WO2022038708A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2022038708A1
WO2022038708A1 PCT/JP2020/031252 JP2020031252W WO2022038708A1 WO 2022038708 A1 WO2022038708 A1 WO 2022038708A1 JP 2020031252 W JP2020031252 W JP 2020031252W WO 2022038708 A1 WO2022038708 A1 WO 2022038708A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
side shutoff
unit
outdoor
shutoff valve
Prior art date
Application number
PCT/JP2020/031252
Other languages
French (fr)
Japanese (ja)
Inventor
結 義澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022543869A priority Critical patent/JP7415017B2/en
Priority to PCT/JP2020/031252 priority patent/WO2022038708A1/en
Publication of WO2022038708A1 publication Critical patent/WO2022038708A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure relates to an air conditioner for air conditioning in a room.
  • Patent Document 1 includes an air-conditioning device provided with a shut-off valve device separate from the indoor unit and shuts off the flow of the refrigerant flowing through the refrigerant circuit by closing the shut-off valve provided in the shut-off valve device when the refrigerant leaks. Is disclosed. In this air conditioning equipment, an expansion valve that requires a power source to open and close the valve is used as the shutoff valve of the shutoff valve device.
  • Patent Document 2 discloses an air conditioner in which a shutoff valve is provided in both the liquid side pipe and the gas side pipe in a system having an expansion valve in the indoor unit.
  • a solenoid valve is used as a shutoff valve.
  • a solenoid valve configured to close when the power is lost is known.
  • a solenoid valve used as a shut-off valve in the air conditioner described in Patent Document 2
  • the refrigerant can be shut off even when the power supply is lost.
  • there is a pressure loss in the shutoff valve using the solenoid valve Therefore, when the refrigerant passes through the shutoff valve, the pressure state of the refrigerant changes as compared with the case where the shutoff valve is not provided.
  • the refrigerant is a liquid refrigerant or a two-phase refrigerant
  • the refrigerant cannot be properly controlled or an abnormality such as an abnormal noise is generated from the expansion valve.
  • the present disclosure has been made in view of the above-mentioned problems in the prior art, and provides an air conditioner capable of appropriately controlling the refrigerant passing through the expansion valve without being affected by the shutoff valve. With the goal.
  • the air conditioner according to the present disclosure includes an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, an expansion valve, and a refrigerant flowing from the outdoor unit to the indoor unit during cooling operation.
  • the compressor comprises a liquid-side shutoff valve for opening or shutting off the air, and an expansion valve unit having a gas-side shutoff valve for opening or shutting off the refrigerant flowing from the indoor unit to the outdoor unit during the cooling operation.
  • a refrigerant circuit is formed by connecting the outdoor heat exchanger, the expansion valve, the liquid side shutoff valve, the indoor heat exchanger, the gas side shutoff valve and the compressor in an annular shape, and the liquid side shutoff valve is formed. Is provided between the expansion valve and the indoor heat exchanger, and the gas side shutoff valve is provided between the indoor heat exchanger and the compressor.
  • the expansion valve unit is provided with an expansion valve, a liquid side shutoff valve, and a gas side shutoff valve, and the liquid side shutoff valve is provided between the expansion valve and the indoor heat exchanger.
  • the refrigerant flows into the expansion valve in a stable state, so that the refrigerant passing through the expansion valve can be appropriately controlled.
  • FIG. 1 It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 2.
  • FIG. 1 It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1.
  • Embodiment 1 The air conditioner according to the first embodiment will be described.
  • the air-conditioning device according to the first embodiment performs air-conditioning in the target space by circulating the refrigerant in the refrigerant circuit.
  • FIG. 1 is a circuit diagram showing an example of the configuration of the air conditioner according to the first embodiment.
  • the air conditioner 1 includes an outdoor unit 10, an expansion valve unit 20, and indoor units 30a and 30b.
  • a refrigerant circuit is formed by connecting the outdoor unit 10, the expansion valve unit 20, and the indoor units 30a and 30b with a refrigerant pipe.
  • the refrigerant flowing through the refrigerant circuit for example, in addition to R22, R407C, R410A and the like, flammable refrigerants such as propane, HFO and R32 are used.
  • two indoor units 30a and 30b are provided, but the present invention is not limited to this, and the number of indoor units may be one or more.
  • the outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, and an outdoor control device 15.
  • the compressor 11 sucks in the low-temperature low-pressure refrigerant, compresses the sucked refrigerant, and discharges the high-temperature and high-pressure refrigerant.
  • the compressor 11 is composed of, for example, an inverter compressor or the like whose capacity, which is a transmission amount per unit time, is controlled by changing the operating frequency.
  • the operating frequency of the compressor 11 is controlled by the outdoor control device 15.
  • the outdoor heat exchanger 12 exchanges heat between the outdoor air supplied by a blower (not shown) and the refrigerant.
  • the outdoor heat exchanger 12 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation.
  • the outdoor control device 15 controls each part provided in the outdoor unit 10 and the indoor units 30a and 30b.
  • the outdoor control device 15 controls the operating frequency of the compressor 11 and the opening degrees of the expansion valves 23a and 23b so that the temperature of the air-conditioned space becomes the set temperature set by the remote controllers 34a and 34b.
  • the indoor unit 30a is installed in the air-conditioned space and has an indoor heat exchanger 31a. Further, a refrigerant leak sensor 32a, an alarm device 33a, and a remote controller (hereinafter, appropriately referred to as "remote controller") 34a are provided in the air-conditioned space.
  • the indoor unit 30b is installed in the air-conditioned space and has an indoor heat exchanger 31b. Further, a refrigerant leakage sensor 32b, an alarm device 33b, and a remote controller 34b are provided in the air-conditioned space.
  • the indoor units 30a and 30b have the same configuration. Further, the refrigerant leakage sensors 32a and 32b, the alarm devices 33a and 33b, and the remote controllers 34a and 34b have the same configurations, respectively. Therefore, in the following, as an example, the indoor unit 30a, the refrigerant leakage sensor 32a, the alarm device 33a, and the remote controller 34a will be described.
  • the indoor heat exchanger 31a exchanges heat between the indoor air supplied by a blower (not shown) and the refrigerant.
  • the indoor heat exchanger 31a functions as an evaporator during the cooling operation, and cools the air in the air-conditioned space for cooling.
  • the refrigerant leakage sensor 32a is installed in the air-conditioned space and detects the leakage of the refrigerant into the air-conditioned space. The detection result is supplied to the repeater control device 25, which will be described later, provided in the expansion valve unit 20.
  • the alarm device 33a is installed in the air-conditioned space, and when the leakage of the refrigerant is detected, the user is notified of the leakage of the refrigerant.
  • the alarm device 33a is provided with a notification means (not shown) such as a display means or a voice output means, and when the refrigerant leakage sensor 32a detects the leakage of the refrigerant, the notification means is used to notify the user of the refrigerant leakage. Can be done.
  • the refrigerant leakage sensor and the alarm device are not limited to this example, and a plurality of refrigerant leakage sensors and alarm devices may be provided depending on the number and size of the air-conditioned spaces.
  • the remote controller 34a is a device used for the user to remotely control the air conditioner 1.
  • the remote controller 34a includes a communication means (not shown) that communicates wirelessly or by wire, and the set temperature, operation, and the like are set based on the operation by the user.
  • Various kinds of set information are supplied to the outdoor control device 15.
  • the expansion valve unit 20 includes gas-side shutoff valves 21a and 21b, liquid-side shutoff valves 22a and 22b, expansion valves 23a and 23b, and a repeater control device 25.
  • the gas-side shutoff valves 21a and 21b and the liquid-side shutoff valves 22a and 22b are provided corresponding to the indoor units 30a and 30b connected to the expansion valve unit 20, respectively.
  • two gas-side shutoff valves 21a and 21b and a liquid-side shutoff valve 22a and 22b are provided, respectively, but this is not limited to this example.
  • an arbitrary number of gas-side shutoff valves and liquid-side shutoff valves can be provided depending on the number of indoor units connected to the expansion valve unit 20.
  • the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b have the same configuration, respectively. Therefore, in the following, the gas side shutoff valve 21a and the liquid side shutoff valve 22a will be described as an example.
  • the gas side shutoff valve 21a opens or closes the refrigerant flowing from the indoor unit 30a to the outdoor unit 10.
  • the gas side shutoff valve 21a is provided in a pipe connecting the suction side of the compressor 11 of the outdoor unit 10 and the refrigerant outflow side of the indoor heat exchanger 31a of the indoor unit 30a, and the pipe is opened. Or shut off.
  • the gas side shutoff valve 21a is controlled by the repeater control device 25.
  • the liquid side shutoff valve 22a opens or shuts off the refrigerant flowing from the outdoor unit 10 to the indoor unit 30a.
  • the gas side shutoff valve 21a is provided in a pipe connecting the expansion valve 23a and the refrigerant inflow side of the indoor heat exchanger 31a, and opens or shuts off the pipe.
  • the liquid side shutoff valve 22a is controlled by the repeater control device 25.
  • the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that are "closed" when the power supply is lost. That is, the gas-side shutoff valves 21a and 21b and the liquid-side shutoff valves 22a and 22b are controlled by the repeater control device 25 so as to shut off the flow of the refrigerant when the power supply is lost.
  • the expansion valve 23a is provided corresponding to the indoor unit 30a and depressurizes the refrigerant to expand it.
  • the expansion valve 23a is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree.
  • the opening degree of the expansion valve 23a is controlled by the control device 30.
  • the expansion valve 23b is provided corresponding to the indoor unit 30b, and has the same configuration as the expansion valve 23a.
  • the repeater control device 25 controls each part provided in the expansion valve unit 20.
  • the repeater control device 25 when the refrigerant leakage sensors 32a and 32b detect the leakage of the refrigerant, the repeater control device 25 includes the gas side shutoff valves 21a and 21b, and the liquid side shutoff valves 22a and 22b. Is controlled to shut off the refrigerant.
  • the refrigerant circuit includes the compressor 11, the outdoor heat exchanger 12, the expansion valve 23a (or 23b), the liquid side shutoff valve 22a (or 22b), and the indoor heat exchanger.
  • the 31a (or 31b), the gas side shutoff valve 21a (or 21b), and the compressor 11 are connected in an annular shape to form the compressor 11.
  • the liquid side shutoff valve 22a (or 22b) is provided between the expansion valve 23a (or 23b) and the indoor heat exchanger 31a (or 31b).
  • the gas side shutoff valve 21a (or 21b) is provided between the indoor heat exchanger 31a (or 31b) and the compressor 11.
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 12 flows out of the outdoor unit 10 and flows into the expansion valve unit 20.
  • the liquid refrigerant that has flowed into the expansion valve unit 20 is branched and flows into each of the expansion valves 23a and 23b.
  • the liquid refrigerant flowing into the expansion valve 23a expands at the expansion valve 23a and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed.
  • the refrigerant in the two-phase state flows out from the expansion valve unit 20 via the liquid-side shutoff valve 22a.
  • the two-phase refrigerant flowing out of the expansion valve unit 20 flows into the indoor unit 30a and flows into the indoor heat exchanger 31a functioning as an evaporator.
  • the indoor heat exchanger 31a heat exchange is performed between the flowing two-phase state refrigerant and the outdoor air. As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out of the indoor heat exchanger 31a flows out of the indoor unit 30a and flows into the expansion valve unit 20.
  • the liquid refrigerant flowing into the expansion valve 23b expands at the expansion valve 23b and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed.
  • the refrigerant in the two-phase state flows out from the expansion valve unit 20 via the liquid-side shutoff valve 22b.
  • the two-phase refrigerant flowing out of the expansion valve unit 20 flows into the indoor unit 30b and flows into the indoor heat exchanger 31b that functions as an evaporator.
  • the indoor heat exchanger 31b heat exchange is performed between the flowing two-phase refrigerant and the outdoor air. As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out of the indoor heat exchanger 31b flows out of the indoor unit 30b and flows into the expansion valve unit 20.
  • the refrigerant circulates in the refrigerant circuit.
  • the repeater control device 25 When the refrigerant leaks into the air-conditioned space while the cooling operation is performed as described above and the refrigerant leakage is detected by the refrigerant leakage sensors 32a and 32b, the repeater control device 25 is based on the detection result. , Judge that it is in the leak detection state. Then, the repeater control device 25 controls so as to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Further, the repeater control device 25 operates the alarm devices 33a and 33b. As a result, the user is notified of the occurrence of the refrigerant leak.
  • the repeater control device 25 generates an abnormality detection signal indicating that a refrigerant leak has occurred and supplies it to the outdoor control device 15 of the outdoor unit 10.
  • the outdoor control device 15 controls each part of the outdoor unit 10 based on the received abnormality detection signal, and stops the operation of the outdoor unit 10.
  • the notification of the occurrence of an abnormality to the user is not limited to this, and for example, remote controllers 34a and 34b, or display units (not shown) provided on the indoor units 30a and 30b may be used.
  • the liquid is placed between the expansion valves 23a and 23b and the indoor heat exchangers 31a and 31b of the indoor units 30a and 30b so that the refrigerant whose state is unstable does not flow into the expansion valve.
  • Side shutoff valves 22a and 22b are provided.
  • the refrigerant passes through the expansion valves 23a and 23b in a stable pressure state, and then flows into the liquid side shutoff valves 22a and 22b where the pressure loss exists.
  • the refrigerant having a stable pressure state flows into the expansion valves 23a and 23b, the refrigerant passing through the expansion valves 23a and 23b without causing abnormal noise or the like occurs. Appropriate control can be performed.
  • the expansion valve unit 20 is provided with expansion valves 23a and 23b, gas side shutoff valves 21a and 21b, and liquid side shutoff valves 22a and 22b. Further, the liquid side shutoff valves 22a and 22b are provided between the expansion valves 23a and 23b and the indoor heat exchangers 31a and 31b.
  • the air conditioner 1 further includes a refrigerant leak sensor 32a and 32b
  • the expansion valve unit 20 includes a liquid side shutoff valve 22a and 22b, and a gas side shutoff valve 21a and a gas side shutoff valve 21a based on the detection results of the refrigerant leak sensors 32a and 32b. Further, it has a repeater control device 25 for controlling 21b.
  • the liquid side shutoff valves 22a and 22b and the gas side shutoff valves 21a and 21b are closed to shut off the refrigerant, thereby suppressing the leakage of the refrigerant into the room. be able to.
  • the liquid side shutoff valves 22a and 22b and the gas side shutoff valves 21a and 21b are composed of solenoid valves that close when the supplied power is lost. As a result, even if the refrigerant leaks in a state where the power supply is lost, the liquid side shutoff valves 22a and 22b and the gas side shutoff valves 21a and 21b are closed, so that the refrigerant flowing through the refrigerant circuit can be shut off.
  • the air conditioner 1 further includes alarm devices 33a and 33b for notifying the refrigerant leakage when the refrigerant leakage is detected. This makes it possible to notify the user of the refrigerant leakage when the refrigerant leaks into the room.
  • the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that close when the supplied power is lost. As a result, even if all the power supplies to the air conditioner 1 are lost, the flow of the refrigerant in the refrigerant circuit can be cut off and the leakage of the refrigerant into the room can be suppressed.
  • Embodiment 2 Next, the second embodiment will be described.
  • the second embodiment is different from the first embodiment in that electric power is supplied to the outdoor unit 10, the refrigerant control system, and the safety device system from different power sources.
  • the same reference numerals are given to the parts common to the first embodiment, and detailed description thereof will be omitted.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the air conditioner according to the second embodiment.
  • the air conditioner 1 is composed of an outdoor unit 10, an expansion valve unit 20, and indoor units 30a and 30b, as in the first embodiment.
  • the repeater control device 25 provided in the expansion valve unit 20 includes a refrigerant control system control unit 51 and a safety device system control unit 52.
  • the refrigerant control system control unit 51 controls the power supply and operation of the equipment belonging to the refrigerant control system.
  • the refrigerant control system control unit 51 is a system composed of each unit constituting the refrigerant circuit.
  • the devices belonging to the refrigerant control system are the expansion valves 23a and 23b, and the indoor units 30a and 30b.
  • the safety device system control unit 52 controls the power supply and operation of the devices belonging to the safety device system.
  • the safety device system is a system consisting of each part constituting the safety device.
  • the devices belonging to the safety device system are gas side shutoff valves 21a and 21b, liquid side shutoff valves 22a and 22b, refrigerant leak sensors 32a and 32b, and alarm devices 33a and 33b.
  • an outdoor power source 61 As the power source connected to the air conditioner 1, an outdoor power source 61, a refrigerant control power source 62, and a safety device power source 63 are provided.
  • the outdoor power supply 61 is connected to the outdoor unit 10 and supplies electric power to each part in the outdoor unit 10 such as the outdoor control device 15 and the compressor 11.
  • the refrigerant control power supply 62 is connected to the expansion valve unit 20 and each part constituting the refrigerant circuit of the indoor units 30a and 30b, and is connected to the refrigerant control system control unit 51, the expansion valves 23a and 23b, and the indoor units 30a and 30b. To supply power.
  • the power supply 63 for the safety device is connected to each part constituting the expansion valve unit 20 and the safety devices of the indoor units 30a and 30b.
  • the safety device power supply 63 supplies power to the safety device system control unit 52, gas side shutoff valves 21a and 21b, liquid side shutoff valves 22a and 22b, refrigerant leakage sensors 32a and 32b, and alarm devices 33a and 33b. do.
  • the safety device system control unit 52 generates an abnormality detection signal indicating that a refrigerant leak has occurred and supplies it to the refrigerant control system control unit 51.
  • the refrigerant control system control unit 51 controls to close the expansion valves 23a and 23b based on the received abnormality detection signal, controls each part of the indoor units 30a and 30b, and stops the operation of the indoor units 30a and 30b. ..
  • the refrigerant control system control unit 51 supplies the abnormality signal received from the safety device system control unit 52 to the outdoor control device 15.
  • the outdoor control device 15 controls each part of the outdoor unit 10 based on the received abnormality detection signal, and stops the operation of the outdoor unit 10.
  • the refrigerant control system control unit 51 detects the power loss to the safety device system control unit 52.
  • each of the refrigerant control system control unit 51 and the safety device system control unit 52 monitors each other's power supply status by receiving a power supply confirmation signal for confirming the power supply status of the other party. Then, each of the refrigerant control system control unit 51 and the safety device system control unit 52 detects the loss of power of the other party when the power supply confirmation signal is interrupted.
  • the refrigerant control system control unit 51 sets the expansion valves 23a and 23b. While controlling to close, each part of the indoor units 30a and 30b is controlled, and the operation of the indoor units 30a and 30b is stopped.
  • the refrigerant control system control unit 51 notifies the outdoor control device 15 of an abnormality (loss of the safety device power supply 63) of the safety device system control unit 52.
  • the outdoor control device 15 controls each part of the outdoor unit 10 and stops the operation of the outdoor unit 10.
  • the refrigerant control system control unit 51 controls the indoor units 30a and 30b. Therefore, when the indoor units 30a and 30b are provided with a display unit or the like (not shown), the refrigerant control system control unit 51 uses the display units of the indoor units 30a and 30b to leak the refrigerant to the user. The occurrence can be notified.
  • the safety device system control unit 52 detects the power loss to the refrigerant control system control unit 51. If the refrigerant leaks in this case, power is supplied to the safety device system control unit 52, so that the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b can be operated. Therefore, the safety device system control unit 52 controls to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Then, the safety device system control unit 52 operates the alarm devices 33a and 33b to notify the user of the occurrence of the refrigerant leakage.
  • the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that close when the power supply is lost. If so, the flow of the refrigerant in the refrigerant circuit is cut off. Therefore, it is possible to suppress the leakage of the refrigerant into the room.
  • the repeater control device 25 is supplied with the power supply 63 for the safety device, and the liquid side shutoff valves 22a and 22b, as well as the gas side shutoff valve 21a and It has a safety device system control unit 52 that controls devices belonging to the safety device system including at least 21b. Further, the repeater control device 25 has a refrigerant control system control unit 51 to which a refrigerant control power supply 62 is supplied and controls equipment belonging to the refrigerant control system including at least expansion valves 23a and 23b.
  • the refrigerant control system and the safety device system operate independently, so that when one of the power supplies is lost.
  • Embodiment 3 Next, the third embodiment will be described.
  • the third embodiment is different from the second embodiment in that the power source for the outdoor unit 10 and the refrigerant control system is shared.
  • the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the air conditioner according to the third embodiment.
  • the air conditioner 1 is composed of an outdoor unit 10, an expansion valve unit 20, and indoor units 30a and 30b, as in the first and second embodiments.
  • the repeater control device 25 provided in the expansion valve unit 20 includes a refrigerant control system control unit 51 and a safety device system control unit 52, as in the second embodiment.
  • an outdoor power supply 61 and a safety device power supply 63 are provided as power supplies connected to the air conditioner 1.
  • the outdoor power supply 61 of the third embodiment is connected to the outdoor control device 15 and the refrigerant control system control unit 51 of the outdoor unit 10 to supply electric power to the outdoor control device 15 and the refrigerant control system control unit 51.
  • the safety device power supply 63 is the same as that of the second embodiment.
  • the safety device system control unit 52 generates an abnormality detection signal indicating that a refrigerant leak has occurred and supplies it to the refrigerant control system control unit 51.
  • the refrigerant control system control unit 51 controls the expansion valves 23a and 23b to be closed based on the received abnormality detection signal, and also controls each part of the outdoor unit 10 and the indoor units 30a and 30b to control the outdoor unit 10 and the indoor unit. The operation of 30a and 30b is stopped.
  • the refrigerant control system control unit 51 detects the power loss to the safety device system control unit 52.
  • each of the refrigerant control system control unit 51 and the safety device system control unit 52 monitors each other's power supply state by receiving a power supply confirmation signal from the other party, as in the second embodiment. Then, each of the refrigerant control system control unit 51 and the safety device system control unit 52 detects the loss of power of the other party when the power supply confirmation signal is interrupted.
  • the refrigerant control system control unit 51 sets the expansion valves 23a and 23b. While controlling to close, each part of the indoor units 30a and 30b is controlled, and the operation of the indoor units 30a and 30b is stopped.
  • the refrigerant control system control unit 51 notifies the outdoor control device 15 of an abnormality in the safety device system control unit 52 (loss of the safety device power supply 63).
  • the outdoor control device 15 controls each part of the outdoor unit 10 and stops the operation of the outdoor unit 10.
  • the refrigerant control system control unit 51 controls the indoor units 30a and 30b. Therefore, when the indoor units 30a and 30b are provided with a display unit or the like (not shown), the refrigerant control system control unit 51 uses the display units of the indoor units 30a and 30b to leak the refrigerant to the user. The occurrence can be notified.
  • the safety device system control unit 52 detects the power loss to the refrigerant control system control unit 51. If the refrigerant leaks in this case, power is supplied to the safety device system control unit 52, so that the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b can be operated. Therefore, the safety device system control unit 52 controls to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Then, the safety device system control unit 52 operates the alarm devices 33a and 33b to notify the user of the occurrence of the refrigerant leakage.
  • the repeater control device 25 is supplied with the power supply 63 for the safety device, and the liquid side shutoff valves 22a and 22b, as well as the gas side shutoff valve 21a and It has a safety device system control unit 52 that controls devices belonging to the safety device system including at least 21b. Further, the repeater control device 25 has a refrigerant control system control unit 51 to which an outdoor power supply 61 is supplied and controls equipment belonging to the refrigerant control system including at least expansion valves 23a and 23b.
  • the refrigerant control system and the safety device system operate independently, so that when one of the power supplies is lost.
  • the present disclosure is not limited to the above-described embodiments 1 to 3, and various modifications and applications are possible without departing from the gist of the present disclosure.
  • the systems for the plurality of indoor units 30a and 30b are included in one expansion valve unit 20, but the present invention is not limited to this, and the expansion valve unit is limited to each system of the indoor unit. May be provided respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner comprises: an outdoor unit having a compressor and an outdoor heat exchanger; an indoor unit having an indoor heat exchanger; and an expansion valve unit having an expansion valve, a liquid-side shutoff valve that releases or shuts off a refrigerant flowing from the outdoor unit to the indoor unit during cooling operation, and a gas-side shutoff valve that releases or shuts off a refrigerant flowing from the indoor unit to the outdoor unit during cooling operation, wherein the compressor, the outdoor heat exchanger, the expansion valve, the liquid-side shutoff valve, the indoor heat exchanger, the gas-side shutoff valve, and the compressor are connected annularly to form a refrigerant circuit, the liquid-side shutoff valve is provided between the expansion valve and the indoor heat exchanger, and the gas-side shutoff valve is provided between the indoor heat exchanger and the compressor.

Description

空気調和装置Air conditioner
 本開示は、室内の空気調和を行う空気調和装置に関するものである。 This disclosure relates to an air conditioner for air conditioning in a room.
 従来、冷媒の漏洩などの異常を検知し、冷媒回路を遮断する遮断弁を有する遮断弁ユニットが設けられた空気調和装置が知られている。例えば、特許文献1には、室内機とは別体に遮断弁装置を備え、冷媒漏洩時に遮断弁装置に設けられた遮断弁を閉じることにより、冷媒回路を流れる冷媒の流れを遮断する空調設備が開示されている。この空調設備では、遮断弁装置の遮断弁として、弁の開閉に電源を必要とする膨張弁が用いられている。 Conventionally, an air conditioner provided with a shutoff valve unit having a shutoff valve that detects an abnormality such as a refrigerant leak and shuts off the refrigerant circuit is known. For example, Patent Document 1 includes an air-conditioning device provided with a shut-off valve device separate from the indoor unit and shuts off the flow of the refrigerant flowing through the refrigerant circuit by closing the shut-off valve provided in the shut-off valve device when the refrigerant leaks. Is disclosed. In this air conditioning equipment, an expansion valve that requires a power source to open and close the valve is used as the shutoff valve of the shutoff valve device.
 また、特許文献2には、室内機に膨張弁を持つシステムにおいて、液側配管およびガス側配管の両方に遮断弁が設けられた空気調和装置が開示されている。この空気調和装置では、遮断弁として電磁弁が用いられている。 Further, Patent Document 2 discloses an air conditioner in which a shutoff valve is provided in both the liquid side pipe and the gas side pipe in a system having an expansion valve in the indoor unit. In this air conditioner, a solenoid valve is used as a shutoff valve.
特開2013-19620号公報Japanese Unexamined Patent Publication No. 2013-19620 特開2012-13339号公報Japanese Unexamined Patent Publication No. 2012-13339
 しかしながら、特許文献1に記載の空調設備では、電源喪失時に遮断弁(膨張弁)を閉じることができないため、電源が供給されない状態で真空引きなどの据え付け作業を行うことができない。特に、電源喪失時に冷媒漏洩が発生した場合には、遮断弁(膨張弁)が閉じないことによって冷媒を遮断することができない。そのため、このような空調設備では、冷媒としてプロパン、R32またはHFO等の可燃性冷媒を適用することが困難である。 However, in the air conditioning equipment described in Patent Document 1, since the shutoff valve (expansion valve) cannot be closed when the power is lost, installation work such as evacuation cannot be performed without power being supplied. In particular, when a refrigerant leak occurs when the power supply is lost, the refrigerant cannot be shut off because the shutoff valve (expansion valve) does not close. Therefore, in such air conditioning equipment, it is difficult to apply a flammable refrigerant such as propane, R32 or HFO as the refrigerant.
 一方、電磁弁として、電源喪失時に弁が閉じるように構成されたものが知られている。特許文献2に記載の空気調和装置においてこのような電磁弁が遮断弁として用いられている場合には、電源喪失時であっても、冷媒を遮断することができる。しかしながら、電磁弁を用いた遮断弁には圧力損失が存在する。そのため、冷媒が遮断弁を通過する際には、遮断弁が設けられていない場合と比較して、冷媒の圧力状態が変化する。特に、冷媒が液冷媒または二相冷媒となる冷房運転時においては、冷媒を適正に制御することができない、あるいは、膨張弁から異音が発生するなどの異常が発生することが考えられる。 On the other hand, as a solenoid valve, a solenoid valve configured to close when the power is lost is known. When such a solenoid valve is used as a shut-off valve in the air conditioner described in Patent Document 2, the refrigerant can be shut off even when the power supply is lost. However, there is a pressure loss in the shutoff valve using the solenoid valve. Therefore, when the refrigerant passes through the shutoff valve, the pressure state of the refrigerant changes as compared with the case where the shutoff valve is not provided. In particular, during the cooling operation in which the refrigerant is a liquid refrigerant or a two-phase refrigerant, it is conceivable that the refrigerant cannot be properly controlled or an abnormality such as an abnormal noise is generated from the expansion valve.
 本開示は、上記従来の技術における課題に鑑みてなされたものであって、遮断弁の影響を受けることなく、膨張弁を通過する冷媒を適正に制御することができる空気調和装置を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned problems in the prior art, and provides an air conditioner capable of appropriately controlling the refrigerant passing through the expansion valve without being affected by the shutoff valve. With the goal.
 本開示に係る空気調和装置は、圧縮機および室外熱交換器を有する室外機と、室内熱交換器を有する室内機と、膨張弁、冷房運転の際に前記室外機から前記室内機へ流れる冷媒を開放または遮断する液側遮断弁、および、前記冷房運転の際に前記室内機から前記室外機へ流れる冷媒を開放または遮断するガス側遮断弁を有する膨張弁ユニットとを備え、前記圧縮機、前記室外熱交換器、前記膨張弁、前記液側遮断弁、前記室内熱交換器、前記ガス側遮断弁および前記圧縮機が環状に接続されることにより冷媒回路が形成され、前記液側遮断弁は、前記膨張弁と前記室内熱交換器との間に設けられ、前記ガス側遮断弁は、前記室内熱交換器と前記圧縮機との間に設けられているものである。 The air conditioner according to the present disclosure includes an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, an expansion valve, and a refrigerant flowing from the outdoor unit to the indoor unit during cooling operation. The compressor comprises a liquid-side shutoff valve for opening or shutting off the air, and an expansion valve unit having a gas-side shutoff valve for opening or shutting off the refrigerant flowing from the indoor unit to the outdoor unit during the cooling operation. A refrigerant circuit is formed by connecting the outdoor heat exchanger, the expansion valve, the liquid side shutoff valve, the indoor heat exchanger, the gas side shutoff valve and the compressor in an annular shape, and the liquid side shutoff valve is formed. Is provided between the expansion valve and the indoor heat exchanger, and the gas side shutoff valve is provided between the indoor heat exchanger and the compressor.
 本開示によれば、膨張弁ユニットに膨張弁、液側遮断弁およびガス側遮断弁が設けられ、液側遮断弁が膨張弁と室内熱交換器との間に設けられる。これにより、冷媒が安定した状態で膨張弁に流入するため、膨張弁を通過する冷媒を適正に制御することができる。 According to the present disclosure, the expansion valve unit is provided with an expansion valve, a liquid side shutoff valve, and a gas side shutoff valve, and the liquid side shutoff valve is provided between the expansion valve and the indoor heat exchanger. As a result, the refrigerant flows into the expansion valve in a stable state, so that the refrigerant passing through the expansion valve can be appropriately controlled.
実施の形態1に係る空気調和装置の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態2に係る空気調和装置の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 2. 実施の形態3に係る空気調和装置の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 3. FIG.
 以下、本開示の実施の形態について、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common to the whole text of the specification.
実施の形態1.
 本実施の形態1に係る空気調和装置について説明する。本実施の形態1に係る空気調和装置は、冷媒回路に冷媒を循環させることにより、対象空間の空気調和を行うものである。
Embodiment 1.
The air conditioner according to the first embodiment will be described. The air-conditioning device according to the first embodiment performs air-conditioning in the target space by circulating the refrigerant in the refrigerant circuit.
[空気調和装置1の構成]
 図1は、本実施の形態1に係る空気調和装置の構成の一例を示す回路図である。図1に示すように、空気調和装置1は、室外機10、膨張弁ユニット20、ならびに、室内機30aおよび30bで構成されている。室外機10、膨張弁ユニット20、ならびに、室内機30aおよび30bが冷媒配管で接続されることにより、冷媒回路が形成される。冷媒回路を流れる冷媒として、例えば、R22、R407CおよびR410A等の他、プロパン、HFOおよびR32等の可燃性冷媒が用いられる。この例では、2台の室内機30aおよび30bが設けられているが、これに限られず、室内ユニットは1台以上であればよい。
[Configuration of air conditioner 1]
FIG. 1 is a circuit diagram showing an example of the configuration of the air conditioner according to the first embodiment. As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 10, an expansion valve unit 20, and indoor units 30a and 30b. A refrigerant circuit is formed by connecting the outdoor unit 10, the expansion valve unit 20, and the indoor units 30a and 30b with a refrigerant pipe. As the refrigerant flowing through the refrigerant circuit, for example, in addition to R22, R407C, R410A and the like, flammable refrigerants such as propane, HFO and R32 are used. In this example, two indoor units 30a and 30b are provided, but the present invention is not limited to this, and the number of indoor units may be one or more.
(室外機10)
 室外機10は、圧縮機11、室外熱交換器12および室外制御装置15を備えている。圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機等からなる。圧縮機11の運転周波数は、室外制御装置15によって制御される。
(Outdoor unit 10)
The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, and an outdoor control device 15. The compressor 11 sucks in the low-temperature low-pressure refrigerant, compresses the sucked refrigerant, and discharges the high-temperature and high-pressure refrigerant. The compressor 11 is composed of, for example, an inverter compressor or the like whose capacity, which is a transmission amount per unit time, is controlled by changing the operating frequency. The operating frequency of the compressor 11 is controlled by the outdoor control device 15.
 室外熱交換器12は、図示しない送風機によって供給される室外空気と冷媒との間で熱交換を行う。室外熱交換器12は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。 The outdoor heat exchanger 12 exchanges heat between the outdoor air supplied by a blower (not shown) and the refrigerant. The outdoor heat exchanger 12 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation.
 室外制御装置15は、室外機10ならびに室内機30aおよび30bに設けられた各部を制御する。例えば、室外制御装置15は、空調対象空間の温度がリモコン34aおよび34bによって設定された設定温度となるように、圧縮機11の運転周波数、膨張弁23aおよび23bの開度を制御する。 The outdoor control device 15 controls each part provided in the outdoor unit 10 and the indoor units 30a and 30b. For example, the outdoor control device 15 controls the operating frequency of the compressor 11 and the opening degrees of the expansion valves 23a and 23b so that the temperature of the air-conditioned space becomes the set temperature set by the remote controllers 34a and 34b.
(室内機30aおよび30b)
 室内機30aは、空調対象空間に設置され、室内熱交換器31aを有している。また、空調対象空間には、冷媒漏洩センサ32a、警報装置33aおよびリモートコントローラ(以下、「リモコン」と適宜称する)34aが設けられている。室内機30bは、空調対象空間に設置され、室内熱交換器31bを有している。また、空調対象空間には、冷媒漏洩センサ32b、警報装置33bおよびリモコン34bが設けられている。
( Indoor units 30a and 30b)
The indoor unit 30a is installed in the air-conditioned space and has an indoor heat exchanger 31a. Further, a refrigerant leak sensor 32a, an alarm device 33a, and a remote controller (hereinafter, appropriately referred to as "remote controller") 34a are provided in the air-conditioned space. The indoor unit 30b is installed in the air-conditioned space and has an indoor heat exchanger 31b. Further, a refrigerant leakage sensor 32b, an alarm device 33b, and a remote controller 34b are provided in the air-conditioned space.
 なお、室内機30aおよび30bは、同様の構成を備えている。また、冷媒漏洩センサ32aおよび32b、警報装置33aおよび33b、ならびに、リモコン34aおよび34bも、それぞれ同様の構成である。そのため、以下では、一例として、室内機30a、冷媒漏洩センサ32a、警報装置33aおよびリモコン34aについて説明する。 The indoor units 30a and 30b have the same configuration. Further, the refrigerant leakage sensors 32a and 32b, the alarm devices 33a and 33b, and the remote controllers 34a and 34b have the same configurations, respectively. Therefore, in the following, as an example, the indoor unit 30a, the refrigerant leakage sensor 32a, the alarm device 33a, and the remote controller 34a will be described.
 室内熱交換器31aは、図示しない送風機によって供給される室内空気と冷媒との間で熱交換を行う。室内熱交換器31aは、冷房運転の際に蒸発器として機能し、空調対象空間の空気を冷却して冷房を行う。 The indoor heat exchanger 31a exchanges heat between the indoor air supplied by a blower (not shown) and the refrigerant. The indoor heat exchanger 31a functions as an evaporator during the cooling operation, and cools the air in the air-conditioned space for cooling.
 冷媒漏洩センサ32aは、空調対象空間に設置され、空調対象空間への冷媒の漏洩を検知する。検知結果は、膨張弁ユニット20に設けられた後述する中継器制御装置25に供給される。 The refrigerant leakage sensor 32a is installed in the air-conditioned space and detects the leakage of the refrigerant into the air-conditioned space. The detection result is supplied to the repeater control device 25, which will be described later, provided in the expansion valve unit 20.
 警報装置33aは、空調対象空間に設置され、冷媒の漏洩が検知された場合に、ユーザに対して冷媒漏洩を報知する。警報装置33aは、表示手段または音声出力手段等の図示しない報知手段を備え、冷媒漏洩センサ32aによって冷媒の漏洩が検知された場合に、報知手段を用いて冷媒漏洩をユーザに対して報知することができる。なお、冷媒漏洩センサおよび警報装置は、この例に限られず、空調対象空間の数および大きさ等により、複数個設けられてもよい。 The alarm device 33a is installed in the air-conditioned space, and when the leakage of the refrigerant is detected, the user is notified of the leakage of the refrigerant. The alarm device 33a is provided with a notification means (not shown) such as a display means or a voice output means, and when the refrigerant leakage sensor 32a detects the leakage of the refrigerant, the notification means is used to notify the user of the refrigerant leakage. Can be done. The refrigerant leakage sensor and the alarm device are not limited to this example, and a plurality of refrigerant leakage sensors and alarm devices may be provided depending on the number and size of the air-conditioned spaces.
 リモコン34aは、ユーザが空気調和装置1を遠隔操作するために用いられる機器である。リモコン34aは、無線または有線で通信を行う図示しない通信手段を備え、ユーザによる操作に基づき、設定温度および運転等が設定される。設定された各種の情報は、室外制御装置15に供給される。 The remote controller 34a is a device used for the user to remotely control the air conditioner 1. The remote controller 34a includes a communication means (not shown) that communicates wirelessly or by wire, and the set temperature, operation, and the like are set based on the operation by the user. Various kinds of set information are supplied to the outdoor control device 15.
(膨張弁ユニット20)
 膨張弁ユニット20は、ガス側遮断弁21aおよび21b、液側遮断弁22aおよび22b、膨張弁23aおよび23b、ならびに、中継器制御装置25を備えている。ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bは、それぞれ、膨張弁ユニット20に接続される室内機30aおよび30bに対応して設けられる。この例では、それぞれ2つのガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bが設けられているが、これはこの例に限られない。例えば、ガス側遮断弁および液側遮断弁は、膨張弁ユニット20に接続された室内機の数に応じて、任意の数だけ設けられることができる。
(Expansion valve unit 20)
The expansion valve unit 20 includes gas- side shutoff valves 21a and 21b, liquid- side shutoff valves 22a and 22b, expansion valves 23a and 23b, and a repeater control device 25. The gas- side shutoff valves 21a and 21b and the liquid- side shutoff valves 22a and 22b are provided corresponding to the indoor units 30a and 30b connected to the expansion valve unit 20, respectively. In this example, two gas- side shutoff valves 21a and 21b and a liquid- side shutoff valve 22a and 22b are provided, respectively, but this is not limited to this example. For example, an arbitrary number of gas-side shutoff valves and liquid-side shutoff valves can be provided depending on the number of indoor units connected to the expansion valve unit 20.
 なお、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bは、それぞれ同様の構成である。そのため、以下では、一例として、ガス側遮断弁21aおよび液側遮断弁22aについて説明する。 The gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b have the same configuration, respectively. Therefore, in the following, the gas side shutoff valve 21a and the liquid side shutoff valve 22a will be described as an example.
 ガス側遮断弁21aは、室内機30aから室外機10へ流れる冷媒を開放または閉止する。具体的には、ガス側遮断弁21aは、室外機10の圧縮機11の吸入側と、室内機30aの室内熱交換器31aの冷媒流出側とを接続する配管に設けられ、当該配管を開放または遮断する。ガス側遮断弁21aは、中継器制御装置25によって制御される。 The gas side shutoff valve 21a opens or closes the refrigerant flowing from the indoor unit 30a to the outdoor unit 10. Specifically, the gas side shutoff valve 21a is provided in a pipe connecting the suction side of the compressor 11 of the outdoor unit 10 and the refrigerant outflow side of the indoor heat exchanger 31a of the indoor unit 30a, and the pipe is opened. Or shut off. The gas side shutoff valve 21a is controlled by the repeater control device 25.
 液側遮断弁22aは、室外機10から室内機30aへ流れる冷媒を開放または遮断する。具体的には、ガス側遮断弁21aは、膨張弁23aと、室内熱交換器31aの冷媒流入側とを接続する配管に設けられ、当該配管を開放または遮断する。液側遮断弁22aは、中継器制御装置25によって制御される。 The liquid side shutoff valve 22a opens or shuts off the refrigerant flowing from the outdoor unit 10 to the indoor unit 30a. Specifically, the gas side shutoff valve 21a is provided in a pipe connecting the expansion valve 23a and the refrigerant inflow side of the indoor heat exchanger 31a, and opens or shuts off the pipe. The liquid side shutoff valve 22a is controlled by the repeater control device 25.
 本実施の形態1において、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bは、電源喪失時に「閉」状態となる電磁弁で構成されている。すなわち、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bは、電源喪失時に、冷媒の流れを遮断するように、中継器制御装置25によって制御される。 In the first embodiment, the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that are "closed" when the power supply is lost. That is, the gas- side shutoff valves 21a and 21b and the liquid- side shutoff valves 22a and 22b are controlled by the repeater control device 25 so as to shut off the flow of the refrigerant when the power supply is lost.
 膨張弁23aは、室内機30aに対応して設けられ、冷媒を減圧して膨張させる。膨張弁23aは、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。膨張弁23aの開度は、制御装置30によって制御される。膨張弁23bは、室内機30bに対応して設けられており、構成等は膨張弁23aと同様である。 The expansion valve 23a is provided corresponding to the indoor unit 30a and depressurizes the refrigerant to expand it. The expansion valve 23a is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree. The opening degree of the expansion valve 23a is controlled by the control device 30. The expansion valve 23b is provided corresponding to the indoor unit 30b, and has the same configuration as the expansion valve 23a.
 中継器制御装置25は、膨張弁ユニット20に設けられた各部を制御する。特に、本実施の形態1において、中継器制御装置25は、冷媒漏洩センサ32aおよび32bによって冷媒の漏洩が検知された場合に、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを閉止して冷媒を遮断するように制御する。 The repeater control device 25 controls each part provided in the expansion valve unit 20. In particular, in the first embodiment, when the refrigerant leakage sensors 32a and 32b detect the leakage of the refrigerant, the repeater control device 25 includes the gas side shutoff valves 21a and 21b, and the liquid side shutoff valves 22a and 22b. Is controlled to shut off the refrigerant.
 このように空気調和装置1が構成されているため、冷媒回路は、圧縮機11、室外熱交換器12、膨張弁23a(または23b)、液側遮断弁22a(または22b)、室内熱交換器31a(または31b)、ガス側遮断弁21a(または21b)および圧縮機11が環状に接続されて形成される。
 そして、液側遮断弁22a(または22b)は、膨張弁23a(または23b)と室内熱交換器31a(または31b)との間に設けられている。
 また、ガス側遮断弁21a(または21b)は、室内熱交換器31a(または31b)と圧縮機11との間に設けられている。
Since the air conditioner 1 is configured in this way, the refrigerant circuit includes the compressor 11, the outdoor heat exchanger 12, the expansion valve 23a (or 23b), the liquid side shutoff valve 22a (or 22b), and the indoor heat exchanger. The 31a (or 31b), the gas side shutoff valve 21a (or 21b), and the compressor 11 are connected in an annular shape to form the compressor 11.
The liquid side shutoff valve 22a (or 22b) is provided between the expansion valve 23a (or 23b) and the indoor heat exchanger 31a (or 31b).
Further, the gas side shutoff valve 21a (or 21b) is provided between the indoor heat exchanger 31a (or 31b) and the compressor 11.
[空気調和装置1の動作]
 次に、このように構成された空気調和装置1の動作について、図1を参照して冷媒の流れとともに説明する。ここでは、空気調和装置1が冷房運転を実行する場合の冷媒の流れについて説明する。
[Operation of air conditioner 1]
Next, the operation of the air conditioner 1 configured as described above will be described with reference to FIG. 1 together with the flow of the refrigerant. Here, the flow of the refrigerant when the air conditioner 1 executes the cooling operation will be described.
(冷房運転)
 空気調和装置1が冷房運転を実行する場合において、室外機10の圧縮機11が駆動すると、圧縮機11から高温高圧のガス状態の冷媒が吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、凝縮器として機能する室外熱交換器12に流れ込む。室外熱交換器12では、流れ込んだ高温高圧のガス冷媒と、図示しない送風機によって供給される室外空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
(Cooling operation)
When the compressor 11 of the outdoor unit 10 is driven when the air conditioner 1 executes the cooling operation, the high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 11. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 12 that functions as a condenser. In the outdoor heat exchanger 12, heat exchange is performed between the high-temperature and high-pressure gas refrigerant that has flowed in and the outdoor air supplied by a blower (not shown). As a result, the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
 室外熱交換器12から流出した高圧の液冷媒は、室外機10から流出し、膨張弁ユニット20に流入する。膨張弁ユニット20に流入した液冷媒は、分岐されて膨張弁23aおよび23bのそれぞれに流入する。 The high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 12 flows out of the outdoor unit 10 and flows into the expansion valve unit 20. The liquid refrigerant that has flowed into the expansion valve unit 20 is branched and flows into each of the expansion valves 23a and 23b.
 膨張弁23aに流入した液冷媒は、膨張弁23aで膨張し、低圧のガス冷媒と低圧の液冷媒とが混合した二相状態の冷媒になる。二相状態の冷媒は、液側遮断弁22aを介して膨張弁ユニット20から流出する。膨張弁ユニット20から流出した二相状態の冷媒は、室内機30aに流入し、蒸発器として機能する室内熱交換器31aに流れ込む。 The liquid refrigerant flowing into the expansion valve 23a expands at the expansion valve 23a and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed. The refrigerant in the two-phase state flows out from the expansion valve unit 20 via the liquid-side shutoff valve 22a. The two-phase refrigerant flowing out of the expansion valve unit 20 flows into the indoor unit 30a and flows into the indoor heat exchanger 31a functioning as an evaporator.
 室内熱交換器31aでは、流れ込んだ二相状態の冷媒と、室外空気との間で熱交換が行われる。これにより、二相状態の冷媒のうちの液冷媒が蒸発して、低圧のガス冷媒になる。室内熱交換器31aから流出した低圧のガス冷媒は、室内機30aから流出し、膨張弁ユニット20に流入する。 In the indoor heat exchanger 31a, heat exchange is performed between the flowing two-phase state refrigerant and the outdoor air. As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the indoor heat exchanger 31a flows out of the indoor unit 30a and flows into the expansion valve unit 20.
 また、膨張弁23bに流入した液冷媒は、膨張弁23bで膨張し、低圧のガス冷媒と低圧の液冷媒とが混合した二相状態の冷媒になる。二相状態の冷媒は、液側遮断弁22bを介して膨張弁ユニット20から流出する。膨張弁ユニット20から流出した二相状態の冷媒は、室内機30bに流入し、蒸発器として機能する室内熱交換器31bに流れ込む。 Further, the liquid refrigerant flowing into the expansion valve 23b expands at the expansion valve 23b and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed. The refrigerant in the two-phase state flows out from the expansion valve unit 20 via the liquid-side shutoff valve 22b. The two-phase refrigerant flowing out of the expansion valve unit 20 flows into the indoor unit 30b and flows into the indoor heat exchanger 31b that functions as an evaporator.
 室内熱交換器31bでは、流れ込んだ二相状態の冷媒と、室外空気との間で熱交換が行われる。これにより、二相状態の冷媒のうちの液冷媒が蒸発して、低圧のガス冷媒になる。室内熱交換器31bから流出した低圧のガス冷媒は、室内機30bから流出し、膨張弁ユニット20に流入する。 In the indoor heat exchanger 31b, heat exchange is performed between the flowing two-phase refrigerant and the outdoor air. As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the indoor heat exchanger 31b flows out of the indoor unit 30b and flows into the expansion valve unit 20.
 室内機30aから膨張弁ユニット20に流入したガス冷媒と、室内機30bから膨張弁ユニット20に流入したガス冷媒とは、それぞれガス側遮断弁21aおよび21bを通過した後に合流し、膨張弁ユニット20から流出する。膨張弁ユニット20から流出したガス冷媒は、室外機10に流入する。室外機10に流入したガス冷媒は、圧縮機11に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機11から吐出される。以下、このサイクルが繰り返されることにより、冷媒が冷媒回路を循環する。 The gas refrigerant flowing into the expansion valve unit 20 from the indoor unit 30a and the gas refrigerant flowing into the expansion valve unit 20 from the indoor unit 30b merge after passing through the gas side shutoff valves 21a and 21b, respectively, and the expansion valve unit 20 Outflow from. The gas refrigerant flowing out of the expansion valve unit 20 flows into the outdoor unit 10. The gas refrigerant that has flowed into the outdoor unit 10 flows into the compressor 11, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again. Hereinafter, by repeating this cycle, the refrigerant circulates in the refrigerant circuit.
(冷媒漏洩時)
 上記のように冷房運転が行われている状態で、冷媒が空調対象空間に漏洩し、冷媒漏洩センサ32aおよび32bで冷媒の漏洩が検知された場合、中継器制御装置25は、検知結果に基づき、漏洩検知状態であると判断する。そして、中継器制御装置25は、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを閉じるように制御する。また、中継器制御装置25は、警報装置33aおよび33b動作させる。これにより、ユーザに対して冷媒漏洩の発生が報知される。
(When refrigerant leaks)
When the refrigerant leaks into the air-conditioned space while the cooling operation is performed as described above and the refrigerant leakage is detected by the refrigerant leakage sensors 32a and 32b, the repeater control device 25 is based on the detection result. , Judge that it is in the leak detection state. Then, the repeater control device 25 controls so as to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Further, the repeater control device 25 operates the alarm devices 33a and 33b. As a result, the user is notified of the occurrence of the refrigerant leak.
 さらに、中継器制御装置25は、冷媒漏洩が発生したことを示す異常検知信号を生成し、室外機10の室外制御装置15に供給する。室外制御装置15は、受け取った異常検知信号に基づき、室外機10の各部を制御し、室外機10の運転を停止させる。 Further, the repeater control device 25 generates an abnormality detection signal indicating that a refrigerant leak has occurred and supplies it to the outdoor control device 15 of the outdoor unit 10. The outdoor control device 15 controls each part of the outdoor unit 10 based on the received abnormality detection signal, and stops the operation of the outdoor unit 10.
 なお、ユーザに対する異常発生の報知は、これに限られず、例えばリモコン34aおよび34b、あるいは、室内機30aおよび30bに設けられた図示しない表示部等が用いられてもよい。 Note that the notification of the occurrence of an abnormality to the user is not limited to this, and for example, remote controllers 34a and 34b, or display units (not shown) provided on the indoor units 30a and 30b may be used.
[遮断弁の圧力損失の影響について]
 遮断弁における圧力損失の影響について説明する。背景技術の項でも説明したように、電磁弁を用いた遮断弁には、圧力損失が存在する。そのため、従来のように、遮断弁を通過した冷媒が膨張弁に流入するように遮断弁が設けられている場合、冷媒は、遮断弁の圧力損失によって圧力状態が変化し、不安定な状態で膨張弁に流入することになる。この場合、状態が不安定な冷媒が膨張弁に流入することにより、膨張弁において冷媒に対して適正な制御を行うことができなくなったり、異音などの異常が発生したりする。
[Effect of pressure loss of shutoff valve]
The effect of pressure loss on the shutoff valve will be described. As explained in the section of background technology, there is a pressure loss in the shutoff valve using the solenoid valve. Therefore, as in the conventional case, when the shutoff valve is provided so that the refrigerant that has passed through the shutoff valve flows into the expansion valve, the pressure state of the refrigerant changes due to the pressure loss of the shutoff valve, and the refrigerant is in an unstable state. It will flow into the expansion valve. In this case, when the refrigerant whose state is unstable flows into the expansion valve, it becomes impossible to properly control the refrigerant in the expansion valve, or an abnormality such as an abnormal noise occurs.
 そこで、本実施の形態1では、状態が不安定な冷媒が膨張弁に流入しないように、膨張弁23aおよび23bと、室内機30aおよび30bの室内熱交換器31aおよび31bとの間に、液側遮断弁22aおよび22bが設けられる。この場合、冷媒は、圧力状態が安定した状態で膨張弁23aおよび23bを通過した後に、圧力損失が存在する液側遮断弁22aおよび22bに流入する。このように、本実施の形態1では、圧力状態が安定した冷媒が膨張弁23aおよび23bに流入するため、異音などの異常が発生することなく、膨張弁23aおよび23bを通過する冷媒に対して適正な制御を行うことができる。 Therefore, in the first embodiment, the liquid is placed between the expansion valves 23a and 23b and the indoor heat exchangers 31a and 31b of the indoor units 30a and 30b so that the refrigerant whose state is unstable does not flow into the expansion valve. Side shutoff valves 22a and 22b are provided. In this case, the refrigerant passes through the expansion valves 23a and 23b in a stable pressure state, and then flows into the liquid side shutoff valves 22a and 22b where the pressure loss exists. As described above, in the first embodiment, since the refrigerant having a stable pressure state flows into the expansion valves 23a and 23b, the refrigerant passing through the expansion valves 23a and 23b without causing abnormal noise or the like occurs. Appropriate control can be performed.
 以上のように、本実施の形態1に係る空気調和装置1は、膨張弁ユニット20に膨張弁23aおよび23b、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bが設けられる。また、液側遮断弁22aおよび22bは、膨張弁23aおよび23bと室内熱交換器31aおよび31bとの間に設けられる。このように膨張弁23aおよび23bに対して液側遮断弁22aおよび22bが設けられることにより、圧力状態が安定した状態で膨張弁23aおよび23bに冷媒が流入する。そのため、膨張弁23aおよび23bを通過する冷媒に対して適正な制御を行うことができる。 As described above, in the air conditioner 1 according to the first embodiment, the expansion valve unit 20 is provided with expansion valves 23a and 23b, gas side shutoff valves 21a and 21b, and liquid side shutoff valves 22a and 22b. Further, the liquid side shutoff valves 22a and 22b are provided between the expansion valves 23a and 23b and the indoor heat exchangers 31a and 31b. By providing the liquid side shutoff valves 22a and 22b with respect to the expansion valves 23a and 23b in this way, the refrigerant flows into the expansion valves 23a and 23b in a stable pressure state. Therefore, appropriate control can be performed for the refrigerant passing through the expansion valves 23a and 23b.
 空気調和装置1は、冷媒漏洩センサ32aおよび32bをさらに備え、膨張弁ユニット20は、冷媒漏洩センサ32aおよび32bの検知結果に基づき、液側遮断弁22aおよび22b、ならびに、ガス側遮断弁21aおよび21bを制御する中継器制御装置25をさらに有する。これにより、冷媒が室内に漏洩した場合には、液側遮断弁22aおよび22b、ならびに、ガス側遮断弁21aおよび21bが閉じられて冷媒が遮断されるため、室内への冷媒の漏洩を抑制することができる。 The air conditioner 1 further includes a refrigerant leak sensor 32a and 32b, and the expansion valve unit 20 includes a liquid side shutoff valve 22a and 22b, and a gas side shutoff valve 21a and a gas side shutoff valve 21a based on the detection results of the refrigerant leak sensors 32a and 32b. Further, it has a repeater control device 25 for controlling 21b. As a result, when the refrigerant leaks into the room, the liquid side shutoff valves 22a and 22b and the gas side shutoff valves 21a and 21b are closed to shut off the refrigerant, thereby suppressing the leakage of the refrigerant into the room. be able to.
 空気調和装置1において、液側遮断弁22aおよび22b、ならびに、ガス側遮断弁21aおよび21bは、供給される電源が喪失した場合に、弁が閉じる電磁弁で構成されている。これにより、電源が喪失した状態で冷媒が漏洩した場合でも、液側遮断弁22aおよび22b、ならびに、ガス側遮断弁21aおよび21bが閉じるため、冷媒回路を流れる冷媒を遮断することができる。 In the air conditioner 1, the liquid side shutoff valves 22a and 22b and the gas side shutoff valves 21a and 21b are composed of solenoid valves that close when the supplied power is lost. As a result, even if the refrigerant leaks in a state where the power supply is lost, the liquid side shutoff valves 22a and 22b and the gas side shutoff valves 21a and 21b are closed, so that the refrigerant flowing through the refrigerant circuit can be shut off.
 空気調和装置1は、冷媒の漏洩が検知された場合に、冷媒漏洩を報知する警報装置33aおよび33bをさらに備えている。これにより、冷媒が室内に漏洩した際に、ユーザに対して冷媒漏洩を報知することができる。 The air conditioner 1 further includes alarm devices 33a and 33b for notifying the refrigerant leakage when the refrigerant leakage is detected. This makes it possible to notify the user of the refrigerant leakage when the refrigerant leaks into the room.
 空気調和装置1において、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bは、供給される電源が喪失した場合に、弁が閉じる電磁弁で構成されている。これにより、空気調和装置1に対するすべての電源が喪失した場合でも、冷媒回路中の冷媒の流れを遮断し、室内への冷媒の漏洩を抑制することができる。 In the air conditioner 1, the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that close when the supplied power is lost. As a result, even if all the power supplies to the air conditioner 1 are lost, the flow of the refrigerant in the refrigerant circuit can be cut off and the leakage of the refrigerant into the room can be suppressed.
実施の形態2.
 次に、本実施の形態2について説明する。本実施の形態2は、室外機10、冷媒制御系統および安全装置系統に対してそれぞれ異なる電源から電力を供給する点で、実施の形態1と相違する。なお、本実施の形態2において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 2.
Next, the second embodiment will be described. The second embodiment is different from the first embodiment in that electric power is supplied to the outdoor unit 10, the refrigerant control system, and the safety device system from different power sources. In the second embodiment, the same reference numerals are given to the parts common to the first embodiment, and detailed description thereof will be omitted.
[空気調和装置1の構成]
 図2は、本実施の形態2に係る空気調和装置の構成の一例を示す回路図である。図2に示すように、空気調和装置1は、実施の形態1と同様に、室外機10、膨張弁ユニット20、ならびに、室内機30aおよび30bで構成されている。本実施の形態2において、膨張弁ユニット20に設けられた中継器制御装置25は、冷媒制御系統制御部51および安全装置系統制御部52を備えている。
[Configuration of air conditioner 1]
FIG. 2 is a circuit diagram showing an example of the configuration of the air conditioner according to the second embodiment. As shown in FIG. 2, the air conditioner 1 is composed of an outdoor unit 10, an expansion valve unit 20, and indoor units 30a and 30b, as in the first embodiment. In the second embodiment, the repeater control device 25 provided in the expansion valve unit 20 includes a refrigerant control system control unit 51 and a safety device system control unit 52.
 冷媒制御系統制御部51は、冷媒制御系統に属する機器の電源および動作を制御する。冷媒制御系統制御部51は、冷媒回路を構成する各部による系統である。この例において、冷媒制御系統に属する機器は、膨張弁23aおよび23b、ならびに、室内機30aおよび30bである。 The refrigerant control system control unit 51 controls the power supply and operation of the equipment belonging to the refrigerant control system. The refrigerant control system control unit 51 is a system composed of each unit constituting the refrigerant circuit. In this example, the devices belonging to the refrigerant control system are the expansion valves 23a and 23b, and the indoor units 30a and 30b.
 安全装置系統制御部52は、安全装置系統に属する機器の電源および動作を制御する。安全装置系統は、安全装置を構成する各部による系統である。この例において、安全装置系統に属する機器は、ガス側遮断弁21aおよび21b、液側遮断弁22aおよび22b、冷媒漏洩センサ32aおよび32b、ならびに、警報装置33aおよび33bである。 The safety device system control unit 52 controls the power supply and operation of the devices belonging to the safety device system. The safety device system is a system consisting of each part constituting the safety device. In this example, the devices belonging to the safety device system are gas side shutoff valves 21a and 21b, liquid side shutoff valves 22a and 22b, refrigerant leak sensors 32a and 32b, and alarm devices 33a and 33b.
 ここで、本実施の形態2では、空気調和装置1に接続される電源として、室外電源61、冷媒制御用電源62および安全装置用電源63が設けられている。室外電源61は、室外機10に接続され、室外制御装置15および圧縮機11等の室外機10内の各部に対して電力を供給する。 Here, in the second embodiment, as the power source connected to the air conditioner 1, an outdoor power source 61, a refrigerant control power source 62, and a safety device power source 63 are provided. The outdoor power supply 61 is connected to the outdoor unit 10 and supplies electric power to each part in the outdoor unit 10 such as the outdoor control device 15 and the compressor 11.
 冷媒制御用電源62は、膨張弁ユニット20ならびに室内機30aおよび30bの冷媒回路を構成する各部に接続され、冷媒制御系統制御部51、膨張弁23aおよび23b、ならびに、室内機30aおよび30bに対して電力を供給する。 The refrigerant control power supply 62 is connected to the expansion valve unit 20 and each part constituting the refrigerant circuit of the indoor units 30a and 30b, and is connected to the refrigerant control system control unit 51, the expansion valves 23a and 23b, and the indoor units 30a and 30b. To supply power.
 安全装置用電源63は、膨張弁ユニット20ならびに室内機30aおよび30bの安全装置を構成する各部に接続されている。安全装置用電源63は、安全装置系統制御部52、ガス側遮断弁21aおよび21b、液側遮断弁22aおよび22b、冷媒漏洩センサ32aおよび32b、ならびに、警報装置33aおよび33bに対して電力を供給する。 The power supply 63 for the safety device is connected to each part constituting the expansion valve unit 20 and the safety devices of the indoor units 30a and 30b. The safety device power supply 63 supplies power to the safety device system control unit 52, gas side shutoff valves 21a and 21b, liquid side shutoff valves 22a and 22b, refrigerant leakage sensors 32a and 32b, and alarm devices 33a and 33b. do.
[冷媒漏洩時の動作]
 本実施の形態2に係る空気調和装置1における冷媒漏洩時の動作について説明する。実施の形態1と同様に冷房運転が行われている状態で、冷媒が空調対象空間に漏洩し、冷媒漏洩センサ32aおよび32bで冷媒の漏洩が検知された場合、中継器制御装置25は、検知結果に基づき、漏洩検知状態であると判断する。そして、中継器制御装置25の安全装置系統制御部52は、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを閉じるように制御する。また、安全装置系統制御部52は、警報装置33aおよび33bを動作させる。これにより、ユーザに対して冷媒漏洩の発生が報知される。
[Operation when refrigerant leaks]
The operation of the air conditioner 1 according to the second embodiment at the time of refrigerant leakage will be described. When the refrigerant leaks into the air-conditioned space and the refrigerant leak sensors 32a and 32b detect the leakage of the refrigerant in the state where the cooling operation is performed as in the first embodiment, the repeater control device 25 detects it. Based on the result, it is judged that the leak is detected. Then, the safety device system control unit 52 of the repeater control device 25 controls to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Further, the safety device system control unit 52 operates the alarm devices 33a and 33b. As a result, the user is notified of the occurrence of the refrigerant leak.
 さらに、安全装置系統制御部52は、冷媒漏洩が発生したことを示す異常検知信号を生成し、冷媒制御系統制御部51に供給する。冷媒制御系統制御部51は、受け取った異常検知信号に基づき、膨張弁23aおよび23bを閉じるように制御するとともに、室内機30aおよび30bの各部を制御し、室内機30aおよび30bの運転を停止させる。 Further, the safety device system control unit 52 generates an abnormality detection signal indicating that a refrigerant leak has occurred and supplies it to the refrigerant control system control unit 51. The refrigerant control system control unit 51 controls to close the expansion valves 23a and 23b based on the received abnormality detection signal, controls each part of the indoor units 30a and 30b, and stops the operation of the indoor units 30a and 30b. ..
 また、冷媒制御系統制御部51は、安全装置系統制御部52から受け取った異常信号を室外制御装置15に供給する。室外制御装置15は、受け取った異常検知信号に基づき、室外機10の各部を制御し、室外機10の運転を停止させる。 Further, the refrigerant control system control unit 51 supplies the abnormality signal received from the safety device system control unit 52 to the outdoor control device 15. The outdoor control device 15 controls each part of the outdoor unit 10 based on the received abnormality detection signal, and stops the operation of the outdoor unit 10.
[電源の喪失]
 本実施の形態2に係る空気調和装置1において、電源が喪失した場合について説明する。本実施の形態2において、冷媒制御系統制御部51および安全装置系統制御部52は、互いに通信を行い、一方の制御部に接続された電源が喪失した場合は、他方の制御部が電源喪失を検知する。そして、電源喪失を検知した他方の制御部が自身の制御対象となる機器を制御することにより、冷媒回路中の冷媒の流れを遮断し、室内への冷媒の漏洩を抑制する。
[Loss of power]
The case where the power supply is lost in the air conditioner 1 according to the second embodiment will be described. In the second embodiment, the refrigerant control system control unit 51 and the safety device system control unit 52 communicate with each other, and when the power supply connected to one control unit is lost, the other control unit loses the power supply. Detect. Then, the other control unit that has detected the loss of power controls the device to be controlled by itself, thereby blocking the flow of the refrigerant in the refrigerant circuit and suppressing the leakage of the refrigerant into the room.
 例えば、安全装置系統制御部52に供給される安全装置用電源63が喪失した場合、冷媒制御系統制御部51は、安全装置系統制御部52への電源喪失を検知する。例えば、冷媒制御系統制御部51および安全装置系統制御部52のそれぞれは、相手側の電源状態を確認するための電源確認信号を受け取ることによって互いの電源状態を監視する。そして、冷媒制御系統制御部51および安全装置系統制御部52のそれぞれは、電源確認信号が途切れた場合に相手の電源喪失を検知する。 For example, when the safety device power supply 63 supplied to the safety device system control unit 52 is lost, the refrigerant control system control unit 51 detects the power loss to the safety device system control unit 52. For example, each of the refrigerant control system control unit 51 and the safety device system control unit 52 monitors each other's power supply status by receiving a power supply confirmation signal for confirming the power supply status of the other party. Then, each of the refrigerant control system control unit 51 and the safety device system control unit 52 detects the loss of power of the other party when the power supply confirmation signal is interrupted.
 この場合に冷媒が漏洩すると、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bによる冷媒回路の遮断が困難であるため、冷媒制御系統制御部51は、膨張弁23aおよび23bを閉じるように制御するとともに、室内機30aおよび30bの各部を制御し、室内機30aおよび30bの運転を停止させる。 If the refrigerant leaks in this case, it is difficult to shut off the refrigerant circuit by the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Therefore, the refrigerant control system control unit 51 sets the expansion valves 23a and 23b. While controlling to close, each part of the indoor units 30a and 30b is controlled, and the operation of the indoor units 30a and 30b is stopped.
 また、冷媒制御系統制御部51は、安全装置系統制御部52の異常(安全装置用電源63の喪失)を室外制御装置15に通知する。これにより、室外制御装置15は、室外機10の各部を制御し、室外機10の運転を停止させる。 Further, the refrigerant control system control unit 51 notifies the outdoor control device 15 of an abnormality (loss of the safety device power supply 63) of the safety device system control unit 52. As a result, the outdoor control device 15 controls each part of the outdoor unit 10 and stops the operation of the outdoor unit 10.
 このとき、冷媒制御系統制御部51は、室内機30aおよび30bを制御している。そのため、室内機30aおよび30bに図示しない表示部等が設けられている場合には、冷媒制御系統制御部51は、室内機30aおよび30bの表示部を利用して、ユーザに対して冷媒漏洩の発生を報知することができる。 At this time, the refrigerant control system control unit 51 controls the indoor units 30a and 30b. Therefore, when the indoor units 30a and 30b are provided with a display unit or the like (not shown), the refrigerant control system control unit 51 uses the display units of the indoor units 30a and 30b to leak the refrigerant to the user. The occurrence can be notified.
 また、例えば、冷媒制御系統制御部51に供給される冷媒制御用電源62が喪失した場合、安全装置系統制御部52は、冷媒制御系統制御部51への電源喪失を検知する。この場合に冷媒が漏洩すると、安全装置系統制御部52には電源が供給されているため、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを動作させることができる。したがって、安全装置系統制御部52は、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを閉じるように制御する。そして、安全装置系統制御部52は、警報装置33aおよび33b動作させ、ユーザに対して冷媒漏洩の発生を報知する。 Further, for example, when the refrigerant control power supply 62 supplied to the refrigerant control system control unit 51 is lost, the safety device system control unit 52 detects the power loss to the refrigerant control system control unit 51. If the refrigerant leaks in this case, power is supplied to the safety device system control unit 52, so that the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b can be operated. Therefore, the safety device system control unit 52 controls to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Then, the safety device system control unit 52 operates the alarm devices 33a and 33b to notify the user of the occurrence of the refrigerant leakage.
 さらに、冷媒制御用電源62および安全装置用電源63の両方が喪失した場合でも、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bが、電源喪失時に閉じる電磁弁で構成されていれば、冷媒回路中の冷媒の流れが遮断される。そのため、室内への冷媒の漏洩を抑制することができる。 Further, even if both the refrigerant control power supply 62 and the safety device power supply 63 are lost, the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that close when the power supply is lost. If so, the flow of the refrigerant in the refrigerant circuit is cut off. Therefore, it is possible to suppress the leakage of the refrigerant into the room.
 以上のように、本実施の形態2に係る空気調和装置1において、中継器制御装置25は、安全装置用電源63が供給され、液側遮断弁22aおよび22b、ならびに、ガス側遮断弁21aおよび21bを少なくとも含む安全装置系統に属する機器を制御する安全装置系統制御部52を有している。また、中継器制御装置25は、冷媒制御用電源62が供給され、膨張弁23aおよび23bを少なくとも含む冷媒制御系統に属する機器を制御する冷媒制御系統制御部51を有している。 As described above, in the air conditioner 1 according to the second embodiment, the repeater control device 25 is supplied with the power supply 63 for the safety device, and the liquid side shutoff valves 22a and 22b, as well as the gas side shutoff valve 21a and It has a safety device system control unit 52 that controls devices belonging to the safety device system including at least 21b. Further, the repeater control device 25 has a refrigerant control system control unit 51 to which a refrigerant control power supply 62 is supplied and controls equipment belonging to the refrigerant control system including at least expansion valves 23a and 23b.
 このように、安全装置系統制御部52および冷媒制御系統制御部51に異なる電源が供給されることにより、冷媒制御系統と安全装置系統とが独立して動作するため、一方の電源が喪失した場合でも、冷媒回路中の冷媒の流れを遮断することができる。そして、これにより、室内への冷媒の漏洩を抑制することができる。 In this way, when different power supplies are supplied to the safety device system control unit 52 and the refrigerant control system control unit 51, the refrigerant control system and the safety device system operate independently, so that when one of the power supplies is lost. However, it is possible to block the flow of the refrigerant in the refrigerant circuit. As a result, it is possible to suppress the leakage of the refrigerant into the room.
実施の形態3.
 次に、本実施の形態3について説明する。本実施の形態3は、室外機10および冷媒制御系統に対する電源を共用とする点で、実施の形態2と相違する。なお、本実施の形態3において、実施の形態1および2と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 3.
Next, the third embodiment will be described. The third embodiment is different from the second embodiment in that the power source for the outdoor unit 10 and the refrigerant control system is shared. In the third embodiment, the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
[空気調和装置1の構成]
 図3は、本実施の形態3に係る空気調和装置の構成の一例を示す回路図である。図3に示すように、空気調和装置1は、実施の形態1および2と同様に、室外機10、膨張弁ユニット20、ならびに、室内機30aおよび30bで構成されている。また、膨張弁ユニット20に設けられた中継器制御装置25は、実施の形態2と同様に、冷媒制御系統制御部51および安全装置系統制御部52を備えている。
[Configuration of air conditioner 1]
FIG. 3 is a circuit diagram showing an example of the configuration of the air conditioner according to the third embodiment. As shown in FIG. 3, the air conditioner 1 is composed of an outdoor unit 10, an expansion valve unit 20, and indoor units 30a and 30b, as in the first and second embodiments. Further, the repeater control device 25 provided in the expansion valve unit 20 includes a refrigerant control system control unit 51 and a safety device system control unit 52, as in the second embodiment.
 本実施の形態3では、空気調和装置1に接続される電源として、室外電源61および安全装置用電源63が設けられている。本実施の形態3の室外電源61は、室外機10の室外制御装置15および冷媒制御系統制御部51に接続され、室外制御装置15および冷媒制御系統制御部51に対して電力を供給する。安全装置用電源63は、実施の形態2と同様である。 In the third embodiment, an outdoor power supply 61 and a safety device power supply 63 are provided as power supplies connected to the air conditioner 1. The outdoor power supply 61 of the third embodiment is connected to the outdoor control device 15 and the refrigerant control system control unit 51 of the outdoor unit 10 to supply electric power to the outdoor control device 15 and the refrigerant control system control unit 51. The safety device power supply 63 is the same as that of the second embodiment.
[冷媒漏洩時の動作]
 本実施の形態3に係る空気調和装置1における冷媒漏洩時の動作について説明する。実施の形態1および2と同様に冷房運転が行われている状態で、冷媒が空調対象空間に漏洩し、冷媒漏洩センサ32aおよび32bで冷媒の漏洩が検知された場合、中継器制御装置25は、検知結果に基づき、漏洩検知状態であると判断する。そして、中継器制御装置25の安全装置系統制御部52は、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを閉じるように制御する。また、安全装置系統制御部52は、警報装置33aおよび33bを動作させる。これにより、ユーザに対して冷媒漏洩の発生が報知される。
[Operation when refrigerant leaks]
The operation of the air conditioner 1 according to the third embodiment when the refrigerant leaks will be described. When the refrigerant leaks into the air-conditioned space and the refrigerant leak sensors 32a and 32b detect the leakage of the refrigerant in the state where the cooling operation is performed as in the first and second embodiments, the repeater control device 25 , Based on the detection result, it is judged that the leakage is detected. Then, the safety device system control unit 52 of the repeater control device 25 controls to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Further, the safety device system control unit 52 operates the alarm devices 33a and 33b. As a result, the user is notified of the occurrence of the refrigerant leak.
 さらに、安全装置系統制御部52は、冷媒漏洩が発生したことを示す異常検知信号を生成し、冷媒制御系統制御部51に供給する。冷媒制御系統制御部51は、受け取った異常検知信号に基づき、膨張弁23aおよび23bを閉じるように制御するとともに、室外機10ならびに室内機30aおよび30bの各部を制御し、室外機10ならびに室内機30aおよび30bの運転を停止させる。 Further, the safety device system control unit 52 generates an abnormality detection signal indicating that a refrigerant leak has occurred and supplies it to the refrigerant control system control unit 51. The refrigerant control system control unit 51 controls the expansion valves 23a and 23b to be closed based on the received abnormality detection signal, and also controls each part of the outdoor unit 10 and the indoor units 30a and 30b to control the outdoor unit 10 and the indoor unit. The operation of 30a and 30b is stopped.
[電源の喪失]
 本実施の形態3に係る空気調和装置1において、電源が喪失した場合について説明する。本実施の形態3において、冷媒制御系統制御部51および安全装置系統制御部52は、実施の形態2と同様に、互いに通信を行い、一方の制御部に接続された電源が喪失した場合は、他方の制御部が電源喪失を検知する。そして、電源喪失を検知した他方の制御部が自身の制御対象となる機器を制御することにより、冷媒回路中の冷媒の流れを遮断し、室内への冷媒の漏洩を抑制する。
[Loss of power]
The case where the power supply is lost in the air conditioner 1 according to the third embodiment will be described. In the third embodiment, the refrigerant control system control unit 51 and the safety device system control unit 52 communicate with each other as in the second embodiment, and when the power supply connected to one of the control units is lost, The other control unit detects power loss. Then, the other control unit that has detected the loss of power controls the device to be controlled by itself, thereby blocking the flow of the refrigerant in the refrigerant circuit and suppressing the leakage of the refrigerant into the room.
 例えば、安全装置系統制御部52に供給される安全装置用電源63が喪失した場合、冷媒制御系統制御部51は、安全装置系統制御部52への電源喪失を検知する。例えば、冷媒制御系統制御部51および安全装置系統制御部52のそれぞれは、実施の形態2と同様に、相手から電源確認信号を受け取ることによって互いの電源状態を監視する。そして、冷媒制御系統制御部51および安全装置系統制御部52のそれぞれは、電源確認信号が途切れた場合に相手の電源喪失を検知する。 For example, when the safety device power supply 63 supplied to the safety device system control unit 52 is lost, the refrigerant control system control unit 51 detects the power loss to the safety device system control unit 52. For example, each of the refrigerant control system control unit 51 and the safety device system control unit 52 monitors each other's power supply state by receiving a power supply confirmation signal from the other party, as in the second embodiment. Then, each of the refrigerant control system control unit 51 and the safety device system control unit 52 detects the loss of power of the other party when the power supply confirmation signal is interrupted.
 この場合に冷媒が漏洩すると、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bによる冷媒回路の遮断が困難であるため、冷媒制御系統制御部51は、膨張弁23aおよび23bを閉じるように制御するとともに、室内機30aおよび30bの各部を制御し、室内機30aおよび30bの運転を停止させる。 If the refrigerant leaks in this case, it is difficult to shut off the refrigerant circuit by the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Therefore, the refrigerant control system control unit 51 sets the expansion valves 23a and 23b. While controlling to close, each part of the indoor units 30a and 30b is controlled, and the operation of the indoor units 30a and 30b is stopped.
 また、冷媒制御系統制御部51は、安全装置系統制御部52の異常(安全装置用電源63の喪失)を室外制御装置15に通知する。これにより、室外制御装置15は、室外機10の各部を制御し、室外機10の運転を停止させる。 Further, the refrigerant control system control unit 51 notifies the outdoor control device 15 of an abnormality in the safety device system control unit 52 (loss of the safety device power supply 63). As a result, the outdoor control device 15 controls each part of the outdoor unit 10 and stops the operation of the outdoor unit 10.
 このとき、冷媒制御系統制御部51は、室内機30aおよび30bを制御している。そのため、室内機30aおよび30bに図示しない表示部等が設けられている場合には、冷媒制御系統制御部51は、室内機30aおよび30bの表示部を利用して、ユーザに対して冷媒漏洩の発生を報知することができる。 At this time, the refrigerant control system control unit 51 controls the indoor units 30a and 30b. Therefore, when the indoor units 30a and 30b are provided with a display unit or the like (not shown), the refrigerant control system control unit 51 uses the display units of the indoor units 30a and 30b to leak the refrigerant to the user. The occurrence can be notified.
 また、例えば、冷媒制御系統制御部51に供給される室外電源61が喪失した場合、安全装置系統制御部52は、冷媒制御系統制御部51への電源喪失を検知する。この場合に冷媒が漏洩すると、安全装置系統制御部52には電源が供給されているため、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを動作させることができる。したがって、安全装置系統制御部52は、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bを閉じるように制御する。そして、安全装置系統制御部52は、警報装置33aおよび33b動作させ、ユーザに対して冷媒漏洩の発生を報知する。 Further, for example, when the outdoor power supply 61 supplied to the refrigerant control system control unit 51 is lost, the safety device system control unit 52 detects the power loss to the refrigerant control system control unit 51. If the refrigerant leaks in this case, power is supplied to the safety device system control unit 52, so that the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b can be operated. Therefore, the safety device system control unit 52 controls to close the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b. Then, the safety device system control unit 52 operates the alarm devices 33a and 33b to notify the user of the occurrence of the refrigerant leakage.
 さらに、室外電源61および安全装置用電源63の両方が喪失した場合でも、ガス側遮断弁21aおよび21b、ならびに、液側遮断弁22aおよび22bが、電源喪失時に閉じる電磁弁で構成されていれば、冷媒回路中の冷媒の流れが遮断される。そのため、室内への冷媒の漏洩を抑制することができる。 Further, even if both the outdoor power supply 61 and the safety device power supply 63 are lost, if the gas side shutoff valves 21a and 21b and the liquid side shutoff valves 22a and 22b are composed of solenoid valves that close when the power supply is lost. , The flow of refrigerant in the refrigerant circuit is cut off. Therefore, it is possible to suppress the leakage of the refrigerant into the room.
 以上のように、本実施の形態3に係る空気調和装置1において、中継器制御装置25は、安全装置用電源63が供給され、液側遮断弁22aおよび22b、ならびに、ガス側遮断弁21aおよび21bを少なくとも含む安全装置系統に属する機器を制御する安全装置系統制御部52を有している。また、中継器制御装置25は、室外電源61が供給され、膨張弁23aおよび23bを少なくとも含む冷媒制御系統に属する機器を制御する冷媒制御系統制御部51を有している。 As described above, in the air conditioner 1 according to the third embodiment, the repeater control device 25 is supplied with the power supply 63 for the safety device, and the liquid side shutoff valves 22a and 22b, as well as the gas side shutoff valve 21a and It has a safety device system control unit 52 that controls devices belonging to the safety device system including at least 21b. Further, the repeater control device 25 has a refrigerant control system control unit 51 to which an outdoor power supply 61 is supplied and controls equipment belonging to the refrigerant control system including at least expansion valves 23a and 23b.
 このように、安全装置系統制御部52および冷媒制御系統制御部51に異なる電源が供給されることにより、冷媒制御系統と安全装置系統とが独立して動作するため、一方の電源が喪失した場合でも、冷媒回路中の冷媒の流れを遮断することができる。そして、これにより、室内への冷媒の漏洩を抑制することができる。 In this way, when different power supplies are supplied to the safety device system control unit 52 and the refrigerant control system control unit 51, the refrigerant control system and the safety device system operate independently, so that when one of the power supplies is lost. However, it is possible to block the flow of the refrigerant in the refrigerant circuit. As a result, it is possible to suppress the leakage of the refrigerant into the room.
 以上、実施の形態1~3について説明したが、本開示は、上述した実施の形態1~3に限定されるものではなく、本開示の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、実施の形態1~3では、複数の室内機30aおよび30bについての系統が1つの膨張弁ユニット20に含まれるようにしているが、これに限らず、室内機の系統毎に膨張弁ユニットがそれぞれ設けられてもよい。 Although the embodiments 1 to 3 have been described above, the present disclosure is not limited to the above-described embodiments 1 to 3, and various modifications and applications are possible without departing from the gist of the present disclosure. Is. For example, in the first to third embodiments, the systems for the plurality of indoor units 30a and 30b are included in one expansion valve unit 20, but the present invention is not limited to this, and the expansion valve unit is limited to each system of the indoor unit. May be provided respectively.
 1 空気調和装置、10 室外機、11 圧縮機、12 室外熱交換器、15 室外制御装置、20 膨張弁ユニット、21a、21b ガス側遮断弁、22a、22b 液側遮断弁、23a、23b 膨張弁、25 中継器制御装置、30a、30b 室内機、31a、31b 室内熱交換器、32a、32b 冷媒漏洩センサ、33a、33b 警報装置、34a、34b リモートコントローラ、51 冷媒制御系統制御部、52 安全装置系統制御部、61 室外電源、62 冷媒制御用電源、63 安全装置用電源。 1 air conditioner, 10 outdoor unit, 11 compressor, 12 outdoor heat exchanger, 15 outdoor control device, 20 expansion valve unit, 21a, 21b gas side shutoff valve, 22a, 22b liquid side shutoff valve, 23a, 23b expansion valve , 25 repeater control device, 30a, 30b indoor unit, 31a, 31b indoor heat exchanger, 32a, 32b refrigerant leakage sensor, 33a, 33b alarm device, 34a, 34b remote controller, 51 refrigerant control system control unit, 52 safety device System control unit, 61 outdoor power supply, 62 refrigerant control power supply, 63 safety device power supply.

Claims (7)

  1.  圧縮機および室外熱交換器を有する室外機と、
     室内熱交換器を有する室内機と、
     膨張弁、冷房運転の際に前記室外機から前記室内機へ流れる冷媒を開放または遮断する液側遮断弁、および、前記冷房運転の際に前記室内機から前記室外機へ流れる冷媒を開放または遮断するガス側遮断弁を有する膨張弁ユニットと
    を備え、
     前記圧縮機、前記室外熱交換器、前記膨張弁、前記液側遮断弁、前記室内熱交換器、前記ガス側遮断弁および前記圧縮機が環状に接続されることにより冷媒回路が形成され、
     前記液側遮断弁は、前記膨張弁と前記室内熱交換器との間に設けられ、
     前記ガス側遮断弁は、前記室内熱交換器と前記圧縮機との間に設けられている
    空気調和装置。
    An outdoor unit with a compressor and an outdoor heat exchanger,
    An indoor unit with an indoor heat exchanger and
    The expansion valve, the liquid-side shutoff valve that opens or shuts off the refrigerant flowing from the outdoor unit to the indoor unit during the cooling operation, and the liquid-side shutoff valve that opens or shuts off the refrigerant flowing from the indoor unit to the outdoor unit during the cooling operation. Equipped with an expansion valve unit having a gas side shutoff valve
    A refrigerant circuit is formed by connecting the compressor, the outdoor heat exchanger, the expansion valve, the liquid side shutoff valve, the indoor heat exchanger, the gas side shutoff valve and the compressor in an annular shape.
    The liquid side shutoff valve is provided between the expansion valve and the indoor heat exchanger.
    The gas side shutoff valve is an air conditioner provided between the indoor heat exchanger and the compressor.
  2.  室内への冷媒の漏洩を検知する冷媒漏洩センサをさらに備え、
     前記膨張弁ユニットは、
     前記冷媒漏洩センサの検知結果に基づき、前記液側遮断弁および前記ガス側遮断弁を制御する中継器制御装置をさらに有する
    請求項1に記載の空気調和装置。
    Further equipped with a refrigerant leak sensor that detects the leakage of refrigerant into the room,
    The expansion valve unit is
    The air conditioner according to claim 1, further comprising a repeater control device for controlling the liquid side shutoff valve and the gas side shutoff valve based on the detection result of the refrigerant leak sensor.
  3.  前記中継器制御装置は、
     第1の電源が供給され、前記液側遮断弁および前記ガス側遮断弁を少なくとも含む安全装置系統に属する機器を制御する安全装置系統制御部と、
     前記第1の電源とは異なる第2の電源が供給され、前記膨張弁を少なくとも含む冷媒制御系統に属する機器を制御する冷媒制御系統制御部と
    を有する
    請求項2に記載の空気調和装置。
    The repeater control device is
    A safety device system control unit that is supplied with a first power source and controls equipment belonging to the safety device system including at least the liquid side shutoff valve and the gas side shutoff valve.
    The air conditioner according to claim 2, wherein a second power source different from the first power source is supplied, and the refrigerant control system control unit controls equipment belonging to the refrigerant control system including at least the expansion valve.
  4.  前記室外機は、
     前記第1の電源および前記第2の電源とは異なる第3の電源が供給され、前記室外機に設けられた前記室外機を構成する機器を制御する室外制御装置をさらに有する
    請求項3に記載の空気調和装置。
    The outdoor unit is
    The third aspect of claim 3, further comprising an outdoor control device to which a third power source different from the first power source and the second power source is supplied and controls the equipment constituting the outdoor unit provided in the outdoor unit. Air conditioner.
  5.  前記室外機は、
     前記第1の電源および前記第2の電源とは異なる第3の電源が供給され、前記室外機に設けられた前記室外機を構成する機器を制御する室外制御装置をさらに有し、
     前記冷媒制御系統制御部は、
     前記第2の電源に代えて、前記第3の電源が供給される
    請求項3に記載の空気調和装置。
    The outdoor unit is
    It further has an outdoor control device to which a third power source different from the first power source and the second power source is supplied and controls the equipment constituting the outdoor unit provided in the outdoor unit.
    The refrigerant control system control unit is
    The air conditioner according to claim 3, wherein the third power source is supplied in place of the second power source.
  6.  前記冷媒の漏洩が検知された場合に、冷媒漏洩を報知する警報装置をさらに備える
    請求項1~5のいずれか一項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 5, further comprising an alarm device for notifying the refrigerant leak when the refrigerant leak is detected.
  7.  前記液側遮断弁および前記ガス側遮断弁は、
     供給される電源が喪失した場合に、弁が閉じる電磁弁で構成されている
    請求項1~6のいずれか一項に記載の空気調和装置。
    The liquid side shutoff valve and the gas side shutoff valve
    The air conditioner according to any one of claims 1 to 6, wherein the air conditioner comprises a solenoid valve that closes when the supplied power is lost.
PCT/JP2020/031252 2020-08-19 2020-08-19 Air conditioner WO2022038708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022543869A JP7415017B2 (en) 2020-08-19 2020-08-19 air conditioner
PCT/JP2020/031252 WO2022038708A1 (en) 2020-08-19 2020-08-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031252 WO2022038708A1 (en) 2020-08-19 2020-08-19 Air conditioner

Publications (1)

Publication Number Publication Date
WO2022038708A1 true WO2022038708A1 (en) 2022-02-24

Family

ID=80323550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031252 WO2022038708A1 (en) 2020-08-19 2020-08-19 Air conditioner

Country Status (2)

Country Link
JP (1) JP7415017B2 (en)
WO (1) WO2022038708A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028946A1 (en) * 2022-08-01 2024-02-08 東芝キヤリア株式会社 Refrigeration cycle device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 Air conditioner
JPH0480569A (en) * 1990-07-24 1992-03-13 Toshiba Corp Air-conditioning machine
JPH0526532A (en) * 1991-07-23 1993-02-02 Toshiba Ave Corp Air-conditioner
JPH05149638A (en) * 1991-11-27 1993-06-15 Sanyo Electric Co Ltd Multiroom type air-conditioner
WO2018220804A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Relay device and air conditioning device
WO2019038797A1 (en) * 2017-08-21 2019-02-28 三菱電機株式会社 Air conditioning device and expansion valve unit
JP2019113258A (en) * 2017-12-25 2019-07-11 ダイキン工業株式会社 Refrigerating device
US20190212024A1 (en) * 2016-09-19 2019-07-11 Gd Midea Heating & Ventilating Equipment Co., Ltd. Multi-split air conditioning system and switching control method for operating mode of indoor units thereof
JP2020109343A (en) * 2019-01-02 2020-07-16 ダイキン工業株式会社 Air conditioner and shutoff valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008505A (en) 2006-06-27 2008-01-17 Denso Corp Ejector type refrigerating cycle
JP2015068633A (en) 2013-10-01 2015-04-13 三菱電機株式会社 Coolant flow dividing unit and air conditioner
EP3370020B1 (en) * 2015-10-26 2020-07-01 Mitsubishi Electric Corporation Refrigerant distributor, and air conditioner using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 Air conditioner
JPH0480569A (en) * 1990-07-24 1992-03-13 Toshiba Corp Air-conditioning machine
JPH0526532A (en) * 1991-07-23 1993-02-02 Toshiba Ave Corp Air-conditioner
JPH05149638A (en) * 1991-11-27 1993-06-15 Sanyo Electric Co Ltd Multiroom type air-conditioner
US20190212024A1 (en) * 2016-09-19 2019-07-11 Gd Midea Heating & Ventilating Equipment Co., Ltd. Multi-split air conditioning system and switching control method for operating mode of indoor units thereof
WO2018220804A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Relay device and air conditioning device
WO2019038797A1 (en) * 2017-08-21 2019-02-28 三菱電機株式会社 Air conditioning device and expansion valve unit
JP2019113258A (en) * 2017-12-25 2019-07-11 ダイキン工業株式会社 Refrigerating device
JP2020109343A (en) * 2019-01-02 2020-07-16 ダイキン工業株式会社 Air conditioner and shutoff valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028946A1 (en) * 2022-08-01 2024-02-08 東芝キヤリア株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP7415017B2 (en) 2024-01-16
JPWO2022038708A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US10451306B2 (en) Air-conditioning apparatus
JP5517789B2 (en) Air conditioner
WO2018216127A1 (en) Air conditioning system
JP6636173B2 (en) Air conditioner and air conditioning system
WO2011141959A1 (en) Switching apparatus and air conditioning apparatus
JP6300954B2 (en) Air conditioner
WO2016157519A1 (en) Air-conditioning device
JP6079061B2 (en) Refrigeration equipment
JP2010007998A (en) Indoor unit of air conditioner and air conditioner including it
EP2963359A1 (en) Air conditioning device
WO2015083529A1 (en) Air conditioner
WO2022038708A1 (en) Air conditioner
WO2021157161A1 (en) Air-conditioning system
JPWO2019097604A1 (en) Duct type air conditioner
KR20050122625A (en) A multi air conditioner system and a driving method of indoor unit
JP6906708B2 (en) Water-cooled air conditioner
JP2003056933A (en) Multiple air conditioner
JP2021162232A (en) Air conditioner
JPWO2022038708A5 (en)
WO2023135630A1 (en) Air conditioner
WO2022202571A1 (en) Air conditioner
WO2024018594A1 (en) Multi-type air-conditioning device
JP6778888B1 (en) Repeater and air conditioner
JP2005291555A (en) Air conditioner
WO2022163058A1 (en) Air-conditioning device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022543869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950274

Country of ref document: EP

Kind code of ref document: A1