WO2022038884A1 - Method for finalizing communication path in monitoring system, and monitoring system - Google Patents

Method for finalizing communication path in monitoring system, and monitoring system Download PDF

Info

Publication number
WO2022038884A1
WO2022038884A1 PCT/JP2021/023261 JP2021023261W WO2022038884A1 WO 2022038884 A1 WO2022038884 A1 WO 2022038884A1 JP 2021023261 W JP2021023261 W JP 2021023261W WO 2022038884 A1 WO2022038884 A1 WO 2022038884A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
devices
level
communication
wireless communication
Prior art date
Application number
PCT/JP2021/023261
Other languages
French (fr)
Japanese (ja)
Inventor
倩 梁
泰雅 山田
裕太 坂巻
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2022038884A1 publication Critical patent/WO2022038884A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • This disclosure relates to a method of determining a communication path in a monitoring system and a monitoring system.
  • a plurality of rotary machines used in the manufacturing equipment are installed in various places in the equipment.
  • a plurality of sensors are mounted on each rotating machine, and the sensor is used.
  • the detection results will be collected, since the total number of sensors existing in the equipment is extremely large, connecting these sensors to a control system by wire is a complicated task, and the number of steps required to install a rotating machine is required. May lead to an increase in.
  • an access point or (including a wireless router) capable of adding a wireless communication function to a plurality of sensors installed in the rotating machine and wirelessly communicating with the sensors at appropriate locations in the facility.
  • a higher-level communication device such as a gateway (hereinafter collectively referred to as "upper-level device")
  • the host device is installed at a suitable place in the equipment, for example, at predetermined intervals in consideration of the communicable distance thereof, etc., it is located at a distance where the signal transmitted from one sensor can be received.
  • the number of higher-level devices is not limited to one.
  • the plurality of higher-level devices that have received the signal transmit the same information (information on the state amount detected by one sensor) to the management device.
  • the communication load and communication cost may increase unnecessarily.
  • data management of the state quantity of the rotating machine on the management device side may become complicated.
  • the method of determining the communication path in the monitoring system 1 is installed in the rotating machines P1 to Pn, for example, as shown in FIGS. 1 to 3, and described above.
  • the higher-level device With this configuration, based on the wireless status information acquired by the higher-level device, the higher-level device with the best wireless communication status when communicating with one monitoring device and this one monitoring device is set in the communication path. Can be selected as part. As a result, since the communication path of each monitoring device in the monitoring system is uniquely determined, it becomes possible to provide a monitoring system that suppresses an increase in communication load and communication cost when detecting an abnormality.
  • the communication path in the monitoring system 1 according to the first aspect of the present disclosure is determined.
  • the communication state information includes the radio field strength and stability of the radio communication signal.
  • one monitoring device and one higher-level device are selected in consideration of not only the radio wave strength but also the signal stability, and one monitoring device and one higher-level device constituting the communication path. Equipment can be selected accurately.
  • the method for determining the communication path in the monitoring system 1 according to the third aspect of the present disclosure is the method for determining the communication path in the monitoring system 1 according to the first or second aspect of the present disclosure.
  • the plurality of monitoring devices M11 to Mn2 transmit information including the state quantity only to the one higher-level device.
  • the method for determining the communication path in the monitoring system 1 according to the fourth aspect of the present disclosure is the above-mentioned plurality of methods for determining the communication path in the monitoring system 1 according to the first or second aspect of the present disclosure.
  • the management device C capable of communicating with the higher-level devices G1 to Gm or any higher-level device in the plurality of higher-level devices G1 to Gm received the reselection instruction for the selected monitoring device and the higher-level device. At this time, the step of reselecting the one monitoring device and the one higher-level device is further included.
  • the monitoring system 1 is installed in one or more rotary machines P1 to Pn, and the state of the one or more rotary machines P1 to Pn.
  • the plurality of higher-level devices G1 to Gm and the plurality of higher-level devices G1 to Gm including the communication state information acquisition units 25 and 35 for acquiring the communication state information in the wireless communication between the Mn2 and the Mn2.
  • the management device based on the wireless status information acquired by the higher-level device, one monitoring device and one higher-level device having the best wireless communication state when communicating with this one monitoring device. Can be selected as the communication path.
  • the communication path between each monitoring device and the management device in the monitoring system is uniquely determined, it is possible to suppress an increase in communication load and communication cost when detecting an abnormality. Further, the management device does not receive duplicate information, and it becomes easy to manage the data of the state quantity of the rotating machine collected for detecting the abnormality.
  • FIG. 1 is a schematic diagram showing an example of a monitoring system according to an embodiment of the present disclosure.
  • the monitoring system 1 is a manufacturing facility having a predetermined size, for example, a pump device as n (1 ⁇ n) rotating machines used in a factory F. It may be constructed as a system for monitoring P1 to Pn.
  • the monitoring system 1 may include m (1 ⁇ m ⁇ n) higher-level devices G1 to Gm and a management device C in order to monitor the pump devices P1 to Pn.
  • the pump device is exemplified as the rotary machine, but instead of or in addition to the pump device, other rotations such as a compressor, a turbine, a refrigerator, and a cooling tower are performed. Machines can be adopted.
  • the pump devices P1 to Pn can be a horizontal axis single-stage pump installed at an arbitrary position in the factory F, for example, capable of transferring a liquid.
  • the pump devices P1 to Pn mainly include a pump main body 10 having an impeller inside, and an electric motor 11 including a permanent magnet type motor, an induction motor, an SR motor, or the like that rotates the impeller in the pump main body 10. May be.
  • the pump devices P1 to Pn are not limited to the horizontal axis single-stage pump, and may be a pump device having another structure such as a vertical axis multi-stage pump or a submersible pump.
  • One or more monitoring devices M11 to Mn2 are attached to each of the above-mentioned plurality of pump devices P1 to Pn.
  • the monitoring devices M11 to Mn2 those capable of detecting the state amount of the pump devices P1 to Pn to be installed can be adopted.
  • the state quantities of the pump devices P1 to Pn are various parameter information related to the pump devices P1 to Pn, for example, the discharge pressure and the discharge flow rate of the pump body 10, the vibration generated in the pump devices P1 to Pn, and the pump body 10.
  • it may include the temperature of the electric motor 11 or the current value of the electric motor 11.
  • the monitoring devices M11 to Mn2 those equipped with various sensor units 14 (see FIG. 2) can be adopted.
  • the sensor unit 14 includes a pressure sensor capable of detecting the discharge pressure of the pump body 10, a flow rate sensor capable of detecting the discharge flow rate of the pump body 10, an acceleration sensor capable of detecting vibrations of the pump devices P1 to Pn, and an electric motor 11. Examples thereof include a temperature sensor capable of detecting the temperature, a current sensor capable of detecting the current of the electric motor 11, and the like, but the present invention is not limited thereto. Further, it is preferable that the one or more monitoring devices M11 to Mn2 have a wireless communication function, and by using the wireless communication function, various information can be transmitted to the host devices G1 to Gm.
  • the host devices G1 to Gm are provided in the factory F at predetermined intervals to receive information transmitted from the monitoring devices M11 to Mn2 attached to the plurality of pump devices P1 to Pn and transmit the information to the management device C.
  • the higher-level devices G1 to Gm may be devices having an access point or gateway function. In the present embodiment, the case where all of the higher-level devices G1 to Gm function as gateways will be described, but it is sufficient that each higher-level device G1 to Gm has at least an access point function. It is not necessary that all of the higher-level devices G1 to Gm are capable of network communication as in the form.
  • the higher-level devices G1 to Gm may be capable of network communication.
  • the arrangement of the higher-level devices G1 to Gm in the factory F takes into consideration the communicable distance of wireless communication between the higher-level devices G1 to Gm and the monitoring devices M11 to Mn2, the formation of dead spots, and the like. Therefore, it is preferable to set them at intervals of, for example, several meters to several tens of meters.
  • the means of wireless communication between the devices G1 to Gm and the monitoring devices M11 to Mn2 are typically international standards (eg, IEEE 802.15.4, IEEE 802.15.1, IEEE 802.15.11a, 11b).
  • the management device C is for collecting and managing the state quantities of (1 or) a plurality of pump devices P1 to Pn in the factory F, and for example, a cloud-based data processing platform can be adopted.
  • This management device C is preferably connected to the network NW, and by acquiring the information transmitted by the host devices G1 to Gm, the state amount of the pump devices P1 to Pn is managed, and the pump devices P1 to Pn are abnormal. Alternatively, it may be able to detect signs of abnormality (hereinafter, these are collectively referred to simply as "abnormality"). An example of the abnormality detection method in the monitoring system according to the present embodiment will be described later.
  • a cloud-based data processing platform is exemplified as the management device C, but the management device C can be used locally with a well-known server computer or higher-level devices G1 to Gm or via a network NW. It is also possible to configure it in the form of a connected centralized monitoring system or the like.
  • the management device C of the monitoring system 1 can be connected to the terminal device TD owned by the administrator AD via the network NW.
  • the terminal device TD a well-known computer, mobile PC, tablet device, or the like can be adopted, and the terminal device TD can realize an input / output operation between the management device C and the administrator AD.
  • the host devices G1 to Gm are installed at predetermined intervals in consideration of the communicable distance and the like as described above.
  • the monitoring devices M11 to Mn2 for example, the monitoring devices M11 to M13 installed in the pump device P1
  • only one higher-level device for example, the higher-level device G1 exists within the communicable distance.
  • communication is possible in a monitoring device (for example, monitoring devices M21 to M22 installed in the pump device P2) installed at an intermediate position between two adjacent higher-level devices (for example, higher-level device G1 and higher-level device G2). There are two superior devices within the distance.
  • the monitoring devices M21 to M22 in which a plurality of higher-level devices exist within the communicable distance in this way, wireless communication is possible with each of the higher-level devices (G1 and G2).
  • the monitoring device transmits information including the state quantity to a plurality of higher-level devices (hereinafter, also referred to as "state quantity information")
  • state quantity information information including the state quantity to a plurality of higher-level devices
  • the same information is communicated multiple times, and the communication load.
  • it may cause an increase in communication cost and complicated data management in the management device C. Therefore, each component in the monitoring system 1 related to the above-mentioned method of determining the communication path in the monitoring system 1 will be described below.
  • FIG. 2 may constitute a communication path of a part of the monitoring system 1 according to the embodiment of the present disclosure, specifically, a monitoring device M21 in which a plurality of higher-level devices G1 and G2 exist within the communicable range thereof. It is a schematic block diagram which shows an example of a part. In the following description, only one monitoring device M21 is described on behalf of the monitoring device, but the monitoring device itself (although the state quantity detected by the sensor unit 14 and the installation position with respect to the pump device are different). The basic configuration may be the same for other monitoring devices as the monitoring device M21.
  • the monitoring device M21 can mainly include a controller 12, a wireless communication unit 13, a sensor unit 14, and a memory 15.
  • the controller 12 may include an arithmetic unit for controlling the entire monitoring device M21.
  • the wireless communication unit 13 is a communication means for realizing wireless communication with a specific higher-level device, and includes a communication device such as an antenna, and the wireless communication units 21 and 31 of the higher-level devices G1 and G2. Two-way communication between them may be possible.
  • the sensor unit 14 may detect one or a plurality of state quantities of the pump device P2 in which the monitoring device M21 is installed.
  • the memory 15 may store a program executed by the controller 12, a state quantity of the pump device P2 detected by the sensor unit 14, a unique address of the monitoring device M21, and the like.
  • the wireless communication unit 13 of the monitoring device M21 described above can transmit predetermined wireless communication signals SG1 and SG2 to the host devices G1 and G2.
  • the predetermined wireless communication signals SG1 and SG2 transmitted here may include at least a unique address as information that can identify the monitoring device M21 that is the source of the signal on the higher-level devices G1 and G2 that received the signal. can.
  • the wireless communication signals SG1 and SG2 include information on the pump device P2 in which the monitoring device M21 is installed, the installation position of the monitoring device M21 with respect to the pump device P2, and the wireless communication signals SG1 and SG2.
  • the radio wave strength at the time of transmission, the state amount detected by the sensor unit 14, and the like can be appropriately included in response to a request from the host devices G1 and G2 or the management device C.
  • the wireless communication signals SG1 and SG2 employ information that includes a unique address as information that can identify the monitoring device M21. However, if the information can identify the monitoring device M21, the unique information is used. It may be information other than the address. Further, the predetermined wireless communication signals SG1 and SG2 may be signals generated for determining a communication path described later, or the monitoring device M21 transmits state quantity information to an arbitrary higher-level device. The signal generated in may be used.
  • the signal transmitted when the communication path is determined is called “wireless communication signal (SG1, SG2)", and the state quantity acquired by each monitoring device M11 to Mn2 after the communication path is determined is called “wireless communication signal (SG1, SG2)”.
  • the signal for transmitting the included state quantity information is called a “state quantity information signal”, and the two are distinguished from each other.
  • two higher-level devices G1 and G2 exist within the communicable range of the monitoring device M21. These two higher-level devices G1 and G2 can function as gateways, and both can have the same configuration.
  • the host devices G1 and G2 mainly include wireless communication units 21 and 31, control units 22 and 32, network interfaces 23 and 33, and memories 24 and 34. It may be there.
  • the wireless communication units 21 and 31 are for realizing wireless communication with at least the monitoring device M21, include a communication device such as an antenna, and at least both with the wireless communication unit 13 of the monitoring device M21. It may be capable of forward communication.
  • the control units 22 and 32 may be arithmetic units for controlling the entire higher-level devices G1 and G2.
  • the network interfaces 23 and 33 may be interface units for connecting to a network NW represented by the Internet.
  • the memories 24 and 34 store programs executed by the control units 22 and 32, state quantity information and communication state information of the pump device P2 received via the wireless communication units 21 and 31. It's okay.
  • the control units 22 and 32 of the host devices G1 and G2 can include the communication status information acquisition units 25 and 35 and the status quantity information acquisition units 26 and 36.
  • the communication status information acquisition units 25 and 35 can be used to acquire wireless status information from the wireless communication signals SG1 and SG2 acquired by the wireless communication units 21 and 31.
  • the wireless state information may be information indicating the communication state of the wireless communication signals SG1 and SG2, and more specifically, includes at least one of the radio wave strength and stability of the wireless communication signals SG1 and SG2, preferably both. May be.
  • the radio wave strength (dBm) of the wireless communication signals SG1 and SG2 can be specified by using a well-known measuring instrument, and the stability of the wireless communication signals SG1 and SG2 is, for example, the radio wave per unit time. It can be specified based on whether or not the normal number of receptions or the variation (or deviation) of the received radio wave intensity is within a certain value.
  • the state quantity information acquisition units 26 and 36 may acquire the state quantity information signals received by the wireless communication units 21 and 31.
  • the state quantity information signal acquired here can be used for abnormality detection of the pump device P2 by being transmitted to the management device C via the network interfaces 23 and 33.
  • the management device C can be provided, for example, in the form of a virtual machine (VM) for configuring a cloud service.
  • the management device C including the virtual machine is provided in a state of being accessible on the network NW, and may include at least the arithmetic module 41 and the storage area 42.
  • the calculation module 41 of the management device C can include a selection unit 43 and an abnormality detection unit 44.
  • the selection unit 43 takes into consideration the wireless status information of the wireless communication signals SG1 and SG2 with the monitoring device M21 acquired by the communication status information acquisition units 25 and 35 of the two higher-level devices G1 and G2. It is for selecting whether the higher-level device suitable for acquiring the state amount information signal of the monitoring device M21 and the pump device P2 detected by the monitoring device M21 is the higher-level device G1 or the higher-level device G2. be able to.
  • This selection may be performed automatically by the arithmetic module 41, or may be realized by displaying the radio status information acquired by each higher-level device G1 and G2 on the monitor of the terminal device TD and selecting by the administrator AD. You may be able to do it.
  • the abnormality detection unit 44 can detect whether or not an abnormality has occurred in the pump devices P1 to Pn based on the state quantity of the pump devices P1 to Pn.
  • learned through supervised learning for example, using a neural network or a support vector machine
  • unsupervised learning for example, using an autoencoder or clustering
  • the administrator AD may manually determine whether or not there is an abnormality.
  • the storage area 42 of the management device C can be used to store various programs used in the calculation module 41, acquired state quantities of the pump devices P1 to Pn, communication state information, and the like.
  • the storage area 42 can be configured, for example, by allocating an area of an arbitrary database on the network.
  • this monitoring is performed by specifying a higher-level device to acquire the state quantity information signal of the pump device P2 detected by one monitoring device M21.
  • a method of determining a communication path between the device M21 and the management device C will be exemplified.
  • the method of determining the communication path should be carried out at the timing when the monitoring system 1 is newly applied to the factory F or the like, for example, when a pump device, a monitoring device or a higher-level device is newly installed in the factory F. Just do it.
  • FIG. 3 is a flowchart showing an example of a method of determining a communication path in the monitoring system 1 according to the embodiment of the present disclosure.
  • the method is implemented based on a request from the management device C or the like, as shown in FIG. 3, first, from one monitoring device M21, all higher-level devices existing within the communicable range of the monitoring device M21.
  • a predetermined wireless communication signal is transmitted to the user (step S11).
  • the monitoring device M21 is attached to these higher-level devices G1 and G2.
  • the predetermined wireless communication signals SG1 and SG2 are transmitted to the predetermined wireless communication signals SG1 and SG2, and the higher-level devices G1 and G2 receive the predetermined wireless communication signals SG1 and SG2 transmitted from the monitoring device M21, respectively (step S12). Since specific information contained in the predetermined wireless communication signals SG1 and SG2 has already been described above as an example, the description thereof will be omitted here. Further, it is preferable that the wireless communication signals SG1 and SG2 transmitted to the plurality of higher-level devices G1 and G2 are common signals because the comparison described later becomes easy.
  • the higher-level devices G1 and G2 that have received the predetermined wireless communication signal transmitted from the monitoring device M21 acquire the wireless state information of the received predetermined wireless communication signal (step S13).
  • the wireless state information may include at least one of the radio wave strength of the wireless communication signal and the stability of the wireless communication signal, preferably both.
  • the radio state information acquired in each of the higher-level devices G1 and G2 is transmitted to the management device C via the network NW by the network interfaces 23 and 33 (step S14). Then, the communication between the one monitoring device M21 and the one monitoring device M21 is performed by comparing the radio state information between the one monitoring device M21 integrated in the management device C and the higher-level devices G1 and G2. The most suitable high-end device is selected (step S15). For the selection, the selection unit 43 automatically selects by comparing the magnitude relationship between the radio wave strength value and / or the stability value included in the radio wave state information transmitted from each higher-level device G1 and G2. Alternatively, the administrator AD may check these values for manual selection, or a combination of these values may be used.
  • the management device C transfers the selection result to, for example, one higher-level device G2.
  • One monitoring device M21 returns with information such as a identifiable unique address (step S16).
  • the host device G2 that has received the selection result establishes communication with one monitoring device M21 based on the selection result (step S17).
  • the transmission destination Store higher-level device information, received monitoring device information, key information used for communication, etc., and when performing wireless communication, set the communication to be performed on a specific communication path by attaching or referring to the information. Just do it.
  • the communication paths of all the monitoring devices M11 to Mn2 in the factory F are determined.
  • the state quantity information signals transmitted from the monitoring devices M11 to Mn2 are always transmitted to the management device C via one communication path, so that the communication load and the communication cost can be suppressed and the management can be performed. Data management in the device C can be facilitated.
  • FIG. 4 is a flowchart showing an example of an abnormality detection method in the monitoring system 1 according to the embodiment of the present disclosure.
  • the monitoring system 1 according to the present embodiment detects an abnormality in the pump devices P1 to Pn by performing the following steps in the management device C after the above-mentioned communication path is determined. can do.
  • the following description describes the case where the abnormality detection target is all the pump devices P1 to Pn in the factory F, but it is also possible to set only a specific pump device as the abnormality detection target. ..
  • step S21 When detecting an abnormality in the monitoring system 1 according to the present embodiment, first, due to the elapse of a preset time or an input operation from the administrator AD, the pump devices P1 to Pn in the factory F It is detected whether or not the state quantity detection timing has come (step S21). Then, when it is detected that the detection timing of the state quantity has come (Yes in step S21), a request for acquisition of the state quantity is transmitted from the management device C or the higher-level devices G1 to Gm to the monitoring devices M11 to Mn2. In other words, or based on a timer function (not shown) in each monitoring device M11 to Mn2, each monitoring device M11 to Mn2 transmits a state quantity information signal to one higher-level device paired in advance (step). S22).
  • the state quantity information signal is sent only to one higher-level device selected in step S15, that is, higher-level device G2. It is transmitted and is not transmitted to other higher-level devices G1 existing within the communicable range.
  • the state quantity data included in the state quantity information signal transmitted here may be a plurality of state quantity data detected by the sensor unit 14 during a predetermined period and stored in the memory 15. , Only the data of the state quantity detected by the sensor unit 14 in real time may be used. Further, in the state quantity information signal transmitted here, in addition to the state quantity data, the unique address of the monitoring device that detected the state quantity, information about one higher-level device as transmission destination information, or the monitoring device. It is preferable to include information on the pump device in which the device is installed.
  • the communication path from the monitoring devices M11 to Mn2 to the management device C is determined as described above, the state quantity from one monitoring device is determined. Information signals are transmitted via one communication path. Therefore, since the data aggregated in the management device C does not include the same information, it is not necessary to check for duplication of the aggregated data, which facilitates data management.
  • the layout of the machine is usually changed or the machine is replaced due to a change in the product to be manufactured, deterioration of the machine, or the like. ..
  • the positional relationship between the monitoring device and the higher-level device may change, or an obstacle may be installed between the monitoring device and the higher-level device.
  • the communication state between the monitoring device and the host device naturally changes, so it is advisable to reset the communication path. Therefore, in the method of determining the communication path of the monitoring system 1 of the present disclosure, as an option, in addition to the above-mentioned steps, after pairing is performed, the selected monitoring device and one higher-level device are re-established.
  • the management device C or any higher-level device receives the selection instruction, it is preferable to include a step of reselecting one monitoring device and one higher-level device (see FIG. 3). By providing such a step, it becomes possible to easily change the fixed communication path, and it becomes possible to flexibly respond to the change in the communication environment.
  • the reselection instruction as a trigger for executing the step of re-selecting the above may be based on an input operation or the like by the administrator AD, and the management device C or the like can automatically determine the timing of the reselection instruction. You may do so.
  • the management device C automatically determines the timing of the reselection instruction
  • the host devices G1 to Gm are with all the monitoring devices M11 to Mn2 within the communicable range (including those that are not paired). It would be nice to be able to grasp the communication status between them on a regular basis. Therefore, even after the communication path is determined, it is preferable to periodically send and receive wireless communication signals between each higher-level device and all monitoring devices within the communicable range. At this time, as the transmitted / received wireless communication signal, it is preferable to use a signal having a small amount of data so that the load on the control unit on the host device side does not become large.

Abstract

Provided is a method for finalizing a communication path in a monitoring system, the method comprising: a step for transmitting, from one or a plurality of monitoring devices installed in a rotating machine to detect a state quantity of the rotating machine to a plurality of higher-level apparatuses capable of performing wireless communication with the one or a plurality of monitoring devices, a wireless communication signal of a predetermined intensity including information enabling identification of at least the one or a plurality of monitoring devices as the transmission source; a step for acquiring communication state information of the wireless communication signal received in each of the plurality of higher-level apparatuses; and a step for, on the basis of the communication state information acquired by each of the plurality of higher-level apparatuses, selecting one monitoring device among the one or a plurality of monitoring devices and one higher-level apparatus that acquires information including the state quantity detected by the one monitoring device.

Description

監視システム内の通信経路を確定する方法及び監視システムHow to determine the communication path in the monitoring system and the monitoring system
 本開示は監視システム内の通信経路を確定する方法及び監視システムに関するものである。 This disclosure relates to a method of determining a communication path in a monitoring system and a monitoring system.
 流体を移送する回転機械の技術分野において、大規模プラントや工場といった製造設備で用いられる回転機械に生じる異常を検知するために、一の回転機械の適所に複数のセンサを設置して、その回転機械の状態を監視することが行われている。例えば日本国特許出願公開第2003-036321号公報には、複数のセンサが回転機械であるポンプの異常を検知した際に、センサに接続された制御システムがネットワークを介して監視システムにその旨報知することで、遠隔地に設置された監視システムにおいて回転機械の管理を可能としたものが記載されている。 In the technical field of rotating machines that transfer fluids, in order to detect abnormalities that occur in rotating machines used in manufacturing equipment such as large-scale plants and factories, multiple sensors are installed in the right places of one rotating machine and their rotation is performed. The condition of the machine is being monitored. For example, in Japanese Patent Application Publication No. 2003-036321, when a plurality of sensors detect an abnormality in a pump that is a rotating machine, a control system connected to the sensors notifies the monitoring system via a network. By doing so, it is described that the monitoring system installed in a remote place can manage the rotating machine.
 ところで、製造設備で用いられる回転機械は、当該設備内の各所に複数個設置されている場合が多い。このような設備内の複数の回転機械を管理しようとすると、例えば日本国特許出願公開第2003-036321号公報に記載されたもののように、各回転機械に複数のセンサを搭載し、当該センサの検出結果を収集することとなるが、設備内に存在するセンサの総数が極めて多いため、これらのセンサを有線で制御システム等に接続することは煩雑な作業であり、回転機械の設置に要する工数の増大を招く恐れがある。そこで、上述した有線接続に代えて、回転機械に設置される複数のセンサに無線通信機能を追加し、且つ設備内の適所にセンサとの無線通信が可能な、アクセスポイントあるいは(無線ルータを含む)ゲートウェイ等の上位通信機器(以下、これらをまとめて「上位機器」という)を設置して、無線によりセンサの検出結果を収集すれば、上述した配線の作業を省略することができる。しかしこの場合、上位機器は設備内の適所、例えばその通信可能距離等を考慮して所定間隔毎に設置されるものであるため、一のセンサから送信された信号を受信可能な距離に位置する上位機器は1つとは限らない。一のセンサが送信した信号が複数の上位機器で受信されてしまうと、当該信号を受信した複数の上位機器が同一の情報(一のセンサが検出した状態量の情報)を管理装置に送信することとなり、通信負荷及び通信コストが無用に増大する恐れがある。加えて、管理装置側において同一の情報が複数回受信されると、管理装置側における回転機械の状態量のデータ管理が煩雑になる恐れもある。 By the way, in many cases, a plurality of rotary machines used in the manufacturing equipment are installed in various places in the equipment. When trying to manage a plurality of rotating machines in such a facility, for example, as described in Japanese Patent Application Publication No. 2003-036321, a plurality of sensors are mounted on each rotating machine, and the sensor is used. Although the detection results will be collected, since the total number of sensors existing in the equipment is extremely large, connecting these sensors to a control system by wire is a complicated task, and the number of steps required to install a rotating machine is required. May lead to an increase in. Therefore, instead of the above-mentioned wired connection, an access point or (including a wireless router) capable of adding a wireless communication function to a plurality of sensors installed in the rotating machine and wirelessly communicating with the sensors at appropriate locations in the facility. ) If a higher-level communication device such as a gateway (hereinafter collectively referred to as "upper-level device") is installed and the sensor detection results are collected wirelessly, the above-mentioned wiring work can be omitted. However, in this case, since the host device is installed at a suitable place in the equipment, for example, at predetermined intervals in consideration of the communicable distance thereof, etc., it is located at a distance where the signal transmitted from one sensor can be received. The number of higher-level devices is not limited to one. When the signal transmitted by one sensor is received by a plurality of higher-level devices, the plurality of higher-level devices that have received the signal transmit the same information (information on the state amount detected by one sensor) to the management device. As a result, the communication load and communication cost may increase unnecessarily. In addition, if the same information is received a plurality of times on the management device side, data management of the state quantity of the rotating machine on the management device side may become complicated.
 本開示は、上述した課題に鑑み、通信負荷や通信コストを抑制することができ、且つデータ管理が容易な、監視システム内の通信経路を確定する方法及び監視システムを提供することを目的とする。 In view of the above-mentioned problems, it is an object of the present disclosure to provide a method and a monitoring system for determining a communication path in a monitoring system, which can suppress communication load and communication cost and facilitate data management. ..
 上記目的を達成するために、本開示の第1の態様に係る監視システム1内の通信経路を確定する方法は、例えば図1乃至図3に示すように、回転機械P1~Pnに設置され前記回転機械P1~Pnの状態量を検出する1又は複数の監視装置M11~Mn2から、前記1又は複数の監視装置M11~Mn2と無線通信が可能な複数の上位機器G1~Gmへ、少なくとも送信元の前記1又は複数の監視装置M11~Mn2が特定可能な情報を含む所定強度の無線通信信号SG1、SG2を送信するステップS11と、前記複数の上位機器G1~Gmのそれぞれにおいて、受信した前記無線通信信号SG1、SG2の通信状態情報を取得するステップS13と、前記複数の上位機器G1~Gmのそれぞれが取得した前記通信状態情報に基づき、前記1又は複数の監視装置M11~Mn2のうちの一の監視装置と、前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定するステップS15と、を含むものである。 In order to achieve the above object, the method of determining the communication path in the monitoring system 1 according to the first aspect of the present disclosure is installed in the rotating machines P1 to Pn, for example, as shown in FIGS. 1 to 3, and described above. At least a transmission source from one or more monitoring devices M11 to Mn2 that detect the state quantity of the rotating machines P1 to Pn to a plurality of higher-level devices G1 to Gm capable of wireless communication with the one or more monitoring devices M11 to Mn2. Step S11 for transmitting the radio communication signals SG1 and SG2 having predetermined intensities including information that can be identified by the one or the plurality of monitoring devices M11 to Mn2, and the radio received in each of the plurality of higher-level devices G1 to Gm. One of the one or the plurality of monitoring devices M11 to Mn2 based on the step S13 for acquiring the communication status information of the communication signals SG1 and SG2 and the communication status information acquired by each of the plurality of higher-level devices G1 to Gm. This includes step S15 for selecting the monitoring device of the above and one higher-level device for acquiring information including the state amount detected by the one monitoring device.
 このように構成すると、上位機器が取得した無線状態情報に基づいて、一の監視装置とこの一の監視装置と通信を行う際の無線通信の状態が最も良好な一の上位機器を通信経路の一部として選定することができる。これにより、監視システム内の各監視装置の通信経路が一意に確定するため、異常の検知を実施する際の通信負荷及び通信コストの上昇を抑えた監視システムを提供することができるようになる。 With this configuration, based on the wireless status information acquired by the higher-level device, the higher-level device with the best wireless communication status when communicating with one monitoring device and this one monitoring device is set in the communication path. Can be selected as part. As a result, since the communication path of each monitoring device in the monitoring system is uniquely determined, it becomes possible to provide a monitoring system that suppresses an increase in communication load and communication cost when detecting an abnormality.
 本開示の第2の態様に係る監視システム1内の通信経路を確定する方法は、例えば図3に示すように、上記本開示の第1の態様に係る監視システム1内の通信経路を確定する方法において、前記通信状態情報は、前記無線通信信号の電波強度と安定性とを含むものである。 As a method of determining the communication path in the monitoring system 1 according to the second aspect of the present disclosure, for example, as shown in FIG. 3, the communication path in the monitoring system 1 according to the first aspect of the present disclosure is determined. In the method, the communication state information includes the radio field strength and stability of the radio communication signal.
 このように構成すると、電波強度だけでなく、信号の安定性をも考慮して一の監視装置及び一の上位機器を選定することになり、通信経路を構成する一の監視装置及び一の上位機器の選定を精度よく行うことができる。 With this configuration, one monitoring device and one higher-level device are selected in consideration of not only the radio wave strength but also the signal stability, and one monitoring device and one higher-level device constituting the communication path. Equipment can be selected accurately.
 本開示の第3の態様に係る監視システム1内の通信経路を確定する方法は、上記本開示の第1又は2の態様に係る監視システム1内の通信経路を確定する方法において、前記1又は複数の監視装置M11~Mn2は、前記一の上位機器に対してのみ前記状態量を含む情報を送信するものである。 The method for determining the communication path in the monitoring system 1 according to the third aspect of the present disclosure is the method for determining the communication path in the monitoring system 1 according to the first or second aspect of the present disclosure. The plurality of monitoring devices M11 to Mn2 transmit information including the state quantity only to the one higher-level device.
 このように構成すると、状態量情報信号の送信先となる上位機器を限定することで、送信先以外の上位機器が当該信号の影響を受けることがない。 With this configuration, by limiting the higher-level equipment that is the transmission destination of the state quantity information signal, the higher-level equipment other than the transmission destination is not affected by the signal.
 本開示の第4の態様に係る監視システム1内の通信経路を確定する方法は、上記本開示の第1又は2の態様に係る監視システム1内の通信経路を確定する方法において、前記複数の上位機器G1~Gmと通信可能な管理装置C又は前記複数の上位機器G1~Gm内の任意の上位機器において、選定された前記一の監視装置及び前記一の上位機器に対する再選定指示を受信した際に、前記一の監視装置及び前記一の上位機器の選定をやり直すステップを更に含むものである。 The method for determining the communication path in the monitoring system 1 according to the fourth aspect of the present disclosure is the above-mentioned plurality of methods for determining the communication path in the monitoring system 1 according to the first or second aspect of the present disclosure. The management device C capable of communicating with the higher-level devices G1 to Gm or any higher-level device in the plurality of higher-level devices G1 to Gm received the reselection instruction for the selected monitoring device and the higher-level device. At this time, the step of reselecting the one monitoring device and the one higher-level device is further included.
 このように構成すると、種々の要因で通信環境が変更された場合等にも迅速に対処でき、状態量情報信号を確実に収集することができる。 With this configuration, even if the communication environment is changed due to various factors, it is possible to quickly deal with it, and it is possible to reliably collect the state quantity information signal.
 本開示の第5の態様に係る監視システム1は、例えば図1及び図2に示すように、1又は複数の回転機械P1~Pnに設置され、前記1又は複数の回転機械P1~Pnの状態量を検出する1又は複数の監視装置M11~Mn2と、前記1又は複数の監視装置M11~Mn2と無線通信が可能な複数の上位機器G1~Gmであって、前記1又は複数の監視装置M11~Mn2との間の前記無線通信における通信状態情報を取得する通信状態情報取得部25、35を備える、前記複数の上位機器G1~Gmと、前記複数の上位機器G1~Gmから前記1又は複数の回転機械P1~Pnの前記状態量を含む情報を取得して管理する管理装置Cであって、前記複数の上位機器G1~Gmのそれぞれの前記通信状態情報取得部25、35において取得された前記1又は複数の監視装置M11~Mn2のうちの一の監視装置との間の無線通信における前記通信状態情報に基づき、前記一の監視装置と前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定する選定部43を備える、前記管理装置Cと、を含むものである。 As shown in FIGS. 1 and 2, for example, the monitoring system 1 according to the fifth aspect of the present disclosure is installed in one or more rotary machines P1 to Pn, and the state of the one or more rotary machines P1 to Pn. One or a plurality of monitoring devices M11 to Mn2 for detecting an amount, and a plurality of higher-level devices G1 to Gm capable of wireless communication with the one or a plurality of monitoring devices M11 to Mn2, wherein the one or a plurality of monitoring devices M11 The plurality of higher-level devices G1 to Gm and the plurality of higher-level devices G1 to Gm including the communication state information acquisition units 25 and 35 for acquiring the communication state information in the wireless communication between the Mn2 and the Mn2. It is a management device C that acquires and manages information including the state quantities of the rotary machines P1 to Pn, and is acquired by the communication state information acquisition units 25 and 35 of the plurality of higher-level devices G1 to Gm, respectively. Includes the state amount detected by the one monitoring device and the one monitoring device based on the communication state information in the wireless communication between the one or a plurality of monitoring devices M11 to Mn2. It includes the management device C, which includes a selection unit 43 for selecting one higher-level device for acquiring information.
 このように構成すると、管理装置において、上位機器が取得した無線状態情報に基づいて、一の監視装置及びこの一の監視装置と通信を行う際の無線通信の状態が最も良好な一の上位機器を通信経路として選定することができる。これにより、監視システム内の各監視装置と管理装置の間の通信経路が一意に確定しているため、異常の検知を実施する際の通信負荷及び通信コストの上昇を抑えることができる。また、管理装置においては重複する情報を受信することがなくなり、異常を検知するために収集される回転機械の状態量のデータの管理が容易になる。 With this configuration, in the management device, based on the wireless status information acquired by the higher-level device, one monitoring device and one higher-level device having the best wireless communication state when communicating with this one monitoring device. Can be selected as the communication path. As a result, since the communication path between each monitoring device and the management device in the monitoring system is uniquely determined, it is possible to suppress an increase in communication load and communication cost when detecting an abnormality. Further, the management device does not receive duplicate information, and it becomes easy to manage the data of the state quantity of the rotating machine collected for detecting the abnormality.
 上述した構成を備えることにより、通信負荷や通信コストを抑制することができ、且つデータ管理が容易な、監視システム内の通信経路を確定する方法及び監視システムを提供することができるようになる。 By providing the above-mentioned configuration, it becomes possible to provide a method and a monitoring system for determining a communication path in a monitoring system, which can suppress a communication load and a communication cost and facilitate data management.
本開示の一実施の形態に係る監視システムの一例を示す模式図である。It is a schematic diagram which shows an example of the monitoring system which concerns on one Embodiment of this disclosure. 本開示の一実施の形態に係る監視システムの一部の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of a part of the monitoring system which concerns on one Embodiment of this disclosure. 本開示の一実施の形態に係る監視システム内の通信経路を確定する方法の一例を示すフローチャートである。It is a flowchart which shows an example of the method of determining the communication path in the monitoring system which concerns on one Embodiment of this disclosure. 本開示の一実施の形態に係る監視システムにおける異常の検知方法の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormality detection method in the monitoring system which concerns on one Embodiment of this disclosure.
 この出願は、日本国で2020年8月17日に出願された特願2020-137347号に基づいており、その内容は本出願の内容としてその一部を形成する。
 また、本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本願のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明及び特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
This application is based on Japanese Patent Application No. 2020-137347 filed on August 17, 2020 in Japan, the contents of which form part of the content of this application.
Also, the present invention will be more fully understood by the following detailed description. Further scope of application of the present application will be clarified by the following detailed description. However, detailed description and specific examples are preferred embodiments of the present invention and are described only for purposes of explanation. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the present invention.
The applicant has no intention of presenting any of the described embodiments to the public, and is equal to the disclosed modifications and alternatives that may not be literally included in the claims. It is a part of the invention under the argument.
 以下、図面を参照して本開示を実施するための各実施の形態について説明する。なお、以下では本開示の目的を達成するための説明に必要な範囲を模式的に示し、本開示の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。 Hereinafter, each embodiment for carrying out the present disclosure will be described with reference to the drawings. In the following, the scope necessary for the explanation to achieve the object of the present disclosure will be schematically shown, and the scope necessary for the explanation of the relevant part of the present disclosure will be mainly explained. It shall be based on known technology.
 図1は、本開示の一実施の形態に係る監視システムの一例を示す模式図である。本実施の形態に係る監視システム1は、図1に示すように、所定の広さを備える製造設備、例えば工場F内で用いられているn(1≦n)個の回転機械としてのポンプ装置P1~Pnを監視するためのシステムとして構築されたものであってよい。そして、この監視システム1は、当該ポンプ装置P1~Pnを監視するために、m(1<m<n)個の上位機器G1~Gmと、管理装置Cとを含んでいてよい。なお、本実施の形態においては、回転機械としてポンプ装置のみを例示しているが、このポンプ装置に代えて、あるいはポンプ装置に加えて、コンプレッサ、タービン、冷凍機、冷却塔等の他の回転機械を採用することができる。 FIG. 1 is a schematic diagram showing an example of a monitoring system according to an embodiment of the present disclosure. As shown in FIG. 1, the monitoring system 1 according to the present embodiment is a manufacturing facility having a predetermined size, for example, a pump device as n (1 ≦ n) rotating machines used in a factory F. It may be constructed as a system for monitoring P1 to Pn. The monitoring system 1 may include m (1 <m <n) higher-level devices G1 to Gm and a management device C in order to monitor the pump devices P1 to Pn. In this embodiment, only the pump device is exemplified as the rotary machine, but instead of or in addition to the pump device, other rotations such as a compressor, a turbine, a refrigerator, and a cooling tower are performed. Machines can be adopted.
 ポンプ装置P1~Pnは、工場F内の任意の位置に設置された、例えば液体を移送可能な横軸単段ポンプとすることができる。このポンプ装置P1~Pnは、主に内部にインペラを備えるポンプ本体10と、ポンプ本体10内のインペラを回転させる、永久磁石型モータ、誘導モータ、あるいはSRモータ等からなる電動機11とを含むものであってよい。なお、ポンプ装置P1~Pnは横軸単段ポンプには限定されず、例えば縦軸多段ポンプや水中ポンプといった他の構造のポンプ装置であってもよい。また、本実施の形態においては、説明を簡略化するために工場F内に同一構造のポンプ装置P1~Pnが複数個配設されている場合について説示しているが、工場F内にその構造が異なるポンプ装置が混在して設置されていてもよい。 The pump devices P1 to Pn can be a horizontal axis single-stage pump installed at an arbitrary position in the factory F, for example, capable of transferring a liquid. The pump devices P1 to Pn mainly include a pump main body 10 having an impeller inside, and an electric motor 11 including a permanent magnet type motor, an induction motor, an SR motor, or the like that rotates the impeller in the pump main body 10. May be. The pump devices P1 to Pn are not limited to the horizontal axis single-stage pump, and may be a pump device having another structure such as a vertical axis multi-stage pump or a submersible pump. Further, in the present embodiment, in order to simplify the explanation, a case where a plurality of pump devices P1 to Pn having the same structure are arranged in the factory F is described, but the structure thereof is described in the factory F. There may be a mixture of pump devices with different values.
 上述した複数のポンプ装置P1~Pnのそれぞれには、1乃至複数の監視装置M11~Mn2が取り付けられている。この監視装置M11~Mn2には、設置対象であるポンプ装置P1~Pnの状態量を検出可能なものを採用することができる。ここで、ポンプ装置P1~Pnの状態量とは、ポンプ装置P1~Pnに関連する種々のパラメータ情報、例えばポンプ本体10の吐出圧力や吐出流量、ポンプ装置P1~Pnに生じる振動、ポンプ本体10又は電動機11の温度、あるいは電動機11の電流値を含むものとすることができる。これに関連して、監視装置M11~Mn2には、種々のセンサ部14(図2参照。)を備えたものを採用することができる。当該センサ部14としては、ポンプ本体10の吐出圧力を検出可能な圧力センサ、ポンプ本体10の吐出流量を検出可能な流量センサ、ポンプ装置P1~Pnの振動を検出可能な加速度センサ、電動機11の温度を検出可能な温度センサ、あるいは電動機11の電流を検出可能な電流センサ等を挙げることができるが、これらに限定されない。また、1乃至複数の監視装置M11~Mn2は、無線通信機能を備えていることが好ましく、当該無線通信機能を用いることで、上位機器G1~Gmへ各種の情報を送信可能となっている。 One or more monitoring devices M11 to Mn2 are attached to each of the above-mentioned plurality of pump devices P1 to Pn. As the monitoring devices M11 to Mn2, those capable of detecting the state amount of the pump devices P1 to Pn to be installed can be adopted. Here, the state quantities of the pump devices P1 to Pn are various parameter information related to the pump devices P1 to Pn, for example, the discharge pressure and the discharge flow rate of the pump body 10, the vibration generated in the pump devices P1 to Pn, and the pump body 10. Alternatively, it may include the temperature of the electric motor 11 or the current value of the electric motor 11. In this regard, as the monitoring devices M11 to Mn2, those equipped with various sensor units 14 (see FIG. 2) can be adopted. The sensor unit 14 includes a pressure sensor capable of detecting the discharge pressure of the pump body 10, a flow rate sensor capable of detecting the discharge flow rate of the pump body 10, an acceleration sensor capable of detecting vibrations of the pump devices P1 to Pn, and an electric motor 11. Examples thereof include a temperature sensor capable of detecting the temperature, a current sensor capable of detecting the current of the electric motor 11, and the like, but the present invention is not limited thereto. Further, it is preferable that the one or more monitoring devices M11 to Mn2 have a wireless communication function, and by using the wireless communication function, various information can be transmitted to the host devices G1 to Gm.
 上位機器G1~Gmは、工場F内に所定間隔毎に設けられ、複数のポンプ装置P1~Pnに取り付けられた監視装置M11~Mn2から送信された情報を受信し、管理装置Cに送信するための機器とすることができる。この上位機器G1~Gmは、アクセスポイントあるいはゲートウェイの機能を有する機器であってよい。本実施の形態においては、各上位機器G1~Gmの全てがゲートウェイとして機能している場合を説明するが、各上位機器G1~Gmは少なくともアクセスポイント機能を有していれば足り、本実施の形態のもののように、各上位機器G1~Gmの全てがネットワーク通信可能である必要はない。したがって、上位機器G1~Gmのうちの一部のみが、あるいは上位機器G1~Gmとは別に設けられたネットワーク接続用のゲートウェイ(図示省略)のみがネットワーク通信可能であってもよい。また、各上位機器G1~Gmの工場F内における配置は、この上位機器G1~Gmと監視装置M11~Mn2との間の無線通信の通信可能距離や、デッドスポットが形成されないこと等を考慮して、例えば数メートル~数十メートル程度の間隔を空けて設定することが好ましい。さらに、上記機器G1~Gmと監視装置M11~Mn2との間の無線通信の手段は、典型的には国際規格(例えばIEEE802.15.4、IEEE802.15.1、IEEE802.15.11a、11b、11g、11n、11ac、11ad、ISO/IEC14513-3-10、IEEE802.15.4g)方式(Bluetooth、BluetoothLowEnergy、Wi-Fi、ZigBee、Sub-GHz、EnOcean等)の通信手段が用いられる。そして、各上位機器G1~Gmにおいて収集された情報は、例えばネットワークNWを介して管理装置Cにて一括管理される。 The host devices G1 to Gm are provided in the factory F at predetermined intervals to receive information transmitted from the monitoring devices M11 to Mn2 attached to the plurality of pump devices P1 to Pn and transmit the information to the management device C. Can be a device of. The higher-level devices G1 to Gm may be devices having an access point or gateway function. In the present embodiment, the case where all of the higher-level devices G1 to Gm function as gateways will be described, but it is sufficient that each higher-level device G1 to Gm has at least an access point function. It is not necessary that all of the higher-level devices G1 to Gm are capable of network communication as in the form. Therefore, only a part of the higher-level devices G1 to Gm, or only the gateway for network connection (not shown) provided separately from the higher-level devices G1 to Gm may be capable of network communication. In addition, the arrangement of the higher-level devices G1 to Gm in the factory F takes into consideration the communicable distance of wireless communication between the higher-level devices G1 to Gm and the monitoring devices M11 to Mn2, the formation of dead spots, and the like. Therefore, it is preferable to set them at intervals of, for example, several meters to several tens of meters. Further, the means of wireless communication between the devices G1 to Gm and the monitoring devices M11 to Mn2 are typically international standards (eg, IEEE 802.15.4, IEEE 802.15.1, IEEE 802.15.11a, 11b). , 11g, 11n, 11ac, 11ad, ISO / IEC14513-3-10, IEEE802.154g) method (Bluetooth, BluetoothLowEnergy, Wi-Fi, ZigBee, Sub-GHz, EnOcean, etc.) communication means is used. Then, the information collected in each higher-level device G1 to Gm is collectively managed by the management device C via, for example, the network NW.
 管理装置Cは、工場F内の(1又は)複数のポンプ装置P1~Pnの状態量を収集・管理するためのものであり、例えばクラウドベースのデータ処理プラットフォームを採用することができる。この管理装置Cは、好ましくはネットワークNWに接続されており、上位機器G1~Gmが送信した情報を取得することにより、ポンプ装置P1~Pnの状態量を管理し、ポンプ装置P1~Pnの異常あるいは異常の兆候(以下、これらをまとめて単に「異常」という)を検知することができるものであってよい。本実施の形態に係る監視システムにおける異常の検知方法については、その一例を後述する。なお、本実施の形態においては管理装置Cとしてクラウドベースのデータ処理プラットフォームを例示しているが、この管理装置Cを周知のサーバコンピュータや、上位機器G1~GmとローカルにあるいはネットワークNWを介して接続された集中監視システム等の形式で構成することも可能である。 The management device C is for collecting and managing the state quantities of (1 or) a plurality of pump devices P1 to Pn in the factory F, and for example, a cloud-based data processing platform can be adopted. This management device C is preferably connected to the network NW, and by acquiring the information transmitted by the host devices G1 to Gm, the state amount of the pump devices P1 to Pn is managed, and the pump devices P1 to Pn are abnormal. Alternatively, it may be able to detect signs of abnormality (hereinafter, these are collectively referred to simply as "abnormality"). An example of the abnormality detection method in the monitoring system according to the present embodiment will be described later. In this embodiment, a cloud-based data processing platform is exemplified as the management device C, but the management device C can be used locally with a well-known server computer or higher-level devices G1 to Gm or via a network NW. It is also possible to configure it in the form of a connected centralized monitoring system or the like.
 さらに、本実施の形態に係る監視システム1の管理装置Cは、ネットワークNWを介して管理者ADが有する端末装置TDに接続可能であるとよい。端末装置TDとしては、周知のコンピュータやモバイルPC、タブレットデバイス等を採用することができ、この端末装置TDにより、管理装置Cと管理者ADとの間の入出力動作を実現することができる。 Further, it is preferable that the management device C of the monitoring system 1 according to the present embodiment can be connected to the terminal device TD owned by the administrator AD via the network NW. As the terminal device TD, a well-known computer, mobile PC, tablet device, or the like can be adopted, and the terminal device TD can realize an input / output operation between the management device C and the administrator AD.
 上述した一連の構成を備える監視システム1において、上位機器G1~Gmは上述の通り通信可能距離等を考慮して所定間隔毎に設置されている。これにより、監視装置M11~Mn2のうちの多くのもの(例えばポンプ装置P1に設置された監視装置M11~M13)は、通信可能距離内に1つの上位機器(例えば上位機器G1)のみが存在している。他方、隣接する2つの上位機器(例えば上位機器G1と上位機器G2)の中間位置に設置されているような監視装置(例えばポンプ装置P2に設置された監視装置M21~M22)においては、通信可能距離内に2つの上位機器が存在している。このように通信可能距離内に複数の上位機器が存在している監視装置(M21~M22)においては、当該上位機器(G1、G2)それぞれとの間に無線通信が可能である。しかし、監視装置が複数の上位機器に対して状態量を含む情報(以下、「状態量情報」ともいう。)を送信することは、同一の情報の通信を複数回行うことになり、通信負荷及び通信コストの上昇と管理装置Cにおけるデータ管理の煩雑化を招く原因となり得る。そこで、以下には、上述した監視システム1内の通信経路を確定する方法に関連した、監視システム1内の各構成要素について説明を行う。 In the monitoring system 1 having the above-mentioned series of configurations, the host devices G1 to Gm are installed at predetermined intervals in consideration of the communicable distance and the like as described above. As a result, in many of the monitoring devices M11 to Mn2 (for example, the monitoring devices M11 to M13 installed in the pump device P1), only one higher-level device (for example, the higher-level device G1) exists within the communicable distance. ing. On the other hand, communication is possible in a monitoring device (for example, monitoring devices M21 to M22 installed in the pump device P2) installed at an intermediate position between two adjacent higher-level devices (for example, higher-level device G1 and higher-level device G2). There are two superior devices within the distance. In the monitoring devices (M21 to M22) in which a plurality of higher-level devices exist within the communicable distance in this way, wireless communication is possible with each of the higher-level devices (G1 and G2). However, when the monitoring device transmits information including the state quantity to a plurality of higher-level devices (hereinafter, also referred to as "state quantity information"), the same information is communicated multiple times, and the communication load. In addition, it may cause an increase in communication cost and complicated data management in the management device C. Therefore, each component in the monitoring system 1 related to the above-mentioned method of determining the communication path in the monitoring system 1 will be described below.
 図2は、本開示の一実施の形態に係る監視システム1の一部、詳しくはその通信可能範囲内に複数の上位機器G1、G2が存在している監視装置M21の通信経路を構成し得る部分の一例を示す概略ブロック図である。なお、以下の説明においては監視装置を代表して一の監視装置M21のみを説明しているが、(センサ部14で検出される状態量やポンプ装置に対する設置位置は異なるものの)監視装置自体の基本的な構成は、他の監視装置もこの監視装置M21と同様であってよい。同じく、以下の説明においては上位機器を代表して上位機器G1及びG2の2つについて説明するが、上位機器自体の基本的な構成は、他の上位機器もこれらの上位機器G1、G2と同様であってよい。 FIG. 2 may constitute a communication path of a part of the monitoring system 1 according to the embodiment of the present disclosure, specifically, a monitoring device M21 in which a plurality of higher-level devices G1 and G2 exist within the communicable range thereof. It is a schematic block diagram which shows an example of a part. In the following description, only one monitoring device M21 is described on behalf of the monitoring device, but the monitoring device itself (although the state quantity detected by the sensor unit 14 and the installation position with respect to the pump device are different). The basic configuration may be the same for other monitoring devices as the monitoring device M21. Similarly, in the following description, two higher-level devices G1 and G2 will be described on behalf of the higher-level devices, but the basic configuration of the higher-level device itself is the same for the other higher-level devices as these higher-level devices G1 and G2. May be.
 監視装置M21は、図2に示すように、コントローラ12と、無線通信部13と、センサ部14と、メモリ15とを主に含むことができる。このうち、コントローラ12は、監視装置M21全体を制御するための演算装置を含むものであってよい。また、無線通信部13は、特定の上位機器との間に無線通信を実現するための通信手段であって、アンテナ等の通信機器を含み、上位機器G1、G2の無線通信部21、31との間で双方向通信が可能なものであってよい。さらに、センサ部14は、監視装置M21が設置されたポンプ装置P2の1又は複数の状態量を検出するものであってよい。そして、メモリ15は、コントローラ12において実行されるプログラムや、センサ部14において検出したポンプ装置P2の状態量、及び監視装置M21の固有アドレス等が格納されるものであってよい。 As shown in FIG. 2, the monitoring device M21 can mainly include a controller 12, a wireless communication unit 13, a sensor unit 14, and a memory 15. Of these, the controller 12 may include an arithmetic unit for controlling the entire monitoring device M21. Further, the wireless communication unit 13 is a communication means for realizing wireless communication with a specific higher-level device, and includes a communication device such as an antenna, and the wireless communication units 21 and 31 of the higher-level devices G1 and G2. Two-way communication between them may be possible. Further, the sensor unit 14 may detect one or a plurality of state quantities of the pump device P2 in which the monitoring device M21 is installed. The memory 15 may store a program executed by the controller 12, a state quantity of the pump device P2 detected by the sensor unit 14, a unique address of the monitoring device M21, and the like.
 上述した監視装置M21の無線通信部13は、上位機器G1、G2に対して所定の無線通信信号SG1、SG2を送信することが可能である。ここで送信される所定の無線通信信号SG1、SG2は、当該信号を受信した上位機器G1、G2側において信号の送信元となる監視装置M21を特定可能な情報としての固有アドレスを少なくとも含むことができる。また、この無線通信信号SG1、SG2は、当該固有アドレスに加えて、監視装置M21が設置されているポンプ装置P2に関する情報、ポンプ装置P2に対する監視装置M21の設置位置、無線通信信号SG1、SG2の送信時における電波強度、あるいはセンサ部14が検出した状態量等を、上位機器G1、G2あるいは管理装置Cからの要求等に応じて、適宜含むことができる。なお、本実施の形態に係る無線通信信号SG1、SG2は、監視装置M21を特定可能な情報として固有アドレスを含むものを採用しているが、監視装置M21を特定可能な情報であれば当該固有アドレス以外の情報であってもよい。また、所定の無線通信信号SG1、SG2は、後述する通信経路を確定するために生成された信号であってもよいし、監視装置M21が任意の上位機器に対して状態量情報を送信するために生成される信号を援用してもよい。本実施の形態においては、通信経路を確定する際に送信される信号を「無線通信信号(SG1、SG2)」と呼び、通信経路が確定した後に各監視装置M11~Mn2で取得した状態量を含む状態量情報を送信するための信号を「状態量情報信号」と呼んで、両者を区別して示している。 The wireless communication unit 13 of the monitoring device M21 described above can transmit predetermined wireless communication signals SG1 and SG2 to the host devices G1 and G2. The predetermined wireless communication signals SG1 and SG2 transmitted here may include at least a unique address as information that can identify the monitoring device M21 that is the source of the signal on the higher-level devices G1 and G2 that received the signal. can. In addition to the unique address, the wireless communication signals SG1 and SG2 include information on the pump device P2 in which the monitoring device M21 is installed, the installation position of the monitoring device M21 with respect to the pump device P2, and the wireless communication signals SG1 and SG2. The radio wave strength at the time of transmission, the state amount detected by the sensor unit 14, and the like can be appropriately included in response to a request from the host devices G1 and G2 or the management device C. The wireless communication signals SG1 and SG2 according to the present embodiment employ information that includes a unique address as information that can identify the monitoring device M21. However, if the information can identify the monitoring device M21, the unique information is used. It may be information other than the address. Further, the predetermined wireless communication signals SG1 and SG2 may be signals generated for determining a communication path described later, or the monitoring device M21 transmits state quantity information to an arbitrary higher-level device. The signal generated in may be used. In the present embodiment, the signal transmitted when the communication path is determined is called "wireless communication signal (SG1, SG2)", and the state quantity acquired by each monitoring device M11 to Mn2 after the communication path is determined is called "wireless communication signal (SG1, SG2)". The signal for transmitting the included state quantity information is called a "state quantity information signal", and the two are distinguished from each other.
 本実施の形態においては、監視装置M21の通信可能範囲内には、2つの上位機器G1、G2が存在している。これら2つの上位機器G1、G2は、ゲートウェイとして機能し、且つ両者は同様の構成を備えているものとすることができる。詳しくは、図2に示すように、上位機器G1、G2は、無線通信部21、31と、制御部22、32と、ネットワークインタフェース23、33と、メモリ24、34とを主に含むものであってよい。 In the present embodiment, two higher-level devices G1 and G2 exist within the communicable range of the monitoring device M21. These two higher-level devices G1 and G2 can function as gateways, and both can have the same configuration. Specifically, as shown in FIG. 2, the host devices G1 and G2 mainly include wireless communication units 21 and 31, control units 22 and 32, network interfaces 23 and 33, and memories 24 and 34. It may be there.
 無線通信部21、31は、少なくとも監視装置M21との間に無線通信を実現するためのものであって、アンテナ等の通信機器を含み、少なくとも監視装置M21の無線通信部13との間で双方向通信が可能なものであってよい。また、制御部22、32は、各上位機器G1、G2全体を制御するための演算装置であってよい。さらに、ネットワークインタフェース23、33は、インターネットに代表されるネットワークNWに接続するためのインタフェースユニットであってよい。そして、メモリ24、34は、制御部22、32において実行されるプログラムや、無線通信部21、31を介して受信したポンプ装置P2の状態量情報及び通信状態情報等が格納されるものであってよい。 The wireless communication units 21 and 31 are for realizing wireless communication with at least the monitoring device M21, include a communication device such as an antenna, and at least both with the wireless communication unit 13 of the monitoring device M21. It may be capable of forward communication. Further, the control units 22 and 32 may be arithmetic units for controlling the entire higher-level devices G1 and G2. Further, the network interfaces 23 and 33 may be interface units for connecting to a network NW represented by the Internet. The memories 24 and 34 store programs executed by the control units 22 and 32, state quantity information and communication state information of the pump device P2 received via the wireless communication units 21 and 31. It's okay.
 上位機器G1、G2の制御部22、32は、通信状態情報取得部25、35と、状態量情報取得部26、36とを含むことができる。このうち通信状態情報取得部25、35は、無線通信部21、31で取得した無線通信信号SG1、SG2から、無線状態情報を取得するためのものとすることができる。ここで、無線状態情報とは、無線通信信号SG1、SG2の通信の状態を示す情報であり得、詳しくは無線通信信号SG1、SG2の電波強度及び安定性の少なくとも一方、好ましくは両方を含むものであってよい。この無線状態情報のうち、無線通信信号SG1、SG2の電波強度(dBm)は、周知の測定器を用いることで特定でき、無線通信信号SG1、SG2の安定性は、例えば単位時間当たりの電波の正常な受信回数、又は受信電波強度のばらつき(あるいは偏差)が一定値以内か否かに基づいて特定することができる。また、状態量情報取得部26、36は、無線通信部21、31で受信した状態量情報信号を取得するものであってよい。ここで取得される状態量情報信号は、ネットワークインタフェース23、33を介して管理装置Cに送信されることで、ポンプ装置P2の異常検知に利用され得る。 The control units 22 and 32 of the host devices G1 and G2 can include the communication status information acquisition units 25 and 35 and the status quantity information acquisition units 26 and 36. Of these, the communication status information acquisition units 25 and 35 can be used to acquire wireless status information from the wireless communication signals SG1 and SG2 acquired by the wireless communication units 21 and 31. Here, the wireless state information may be information indicating the communication state of the wireless communication signals SG1 and SG2, and more specifically, includes at least one of the radio wave strength and stability of the wireless communication signals SG1 and SG2, preferably both. May be. Of this wireless state information, the radio wave strength (dBm) of the wireless communication signals SG1 and SG2 can be specified by using a well-known measuring instrument, and the stability of the wireless communication signals SG1 and SG2 is, for example, the radio wave per unit time. It can be specified based on whether or not the normal number of receptions or the variation (or deviation) of the received radio wave intensity is within a certain value. Further, the state quantity information acquisition units 26 and 36 may acquire the state quantity information signals received by the wireless communication units 21 and 31. The state quantity information signal acquired here can be used for abnormality detection of the pump device P2 by being transmitted to the management device C via the network interfaces 23 and 33.
 管理装置Cは、図2に示すように、例えばクラウドサービスを構成するための仮想マシン(VM)の形態で提供することができる。この仮想マシンからなる管理装置Cは、ネットワークNW上にアクセス可能な状態で提供され、少なくとも演算モジュール41と、ストレージ領域42を含むものとすることができる。 As shown in FIG. 2, the management device C can be provided, for example, in the form of a virtual machine (VM) for configuring a cloud service. The management device C including the virtual machine is provided in a state of being accessible on the network NW, and may include at least the arithmetic module 41 and the storage area 42.
 管理装置Cの演算モジュール41は、選定部43と異常検知部44とを含むことができる。このうち、選定部43は、2つの上位機器G1、G2の通信状態情報取得部25、35において取得された、監視装置M21との間の無線通信信号SG1、SG2の無線状態情報を参酌し、監視装置M21と、この監視装置M21が検出したポンプ装置P2の状態量情報信号を取得するのに適した上位機器が上位機器G1と上位機器G2のいずれであるかとを選定するためのものとすることができる。この選定は、演算モジュール41が自動で行うようにしてもよいし、端末装置TDのモニタに各上位機器G1、G2で取得された無線状態情報を表示し、管理者ADが選定することで実現できるようにしてもよい。また、異常検知部44は、ポンプ装置P1~Pnの状態量に基づいてポンプ装置P1~Pnに異常が生じているか否かを検知するものとすることができる。異常検知部44における異常検知の手法としては、教師あり学習(例えばニューラルネットワークやサポートベクターマシンを用いたもの)又は教師なし学習(例えばオートエンコーダやクラスタリングを用いたもの)を経て生成された学習済モデルによるもの、あるいは閾値を用いたルールベースのもの等を用いて自動的に検知(あるいは推論)することが好ましい。なお、端末装置TDのモニタに各上位機器G1、G2で取得された状態量を表示することで、管理者ADが異常の有無を手動で判断するようにしてもよい。 The calculation module 41 of the management device C can include a selection unit 43 and an abnormality detection unit 44. Of these, the selection unit 43 takes into consideration the wireless status information of the wireless communication signals SG1 and SG2 with the monitoring device M21 acquired by the communication status information acquisition units 25 and 35 of the two higher-level devices G1 and G2. It is for selecting whether the higher-level device suitable for acquiring the state amount information signal of the monitoring device M21 and the pump device P2 detected by the monitoring device M21 is the higher-level device G1 or the higher-level device G2. be able to. This selection may be performed automatically by the arithmetic module 41, or may be realized by displaying the radio status information acquired by each higher-level device G1 and G2 on the monitor of the terminal device TD and selecting by the administrator AD. You may be able to do it. Further, the abnormality detection unit 44 can detect whether or not an abnormality has occurred in the pump devices P1 to Pn based on the state quantity of the pump devices P1 to Pn. As a method of detecting anomalies in the anomaly detection unit 44, learned through supervised learning (for example, using a neural network or a support vector machine) or unsupervised learning (for example, using an autoencoder or clustering). It is preferable to automatically detect (or infer) using a model or a rule-based one using a threshold. By displaying the state quantities acquired by the higher-level devices G1 and G2 on the monitor of the terminal device TD, the administrator AD may manually determine whether or not there is an abnormality.
 また、管理装置Cのストレージ領域42は、演算モジュール41で用いられる各種プログラムや、取得したポンプ装置P1~Pnの状態量及び通信状態情報等を格納するためのものとすることができる。このストレージ領域42は、例えばネットワーク上の任意のデータベースの領域を割り当てることで構成することが可能である。 Further, the storage area 42 of the management device C can be used to store various programs used in the calculation module 41, acquired state quantities of the pump devices P1 to Pn, communication state information, and the like. The storage area 42 can be configured, for example, by allocating an area of an arbitrary database on the network.
 次に、本実施の形態に係る監視システム1における通信経路を確定する方法について、説明を行う。なお、以下の説明においては、監視システム1の特に図2に示す部分において、一の監視装置M21が検出したポンプ装置P2の状態量情報信号を取得すべき上位機器を特定することで、この監視装置M21と管理装置Cの間の通信経路を確定する方法を例示的に説明する。なお、当該通信経路を確定する方法は、工場F等に新たに監視システム1を適用したタイミングに加え、例えば新たにポンプ装置、監視装置あるいは上位機器が工場F内に設置されたタイミングで実施すればよい。 Next, a method for determining the communication path in the monitoring system 1 according to the present embodiment will be described. In the following description, in the part of the monitoring system 1 particularly shown in FIG. 2, this monitoring is performed by specifying a higher-level device to acquire the state quantity information signal of the pump device P2 detected by one monitoring device M21. A method of determining a communication path between the device M21 and the management device C will be exemplified. The method of determining the communication path should be carried out at the timing when the monitoring system 1 is newly applied to the factory F or the like, for example, when a pump device, a monitoring device or a higher-level device is newly installed in the factory F. Just do it.
 図3は、本開示の一実施の形態に係る監視システム1内の通信経路を確定する方法の一例を示すフローチャートである。管理装置Cからの要求等に基づき、当該方法が実施されると、図3に示すように、先ず、一の監視装置M21から、当該監視装置M21の通信可能範囲内に存在する全ての上位機器に対して、所定の無線通信信号を送信する(ステップS11)。本実施の形態においては、図2に示すように、監視装置M21の通信可能範囲内には2つの上位機器G1、G2が存在しているため、監視装置M21はこれらの上位機器G1、G2に対して所定の無線通信信号SG1、SG2を送信し、上位機器G1、G2は、監視装置M21から送信された当該所定の無線通信信号SG1、SG2をそれぞれ受信する(ステップS12)。この所定の無線通信信号SG1、SG2に含まれる具体的な情報については既に一例を上述しているのでここでは説明を省略する。また、複数の上位機器G1、G2に送信される無線通信信号SG1、SG2を共通の信号とすると、後述する比較が容易となり好ましい。 FIG. 3 is a flowchart showing an example of a method of determining a communication path in the monitoring system 1 according to the embodiment of the present disclosure. When the method is implemented based on a request from the management device C or the like, as shown in FIG. 3, first, from one monitoring device M21, all higher-level devices existing within the communicable range of the monitoring device M21. A predetermined wireless communication signal is transmitted to the user (step S11). In the present embodiment, as shown in FIG. 2, since two higher-level devices G1 and G2 exist within the communicable range of the monitoring device M21, the monitoring device M21 is attached to these higher-level devices G1 and G2. The predetermined wireless communication signals SG1 and SG2 are transmitted to the predetermined wireless communication signals SG1 and SG2, and the higher-level devices G1 and G2 receive the predetermined wireless communication signals SG1 and SG2 transmitted from the monitoring device M21, respectively (step S12). Since specific information contained in the predetermined wireless communication signals SG1 and SG2 has already been described above as an example, the description thereof will be omitted here. Further, it is preferable that the wireless communication signals SG1 and SG2 transmitted to the plurality of higher-level devices G1 and G2 are common signals because the comparison described later becomes easy.
 次に、監視装置M21から送信された所定の無線通信信号を受信した各上位機器G1、G2において、受信した所定の無線通信信号の無線状態情報を取得する(ステップS13)。ここで、無線状態情報としては、無線通信信号の電波強度と、無線通信信号の安定性の少なくとも一方、好ましくはその両方を含むものであってよい。 Next, the higher-level devices G1 and G2 that have received the predetermined wireless communication signal transmitted from the monitoring device M21 acquire the wireless state information of the received predetermined wireless communication signal (step S13). Here, the wireless state information may include at least one of the radio wave strength of the wireless communication signal and the stability of the wireless communication signal, preferably both.
 各上位機器G1、G2において取得された無線状態情報は、ネットワークインタフェース23、33により、ネットワークNWを介して管理装置Cに送信される(ステップS14)。そして、管理装置Cに集約された一の監視装置M21と各上位機器G1、G2との間の無線状態情報を比較等することにより、一の監視装置M21とこの一の監視装置M21との通信を行うのに最適な一の上位機器とが選定される(ステップS15)。当該選定は、各上位機器G1、G2から送信された無線状態情報に含まれる電波強度の値及び/又は安定性の値の大小関係を比較することで選定部43が自動的に選定を行うようにしてもよいし、これらの値を管理者ADが確認することにより手動で選定を行うようにしてもよいし、これらを組み合わせてもよい。 The radio state information acquired in each of the higher-level devices G1 and G2 is transmitted to the management device C via the network NW by the network interfaces 23 and 33 (step S14). Then, the communication between the one monitoring device M21 and the one monitoring device M21 is performed by comparing the radio state information between the one monitoring device M21 integrated in the management device C and the higher-level devices G1 and G2. The most suitable high-end device is selected (step S15). For the selection, the selection unit 43 automatically selects by comparing the magnitude relationship between the radio wave strength value and / or the stability value included in the radio wave state information transmitted from each higher-level device G1 and G2. Alternatively, the administrator AD may check these values for manual selection, or a combination of these values may be used.
 管理装置Cにおいて一の監視装置M21及びこの一の監視装置M21に対する一の上位機器(例えば上位機器G2)の選定が完了すると、管理装置Cは、当該選定結果を、例えば一の上位機器G2に一の監視装置M21が特定可能な固有アドレス等の情報と共に返信する(ステップS16)。そして、選定結果を受信した上位機器G2は、当該選定結果に基づいて一の監視装置M21との間の通信を確立する(ステップS17)。上述した一連の工程により、一の監視装置M21から送信される状態量情報信号は、一の上位機器G2を経由して管理装置Cへ送信されるという通信経路が確定される。なお、監視装置と上位機器との間の通信を確立する(以下、これを「ペアリング」ともいう)方法としては、例えば監視装置M21及び上位機器G2のメモリ15、34内に、送信先の上位機器情報及び受信する監視装置情報、あるいは通信に用いるキー情報等を格納しておき、無線通信を行う際、当該情報を添付あるいは参照することで、特定の通信経路で通信を行うよう設定すればよい。 When the selection of one higher-level device (for example, higher-level device G2) for one monitoring device M21 and this one higher-level device M21 is completed in the management device C, the management device C transfers the selection result to, for example, one higher-level device G2. One monitoring device M21 returns with information such as a identifiable unique address (step S16). Then, the host device G2 that has received the selection result establishes communication with one monitoring device M21 based on the selection result (step S17). Through the series of steps described above, the communication path that the state quantity information signal transmitted from one monitoring device M21 is transmitted to the management device C via one higher-level device G2 is determined. As a method of establishing communication between the monitoring device and the host device (hereinafter, this is also referred to as "pairing"), for example, in the memories 15 and 34 of the monitoring device M21 and the host device G2, the transmission destination Store higher-level device information, received monitoring device information, key information used for communication, etc., and when performing wireless communication, set the communication to be performed on a specific communication path by attaching or referring to the information. Just do it.
 上述の工程をその通信可能距離内に複数の上位機器が存在している全ての監視装置に対して実行すれば、工場F内の全ての監視装置M11~Mn2の通信経路が確定する。これにより、各監視装置M11~Mn2から送信される状態量情報信号は、常に一の通信経路を経て管理装置Cに送信されることとなり、通信負荷及び通信コストを抑制することができると共に、管理装置Cにおけるデータ管理を容易とすることができるようになる。 If the above-mentioned process is executed for all the monitoring devices in which a plurality of higher-level devices exist within the communicable distance, the communication paths of all the monitoring devices M11 to Mn2 in the factory F are determined. As a result, the state quantity information signals transmitted from the monitoring devices M11 to Mn2 are always transmitted to the management device C via one communication path, so that the communication load and the communication cost can be suppressed and the management can be performed. Data management in the device C can be facilitated.
 図4は、本開示の一実施の形態に係る監視システム1における異常の検知方法の一例を示すフローチャートである。図4に示すように、本実施の形態に係る監視システム1は、管理装置Cにおいて、上述した通信経路が確定した後に、以下の工程を実施することにより、ポンプ装置P1~Pnの異常を検知することができる。なお、以下の説明は、異常の検知対象を工場F内の全てのポンプ装置P1~Pnとした場合について記載しているが、特定のポンプ装置のみを異常の検知対象とすることも可能である。 FIG. 4 is a flowchart showing an example of an abnormality detection method in the monitoring system 1 according to the embodiment of the present disclosure. As shown in FIG. 4, the monitoring system 1 according to the present embodiment detects an abnormality in the pump devices P1 to Pn by performing the following steps in the management device C after the above-mentioned communication path is determined. can do. The following description describes the case where the abnormality detection target is all the pump devices P1 to Pn in the factory F, but it is also possible to set only a specific pump device as the abnormality detection target. ..
 本実施の形態に係る監視システム1における異常の検知に際しては、先ず、予め設定された時間が経過したことにより、あるいは管理者ADからの入力動作等により、工場F内のポンプ装置P1~Pnの状態量の検出タイミングとなったか否かを検知する(ステップS21)。そして、当該状態量の検出タイミングとなったことを検知した際(ステップS21でYes)には、管理装置Cあるいは上位機器G1~Gmから各監視装置M11~Mn2へ状態量の取得要求を送信すること、あるいは各監視装置M11~Mn2内の図示しないタイマ機能等に基づき、各監視装置M11~Mn2において、状態量情報信号を、事前にペアリングされた一の上位機器に対して送信する(ステップS22)。例えば図3に示す工程を経て通信経路が確定された監視装置M21にあっては、ステップS22において、状態量情報信号はステップS15において選定された一の上位機器、すなわち上位機器G2に対してのみ送信され、通信可能範囲内に存在する他の上位機器G1には送信されない。なお、ここで送信される状態量情報信号に含まれる状態量のデータは、センサ部14において所定期間の間に検出されメモリ15内に蓄積された複数の状態量のデータであってもよいし、センサ部14がリアルタイムに検出した状態量のデータのみであってもよい。また、ここで送信される状態量情報信号には、状態量のデータに加えて、当該状態量を検出した監視装置の固有アドレスや、送信先情報としての一の上位機器に関する情報、あるいは監視装置が設置されたポンプ装置の情報等を含むことが好ましい。 When detecting an abnormality in the monitoring system 1 according to the present embodiment, first, due to the elapse of a preset time or an input operation from the administrator AD, the pump devices P1 to Pn in the factory F It is detected whether or not the state quantity detection timing has come (step S21). Then, when it is detected that the detection timing of the state quantity has come (Yes in step S21), a request for acquisition of the state quantity is transmitted from the management device C or the higher-level devices G1 to Gm to the monitoring devices M11 to Mn2. In other words, or based on a timer function (not shown) in each monitoring device M11 to Mn2, each monitoring device M11 to Mn2 transmits a state quantity information signal to one higher-level device paired in advance (step). S22). For example, in the monitoring device M21 whose communication path is determined through the process shown in FIG. 3, in step S22, the state quantity information signal is sent only to one higher-level device selected in step S15, that is, higher-level device G2. It is transmitted and is not transmitted to other higher-level devices G1 existing within the communicable range. The state quantity data included in the state quantity information signal transmitted here may be a plurality of state quantity data detected by the sensor unit 14 during a predetermined period and stored in the memory 15. , Only the data of the state quantity detected by the sensor unit 14 in real time may be used. Further, in the state quantity information signal transmitted here, in addition to the state quantity data, the unique address of the monitoring device that detected the state quantity, information about one higher-level device as transmission destination information, or the monitoring device. It is preferable to include information on the pump device in which the device is installed.
 次に、各監視装置M11~Mn2から送信された状態量情報信号を受信した上位機器G1~Gmは、当該状態量情報信号を、ネットワークインタフェース23、33を用いて、管理装置Cに送信する(ステップS23)。そして、複数の上位機器G1~Gmから送信された状態量情報信号を受信した管理装置Cは、当該状態量情報信号を、必要に応じて過去に受信した状態量情報をも参酌しつつ異常検知部44において分析し、異常の有無を判定する(ステップS24)。 Next, the higher-level devices G1 to Gm that have received the state quantity information signals transmitted from the monitoring devices M11 to Mn2 transmit the state quantity information signals to the management device C using the network interfaces 23 and 33 (the state quantity information signals are transmitted to the management device C). Step S23). Then, the management device C that has received the state quantity information signals transmitted from the plurality of higher-level devices G1 to Gm detects the abnormality while taking into consideration the state quantity information signals received in the past as necessary. The unit 44 analyzes and determines the presence or absence of an abnormality (step S24).
 上記の通り、本実施の形態に係る監視システム1においては、上述したように監視装置M11~Mn2から管理装置Cに至るまでの通信経路が確定されているため、一の監視装置からの状態量情報信号は一の通信経路を介して送信される。したがって、管理装置Cに集約されるデータは同一の情報を含んでいないため、集約されたデータの重複をチェックしたりする必要がなく、データ管理を容易にしている。 As described above, in the monitoring system 1 according to the present embodiment, since the communication path from the monitoring devices M11 to Mn2 to the management device C is determined as described above, the state quantity from one monitoring device is determined. Information signals are transmitted via one communication path. Therefore, since the data aggregated in the management device C does not include the same information, it is not necessary to check for duplication of the aggregated data, which facilitates data management.
 ところで、上記監視システム1が適用される工場Fは、製造する製品の変更や機械の劣化等に伴って、機械のレイアウトが変更となったり、機械の入れ替えが行われたりすることが通常である。特に、機械のレイアウトが変更となった場合には、監視装置と上位機器との位置関係が変わったり、監視装置と上位機器との間に障害物が設置されたりすることが起こり得る。このような場合には、当然に監視装置と上位機器との通信状態が変化するため、通信経路を再設定するとよい。そこで、本開示の監視システム1の通信経路を確定する方法においては、オプションとして、上述したステップに加えて、ペアリングが行われた後に、選定された一の監視装置及び一の上位機器に対する再選定指示を管理装置Cあるいは任意の上位装置が受信した際に、一の監視装置及び一の上位機器の選定(図3参照。)をやり直すステップを備えていると好ましい。このようなステップを備えることにより、確定した通信経路を容易に変更することができるようになり、通信環境の変更に柔軟に対応できるようになる。 By the way, in the factory F to which the monitoring system 1 is applied, the layout of the machine is usually changed or the machine is replaced due to a change in the product to be manufactured, deterioration of the machine, or the like. .. In particular, when the layout of the machine is changed, the positional relationship between the monitoring device and the higher-level device may change, or an obstacle may be installed between the monitoring device and the higher-level device. In such a case, the communication state between the monitoring device and the host device naturally changes, so it is advisable to reset the communication path. Therefore, in the method of determining the communication path of the monitoring system 1 of the present disclosure, as an option, in addition to the above-mentioned steps, after pairing is performed, the selected monitoring device and one higher-level device are re-established. When the management device C or any higher-level device receives the selection instruction, it is preferable to include a step of reselecting one monitoring device and one higher-level device (see FIG. 3). By providing such a step, it becomes possible to easily change the fixed communication path, and it becomes possible to flexibly respond to the change in the communication environment.
 また、上記選定をやり直すステップを実行するトリガとしての再選定指示は、管理者ADによる入力動作等に基づくものであってもよいし、再選定指示のタイミングを管理装置C等が自動で判断できるようにしてもよい。管理装置Cにおいて自動で再選定指示のタイミングを判断する場合には、上位機器G1~Gmが、通信可能範囲内にある(ペアリングされていないものを含む)全ての監視装置M11~Mn2との間の通信状態を定期的に把握できるとよい。したがって、通信経路が確定した後においても、各上位機器とその通信可能範囲内の全ての監視装置との間において無線通信信号の送受信を定期的に行うことが好ましい。この際、当該送受信される無線通信信号には、特に上位機器側の制御部の負荷が大きくならないよう、データ量の小さな信号を用いるとよい。 Further, the reselection instruction as a trigger for executing the step of re-selecting the above may be based on an input operation or the like by the administrator AD, and the management device C or the like can automatically determine the timing of the reselection instruction. You may do so. When the management device C automatically determines the timing of the reselection instruction, the host devices G1 to Gm are with all the monitoring devices M11 to Mn2 within the communicable range (including those that are not paired). It would be nice to be able to grasp the communication status between them on a regular basis. Therefore, even after the communication path is determined, it is preferable to periodically send and receive wireless communication signals between each higher-level device and all monitoring devices within the communicable range. At this time, as the transmitted / received wireless communication signal, it is preferable to use a signal having a small amount of data so that the load on the control unit on the host device side does not become large.
 本開示は上述した実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本開示の技術思想に含まれるものである。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure. And all of them are included in the technical idea of the present disclosure.
 本明細書中で引用する刊行物、特許出願及び特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All documents, including publications, patent applications and patents cited herein, are individually specifically shown, referenced and incorporated, and all of their content is described herein. To the same extent, refer to and incorporate here.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞及び同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数及び複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」及び「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限らない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例又は例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。 The use of nouns and similar demonstratives used in connection with the description of the invention (particularly in connection with the following claims) is not particularly pointed out herein or clearly inconsistent with the context. , Singular and plural. The phrases "prepare," "have," "include," and "include" are to be interpreted as open-ended terms (ie, meaning "including, but not limited to," unless otherwise noted). The description of the numerical range herein is intended solely to serve as an abbreviation for individually referring to each value within that range, unless otherwise noted herein. Each value is incorporated herein as if it were individually listed herein. All methods described herein can be performed in any suitable order, as long as they are not specifically pointed out herein or are clearly inconsistent with the context. All examples or exemplary phrases used herein (eg, "etc.") are intended solely to better illustrate the invention and set limits to the scope of the invention, unless otherwise stated. is not it. Nothing in the specification shall be construed as indicating an element not described in the claims as essential to the practice of the present invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。したがって本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正及び均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。
 
In the present specification, preferred embodiments of the present invention are described, including the best embodiments known to the present inventor for carrying out the present invention. For those skilled in the art, reading the above description will reveal variations of these preferred embodiments. The inventor expects an expert to apply such modifications as appropriate, and intends to implement the invention by methods other than those specifically described herein. .. Accordingly, the invention includes all amendments and equivalents of the content of the claims attached herein, as permitted by applicable law. Moreover, any combination of the above elements in all modifications is included in the invention unless specifically pointed out herein or in obvious context.

Claims (5)

  1.  監視システム内の通信経路を確定する方法であって、
     回転機械に設置され前記回転機械の状態量を検出する1又は複数の監視装置から、前記1又は複数の監視装置と無線通信が可能な複数の上位機器へ、少なくとも送信元の前記1又は複数の監視装置が特定可能な情報を含む所定強度の無線通信信号を送信するステップと、
     前記複数の上位機器のそれぞれにおいて、受信した前記無線通信信号の通信状態情報を取得するステップと、
     前記複数の上位機器のそれぞれが取得した前記通信状態情報に基づき、前記1又は複数の監視装置のうちの一の監視装置と、前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定するステップと、を備える、
     監視システム内の通信経路を確定する方法。
    It is a method of determining the communication path in the monitoring system.
    From one or more monitoring devices installed in the rotating machine to detect the state quantity of the rotating machine to a plurality of higher-level devices capable of wireless communication with the one or more monitoring devices, at least the one or more transmission sources. A step of transmitting a radio communication signal of a predetermined strength including information that can be identified by a monitoring device, and
    A step of acquiring communication status information of the received wireless communication signal in each of the plurality of higher-level devices, and
    Based on the communication state information acquired by each of the plurality of higher-level devices, information including the monitoring device of one of the one or the plurality of monitoring devices and the state amount detected by the one monitoring device is acquired. It is equipped with a step to select one higher-level device.
    How to determine the communication path in the monitoring system.
  2.  前記通信状態情報は、前記無線通信信号の電波強度と安定性とを含む、
     請求項1に記載の監視システム内の通信経路を確定する方法。
    The communication state information includes the radio field strength and stability of the wireless communication signal.
    The method for determining a communication path in the monitoring system according to claim 1.
  3.  前記一の監視装置は、前記一の上位機器に対してのみ前記状態量を含む情報を送信する、
     請求項1又は請求項2に記載の監視システム内の通信経路を確定する方法。
    The one monitoring device transmits information including the state quantity only to the one higher-level device.
    The method for determining a communication path in the monitoring system according to claim 1 or 2.
  4.  前記複数の上位機器と通信可能な管理装置又は前記複数の上位機器内の任意の上位機器において、選定された前記一の監視装置及び前記一の上位機器に対する再選定指示を受信した際に、前記一の監視装置及び前記一の上位機器の選定をやり直すステップを更に備える、
     請求項1乃至請求項3のいずれか1項に記載の監視システム内の通信経路を確定する方法。
    When the management device capable of communicating with the plurality of higher-level devices or any higher-level device in the plurality of higher-level devices receives a reselection instruction for the selected one monitoring device and the first higher-level device, the above-mentioned Further provided with a step of reselecting one monitoring device and one higher-level device.
    The method for determining a communication path in the monitoring system according to any one of claims 1 to 3.
  5.  1又は複数の回転機械に設置され、前記1又は複数の回転機械の状態量を検出する1又は複数の監視装置と、
     前記1又は複数の監視装置と無線通信が可能な複数の上位機器であって、前記1又は複数の監視装置との間の前記無線通信における通信状態情報を取得する通信状態情報取得部を備える、前記複数の上位機器と、
     前記複数の上位機器から前記1又は複数の回転機械の前記状態量を含む情報を取得して管理する管理装置であって、前記複数の上位機器のそれぞれの前記通信状態情報取得部において取得された前記1又は複数の監視装置のうちの一の監視装置との間の無線通信における前記通信状態情報に基づき、前記一の監視装置と前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定する選定部を備える、前記管理装置と、を備える、
     監視システム。
     
    One or more monitoring devices installed in one or more rotary machines and detecting the state quantity of the one or more rotary machines.
    It is a plurality of higher-level devices capable of wireless communication with the one or a plurality of monitoring devices, and includes a communication state information acquisition unit for acquiring communication status information in the wireless communication with the one or a plurality of monitoring devices. With the plurality of higher-level devices,
    It is a management device that acquires and manages information including the state quantity of the one or a plurality of rotary machines from the plurality of higher-level devices, and is acquired by the communication state information acquisition unit of each of the plurality of higher-level devices. Based on the communication state information in the wireless communication between the monitoring device of one of the one or a plurality of monitoring devices, the information including the state amount detected by the one monitoring device and the one monitoring device is acquired. It is equipped with the management device, which is provided with a selection unit for selecting one higher-level device.
    Monitoring system.
PCT/JP2021/023261 2020-08-17 2021-06-18 Method for finalizing communication path in monitoring system, and monitoring system WO2022038884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137347A JP2022033457A (en) 2020-08-17 2020-08-17 Method for determining communication path in monitoring system and monitoring system
JP2020-137347 2020-08-17

Publications (1)

Publication Number Publication Date
WO2022038884A1 true WO2022038884A1 (en) 2022-02-24

Family

ID=80323607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023261 WO2022038884A1 (en) 2020-08-17 2021-06-18 Method for finalizing communication path in monitoring system, and monitoring system

Country Status (3)

Country Link
JP (1) JP2022033457A (en)
TW (1) TW202209133A (en)
WO (1) WO2022038884A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156034A1 (en) * 2010-12-17 2012-06-21 Vestas Wind Systems A/S Apparatus for harvesting energy from a gearbox to power an electrical device and related methods
WO2012124112A1 (en) * 2011-03-15 2012-09-20 オムロン株式会社 Wireless communication monitoring device, wireless communication monitoring system, wireless communication monitoring method, program and recording medium
WO2019087639A1 (en) * 2017-10-31 2019-05-09 住友電気工業株式会社 Wireless sensor system, management device, communication control method and communication control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156034A1 (en) * 2010-12-17 2012-06-21 Vestas Wind Systems A/S Apparatus for harvesting energy from a gearbox to power an electrical device and related methods
WO2012124112A1 (en) * 2011-03-15 2012-09-20 オムロン株式会社 Wireless communication monitoring device, wireless communication monitoring system, wireless communication monitoring method, program and recording medium
WO2019087639A1 (en) * 2017-10-31 2019-05-09 住友電気工業株式会社 Wireless sensor system, management device, communication control method and communication control program

Also Published As

Publication number Publication date
TW202209133A (en) 2022-03-01
JP2022033457A (en) 2022-03-02

Similar Documents

Publication Publication Date Title
US10560820B2 (en) Remotely controlling aspects of pools and spas
US10939313B2 (en) Method and apparatus for managing electronic device through wireless communication
US20200202698A1 (en) Remotely controlling aspects of pools and spas
CN101606012B (en) Device and system for monitoring valves
US20180017997A1 (en) Server rack for improved data center management
US20150049750A1 (en) Remotely controlling aspects of pools and spas
CN105302120A (en) Remote service device, system and method of intelligent equipment
JP5500185B2 (en) Wireless gateway device
CN105805893A (en) Fault detecting method and device for air conditioner
CN110793653A (en) Temperature monitoring method and device
US20180234294A1 (en) System and method for configuring iot devices
CN104408904A (en) Household appliance operation data transmission and receiving method, device and system thereof
KR20170133604A (en) Gateway for smart factory and control system comprising the same
KR101566957B1 (en) Internet of things system for auto setting up group and method thereof
WO2022038884A1 (en) Method for finalizing communication path in monitoring system, and monitoring system
US10848010B2 (en) Battery management system and related methods
KR101605351B1 (en) Method and apparatus for monitoring system using local identification
EP3703426B1 (en) Wireless device and device control system
JP2008046790A (en) Production line monitor system
EP3706090B1 (en) Gateway device for a fire control system
JP5385821B2 (en) Wireless system and program used therefor
EP3769170B1 (en) Industrial wireless multimeter for easy deployment, troubleshooting, and maintenance
WO2022080157A1 (en) Monitoring system, monitoring device, and machine monitoring method
JP2019193011A (en) Communication adapter and management server

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858034

Country of ref document: EP

Kind code of ref document: A1