WO2022038716A1 - Centralized management system - Google Patents

Centralized management system Download PDF

Info

Publication number
WO2022038716A1
WO2022038716A1 PCT/JP2020/031295 JP2020031295W WO2022038716A1 WO 2022038716 A1 WO2022038716 A1 WO 2022038716A1 JP 2020031295 W JP2020031295 W JP 2020031295W WO 2022038716 A1 WO2022038716 A1 WO 2022038716A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
management system
power consumption
unit
indoor unit
Prior art date
Application number
PCT/JP2020/031295
Other languages
French (fr)
Japanese (ja)
Inventor
佑輝 西川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/031295 priority Critical patent/WO2022038716A1/en
Publication of WO2022038716A1 publication Critical patent/WO2022038716A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/37Resuming operation, e.g. after power outages; Emergency starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers

Definitions

  • This disclosure relates to a centralized management system that manages electrical equipment.
  • Patent Document 1 there is a technique for maintaining the operation of an air conditioner by instructing the air conditioner to restart or emergency operation when an abnormality occurs in the air conditioner which is an electric device (for example,).
  • the emergency operation means an operation in which the operating range of the air conditioner is limited based on the operating conditions before the abnormal stop.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a centralized management system capable of maintaining the operation of an electric device in consideration of the electric power supplied to the electric device.
  • the centralized management system receives the value of the power consumption of the electric device and the state data indicating the state of the electric device, and the priority of starting the electric device is based on the received state data. Is determined, the value of the increased power consumption is obtained from the difference between the current power consumption value of the received electric device and the previous power consumption value, and is based on the obtained increased power consumption value. If the difference between the calculated future power consumption value and the specified power value is within the reference value, the future power consumption value is calculated, and if the difference is within the reference value, the priority of the electric device is determined. Outputs an operation command.
  • the operation command is output according to the determined start priority of the electric equipment, so that the electric equipment is operated. Can be maintained.
  • FIG. It is a figure which shows the structure of the air conditioner management system which concerns on Embodiment 1.
  • FIG. It is a functional block diagram of the centralized management system of the air conditioner management system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the table which determines the abnormality of the indoor unit stored in the database part 13 of the centralized management system of the air conditioner management system which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating the operation of the centralized management system which concerns on Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of an air conditioner management system A according to the first embodiment.
  • the air conditioner management system A which is an electric device, has a centralized control system 1 and an air conditioner B.
  • a power monitoring device 5 is connected to the air conditioner management system A.
  • the air conditioner B includes an outdoor unit 2 and an indoor unit 3A, an indoor unit 3B, an indoor unit 3C, an indoor unit 3D, an indoor unit 3E, and an indoor unit 3F connected to the outdoor unit 2.
  • the indoor unit 3A, the indoor unit 3B, and the indoor unit 3C are connected in series to the outdoor unit 2.
  • the indoor unit 3D, the indoor unit 3E, and the indoor unit 3F are connected in series to the outdoor unit 2.
  • six indoor units 3A to 3F are shown, but the present invention is not limited to this.
  • each indoor unit 3A to 3F is also referred to as an indoor unit 3.
  • Indoor units 3A to 3F are arranged in each of the six areas.
  • the activation priority is set for the indoor units 3A to 3F.
  • Priority is preset or dynamically changed by environmental data.
  • the "environmental data" is, for example, the indoor temperature of the area where each indoor unit 3A to 3F is installed.
  • the environmental data may include the suction temperature of each indoor unit 3A to 3F, the difference between the set temperature of each indoor unit 3A to 3F and the indoor temperature, or a combination of these and the wind speed.
  • the environmental data may be included in the content data of the state data described later.
  • the outdoor unit 2 supplies the refrigerant to the indoor unit 3.
  • the refrigerant for example, R410A or the like is used.
  • the outdoor unit 2 has a heat exchanger inside.
  • the heat exchanger of the outdoor unit 2 flows a refrigerant inside, and exchanges heat between the refrigerant and outdoor air or water.
  • the indoor unit 3 has a heat exchanger inside.
  • the heat exchanger of the indoor unit 3 flows a refrigerant inside, and exchanges heat between the refrigerant and the indoor air.
  • the outdoor unit 2 is communicably connected to each of the indoor units 3A to 3F.
  • the centralized management system 1 communicates with each of the outdoor unit 2 and the indoor unit 3 of the air conditioner B.
  • the centralized management system 1 acquires state data indicating the state of operation of the outdoor unit 2 from the outdoor unit 2 of the air conditioner B.
  • the centralized management system 1 includes state data indicating the operating state of the indoor unit 3A from the indoor unit 3A of the air conditioner B, state data indicating the operating state of the indoor unit 3B to the indoor unit 3B, and operation of the indoor unit 3C from the indoor unit 3C. Acquires state data indicating the state.
  • the centralized management system 1 includes state data indicating the operating state of the indoor unit 3D from the indoor unit 3D of the air conditioner B, state data indicating the operating state of the indoor unit 3E from the indoor unit 3E, and indoor unit 3F to the indoor unit 3F. Acquires state data indicating the operating state of.
  • “Status data” includes content items and data content.
  • the content item is information indicating the type of state data
  • the data content is various data indicating the details of the operating state.
  • the types of state data include "run”, “stop”, and outdoor unit operating frequency.
  • the centralized management system 1 receives operation input from the user and transmits the content of the operation input to the outdoor unit 2 and the indoor unit 3 as necessary.
  • the centralized management system 1 acquires the value of the power consumption of the outdoor unit 2 and the indoor unit 3 of the air conditioner B from the power monitoring device 5 by communicating with the power monitoring device 5. For example, there is a method of exchanging numerical values via an electric wire such as a smart meter, a step signal is output when a certain amount is consumed, and the number of steps is stored on the centralized management system 1 side.
  • the value of the power consumption measured by the power monitoring device 5 is a cumulative value.
  • the value of the amount of power consumption at the start of the period is subtracted from the value of the amount of power consumption at the end of the period, and those consumptions are obtained. Find the difference between the electric energy values.
  • the centralized management system 1 records the state data collected from each of the outdoor unit 2 and the indoor unit 3 and the value of the power consumption of the air conditioner B collected from the power monitoring device 5 in the database unit of the centralized management system 1, which will be described later. It is stored in 13 (see FIG. 2).
  • the power monitoring device 5 is an aggregate of devices that measure the value of the power consumption of the air conditioner B.
  • the electric power company installs one or more electricity meters for each facility in order to charge the electricity bill. If it is a large-scale facility, a watt-hour meter may be installed for each working voltage such as 100V, 200V, 6600V.
  • the power monitoring device 5 includes such a power meter.
  • the power monitoring device 5 measures the value of the power consumption of the outdoor unit 2 and the indoor unit 3 of the air conditioner B with a sensor such as a measuring instrument.
  • FIG. 2 is a functional block diagram of the centralized management system 1 of the air conditioner management system A according to the first embodiment.
  • the centralized management system 1 includes a received data processing unit 11, a data analysis unit 12, a database unit 13, a priority calculation unit 14, a communication unit 15, a transmission data processing unit 16, a status monitoring unit 17, and a display.
  • the unit 18 is provided.
  • the communication unit 15 receives the value of the power consumption of the outdoor unit 2 and the indoor unit 3 of the air conditioner B from the power monitoring device 5. Further, the communication unit 15 receives state data indicating the state of the outdoor unit 2 from the outdoor unit 2. The communication unit 15 receives state data indicating the state of the indoor unit 3 from the indoor unit 3. The communication unit 15 sends the received state data to the reception data processing unit 11.
  • the received data processing unit 11 divides the state data received from the communication unit 15 into content items and data contents, and then sends the status data to the data analysis unit 12.
  • the data analysis unit 12 performs formatting processing for storing the content items and data contents of the state data received from the received data processing unit 11 in the database unit 13.
  • the database unit 13 stores the content items and data contents of the state data formatted by the data analysis unit 12. Further, the database unit 13 stores the value of the power consumption of the air conditioner B received by the communication unit 15. Further, the database unit 13 stores the priority of the indoor unit 3 of the air conditioner B calculated by the priority calculation unit 14.
  • the priority calculation unit 14 sets the priority of the indoor unit 3 of the air conditioner B in advance, or dynamically resets it according to an environmental change. As shown in FIG. 1, when a plurality of indoor units 3 are connected to one outdoor unit 2, the priority of the plurality of indoor units 3 is included in the content data of the state data of the plurality of indoor units 3. Determined based on data. This is because the failure of the outdoor unit 2 affects the operation of all the connected indoor units 3. Further, when there is one set of combinations of the outdoor unit 2 and the indoor unit 3 in FIG. 1, the priority of the indoor unit 3 in this set may be higher than the priority of the indoor unit 3.
  • the case where the priority of the indoor unit 3 is set in advance corresponds to the case where the priority of the indoor unit 3 is clearly decided.
  • the (high) server room> office> corridor (low). ) are set in order of priority.
  • the priority will differ depending on the environment in which it is used, such as giving the corridor area for visitors a higher priority than the office.
  • the case of resetting the priority depending on the environment is a case where the priority calculation unit 14 resets the priority based on the environment data included in the content data of the state data stored in the database unit 13. .. For example, when there is a difference between the room temperature and the set temperature of the indoor unit 3, the priority is reset. The priority calculation unit 14 resets the priority of the indoor unit 3 based on the environmental data included in the state data.
  • the state monitoring unit 17 monitors the state of the air conditioner B based on the content items and data contents of the state data that have been shaped by the data analysis unit 12 and stored in the database unit 13.
  • the status monitoring unit 17 periodically transmits a command for requesting status data to the transmission data processing unit 16 in order to monitor the status of the outdoor unit 2 and the indoor unit 3.
  • the condition monitoring unit 17 sends a limited operation command to the outdoor unit 2 and the indoor unit 3 via the transmission data processing unit 16 and the communication unit 15 based on the priority of the indoor unit 3 stored in the database unit 13. Send.
  • the operation command with restrictions includes, for example, the outdoor unit 2 has a control to raise the evaporation temperature during heating operation and the maximum frequency limit of the compressor, and the indoor unit 3 has a set temperature shift and forced thermo-off.
  • the condition monitoring unit 17 obtains a change in the amount of power consumption stored in the database unit 13 when the air conditioner B starts operation. That is, the condition monitoring unit 17 obtains the difference between the current power consumption value of the air conditioner B and the previous power consumption value. Next, the future power consumption value is calculated based on the difference between the obtained power consumption values. Then, when the difference (absolute value) between the calculated future power consumption value and the specified power value is within the reference value, the priority calculation unit 14 determines the indoor unit 3 of the air conditioner B. The operation command is output for the highest priority.
  • the specified value of electric power means the electric power limited by a power failure.
  • the "reference value" is a predetermined percentage of the specified value of electric power.
  • the condition monitoring unit 17 communicates with the transmission data processing unit 16 to the indoor unit 3 having the next highest priority when the change in the power consumption value has a margin for the determined specified value of the power amount.
  • the operation command in the control (A) is transmitted via the unit 15.
  • the ventilation operation of the indoor unit 3 has the lowest power consumption, and when the difference between the set temperature and the room temperature is large in cooling or heating, the power consumption tends to be the highest. It is possible to suppress the power consumption by shifting the evaporation temperature of the outdoor unit 2 and the strength of the maximum frequency limitation of the compressor.
  • the transmission data processing unit 16 transmits a status request to the outdoor unit 2 and the indoor unit 3 via the communication unit 15 in response to a command from the status monitoring unit 17.
  • the outdoor unit 2 and the indoor unit 3 receive the status request from the communication unit 15, the outdoor unit 2 and the indoor unit 3 transmit their own status data to the communication unit 15 in response to the status request.
  • the display unit 18 displays the priority result of the priority calculation unit 14 and various data stored in the database unit 13 on the display screen in response to a request from the user.
  • the display unit 18 includes a display device such as a display.
  • Each function in the centralized management system 1 according to the first embodiment is realized by a processing circuit.
  • the processing circuit that realizes each function may be dedicated hardware or a processor that executes a program stored in the memory.
  • the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). , Or a combination of these.
  • Each function of the received data processing unit 11, the data analysis unit 12, the database unit 13, the priority calculation unit 14, the communication unit 15, the transmission data processing unit 16, the status monitoring unit 17, and the display unit 18 is performed by an individual processing circuit. It may be realized, or the functions of each part may be collectively realized by a processing circuit.
  • each unit of the received data processing unit 11, the data analysis unit 12, the database unit 13, the priority calculation unit 14, the communication unit 15, the transmission data processing unit 16, the status monitoring unit 17, and the display unit 18 The function of is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the processor realizes the functions of each part by reading and executing the program stored in the memory. That is, when the centralized management system 1 is executed by the processing circuit, the received data processing step, the data analysis step, the data storage step, the priority calculation step, the communication step, the transmission data processing step, and the state monitoring step are eventually performed. It has a memory for storing the program to be executed.
  • the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EPROM (Electrically Primory), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EPROM Electrically Primory
  • volatile semiconductor memory is applicable.
  • magnetic disks, flexible disks, optical discs, compact disks, mini disks, DVDs, and the like also fall under the category of memory.
  • the processing circuit can realize the functions of the above-mentioned parts by hardware, software, firmware, or a combination thereof.
  • FIG. 3 is a diagram showing a table 20 for determining an abnormality of the indoor unit 3 stored in the database unit 13 of the centralized management system 1 of the air conditioner management system A according to the first embodiment.
  • the indoor unit 3 to be determined is determined to be the stage S_1.
  • the stage S_1 indicates that there is a possibility that the capacity of the indoor unit 3 to be determined is insufficient or the equipment is abnormal.
  • the indoor unit 3 to be determined is determined to be the stage S_2.
  • the stage S_2 indicates that the indoor unit 3 to be determined is normal.
  • the indoor unit 3 to be determined is determined to be the stage S_3. Since the stage S_3 shifts control from the temperature change of the indoor unit 3 to be determined to the temperature maintenance, even if the temperature change is small, it is not determined to be abnormal.
  • the stage S_4 of the indoor unit 3 to be determined it is determined that the stage S_4 of the indoor unit 3 to be determined.
  • the stage S_4 indicates that the indoor unit 3 to be determined is capable of temperature control due to excessive capacity or other factors. For the indoor unit 3 whose determination target is stage S_4, it is possible to delete the power consumption.
  • FIG. 4 is a flowchart for explaining the operation of the centralized management system 1 according to the first embodiment.
  • step S1 the state monitoring unit 17 calculates the difference between the "current power consumption value” and the "previous power consumption value” stored in the database unit 13, and divides by the time to unit.
  • the value (W) of the increased power consumption per hour is obtained.
  • the condition monitoring unit 17 obtains a change in the "room temperature” of each indoor unit 3 and a change in the "difference between the room temperature and the set temperature".
  • the condition monitoring unit 17 is generally set to a set temperature-room temperature when controlling to raise the temperature such as heating, and is generally set to room temperature-set temperature when controlling to lower the temperature such as cooling. Match the meanings of the signs of and minus.
  • step S2 the stage of the indoor unit 3 to be determined is “stage S_2” (YES in step S2), the process proceeds to step S3.
  • stage S_1 the stage of the indoor unit 3 to be determined is "stage S_1", “stage S_3” or "stage S_4" (NO in step S2), the process proceeds to step S9.
  • step S3 the condition monitoring unit 17 determines whether or not the value of future power consumption may exceed the value of the specified value of electric energy (step S3). Specifically, the state monitoring unit 17 calculates the future power consumption value based on the increased power consumption value obtained in step S1, and the calculated future power consumption value and the specified value. Judge whether the difference (absolute value) from the power value is within the reference value.
  • step S3 When the difference between the future power consumption value and the specified value power value is within the reference value, that is, when the future power consumption value may exceed the specified value power value (step S3). YES), the process proceeds to step S5. When the difference between the future power consumption value and the specified power value is larger than the reference value (NO in step S3), the process proceeds to step S4.
  • step S4 the centralized management system 1 continuously operates the air conditioner B.
  • step S5 when the difference (absolute value) between the future power consumption value and the specified value power value is within the reference value, that is, when the future power consumption has a sufficient margin with respect to the set value. Determine whether to change the control method.
  • the control method corresponds to the maximum frequency limitation of the compressor and the blowing operation of the indoor unit 3 described above.
  • step S5 when the control is a control in which there is a possibility of a momentary power excess, for example, the control for operating the outdoor unit 2 at a heating temperature of 28 ° C. does not need to change the control method (NO in step S5).
  • step S7 When the possibility of momentary power overrun is low (YES in step S5), the process proceeds to step S6 because it is necessary to change the control method.
  • step S6 the control method of the outdoor unit 2 and the indoor unit 3 of the air conditioner B is changed.
  • step S7 it is determined whether to operate the indoor unit 3 having the next priority.
  • the operation of the indoor unit 3 having the next priority is performed when the indoor unit 3 to be determined becomes the above-mentioned "stage S_3".
  • an operation command is transmitted to the indoor unit 3 having the next priority (step S8).
  • step S8 when the operation is started (stop ⁇ operation), the operation with the restricted command is instructed. After that, when step S6 is reached in the next loop, the degree of the restricted command is weakened. For example, it is controlled as forced thermo OFF ⁇ temperature shift ⁇ no limit.
  • step S9 the priorities are exchanged for each of the above-mentioned "stage S_1", “stage S_3", and “stage S_4".
  • the priority of each stage is "stage S_1"> "stage S_3”> "stage S_4".
  • step S10 the operation command is transmitted again in the order determined by the replacement of the priorities in step S9.
  • the centralized management system 1 of the air conditioner B of the first embodiment when the difference between the future power consumption and the specified power value is within the reference value, the priority of the determined electric equipment is followed. Output the operation command. As a result, the operation of the air conditioner B can be maintained with a limited electric power.
  • Embodiment 2 In the first embodiment, it is described from the viewpoint of temperature control, which is a general function of the air conditioner B.
  • the second embodiment relates to a ventilation equipment management system that manages a ventilation equipment which is an electric equipment instead of the air conditioner B.
  • the centralized management system 1 of the ventilation equipment management system of the second embodiment is implemented in that the priority of starting the ventilation equipment is determined based on the concentration of harmful gas (for example, carbon dioxide) in the area where the ventilation equipment is arranged. Is different from Form 1. Further, the centralized management system 1 controls the ventilation equipment, for example, the air volume according to the determined priority.
  • FIG. 5 is a diagram showing the configuration of the ventilation equipment management system D according to the second embodiment.
  • the ventilation device management system D includes a ventilation device 4A, a ventilation device 4B, a ventilation device 4C, a ventilation device 4D, a ventilation device 4E, and a ventilation device 4F.
  • the ventilation devices 4A to 4F are connected to the centralized management system 1.
  • each ventilation device 4A to 4F is also referred to as a ventilation device 4.
  • the activation priority is set for the ventilation devices 4A to 4F. Priority is preset or dynamically changed by environmental data.
  • Ventilation devices 4A-4F are connected to the centralized management system 1.
  • the centralized control system 1 determines the priority of the ventilation device 4A based on the concentration of harmful gas in the area of the ventilation device 4A transmitted from the ventilation device 4A. Further, the centralized management system 1 determines the priority of the ventilation device 4B based on the concentration of harmful gas in the area of the ventilation device 4B transmitted from the ventilation device 4B.
  • the centralized control system 1 determines the priority of the ventilation device 4C based on the concentration of harmful gas in the area of the ventilation device 4C transmitted from the ventilation device 4C.
  • the centralized control system 1 determines the priority of the ventilation device 4D based on the concentration of harmful gas in the area of the ventilation device 4D transmitted from the ventilation device 4D.
  • the centralized control system 1 determines the priority of the ventilation device 4E based on the concentration of harmful gas in the area of the ventilation device 4E transmitted from the ventilation device 4E.
  • the centralized management system 1 determines the priority of the ventilation device 4F based on the concentration of harmful gas in the area of the ventilation device 4F transmitted from the ventilation device 4F.
  • the centralized management system 1 controls the ventilation devices 4A to 4F according to the determined priority, as in the first embodiment.
  • the priority may be determined based on the difference between the harmful gas concentration detected in the area and the target value of the harmful gas concentration in the area.
  • the centralized management system 1 of the second embodiment as in the first embodiment, when the difference between the future power consumption and the specified power value is within the reference value, the determined priority of the electric equipment is obtained.
  • the operation command is output according to the above. As a result, the operation of the ventilation device 4 can be maintained with limited electric power.
  • Embodiment 3 is an air conditioner management system A in which an air conditioner B and a ventilation device 4 are mixed.
  • the ventilation device 4 is interlocked with the air conditioner B.
  • FIG. 6 is a diagram showing the configuration of the air conditioner management system A according to the third embodiment.
  • the same parts as those in FIGS. 1 and 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the ventilation device 4A is interlocked with the indoor unit 3A.
  • the ventilation device 4B is linked with the indoor unit 3B.
  • the ventilation device 4C is linked with the indoor unit 3C.
  • the calculation of the priority order is the same as the calculation method of the first embodiment.
  • the centralized management system 1 controls the system without considering the priority of the ventilation device 4.
  • the same effect as that of the first embodiment can be obtained even in a system in which the indoor unit 3 and the ventilation device 4 coexist.
  • the indoor unit 3 and the ventilation device 4 installed in the same area can be operated at the same time according to the priority of the indoor unit 3.
  • Embodiment 4 is an air conditioner management system A in which an air conditioner B and a ventilation device 4 are mixed.
  • the ventilation device 4 is not interlocked with the air conditioner B and is controlled separately from the air conditioner B.
  • the air conditioner B and the ventilation device 4 are not dependent on each other.
  • the centralized management system 1 implements the second and third embodiments in calculating the priority, uses the temperature for the indoor unit 3, and determines the concentration of harmful gas for the ventilation device 4. Use to determine priorities.
  • the centralized management system 1 calculates the priority of the air conditioner B and the priority of the ventilation device 4, respectively.
  • the priority of the air conditioner B is calculated by a parameter different from the priority of the ventilation device 4. Therefore, the weights are different even if they have the same priority. For example, when the priority of the indoor unit 3 having a difference of 5 degrees between the room temperature and the set temperature and the priority of the ventilation device 4 having a difference of 300 ppm between the indoor carbon dioxide concentration and the target carbon dioxide concentration are the same. Change the priority by the point method.
  • FIG. 7 is a diagram showing the configuration of the air conditioner management system A according to the fourth embodiment.
  • the same parts as those in FIGS. 1 and 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the ventilation device 4A, the ventilation device 4B, and the ventilation device 4C are connected to the centralized management system 1.
  • the centralized management system 1 controls the priority order of the indoor unit 3A to the indoor unit 3C and the ventilation device 4A to the ventilation device 4C.
  • the centralized management system 1 changes the priority order of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B by the following method.
  • the centralized management system 1 calculates the priority points of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B by the following formula.
  • (Score) ⁇ / ⁇ Max ⁇ 100 here, ⁇ : Difference from the target value ⁇ Max: Maximum allowable value of ⁇
  • the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B are in the following states.
  • Ventilation equipment 4B Difference from target value 200ppm maximum allowable difference from target value 500ppm
  • these points are calculated as follows.
  • the score is calculated as 100 points if the difference in the actual environment exceeds the permissible value.
  • the centralized management system 1 determines the priority order of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B according to the calculation results of the scores as follows. Ventilation equipment 4A > Indoor unit 3A > Ventilation equipment 4B > Indoor unit 3B The difference ⁇ from the target value changes depending on the operation. Therefore, the priorities may change at the timing of recalculation.
  • the same effect as that of the first embodiment can be obtained even in a system in which the indoor unit 3 and the ventilation device 4 coexist.
  • Embodiment 5 in addition to the air conditioner B in the first embodiment and the ventilation device 4 in the second embodiment, electric devices such as dimming of lighting, temperature shift of refrigerating / freezing equipment, and heat retention of hot water supply equipment are used. Determine the priority of those with adjustable power consumption, either individually or in combination.
  • a air conditioner management system B air conditioner, C ventilation equipment, D ventilation equipment management system, 1 centralized management system, 2 outdoor units, 3, 3A, 3B, 3C, 3D, 3E, 3F indoor units, 4, 4A 4, 4B, 4C, 4D, 4E, 4F Ventilation equipment, 5 Power monitoring device, 11 Received data processing unit, 12 Data analysis unit, 13 Database unit, 14 Priority calculation unit, 15 Communication unit, 16 Transmission data processing unit, 17 Status monitoring unit, 18 display unit, 20 status determination table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This centralized management system: receives state data that indicates a value for the power consumption amount of electrical equipment and the state of the electrical equipment; determines, on the basis of the received state data, a priority order for starting up the electrical equipment; acquires an increased power consumption value from the difference between the received present power consumption value of the electrical equipment and a previous power consumption value; calculates a future power consumption value on the basis of the increased power consumption value that has been acquired; and, when the difference between the calculated future consumption value and a specified value is within a reference value, outputs an operation command in accordance with the determined priority order of the electrical equipment.

Description

集中管理システムCentralized management system
 本開示は、電気機器を管理する集中管理システムに関する。 This disclosure relates to a centralized management system that manages electrical equipment.
 従来、電気機器である空気調和装置に異常が発生した場合、集中管理システムが空気調和装置に対して再運転又は応急運転を指示することにより、空気調和装置の運転を維持する技術がある(例えば、特許文献1参照)。ここで、応急運転とは、異常停止前の運転条件より空気調和装置の運転範囲を制限する運転を意味する。 Conventionally, there is a technique for maintaining the operation of an air conditioner by instructing the air conditioner to restart or emergency operation when an abnormality occurs in the air conditioner which is an electric device (for example,). , Patent Document 1). Here, the emergency operation means an operation in which the operating range of the air conditioner is limited based on the operating conditions before the abnormal stop.
特開2004-77078号公報Japanese Unexamined Patent Publication No. 2004-77078
 停電が発生し、空気調和装置に十分な電力が供給されない状況において、応急運転が必要な空気調和装置が応急運転を行うと、このような空気調和装置も電力を消費する。その結果、電力不足により、全ての空気調和装置が停止してしまう可能性があり、空気調和装置の運転を維持することができない問題があった。 In a situation where a power outage occurs and sufficient power is not supplied to the air conditioner, if the air conditioner that requires emergency operation performs emergency operation, such an air conditioner also consumes power. As a result, there is a possibility that all the air conditioners may be stopped due to the lack of electric power, and there is a problem that the operation of the air conditioners cannot be maintained.
 本開示は、上記実情に鑑みてなされたものであり、電気機器に供給される電力を考慮して電気機器の運転を維持することができる集中管理システムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a centralized management system capable of maintaining the operation of an electric device in consideration of the electric power supplied to the electric device.
 本開示に係る集中管理システムは、電気機器の消費電力量の値及び前記電気機器の状態を示す状態データを受信し、前記受信された前記状態データに基づいて、前記電気機器の起動の優先順位を決定し、前記受信された前記電気機器の現在の消費電力の値と前回の消費電力の値との差から増加した消費電力の値を求め、前記求められた増加した消費電力の値に基づいて今後の消費電力の値を計算し、前記計算された今後の消費電力の値と規定値の電力の値との差が基準値以内の場合、前記決定された前記電気機器の優先順位に従って、運転指令を出力する。 The centralized management system according to the present disclosure receives the value of the power consumption of the electric device and the state data indicating the state of the electric device, and the priority of starting the electric device is based on the received state data. Is determined, the value of the increased power consumption is obtained from the difference between the current power consumption value of the received electric device and the previous power consumption value, and is based on the obtained increased power consumption value. If the difference between the calculated future power consumption value and the specified power value is within the reference value, the future power consumption value is calculated, and if the difference is within the reference value, the priority of the electric device is determined. Outputs an operation command.
 本開示によれば、今後の消費電力と規定値の電力の値との差が基準値以内の場合、決定された電気機器の起動の優先順位に従って運転指令を出力するので、電気機器の運転を維持することができる。 According to the present disclosure, when the difference between the future power consumption and the specified power value is within the reference value, the operation command is output according to the determined start priority of the electric equipment, so that the electric equipment is operated. Can be maintained.
実施の形態1に係る空気調和装置管理システムの構成を示す図である。It is a figure which shows the structure of the air conditioner management system which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置管理システムの集中管理システムの機能ブロック図である。It is a functional block diagram of the centralized management system of the air conditioner management system which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置管理システムの集中管理システムのデータベース部13に格納される室内機の異常を判断するテーブルを示す図である。It is a figure which shows the table which determines the abnormality of the indoor unit stored in the database part 13 of the centralized management system of the air conditioner management system which concerns on Embodiment 1. FIG. 実施の形態1に係る集中管理システムの動作について説明するためのフローチャートである。It is a flowchart for demonstrating the operation of the centralized management system which concerns on Embodiment 1. 実施の形態2に係る換気機器管理システムの構成を示す図である。It is a figure which shows the structure of the ventilation equipment management system which concerns on Embodiment 2. 実施の形態3に係る空気調和装置管理システムの構成を示す図である。It is a figure which shows the structure of the air conditioner management system which concerns on Embodiment 3. 実施の形態4に係る空気調和装置管理システムの構成を示す図である。It is a figure which shows the structure of the air conditioner management system which concerns on Embodiment 4.
 以下、図面を参照して、実施の形態に係る空気調和装置管理システムについて説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。本開示は、以下の各実施の形態で説明する構成のうち、組合せ可能な構成のあらゆる組合せを含み得る。 Hereinafter, the air conditioner management system according to the embodiment will be described with reference to the drawings. In the drawings, the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary. The present disclosure may include any combination of configurable configurations among the configurations described in each of the following embodiments.
実施の形態1.
 図1は、実施の形態1に係る空気調和装置管理システムAの構成を示す図である。図1に示すように、電気機器である空気調和装置管理システムAは、集中管理システム1及び空気調和装置Bを有する。空気調和装置管理システムAには、電力監視装置5が接続されている。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of an air conditioner management system A according to the first embodiment. As shown in FIG. 1, the air conditioner management system A, which is an electric device, has a centralized control system 1 and an air conditioner B. A power monitoring device 5 is connected to the air conditioner management system A.
 空気調和装置Bは、室外機2並びに室外機2に接続された室内機3A、室内機3B、室内機3C、室内機3D、室内機3E及び室内機3Fを有する。室内機3A、室内機3B及び室内機3Cは、室外機2に直列に接続されている。室内機3D、室内機3E及び室内機3Fは、室外機2に直列に接続されている。なお、実施の形態1においては、6台の室内機3A~3Fを示しているが、これに限られるものではない。室内機3A~3Fを区別する必要がない場合、各室内機3A~3Fを室内機3とも呼ぶ。実施の形態1においては、6つのエリアがある。6つのエリアには、室内機3A~3Fがそれぞれ配置されている。室内機3A~3Fには、起動の優先順位が設定される。優先順位は、事前に設定され、又は環境データにより動的に変更される。「環境データ」は、例えば、各室内機3A~3Fが設置されたエリアの室内温度である。環境データは、各室内機3A~3Fの吸込温度、各室内機3A~3Fの設定温度と室内温度との差、又はこれらと風速との組み合わせを含みうる。環境データは、後述する状態データの内容データに含まれていても良い。 The air conditioner B includes an outdoor unit 2 and an indoor unit 3A, an indoor unit 3B, an indoor unit 3C, an indoor unit 3D, an indoor unit 3E, and an indoor unit 3F connected to the outdoor unit 2. The indoor unit 3A, the indoor unit 3B, and the indoor unit 3C are connected in series to the outdoor unit 2. The indoor unit 3D, the indoor unit 3E, and the indoor unit 3F are connected in series to the outdoor unit 2. In the first embodiment, six indoor units 3A to 3F are shown, but the present invention is not limited to this. When it is not necessary to distinguish between the indoor units 3A to 3F, each indoor unit 3A to 3F is also referred to as an indoor unit 3. In the first embodiment, there are six areas. Indoor units 3A to 3F are arranged in each of the six areas. The activation priority is set for the indoor units 3A to 3F. Priority is preset or dynamically changed by environmental data. The "environmental data" is, for example, the indoor temperature of the area where each indoor unit 3A to 3F is installed. The environmental data may include the suction temperature of each indoor unit 3A to 3F, the difference between the set temperature of each indoor unit 3A to 3F and the indoor temperature, or a combination of these and the wind speed. The environmental data may be included in the content data of the state data described later.
 室外機2は室内機3に対して冷媒を供給する。冷媒としては、例えばR410Aなどを用いる。室外機2は、内部に、熱交換器を有する。室外機2の熱交換器は、内部に冷媒を流し、冷媒と室外の空気又は水との熱交換を行う。室内機3は、内部に、熱交換器を有する。室内機3の熱交換器は、内部に冷媒を流し、冷媒と室内の空気との熱交換を行う。また、室外機2は、各室内機3A~3Fと通信可能に接続されている。 The outdoor unit 2 supplies the refrigerant to the indoor unit 3. As the refrigerant, for example, R410A or the like is used. The outdoor unit 2 has a heat exchanger inside. The heat exchanger of the outdoor unit 2 flows a refrigerant inside, and exchanges heat between the refrigerant and outdoor air or water. The indoor unit 3 has a heat exchanger inside. The heat exchanger of the indoor unit 3 flows a refrigerant inside, and exchanges heat between the refrigerant and the indoor air. Further, the outdoor unit 2 is communicably connected to each of the indoor units 3A to 3F.
 集中管理システム1は、空気調和装置Bの室外機2及び室内機3のそれぞれと通信を行う。集中管理システム1は、空気調和装置Bの室外機2から、室外機2の運態を示す状態データを取得する。集中管理システム1は、空気調和装置Bの室内機3Aから室内機3Aの運転状態を示す状態データ、室内機3Bから室内機3Bの運転状態を示す状態データ及び室内機3Cから室内機3Cの運転状態を示す状態データを取得する。また、集中管理システム1は、空気調和装置Bの室内機3Dから室内機3Dの運転状態を示す状態データ、室内機3Eから室内機3Eの運転状態を示す状態データ及び室内機3Fから室内機3Fの運転状態を示す状態データを取得する。 The centralized management system 1 communicates with each of the outdoor unit 2 and the indoor unit 3 of the air conditioner B. The centralized management system 1 acquires state data indicating the state of operation of the outdoor unit 2 from the outdoor unit 2 of the air conditioner B. The centralized management system 1 includes state data indicating the operating state of the indoor unit 3A from the indoor unit 3A of the air conditioner B, state data indicating the operating state of the indoor unit 3B to the indoor unit 3B, and operation of the indoor unit 3C from the indoor unit 3C. Acquires state data indicating the state. Further, the centralized management system 1 includes state data indicating the operating state of the indoor unit 3D from the indoor unit 3D of the air conditioner B, state data indicating the operating state of the indoor unit 3E from the indoor unit 3E, and indoor unit 3F to the indoor unit 3F. Acquires state data indicating the operating state of.
 「状態データ」は、内容項目と、データ内容とを含む。内容項目は、状態データの種別を示す情報であり、データ内容は運転状態の詳細を示す種々のデータである。状態データの種別には、「運転」、「停止」、室外機運転周波数が含まれる。 "Status data" includes content items and data content. The content item is information indicating the type of state data, and the data content is various data indicating the details of the operating state. The types of state data include "run", "stop", and outdoor unit operating frequency.
 集中管理システム1は、ユーザーからの操作入力を受け付け、必要に応じて、操作入力の内容を室外機2と室内機3とに送信する。集中管理システム1は、電力監視装置5と通信を行うことで、空気調和装置Bの室外機2及び室内機3の消費電力量の値を電力監視装置5から取得する。例えば、スマートメータのような電線を介して数値のやり取りを実施する方法、一定量消費された段階でステップ信号を出力し、集中管理システム1側でステップの回数を保存する等がある。なお、ここで、電力監視装置5が計測する消費電力量の値は、累計値である。そのため、或る期間に消費された消費電力量を求める場合には、当該期間の終了時の消費電力量の値から、当該期間の開始時の消費電力量の値を減算して、それらの消費電力量の値の差分を求める。 The centralized management system 1 receives operation input from the user and transmits the content of the operation input to the outdoor unit 2 and the indoor unit 3 as necessary. The centralized management system 1 acquires the value of the power consumption of the outdoor unit 2 and the indoor unit 3 of the air conditioner B from the power monitoring device 5 by communicating with the power monitoring device 5. For example, there is a method of exchanging numerical values via an electric wire such as a smart meter, a step signal is output when a certain amount is consumed, and the number of steps is stored on the centralized management system 1 side. Here, the value of the power consumption measured by the power monitoring device 5 is a cumulative value. Therefore, when calculating the amount of power consumption consumed in a certain period, the value of the amount of power consumption at the start of the period is subtracted from the value of the amount of power consumption at the end of the period, and those consumptions are obtained. Find the difference between the electric energy values.
 集中管理システム1は、室外機2及び室内機3のそれぞれから収集した状態データ、及び電力監視装置5から収集した空気調和装置Bの消費電力量の値を、後述する集中管理システム1のデータベース部13(図2参照)に格納する。 The centralized management system 1 records the state data collected from each of the outdoor unit 2 and the indoor unit 3 and the value of the power consumption of the air conditioner B collected from the power monitoring device 5 in the database unit of the centralized management system 1, which will be described later. It is stored in 13 (see FIG. 2).
 電力監視装置5は、空気調和装置Bの消費電力量の値を測定する装置の集合体である。電力会社は、電気料金を請求するために1台以上の電力量計を設備毎に設置する。大規模な設備であれば、100V、200V、6600V等の使用電圧毎に電力量計が設置される場合もある。電力監視装置5は、このような電力量計を含む。電力監視装置5は、空気調和装置Bの室外機2及び室内機3の消費電力量の値を、計量器などのセンサーで計測する。 The power monitoring device 5 is an aggregate of devices that measure the value of the power consumption of the air conditioner B. The electric power company installs one or more electricity meters for each facility in order to charge the electricity bill. If it is a large-scale facility, a watt-hour meter may be installed for each working voltage such as 100V, 200V, 6600V. The power monitoring device 5 includes such a power meter. The power monitoring device 5 measures the value of the power consumption of the outdoor unit 2 and the indoor unit 3 of the air conditioner B with a sensor such as a measuring instrument.
 図2は、実施の形態1に係る空気調和装置管理システムAの集中管理システム1の機能ブロック図である。同図に示すように、集中管理システム1は、受信データ処理部11、データ解析部12、データベース部13、優先順位計算部14、通信部15、送信データ処理部16、状態監視部17及び表示部18を備えている。 FIG. 2 is a functional block diagram of the centralized management system 1 of the air conditioner management system A according to the first embodiment. As shown in the figure, the centralized management system 1 includes a received data processing unit 11, a data analysis unit 12, a database unit 13, a priority calculation unit 14, a communication unit 15, a transmission data processing unit 16, a status monitoring unit 17, and a display. The unit 18 is provided.
 通信部15は、電力監視装置5から、空気調和装置Bの室外機2及び室内機3の消費電力量の値を受信する。また、通信部15は、室外機2から、室外機2の状態を示す状態データを受信する。通信部15は、室内機3から、室内機3の状態を示す状態データを受信する。通信部15は、受信した状態データを受信データ処理部11に送る。 The communication unit 15 receives the value of the power consumption of the outdoor unit 2 and the indoor unit 3 of the air conditioner B from the power monitoring device 5. Further, the communication unit 15 receives state data indicating the state of the outdoor unit 2 from the outdoor unit 2. The communication unit 15 receives state data indicating the state of the indoor unit 3 from the indoor unit 3. The communication unit 15 sends the received state data to the reception data processing unit 11.
 受信データ処理部11は、通信部15から受信した状態データを、内容項目とデータ内容とに分割したのち、データ解析部12に送る。 The received data processing unit 11 divides the state data received from the communication unit 15 into content items and data contents, and then sends the status data to the data analysis unit 12.
 データ解析部12は、受信データ処理部11から受信した状態データの内容項目及びデータ内容を、データベース部13に記憶させるための整形処理を行う。 The data analysis unit 12 performs formatting processing for storing the content items and data contents of the state data received from the received data processing unit 11 in the database unit 13.
 データベース部13は、データ解析部12によって整形処理された状態データの内容項目及びデータ内容を記憶する。また、データベース部13は、通信部15が受信した空気調和装置Bの消費電力量の値を記憶する。さらに、データベース部13は、優先順位計算部14で計算された空気調和装置Bの室内機3の優先順位を記憶する。 The database unit 13 stores the content items and data contents of the state data formatted by the data analysis unit 12. Further, the database unit 13 stores the value of the power consumption of the air conditioner B received by the communication unit 15. Further, the database unit 13 stores the priority of the indoor unit 3 of the air conditioner B calculated by the priority calculation unit 14.
 優先順位計算部14は、空気調和装置Bの室内機3の優先順位を事前に設定し、又は、環境変化によって動的に再設定する。図1に示すように、1つの室外機2に複数の室内機3が接続されている場合、複数の室内機3の優先順位は、複数の室内機3の状態データの内容データに含まれる環境データに基づいて決定される。室外機2の故障は、接続される全ての室内機3の運転に影響を及ぼすからである。また、図1の室外機2及び室内機3の組み合わせが、さらに1セットある場合、この1セットの室内機3の優先順位を室内機3の優先順位よりも高くしても良い。 The priority calculation unit 14 sets the priority of the indoor unit 3 of the air conditioner B in advance, or dynamically resets it according to an environmental change. As shown in FIG. 1, when a plurality of indoor units 3 are connected to one outdoor unit 2, the priority of the plurality of indoor units 3 is included in the content data of the state data of the plurality of indoor units 3. Determined based on data. This is because the failure of the outdoor unit 2 affects the operation of all the connected indoor units 3. Further, when there is one set of combinations of the outdoor unit 2 and the indoor unit 3 in FIG. 1, the priority of the indoor unit 3 in this set may be higher than the priority of the indoor unit 3.
 室内機3の優先順位を事前に設定する場合とは、明らかに室内機3の優先順位が決まっている場合に相当する。例えば、空気調和装置Bの室内機3が配置される設備において、サーバー室、事務所、廊下のエリアがあったとすると設備を維持するためには、(高)サーバー室 > 事務所 > 廊下(低)のような順番で優先順位が設定される。ただし、エリアを細分化した場合、来客用廊下エリアを事務所より優先順位を高くする等、使用される環境により優先順位は異なる。 The case where the priority of the indoor unit 3 is set in advance corresponds to the case where the priority of the indoor unit 3 is clearly decided. For example, in the equipment where the indoor unit 3 of the air conditioner B is arranged, if there is an area of a server room, an office, and a corridor, in order to maintain the equipment, the (high) server room> office> corridor (low). ) Are set in order of priority. However, if the area is subdivided, the priority will differ depending on the environment in which it is used, such as giving the corridor area for visitors a higher priority than the office.
 環境によって優先順位を再設定する場合とは、優先順位計算部14が、データベース部13に格納されている状態データの内容データに含まれる環境データに基づいて、優先順位を再設定する場合である。例えば、室温と室内機3の設定温度との差がある場合に優先順位の再設定が行なわれる。優先順位計算部14は、状態データに含まれる環境データに基づいて、室内機3の優先順位を再設定する。 The case of resetting the priority depending on the environment is a case where the priority calculation unit 14 resets the priority based on the environment data included in the content data of the state data stored in the database unit 13. .. For example, when there is a difference between the room temperature and the set temperature of the indoor unit 3, the priority is reset. The priority calculation unit 14 resets the priority of the indoor unit 3 based on the environmental data included in the state data.
 状態監視部17は、データ解析部12によって整形処理されてデータベース部13に記憶された状態データの内容項目及びデータ内容に基づいて、空気調和装置Bの状態を監視する。状態監視部17は、室外機2及び室内機3の状態を監視するために、定期的に、送信データ処理部16に対して、状態データを要求するための指令を送信する。 The state monitoring unit 17 monitors the state of the air conditioner B based on the content items and data contents of the state data that have been shaped by the data analysis unit 12 and stored in the database unit 13. The status monitoring unit 17 periodically transmits a command for requesting status data to the transmission data processing unit 16 in order to monitor the status of the outdoor unit 2 and the indoor unit 3.
 状態監視部17は、データベース部13に格納された室内機3の優先順位に基づいて、制限付きでの運転指令を送信データ処理部16及び通信部15を介して室外機2及び室内機3に送信する。 The condition monitoring unit 17 sends a limited operation command to the outdoor unit 2 and the indoor unit 3 via the transmission data processing unit 16 and the communication unit 15 based on the priority of the indoor unit 3 stored in the database unit 13. Send.
 制限付きでの運転指令とは、例えば、室外機2においては暖房運転時に蒸発温度を上げる制御及び圧縮機の最大周波数制限があり、室内機3においては設定温度シフト及び強制サーモOFFがある。 The operation command with restrictions includes, for example, the outdoor unit 2 has a control to raise the evaporation temperature during heating operation and the maximum frequency limit of the compressor, and the indoor unit 3 has a set temperature shift and forced thermo-off.
 状態監視部17は、空気調和装置Bが運転を開始した段階でデータベース部13に蓄積されている消費電力量の変化を求める。すなわち、状態監視部17は、空気調和装置Bの現在の消費電力の値と前回の消費電力の値との差を求める。次に、求められた消費電力の値の差に基づいて今後の消費電力の値を計算する。そして、計算された今後の消費電力の値と規定値の電力の値との差(絶対値)が基準値以内の場合、優先順位計算部14により空気調和装置Bの室内機3に決定された優先順位が最も高いのに対して、運転指令を出力する。ここで、規定値の電力とは、停電により制限される電力をいう。また、「基準値」とは、規定値の電力の所定パーセントである。 The condition monitoring unit 17 obtains a change in the amount of power consumption stored in the database unit 13 when the air conditioner B starts operation. That is, the condition monitoring unit 17 obtains the difference between the current power consumption value of the air conditioner B and the previous power consumption value. Next, the future power consumption value is calculated based on the difference between the obtained power consumption values. Then, when the difference (absolute value) between the calculated future power consumption value and the specified power value is within the reference value, the priority calculation unit 14 determines the indoor unit 3 of the air conditioner B. The operation command is output for the highest priority. Here, the specified value of electric power means the electric power limited by a power failure. The "reference value" is a predetermined percentage of the specified value of electric power.
 状態監視部17は、消費電力量の値の変化が、決められた規定値の電力量に対して余力がある場合、次に高い優先順位の室内機3に対し、送信データ処理部16、通信部15を介して制御(A)での運転指令を送信する。 The condition monitoring unit 17 communicates with the transmission data processing unit 16 to the indoor unit 3 having the next highest priority when the change in the power consumption value has a margin for the determined specified value of the power amount. The operation command in the control (A) is transmitted via the unit 15.
 一般的に室内機3の送風運転が最も消費電力量が少なく、冷房もしくは暖房で設定温度と室温との差が大きい場合、最も消費電力が多くなる傾向がある。室外機2の蒸発温度シフト及び圧縮機の最大周波数制限の強さにより消費電力量を抑えることが可能である。 In general, the ventilation operation of the indoor unit 3 has the lowest power consumption, and when the difference between the set temperature and the room temperature is large in cooling or heating, the power consumption tends to be the highest. It is possible to suppress the power consumption by shifting the evaporation temperature of the outdoor unit 2 and the strength of the maximum frequency limitation of the compressor.
 送信データ処理部16は、状態監視部17からの指令に応じて、通信部15を介して、室外機2及び室内機3に対して、状態要求を送信する。室外機2及び室内機3は、通信部15からの状態要求を受信すると、状態要求に応じて、自身の状態データを通信部15に対して送信する。 The transmission data processing unit 16 transmits a status request to the outdoor unit 2 and the indoor unit 3 via the communication unit 15 in response to a command from the status monitoring unit 17. When the outdoor unit 2 and the indoor unit 3 receive the status request from the communication unit 15, the outdoor unit 2 and the indoor unit 3 transmit their own status data to the communication unit 15 in response to the status request.
 表示部18は、ユーザーからの要求に応じて、優先順位計算部14の優先順位結果及びデータベース部13に記憶された種々のデータを、表示画面に表示する。表示部18は、ディスプレイなどの表示機器を備えている。 The display unit 18 displays the priority result of the priority calculation unit 14 and various data stored in the database unit 13 on the display screen in response to a request from the user. The display unit 18 includes a display device such as a display.
 次に、集中管理システム1のハードウェア構成について簡単に説明する。実施の形態1に係る集中管理システム1における各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。 Next, the hardware configuration of the centralized management system 1 will be briefly explained. Each function in the centralized management system 1 according to the first embodiment is realized by a processing circuit. The processing circuit that realizes each function may be dedicated hardware or a processor that executes a program stored in the memory.
 処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。受信データ処理部11、データ解析部12、データベース部13、優先順位計算部14、通信部15、送信データ処理部16、状態監視部17及び表示部18の各部の機能それぞれを個別の処理回路で実現してもよいし、各部の機能をまとめて処理回路で実現してもよい。 When the processing circuit is dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). , Or a combination of these. Each function of the received data processing unit 11, the data analysis unit 12, the database unit 13, the priority calculation unit 14, the communication unit 15, the transmission data processing unit 16, the status monitoring unit 17, and the display unit 18 is performed by an individual processing circuit. It may be realized, or the functions of each part may be collectively realized by a processing circuit.
 一方、処理回路がプロセッサの場合、受信データ処理部11、データ解析部12、データベース部13、優先順位計算部14、通信部15、送信データ処理部16、状態監視部17及び表示部18の各部の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、メモリに格納される。プロセッサは、メモリに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、集中管理システム1は、処理回路により実行されるときに、受信データ処理ステップ、データ解析ステップ、データ記憶ステップ、優先順位計算ステップ、通信ステップ、送信データ処理ステップ及び状態監視ステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。 On the other hand, when the processing circuit is a processor, each unit of the received data processing unit 11, the data analysis unit 12, the database unit 13, the priority calculation unit 14, the communication unit 15, the transmission data processing unit 16, the status monitoring unit 17, and the display unit 18 The function of is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The processor realizes the functions of each part by reading and executing the program stored in the memory. That is, when the centralized management system 1 is executed by the processing circuit, the received data processing step, the data analysis step, the data storage step, the priority calculation step, the communication step, the transmission data processing step, and the state monitoring step are eventually performed. It has a memory for storing the program to be executed.
 これらのプログラムは、上記の各部の手順あるいは方法をコンピュータに実行させる。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリに該当する。 These programs cause the computer to execute the procedures or methods of each of the above parts. Here, the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EPROM (Electrically Primory), etc. Alternatively, volatile semiconductor memory is applicable. Further, magnetic disks, flexible disks, optical discs, compact disks, mini disks, DVDs, and the like also fall under the category of memory.
 なお、上記した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that some of the functions of the above-mentioned parts may be realized by dedicated hardware, and some may be realized by software or firmware.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上記した各部の機能を実現することができる。 In this way, the processing circuit can realize the functions of the above-mentioned parts by hardware, software, firmware, or a combination thereof.
 図3は、実施の形態1に係る空気調和装置管理システムAの集中管理システム1のデータベース部13に格納される室内機3の異常を判断するテーブル20を示す図である。図3に示すように、設定温度と室温との差の変化が大きく、かつ室温の変化が小さい場合、判断対象となる室内機3は、ステージS_1と判断される。ステージS_1は、判断対象となる室内機3の能力不足又は機器異常の可能性があることを示す。設定温度と室温との差が大きく、かつ室温変化が大きい場合、判断対象となる室内機3は、ステージS_2と判断される。ステージS_2は、判断対象となる室内機3が正常であることを示す。設定温度と室温の差が小さく、かつ温度変化が小さい場合、判断対象となる室内機3は、ステージS_3と判断される。ステージS_3は、判断対象となる室内機3の温度変化から温度維持に制御をシフトすることから温度変化が小さくても異常とは判別しない。設定温度と室温との差が小さく、かつ温度変化が大きい場合、判断対象となる室内機3のステージS_4と判断される。ステージS_4は、判断対象となる室内機3が能力過多もしくは他の要因により温度制御ができていることを示す。判断対象がステージS_4の室内機3については、使用電力を削除することが可能である。 FIG. 3 is a diagram showing a table 20 for determining an abnormality of the indoor unit 3 stored in the database unit 13 of the centralized management system 1 of the air conditioner management system A according to the first embodiment. As shown in FIG. 3, when the change in the difference between the set temperature and the room temperature is large and the change in the room temperature is small, the indoor unit 3 to be determined is determined to be the stage S_1. The stage S_1 indicates that there is a possibility that the capacity of the indoor unit 3 to be determined is insufficient or the equipment is abnormal. When the difference between the set temperature and the room temperature is large and the room temperature change is large, the indoor unit 3 to be determined is determined to be the stage S_2. The stage S_2 indicates that the indoor unit 3 to be determined is normal. When the difference between the set temperature and the room temperature is small and the temperature change is small, the indoor unit 3 to be determined is determined to be the stage S_3. Since the stage S_3 shifts control from the temperature change of the indoor unit 3 to be determined to the temperature maintenance, even if the temperature change is small, it is not determined to be abnormal. When the difference between the set temperature and the room temperature is small and the temperature change is large, it is determined that the stage S_4 of the indoor unit 3 to be determined. The stage S_4 indicates that the indoor unit 3 to be determined is capable of temperature control due to excessive capacity or other factors. For the indoor unit 3 whose determination target is stage S_4, it is possible to delete the power consumption.
 次に、実施の形態1に係る集中管理システム1の動作について説明する。図4は、実施の形態1に係る集中管理システム1の動作について説明するためのフローチャートである。 Next, the operation of the centralized management system 1 according to the first embodiment will be described. FIG. 4 is a flowchart for explaining the operation of the centralized management system 1 according to the first embodiment.
 ステップS1において、状態監視部17は、データベース部13に記憶された「現在の消費電力量の値」と「前回の消費電力量の値」との差を計算し、時間で割ることで、単位時間あたりに増加した消費電力の値(W)を求める。また、状態監視部17は、各室内機3の「室温」の変化及び「室温と設定温度との差」の変化を求める。なお、状態監視部17は、一般的に暖房のような温度を上げる制御の際は、設定温度-室温、一般的に冷房のような温度を下げる制御の際は、室温-設定温度とし、プラスとマイナスとの符号の意味を合わせておく。 In step S1, the state monitoring unit 17 calculates the difference between the "current power consumption value" and the "previous power consumption value" stored in the database unit 13, and divides by the time to unit. The value (W) of the increased power consumption per hour is obtained. Further, the condition monitoring unit 17 obtains a change in the "room temperature" of each indoor unit 3 and a change in the "difference between the room temperature and the set temperature". The condition monitoring unit 17 is generally set to a set temperature-room temperature when controlling to raise the temperature such as heating, and is generally set to room temperature-set temperature when controlling to lower the temperature such as cooling. Match the meanings of the signs of and minus.
 次に、状態監視部17は、S1において算出された室温の差の変化及び各室内機3の室温と設定温度との差の変化に基づいて、図4のテーブル20に従って、室内機3がステージS_2にあるかを室内機3毎に判断する(ステップS2)。ステップS2において、判断対象となる室内機3のステージが「ステージS_2」の場合(ステップS2のYES)、ステップS3に移行する。判断対象となる室内機3のステージが「ステージS_1」、「ステージS_3」又は「ステージS_4」の場合(ステップS2のNO)、ステップS9に移行する。 Next, in the condition monitoring unit 17, the indoor unit 3 is staged according to the table 20 of FIG. 4 based on the change in the difference in room temperature calculated in S1 and the change in the difference between the room temperature and the set temperature of each indoor unit 3. It is determined for each indoor unit 3 whether it is in S_2 (step S2). In step S2, when the stage of the indoor unit 3 to be determined is “stage S_2” (YES in step S2), the process proceeds to step S3. When the stage of the indoor unit 3 to be determined is "stage S_1", "stage S_3" or "stage S_4" (NO in step S2), the process proceeds to step S9.
 ステップS3では、状態監視部17は、今後の消費電力の値が規定値の電力量の値を超える可能性があるか否かを判断する(ステップS3)。具体的には、状態監視部17は、ステップS1において求められた増加した消費電力の値に基づいて今後の消費電力の値を計算し、計算された今後の消費電力の値と、規定値の電力の値との差(絶対値)が基準値以内であるかを判断する。 In step S3, the condition monitoring unit 17 determines whether or not the value of future power consumption may exceed the value of the specified value of electric energy (step S3). Specifically, the state monitoring unit 17 calculates the future power consumption value based on the increased power consumption value obtained in step S1, and the calculated future power consumption value and the specified value. Judge whether the difference (absolute value) from the power value is within the reference value.
 今後の消費電力の値と、規定値の電力の値との差が基準値以内の場合、すなわち、今後の消費電力の値が規定値の電力の値を超える可能性がある場合(ステップS3のYES)、ステップS5に移行する。今後の消費電力の値と、規定値の電力の値との差が基準値より大きい場合(ステップS3のNO)、ステップS4に移行する。 When the difference between the future power consumption value and the specified value power value is within the reference value, that is, when the future power consumption value may exceed the specified value power value (step S3). YES), the process proceeds to step S5. When the difference between the future power consumption value and the specified power value is larger than the reference value (NO in step S3), the process proceeds to step S4.
 ステップS4では、集中管理システム1は、空気調和装置Bの運転を継続して実施する。 In step S4, the centralized management system 1 continuously operates the air conditioner B.
 ステップS5では、今後の消費電力の値と規定値の電力の値との差(絶対値)が基準値以内の場合、すなわち、今後の消費電力が設定値に対して十分に余裕がある場合、制御方式を変更するか否かを判断する。制御方式とは、前述の圧縮機の最大周波数制限及び室内機3の送風運転に相当する。ステップS5では、制御が瞬間的な電力超過の可能性がある制御の場合、例えば暖房28℃で室外機2を動かす制御は、制御方式を変更する必要がない(ステップS5のNO)として、ステップS7に移行する。瞬間的な電力超過の可能性が低い場合(ステップS5のYES)、制御方式を変更する必要があるとしてステップS6に移行する。 In step S5, when the difference (absolute value) between the future power consumption value and the specified value power value is within the reference value, that is, when the future power consumption has a sufficient margin with respect to the set value. Determine whether to change the control method. The control method corresponds to the maximum frequency limitation of the compressor and the blowing operation of the indoor unit 3 described above. In step S5, when the control is a control in which there is a possibility of a momentary power excess, for example, the control for operating the outdoor unit 2 at a heating temperature of 28 ° C. does not need to change the control method (NO in step S5). Move to S7. When the possibility of momentary power overrun is low (YES in step S5), the process proceeds to step S6 because it is necessary to change the control method.
 ステップS6では、空気調和装置Bの室外機2及び室内機3の制御方式を変更する。ステップS7では、次の優先順位の室内機3の運転を行うかを判断する。次の優先順位の室内機3の運転は、判断対象となる室内機3が上記「ステージS_3」になった場合に行われる。ステップS7において、次の優先順位の室内機3の運転を行うと判断された場合(ステップS7のYES)、次の優先順位の室内機3に運転指令を送信する(ステップS8)。ステップS8において、運転開始(停止→運転)の場合、制限付き指令での運転を指示する。その後、次のループでステップS6になった際に、制限付き指令の度合いを弱くする。例えば、強制サーモOFF→温度シフト→制限なし、のように制御する。 In step S6, the control method of the outdoor unit 2 and the indoor unit 3 of the air conditioner B is changed. In step S7, it is determined whether to operate the indoor unit 3 having the next priority. The operation of the indoor unit 3 having the next priority is performed when the indoor unit 3 to be determined becomes the above-mentioned "stage S_3". When it is determined in step S7 that the indoor unit 3 having the next priority is to be operated (YES in step S7), an operation command is transmitted to the indoor unit 3 having the next priority (step S8). In step S8, when the operation is started (stop → operation), the operation with the restricted command is instructed. After that, when step S6 is reached in the next loop, the degree of the restricted command is weakened. For example, it is controlled as forced thermo OFF → temperature shift → no limit.
 ステップS9では、前述の「ステージS_1」、「ステージS_3」、「ステージS_4」ごとに優先順位の入れ替えが行なわれる。各ステージの優先順位は、「ステージS_1」>「ステージS_3」>「ステージS_4」となる。 In step S9, the priorities are exchanged for each of the above-mentioned "stage S_1", "stage S_3", and "stage S_4". The priority of each stage is "stage S_1"> "stage S_3"> "stage S_4".
 ステップS10では、ステップS9での優先順位の入れ替えにより確定した順番に再度運転指令が送信される。 In step S10, the operation command is transmitted again in the order determined by the replacement of the priorities in step S9.
 従って、実施の形態1の空気調和装置Bの集中管理システム1によれば、今後の消費電力と規定値の電力の値との差が基準値以内の場合、決定された電気機器の優先順位に従って運転指令を出力する。これにより、限られた電力で空気調和装置Bの運転を維持することができる。 Therefore, according to the centralized management system 1 of the air conditioner B of the first embodiment, when the difference between the future power consumption and the specified power value is within the reference value, the priority of the determined electric equipment is followed. Output the operation command. As a result, the operation of the air conditioner B can be maintained with a limited electric power.
実施の形態2.
 実施の形態1では空気調和装置Bの一般的な機能である温度制御の観点で記述した。実施の形態2は、空気調和装置Bの代わりに電気機器である換気機器を管理する換気機器管理システムに関する。実施の形態2の換気機器管理システムの集中管理システム1は、換気機器が配置されたエリアの有害気体(例えば、二酸化炭素)濃度に基づいて、換気機器の起動の優先順位を決定する点が実施の形態1と異なる。また、集中管理システム1は、決定された優先順位に従って、換気機器の制御、例えば、風量の制御を行なう。
Embodiment 2.
In the first embodiment, it is described from the viewpoint of temperature control, which is a general function of the air conditioner B. The second embodiment relates to a ventilation equipment management system that manages a ventilation equipment which is an electric equipment instead of the air conditioner B. The centralized management system 1 of the ventilation equipment management system of the second embodiment is implemented in that the priority of starting the ventilation equipment is determined based on the concentration of harmful gas (for example, carbon dioxide) in the area where the ventilation equipment is arranged. Is different from Form 1. Further, the centralized management system 1 controls the ventilation equipment, for example, the air volume according to the determined priority.
 図5は、実施の形態2に係る換気機器管理システムDの構成を示す図である。なお、図1と同一部分には、同一符号を付し、その説明を省略する。図5に示すように、換気機器管理システムDは、換気機器4A、換気機器4B、換気機器4C、換気機器4D、換気機器4E及び換気機器4Fを有する。換気機器4A~4Fは、集中管理システム1に接続される。 FIG. 5 is a diagram showing the configuration of the ventilation equipment management system D according to the second embodiment. The same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 5, the ventilation device management system D includes a ventilation device 4A, a ventilation device 4B, a ventilation device 4C, a ventilation device 4D, a ventilation device 4E, and a ventilation device 4F. The ventilation devices 4A to 4F are connected to the centralized management system 1.
 なお、実施の形態2においては、6台の換気機器4A~4Fを示しているが、これに限られるものではない。換気機器4A~4Fを区別する必要がない場合、各換気機器4A~4Fを換気機器4とも呼ぶ。実施の形態2においては、6つのエリアがある。6つのエリアには、換気機器4A~4Fがそれぞれ配置されている。換気機器4A~4Fには、起動の優先順位が設定される。優先順位は、事前に設定され、又は環境データにより動的に変更される。 Note that, in the second embodiment, six ventilation devices 4A to 4F are shown, but the present invention is not limited to this. When it is not necessary to distinguish the ventilation devices 4A to 4F, each ventilation device 4A to 4F is also referred to as a ventilation device 4. In the second embodiment, there are six areas. Ventilation devices 4A to 4F are arranged in each of the six areas. The activation priority is set for the ventilation devices 4A to 4F. Priority is preset or dynamically changed by environmental data.
 換気機器4A~4Fは、集中管理システム1に接続される。集中管理システム1は、換気機器4Aから送信される換気機器4Aのエリアの有害気体濃度に基づいて、換気機器4Aの優先順位を決定する。また、集中管理システム1は、換気機器4Bから送信される換気機器4Bのエリアの有害気体濃度に基づいて、換気機器4Bの優先順位を決定する。集中管理システム1は、換気機器4Cから送信される換気機器4Cのエリアの有害気体濃度に基づいて、換気機器4Cの優先順位を決定する。集中管理システム1は、換気機器4Dから送信される換気機器4Dのエリアの有害気体濃度に基づいて、換気機器4Dの優先順位を決定する。集中管理システム1は、換気機器4Eから送信される換気機器4Eのエリアの有害気体濃度に基づいて、換気機器4Eの優先順位を決定する。集中管理システム1は、換気機器4Fから送信される換気機器4Fのエリアの有害気体濃度に基づいて、換気機器4Fの優先順位を決定する。そして、集中管理システム1は、実施の形態1と同様に、決定された優先順位に従って換気機器4A~4Fを制御する。優先度は、エリアで検出された有害気体濃度と、そのエリアの有害気体濃度の目標値との差に基づいて決定されても良い。実施の形態2の集中管理システム1によれば、実施の形態1と同様に、今後の消費電力と規定値の電力の値との差が基準値以内の場合、決定された電気機器の優先順位に従って運転指令を出力する。これにより、限られた電力で換気機器4の運転を維持することができる。 Ventilation devices 4A-4F are connected to the centralized management system 1. The centralized control system 1 determines the priority of the ventilation device 4A based on the concentration of harmful gas in the area of the ventilation device 4A transmitted from the ventilation device 4A. Further, the centralized management system 1 determines the priority of the ventilation device 4B based on the concentration of harmful gas in the area of the ventilation device 4B transmitted from the ventilation device 4B. The centralized control system 1 determines the priority of the ventilation device 4C based on the concentration of harmful gas in the area of the ventilation device 4C transmitted from the ventilation device 4C. The centralized control system 1 determines the priority of the ventilation device 4D based on the concentration of harmful gas in the area of the ventilation device 4D transmitted from the ventilation device 4D. The centralized control system 1 determines the priority of the ventilation device 4E based on the concentration of harmful gas in the area of the ventilation device 4E transmitted from the ventilation device 4E. The centralized management system 1 determines the priority of the ventilation device 4F based on the concentration of harmful gas in the area of the ventilation device 4F transmitted from the ventilation device 4F. Then, the centralized management system 1 controls the ventilation devices 4A to 4F according to the determined priority, as in the first embodiment. The priority may be determined based on the difference between the harmful gas concentration detected in the area and the target value of the harmful gas concentration in the area. According to the centralized management system 1 of the second embodiment, as in the first embodiment, when the difference between the future power consumption and the specified power value is within the reference value, the determined priority of the electric equipment is obtained. The operation command is output according to the above. As a result, the operation of the ventilation device 4 can be maintained with limited electric power.
実施の形態3.
 実施の形態3は、空気調和装置Bと換気機器4とが混在する空気調和装置管理システムAである。換気機器4は、空気調和装置Bと連動する。
Embodiment 3.
The third embodiment is an air conditioner management system A in which an air conditioner B and a ventilation device 4 are mixed. The ventilation device 4 is interlocked with the air conditioner B.
 図6は、実施の形態3に係る空気調和装置管理システムAの構成を示す図である。なお、図1及び図5と同一部分には、同一符号を付し、その説明を省略する。図6において、換気機器4Aは室内機3Aと連動する。換気機器4Bは室内機3Bと連動する。換気機器4Cは室内機3Cと連動する。 FIG. 6 is a diagram showing the configuration of the air conditioner management system A according to the third embodiment. The same parts as those in FIGS. 1 and 5 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 6, the ventilation device 4A is interlocked with the indoor unit 3A. The ventilation device 4B is linked with the indoor unit 3B. The ventilation device 4C is linked with the indoor unit 3C.
 実施の形態3において、優先順位の算出は、実施の形態1の計算方法と同様である。集中管理システム1は、換気機器4の優先順位は考慮せずに、システムの制御を行なう。実施の形態3の空気調和装置管理システムAによれば、室内機3と換気機器4とが混在するシステムにおいても実施の形態1と同様の効果を得ることができる。また、実施の形態3の空気調和装置管理システムAによれば、同じエリア設置された室内機3と換気機器4とを、室内機3の優先順位にしたがって同時に運転できる。 In the third embodiment, the calculation of the priority order is the same as the calculation method of the first embodiment. The centralized management system 1 controls the system without considering the priority of the ventilation device 4. According to the air conditioner management system A of the third embodiment, the same effect as that of the first embodiment can be obtained even in a system in which the indoor unit 3 and the ventilation device 4 coexist. Further, according to the air conditioner management system A of the third embodiment, the indoor unit 3 and the ventilation device 4 installed in the same area can be operated at the same time according to the priority of the indoor unit 3.
実施の形態4.
 実施の形態4は、空気調和装置Bと換気機器4とが混在する空気調和装置管理システムAである。換気機器4は、空気調和装置Bと連動せず、空気調和装置Bとは別に制御される。空気調和装置Bと換気機器4とは、互いに依存関係はない。
Embodiment 4.
The fourth embodiment is an air conditioner management system A in which an air conditioner B and a ventilation device 4 are mixed. The ventilation device 4 is not interlocked with the air conditioner B and is controlled separately from the air conditioner B. The air conditioner B and the ventilation device 4 are not dependent on each other.
 実施の形態4において、集中管理システム1は、優先順位の算出にあたり実施の形態2及び実施の形態3を実施し、室内機3については温度を使用し、換気機器4については有害気体の濃度を使用して、優先順位を決定する。 In the fourth embodiment, the centralized management system 1 implements the second and third embodiments in calculating the priority, uses the temperature for the indoor unit 3, and determines the concentration of harmful gas for the ventilation device 4. Use to determine priorities.
 集中管理システム1は、空気調和装置Bの優先順位と換気機器4の優先順位とをそれぞれ算出する。空気調和装置Bの優先順位は、換気機器4の優先順位とは異なるパラメータで計算される。従って、同じ優先順位であっても重みが異なる。例えば、室温と設定温度との差が5度ある室内機3の優先順位と、室内二酸化炭素濃度と目標二酸化炭素濃度との差が300ppmの換気機器4の優先順位とが同じ優先順位の場合、点数方式で優先順位を変更する。 The centralized management system 1 calculates the priority of the air conditioner B and the priority of the ventilation device 4, respectively. The priority of the air conditioner B is calculated by a parameter different from the priority of the ventilation device 4. Therefore, the weights are different even if they have the same priority. For example, when the priority of the indoor unit 3 having a difference of 5 degrees between the room temperature and the set temperature and the priority of the ventilation device 4 having a difference of 300 ppm between the indoor carbon dioxide concentration and the target carbon dioxide concentration are the same. Change the priority by the point method.
 図7は、実施の形態4に係る空気調和装置管理システムAの構成を示す図である。なお、図1及び図5と同一部分には、同一符号を付し、その説明を省略する。図7において、換気機器4A、換気機器4B及び換気機器4Cは、集中管理システム1に接続される。集中管理システム1は、室内機3A~室内機3C及び換気機器4A~換気機器4Cの優先順位を制御する。 FIG. 7 is a diagram showing the configuration of the air conditioner management system A according to the fourth embodiment. The same parts as those in FIGS. 1 and 5 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 7, the ventilation device 4A, the ventilation device 4B, and the ventilation device 4C are connected to the centralized management system 1. The centralized management system 1 controls the priority order of the indoor unit 3A to the indoor unit 3C and the ventilation device 4A to the ventilation device 4C.
 ここでは、説明の便宜上、室内機3A、室内機3B、換気機器4A及び換気機器4Bの優先順位の変更について説明する。
 集中管理システム1は、以下の方法で室内機3A、室内機3B、換気機器4A及び換気機器4Bの優先順位を変更する。
 集中管理システム1は、室内機3A、室内機3B、換気機器4A及び換気機器4Bの優先順位の点数を以下の式により算出する。
 (点数) = Δ / ΔMax × 100
ここで、
       Δ : 目標値との差
     ΔMax: Δの許容最大値
Here, for convenience of explanation, the change of the priority order of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B will be described.
The centralized management system 1 changes the priority order of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B by the following method.
The centralized management system 1 calculates the priority points of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B by the following formula.
(Score) = Δ / ΔMax × 100
here,
Δ: Difference from the target value ΔMax: Maximum allowable value of Δ
 例えば、室内機3A、室内機3B、換気機器4A及び換気機器4Bが下記のような状態であるとする。
・室内機3A
目標値との差 5度差、目標値との差の許容最大値 10度差
・室内機3B
目標値との差 3度差、目標値との差の許容最大値 10度差
・換気機器4A
目標値との差 300ppm、目標値との差の許容最大値 500ppm
・換気機器4B
目標値との差 200ppm、目標値との差の許容最大値 500ppm
 この場合、これらの点数は以下のように計算される。
 室内機3Aの点数 = 5(度差)/10×100 =50点
 室内機3Bの点数 = 3(度差)/10×100 =30点
 換気機器4Aの点数 = 300(ppm差)/500×100 =60点
 換気機器4Bの点数 = 200(ppm差)/500×100 =40点
 なお、点数は、実環境での差分が許容数値を超える場合は100点として計算される。
For example, it is assumed that the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B are in the following states.
Indoor unit 3A
Difference from the target value 5 degrees difference, maximum allowable difference from the target value 10 degrees difference, indoor unit 3B
Difference from the target value 3 degrees difference, allowable maximum difference from the target value 10 degrees difference ・ Ventilation equipment 4A
Difference from target value 300ppm, maximum allowable difference from target value 500ppm
Ventilation equipment 4B
Difference from target value 200ppm, maximum allowable difference from target value 500ppm
In this case, these points are calculated as follows.
Indoor unit 3A score = 5 (degree difference) / 10 × 100 = 50 points Indoor unit 3B score = 3 (degree difference) / 10 × 100 = 30 points Ventilation equipment 4A score = 300 (ppm difference) / 500 × 100 = 60 points Ventilation equipment 4B score = 200 (ppm difference) / 500 × 100 = 40 points The score is calculated as 100 points if the difference in the actual environment exceeds the permissible value.
 集中管理システム1は、室内機3A、室内機3B、換気機器4A及び換気機器4Bの点数の計算結果に従って、これらの優先順位を以下のように決定する。
 換気機器4A > 室内機3A > 換気機器4B > 室内機3B
 なお、目標値との差Δは運転により変化する。従って、再計算のタイミングで、優先順位は、入れ替わる可能性がある。
The centralized management system 1 determines the priority order of the indoor unit 3A, the indoor unit 3B, the ventilation device 4A, and the ventilation device 4B according to the calculation results of the scores as follows.
Ventilation equipment 4A > Indoor unit 3A > Ventilation equipment 4B > Indoor unit 3B
The difference Δ from the target value changes depending on the operation. Therefore, the priorities may change at the timing of recalculation.
 実施の形態4の空気調和装置管理システムAによれば、室内機3と換気機器4とが混在するシステムにおいても実施の形態1と同様の効果を得ることができる。 According to the air conditioner management system A of the fourth embodiment, the same effect as that of the first embodiment can be obtained even in a system in which the indoor unit 3 and the ventilation device 4 coexist.
実施の形態5.
 実施の形態5では、実施の形態1での空気調和装置Bと実施の形態2の換気機器4の他、照明の調光、冷蔵冷凍機器の温度シフト、給湯機器の保温等の電気機器にて使用電力量を調整可能なものを単独もしくは組み合わせた形での優先順位を決定する。
Embodiment 5.
In the fifth embodiment, in addition to the air conditioner B in the first embodiment and the ventilation device 4 in the second embodiment, electric devices such as dimming of lighting, temperature shift of refrigerating / freezing equipment, and heat retention of hot water supply equipment are used. Determine the priority of those with adjustable power consumption, either individually or in combination.
 実施の形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of claims. The embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the embodiments. These embodiments and variations thereof are included in the scope and gist of the embodiments.
 A 空気調和装置管理システム、B 空気調和装置、C 換気機器、D 換気機器管理システム、1 集中管理システム、2 室外機、3、3A、3B、3C、3D、3E、3F 室内機、4、4A、4B、4C、4D、4E、4F 換気機器、5 電力監視装置、11 受信データ処理部、12 データ解析部、13 データベース部、14 優先順位計算部、15 通信部、16 送信データ処理部、17 状態監視部、18 表示部、20 状態決定テーブル。 A air conditioner management system, B air conditioner, C ventilation equipment, D ventilation equipment management system, 1 centralized management system, 2 outdoor units, 3, 3A, 3B, 3C, 3D, 3E, 3F indoor units, 4, 4A 4, 4B, 4C, 4D, 4E, 4F Ventilation equipment, 5 Power monitoring device, 11 Received data processing unit, 12 Data analysis unit, 13 Database unit, 14 Priority calculation unit, 15 Communication unit, 16 Transmission data processing unit, 17 Status monitoring unit, 18 display unit, 20 status determination table.

Claims (8)

  1.  電気機器の消費電力量の値及び前記電気機器の状態を示す状態データを受信し、
     前記受信された前記状態データに基づいて、前記電気機器の起動の優先順位を決定し、
     前記受信された前記電気機器の現在の消費電力の値と前回の消費電力の値との差から増加した消費電力の値を求め、前記求められた増加した消費電力の値に基づいて今後の消費電力の値を計算し、前記計算された今後の消費電力の値と規定値の電力の値との差が基準値以内の場合、前記決定された前記電気機器の優先順位に従って、運転指令を出力する
    集中管理システム。
    Receives the value of the power consumption of the electric device and the state data indicating the state of the electric device, and receives the state data.
    Based on the received state data, the activation priority of the electric device is determined.
    The value of the increased power consumption is obtained from the difference between the current value of the current power consumption of the received electric device and the value of the previous power consumption, and the future consumption is obtained based on the obtained value of the increased power consumption. The value of electric power is calculated, and if the difference between the calculated future power consumption value and the specified value of electric power is within the reference value, an operation command is output according to the determined priority of the electric device. Centralized management system.
  2.  前記計算された今後の消費電力の値と規定値の電力の値との差が基準値より大きい場合、前記電気機器の運転を継続して実施する
    請求項1記載の集中管理システム。
    The centralized management system according to claim 1, wherein when the difference between the calculated future power consumption value and the specified value of the power value is larger than the reference value, the operation of the electric device is continuously performed.
  3.  前記計算された今後の消費電力の値と規定値の電力の値との差が基準値以内の場合であって、かつ前記電気機器の制御方式を変更する場合、前記電気機器の制御方式を変更し、 前記計算された今後の消費電力の値と規定値の電力の値との差が基準値以内の場合であって、かつ前記電気機器の制御方式を変更する必要がない場合、前記決定された前記電気機器の優先順位に従って、運転指令を出力する
    請求項1又は2に記載の集中管理システム。
    When the difference between the calculated future power consumption value and the specified power value is within the reference value and the control method of the electric device is changed, the control method of the electric device is changed. However, if the difference between the calculated future power consumption value and the specified power value is within the reference value and it is not necessary to change the control method of the electric device, the determination is made. The centralized management system according to claim 1 or 2, which outputs an operation command according to the priority of the electric device.
  4.  前記電気機器は、室外機と室内機とを有する空気調和装置である
    請求項1~3のいずれか1項に記載の集中管理システム。
    The centralized management system according to any one of claims 1 to 3, wherein the electric device is an air conditioner having an outdoor unit and an indoor unit.
  5.  前記状態データは、前記室内機毎に受信される
    請求項4に記載の集中管理システム。
    The centralized management system according to claim 4, wherein the state data is received for each indoor unit.
  6.  前記電気機器は、換気機器である
    請求項1~3のいずれか1項に記載の集中管理システム。
    The centralized management system according to any one of claims 1 to 3, wherein the electric device is a ventilation device.
  7.  換気機器をさらに具備し、
     前記換気機器は、前記室内機と連動している
    請求項4又は5に記載の集中管理システム。
    Further equipped with ventilation equipment,
    The centralized management system according to claim 4 or 5, wherein the ventilation device is linked to the indoor unit.
  8.  前記電気機器は、換気機器を具備し、
     前記優先順位は、前記室内機及び前記換気機器の間で決定される
    請求項4又は5に記載の集中管理システム。
    The electrical equipment is equipped with ventilation equipment.
    The centralized management system according to claim 4 or 5, wherein the priority is determined between the indoor unit and the ventilation device.
PCT/JP2020/031295 2020-08-19 2020-08-19 Centralized management system WO2022038716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031295 WO2022038716A1 (en) 2020-08-19 2020-08-19 Centralized management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031295 WO2022038716A1 (en) 2020-08-19 2020-08-19 Centralized management system

Publications (1)

Publication Number Publication Date
WO2022038716A1 true WO2022038716A1 (en) 2022-02-24

Family

ID=80350471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031295 WO2022038716A1 (en) 2020-08-19 2020-08-19 Centralized management system

Country Status (1)

Country Link
WO (1) WO2022038716A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
JP2013155969A (en) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd Power-consumption management/control system for air conditioner, server device, client device, and power-consumption management/control method for air conditioner
WO2017199298A1 (en) * 2016-05-16 2017-11-23 三菱電機株式会社 Air conditioning system
WO2018154718A1 (en) * 2017-02-24 2018-08-30 三菱電機株式会社 Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
JP2013155969A (en) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd Power-consumption management/control system for air conditioner, server device, client device, and power-consumption management/control method for air conditioner
WO2017199298A1 (en) * 2016-05-16 2017-11-23 三菱電機株式会社 Air conditioning system
WO2018154718A1 (en) * 2017-02-24 2018-08-30 三菱電機株式会社 Air conditioning system

Similar Documents

Publication Publication Date Title
US20240045459A1 (en) Controlling the setback and setback recovery of a power-consuming device
US9638435B2 (en) Systems and methods for optimizing the efficiency of HVAC systems
US9651272B2 (en) Air-conditioning control system and air-conditioning control method
US20170010014A1 (en) Air conditioner test operation application, and air conditioner test operation system
KR20080085733A (en) Remote performance monitoring apparatus and method
EP2375178A1 (en) Load handling balance setting device
US7871014B2 (en) System for controlling demand of multi-air-conditioner
KR20110069100A (en) Energy saving support device
EP2913598A1 (en) Air conditioner and operation method thereof
JP2010048433A (en) Diagnostic support device
US9389599B2 (en) System and method for controlling air conditioner
US8948919B2 (en) Air-conditioning apparatus
KR20190089643A (en) Integrated Monitoring and Control System for a Plurality of Standalone type Air Conditioners deployed and distributed in a wide indoor area
WO2019230487A1 (en) Air conditioning management system and communication control device
WO2014115247A1 (en) System controller, facility management system, demand control method, and program
WO2022038716A1 (en) Centralized management system
KR102164363B1 (en) Intelligent system for building automatic control integrating bas and fms, and method for facility management using the system
EP2623879A2 (en) Power-consumption managementrol system for air conditioner, server device, client device, and power-consumption managementrol method for air conditioner
JP2016023880A (en) Control apparatus of equipment and control method of equipment
US20220217009A1 (en) Device management system
JPWO2020165992A1 (en) Air conditioning system, air conditioning device, operation control method and program
JP2019211108A (en) Air-conditioning management system and communication control device
JP7262458B2 (en) Equipment management system
US11808470B2 (en) Centralized control unit, equipment control system, and control method
JP2011053104A (en) Device and method for monitoring power consumption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP