens
JP2002154177A (en) * 2000-11-20 2002-05-28 Kanebo Ltd Semi-transmittable laminated sheet
JP2007022907A (en) * 2005-06-13 2007-02-01 Sekisui Chem Co Ltd Laminated glass
JP2011197629A (en) * 2010-02-23 2011-10-06 Yamamoto Kogaku Co Ltd Circularly polarizing plate, circularly polarizing lens and circularly polarizing glasses
JP2012032527A (en) * 2010-07-29 2012-02-16 Fujifilm Corp Polarized glasses
WO2013051489A1 (en) * 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 Polarized mirrored glasses lens
JP2013200452A (en) * 2012-03-26 2013-10-03 Seiko Instruments Inc Polarizing lens and head-mounted display using the same
JP2014163967A (en) * 2013-02-21 2014-09-08 Sumitomo Realty & Development Co Ltd Window glass, and architectural structure using window glasses of different colors
WO2017175829A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same
WO2020153324A1 (en) * 2019-01-21 2020-07-30 住友ベークライト株式会社 Optical sheet and optical component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152305A (en) * 1997-08-07 1999-02-26 Etsumi Kogaku:Kk Fashion lens
JP2002154177A (en) * 2000-11-20 2002-05-28 Kanebo Ltd Semi-transmittable laminated sheet
JP2007022907A (en) * 2005-06-13 2007-02-01 Sekisui Chem Co Ltd Laminated glass
JP2011197629A (en) * 2010-02-23 2011-10-06 Yamamoto Kogaku Co Ltd Circularly polarizing plate, circularly polarizing lens and circularly polarizing glasses
JP2012032527A (en) * 2010-07-29 2012-02-16 Fujifilm Corp Polarized glasses
WO2013051489A1 (en) * 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 Polarized mirrored glasses lens
JP2013200452A (en) * 2012-03-26 2013-10-03 Seiko Instruments Inc Polarizing lens and head-mounted display using the same
JP2014163967A (en) * 2013-02-21 2014-09-08 Sumitomo Realty & Development Co Ltd Window glass, and architectural structure using window glasses of different colors
WO2017175829A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same
WO2020153324A1 (en) * 2019-01-21 2020-07-30 住友ベークライト株式会社 Optical sheet and optical component

Also Published As

Publication number Publication date
JP2022035801A (en) 2022-03-04
TW202212116A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101772348B1 (en) Liquid crystal display device
WO2022039078A1 (en) Designed film and designed molded body
WO2019058758A1 (en) Optical system and display device
WO2021106743A1 (en) Optical laminate and image display device
KR20190096816A (en) Circular polarizing plate and optical display device
JP2009031474A (en) Liquid crystal display equipped with adhesive layer, and composite polarizing plate set used for the same
TWI226943B (en) Polarizing plate and liquid crystal display using the same
WO2022071060A1 (en) Decorative film and optical device
JPWO2018212347A1 (en) Decorative sheet, optical device, image display device
WO2021106742A1 (en) Optical laminate, optical device, and image display device
WO2021106744A1 (en) Optical laminate and image displaying device
US20030086170A1 (en) Polarizing plate and a liquid crystal display using the same
WO2021182133A1 (en) Polarizer, optical layered product, and image display device
CN111226159B (en) Head-up display device
JP2021105706A (en) Polarizer protective film, polarizing plate, and image display device
JP2021144207A (en) Optical laminate and image display device
JP2021092753A (en) Optical laminate, optical device, and image display device
TW201923418A (en) Head-up display device
WO2023176660A1 (en) Display system and laminated film
CN112534315B (en) Polaroid and display device using same
WO2019093079A1 (en) Head-up display device
CN117957469A (en) Optical laminate and image display device
TW202321742A (en) Optical laminate and image display device
WO2019078192A1 (en) Head-up display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858225

Country of ref document: EP

Kind code of ref document: A1