WO2022037297A1 - 一种轨道车辆电机械制动防滑控制***及方法 - Google Patents

一种轨道车辆电机械制动防滑控制***及方法 Download PDF

Info

Publication number
WO2022037297A1
WO2022037297A1 PCT/CN2021/104926 CN2021104926W WO2022037297A1 WO 2022037297 A1 WO2022037297 A1 WO 2022037297A1 CN 2021104926 W CN2021104926 W CN 2021104926W WO 2022037297 A1 WO2022037297 A1 WO 2022037297A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
control unit
electromechanical
brake
braking
Prior art date
Application number
PCT/CN2021/104926
Other languages
English (en)
French (fr)
Inventor
刘寅虎
孙环阳
鲍江宁
王业泰
Original Assignee
南京中车浦镇海泰制动设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中车浦镇海泰制动设备有限公司 filed Critical 南京中车浦镇海泰制动设备有限公司
Publication of WO2022037297A1 publication Critical patent/WO2022037297A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes

Definitions

  • the present invention relates to the technical field of vehicle braking, in particular to the technical field of anti-skid control of an electromechanical braking system.
  • the air brake is mainly composed of three parts: the brake control system, the basic brake system and the air supply system.
  • the core device of the brake control system is the brake control device, which integrates the electronic brake control unit, electro-pneumatic conversion Valve (electrical signal to air signal), relay valve (flow amplifying valve), empty-heavy truck regulating valve (for emergency braking), etc.
  • the air supply system consists of an air compressor, a dryer, an air cylinder, a main air duct that runs through the whole vehicle and a plug door, etc., to provide compressed air for the braking system.
  • the basic braking system consists of a brake cylinder, a brake shoe or a brake disc, etc., and receives the pressure air to implement the corresponding braking force.
  • the current electro-pneumatic braking system can be divided into vehicle control control mode and frame control control mode.
  • vehicle control system needs to add an anti-skid control device to realize independent control of the taxiing axis.
  • rack control system can realize the control of the sliding axis control, but each vehicle needs to have two sets of brake control devices.
  • anti-skid exhaust valves of the vehicle control system and the frame control system only work when anti-skid, and do not participate in the normal braking and mitigation of the vehicle. As a result, the structure of the anti-skid control device is complicated.
  • Electric brakes and air brakes are subject to the current adhesion coefficient between the wheel and rail.
  • the wheel When the braking force exceeds the adhesion between the wheel and rail, the wheel will slide on the track. If the sliding is serious, the wheel may lock and cause wheel surface scratches. Therefore, when the wheel slides, it is necessary to quickly and effectively restore the adhesion between the wheel and rail, and at the same time avoid extending the braking distance.
  • the current air brake system has a relatively long response time for anti-skid control due to structural reasons.
  • composition and structure of the current anti-skid control system are relatively complex, which increases the failure points and failure probability, which is not conducive to the integration of the system.
  • the technical problem to be solved by the present invention is to overcome the above shortcomings of the prior art and provide an electromechanical braking anti-skid control system for rail vehicles.
  • the rail vehicle electromechanical braking anti-skid control system includes:
  • the traction control unit is installed on the motor car, and adjusts the electric braking force according to the taxiing state signal received by the data bus or the hard line or the electric braking force sliding condition judged according to the axle speed of the vehicle;
  • a brake control unit each vehicle is provided with at least one, including a communication and main control module communicating with the traction control unit, and an electromechanical drive unit module controlled by the communication and main control module, the communication and main control module
  • the module controls the electromechanical braking unit to apply the electromechanical braking force through the electromechanical drive unit module, and realizes the closed-loop control of the electromechanical braking force according to the braking force fed back by the electromechanical braking unit
  • the brake control unit is based on the axle speed of the vehicle
  • the signal judges the taxiing state of each axle, or receives the taxiing state signal of each axle of the vehicle through the data bus of the train, and the brake control unit controls the electromechanical braking unit of the vehicle to perform the electromechanical braking force according to the taxiing state signal. control;
  • the electromechanical braking unit is installed on each wheel tread or at each wheel disc or each axle disc. It is controlled by the electromechanical drive unit module to apply braking force to the wheel tread or wheel disc or axle disc, and feeds back the actual output braking force. to the brake control unit;
  • the speed sensor is used to collect the axle speed signal of the axle and feed it back to the brake control unit.
  • the present invention also proposes three electromechanical brake antiskid control methods, which are based on the unified management of electromechanical brake antiskid and electric brake force antiskid by the brake control unit (B), and the use of the brake control unit (B) and traction control.
  • the control unit (A) manages the electromechanical antiskid and the electrical braking force antiskid respectively, and the train network system manages the electromechanical antiskid and the electrical braking force antiskid uniformly.
  • the electromechanical brake antiskid control system and method of the present invention realizes the axle control or wheel control of the antiskid system, and replaces the air brake antiskid system with the electromechanical brake antiskid system.
  • the electromechanical brake anti-skid system has the following advantages:
  • the electromechanical braking system responds quickly, shortens the anti-skid control response time, and improves the anti-skid performance
  • control method of the anti-skid system is designed, which improves the recovery speed of the adhesion between the wheel and rail and improves the anti-skid performance;
  • the wheel-rail adhesion coefficient is adjusted adaptively to avoid continuous taxiing and shorten the braking distance.
  • FIG. 1 is a schematic diagram of the electromechanical braking anti-skid control system of a rail vehicle according to the present invention.
  • the electromechanical braking and anti-skid control system for rail vehicles in this embodiment includes:
  • Traction control unit A which is installed on the motor car, and adjusts the electric braking force according to the taxiing state signal received by the data bus or the hard line or the electric braking force sliding condition judged according to the axle speed of the vehicle;
  • each vehicle is provided with at least one, including a communication and main control module 1 that communicates with the traction control unit A, and an electromechanical drive unit module 2 controlled by the communication and main control module 1, so
  • the communication and main control module 1 controls the electromechanical braking unit 3 to apply the electromechanical braking force through the electromechanical drive unit module 2, and realizes the closed-loop control of the electromechanical braking force according to the magnitude of the braking force fed back by the electromechanical braking unit 3;
  • the braking control unit B judges the taxiing state of each axle based on the axle speed signal of the vehicle, or receives the taxiing state signal of each axle of the vehicle through the data bus of the train, and the braking control unit B controls the electromechanical braking of the vehicle according to the taxiing state signal.
  • the sliding unit 3 performs the sliding re-adhesion control of the electromechanical braking force;
  • the electromechanical braking unit 3 is arranged on each wheel tread or at each wheel disc or each axle disc. The power is fed back to the brake control unit B;
  • the speed sensor 4 is used to collect the axle speed signal of the axle and feed it back to the brake control unit B.
  • the above electromechanical brake antiskid control system has three antiskid control methods, which are based on: the electromechanical brake antiskid and the electric brake force antiskid are uniformly managed by the brake control unit B; the brake control unit B and the traction control unit A are respectively managed Electromechanical antiskid and electric braking force antiskid; realized by the unified management of electromechanical braking antiskid and electric braking force antiskid by the train network system.
  • An anti-skid control method for the electro-mechanical braking of a rail vehicle A brake control unit B manages the electro-mechanical braking anti-skid and the electric braking force anti-skid uniformly.
  • the anti-skid control method is as follows:
  • the electromechanical braking anti-skid and the electric braking force anti-skid are uniformly managed by the braking control unit B.
  • the braking control unit B collects the speed signal of each axis through the speed sensor 4 of each axis, and judges the sliding state of each axis through calculation according to the speed signal. After the control unit B detects sliding, it adopts any one of the two schemes to implement anti-skid control. If all four axles of the vehicle are sliding, execute according to scheme 1:
  • Option 1 Priority is given to reducing the electric braking force
  • the braking control unit B sends the coasting related signals to the traction control unit A, and the traction control unit A reduces the electric braking force according to the electric braking coasting related signals of the braking control unit B, and feeds back the actual value of the electric braking force to the braking force in real time.
  • control unit B ;
  • the brake control unit B controls the electromechanical braking unit 3 of the non-sliding axle of the vehicle to supplement the electromechanical braking force according to the braking force required by the vehicle and the electric braking force actually applied by the traction control unit A, and limits the single-axle electromechanical braking force Do not exceed the wheel-rail adhesion limit of this axis, and keep the electromechanical braking force of the taxiing axis unchanged; if the brake control unit B detects that the taxiing axis is still sliding within a certain period of time (such as 0-5s), the electromechanical braking force of the taxiing axis will be adjusted. reduced to 0;
  • the brake control unit B If the four axles of the vehicle slide at the same time for a certain period of time (such as 0-5s), the brake control unit B outputs an electric brake cut signal to the traction control unit A for at least a certain period of time (such as 0-10s), and the traction control unit A releases the motor coupling according to the electric brake cut-off signal; when the taxiing state of the taxiing axis is eliminated, the brake control unit B gradually restores the electromechanical braking force of the original taxiing axis and the traction control unit (A) according to the current braking force required by the vehicle.
  • the electromechanical braking force of the non-sliding axle is simultaneously reduced, and the single axle braking force is limited to not exceed the wheel-rail adhesion limit of the axle;
  • the brake control unit B stops the coasting control and restores the braking force of each axle; after the coasting state of the four axes of the vehicle is eliminated, the braking control Unit B resumes coasting control;
  • the brake control unit B controls the electromechanical braking unit 3 to gradually reduce the electromechanical braking force of the taxiing axis within a certain period of time (such as 0-2s):
  • the braking control unit B If the braking control unit B detects that the sliding state of the sliding axis is eliminated within a certain period of time (such as 0-10s), it will gradually restore (such as within 40ms-2s) the electromechanical braking force of the original sliding axis, and limit the single-axis electromechanical braking force. The power does not exceed the wheel-rail adhesion limit of the axle;
  • the braking control unit B If the braking control unit B detects that the taxiing axis is still taxiing within a certain period of time (such as 0-10s), it will send the taxiing related signal to the traction control unit A; the traction control unit A will reduce the electric braking force according to the received taxiing related signal , and feedback the actual output electric braking force to the brake control unit B;
  • the brake control unit B controls the electromechanical braking unit 3 of the non-sliding axle to supplement the electromechanical braking force according to the braking force required by the vehicle and the electric braking force actually output by the traction control unit A, and restricts the single-axle braking force not to exceed this value.
  • the electromechanical drive unit module 2 outputs current or voltage or a PWM signal to control the electromechanical drive unit module 2 .
  • the electric braking force signal is a time-electric braking curve
  • the electromechanical braking force signal is a time-electromechanical braking force curve.
  • Electric braking force control or/and electro-mechanical braking force control is performed according to the set initial wheel-rail adhesion limit.
  • the wheel-rail adhesion coefficient of the taxiing axis at the time of taxiing is calculated, and the taxiing axis is gradually corrected according to the taxiing state.
  • the wheel-rail adhesion limit of the braking force control when the taxiing resumes or the braking is relieved, the wheel-rail adhesion limit of the taxiing axis returns to the initial wheel-rail adhesion limit.
  • An anti-skid control method for the electro-mechanical braking of a rail vehicle the traction control unit A manages the anti-skid of the electric braking force; the braking control unit B manages the anti-skid of the electro-mechanical braking force:
  • Traction control unit A judges the coasting state of the vehicle, controls the electric braking force, and sends the actual output electric braking force and coasting related signals to brake control unit B;
  • the brake control unit B After the brake control unit B receives the coasting related signal from the traction control unit A and lasts for a certain period of time (such as 0-6s), it sends the electric braking force cut-off signal to the traction control unit A, and the traction control unit A receives the electric braking force cut-off signal. After the electric braking force is cut off; when the vehicle is in a non-braking condition or the speed is less than the preset value, the brake control unit B resets the electric braking cut-off signal;
  • the braking control unit B judges the sliding state of each axis through the collected speed signals of each axis. When the sliding state lasts for a certain period of time (such as 0-5s), it sends an electric brake cut-off signal to the traction control unit A.
  • the traction control unit A After receiving the electric braking force cut-off signal, the electric braking force is cut off; when the vehicle is in a non-braking condition or the speed is less than the preset value, the brake control unit B resets the electric braking cut-off signal;
  • the brake control unit B After the brake control unit B determines that the axis is sliding, it reduces the electromechanical braking force of the electromechanical braking unit 3 of the sliding axis within a certain period of time (such as 0-2s):
  • the brake control unit B When the brake control unit B detects that the sliding state of the taxiing axis has been eliminated, it will gradually restore the electromechanical braking force of the taxiing axis according to the current braking force and electric braking force required by the vehicle, and limit the single axis electromechanical braking force not to exceed this axis. Wheel-rail adhesion limit;
  • the brake control unit B When the brake control unit B detects that the taxiing state of the taxiing axis exceeds the preset time (such as 0-15s), the braking control unit B stops the taxiing control and restores the braking force of each axis until the taxiing state of the four axes of the vehicle is eliminated. After that, the brake control unit B resumes coasting control.
  • the preset time such as 0-15s
  • the rail vehicle electromechanical braking antiskid control system also includes a train network system.
  • the traction control unit A and the braking control unit B communicate with the train network system.
  • the train network system judges the taxiing state of each axle and calculates the electrical braking force and the electromechanical braking force. , and then sent to the traction control unit A and the brake control unit B respectively, the traction control unit A implements the electric braking force, and limits the electric braking force not to exceed the wheel-rail adhesion limit; the brake control unit B controls the electromechanical
  • the braking unit 3 performs the electromechanical braking force, and limits the single-axle electro-mechanical braking force not to exceed the single-axle wheel-rail adhesion limit.
  • the electromechanical braking anti-skid control method of a rail vehicle is managed by the train network system to manage the anti-skid of the electrical braking force and the anti-skid of the electro-mechanical braking force;
  • the train network system judges the taxiing state of each axle according to the speed signal of each axle.
  • the electric braking force and the electromechanical braking force are calculated, and the electric braking force information is sent to the traction control unit A, which is applied by the traction control unit A.
  • Electric braking force, and limit the electric braking force not to exceed the wheel-rail adhesion limit at the same time, send the mechanical braking force signal to the brake control unit B, and the brake control unit B controls the electromechanical braking unit 3 to apply the braking force, and limits the single braking force.
  • the axle electromechanical braking force does not exceed the single axle wheel-rail adhesion limit.
  • the brake control unit B can be designed as one device, or two devices, or one device can be shared by several vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种轨道车辆电机械制动防滑控制***及方法,包括牵引控制单元(A)、制动控制单元(B)、电机械制动单元(3)和速度传感器(4),制动控制单元(B)包含有通信及主控模块(1)和电机械驱动单元模块(2)。将电机械制动防滑控制***取代空气制动防滑控制***,缩短了防滑控制响应时间,提高了防滑性能。针对电机械制动防滑控制***响应迅速的特点,设计防滑控制方法,与原空气制动防滑控制***相比,提高了轮轨间的黏着力恢复速度,提高了防滑性能;并且可根据滑行时刻车辆实际轮轨黏着情况自适应调整轮轨黏着系数,避免持续滑行,缩短制动距离。

Description

一种轨道车辆电机械制动防滑控制***及方法 技术领域
本发明涉及车辆制动技术领域,尤其涉及电机械制动***的防滑控制技术领域。
背景技术
目前车辆制动***大多采用空电复合制动的控制方式,即优先使用电制动,如果电制动力不足,由空气制动力补充。空气制动主要由制动控制***、基础制动***和空气供给***三大部分组成,制动控制***核心装置为制动控制装置,制动控制装置集成了电子制动控制单元、电空变换阀(电信号转空气信号)、中继阀(流量放大阀)、空重车调整阀(紧急制动用)等。空气供给***由空气压缩机、干燥器、风缸、贯穿全车的总风管及塞门等组成,为制动***提供压缩空气。基础制动***由制动缸及闸瓦或制动盘等组成,接收压力空气实施相应的制动力。
当前电空制动***可分为车控控制方式和架控控制方式,车辆滑行时,车控***需要增加防滑控制装置实现对滑行轴的独立控制,架控***虽然可以实现对滑行轴的轴控,但每辆车需要具备两套制动控制装置。且车控***和架控***的防滑排风阀仅在防滑时起作用,不参与车辆的正常制动和缓解。导致防滑控制装置结构复杂。
电制动和空气制动受制于当前轮轨间的粘着系数,当制动力超过轮轨间粘着力时,车轮会在轨道上发生滑行,滑行严重时可能会导致车轮抱死引起轮面擦伤,因此车轮发生滑行时,需要快速有效的恢复轮轨间黏着力,同时避免延长制动距离。目前的空气制动***由于结构原因,防滑控制响应时间相对较长。
目前的防滑控制***组成及结构相对复杂,增加了故障点和故障概率,不利于***的集成化。
技术问题
本发明所要解决的技术问题是,克服现有技术的上述缺点,提供一种轨道车辆电机械制动防滑控制***。
技术解决方案
为了解决以上技术问题,本发明提供的轨道车辆电机械制动防滑控制***,包括:
牵引控制单元,设置于动车,根据数据总线或硬线接收到的滑行状态信号或者根据本车的轴速度判断的电制动力滑行情况调节电制动力;
制动控制单元,每辆车设置至少有一个,包括与牵引控制单元通信的通信及主控模块,和受控于所述通信及主控模块的电机械驱动单元模块,所述通信及主控模块通过电机械驱动单元模块控制电机械制动单元施加电机械制动力,并根据电机械制动单元反馈的制动力大小实现电机械制动力的闭环控制;制动控制单元基于本车的轴速度信号判断各轴的滑行状态,或者通过列车的数据总线接收本车各轴的滑行状态信号,制动控制单元根据滑行状态信号控制本车的电机械制动单元进行电机械制动力的滑行再黏着控制;
电机械制动单元,设置于各车轮踏面或各轮盘或各轴盘处,受控于电机械驱动单元模块对车轮踏面或轮盘或轴盘施加制动力,并将实际输出的制动力反馈给制动控制单元;
速度传感器,用于采集车轴的轴速度信号反馈至制动控制单元。
此外,本发明还提出了三种电机械制动防滑控制方法,分别基于由制动控制单元(B)统一管理电机械制动防滑和电制动力防滑、由制动控制单元(B)和牵引控制单元(A)分别管理电机械防滑和电制动力防滑、由列车网络***统一管理电机械制动防滑和电制动力防滑实现。
有益效果
本发明电机械制动防滑控制***及方法实现了防滑***的轴控或轮控,将电机械制动防滑***取代空气制动防滑***。
电机械制动防滑***相对于原空气制动防滑***具有以下优势:
1、取消了制动控制装置内阀类相关部件、空气供给***和防滑控制装置,简化了防滑***结构;
2、电机械制动***响应迅速,缩短了防滑控制响应时间,提高了防滑性能;
3、针对电机械制动***响应迅速的特点,设计防滑***控制方法,提高了轮轨间的黏着力恢复速度,提高了防滑性能;
4、根据滑行时刻车辆实际轮轨黏着情况自适应调整轮轨黏着系数,避免持续滑行,缩短制动距离。
附图说明
图1是本发明轨道车辆电机械制动防滑控制***示意图。
本发明的最佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1所示,本实施例轨道车辆电机械制动防滑控制***,包括:
牵引控制单元A,设置于动车,根据数据总线或硬线接收到的滑行状态信号或者根据本车的轴速度判断的电制动力滑行情况调节电制动力;
制动控制单元B,每辆车设置至少有一个,包括与牵引控制单元A通信的通信及主控模块1,和受控于所述通信及主控模块1的电机械驱动单元模块2,所述通信及主控模块1通过电机械驱动单元模块2控制电机械制动单元3施加电机械制动力,并根据电机械制动单元3反馈的制动力大小实现电机械制动力的闭环控制;制动控制单元B基于本车的轴速度信号判断各轴的滑行状态,或者通过列车的数据总线接收本车各轴的滑行状态信号,制动控制单元B根据滑行状态信号控制本车的电机械制动单元3进行电机械制动力的滑行再黏着控制;
电机械制动单元3,设置于各车轮踏面或各轮盘或各轴盘处,受控于电机械驱动单元模块2对车轮踏面或轮盘或轴盘施加制动力,并将实际输出的制动力反馈给制动控制单元B;
速度传感器4,用于采集车轴的轴速度信号反馈至制动控制单元B。
上述电机械制动防滑控制***,有三种防滑控制方法,分别基于:由制动控制单元B统一管理电机械制动防滑和电制动力防滑;由制动控制单元B和牵引控制单元A分别管理电机械防滑和电制动力防滑;由列车网络***统一管理电机械制动防滑和电制动力防滑实现。
下面对三种防滑控制方法分别进行详细说明。
滑控制 方法实施例一
一种轨道车辆电机械制动防滑控制方法,由制动控制单元B统一管理电机械制动防滑和电制动力防滑,防滑控制方法如下:
由制动控制单元B统一管理电机械制动防滑和电制动力防滑,制动控制单元B通过各轴速度传感器4采集各轴速度信号,根据速度信号通过计算判断各轴滑行状态,当制动控制单元B检测到滑行后,采用两种方案中的任意一种实施防滑控制,若本车四根轴都滑行,则按照方案一执行:
方案一:优先减小电制动力;
制动控制单元B将滑行相关信号发送给牵引控制单元A,牵引控制单元A根据制动控制单元B的电制动滑行相关信号减小电制动力,并将电制动力实际值实时反馈给制动控制单元B;
制动控制单元B根据本车所需制动力和牵引控制单元A实际施加的电制动力,控制本车未滑行轴的电机械制动单元3补足电机械制动力,限制单轴电机械制动力不超过本轴轮轨黏着限值,保持滑行轴的电机械制动力不变; 若一定时间内(如0-5s)内制动控制单元B检测滑行轴仍然滑行,将滑行轴电机械制动力降低为0;
若本车4根轴同时滑行并持续一定时间(如0-5s),制动控制单元B向牵引控制单元A输出电制动切除信号并至少持续一定时间(如0-10s),牵引控制单元A根据电制动切除信号解除电机耦合;当滑行轴的滑行状态消除,制动控制单元B根据本车当前所需制动力,逐渐恢复原滑行轴的电机械制动力及牵引控制单元(A)的电制动力,同步降低非滑行轴的电机械制动力,并限制单轴制动力不超过本轴轮轨黏着限值;
若本车4根轴同时滑行持续一定时间(如0-15s),则制动控制单元B停止滑行控制并恢复各轴制动力;待本车4根轴的滑行状态均消除后,制动控制单元B再恢复滑行控制;
方案二:优先减小电机械制动力
制动控制单元B控制电机械制动单元3在一定时间内(比如0-2s)逐渐降低滑行轴的电机械制动力:
若一定时间(如0-10s)内制动控制单元B检测到滑行轴的滑行状态消除,则逐渐恢复(比如40ms-2s内)原滑行轴的电机械制动力,并限制单轴电机械制动力不超过本轴轮轨黏着限值;
若一定时间(如0-10s)内制动控制单元B检测到滑行轴仍然滑行,则将滑行相关信号发送给牵引控制单元A;牵引控制单元A根据接收到的滑行相关信号减小电制动力,并将实际输出的电制动力反馈给制动控制单元B;
制动控制单元B根据本车所需制动力和牵引控制单元A实际输出的电制动力,控制未滑行轴的电机械制动单元3补足电机械制动力,并限制单轴制动力不超过本轴轮轨黏着限值。
电机械驱动单元模块2输出电流或者电压或者PWM信号对电机械驱动单元模块2进行控制。电制动力信号为时间-电制动的曲线,电机械制动力信号为时间-电机械制动力的曲线。根据设定的初始轮轨黏着限值进行电制动力控制或/和电机械制动力控制,当检测到车辆滑行时,计算滑行轴滑行时刻的轮轨黏着系数,并根据滑行状态逐步修正滑行轴制动力控制的轮轨黏着限值,当滑行恢复后或者制动缓解后,滑行轴的轮轨黏着限值恢复为初始轮轨黏着限值。
滑控制 方法实施例二
一种轨道车辆电机械制动防滑控制方法,由牵引控制单元A管理电制动力防滑;由制动控制单元B管理电机械制动力防滑:
Ⅰ、牵引控制单元A判断车辆滑行状态,并实施电制动力的控制,将实际输出的电制动力及滑行相关信号发送制动控制单元B;
制动控制单元B接收到牵引控制单元A的滑行相关信号并持续一定时间(如0-6s)后,向牵引控制单元A发送电制动力切除信号,牵引控制单元A接收到电制动力切除信号后切除电制动力;当车辆处于非制动工况或速度小于预设值时,制动控制单元B复位电制动切除信号;
Ⅱ、制动控制单元B通过采集的各轴速度信号判断各轴滑行状态,当滑行状态持续一定时间(如0-5s)后,向牵引控制单元A发送电制动切除信号,牵引控制单元A接收到电制动力切除信号后切除电制动力;当车辆处于非制动工况或速度小于预设值时,制动控制单元B复位电制动切除信号;
制动控制单元B判定轴滑行后,在一定时间内(比如0-2s)降低滑行轴电机械制动单元3的电机械制动力:
当制动控制单元B检测到滑行轴滑行状态消除,则根据本车当前所需制动力和电制动力,逐渐恢复滑行轴的电机械制动力,并限制单轴电机械制动力不超过本轴轮轨黏着限值;
当制动控制单元B检测到滑行轴滑行状态超过预设时间(如0-15s),则制动控制单元B停止滑行控制并恢复各轴制动力,待本车4根轴的滑行状态均消除后,制动控制单元B再恢复滑行控制。
滑控制 方法实施例三
轨道车辆电机械制动防滑控制***还包括列车网络***,牵引控制单元A和制动控制单元B与列车网络***通信,由列车网络***判断各轴滑行状态,计算电制动力和电机械制动力,然后并分别发送给给牵引控制单元A和制动控制单元B,由牵引控制单元A实施电制动力,并限制电制动力不超过轮轨黏着限值;由制动控制单元B控制电机械制动单元3执行电机械制动力,并限制单轴电机械制动力不超过单轴轮轨黏着限值。
本实施例轨道车辆电机械制动防滑控制方法,由列车网络***管理电制动力防滑和电机械制动力防滑;
列车网络***根据各轴的速度信号判断各轴的滑行状态,当检测出滑行后,进行电制动力和电机械制动力计算,将电制动力信息发送牵引控制单元A,由牵引控制单元A施加电制动力,并限制电制动力不超过轮轨黏着限值;同时将机械制动力信号发送给制动控制单元B,制动控制单元B控制电机械制动单元3施加制动力,并限制单轴电机械制动力不超过单轴轮轨黏着限值。
制动控制单元B在物理上可设计成1台装置,也可设计成2台装置,也可几辆车共用1台装置。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

  1. 轨道车辆电机械制动防滑控制***,包括:
    牵引控制单元(A),设置于动车,根据数据总线或硬线接收到的滑行状态信号或者根据本车轴速度判断的电制动力滑行情况调节电制动力;
    制动控制单元(B),每辆车设置至少有一个,包括与牵引控制单元(A)通信的通信及主控模块(1),和受控于所述通信及主控模块(1)的电机械驱动单元模块(2),所述通信及主控模块(1)通过电机械驱动单元模块(2)控制电机械制动单元(3)施加电机械制动力,并根据电机械制动单元(3)反馈的制动力大小实现电机械制动力的闭环控制;制动控制单元(B)基于本车的轴速度信号判断各轴的滑行状态,或者通过列车的数据总线接收本车各轴的滑行状态信号,制动控制单元(B)根据滑行状态信号控制本车的电机械制动单元(3)进行电机械制动力的滑行再黏着控制;
    电机械制动单元(3),设置于各车轮踏面或各轮盘或各轴盘处,受控于电机械驱动单元模块(2)对车轮踏面或轮盘或轴盘施加制动力,并将实际输出的制动力反馈给制动控制单元(B);
    速度传感器(4),用于采集车轴的轴速度信号反馈至制动控制单元(B)。
  2. 根据权利要求1所述轨道车辆电机械制动防滑控制***,其特征在于:由制动控制单元(B)统一管理电机械制动防滑和电制动力防滑。
  3. 根据权利要求1所述轨道车辆电机械制动防滑控制***,其特征在于:由电制动控制单元(B)和牵引控制单元(A)分别管理电机械防滑和电制动力防滑。
  4. 根据权利要求1所述轨道车辆电机械制动防滑控制***,其特征在于:还包括列车网络***,牵引控制单元(A)和制动控制单元(B)与列车网络***通信,由列车网络***判断各轴滑行状态,计算电制动力和电机械制动力,然后并分别发送给给牵引控制单元(A)和制动控制单元(B),由牵引控制单元(A)实施电制动力,并限制电制动力不超过轮轨黏着限值;由制动控制单元(B)控制电机械制动单元(3)执行电机械制动力,并限制单轴电机械制动力不超过单轴轮轨黏着限值。
  5. 一种轨道车辆电机械制动防滑控制方法,其特征在于:基于权利要求1所述轨道车辆电机械制动防滑控制***实现,所述防滑控制方法如下:
    由制动控制单元(B)统一管理电机械制动防滑和电制动力防滑,制动控制单元(B)通过各轴速度传感器(4)采集各轴速度信号,根据速度信号通过计算判断各轴滑行状态,当制动控制单元(B)检测到滑行后,采用两种方案中的任意一种实施防滑控制,若本车四根轴都滑行,则按照方案一执行:
    方案一:优先减小电制动力;
    制动控制单元(B)将滑行相关信号发送给牵引控制单元(A),牵引控制单元(A)根据制动控制单元(B)的电制动滑行相关信号减小电制动力,并将电制动力实际值实时反馈给制动控制单元(B);
    制动控制单元(B)根据本车所需制动力和牵引控制单元(A)实际施加的电制动力,控制本车未滑行轴的电机械制动单元(3)补足电机械制动力,限制单轴电机械制动力不超过本轴轮轨黏着限值,保持滑行轴的电机械制动力不变;若预设时间内制动控制单元(B)检测滑行轴仍然滑行,将滑行轴电机械制动力降低为0;
    若本车4根轴同时滑行并持续预设时间,制动控制单元(B)向牵引控制单元(A)输出电制动切除信号并至少持续预设时间,牵引控制单元(A)根据电制动切除信号解除电机耦合;当滑行轴的滑行状态消除,制动控制单元(B)根据本车当前所需制动力,逐渐恢复原滑行轴的电机械制动力及牵引控制单元(A)的电制动力,同步降低非滑行轴的电机械制动力,并限制单轴制动力不超过本轴轮轨黏着限值;
    若本车4根轴同时滑行持续预设时间,则制动控制单元(B)停止滑行控制并恢复各轴制动力;待本车4根轴的滑行状态均消除后,制动控制单元(B)再恢复滑行控制;
    方案二:优先减小电机械制动力
    制动控制单元(B)控制电机械制动单元(3)在预设时间内逐渐降低滑行轴的电机械制动力:
    若预设时间内制动控制单元(B)检测到滑行轴的滑行状态消除,则逐渐恢复原滑行轴的电机械制动力,并限制单轴电机械制动力不超过本轴轮轨黏着限值;
    若预设时间内制动控制单元(B)检测到滑行轴仍然滑行,则将滑行相关信号发送给牵引控制单元(A);牵引控制单元(A)根据接收到的滑行相关信号减小电制动力,并将实际输出的电制动力反馈给制动控制单元(B);
    制动控制单元(B)根据本车所需制动力和牵引控制单元(A)实际输出的电制动力,控制未滑行轴的电机械制动单元(3)补足电机械制动力,并限制单轴制动力不超过本轴轮轨黏着限值。
  6. 一种轨道车辆电机械制动防滑控制方法,其特征在于:基于权利要求1所述轨道车辆电机械制动防滑控制***实现,所述防滑控制方法中,由牵引控制单元(A)管理电制动力防滑;由制动控制单元(B)管理电机械制动力防滑:
    Ⅰ、牵引控制单元(A)判断车辆滑行状态,并实施电制动力的控制,将实际输出的电制动力及滑行相关信号发送制动控制单元(B);
    制动控制单元(B)接收到牵引控制单元(A)的滑行相关信号并持续预设时间后,向牵引控制单元(A)发送电制动力切除信号,牵引控制单元(A)接收到电制动力切除信号后切除电制动力;当车辆处于非制动工况或速度小于预设值时,制动控制单元(B)复位电制动切除信号;
    Ⅱ、制动控制单元(B)通过采集的各轴速度信号判断各轴滑行状态,当滑行状态持续预设时间后,向牵引控制单元(A)发送电制动切除信号,牵引控制单元(A)接收到电制动力切除信号后切除电制动力;当车辆处于非制动工况或速度小于预设值时,制动控制单元(B)复位电制动切除信号;
    制动控制单元(B)判定轴滑行后,在预设时间内降低滑行轴电机械制动单元(3)的电机械制动力:
    当制动控制单元(B)检测到滑行轴滑行状态消除,则根据本车当前所需制动力和电制动力,逐渐恢复滑行轴的电机械制动力,并限制单轴电机械制动力不超过本轴轮轨黏着限值;
    当制动控制单元(B)检测到滑行轴滑行状态超过预设时间,则制动控制单元(B)停止滑行控制并恢复各轴制动力,待本车4根轴的滑行状态均消除后,制动控制单元(B)再恢复滑行控制。
  7. 一种轨道车辆电机械制动防滑控制方法,其特征在于:基于权利要求4所述轨道车辆电机械制动防滑控制***实现,所述防滑控制方法中,由列车网络***管理电制动力防滑和电机械制动力防滑;
    列车网络***根据各轴的速度信号判断各轴的滑行状态,当检测出滑行后,进行电制动力和电机械制动力计算,将电制动力信息发送牵引控制单元(A),由牵引控制单元(A)施加电制动力,并限制电制动力不超过轮轨黏着限值;同时将机械制动力信号发送给制动控制单元(B),制动控制单元(B)控制电机械制动单元(3)施加制动力,并限制单轴电机械制动力不超过单轴轮轨黏着限值。
  8. 根据权利要求5-7任一项所述的轨道车辆电机械制动防滑控制方法,其特征在于:所述电机械驱动单元模块(2)输出电流或者电压或者PWM信号对电机械驱动单元模块(2)进行控制。
  9. 根据权利要求5-7任一项所述的轨道车辆电机械制动防滑控制方法,其特征在于:所述电制动力信号为时间-电制动的曲线,电机械制动力信号为时间-电机械制动力的曲线。
  10. 根据权利要求5-7任一项所述的轨道车辆电机械制动防滑控制方法,其特征在于:根据设定的初始轮轨黏着限值进行电制动力控制或/和电机械制动力控制,当检测到车辆滑行时,计算滑行轴滑行时刻的轮轨黏着系数,并根据滑行状态逐步修正滑行轴制动力控制的轮轨黏着限值,当滑行恢复后或者制动缓解后,滑行轴的轮轨黏着限值恢复为初始轮轨黏着限值。
PCT/CN2021/104926 2020-08-20 2021-07-07 一种轨道车辆电机械制动防滑控制***及方法 WO2022037297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010843019.8 2020-08-20
CN202010843019.8A CN111959467B (zh) 2020-08-20 2020-08-20 一种轨道车辆电机械制动防滑控制***及方法

Publications (1)

Publication Number Publication Date
WO2022037297A1 true WO2022037297A1 (zh) 2022-02-24

Family

ID=73388228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104926 WO2022037297A1 (zh) 2020-08-20 2021-07-07 一种轨道车辆电机械制动防滑控制***及方法

Country Status (2)

Country Link
CN (1) CN111959467B (zh)
WO (1) WO2022037297A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959467B (zh) * 2020-08-20 2023-05-05 南京中车浦镇海泰制动设备有限公司 一种轨道车辆电机械制动防滑控制***及方法
IT202100004784A1 (it) * 2021-03-02 2022-09-02 Faiveley Transport Italia Spa Sistema di antipattinaggio per un sistema di frenatura elettromeccanico
CN114604277A (zh) * 2022-04-29 2022-06-10 中车青岛四方车辆研究所有限公司 基于融合控制的列车降级控制方法及***
CN115320562A (zh) * 2022-07-20 2022-11-11 米塔盒子科技有限公司 紧急牵引模式下列车制动控制方法及***
CN115476825A (zh) * 2022-09-29 2022-12-16 华伍轨道交通装备(上海)有限责任公司 一种用于轨道车辆的制动***及其控制方法
CN115416634B (zh) * 2022-10-14 2024-01-16 中国铁道科学研究院集团有限公司 一种驱动控制装置、电机械制动控制***及方法
CN115782964B (zh) * 2022-11-15 2024-01-09 克诺尔车辆设备(苏州)有限公司 列车轴抱死故障的诊断方法、***及列车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351824A (zh) * 2017-07-06 2017-11-17 中国铁道科学研究院 车辆滑行下的制动方法及***
CN107685722A (zh) * 2017-08-29 2018-02-13 南京中车浦镇海泰制动设备有限公司 一种轨道车辆防滑控制***及其方法
CN108437963A (zh) * 2017-09-06 2018-08-24 上海六辔机电科技有限公司 一种微机控制电机械制动***
KR20200026660A (ko) * 2018-08-31 2020-03-11 한국철도기술연구원 철도차량용 전기 기계식 제동 시스템
CN111038462A (zh) * 2020-01-02 2020-04-21 中车青岛四方机车车辆股份有限公司 轨道车辆的制动控制方法和***
CN111959467A (zh) * 2020-08-20 2020-11-20 南京中车浦镇海泰制动设备有限公司 一种轨道车辆电机械制动防滑控制***及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071143B (zh) * 2014-07-10 2016-03-16 南京浦镇海泰制动设备有限公司 一种轨道车辆制动控制单元
DE102016125193B4 (de) * 2016-12-21 2020-12-03 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zur Aufrechterhaltung der Summenbremskraft eines Zuges unter Berücksichtigung der zur Verfügung stehenden Kraftschlussverhältnisse
CN107458363B (zh) * 2017-06-29 2019-12-03 南京中车浦镇海泰制动设备有限公司 一种轨道车辆制动力控制方法
CN109795518B (zh) * 2017-11-17 2021-03-19 中车唐山机车车辆有限公司 一种轨道列车制动控制***及列车
CN109878488B (zh) * 2019-03-22 2021-04-06 嘉兴市钧萍轨道交通科技有限公司 一种地铁列车的液压制动***
CN111301375B (zh) * 2019-12-14 2021-11-16 中车大连电力牵引研发中心有限公司 一种用于轨道车辆的制动力管理***及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351824A (zh) * 2017-07-06 2017-11-17 中国铁道科学研究院 车辆滑行下的制动方法及***
CN107685722A (zh) * 2017-08-29 2018-02-13 南京中车浦镇海泰制动设备有限公司 一种轨道车辆防滑控制***及其方法
CN108437963A (zh) * 2017-09-06 2018-08-24 上海六辔机电科技有限公司 一种微机控制电机械制动***
KR20200026660A (ko) * 2018-08-31 2020-03-11 한국철도기술연구원 철도차량용 전기 기계식 제동 시스템
CN111038462A (zh) * 2020-01-02 2020-04-21 中车青岛四方机车车辆股份有限公司 轨道车辆的制动控制方法和***
CN111959467A (zh) * 2020-08-20 2020-11-20 南京中车浦镇海泰制动设备有限公司 一种轨道车辆电机械制动防滑控制***及方法

Also Published As

Publication number Publication date
CN111959467A (zh) 2020-11-20
CN111959467B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2022037297A1 (zh) 一种轨道车辆电机械制动防滑控制***及方法
CN111959466B (zh) 一种轨道车辆电机械制动***
CN111959468B (zh) 一种轨道车辆电机械制动力控制方法
CN110435621B (zh) 一种列车的电空混合制动控制方法
CN109572654B (zh) 一种基于牵引制动融合控制***的冲击率控制方法
KR101159551B1 (ko) 디지털 데이터버스를 갖춘 철로 차량용 브레이크 시스템
CN103381798B (zh) 轨道交通车辆的电空制动控制装置及其控制方法
CN211417237U (zh) 轨道车辆电子机械制动***
US11820347B2 (en) Electronic-pneumatic braking control system for emergency and service braking for at least one vehicle
CA2203603C (en) Universal pneumatic brake control unit
CA2203606C (en) Brake assurance module
CN114368372B (zh) 一种制动***和无轨电车
WO2022037298A1 (zh) 一种轨道车辆电机械制动***及电机械制动力控制方法
CA2437284C (en) Locomotive brake pipe valve cut-out failure detection and correction
CN107685722B (zh) 一种轨道车辆防滑控制***及其方法
CN111645707B (zh) 一种轨道车辆踏面修形控制方法、装置及***
CN114954388B (zh) 紧急制动控制***及方法
CN114954390B (zh) 半挂汽车分布式制动***、轮组制动策略及附着估计方法
CN216359959U (zh) 一种半动力轨道车辆动轴制动互锁控制装置
CN114715091A (zh) 一种地铁车辆制动***优化方法
KR20090132135A (ko) 철도차량의 대차단위 제동시스템
CN114604277A (zh) 基于融合控制的列车降级控制方法及***
CN107415963A (zh) 一种牵引和制动的配置和控制***
CN218703197U (zh) 一种srt超级轨道列车制动***
CN113928291B (zh) 一种半动力轨道车辆动轴制动互锁控制装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857392

Country of ref document: EP

Kind code of ref document: A1