WO2022037425A1 - 机器人***以及控制方法 - Google Patents

机器人***以及控制方法 Download PDF

Info

Publication number
WO2022037425A1
WO2022037425A1 PCT/CN2021/111225 CN2021111225W WO2022037425A1 WO 2022037425 A1 WO2022037425 A1 WO 2022037425A1 CN 2021111225 W CN2021111225 W CN 2021111225W WO 2022037425 A1 WO2022037425 A1 WO 2022037425A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
joint
arms
arm
moving
Prior art date
Application number
PCT/CN2021/111225
Other languages
English (en)
French (fr)
Inventor
徐凯
赵江然
杨皓哲
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Publication of WO2022037425A1 publication Critical patent/WO2022037425A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00225Systems for controlling multiple different instruments, e.g. microsurgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00296Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means mounted on an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3612Image-producing devices, e.g. surgical cameras with images taken automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39083Robot interference, between two robot arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45117Medical, radio surgery manipulator

Definitions

  • the present disclosure relates to the field of robots, and in particular, to a robot system and a control method.
  • Laparoscopic surgery is a widely used surgical form with advantages such as small incision.
  • surgical robots have used moving arms to achieve higher stability and precision in surgical procedures.
  • the moving arm pushes the surgical instrument into the surgical site in the body (eg, human or animal) by poking to perform the surgical procedure.
  • the surgical process realized by the use of surgical robots mainly includes preoperative positioning, intraoperative operation and postoperative finishing.
  • a surgical assistant such as an assistant doctor or a nurse
  • the moving arm Before surgery, it is usually necessary for a surgical assistant (such as an assistant doctor or a nurse) to adjust the moving arm to a suitable posture according to the type of surgery and the surgical posture, connect the moving arm to the stamping card fixedly, and then set it at the end of the moving arm Surgical instruments, so that the surgical instruments enter the body by poking.
  • Movement of the kinematic arm can be manually adjusted by the surgical assistant from its distal end (i.e., near the patient end), or by the surgical assistant or physician by operating controls at the proximal end of the kinematic arm (i.e., near the physician's control end) control.
  • a control method for a robotic system including a plurality of moving arms, the control method comprising: determining one or more targets in the plurality of moving arms based on an operation command the movement mode of the movement arm; determine the initial pose of the one or more target movement arms; based on the initial posture of the one or more target movement arms and the movement step length corresponding to the movement mode, execute one or more A motion control loop, wherein, for each motion control loop, a target pose of the one or more target kinematic arms is determined; and the one or more target kinematic arms are controlled to move toward the target pose.
  • a robotic system includes: a plurality of motion arms; and a control device configured to: determine one or more target motion arms of the plurality of motion arms based on operational commands determine the initial poses of the one or more target moving arms; perform one or more motion controls based on the initial poses of the one or more target moving arms and the motion steps corresponding to the motion patterns loops, wherein for each motion control loop, a target pose of the one or more target motion arms is determined; and the one or more target motion arms are controlled to move toward the target pose.
  • a computer-readable storage medium comprising one or more instructions executable by a processor to perform a method of control of a robotic system comprising a plurality of moving arms
  • the control The method includes: determining a movement mode of one or more target moving arms in the plurality of moving arms based on an operation command; determining an initial pose of the one or more target moving arms; based on one or more of the targets performing one or more motion control loops with an initial pose of the moving arm and a motion step length corresponding to the movement pattern, wherein for each motion control loop, a target pose of the one or more target moving arms is determined; and controlling The one or more target moving arms are moved toward the target pose.
  • FIG. 1 shows a structural block diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic three-dimensional structure diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a moving arm of a robot system according to some embodiments of the present disclosure
  • FIG. 4 shows a partial cross-sectional view of an auxiliary connection device according to some embodiments of the present disclosure
  • Figure 5(a) shows a flowchart of a control method for a robotic system according to some embodiments of the present disclosure
  • Figure 5(b) shows a flowchart of a control method for each motion control loop according to some embodiments of the present disclosure
  • FIG. 6 shows another structural block diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 7 shows a flowchart of a method for determining a target pose of a moving arm according to some embodiments of the present disclosure
  • FIG. 8 shows a schematic structural diagram of a control apparatus according to some embodiments of the present disclosure.
  • the terms “installed”, “connected”, “connected” and “coupled” should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • installed e.g., it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the end close to the operator is defined as proximal, proximal or posterior, posterior, and the end close to the surgical patient is defined as distal, distal or anterior, anterior.
  • FIG. 1 shows a structural block diagram of a robotic system 10 according to some embodiments of the present disclosure.
  • the robotic system 10 may include a control device 11 and a plurality of motion arms connected with the control device 11 .
  • the plurality of movement arms may include a first movement arm 12a and a second movement arm 12b.
  • the control device 11 may be used to control the first moving arm 12a and the second moving arm 12b.
  • the control device 11 can adjust the movement, posture, mutual coordination and the like of the first moving arm 12a and the second moving arm 12b.
  • the first kinematic arm 12a and the second kinematic arm 12b may include a first end arm 128a and a second end arm 128b, respectively, at the ends or distal ends.
  • the control device 11 may control the movement of the first moving arm 12a or the second moving arm 12b so as to move the first end arm 128a or the second end arm 128b to a desired position and posture.
  • the present disclosure illustrates an exemplary robotic system 10 in FIG. 1 and subsequent figures as including two kinematic arms.
  • the robotic system 10 may also include three, four or more kinematic arms.
  • the robotic system 10 may include a surgical robotic system, such as a laparoscopic surgical robotic system. It should be understood that robotic system 10 may also include specialized or general-purpose robotic systems used in other fields (eg, manufacturing, machinery, etc.).
  • FIG. 2 shows a schematic three-dimensional structure diagram of the robot system 10 according to some embodiments of the present disclosure.
  • the robot system 10 is a surgical robot system, which may include an operating cart 13 and a first moving arm 12 a and a second moving arm 12 b disposed on the operating cart 13 .
  • the surgical cart 13 may include a base 131 and a beam 132 .
  • the first moving arm 12a and the second moving arm 12b can be movably arranged on the beam 132 .
  • multiple moving arms of the robot system 10 may also be arranged on multiple operating trolleys, for example, each moving arm is correspondingly arranged on one operating trolley. Or one moving arm is arranged on one operating trolley, and the other multiple moving arms are arranged on another operating trolley. These embodiments still fall within the scope of the present disclosure.
  • each kinematic arm (eg, the first kinematic arm 12a and the second kinematic arm 12b) of the robotic system 10 may include multiple links and multiple joints.
  • each joint of each moving arm may include a motor for driving the corresponding joint to move, thereby driving the corresponding link to rotate.
  • FIG. 3 shows a schematic structural diagram of a moving arm of the robot system 10 according to some embodiments of the present disclosure.
  • the second moving arm 12b (or the first moving arm 12a) may include joints 1201b-1208b and links 121b-128b.
  • the proximal end of the link 121b (the end close to the beam 132 is defined as the proximal end of the moving arm in the present disclosure) is connected with the beam 132, and the links 121b-127b are serially connected in sequence.
  • the joint 1201b may be located at the proximal end of the connection between the beam 132 and the connecting rod 121b
  • the joint 1202b may be located at the connection between the connecting rod 121b and the second connecting rod 122b
  • the joint 1203b may be located at the connection between the connecting rod 122b and the connecting rod 123b.
  • 1204b may be located at the connection between link 123b and link 124b
  • joint 1205b may be located at the connection between link 124b and link 125b
  • joint 1206b may be located at the connection between link 125b and link 126b
  • joint 1207b may be located at the link
  • joint 1208b may be located at the connection of link 127b to link 128b.
  • the link 128b serves as the most distal link of the second moving arm 12b, forming a second end arm 128b of the second moving arm 12b.
  • the determination and representation of the position and attitude of the end arm requires a joint decision of each of the aforementioned joints. It should be understood that the links 126b, 127b and 128b together constitute the distal center of motion mechanism (RCM mechanism) of the second moving arm 12b.
  • RCM mechanism distal center of motion mechanism
  • robotic system 10 may include one or more surgical instruments.
  • surgical instrument 14a may be mounted on first end arm 128a of first kinematic arm 12a
  • surgical instrument 14b may be mounted on second end arm 128b of second kinematic arm 12b.
  • surgical instruments 14a and 14b may include, but are not limited to, clamps for performing surgery, electrosurgical knives, or image capture devices (eg, endoscopic tools) for performing illuminated imaging, and the like.
  • Surgical instrument 14a and a portion of surgical instrument 14b (eg, an arm body and a tip instrument disposed at the distal end of the arm body) may be entered into a body part of a human or animal to perform a medical procedure, such as surgery.
  • the robotic system 10 may also include an auxiliary connection device 15, such as a sheath.
  • Auxiliary connection device 15 can be installed on the human or animal body (eg in an incision or opening), one part can be positioned on the part of the human or animal body where surgery is required, and the other part is used to connect with the moving arm (eg with the first, second and second).
  • the first and second end arms 128a, 128b) of the moving arms 12a, 12b are detachably connected to better serve the surgery.
  • FIG. 4 shows a partial cross-sectional view of the auxiliary connection device 15 according to some embodiments of the present disclosure.
  • the auxiliary connection device 15 may include a sheath 151 and a sheath 152 .
  • the auxiliary connecting device 15 may also include at least two connecting portions (eg, connecting portions 153 and 154 ).
  • the connection part may include, but is not limited to, a clamp, a snap-fit structure, an adhesive structure, a plug-in structure, and a pull-in structure.
  • the connecting parts 153 and 154 may be fixedly arranged on the sheath tubes 151 and 152, respectively.
  • each moving arm (eg, the first and second moving arms 12a, 12b ) may include a connecting member (eg, the connecting member shown in FIG. 2 ) that cooperates with the connecting portion (eg, connecting portions 153 and 154 ) 1281a and 1281b).
  • the auxiliary connecting device 15 can be detachably and fixedly connected to the connecting pieces 1281 a and 1281 b of the first and second moving arms 12 a and 12 b through the connecting parts 153 and 154 , respectively.
  • the connectors 1281a and 1281b may be fixedly disposed on the first end arm 128a and the second end arm 128b, respectively.
  • the connecting pieces 1281a and 1281b are respectively connected with the connecting portion 153 and the connecting portion 154, so that the auxiliary connecting device 15 can be detachably and fixedly connected with the first and second moving arms 12a, 12b.
  • the spatial position of the first end arm 128a, the second end arm 128b, the connectors 1281a and 1281b in Cartesian coordinates and the pose orientation of the rotational coordinates can be represented by the pose orientation of the coordinate system of these components.
  • the configuration of the auxiliary connection device may be determined based on the current procedure type or the configuration of the auxiliary connection device, eg, the configuration of the auxiliary connection device may be determined based on the current procedure type. Based on the configuration of the auxiliary connecting device, the shape and relative pose relationship between the multiple sheath tubes of the auxiliary connecting device are determined to determine the relative poses of the distal ends of the multiple moving arms.
  • the distal end of the moving arm may comprise a distal arm of the moving arm, a distal motion center mechanism (RCM mechanism) of the moving arm, or a portion on the moving arm for connecting with an auxiliary connection device.
  • the pose of the distal end of the moving arm may include the pose of the distal arm of the moving arm, the pose of the distal motion center mechanism (RCM mechanism) of the moving arm, or the pose of the part on the moving arm for connecting with the auxiliary connecting device .
  • the relative pose relationship of the distal ends of the first moving arm 12a and the second moving arm 12b can be determined.
  • the relative pose relationship between the ends of the first moving arm 12a and the second moving arm 12b may indicate the positional relationship and attitude relationship of the end of the first moving arm 12a relative to the end of the second moving arm 12b in the world space coordinate system.
  • the end relative pose relationship may include, for example, a relative pose relationship formed between the first end arm 128a of the first moving arm 12a and the second end arm 128b of the second moving arm 12b.
  • the tip relative pose relationship may also include a relative pose relationship formed between the surgical instruments 14a and 14b mounted on the first tip arm 128a and the second tip arm 128b.
  • the relative pose relationship of the ends may further include a relative pose relationship formed between the connecting pieces 1281a and 1281b fixedly disposed on the first end arm 128a and the second end arm 128b.
  • the tip relative pose relationship may be stored in an associated relative pose model and may be used to calculate the target pose of the tip of the first kinematic arm 12a or the second kinematic arm 12b.
  • connecting pieces 1281a and 1281b are respectively fixed on the first end arm 128a and the second end arm 128b, when the first end arm 128a and the second end arm 128b conform to the relative pose relationship of the ends, the connecting pieces 1281a and 1281b can be respectively Connected with the connecting parts 153 and 154 .
  • the target pose of the surgical instrument 14a installed at the end of the first moving arm 12a in the world coordinates can be determined
  • the second moving arm 12b moves to the target pose, which can be The target pose of the surgical instrument 14b mounted on the end of the second moving arm 12b in the world coordinates is determined.
  • the pose of the moving arm or part of it can be achieved by joints.
  • the fixed locations on each moving arm may be achieved by some of the plurality of joints included in the respective kinematic arms.
  • the target spatial posture of the fixed part on each moving arm can be realized by other joints among the plurality of joints included in the corresponding moving arm.
  • the plurality of joints of the ends of the kinematic arm (eg, first and second end arms 128a, 128b ) used to achieve the target spatial pose are relative to the joints of the kinematic arm used to achieve the target spatial position near the distal end of the exercise arm.
  • the multiple joints for realizing the target spatial posture and target spatial position of the end of the moving arm may also include other setting manners, which may be specifically set according to usage requirements.
  • the surgical instruments 14a and 14b can pass through the sheath tubes 151 and 152 of the auxiliary connecting device 15, respectively, and smoothly pass through the sheath tubes 151 and 152 at a predetermined angle, along the sheath tubes.
  • the movement of 151 and 152 into the human body requires the corresponding poses of surgery.
  • the sheaths 151 and 152 of the auxiliary connection device 15 may be flexible, and the portion of the surgical instruments 14a, 14b extending through the auxiliary connection device 15 may also be flexible, which may facilitate the connection between the first distal arm 128a and the second
  • the connecting parts 153 and 154 on the auxiliary connecting device 15 can be connected with the connecting parts 1281a and 1281b on each moving arm, and the flexible part of the auxiliary connecting device 15 can be connected to the end arm.
  • auxiliary connection device 15 shown in FIG. 4 is merely exemplary.
  • robotic system 10 may include three, four, or more kinematic arms, and auxiliary connection device 15 may include three, four, or more sheaths, each sheath including a corresponding connection thereon A part is used for connecting each sheath with each moving arm and constraining the relative pose relationship between the plurality of end arms.
  • FIG. 5(a) shows a flowchart of a control method 500 for a robotic system (eg, robotic system 10) according to some embodiments of the present disclosure.
  • FIG. 6 illustrates another simplified block diagram of robotic system 10 in accordance with some embodiments of the present disclosure.
  • the method 500 may be performed by a control device (eg, the control device 11 ) of the robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 500 may be implemented by software, firmware, and/or hardware.
  • the movement mode of one or more target movement arms among the plurality of movement arms is determined based on the operation command.
  • the movement pattern may include movement direction and movement pattern.
  • motion patterns may include, but are not limited to, one or more target kinematic arm movement, rotation, or pitch, or multiple target kinematic arms global movement, global rotation, or global pitch (eg, a combination of global translation and global rotation).
  • the target movement arm may include a first movement arm 12a and a second movement arm 12b.
  • the motion pattern may include moving the end of the first motion arm 12a (eg, first end arm 128a ) and the end of the second motion arm 12b (eg, second end arm 128b ) toward or away from each other.
  • the motion pattern may include integral motion of the end of the first motion arm 12a (eg, first end arm 128a ) and the end of the second motion arm 12b (eg, second end arm 128b ).
  • the overall rotation of the tip may include a pitch rotation or a pan rotation about a predetermined point.
  • the predetermined point may be the point of attachment of the auxiliary attachment device 15 to the ventral port, or the predetermined point may include a point along an extension of the distal end of the exercise arm, such as an RCM (Remote Center of Motion) point.
  • RCM Remote Center of Motion
  • operational commands are entered by a user through a user interface.
  • the user interface may include, but is not limited to, input devices.
  • the control device 11 may include an input device 113 .
  • the input device 113 is configured to receive an operation command from the user, or receive an operation instruction from the user, so that the control device 11 can obtain a specific operation command based on the operation instruction.
  • the control device 11 may determine the movement manner of the end of the first moving arm 12a and the end of the second moving arm 12b based on the operation command.
  • the operation command may be a command for the first end arm 128a of the first movement arm 12a and the second end arm 128b of the second movement arm 12b to translate together as a whole.
  • the operation command may be a command for the first end arm 128a of the first movement arm 12a and the second end arm 128b of the second movement arm 12b to rotate together around a predetermined point or a line as a whole.
  • the first end arm 128a of the first kinematic arm 12a and the second end arm 128b of the second kinematic arm 12b as a whole can pitch together about a predetermined point or rotate together about a longitudinal axis.
  • the operation command may be that the first end arm 128a of the first movement arm 12a and the second end arm 128b of the second movement arm 12b translate and rotate together as a whole Order.
  • method 500 may further include the step of controlling one or more target moving arms to stop moving in response to no longer receiving an operation command or receiving a stop command. For example, when the operator presses the button for a long time to control the movement of the moving arm in real time, if the operator releases the button and can no longer receive operation commands, one or more moving arms can be controlled to stop moving. Alternatively, after the operator presses the start button to start the movement of one or more moving arms, and then presses the stop button to issue a stop command, one or more target moving arms can be controlled to stop moving.
  • initial poses of one or more target moving arms are determined.
  • the initial joint values of the one or more target moving arms can be detected by the sensor to determine the initial pose of the one or more target moving arms.
  • the control device 11 may be communicatively coupled with each target motion arm (eg, the first and second motion arms 12a, 12b).
  • the first motion arm 12a may also include one or more sensors 129a.
  • the motors of the joints 1201-1208a may be coupled to a plurality of sensors 129a, respectively.
  • the second kinematic arm 12b may also include one or more sensors 129b.
  • the motors of the joints 1201-1208b may be coupled to a plurality of sensors 129b, respectively.
  • FIG. 6 exemplarily shows one sensor, it being understood that the illustrated sensors 129a and 129b may represent a plurality of sensors.
  • Sensors 129a and 129b may include, but are not limited to, encoders or potentiometers, for example.
  • the sensor can be used to acquire data corresponding to multiple joints of the moving arm, so as to measure the joint value of the corresponding joint.
  • the sensor may include a fiber optic sensor extended on the moving arm for obtaining the pose of the moving arm.
  • the control device 11 may include one or more processors 111 and memory 112 .
  • the processor 111 may be connected in communication with the plurality of sensors 129a of the first moving arm 12a to obtain current joint values of the respective joints 1201-1208a of the first moving arm 12a through the plurality of sensors 129a.
  • the processor 111 may be connected in communication with the plurality of sensors 129b of the second moving arm 12b to obtain current joint values of the respective joints 1201-1208b of the second moving arm 12b through the plurality of sensors 129b.
  • the processor 111 may solve the current joint value of each joint based on the forward kinematic models of the first and second moving arms 12a and 12b to obtain the first moving arm 12a and the second moving arm
  • the current pose of 12b (eg the end of the first moving arm and the end of the second moving arm).
  • the current posture may include the current posture and the current position, and the current posture may be the position and posture at any moment.
  • the forward kinematics model of the first moving arm 12a may be preset and stored in the memory 112 .
  • the forward kinematics model of the kinematic arm can obtain the pose of any position or any part of the kinematic arm based on all known joint variables (eg joint values) of the kinematic arm (eg, the first and second end arms 128a, 128b, and fixed settings).
  • joint variables eg joint values
  • one or more motion control loops are performed based on the initial pose of the one or more target motion arms and the motion step size corresponding to the motion pattern.
  • the motion step size corresponding to the motion mode may be preset.
  • the corresponding target moving arms may be controlled to move in motion steps to execute at least one motion control loop.
  • a single motion control loop can be 80ms.
  • the motion step size may include the overall motion magnitude or the individual motion magnitudes of the multiple target motion arms in a single motion control cycle.
  • Figure 5(b) shows a flow diagram of a control method 500(b) for each motion control loop in accordance with some embodiments of the present disclosure.
  • the method 500 ( b ) may be performed by a control device (eg, control device 11 ) of the robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 500(b) may be implemented by software, firmware, and/or hardware.
  • the target poses of one or more target moving arms are determined.
  • the current joint value for each joint of the target kinematic arm is determined.
  • the current joint value of each joint of the one or more target kinematic arms is determined based on the current pose, and based on the current joint value and joint step size of each joint of the one or more target kinematic arms, Determines the target joint value for each joint of one or more target kinematic arms in the current motion control loop.
  • the target pose of the target kinematic arm can be determined.
  • the pose (eg, initial pose, current pose, target pose, etc.) of the moving arm may be represented by a set of joint values of each joint of the moving arm.
  • a joint step size for each joint included in each target kinematic arm is determined.
  • the joint step size of each joint may indicate the angle by which the corresponding joint can move about its joint axis during each motion control cycle.
  • the motion step of the motion arm may be represented by a set of joint steps of a plurality of joints of the motion arm.
  • the initial joint value of each joint of the one or more target motion arms may be determined based on the initial poses of the one or more target motion arms, and the initial joint value as the current joint value. Based on the current joint value and the joint step size of each joint of the one or more target moving arms, the target joint value of each joint of the one or more target moving arms in the current motion control loop is determined.
  • the current pose of the one or more target motion arms in the current motion control cycle may be determined. It should be understood that the current pose of the target moving arm in the current motion control cycle may be determined based on the current joint values of the target moving arm. For non-first motion control loops, the current pose of the target arm in the current motion control loop can be determined based on the calculated target pose of the previous motion control loop, and the current joint value of each joint is the value of the previous motion control loop The joint value of each joint corresponding to the target pose.
  • method 500(b) may further include, for each motion control cycle, determining the distal end of the plurality of target motion arms based on the motion step size and the current surgical type or configuration of the accessory attachment device and determining the target poses of the multiple target moving arms based on the target poses of the ends of the multiple target moving arms.
  • the plurality of target movement arms may include a first movement arm 12a and a second movement arm 12b.
  • the end of the first movement arm 12a eg, the first end arm 128a
  • the end of the second movement arm 12b eg, the second end arm
  • the relative pose relationship between the first end of the first movable arm and the end of the second end of the second movable arm may be predetermined or known.
  • the overall motion range of the multiple target moving arms eg, the ends of the target moving arms
  • a target pose is determined for the ends of the plurality of target kinematic arms.
  • the target pose of the first end of the first moving arm 12a may include one of the following: the target position of the first end arm 128a of the first moving arm 12a and the target posture, the target position and target posture of the distal end motion center mechanism (RCM mechanism) of the first moving arm 12a, the target position of the end of the first moving arm 12a for connecting with the auxiliary connecting device 15 (eg, the connecting piece 1281a) and target posture.
  • the target pose of the first moving arm 12a is determined. It should be understood that the pose of the moving arm may be represented by a set of joint values of a plurality of joints included in the moving arm.
  • the initial joint value of each joint of the first moving arm 12a can be obtained through sensors (such as the sensor 129a) installed at each joint of the first moving arm 12a, and the forward kinematics model of the first moving arm 12a can be used to calculate, to obtain the initial posture of the first moving arm 12a.
  • the target pose of the moving arm may be determined based on the current pose of the moving arm and the target pose of the end by the method shown in FIG. 7 .
  • the current surgery type may be the type currently requiring surgery, for example, the surgery type may include, but is not limited to, general surgery, thoracic surgery, urological surgery, gynecological surgery, and the like.
  • the auxiliary connection device may include a sheath, and the configuration of the sheath may include, for example, the specifications and types of sheaths under different surgical procedures (the specifications and types may include, but are not limited to, for example, the length of the sheath, radial size, aperture size, number of sheath tubes, relative pose relationship of multiple sheath tubes, etc.).
  • Each of the plurality of sheaths is associated with the relative pose relationship of at least one moving arm, and the relative pose relationship between the sheaths of different configurations and each moving arm may be different.
  • the input device 113 may be used to receive setup information from a user (eg, current procedure type, configuration of auxiliary attachment devices, setup information for relative pose models, etc., etc.).
  • step 513 one or more target moving arms are controlled to move toward the target pose. It should be understood that the target moving arm can be controlled to move toward the target pose through one or more motion control loops.
  • method 500 can optionally also include step 509 . In step 509, for each motion control loop, based on the constraint relationship and the target pose, it is determined whether there is interference between one or more target motion arms or with other motion arms. In some embodiments, method 500 may further include determining whether all target joint values of the one or more target kinematic arms are within the joint motion range of the corresponding joint.
  • method 500 may also include step 511 .
  • step 511 in response to the interference between one or more target moving arms or with other moving arms, control one or more target moving arms to stop moving or issue an alarm message.
  • whether an interference relationship will be formed between the first moving arm 12a and the second moving arm 12b may be determined based on the constraint relationship. Based on the constraint relationship being satisfied, it is determined that no interference relationship will occur between the first moving arm 12a and the second moving arm 12b. Based on the constraint relationship not being satisfied, it is determined that an interference relationship will occur between the first moving arm 12a and the second moving arm 12b. It should be understood that the constraint relationship can be defined by an interference model.
  • the constraint relationship may include at least one of the following relationships: the relative position sequence relationship between the first movable arm 12a and the second movable arm 21b conforms to a predetermined relative position sequence relationship, and the relative position sequence relationship between the first movable arm 12a and the second movable arm 21b
  • the distance between the associated predetermined point and the predetermined point associated with the second moving arm 12b is greater than the predetermined safety distance
  • the predetermined line segment associated with the first moving arm 12a and the predetermined line associated with the second moving arm 12b The minimum distance between the line segments is greater than the predetermined safety line segment distance, or the difference between the joint value of one or more joints of the first moving arm 12a and the joint value of the corresponding joint of the second moving arm 12b is greater than the predetermined safe value.
  • the predetermined relative position sequence relationship may include, but is not limited to, clockwise or counterclockwise order among the plurality of movement arms.
  • the relative position sequence relationship between the plurality of moving arms can be represented by the relative position sequence of the joints or links of the moving arms.
  • one or more joints (eg, joints 1202a and/or 1203a ) of the first kinematic arm 12a proximate the beam 132 are adjacent to the beam 132 with an adjacent kinematic arm (eg, the second kinematic arm 12b ) at the end of each motion control cycle
  • the relative position order of the corresponding one or more joints (for example, joints 1202b and/or 1203b) at the end position of each motion control cycle conforms to clockwise or counterclockwise ordering, and it can be determined that the first motion arm 12a and the second motion arm 12b satisfies the constraints of the relative position sequence relationship.
  • the end of one or more links (eg, links 121a and/or 122a ) of the first moving arm 12a can also be determined by determining the ends of the corresponding links of the second moving arm 12b (eg, links 121b and 122a ).
  • Whether the relative position sequence of the ends of 122b) conforms to a predetermined relative position sequence relationship (for example, clockwise or counterclockwise ordering), so as to determine whether the relative position sequence relationship between the first moving arm 12a and the second moving arm 12b conforms to A predetermined relative position sequence relationship.
  • the relative position sequence relationship among the plurality of moving arms may also be represented by the movement angles of the joints or links of the moving arms relative to the same reference direction. For example, based on the initial position sequence, it is determined that the rotation angle of the joint (eg, joint 1201 a ) of the first moving arm 12 a relative to the beam 132 is smaller than the rotation angle of the joint (eg, joint 1201 b ) of the second moving arm 12 b relative to the beam 132 . In response to the rotation angle of the joint 1201a relative to the beam 132 being smaller than the rotation angle of the joint 1201b relative to the beam 132, it can be determined that the first moving arm 12a and the second moving arm 12b satisfy the constraints of the predetermined relative position sequence relationship. On the contrary, it can be determined that the predetermined relative position sequence is not satisfied between the first moving arm 12a and the second moving arm 12b, which may lead to an interference relationship between the first moving arm 12a and the second moving arm 12b.
  • the predetermined points associated with the kinematic arm may include fixed points on links of the kinematic arm, joints of the kinematic arm, or other points associated with the kinematic arm.
  • the predetermined point associated with the first moving arm 12a may be a predetermined joint (eg, joint 1203a) of the first moving arm 12a
  • the predetermined point associated with the second moving arm 12b may be a corresponding joint of the second moving arm 12b (eg joint 1203b).
  • the distance between the joint 1203a of the first kinematic arm 12a and the joint 1203b of the second kinematic arm 12b may be based on the joint axis of the joint 1203a of the first kinematic arm 12a and the joint 1203b of the second kinematic arm 12b joint axis to determine.
  • the predetermined point associated with the first moving arm 12a may be a fixed point on a predetermined link (eg, link 121a) of the first moving arm 12a, and the predetermined point associated with the second moving arm 12b This may be a fixed point on a corresponding link (eg link 121b) of the second moving arm 12b or an adjacent link (eg 123b).
  • the predetermined point associated with the first kinematic arm 12a may be a fixed point on a predetermined link (eg, a distal center of motion mechanism, RCM mechanism) in the first kinematic arm 12a, the same as the second kinematic arm 12a.
  • the predetermined point to which the arm 12b is associated may be a projection point on the horizontal plane of the axis of the link of the second moving arm 12b (eg, link 124b).
  • the safety distance may be a preset distance, for example, may include but not be limited to 135mm.
  • the safety distance may also be set based on the size of the joint or link.
  • the safety distances between predetermined points corresponding to different joints or links may be different.
  • the predetermined points associated with the first moving arm 12a and the second moving arm 12b may include, but are not limited to, the situations shown in the above embodiments.
  • the predetermined line segment associated with the kinematic arm may include an edge or axis of a link of the kinematic arm, a joint axis of the kinematic arm, or other line segments associated with the kinematic arm. It should be understood that the minimum distance between two line segments is the smaller of the distance between the start points of the two line segments and the distance between the end points of the two line segments.
  • the predetermined line segment associated with the first moving arm 12a may be a predetermined link (eg, link 121a) of the first moving arm 12b
  • the predetermined line segment associated with the second moving arm 12b may be the A predetermined link (eg, link 122b).
  • the predetermined line segment associated with the first moving arm 12a may be a predetermined link (eg, link 125a) of the first moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be the second A predetermined link of the moving arm 12b (eg, a remote center of motion mechanism (RCM mechanism) is near the edge of the link 125a, eg, the link 126a is near the edge of the link 125a).
  • RCM mechanism remote center of motion mechanism
  • the predetermined line segment associated with the first moving arm 12a may be between the RCM point of the first moving arm 12a and a point on the extension line of a predetermined link (eg, link 128a) of the first moving arm 12a
  • the formed line segment, the predetermined line segment associated with the second moving arm 12b may be the edge of the predetermined link (eg, link 128b) of the second moving arm 12b close to the first moving arm 12a.
  • the predetermined line segment associated with the first moving arm 12a may be an edge (eg, an edge close to the second moving arm 12b) of a predetermined link (eg, link 124a) of the first moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be an edge (eg, an edge close to the first moving arm 12a) of a corresponding link (eg, link 124b) of the second moving arm 12b.
  • the predetermined line segment associated with the first moving arm 12a may be the joint axis of the first moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be the joint axis of the second moving arm 12b.
  • the predetermined line segment associated with the first moving arm 12a may be the intersection of the joint axis of the first moving arm 12a (eg, the axis of the joint 1204a ) and another joint axis (eg, the axis of the joint 1205a ) and the first A line segment between the distal ends of a link (eg, link 125a) of a moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be the joint axis of the second moving arm 12b (eg, the axis of the joint 1204b) and another A line segment between the intersection of a joint axis (eg, the axis of joint 1205b ) and the distal end of a link (eg, link 125b ) of second kinematic arm 12b .
  • the minimum distance between the link 121a and the link 122b is greater than the safety distance, or the RCM mechanism of the link 125a and the second moving arm 12b is close to the edge of the link 125a (for example, the link 126b is close to the edge of the link 125a ) is greater than the safety distance, or the line segment formed between the RCM point of the first moving arm 12a and the point on the extension line of the connecting rod 128a and the edge of the first moving arm 12a that the connecting rod 128b is close to
  • the minimum distance is greater than the safety distance, or the minimum distance between the edge of the link 124a close to the second moving arm 12b and the edge of the link 124b close to the first moving arm 12a is greater than the safety distance, or the intersection of the axes of the joint 1204a and the joint 1205a
  • the safety distance may include, but is not limited to, 135mm, 120mm, 60mm, and the like, for example. It should be understood that the safety distance may also be set based on the size of the joint or link. The safety distances between predetermined points corresponding to different joints or links may be different. It should be understood that the predetermined line segments associated with the first moving arm 12a and the second moving arm 12b may include, but are not limited to, the situations shown in the above embodiments.
  • the joint value of one or more joints of the first kinematic arm 12a (eg, the joint value of joint 1203a ) and the joint value of the corresponding joint of the second kinematic arm 12b (eg, the joint value of joint 1203b ) are between
  • the difference value of is greater than a predetermined safety value (eg safety angle), it can be determined that the first moving arm 12a and the second moving arm 12b satisfy the constraints of the joint safety angle relationship. On the contrary, if the difference between the joint values is smaller than the predetermined safety value, it is determined that an interference relationship may occur between the first moving arm 12a and the second moving arm 12b.
  • a predetermined safety value eg safety angle
  • the constraint relationship can also be used for the interference judgment between the moving arms adjacent to each other or between the moving arms in close positions.
  • the comparison object of the constraint relationship may be a structure prone to interference between adjacent moving arms (for example, the predetermined line segment associated with the first moving arm 12a and the predetermined line segment associated with the second moving arm 12b, the same The predetermined point associated with the first moving arm 12a and the predetermined point associated with the second moving arm 12b, one or more joints of the first moving arm 12a and the corresponding joint of the second moving arm 12b).
  • FIG. 7 shows a flowchart of a method 700 for determining a target pose of a moving arm according to some embodiments of the present disclosure.
  • method 700 may be used to determine a target pose of the target kinematic arm based on the initial pose of the target kinematic arm.
  • Method 700 may be performed by a control device (eg, control device 11 ) of robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 700 may be implemented by software, firmware, and/or hardware.
  • the target moving arm is the first moving arm 12a as an example.
  • One of the plurality of joints of the first moving arm 12a may be selected as the characteristic joint, and the recommended target joint value of the characteristic joint may be predetermined.
  • the characteristic joint of the moving arm may be a joint among the plurality of joints that is prone to collision with an adjacent moving arm.
  • the selected characteristic joint may be a joint among the joints of the first moving arm 12a that is prone to collide with other moving arms (eg, the second moving arm 12b ), such as the joint 1205a or 1206a shown in FIG. 3 .
  • the recommended target joint values of the characteristic joints of different moving arms may be different.
  • the characteristic joint is predetermined, and thus method 700 may not include selecting one of the plurality of joints of the target kinematic arm as the characteristic joint.
  • the feature joints are predetermined, so method 700 may not include setting recommended target joint values for the feature joints.
  • step 703 other target joint values are determined based on the target pose of the end of the target moving arm and the recommended target joint value. It should be understood that, based on the selected target pose of the end of the target moving arm and the recommended target joint value, the inverse kinematics model of the target moving arm is solved to obtain other target joint values of the selected target moving arm. It should be understood that the other target joint values include target joint values of all other joints of the target moving arm except the characteristic joints. Take the selected target moving arm as the first moving arm 12a as an example.
  • the inverse kinematics model of the first moving arm 12a may be solved based on the target pose of the first end arm 128a of the first moving arm 12a and the recommended target joint value of the recommended joint (eg, 1205a) to obtain the first motion Other target joint values for arm 12a. It should be understood that multiple target moving arms can also be selected, and other target joint values of each target moving arm can be determined through the method described in step 703 .
  • method 700 may also include step 705 .
  • step 705 For each target moving arm, in step 705, it is determined whether other target joint values are within the joint motion range of the corresponding joint. It should be understood that each joint of the target moving arm has a certain motion range, and the joint motion range of each joint is the range between the minimum limit joint value and the maximum limit joint value of the corresponding joint, and the minimum limit joint value and the maximum limit joint value are The limit joint value is not within this range. For example and not by way of limitation, some joints have a range of motion between 18 degrees and 45 degrees, some joints have a range of motion between 45 degrees and 90 degrees, and still others have a range of motion between -90 degrees and -45 degrees. between degrees and so on.
  • method 700 may also include step 707 .
  • step 707 the recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the recommended target joint value of the moving arm.
  • the first moving arm 12a is selected as the target moving arm.
  • the recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the recommended target joint of the first moving arm 12a value.
  • the adjustment value may be set to, for example, 0.2° or 0.5°, etc. to adjust the recommended target joint value.
  • 0.2° or 0.5° is only an example, and the adjustment value can also be set to other values. Increment or decrement the predetermined adjustment value, and traverse until a solution is found or the joint motion range of the characteristic joint is reached (the joint limit value may not be included). For example, a solution can indicate that the recommended target joint value is within the joint motion range of the characteristic joint.
  • the method 700 may further include the following step: judging whether the adjusted recommended target joint value is within the joint motion range of the characteristic joint. In response to the adjusted recommended target joint value being within the joint motion range of the characteristic joint, the adjusted recommended target joint value is selected as the recommended target joint value, and the process returns to step 703 .
  • method 700 may also include step 711 .
  • a target pose of the target moving arm is determined based on the recommended target joint value of the target moving arm and other target joint values. For example, in response to the other target joint values of the target moving arm (eg, the first moving arm 12a) being within the joint motion range of the corresponding joint, determining the first moving arm 12a based on the recommended target joint value and the other target joint values A target pose of the moving arm 12a. For example, a set of the recommended target joint value and other target joints may be selected as the target joint value of the first moving arm 12a. By determining the target joint value of the first moving arm 12a, the target pose of the first moving arm 12a can be determined. It should be understood that other moving arms of the plurality of moving arms can also use the method 700 to determine the target pose of the moving arm.
  • method 700 can optionally also include step 709 .
  • step 709 it is determined whether an interference relationship will be formed between the target moving arm and other moving arms.
  • the first moving arm 12a is selected as the target moving arm.
  • step 711 is performed in response to no interference relationship being formed between the plurality of motion arms.
  • step 707 is re-executed in response to an interference relationship between the selected target moving arm and other moving arms.
  • the recommended target joint value of the first moving arm 12a is incremented or decremented by a predetermined adjustment value to adjust the recommended value of the first moving arm 12a. Target joint value.
  • the first moving arm 12a may be selected.
  • a set of solutions in which each joint of 1 is least likely to interfere with the second moving arm 12b is output as a unique solution as the target joint value of the first moving arm 12a.
  • FIG. 8 shows an architectural schematic diagram of the control device 11 included in the robot system 10 according to an embodiment of the present disclosure.
  • the control device 11 may include an input device 113 , an output device 114 , one or more memories 112 , one or more processors 111 , and a communication interface 115 .
  • the control device 11 may also not include an output device.
  • the input device 113 may include, but is not limited to, buttons, keyboards, touch screens, microphones, and the like.
  • the input device may be configured to directly receive an operation command from the user, or receive an operation instruction from the user so that the control device can acquire a specific operation command based on the operation instruction.
  • the operation command may include, for example, a command to command the second end arm 128b and the first end arm 128a to keep the relative pose relationship of the ends unchanged.
  • the input device 113 may also be used to receive setting information from the user, such as the current surgical type, the configuration of the auxiliary connecting device, the setting information of the relative pose model, etc., and the like.
  • output devices 114 may include, but are not limited to, displays, speakers, indicator lights, and the like, which may be configured to indicate the status of various components of robotic system 10, output alarm signals, and the like.
  • a computer program executable on the processor 111 may be stored in the memory 112 .
  • the processor 111 implements the control methods described in the above embodiments when executing the computer program.
  • the number of the memory 112 and the processor 111 may be one or more.
  • the communication interface 115 is used for communication between the control device 11 (eg, the processor 111 of the control device 11 ) and external devices.
  • the control device 11 may communicate with motors disposed in respective joints of each moving arm (eg, the first moving arm 12a, the second moving arm 12b), for example, through the communication interface 115, so as to instruct the moving arms to move to Corresponding to the target position, the control device 11 may also communicate with the sensors at each joint of the moving arm, for example, through the communication interface 115, so as to receive the joint value of each joint of the moving arm.
  • the communication interface 115 may be a CAN bus communication interface, which enables the control device 11 to communicate with the motors and sensors provided in each joint through the CAN bus.
  • the input device 113 , the output device 114 , the memory 112 , the processor 111 and the communication interface 115 can be connected to each other through a bus to complete mutual communication.
  • the bus can be an industry standard architecture (ISA, Industry Standard Architecture) bus, a peripheral device interconnect (PCI, Peripheral Component) bus or an extended industry standard architecture (EISA, Extended Industry Standard Component) bus and so on.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Component
  • the processor 111 may be various types of general-purpose processors such as a central processing unit (CPU) and a digital signal processor (DSP), which are not limited herein.
  • CPU central processing unit
  • DSP digital signal processor
  • control device 11 may be integrated with the base 131 and located within the base 131 (eg, below the base 131 ) to save space.
  • control device 11 may also be provided separately from the base 131 , or the control device 11 may be partially integrated with the base 131 and the other part separated from the base 131 .
  • the control device 11 can also adopt other setting manners, and is connected in communication with each moving arm and can control each moving arm.
  • the present disclosure provides a computer-readable storage medium, which may include one or more instructions that are executed by a processor to perform the control method in any of the above embodiments .
  • the present disclosure provides a computer system that can include memory for storing at least one instruction and at least one processor.
  • the processor is configured to execute at least one instruction to configure the processor to perform the control method in any of the above embodiments.
  • a computer-readable storage medium or memory may be a tangible device that can hold and store instructions for use by an instruction execution device.
  • the computer-readable storage medium or memory may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any combination of the foregoing.
  • a computer readable storage medium or memory may include, but is not limited to, portable computer disks, hard disks, read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other solid-state memory technology, CD-ROM, Digital Versatile Disc (DVD), HD-DVD, Blue-Ray or other optical storage devices, Magnetic tape, magnetic disk storage, or other magnetic storage device, or any other medium capable of storing desired information and accessible by a computer, having computer-executable instructions stored thereon for execution in a machine (eg, a computer device) , the machine is made to execute the control method of the present disclosure.
  • computer devices may include personal computers, servers, or network devices, among others.
  • Some embodiments of the present disclosure can help to optimize the positioning of the movement arm during preoperative preparation. It can control one or more moving arms in real time, and can effectively avoid the interference between the moving arms during the movement, so that the target moving arm can reach the target pose accurately, quickly and safely, so as to achieve efficient and safe operation. Preparation before surgery.
  • the ends of the plurality of moving arms move in an integral manner, and the relative pose relationship of the ends of the plurality of moving arms can be kept unchanged during the movement, so as to realize the movement of the plurality of moving arms quickly and accurately .
  • the position and posture of the surgical instruments installed on the multiple moving arms can also be quickly adjusted, which can reduce the difficulty of the user (such as a doctor) in the operation, so as to improve the preoperative or intraoperative performance. work efficiency.
  • the present disclosure also discloses the following:
  • a control method for a robotic system comprising a plurality of moving arms, the control method comprising:
  • One or more motion control loops are executed based on the initial pose of one or more of the target motion arms and the motion step size corresponding to the motion pattern, wherein for each motion control loop,
  • the one or more target moving arms are controlled to move toward the target pose.
  • One or more target kinematic arms move, rotate or pitch;
  • Multiple target kinematic arms move, rotate or pitch as a whole.
  • the target poses of the plurality of target moving arms are determined.
  • each motion control loop based on the constraint relationship and the target pose, it is determined whether there is interference between the one or more target moving arms or with other moving arms.
  • the relative position sequence relationship between the target moving arm and other moving arms of the plurality of moving arms conforms to a predetermined relative position sequence relationship
  • a distance between a predetermined point associated with the target moving arm and a predetermined point associated with one or more moving arms corresponding to the target moving arm is greater than a predetermined safety distance
  • the distance between a predetermined line segment associated with the target kinematic arm and a predetermined line segment associated with one or more kinematic arms corresponding to the target kinematic arm is greater than a predetermined safety distance
  • the difference between the joint value of the one or more joints of the target moving arm and the joint value of the corresponding joint of the one or more moving arms corresponding to the target moving arm is greater than a predetermined safety value.
  • a joint step size for each joint included in each target motion arm is determined.
  • control method further comprising: for each motion control loop other than the first motion control loop,
  • the current pose of the one or more target kinematic arms in the current motion control loop is determined.
  • the target joint value of each joint of the target moving arm in the current motion control cycle is determined.
  • each motion control loop For each motion control loop, based on the initial joint value and joint step size of each joint of the one or more target motion arms, determine the position of each joint of the one or more target motion arms in the current motion control loop Target joint value.
  • control method further comprising: for each target moving arm,
  • the recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the recommended target joint value.
  • a robotic system comprising:
  • a control device configured to perform the control method of any of items 1-17.
  • auxiliary connection device comprising a plurality of sheaths for connection with the plurality of kinematic arms
  • the relative pose relationship of the distal ends of the plurality of moving arms is determined based on the shapes of the plurality of sheath tubes and their relative pose relationships.
  • a computer-readable storage medium comprising one or more instructions executable by a processor to perform the control method of any of items 1-17.
  • a computer system comprising:
  • a memory for storing at least one instruction
  • a processor configured to execute the at least one instruction to perform the control method of any of items 1-17.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Robotics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种用于机器人***(10)的控制方法,机器人***(10)包括多个运动臂(12a,12b),控制方法包括:基于操作命令,确定多个运动臂(12a,12b)中的一个或多个目标运动臂(12a,12b)的运动方式(501);确定一个或多个目标运动臂(12a,12b)的初始位姿(503);基于一个或多个目标运动臂(12a,12b)的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环(505),其中,对于每个运动控制循环,确定一个或多个目标运动臂(12a,12b)的目标位姿;以及控制一个或多个目标运动臂(12a,12b)向目标位姿运动。以使目标运动臂(12a,12b)能够精确、快速、安全地到达目标位姿,从而实现高效安全的手术术前准备。

Description

机器人***以及控制方法
相关申请的交叉引用
本申请要求于2020年8月19日提交的、申请号为202010838021.6、发明名称为“用于医疗设备的控制方法、医疗设备控制***及存储介质”、2020年8月19日提交的、申请号为2020108372328、发明名称为“用于医疗设备的控制方法、医疗设备控制***及存储介质”的中国专利申请的优先权,这些申请的全文以引用方式整体结合于此。
技术领域
本公开涉及机器人领域,尤其涉及一种机器人***以及控制方法。
背景技术
腹腔镜手术是被广泛运用的手术形式,具有创口小等优势。近年来,手术机器人使用运动臂实现更高稳定性和精确性的外科手术。手术中,运动臂将手术器械通过戳卡送入体内(例如人类或动物)的手术部位,实施外科手术。
目前,使用手术机器人实现的手术过程主要包括术前定位、术中操作和术后整理。在术前,通常需要由手术助理(例如助理医生或护师)根据手术类型及手术位姿将运动臂调整到合适的位姿,将运动臂与戳卡固定连接,然后在运动臂的末端设置手术器械,以使手术器械通过戳卡进入体内。运动臂的运动既可以由手术助理从其远端(即靠近患者端处)手动调整,也可以由手术助理或医生通过操作在运动臂近端(即靠近医生控制端处)的控制装置来进行控制。然而,由于运动臂可能体积和重量较大,存在稳定性问题和碰撞风险,尤其在单孔手术中。因此,运动臂调整复杂且耗时。类似地,在术中、术后,运动臂的调整都存在以上问题。
发明内容
在一些实施例中,一种用于机器人***的控制方法,所述机器人***包括多个运动臂,所述控制方法包括:基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;确定所述一个或多个目标运动臂的初始位姿;基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循 环,其中,对于每个运动控制循环,确定所述一个或多个目标运动臂的目标位姿;以及控制所述一个或多个目标运动臂向所述目标位姿运动。
在一些实施例中,一种机器人***,包括:多个运动臂;以及控制装置,所述控制装置被配置成:基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;确定所述一个或多个目标运动臂的初始位姿;基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环,其中对于每个运动控制循环,确定所述一个或多个目标运动臂的目标位姿;以及控制所述一个或多个目标运动臂向所述目标位姿运动。
在一些实施例中,一种计算机可读存储介质,包括一个或多个指令,所述指令由处理器执行以执行机器人***的控制方法,所述机器人***包括包括多个运动臂,所述控制方法包括:基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;确定所述一个或多个目标运动臂的初始位姿;基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环,其中对于每个运动控制循环,确定所述一个或多个目标运动臂的目标位姿;以及控制所述一个或多个目标运动臂向所述目标位姿运动。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅示出本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本公开实施例的内容和这些附图获得其他的实施例。
图1示出了根据本公开一些实施例的机器人***的结构框图;
图2示出了根据本公开一些实施例的机器人***的立体结构示意图;
图3示出了根据本公开一些实施例的机器人***的运动臂的结构示意图;
图4示出了根据本公开一些实施例的辅助连接装置的局部剖面图;
图5(a)示出了根据本公开一些实施例的用于机器人***的控制方法的流程图;
图5(b)示出了根据本公开一些实施例的每个运动控制循环的控制方法的流程图;
图6示出了根据本公开一些实施例的机器人***的另一结构框图;
图7示出了根据本公开一些实施例的用于确定运动臂的目标位姿的方法的流程图;
图8示出了根据本公开一些实施例的控制装置的架构示意图。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本公开实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本公开示例性实施例,而不是全部的实施例。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“耦合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。在本公开中,定义靠近操作者(例如医生)的一端为近端、近部或后端、后部,靠近手术患者的一端为远端、远部或前端、前部。本领域技术人员可以理解,本公开的实施例可以用于医疗器械或手术机器人,也可以用于其他非医疗装置。
图1示出了根据本公开一些实施例的机器人***10的结构框图。如图1所示,机器人***10可以包括控制装置11以及与控制装置11连接的多个运动臂。在一些实施例中,如图1所示,多个运动臂可以包括第一运动臂12a和第二运动臂12b。控制装置11可以用于控制第一运动臂12a和第二运动臂12b。例如,控制装置11可以调整第一运动臂12a和第二运动臂12b的运动、位姿、相互协调等。在一些实施例中,第一运动臂12a和第二运动臂12b在末端或远端处可以分别包括第一末端臂128a和第二末端臂128b。控制装置11可以控制第一运动臂12a或第二运动臂12b运动,以使第一末端臂128a或第二末端臂128b运动至期望的位置和姿态。
本公开文本为了便于简要说明,在图1以及后续附图中将示例性机器人***10示为包括两个运动臂。但是本领域的技术人应理解,机器人***10还可以包括三个、四个或更多的运动臂。机器人***10可以包括手术机器人***,例如腔镜手术机器人***。应当理解,机器人***10还可以包括用于其他领域(例如,制造、机械等等)的专用或通用机器人***。
图2示出了根据本公开一些实施例的机器人***10的立体结构示意图。如图2 所示,机器人***10是手术机器人***,可以包括手术台车13以及设置在手术台车13上的第一运动臂12a和第二运动臂12b。在一些实施例中,手术台车13可以包括基座131和横梁132。在一些实施例中,第一运动臂12a和第二运动臂12b可以活动设置在横梁132上。应当理解,机器人***10的多个运动臂也可以设置在多个手术台车上,例如,每个运动臂对应设置在一个手术台车上。或者一个运动臂设置在一个手术台车上,其余多个运动臂设置在另一手术台车上。这些实施例仍落在本公开的保护范围之内。
在一些实施例中,机器人***10的每个运动臂(例如第一运动臂12a和第二运动臂12b)可以包括多根连杆以及多个关节。在一些实施例中,每个运动臂的每个关节可以包括电机,用于驱动相应的关节运动,进而带动相应的连杆转动。
图3示出了根据本公开一些实施例的机器人***10的运动臂的结构示意图。如图3所示,第二运动臂12b(或第一运动臂12a)可以包括关节1201b-1208b和连杆121b-128b。连杆121b的近端(在本公开中靠近横梁132的一端被定义为运动臂的近端)与横梁132连接,连杆121b-127b依次串连。其中关节1201b可以位于横梁132与连杆121b的近端连接处,关节1202b可以位于连杆121b与第二连杆122b的连接处,关节1203b可以位于连杆122b与连杆123b的连接处,关节1204b可以位于连杆123b与连杆124b的连接处,关节1205b可以位于连杆124b与连杆125b的连接处,关节1206b可以位于连杆125b与连杆126b的连接处,关节1207b可以位于连杆126b与连杆127b的连接处,关节1208b可以位于连杆127b与连杆128b的连接处。连杆128b作为第二运动臂12b的最远端的连杆,形成第二运动臂12b的第二末端臂128b。末端臂的位置和姿态的确定和表示需要前述每个关节共同决定。应当理解,连杆126b、127b和128b,共同构成第二运动臂12b的远端运动中心机构(RCM机构)。
在一些实施例中,机器人***10可以包括一个或多个手术器械。如图3所示,手术器械14a可以安装在第一运动臂12a的第一末端臂128a上,并且手术器械14b可以安装在第二运动臂12b的第二末端臂128b上。应当理解,手术器械14a和手术器械14b可以包括但不限于用于实施手术的夹钳、电刀或用于进行照明成像的图像捕获设备(例如内窥镜工具)等等。手术器械14a和手术器械14b的一部分(例如臂体和设置在臂体远端的末端器械)可进入人类或动物的某个身体部位内以实施医疗操作,例如手术。
在一些实施例中,如图2所示,机器人***10还可以包括辅助连接装置15,例如鞘套。辅助连接装置15可以安装在人体或动物体上(例如切口或开口中),一部分可以被定位在人类或动物需要进行手术的身体部位,另一部分用于与运动臂(例如与 第一、第二运动臂12a、12b的第一、第二末端臂128a、128b)可拆卸地连接,以更好地为手术服务。
图4示出了根据本公开一些实施例的辅助连接装置15的局部剖面图。在一些实施例中,如图4所示,辅助连接装置15可以包括鞘管151和鞘管152。在一些实施例中,辅助连接装置15还可以包括至少两个连接部(例如连接部153和154)。连接部可以包括但不限于夹钳、卡合结构、粘合结构、插拔结构、吸合结构。连接部153和154可以分别固定设置在鞘管151和152上。
在一些实施例中,每个运动臂(例如第一、第二运动臂12a、12b)上可以包括与连接部(例如连接部153和154)配合的连接件(例如图2所示的连接件1281a和1281b)。辅助连接装置15可以通过连接部153和154分别与第一、第二运动臂12a、12b的连接件1281a和1281b可拆卸地固定连接。在一些实施例中,如图2所示,连接件1281a和1281b可以分别固定设置在第一末端臂128a和第二末端臂128b上。连接件1281a和1281b分别与连接部153和连接部154连接,以使辅助连接装置15与第一、第二运动臂12a、12b可拆卸固定连接。
应当理解,第一末端臂128a、第二末端臂128b、连接件1281a和1281b在笛卡尔坐标的空间位置和旋转坐标的姿态指向可以通过这些部件的坐标系的位姿表示。在一些实施例中,可基于当前手术类型或辅助连接装置的构型,例如,基于当前手术类型可以确定辅助连接装置的构型。基于辅助连接装置的构型,确定辅助连接装置的多个鞘管之间的形状和相对位姿关系,以确定多个运动臂的末端相对位姿。应该理解,运动臂的末端可以包括运动臂的末端臂、运动臂的远端运动中心机构(RCM机构)、或者运动臂上用于与辅助连接装置连接的部位。运动臂的末端的位姿可以包括运动臂的末端臂的位姿、运动臂的远端运动中心机构(RCM机构)的位姿、或者运动臂上用于与辅助连接装置连接的部位的位姿。
例如,可基于鞘管151和152的形状和相对位姿关系,可以确定第一运动臂12a和第二运动臂12b的末端相对位姿关系。第一运动臂12a与第二运动臂12b之间的末端相对位姿关系可指示在世界空间坐标系下第一运动臂12a的末端相对于第二运动臂12b的末端的位置关系和姿态关系。应当理解,末端相对位姿关系可以包括例如第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b之间形成的相对位姿关系。或者,末端相对位姿关系还可以包括安装在第一末端臂128a和第二末端臂128b上的手术器械14a和14b之间形成的相对位姿关系。或者,末端相对位姿关系还可以包括固定设置在第一末端臂128a和第二末端臂128b上的连接件1281a和1281b之间形成的相对位姿关系。在一些实施例中,末端相对位姿关系可以存储在相关联的 相对位姿模型中,可以用于计算第一运动臂12a或第二运动臂12b的末端的目标位姿。由于连接件1281a和1281b分别固定在第一末端臂128a和第二末端臂128b上,因此在第一末端臂128a和第二末端臂128b符合末端相对位姿关系时,连接件1281a和1281b可以分别与连接部153和154连接。
应当理解,第一运动臂12a运动至目标位姿,可以确定安装于第一运动臂12a末端的手术器械14a在世界坐标内的目标位姿,并且第二运动臂12b运动至目标位姿,可以确定安装于第二运动臂12b末端的手术器械14b在世界坐标内的目标位姿。运动臂或其一部分的姿态可以通过关节来实现。例如,在一些实施例中,每个运动臂上的固定部位(例如第一、第二末端臂128a、128b,以及固定设置的在第一、第二运动臂12a、12b上的连接件1281a、1281b、安装在第一、第二运动臂12a、12b上的手术器械14a、14b)的目标空间位置可以通过相应运动臂所包括的多个关节中的一些关节实现。每个运动臂上的固定部位的目标空间姿态可以通过相应运动臂所包括的多个关节中的另一些关节实现。在一些实施例中,运动臂的末端(例如第一、第二末端臂128a、128b)用于实现目标空间姿态的多个关节相对于该运动臂的用于实现目标空间位置的多个关节更靠近运动臂的远端。应当理解,实现运动臂的末端的目标空间姿态和目标空间位置的多个关节还可以包括其他设置方式,具体可以根据使用需求设置。
在一些实施例中,待手术器械安装到末端臂后,手术器械14a和14b可以通过辅助连接装置15的鞘管151和152,按预定的角度分别顺利穿过鞘管151和152,沿鞘管151和152运动进入人体内需要手术的相应位姿。在一些实施例中,辅助连接装置15的鞘管151和152可以是柔性的,并且手术器械14a、14b延伸穿过辅助连接装置15的部分也是柔性的,可以便于在第一末端臂128a和第二末端臂128b大致符合末端相对位姿关系时,辅助连接装置15上的连接部153、154可以与每个运动臂上的连接件1281a、1281b连接,辅助连接装置15的柔性部分可以在末端臂的位姿具有一定误差的情况下,保证每个手术器械仍可以顺利通过鞘管进入手术区域。
应当理解,如图4所示的辅助连接装置15仅仅是示例性的。在一些实施例中,机器人***10可以包括三个、四个或更多的运动臂,辅助连接装置15可包括三个、四个或更多的鞘管,每个鞘管上包括相应的连接部,以便用于每个鞘管与每个运动臂连接,并约束多个末端臂之间的末端相对位姿关系。
本公开提供了一种可以用于机器人***的控制方法。图5(a)示出了根据本公开一些实施例的用于机器人***(例如机器人***10)的控制方法500的流程图。图6示出了根据本公开一些实施例的机器人***10的另一简化框图。如图5(a)和图6所示,该方法500可以由机器人***10的控制装置(例如控制装置11)来执行。控 制装置11可以配置在计算设备上。方法500可以由软件、固件和/或硬件来实现。
如图5(a)所示,在步骤501,基于操作命令,确定多个运动臂中的一个或多个目标运动臂的运动方式。在一些实施例中,运动方式可以包括运动方向和运动模式。应当理解,运动模式可以包括但不限于一个或多个目标运动臂移动、旋转或俯仰,或者多个目标运动臂整体移动、整体旋转或整体俯仰(例如,整体平移和整体转动的组合)。例如,目标运动臂可以包括第一运动臂12a和第二运动臂12b。运动模式可以包括第一运动臂12a的末端(例如第一末端臂128a)和第二运动臂12b的末端(例如第二末端臂128b)相互靠近或相互远离地运动。或者,运动模式可以包括第一运动臂12a的末端(例如第一末端臂128a)和第二运动臂12b的末端(例如第二末端臂128b)的整体运动。应当理解,末端整体旋转可以包括绕预定点的俯仰转动或者水平转动。在一些实施例中,预定点可以为辅助连接装置15与入腹口的连接点,或者预定点可以包括沿运动臂的末端的延长线上的点,例如RCM(远程运动中心)点。
在一些实施例中,操作命令由用户通过用户接口输入。应当理解,用户接口可以包括但不限于输入装置。在一些实施例中,控制装置11可包括输入装置113。输入装置113被配置成可以用于接收来自用户的操作命令,或者接收来自用户的操作指示,以使控制装置11能够基于该操作指示而获取具体的操作命令。在一些实施例中,控制装置11可基于操作命令,确定第一运动臂12a的末端和第二运动臂12b的末端的运动方式。例如,在运动方式为整体平移的情况下,该操作命令可以是第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起平移的命令。在运动方式为整体转动的情况下,该操作命令可以是第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起绕预定点或直线转动的命令。例如,第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起绕预定点俯仰转动或一起绕纵轴线转动。在运动方式为整体平移和整体转动的组合的情况下,该操作命令可以是第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起平移并转动的命令。
在一些实施例中,任选地,方法500还可以包括以下步骤:响应于不再接收到操作命令或接收到停止命令,控制一个或多个目标运动臂停止运动。例如,在操作者长按按钮以实时控制运动臂运动的情况下,如果操作者放开按钮,不再能接收到操作命令,则可以控制一个或多个运动臂停止运动。或者,在操作者按压开始按钮,启动一个或多个运动臂的运动之后,按压停止按钮以发出停止命令,则可以控制一个或多个目标运动臂停止运动。
在步骤503,确定一个或多个目标运动臂的初始位姿。例如,可以通过传感器检测一个或多个目标运动臂的初始关节值,以确定一个或多个目标运动臂的初始位姿。
在一些实施例中,如图6所示,控制装置11可与各目标运动臂(例如,第一运动臂和第二运动臂12a、12b)通信连接。在一些实施例中,如图6所示,第一运动臂12a还可以包括一个或多个传感器129a。关节1201-1208a的电机可以分别与多个传感器129a耦合。第二运动臂12b还可以包括一个或多个传感器129b。关节1201-1208b的电机可以分别与多个传感器129b耦合。图6示例性地示出一个传感器,应当理解,图示的传感器129a和129b可以表示多个传感器。传感器129a和129b可以包括但不限于例如编码器或电位计。传感器可以用于获取对应运动臂的多个关节的数据,以测得相应关节的关节值。在一些实施例中,传感器可以包括延伸设置在运动臂上的光纤传感器,用于获得运动臂的位姿。
在一些实施例中,如图6所示,控制装置11可以包括一个或多个处理器111和存储器112。处理器111可以与第一运动臂12a的多个传感器129a通信连接,以通过多个传感器129a获得第一运动臂12a的各个关节1201-1208a的当前关节值。处理器111可以与第二运动臂12b的多个传感器129b通信连接,以通过多个传感器129b获得第二运动臂12b的各个关节1201-1208b的当前关节值。
在一些实施例中,处理器111可以基于第一、第二运动臂12a、12b的正运动学模型,对各个关节的当前关节值进行解算,以得到第一运动臂12a和第二运动臂12b(例如第一运动臂的末端和第二运动臂的末端)的当前位姿。应当理解,当前位姿可以包括当前姿态和当前位置,当前位姿可以是任一时刻的位置和姿态。第一运动臂12a的正运动学模型可以预先设置并存储在存储器112中。运动臂的正运动学模型可以基于运动臂已知的所有关节变量(例如关节值),获得运动臂任意位置或任意部分的位姿(例如第一、第二末端臂128a、128b,以及固定设置的在第一、第二运动臂12a、12b上的连接件1281a、1281b、安装在第一、第二运动臂12a、12b上的手术器械14a、14b的位姿)。
在步骤505,基于一个或多个目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环。应当理解,对于每个运动控制循环,对应于运动方式的运动步长可以是预先设定的。例如,可以基于一个或多个目标运动臂的初始位姿,控制对应的目标运动臂以运动步长运动,以执行至少一个运动控制循环。在一种是实现中,单个运动控制循环可以是80ms。在一些实施例中,运动步长可以包括在单个运动控制循环中多个目标运动臂的整体运动幅度或者各自的运动幅度。
图5(b)示出了根据本公开一些实施例的每个运动控制循环的控制方法500(b)的 流程图。如图5(b)和图6所示,该方法500(b)可以由机器人***10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法500(b)可以由软件、固件和/或硬件来实现。
如图5(b)所示,在步骤507,对于每个运动控制循环,确定一个或多个目标运动臂的目标位姿。在一些实施例中,对于每个运动控制循环,确定目标运动臂的每个关节的当前关节值。在一些实施例中,基于当前位姿,确定一个或多个目标运动臂的每个关节的当前关节值,以及基于一个或多个目标运动臂的每个关节的当前关节值和关节步长,确定一个或多个目标运动臂的每个关节在当前运动控制循环的目标关节值。对于每个目标运动臂,基于目标关节值,可以确定目标运动臂的目标位姿。本领域技术人员可以理解,在一些实施例中,运动臂的位姿(例如初始位姿、当前位姿、目标位姿等)可以由运动臂各个关节的关节值的集合表示。
在一些实施例中,对于每个运动控制循环,基于运动步长,确定每个目标运动臂所包含的每个关节的关节步长。在一些实施例中,每一关节的关节步长可以指示相应关节在每个运动控制循环可绕其关节轴移动的角度。运动臂的运动步长可以由运动臂的多个关节的关节步长的集合表示。
在一些实施例中,对于首个运动控制循环,可以基于一个或多个目标运动臂的初始位姿,确定一个或多个目标运动臂的每个关节的初始关节值,将目标运动臂的初始关节值作为当前关节值。基于一个或多个目标运动臂的每个关节的当前关节值和关节步长,确定一个或多个目标运动臂的每个关节在当前运动控制循环的目标关节值。
在一些实施例中,对于非首个运动控制循环的每个运动控制循环,可以确定一个或多个目标运动臂在当前运动控制循环的当前位姿。应当理解,目标运动臂在当前运动控制循环的当前位姿可以基于目标运动臂的当前关节值来确定。对于非第一个运动控制循环,目标运动臂在当前运动控制循环的当前位姿可以基于上一个运动控制循环的计算目标位姿确定,并且每个关节的当前关节值是上一个运动控制循环的目标位姿对应的每个关节的关节值。
在一些实施例中,任选地,方法500(b)还可以包括:对于每个运动控制循环,基于运动步长和当前手术类型或辅助连接装置的构型,确定多个目标运动臂的末端的目标位姿;以及基于多个目标运动臂的末端的目标位姿,确定多个目标运动臂的目标位姿。例如,多个目标运动臂可以包括第一运动臂12a和第二运动臂12b。基于当前手术类型或辅助连接装置(例如辅助连接装置15)的构型,可以确定第一运动臂12a的末端(例如第一末端臂128a)和第二运动臂12b的末端(例如第二末端臂128b)之间的末端相对位姿关系。在一些实施例中,第一运动臂的第一末端与第二运动臂第二 末端的末端相对位姿关系可以是预先确定的或者已知的。在一些实施例中,可以基于辅助连接装置的运动幅度,确定多个目标运动臂(例如目标运动臂的末端)的整体运动幅度,基于多个目标运动臂的初始位姿和整体运动幅度,可以确定多个目标运动臂的末端的目标位姿。
在一些实施例中,以第一运动臂12a作为示例,第一运动臂12a的第一末端的目标位姿可以包括以下中的一种:第一运动臂12a的第一末端臂128a的目标位置和目标姿态、第一运动臂12a的远端运动中心机构(RCM机构)的目标位置和目标姿态、第一运动臂12a用于与辅助连接装置15连接的末端(例如连接件1281a)的目标位置和目标姿态。基于第一运动臂12a的初始位姿和第一末端的目标位姿,确定第一运动臂12a的目标位姿。应当理解,运动臂的位姿可以通过运动臂所包括的多个关节的关节值的集合表示。例如,可以通过安装在第一运动臂12a的各个关节处的传感器(例如传感器129a)获得第一运动臂12a的各个关节的初始关节值,利用第一运动臂12a的正运动学模型解算,以得到第一运动臂12a的初始位姿。在一些实施例中,可以通过如图7所示方法基于运动臂的当前位姿和末端的目标位姿,确定运动臂的目标位姿。
在一些实施例中,当前手术类型可以是当前需进行手术的类型,例如,手术类型可以包括但不限于普外科手术、胸外科手术、泌尿外科手术、妇科手术等。在一些实施例中,辅助连接装置可以包括鞘套,鞘套的构型可以包括例如不同术式下的鞘套的规格和型号(规格和型号可以包括但不限于例如鞘套的长度、径向尺寸、孔径大小、鞘管数量、多个鞘管设置的相对位姿关系等)。多个鞘套中的每个与至少一个运动臂的相对位姿关系相关联,不同构型的鞘套与每个运动臂的相对位姿关系可以不同。在一些实施例中,输入装置113可用于接收来自用户的设置信息(例如当前手术类型、辅助连接装置的构型、相对位姿模型等的设置信息等)。
在步骤513,控制一个或多个目标运动臂向目标位姿运动。应当理解,通过一个或多个运动控制循环可以控制目标运动臂向目标位姿运动。在一些实施例中,任选地,方法500还可以包括步骤509。在步骤509,对于每个运动控制循环,基于约束关系和目标位姿,判断一个或多个目标运动臂之间或与其他运动臂之间是否发生干涉。在一些实施例中,方法500还可以包括判断一个或多个目标运动臂的所有的目标关节值是否都在相应关节的关节运动范围之内。响应于一个或多个目标运动臂的所有的目标关节值都在相应关节的关节运动范围之内,基于约束关系,判断一个或多个目标运动臂之间或与多个运动臂的其他运动臂之间是否会形成干涉。
在一些实施例中,方法500还可以包括步骤511。在步骤511,响应于一个或多个目标运动臂之间或与其他运动臂之间发生干涉,控制一个或多个目标运动臂停止运动 或者发出警报信息。
在一些实施例中,例如,可以基于约束关系判断第一运动臂12a和第二运动臂12b之间是否会形成干涉关系。基于约束关系被满足,确定第一运动臂12a和第二运动臂12b之间不会发生干涉关系。基于约束关系不被满足,确定第一运动臂12a和第二运动臂12b之间会发生干涉关系。应当理解,约束关系可以通过干涉模型进行限定。
在一些实施例中,约束关系可以包括以下关系中的至少一种:第一运动臂12a与第二运动臂21b之间的相对位置顺序关系符合预定的相对位置顺序关系、同第一运动臂12a相关联的预定点与同第二运动臂12b相关联的预定点之间的距离大于预定安全距离、同第一运动臂12a相关联的预设线段与同第二运动臂12b相关联的预设线段之间的最小距离大于预定安全线段距离、或者第一运动臂12a的一个或多个关节的关节值与第二运动臂12b的相应关节的关节值之间的差值大于预定安全值。
在一些实施例中,预定的相对位置顺序关系可以包括但不限于多个运动臂之间按顺时针或逆时针顺序排序。多个运动臂之间的相对位置顺序关系可以通过运动臂的关节或连杆的相对位置顺序表示。例如,第一运动臂12a靠近横梁132的一个或多个关节(例如关节1202a和/或1203a)在每个运动控制循环的结束位置与相邻运动臂(例如第二运动臂12b)靠近横梁132的相应的一个或多个关节(例如关节1202b和/或1203b)在每个运动控制循环的结束位置的相对位置顺序符合顺时针或逆时针排序,可以确定第一运动臂12a与第二运动臂12b满足相对位置顺序关系的约束。反之,可以确定第一运动臂12a与第二运动臂12b之间不满足预定的相对位置顺序,可能导致第一运动臂12a与第二运动臂12b之间发生干涉关系。在一些实施例中,还可以通过判断第一运动臂12a的一个或多个连杆(例如连杆121a和/或122a)的末端与第二运动臂12b的相应连杆(例如连杆121b和/或122b)的末端的相对位置顺序是否符合预定的相对位置顺序关系(例如顺时针或逆时针排序),以确定第一运动臂12a与第二运动臂12b之间的相对位置顺序关系是否符合预定的相对位置顺序关系。
在一些实施例中,多个运动臂之间的相对位置顺序关系还可以通过运动臂的关节或连杆相对于相同基准方向的运动角度表示。例如,基于初始位置顺序,确定第一运动臂12a的关节(例如关节1201a)相对于横梁132的转动角度小于第二运动臂12b的关节(例如关节1201b)相对于横梁132的转动角度。响应于关节1201a相对于横梁132的转动角度小于关节1201b相对于横梁132的转动角度,可以确定第一运动臂12a与第二运动臂12b满足预定的相对位置顺序关系的约束。反之,可以确定第一运动臂12a与第二运动臂12b之间不满足预定的相对位置顺序,可能导致第一运动臂12a与第二运动臂12b之间发生干涉关系。
在一些实施例中,同运动臂相关联的预定点可以包括运动臂的连杆上的固定点、运动臂的关节或其他与运动臂相关的点。例如,同第一运动臂12a相关联的预定点可以为第一运动臂12a的预定关节(例如关节1203a),同第二运动臂12b相关联的预定点可以为第二运动臂12b的相应关节(例如关节1203b)。在一些实施例中,第一运动臂12a的关节1203a与第二运动臂12b的关节1203b之间的距离可以基于第一运动臂12a的关节1203a的关节轴线与第二运动臂12b的关节1203b的关节轴线来确定。在一些实施例中,同第一运动臂12a相关联的预定点可以为第一运动臂12a的预定连杆(例如连杆121a)上的固定点,同第二运动臂12b相关联的预定点可以为第二运动臂12b的相应连杆(例如连杆121b)或相邻连杆(例如123b)上的固定点。在一些实施例中,同第一运动臂12a相关联的预定点可以为第一运动臂12a中的预定连杆(例如,远端运动中心机构,RCM机构)上的固定点,同第二运动臂12b相关联的预定点可以为第二运动臂12b的连杆(例如连杆124b)的轴线在水平面上的投影点。例如,关节1203a与关节1203b的关节轴线的距离大于安全距离,或者第一运动臂12a和第二运动臂12b上的预定点之间的距离大于安全距离,可以确定第一运动臂12a与第二运动臂12b满足预定点安全距离关系的约束。反之,预定点之间的距离小于安全距离,确定第一运动臂12a和第二运动臂12b之间可能会发生干涉关系。应当理解,安全距离可以是预先设定的距离,例如可以包括但不限于135mm。应理解,安全距离还可以基于关节或连杆的尺寸设定。不同关节或连杆对应的预定点之间的安全距离可以不同。应当理解,同第一运动臂12a和同第二运动臂12b相关联的预定点可以包括但不限于上述实施例中示出的情况。
在一些实施例中,同运动臂相关联的预定线段可以包括运动臂的连杆的棱边或轴线、运动臂的关节轴线或其他与运动臂相关的线段。应理解,两个线段之间的最小距离是这两个线段的起点之间的距离与这两个线段的终点之间的距离之中较小的那个距离。例如,同第一运动臂12a相关联的预定线段可以为第一运动臂12b的预定连杆(例如连杆121a),同第二运动臂12b相关联的预定线段可以为第二运动臂12b的预定连杆(例如连杆122b)。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的预定连杆(例如连杆125a),同第二运动臂12b相关联的预定线段可以为第二运动臂12b的预定连杆(例如远端运动中心机构(RCM机构)靠近连杆125a的棱边,例如连杆126a靠近连杆125a的棱边)。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的RCM点与第一运动臂12a的预定连杆(例如连杆128a)延长线上的点之间形成的线段,同第二运动臂12b相关联的预定线段可以为第二运动臂12b的预定连杆(例如连杆128b)靠近第一运动臂12a的棱边。 在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的预定连杆(例如连杆124a)的棱边(例如靠近第二运动臂12b的棱边),并且同第二运动臂12b相关联的预定线段可以为第二运动臂12b的相应连杆(例如连杆124b)的棱边(例如靠近第一运动臂12a的棱边)。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的关节轴线,同第二运动臂12b相关联的预定线段可以为第二运动臂12b的关节轴线。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的关节轴线(例如关节1204a的轴线)和另一关节轴线(例如关节1205a的轴线)的交点与第一运动臂12a的连杆(例如连杆125a)远端之间的线段,同第二运动臂12b相关联的预定线段可以为第二运动臂12b的关节轴线(例如关节1204b的轴线)和另一关节轴线(例如关节1205b的轴线)的交点与第二运动臂12b的连杆(例如连杆125b)远端之间的线段。例如,连杆121a与连杆122b之间的最小距离大于安全距离,或者连杆125a与第二运动臂12b的RCM机构靠近连杆125a的棱边(例如连杆126b靠近连杆125a的棱边)之间的最小距离大于安全距离,或者第一运动臂12a的RCM点与连杆128a延长线上的点之间形成的线段与连杆128b靠近的第一运动臂12a的棱边之间的最小距离大于安全距离,或者连杆124a靠近第二运动臂12b的棱边与连杆124b靠近第一运动臂12a的棱边之间的最小距离大于安全距离,或者关节1204a和关节1205a的轴线交点与连杆125a远端形成的线段与关节1204b和关节1205a的轴线交点与连杆125b远端形成的线段之间的最小距离大于安全距离,可以确定第一运动臂12a与第二运动臂12b满足预定线段安全距离关系的约束。反之,预定线段之间的距离小于安全距离,确定第一运动臂12a和第二运动臂12b之间可能会发生干涉关系。应当理解,安全距离例如可以包括但不限于135mm、120mm、60mm等。应理解,安全距离还可以基于关节或连杆的尺寸设定。不同关节或连杆对应的预定点之间的安全距离可以不同。应当理解,同第一运动臂12a和同第二运动臂12b相关联的预定线段可以包括但不限于上述实施例中示出的情况。
在一些实施例中,第一运动臂12a的一个或多个关节的关节值(例如关节1203a的关节值)与第二运动臂12b的相应关节的关节值(例如关节1203b的关节值)之间的差值大于预定安全值(例如安全角度),可以确定第一运动臂12a与第二运动臂12b满足关节安全角度关系的约束。反之,关节值之间的差值小于预定安全值,确定第一运动臂12a和第二运动臂12b之间可能会发生干涉关系。
应当理解,在机器人***包括三个、四个或更多个运动臂时,约束关系也可以用于彼此相邻的运动臂之间或者位置相近的运动臂之间的干涉判断。在一些实施中,约束关系的比较对象可以是相邻运动臂之间易于发生干涉的结构(例如同第一运动臂 12a相关联的预定线段与同第二运动臂12b相关联的预定线段、同第一运动臂12a相关联的预定点与同第二运动臂12b相关联的预定点、第一运动臂12a的一个或多个关节与第二运动臂12b的相应关节)。而多个运动臂之间必然不会发生干涉的结构可以被排除在约束关系的比较对象之外,不需要对相邻运动臂上的所有结构进行比较,可以减少约束关系的比较过程的运算量,提高***的工作效率。
图7示出了根据本公开一些实施例的用于确定运动臂的目标位姿的方法700的流程图。在一些实施例中,方法700可以用于基于目标运动臂的初始位姿以确定目标运动臂的目标位姿。方法700可以由机器人***10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法700可以由软件、固件和/或硬件来实现。
如图7所示,对于每个目标运动臂,在步骤701,选择目标运动臂的多个关节之一作为特征关节,设置特征关节的推荐目标关节值。在一些实施例中,以目标运动臂为第一运动臂12a为例。可以选择第一运动臂12a的多个关节之一作为特征关节,并且特征关节的推荐目标关节值可以是预先确定的。在一些实施例中,运动臂的特征关节可以为多个关节中易于与相邻运动臂发生碰撞的关节。例如,所选的特征关节可以为第一运动臂12a的多个关节中容易与其他运动臂(例如第二运动臂12b)发生碰撞的关节,例如图3所示的关节1205a或1206a。应当理解,在机器人***10包括多个运动臂(例如三个或四个运动臂)时,不同的运动臂的特征关节的推荐目标关节值可以不同。在一些实施例中,特征关节是预先确定的,因此方法700可以不包括选择目标运动臂的多个关节之一作为特征关节。在一些实施例中,特征关节是预先确定的,因此方法700可以不包括设置特征关节的推荐目标关节值。
在步骤703,基于目标运动臂的末端的目标位姿和推荐目标关节值,确定其他目标关节值。应当理解,基于选择的目标运动臂的末端的目标位姿和推荐目标关节值,对目标运动臂的逆运动学模型进行解算,以获得选择的目标运动臂的其他目标关节值。应理解,其他目标关节值包括目标运动臂的除特征关节外的所有其他关节的目标关节值。以选择的目标运动臂为第一运动臂12a为例。可以基于第一运动臂12a的第一末端臂128a的目标位姿和推荐关节(例如1205a)的推荐目标关节值,对第一运动臂12a的逆运动学模型进行解算,以获得第一运动臂12a的其他目标关节值。应理解,也可以选择多个目标运动臂,通过步骤703所述方法,确定每个目标运动臂的其他目标关节值。
在一些实施例中,方法700还可以包括步骤705。对于每个目标运动臂,在步骤705,判断其他目标关节值是否在相应关节的关节运动范围之内。应当理解,目标运动 臂的每个关节具有一定的运动范围,每个关节的关节运动范围为相应关节的最小极限关节值和最大极限关节值之间的范围,并且该最小极限关节值以及该最大极限关节值不在该范围之内。例如而非作为限制,有的关节的运动范围在18度到45度之间,有的关节的运动范围在45度到90度之间,还有的关节的运动范围在-90度到-45度之间等等。
在一些实施例中,方法700还可以包括步骤707。在步骤707,将推荐目标关节值递增或递减预定的调整值,以调整运动臂的推荐目标关节值。例如,选择第一运动臂12a作为目标运动臂。响应于第一运动臂12a的其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将推荐目标关节值递增或递减预定的调整值,以调整第一运动臂12a的推荐目标关节值。在一些实施例中,可以将调整值设置为例如0.2°或0.5°等等来调整推荐目标关节值。应理解,0.2°或0.5°仅作为示例,调整值还可以设置为其他值。递增或递减预定的调整值,遍历直到有解或者达到特征关节的关节运动范围(可以不包括关节极限值),例如有解可以表示推荐目标关节值在特征关节的关节运动范围之内。
在一些实施例中,方法700还可以包括以下步骤:判断调整后的推荐目标关节值是否在特征关节的关节运动范围之内。响应于调整后的推荐目标关节值在特征关节的关节运动范围之内,选取调整后的推荐目标关节值作为推荐目标关节值,并返回步骤703。
在一些实施例中,方法700还可以包括步骤711。在步骤711,基于目标运动臂的推荐目标关节值和其他目标关节值,确定目标运动臂的目标位姿。例如,响应于目标运动臂(例如第一运动臂12a)的其他目标关节值都在相应关节的关节运动范围之内,基于第一运动臂12a的推荐目标关节值和其他目标关节值,确定第一运动臂12a的目标位姿。例如,可以选择推荐目标关节值和其他目标关节的集合作为第一运动臂12a的目标关节值。通过确定第一运动臂12a的目标关节值,可以确定第一运动臂12a的目标位姿。应当理解,多个运动臂的其他运动臂也可以通过方法700以确定运动臂的目标位姿。
在一些实施例中,任选地,方法700还可以包括步骤709。在步骤709,判断目标运动臂与其他运动臂之间是否会形成干涉关系。例如,选择第一运动臂12a为目标运动臂。响应于第一运动臂12a的所有的其他目标关节值都在相应关节的关节运动范围之内,基于约束关系,判断第一运动臂12a与相邻运动臂(例如第二运动臂12b)之间是否会形成干涉关系。在一些实施例中,响应于多个运动臂之间不会形成干涉关系,执行步骤711。例如,响应于第一运动臂12a与第二运动臂12b之间不会形成干涉关 系,基于第一运动臂12a的推荐目标关节值和其他目标关节值,确定第一运动臂12a的目标位姿。在一些实施例中,响应于选择的目标运动臂与其他运动臂之间会形成干涉关系,重新执行步骤707。例如,响应于第一运动臂12a与第二运动臂12b之间会形成干涉关系,将第一运动臂12a的推荐目标关节值递增或递减预定的调整值,以调整第一运动臂12a的推荐目标关节值。
在一些实施例中,在推荐目标关节值和其他目标关节值有多组满足条件的解(例如有多组满足条件的第一运动臂12a的目标关节值)时,可以选择第一运动臂12a的各关节最不会与第二运动臂12b发生干涉的一组解作为唯一解输出,作为第一运动臂12a的目标关节值。
图8示出了根据本公开的实施例的包括在机器人***10中的控制装置11的架构示意图。在一些实施例中,如图11所示,该控制装置11可包括输入装置113、输出装置114、一个或多个存储器112、一个或多个处理器111以及通信接口115。在一些实施例中,控制装置11也可不包括输出装置。
在一些实施例中,输入装置113可以包括但不限于按钮、键盘、触摸屏、话筒等装置。输入装置可以被配置成用于直接接收来自用户的操作命令,或者接收来自用户的操作指示使得控制装置能够基于该操作指示而获取具体的操作命令。操作命令可以包括例如命令第二末端臂128b与第一末端臂128a保持末端相对位姿关系不变运动的命令。在一些实施例中,输入装置113还可用于接收来自用户的设置信息,例如当前手术类型、辅助连接装置的构型、相对位姿模型等的设置信息等。
在一些实施例中,输出装置114可以包括但不限于显示器、扬声器和指示灯等,其可被配置成用于指示机器人***10的各个组成部分的状态、输出警报信号等等。
在一些实施例中,存储器112中可存储可在处理器111上执行的计算机程序。处理器111在执行计算机程序时实现上述实施例中描述的控制方法。存储器112和处理器111的数量可以为一个或多个。通信接口115用于在该控制装置11(例如控制装置11的处理器111)和外部设备之间进行通信。在本公开中,控制装置11可例如通过通信接口115与设置在各运动臂(例如第一运动臂12a、第二运动臂12b)的各个关节中的电机进行通信,从而指令各运动臂运动到相应的目标位置,控制装置11还可例如通过通信接口115与运动臂的各个关节处的传感器进行通信,以接收运动臂的各个关节的关节值。在本公开的一个示例中,该通信接口115可以为CAN总线通信接口,其使得控制装置11能够通过CAN总线与设置在各关节的电机以及传感器连接通信。
如图8所示,输入装置113、输出装置114、存储器112、处理器111和通信接口115可通过总线相互连接,以完成相互间的通信。总线可以是工业标准体系结构(ISA, Industry Standard Architecture)总线,外部设备互连(PCI,Peripheral Component)总线或扩展工业标准体系结构(EISA,Extended Industry Standard Component)总线等等。
在一些实施例中,处理器111可以为中央处理器(CPU)、数字信号处理器(DSP)等各种类型通用处理器,在此不做限定。
在一些实施例中,控制装置11可以与基座131集成在一起并位于基座131内(例如基座131下方),以便节约空间。但是在实际应用中,控制装置11还可以与基座131分开设置,或者控制装置11可部分与基座131集成在一起,另一部分与基座131分开。或者控制装置11也可采用其他设置方式,与各个运动臂通信连接并能对各运动臂进行控制。
在一些实施例中,本公开提供了一种计算机可读存储介质,计算机可读存储介质可以包括一个或多个指令,一个或多个指令由处理器执行以执行以上任何实施例中的控制方法。
在一些实施例中,本公开提供了一种计算机***,可以包括存储器和至少一个处理器,存储器用于存储至少一个指令。处理器被配置为执行至少一个指令以将处理器配置为执行以上任何实施例中的控制方法。
在一些实施例中,计算机可读存储介质或存储器可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质或存储器例如可以是但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意组合。
在一些实施例中,计算机可读取存储介质或存储器可以包括但不限于:便携式计算机盘、硬盘、只读存储器(ROM)、随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、电可擦可编程只读存储器(EEPROM)、闪存或其他固态存储器技术、CD-ROM、数字多功能盘(DVD)、HD-DVD、蓝光(Blue-Ray)或其他光存储设备、磁带、磁盘存储或其他磁性存储设备、或能用于存储所需信息且可以由计算机访问的任何其他介质,其上存储有计算机可执行指令,计算机可执行指令在机器(例如计算机设备)中运行时,使得机器执行本公开的控制方法。应当理解,计算机设备可以包括个人计算机、服务器或者网络设备等。
本公开的一些实施例,能够有助于优化术前准备过程中运动臂的摆位。可以实时控制一个或多个运动臂,并在运动过程中能够有效地避免各运动臂之间不发生干涉,从而使得目标运动臂能够精确、快速、安全地到达目标位姿,从而实现高效安全的手术术前准备。
本公开的一些实施例,多个运动臂的末端以整体方式运动,并在运动过程中能够 保持多个运动臂的末端的相对位姿关系不变,以快速准确地实现多个运动臂的运动。在术中,通过多个运动臂整体运动,还可以实现安装于多个运动臂上的手术器械的位姿快速调整,可以降低用户(例如医生)的操作难度,以提高术前或术中的工作效率。
本公开还公开了以下:
1.一种用于机器人***的控制方法,所述机器人***包括多个运动臂,所述控制方法包括:
基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;
确定所述一个或多个目标运动臂的初始位姿;
基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环,其中对于每个运动控制循环,
确定所述一个或多个目标运动臂的目标位姿;以及
控制所述一个或多个目标运动臂向所述目标位姿运动。
2.根据第1项所述的控制方法,所述运动方式包括运动方向和运动模式,所述运动模式包括:
一个或多个目标运动臂移动、旋转或俯仰;或者
多个目标运动臂整体移动、整体旋转或整体俯仰。
3.根据第1-2项中的任一项所述的控制方法,所述运动步长包括在单个运动控制循环中多个目标运动臂的整体运动幅度,所述控制方法还包括:对于每个运动控制循环,
基于所述运动步长和当前手术类型或辅助连接装置的构型,确定所述多个目标运动臂的末端的目标位姿;以及
基于所述多个目标运动臂的末端的目标位姿,确定所述多个目标运动臂的目标位姿。
4.根据第1-3项中的任一项所述的控制方法,所述操作命令由用户通过用户接口输入。
5.根据第4项所述的控制方法,响应于不再接收到所述操作命令或接收到停止命令,控制一个或多个所述目标运动臂停止运动。
6.根据第1-5项中的任一项所述的控制方法,所述运动步长是预先确定的。
7.根据第1-6项中的任一项所述的控制方法,还包括:
对于每个运动控制循环,基于约束关系和所述目标位姿,判断所述一个或多个目标运动臂之间或与其他运动臂之间是否发生干涉。
8.根据第7项所述的控制方法,响应于所述一个或多个目标运动臂之间或与其他 运动臂之间发生干涉,控制所述一个或多个目标运动臂停止运动或者发出警报信息。
9.根据第7-8项中的任一项所述的控制方法,所述约束关系包括以下中的至少一项:
所述目标运动臂与所述多个运动臂的其他运动臂之间的相对位置顺序关系符合预定的相对位置顺序关系;
与所述目标运动臂相关联的预定点和与所述目标运动臂相应的一个或多个运动臂上相关联的预定点之间的距离大于预定的安全距离;
与所述目标运动臂相关联的预定线段和与所述目标运动臂相应的一个或多个运动臂上相关联的预定线段之间的距离大于预定的安全距离;或者
所述目标运动臂的一个或多个关节的关节值和与所述目标运动臂相应的一个或多个运动臂的相应关节的关节值之间的差值大于预定的安全值。
10.根据第1-9项中的任一项所述的控制方法,还包括:
对于每个运动控制循环,基于所述运动步长,确定每个目标运动臂所包含的每个关节的关节步长。
11.根据第10项所述的控制方法,还包括:对于非首个运动控制循环的每个运动控制循环,
确定所述一个或多个目标运动臂在当前运动控制循环的当前位姿。
12.根据第11项所述的控制方法,对于每个目标运动臂,
基于所述当前位姿,确定目标运动臂的每个关节的当前关节值;以及
基于所述目标运动臂的每个关节的当前关节值和关节步长,确定目标运动臂的每个关节在当前运动控制循环的目标关节值。
13.根据第10-12项中的任一项所述的控制方法,还包括:
基于所述一个或多个目标运动臂的初始位姿,确定所述一个或多个目标运动臂的每个关节的初始关节值;以及
对于每个运动控制循环,基于所述一个或多个目标运动臂的每个关节的初始关节值和关节步长,确定所述一个或多个目标运动臂的每个关节在当前运动控制循环的目标关节值。
14.根据第1-13项中的任一项所述的控制方法,还包括:确定一个或多个目标运动臂的目标位姿包括:对于每个目标运动臂,
选择多个关节之一作为特征关节;
设置所述特征关节的推荐目标关节值;以及
基于末端的目标位姿和推荐目标关节值,确定其他目标关节值。
15.根据第14项所述的控制方法,还包括:对于每个目标运动臂,
判断所述其他目标关节值是否在相应关节的关节运动范围之内;以及
响应于所述其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将所述推荐目标关节值递增或递减预定的调整值,以调整所述推荐目标关节值。
16.根据第15项所述的控制方法,响应于所述其他目标关节值都在相应关节的关节运动范围之内,基于所述推荐目标关节值和其他目标关节值,确定选择的所述目标运动臂的目标位姿。
17.根据第14-16项中的任一项所述的控制方法,所述特征关节为所述目标运动臂的多个关节中易于与相邻运动臂发生碰撞的关节。
18.一种机器人***,包括:
多个运动臂;以及
控制装置,所述控制装置被配置成执行如第1-17项中的任一项所述的控制方法。
19.根据第18项所述的机器人***,所述机器人***还包括辅助连接装置,所述辅助连接装置包括用于与所述多个运动臂连接的多个鞘管;
所述多个运动臂的末端相对位姿关系是基于所述多个鞘管的形状及其相对位姿关系确定的。
20.一种计算机可读存储介质,包括一个或多个指令,所述指令由处理器执行以执行如第1-17项中的任一项所述的控制方法。
21.一种计算机***,包括:
存储器,用于存储至少一个指令;以及
处理器,被配置为执行所述至少一个指令以执行如第1-17项中的任一项所述的控制方法。
上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种用于机器人***的控制方法,所述机器人***包括多个运动臂,所述控制方法包括:
    基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;
    确定所述一个或多个目标运动臂的初始位姿;
    基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环,其中对于每个运动控制循环,
    确定所述一个或多个目标运动臂的目标位姿;以及
    控制所述一个或多个目标运动臂向所述目标位姿运动。
  2. 根据权利要求1所述的控制方法,其特征在于,所述运动方式包括运动方向和运动模式,所述运动模式包括:
    一个或多个目标运动臂移动、旋转或俯仰;或者
    多个目标运动臂整体移动、整体旋转或整体俯仰。
  3. 根据权利要求1所述的控制方法,其特征在于,所述运动步长包括在单个运动控制循环中多个目标运动臂的整体运动幅度,所述控制方法还包括:对于每个运动控制循环,
    基于所述运动步长和当前手术类型或辅助连接装置的构型,确定所述多个目标运动臂的末端的目标位姿;以及
    基于所述多个目标运动臂的末端的目标位姿,确定所述多个目标运动臂的目标位姿。
  4. 根据权利要求1所述的控制方法,其特征在于,所述操作命令由用户通过用户接口输入。
  5. 根据权利要求4所述的控制方法,其特征在于,响应于不再接收到所述操作命令或接收到停止命令,控制一个或多个所述目标运动臂停止运动。
  6. 根据权利要求1所述的控制方法,其特征在于,所述运动步长是预先确定的。
  7. 根据权利要求1所述的控制方法,其特征在于,还包括:
    对于每个运动控制循环,基于约束关系和所述目标位姿,判断所述一个或多个目标运动臂之间或与其他运动臂之间是否发生干涉。
  8. 根据权利要求7所述的控制方法,其特征在于,响应于所述一个或多个目标运动臂之间或与其他运动臂之间发生干涉,控制所述一个或多个目标运动臂停止运动或者发出警报信息。
  9. 根据权利要求7所述的控制方法,其特征在于,所述约束关系包括以下中的至少一项:
    所述目标运动臂与所述多个运动臂的其他运动臂之间的相对位置顺序关系符合预定的相对位置顺序关系;
    与所述目标运动臂相关联的预定点和与所述目标运动臂相应的一个或多个运动臂上相关联的预定点之间的距离大于预定的安全距离;
    与所述目标运动臂相关联的预定线段和与所述目标运动臂相应的一个或多个运动臂上相关联的预定线段之间的距离大于预定的安全距离;或者
    所述目标运动臂的一个或多个关节的关节值和与所述目标运动臂相应的一个或多个运动臂的相应关节的关节值之间的差值大于预定的安全值。
  10. 根据权利要求1所述的控制方法,其特征在于,还包括:
    对于每个运动控制循环,基于所述运动步长,确定每个目标运动臂所包含的每个关节的关节步长。
  11. 根据权利要求10所述的控制方法,其特征在于,还包括:对于非首个运动控制循环的每个运动控制循环,
    确定所述一个或多个目标运动臂在当前运动控制循环的当前位姿。
  12. 根据权利要求11所述的控制方法,其特征在于,对于每个目标运动臂,
    基于所述当前位姿,确定目标运动臂的每个关节的当前关节值;以及
    基于所述目标运动臂的每个关节的当前关节值和关节步长,确定目标运动臂的每个关节在当前运动控制循环的目标关节值。
  13. 根据权利要求10所述的控制方法,其特征在于,还包括:
    基于所述一个或多个目标运动臂的初始位姿,确定所述一个或多个目标运动臂的每个关节的初始关节值;以及
    对于每个运动控制循环,基于所述一个或多个目标运动臂的每个关节的初始关节值和关节步长,确定所述一个或多个目标运动臂的每个关节在当前运动控制循环的目标关节值。
  14. 根据权利要求1所述的控制方法,其特征在于,还包括:确定一个或多个目标运动臂的目标位姿包括:对于每个目标运动臂,
    选择多个关节之一作为特征关节;
    设置所述特征关节的推荐目标关节值;以及
    基于末端的目标位姿和推荐目标关节值,确定其他目标关节值。
  15. 根据权利要求14所述的控制方法,其特征在于,还包括:对于每个目标运动臂,
    判断所述其他目标关节值是否在相应关节的关节运动范围之内;以及
    响应于所述其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将所述推荐目标关节值递增或递减预定的调整值,以调整所述推荐目标关节值。
  16. 根据权利要求15所述的控制方法,其特征在于,响应于所述其他目标关节值都在相应关节的关节运动范围之内,基于所述推荐目标关节值和其他目标关节值,确定选择的所述目标运动臂的目标位姿。
  17. 根据权利要求14所述的控制方法,其特征在于,所述特征关节为所述目标运动臂的多个关节中易于与相邻运动臂发生碰撞的关节。
  18. 一种机器人***,包括:
    多个运动臂;以及
    控制装置,所述控制装置被配置成:
    基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;
    确定所述一个或多个目标运动臂的初始位姿;
    基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环,其中对于每个运动控制循环,
    确定所述一个或多个目标运动臂的目标位姿;以及
    控制所述一个或多个目标运动臂向所述目标位姿运动。
  19. 根据权利要求18所述的机器人***,其特征在于,所述机器人***还包括辅助连接装置,所述辅助连接装置包括用于与所述多个运动臂连接的多个鞘管;
    所述多个运动臂的末端相对位姿关系是基于所述多个鞘管的形状及其相对位姿关系确定的。
  20. 一种计算机可读存储介质,包括一个或多个指令,所述指令由处理器执行以执行机器人***的控制方法,所述机器人***包括包括多个运动臂,所述控制方法包括:
    基于操作命令,确定所述多个运动臂中的一个或多个目标运动臂的运动方式;
    确定所述一个或多个目标运动臂的初始位姿;
    基于一个或多个所述目标运动臂的初始位姿和对应于运动方式的运动步长,执行一个或多个运动控制循环,其中对于每个运动控制循环,
    确定所述一个或多个目标运动臂的目标位姿;以及
    控制所述一个或多个目标运动臂向所述目标位姿运动。
PCT/CN2021/111225 2020-08-19 2021-08-06 机器人***以及控制方法 WO2022037425A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010838021.6 2020-08-19
CN202010837232.8 2020-08-19
CN202010838021 2020-08-19
CN202010837232 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022037425A1 true WO2022037425A1 (zh) 2022-02-24

Family

ID=80283175

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/109302 WO2022037385A1 (zh) 2020-08-19 2021-07-29 机器人***以及控制方法
PCT/CN2021/111225 WO2022037425A1 (zh) 2020-08-19 2021-08-06 机器人***以及控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109302 WO2022037385A1 (zh) 2020-08-19 2021-07-29 机器人***以及控制方法

Country Status (7)

Country Link
US (1) US20230294284A1 (zh)
EP (1) EP4201363A1 (zh)
JP (1) JP2023533919A (zh)
KR (1) KR20230002909A (zh)
CN (2) CN114073587A (zh)
CA (1) CA3173684A1 (zh)
WO (2) WO2022037385A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952806A (zh) * 2022-06-16 2022-08-30 法奥意威(苏州)机器人***有限公司 约束运动控制方法、装置、***和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105232155A (zh) * 2015-09-08 2016-01-13 微创(上海)医疗机器人有限公司 手术机器人调整***
CN108210070A (zh) * 2017-12-29 2018-06-29 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人
US20190202066A1 (en) * 2017-12-31 2019-07-04 Transenterix Surgical, Inc. Force based gesture control of a robotic surgical manipulator
CN110315517A (zh) * 2018-03-30 2019-10-11 株式会社安川电机 机器人***和控制方法
CN110464470A (zh) * 2019-09-10 2019-11-19 深圳市精锋医疗科技有限公司 手术机器人及其臂体的控制方法、控制装置
CN110786932A (zh) * 2019-11-19 2020-02-14 常州脉康仪医疗机器人有限公司 聚散式微创手术机器人从臂***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041709A1 (de) * 2008-08-29 2010-03-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medizinischer Arbeitsplatz und Bedienvorrichtung zum manuellen Bewegen eines Roboterarms eines medizinischen Arbeitsplatzes
KR102218244B1 (ko) * 2012-12-10 2021-02-22 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 영상 포착 장치 및 조작 가능 장치 가동 아암들의 제어된 이동 중의 충돌 회피
EP3200718A4 (en) * 2014-09-30 2018-04-25 Auris Surgical Robotics, Inc Configurable robotic surgical system with virtual rail and flexible endoscope
CN109091230B (zh) * 2017-06-21 2020-12-18 山东威高手术机器人有限公司 一种微创手术主操作臂
CN108175510A (zh) * 2018-01-19 2018-06-19 上海联影医疗科技有限公司 医疗机器人以及医疗***
CN115381556A (zh) * 2018-05-30 2022-11-25 上海舍成医疗器械有限公司 制定移动路径的方法及其组件和在自动化设备中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105232155A (zh) * 2015-09-08 2016-01-13 微创(上海)医疗机器人有限公司 手术机器人调整***
CN108210070A (zh) * 2017-12-29 2018-06-29 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人
US20190202066A1 (en) * 2017-12-31 2019-07-04 Transenterix Surgical, Inc. Force based gesture control of a robotic surgical manipulator
CN110315517A (zh) * 2018-03-30 2019-10-11 株式会社安川电机 机器人***和控制方法
CN110464470A (zh) * 2019-09-10 2019-11-19 深圳市精锋医疗科技有限公司 手术机器人及其臂体的控制方法、控制装置
CN110786932A (zh) * 2019-11-19 2020-02-14 常州脉康仪医疗机器人有限公司 聚散式微创手术机器人从臂***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952806A (zh) * 2022-06-16 2022-08-30 法奥意威(苏州)机器人***有限公司 约束运动控制方法、装置、***和电子设备
CN114952806B (zh) * 2022-06-16 2023-10-03 法奥意威(苏州)机器人***有限公司 约束运动控制方法、装置、***和电子设备

Also Published As

Publication number Publication date
KR20230002909A (ko) 2023-01-05
CN114073589A (zh) 2022-02-22
EP4201363A1 (en) 2023-06-28
CA3173684A1 (en) 2022-02-24
CN114073587A (zh) 2022-02-22
US20230294284A1 (en) 2023-09-21
WO2022037385A1 (zh) 2022-02-24
JP2023533919A (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
US11903660B2 (en) Surgical robotic system and control of surgical robotic system
US11548140B2 (en) System and method for radio based location of modular arm carts in a surgical robotic system
JP6293777B2 (ja) 画像キャプチャ装置及び操作可能な装置可動アームの制御された動作の間の衝突回避
CN114073585A (zh) 机器人***以及控制方法
JP2020532383A (ja) 手術ロボットシステムのためのカメラ制御
WO2022037356A1 (zh) 机器人***以及控制方法
JP2021098049A (ja) 手術用ロボットシステムのための追跡および案内装置ならびに関連する方法
WO2022037425A1 (zh) 机器人***以及控制方法
KR20150131381A (ko) 추가 조절 다이얼이 있는 3d 입력 장치
WO2022037392A1 (zh) 机器人***以及控制方法
CN113993474A (zh) 在微创手术中优化可达性、工作空间和灵巧性的***和方法
CN114073586A (zh) 机器人***以及控制方法
CN217040289U (zh) 一种双机械臂机构及机器人
WO2022037209A1 (zh) 机器人***及其控制方法
CN113040911B (zh) 一种手术***、手术***控制及手术***的控制方法
CN116725694A (zh) 机器人***的控制方法和机器人***
CN115192196A (zh) 计算机可读存储介质及手术机器人***
CN116076984A (zh) 内窥镜视野调整方法、控制***及可读存储介质
CN116725668A (zh) 一种器械定位导航方法、装置、***及存储介质
CN117503360A (zh) 手术床与手术机器人的联动***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857520

Country of ref document: EP

Kind code of ref document: A1