WO2022036663A1 - Network slicing registration using requested nssai and quality of service assistance message - Google Patents

Network slicing registration using requested nssai and quality of service assistance message Download PDF

Info

Publication number
WO2022036663A1
WO2022036663A1 PCT/CN2020/110406 CN2020110406W WO2022036663A1 WO 2022036663 A1 WO2022036663 A1 WO 2022036663A1 CN 2020110406 W CN2020110406 W CN 2020110406W WO 2022036663 A1 WO2022036663 A1 WO 2022036663A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
nssai
requested
network slicing
network
Prior art date
Application number
PCT/CN2020/110406
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/110406 priority Critical patent/WO2022036663A1/en
Publication of WO2022036663A1 publication Critical patent/WO2022036663A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for network slicing registration using requested network slice selection assistance information (NSSAI) and a quality of service assistance message.
  • NSSAI network slice selection assistance information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a UE includes: transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and receiving an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • NSSAI network slice selection assistance information
  • a method of wireless communication performed by a network controller includes: receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • a network controller for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network controller, cause the network controller to: receive a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • an apparatus for wireless communication includes: means for transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and means for receiving an indication of allowed NSSAI associated with a selected network slicing instance based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • an apparatus for wireless communication includes: means for receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and means for determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example associated with network slicing registration using requested network slice selection assistance information (NSSAI) and a quality of service (QoS) assistance message, in accordance with various aspects of the present disclosure.
  • NSSAI network slice selection assistance information
  • QoS quality of service
  • Figs. 4-5 are diagrams illustrating example processes associated with network slicing registration using requested NSSAI and a QoS assistance message, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, controller/processor 290 of network controller 130, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with network slicing registration using requested network slice selection assistance information (NSSAI) and a quality of service assistance message, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, controller/processor 290 of network controller 130, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110, the UE 120 and/or the network controller 130, may cause the one or more processors, the UE 120, the base station 110, and/or the network controller 130 to perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI, means for receiving an indication of allowed NSSAI associated with a selected network slicing instance based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • network controller 130 may include means for receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI, means for determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, and/or the like.
  • such means may include one or more components of network controller 130 described in connection with Fig. 2, such as communication unit 294, controller/processor 290, memory 292, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Network slicing involves implementing logical networks on top of a shared physical infrastructure, where each network slice may include an end-to-end connection of functions deployed for a particular application, application type, traffic type, use case, and/or the like.
  • Each network slice may be identified by a network slice identity.
  • a network slice identity may include a slice identifier referred to as a single network slice selection assistance information (S-NSSAI) .
  • S-NSSAI may indicate a slice service type (SST) using an SST value.
  • the SST value may indicate a network slicing type associated with enhanced mobile broadband (eMMB) communications, ultra-reliable low-latency communications (uRLLC) , Internet of Things (IoT) communications, or vehicle-to-everything (V2X) communications.
  • eMMB enhanced mobile broadband
  • uRLLC ultra-reliable low-latency communications
  • IoT Internet of Things
  • V2X vehicle-to-everything
  • the UE may submit requested NSSAI.
  • the requested NSSAI may include an S-NSSAI or a list of multiple S-NSSAIs.
  • An S-NSSAI may be associated with multiple network slicing instances in a public land mobile network (PLMN) .
  • PLMN public land mobile network
  • the 5G core network may select a network slicing instance for the UE from available slicing instances relating to the requested NSSAI. Different available network slicing instances may share the same S-NSSAI and the same SST (e.g., eMMB, uRLLC, IoT, or V2x) . However, those different available network slicing instances may have run-time differences.
  • different available network slicing instances associated with the same S-NSSAI and the same SST may have differences in delay, bandwidth, coverage, bit rate, and/or the like.
  • Applications and/or UEs may have more detailed QoS requirements and/or preferences in addition to specifying the SST (e.g., eMMB, uRLLC, IoT, or V2x) .
  • the 5G core network may select a network slicing instance for a UE that does not satisfy the QoS preference for the UE, even when a network slicing instance that better satisfies the QoS preferences for the UE is available.
  • Some techniques and apparatuses described herein enable a UE to transmit, to a network controller in a core network, requested NSSAI for a requested network slicing instance and a QoS assistance message associated with the requested NSSAI.
  • the QoS assistance message may include one or more quality of service preferences for the requested network slicing instance.
  • the network controller may select a network slicing instance for the UE based at least in part on the requested NSSAI and the QoS assistance message associated with the requested NSSAI. As a result, a network slicing instance that better matches the QoS preferences of the UE may be selected for the UE.
  • Fig. 3 is a diagram illustrating an example 300 associated with network slicing registration using requested NSSAI and a QoS assistance message, in accordance with various aspects of the present disclosure.
  • example 300 includes communication between a UE 120, a base station 110, and a network controller 130.
  • the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100.
  • the base station 110 and the UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
  • the network controller 130 may include one or more devices in a core network.
  • the core network may be a 5G core network, an LTE evolved packet core (EPC) network and/or the like.
  • EPC LTE evolved packet core
  • the UE 120 may transmit a request for a network slicing instance that includes requested NSSAI and may transmit a QoS assistance message associated with the requested NSSAI.
  • the network controller 130 in the core network, may receive the request for the network slicing instance and the QoS assistance message transmitted by the UE 120.
  • the QoS message may be included in (e.g., transmitted together with) the request for the network slicing instance.
  • the request for the network slicing instance may include the requested NSSAI and the QoS assistance message and may be transmitted by the UE 120 during a network slicing registration.
  • the request for the network slicing instance including the requested NSSAI may be transmitted by the UE 120 in a first message, and the QoS assistance message may be subsequently transmitted by the UE 120 in a second message.
  • the UE 120 may transmit the request for the network slicing instance and/or the QoS assistance message to the base station 110, and the base station 110 may transmit the request for the network slicing instance and/or the QoS assistance message to the network controller 130 and/or another device in the core network.
  • the base station 110 may receive the request and perform an access and mobility management function (AMF) selection process to identify an AMF of the core network that is to be used to register the UE with the core network and/or establish a communication session for the UE 120.
  • AMF access and mobility management function
  • the base station 110 may identify an SST of one or more S-NSSAIs in the requested NSSAI and select the AMF based at least in part on the SST.
  • the network controller 130 may be a core network device associated with the selected SMF.
  • the UE 120 may transmit the request for the network slicing instance and/or the QoS assistance message to the base station 110 in a radio resource control (RRC) message. In some aspects, the UE 120 may transmit the request for the network slicing instance and/or the QoS assistance message to the network controller 130 in the core network in a non-access stratum (NAS) message. In some aspects, when the request for the network slicing instance and the QoS assistance message are transmitted separately, the UE 120 may transmit the request for the network slicing instance in a first type of message (e.g., an RRC message) and may transmit the QoS assistance message in a second type of message (e.g., a NAS message) .
  • RRC radio resource control
  • NAS non-access stratum
  • the requested NSSAI may include one or more S-NSSAIs. In some aspects, the requested NSSAI may include up to eight S-NSSAIs.
  • An S-NSSAI in the requested NSSAI may include an indication of a network slice type for the network slicing instance requested by the UE 120.
  • a first slice type associated with eMMB 1
  • the QoS assistance message may include QoS assistance information associated at least one S-NSSAI of the one or more S-NSSAIs in the requested NSSAI.
  • the QoS assistance message may include respective QoS assistance information associated each of the one or more S-NSSAIs in the requested NSSAI.
  • the QoS assistance information may be optional for an S-NSSAI, and the QoS assistance message may include QoS assistance information for a subset of the one or more S-NSSAIs in the requested NSSAI.
  • the QoS assistance information may indicate one or more QoS preferences for the network slicing instance requested by the UE 120.
  • the QoS assistance information may indicate one or more of a preferred guaranteed bit rate, a preferred delay budget (e.g., latency) , a preferred bandwidth, and/or the like.
  • the QoS preferences may be specified as one or more threshold values (e.g., a guaranteed bit rate threshold, a delay budget threshold, a bandwidth threshold, and/or the like) .
  • the QoS assistance information may include a QoS flow identifier that indicates the one or more QoS preferences. For example, different QoS flow identifiers may be associated with different combinations of one or more QoS preferences.
  • the QoS assistance information may include indications associated with relative categories (e.g., small, medium, large, and/or the like) and/or priorities for one or more different QoS preferences (e.g., guaranteed bit rate, delay budget, bandwidth, and/or the like) .
  • the network controller 130 may select a network slicing instance for the UE 120 based at least in part on the requested NSSAI and the QoS assistance message associated with the requested NSSAI.
  • the network controller 130 may be a device in the core network that performs a network slice selection function (NSSF) .
  • NSSF network slice selection function
  • the network controller 130 may select the network slicing instance for the UE 120 based at least in part on the indication (e.g., SST value) of the network slice type included in the requested NSSAI and based at least in part on the one or more QoS preferences indicated in the QoS assistance message.
  • the network controller 130 may identify a set of available network slicing instances associated with the network slice type indicated in the requested NSSAI. The network controller 130 may then select a network slicing instance for the UE 120 from the identified set of available network slicing instances associated with the network slice type based at least in part on the QoS preferences indicated in the QoS assistance message. In some aspects, the network controller 130 may select a network slicing instance that best satisfies the QoS preferences in the QoS assistance message from the identified set of available network slicing instances. For example, the network controller 130 may determine whether one or more network slicing instances, in the identified set of available network slicing instances, satisfy the QoS preferences.
  • the network controller 130 may select that network slicing instance. In a case in which one network slicing instance satisfies the QoS preferences, the network controller 130 may select any network slicing instance of the multiple network slicing instances that satisfy the QoS preferences. In a case in which no network slicing instance, in the identified set of available network slicing instances, satisfies the QoS preferences, the network controller 130 may select a network slicing instance determined to be closest to satisfying the QoS preferences from the identified set of available network slicing instances.
  • the requested NSSAI may include an S-NSSAI that indicates a uRLLC network slice type
  • the QoS assistance message may indicate a first QoS preference of a downlink guaranteed bit rate of 20 Mbps and a second QoS preference of an uplink delay budget of 50 ms.
  • the network controller 130 may identify four available uRLLC network slicing instances (A, B, C, and D) .
  • the network controller 130 may then select the network slicing instance (e.g., C) for the UE 120 that best satisfies the first QoS preference and the second QoS preferences from the available uRLLC slicing instances (A, B, C, and D) .
  • the network controller 130 may then provide the selected network slicing instance (e.g., C) as allowed NSSAI to the UE 120.
  • the network controller 130 may ignore one or more of the QoS preferences indicated in the QoS assistance information. For example, in some aspects, the network controller 130 may ignore the QoS preferences (or a subset of the QoS preferences) based at least in part on a determination that none of the identified set of available network slice instances satisfies the QoS preferences (or the subset of the QoS preferences) . In this case, the network controller 130 may select a network slicing instance without considering the QoS preferences or by considering QoS preferences other than the ignored subset of QoS preferences. Additionally, and/or alternatively, if the network controller 130 determines that no network slicing instance satisfies the QoS preferences, the network controller 130 may select no network slicing instance for the UE 120.
  • the network controller 130 may transmit an indication of allowed NSSAI associated with the selected network slicing instance to the UE 120.
  • the allowed NSSAI may include one or more S-NSSAIs associated with the selected network slicing instance for the UE 120.
  • the network controller 130 may transmit the indication of the allowed NSSAI to the base station 110, and the base station 110 may transmit the indication of the allowed NSSAI to the UE 120.
  • the base station 110 may transmit the indication of the allowed NSSAI to the UE 120 in an RRC message.
  • the network controller 130 may transmit the indication of the allowed NSSAI to the UE 120 in a NAS message.
  • the UE 120 can engage in the communication session via the network slicing instance selected for the UE 120.
  • the UE 120 can transmit communications to the base station 110 and/or the network controller 130 and/or receive communications from the base station 110 and/or the network controller 130 via the selected network slicing instance.
  • the UE 120 may transmit, to the network controller 130 in the core network, requested NSSAI for a requested network slicing instance and a QoS assistance message associated with the requested NSSAI.
  • the QoS assistance message may include one or more quality of service preferences for the requested network slicing instance.
  • the network controller 130 may select a network slicing instance for the UE 120 based at least in part on the requested NSSAI and the QoS assistance message associated with the requested NSSAI. As a result, a network slicing instance that best satisfies the QoS preferences of the UE 120 may be selected for the UE 120.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the UE (e.g., UE 120) performs operations associated with network slicing registration using requested NSSAI and a quality of service assistance message.
  • the UE e.g., UE 120
  • process 400 may include transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI (block 410) .
  • the UE e.g., using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • process 400 may include receiving an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI (block 420) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the quality of service assistance message is included in the request for the network slicing instance.
  • the request for the network slicing instance is transmitted in a first message and the quality of service assistance message is transmitted in a second message.
  • the requested NSSAI includes one or more S-NSSAIs and the quality of service assistance message includes quality of service assistance information associated with an S-NSSAI of the one or more S-NSSAIs included in the requested NSSAI.
  • the quality of service assistance message includes respective quality of service assistance information associated with each of the one or more S-NSSAIs included in the requested NSSAI.
  • the quality of service assistance message indicates one or more quality of service preferences for the network slicing instance requested by the UE.
  • the one or more quality of service preferences for the network slicing instance requested by the UE include at least one of a preferred guaranteed bit rate, a preferred delay budget, or a preferred bandwidth.
  • the quality of service assistance message includes a quality of service flow identifier that indicates the one or more quality of service preferences for the network slicing instance requested by the UE.
  • the requested NSSAI includes an indication of a slice type for the network slicing instance requested by the UE.
  • the indication of the allowed NSSAI associated with the selected network slicing instance for the UE is based at least in part on the indication of the slice type included in the requested NSSAI and based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
  • the indication of the slice type indicates at least one of a first slice type associated with enhanced mobile broadband communications, a second slice type associated with ultra-reliable low-latency communications, a third slice type associated with Internet of Things communications, or a fourth slice type associated with vehicle-to-everything communications.
  • the quality of service assistance message is included in at least one of a NAS message or an RRC message.
  • the wireless network device is a network controller in a core network and the quality of service assistance message is included in the NAS message.
  • the wireless network device is a base station and the quality of service assistance message is included in the RRC message.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a network controller, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the network controller (e.g., network controller 130) performs operations associated with network slicing registration using requested NSSAI and a quality of service assistance message.
  • the network controller e.g., network controller 130
  • process 500 may include receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI (block 510) .
  • the network controller e.g., using communication unit 294, controller/processor 290, and/or memory 292
  • process 500 may include determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI (block 520) .
  • the network controller e.g., using communication unit 294, controller/processor 290, and/or memory 292 may determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, as described above.
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 500 includes transmitting, to the UE, an indication of allowed NSSAI associated with the selected network slicing instance for the UE.
  • the quality of service assistance message is included in the request for the network slicing instance.
  • the request for the network slicing instance is received in a first message and the quality of service assistance message is received in a second message.
  • the requested NSSAI includes one or more S-NSSAIs and the quality of service assistance message includes quality of service assistance information associated with an S-NSSAI of the one or more S-NSSAIs included in the requested NSSAI.
  • the quality of service assistance message includes respective quality of service assistance information associated with each of the one or more S-NSSAIs included in the requested NSSAI.
  • the quality of service assistance message indicates one or more quality of service preferences for the network slicing instance requested by the UE.
  • the one or more quality of service preferences for the network slicing instance requested by the UE include at least one of a preferred guaranteed bit rate, a preferred delay budget, or a preferred bandwidth.
  • the quality of service assistance message includes a quality of service flow identifier that indicates the one or more quality of service preferences for the network slicing instance requested by the UE.
  • the requested NSSAI includes an indication of a slice type for the network slicing instance requested by the UE.
  • the indication of the slice type indicates at least one of a first slice type associated with enhanced mobile broadband communications, a second slice type associated with ultra-reliable low-latency communications, a third slice type associated with Internet of Things communications, or a fourth slice type associated with vehicle-to-everything communications.
  • determining the selected network slicing instance for the UE comprises determining the selected network slicing instance for the UE based at least in part on the indication of the slice type included in the requested NSSAI and based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
  • determining the selected network slicing instance for the UE comprises identifying a set of available network slicing instances associated with the slice type indicated in the requested NSSAI, and selecting the selected network slicing instance for the UE from the set of available network slicing instances based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
  • the quality of service assistance message is included in at least one of a NAS message or an RRC message.
  • the quality of service assistance message is received from the UE.
  • the quality of service assistance message is received from a base station.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI), and a quality of service assistance message associated with the requested NSSAI. The UE may receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI. Numerous other aspects are provided.

Description

NETWORK SLICING REGISTRATION USING REQUESTED NSSAI AND QUALITY OF SERVICE ASSISTANCE MESSAGE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for network slicing registration using requested network slice selection assistance information (NSSAI) and a quality of service assistance message.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user  equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a UE includes: transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and receiving an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, a method of wireless communication performed by a network controller includes: receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested  NSSAI, and a quality of service assistance message associated with the requested NSSAI; and receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, a network controller for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network controller, cause the network controller to: receive a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, an apparatus for wireless communication includes: means for transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and means  for receiving an indication of allowed NSSAI associated with a selected network slicing instance based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
In some aspects, an apparatus for wireless communication includes: means for receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI; and means for determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example associated with network slicing registration using requested network slice selection assistance information (NSSAI) and a quality of service (QoS) assistance message, in accordance with various aspects of the present disclosure.
Figs. 4-5 are diagrams illustrating example processes associated with network slicing registration using requested NSSAI and a QoS assistance message, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes,  algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular  component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI  requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, controller/processor 290 of network controller 130, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with network slicing registration using requested network slice selection assistance information (NSSAI) and a quality of service assistance message, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, controller/processor 290 of network controller 130, and/or any other  component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110, the UE 120 and/or the network controller 130, may cause the one or more processors, the UE 120, the base station 110, and/or the network controller 130 to perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI, means for receiving an indication of allowed NSSAI associated with a selected network slicing instance based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, network controller 130 may include means for receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI, means for determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, and/or the like. In some aspects, such means may include one or more components of network controller 130 described in connection with Fig. 2, such as communication unit 294, controller/processor 290, memory 292, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Network slicing involves implementing logical networks on top of a shared physical infrastructure, where each network slice may include an end-to-end connection of functions deployed for a particular application, application type, traffic type, use case, and/or the like. Each network slice may be identified by a network slice identity. A network slice identity may include a slice identifier referred to as a single network slice selection assistance information (S-NSSAI) . An S-NSSAI may indicate a slice service type (SST) using an SST value. For example, the SST value may indicate a network slicing type associated with enhanced mobile broadband (eMMB) communications, ultra-reliable low-latency communications (uRLLC) , Internet of Things (IoT) communications, or vehicle-to-everything (V2X) communications.
During a registration procedure with a 5G network, the UE may submit requested NSSAI. The requested NSSAI may include an S-NSSAI or a list of multiple S-NSSAIs. An S-NSSAI may be associated with multiple network slicing instances in a public land mobile network (PLMN) . During the registration procedure, the 5G core network may select a network slicing instance for the UE from available slicing instances relating to the requested NSSAI. Different available network slicing instances may share the same S-NSSAI and the same SST (e.g., eMMB, uRLLC, IoT, or V2x) . However, those different available network slicing instances may have run-time differences. For example, different available network slicing instances associated with the same S-NSSAI and the same SST may have differences in delay, bandwidth, coverage, bit rate, and/or the like. Applications and/or UEs may have more detailed QoS requirements and/or preferences in addition to specifying the SST (e.g., eMMB, uRLLC, IoT, or V2x) . However, the 5G core network may select a network slicing instance for a UE that does not satisfy the QoS preference for the UE, even when a network slicing instance that better satisfies the QoS preferences for the UE is available.
Some techniques and apparatuses described herein enable a UE to transmit, to a network controller in a core network, requested NSSAI for a requested network slicing instance and a QoS assistance message associated with the requested NSSAI. The QoS assistance message may include one or more quality of service preferences for the requested network slicing instance. The network controller may select a network slicing instance for the UE based at least in part on the requested NSSAI and the QoS assistance message associated with the requested NSSAI. As a result, a network slicing instance that better matches the QoS preferences of the UE may be selected for the UE.
Fig. 3 is a diagram illustrating an example 300 associated with network slicing registration using requested NSSAI and a QoS assistance message, in accordance with various aspects of the present disclosure. As shown in Fig. 3, example 300 includes communication between a UE 120, a base station 110, and a network controller 130. In some aspects, the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100. The base station 110 and the UE 120 may communicate on a wireless access link, which may include an uplink and a downlink. In some aspects, the network controller 130 may include one or more devices in a core network. For example, the core network may be a 5G core network, an LTE evolved packet core (EPC) network and/or the like.
As shown in Fig. 3, and by reference number 305, the UE 120 may transmit a request for a network slicing instance that includes requested NSSAI and may transmit a QoS assistance message associated with the requested NSSAI. The network controller 130, in the core network, may receive the request for the network slicing instance and the QoS assistance message transmitted by the UE 120. In some aspects, such as in the example 300 of Fig. 3, the QoS message may be included in (e.g., transmitted together with) the request for the network slicing instance. For example, the request for the network slicing instance may include the requested NSSAI and the QoS assistance message and may be transmitted by the UE 120 during a network slicing registration. In some aspects, the request for the network slicing instance including the requested NSSAI may be transmitted by the UE 120 in a first message, and the QoS assistance message may be subsequently transmitted by the UE 120 in a second message.
In some aspects, such as in the example 300 of Fig. 3, the UE 120 may transmit the request for the network slicing instance and/or the QoS assistance message to the base station 110, and the base station 110 may transmit the request for the network slicing instance and/or the QoS assistance message to the network controller  130 and/or another device in the core network. In some aspects, the base station 110 may receive the request and perform an access and mobility management function (AMF) selection process to identify an AMF of the core network that is to be used to register the UE with the core network and/or establish a communication session for the UE 120. In this case, the base station 110 may select the AMF based at least in part on the requested NSSAI. For example, the base station 110 may identify an SST of one or more S-NSSAIs in the requested NSSAI and select the AMF based at least in part on the SST. In some aspects, the network controller 130 may be a core network device associated with the selected SMF.
In some aspects, the UE 120 may transmit the request for the network slicing instance and/or the QoS assistance message to the base station 110 in a radio resource control (RRC) message. In some aspects, the UE 120 may transmit the request for the network slicing instance and/or the QoS assistance message to the network controller 130 in the core network in a non-access stratum (NAS) message. In some aspects, when the request for the network slicing instance and the QoS assistance message are transmitted separately, the UE 120 may transmit the request for the network slicing instance in a first type of message (e.g., an RRC message) and may transmit the QoS assistance message in a second type of message (e.g., a NAS message) .
The requested NSSAI may include one or more S-NSSAIs. In some aspects, the requested NSSAI may include up to eight S-NSSAIs. An S-NSSAI in the requested NSSAI may include an indication of a network slice type for the network slicing instance requested by the UE 120. For example, the S-NSSAI may include an SST value that indicates at least one of a first slice type associated with eMMB (e.g., SST = 1) , a second slice type associated with uRLLC (e.g., SST = 2) , a third slice type associated with IoT (e.g., SST = 3) , a fourth slice type associated with V2X (e.g., SST = 4) , and/or the like.
The QoS assistance message may include QoS assistance information associated at least one S-NSSAI of the one or more S-NSSAIs in the requested NSSAI. In some aspects, the QoS assistance message may include respective QoS assistance information associated each of the one or more S-NSSAIs in the requested NSSAI. In some aspects, the QoS assistance information may be optional for an S-NSSAI, and the QoS assistance message may include QoS assistance information for a subset of the one or more S-NSSAIs in the requested NSSAI.
The QoS assistance information may indicate one or more QoS preferences for the network slicing instance requested by the UE 120. For example, the QoS assistance information may indicate one or more of a preferred guaranteed bit rate, a preferred delay budget (e.g., latency) , a preferred bandwidth, and/or the like. In some aspects, the QoS preferences may be specified as one or more threshold values (e.g., a guaranteed bit rate threshold, a delay budget threshold, a bandwidth threshold, and/or the like) . In some aspects, the QoS assistance information may include a QoS flow identifier that indicates the one or more QoS preferences. For example, different QoS flow identifiers may be associated with different combinations of one or more QoS preferences. In some aspects, the QoS assistance information may include indications associated with relative categories (e.g., small, medium, large, and/or the like) and/or priorities for one or more different QoS preferences (e.g., guaranteed bit rate, delay budget, bandwidth, and/or the like) .
As further shown in Fig. 3, and by reference number 310, the network controller 130 may select a network slicing instance for the UE 120 based at least in part on the requested NSSAI and the QoS assistance message associated with the requested NSSAI. In some aspects, the network controller 130 may be a device in the core network that performs a network slice selection function (NSSF) . The network controller 130 may select the network slicing instance for the UE 120 based at least in part on the indication (e.g., SST value) of the network slice type included in the requested NSSAI and based at least in part on the one or more QoS preferences indicated in the QoS assistance message.
In some aspects, the network controller 130 may identify a set of available network slicing instances associated with the network slice type indicated in the requested NSSAI. The network controller 130 may then select a network slicing instance for the UE 120 from the identified set of available network slicing instances associated with the network slice type based at least in part on the QoS preferences indicated in the QoS assistance message. In some aspects, the network controller 130 may select a network slicing instance that best satisfies the QoS preferences in the QoS assistance message from the identified set of available network slicing instances. For example, the network controller 130 may determine whether one or more network slicing instances, in the identified set of available network slicing instances, satisfy the QoS preferences. In a case in which one network slicing instance satisfies the QoS preferences, the network controller 130 may select that network slicing instance. In a  case in which multiple network slicing instances satisfy the QoS preferences, the network controller 130 may select any network slicing instance of the multiple network slicing instances that satisfy the QoS preferences. In a case in which no network slicing instance, in the identified set of available network slicing instances, satisfies the QoS preferences, the network controller 130 may select a network slicing instance determined to be closest to satisfying the QoS preferences from the identified set of available network slicing instances.
In an illustrative example, the requested NSSAI may include an S-NSSAI that indicates a uRLLC network slice type, and the QoS assistance message may indicate a first QoS preference of a downlink guaranteed bit rate of 20 Mbps and a second QoS preference of an uplink delay budget of 50 ms. The network controller 130 may identify four available uRLLC network slicing instances (A, B, C, and D) . The network controller 130 may then select the network slicing instance (e.g., C) for the UE 120 that best satisfies the first QoS preference and the second QoS preferences from the available uRLLC slicing instances (A, B, C, and D) . The network controller 130 may then provide the selected network slicing instance (e.g., C) as allowed NSSAI to the UE 120.
In some aspects, the network controller 130 may ignore one or more of the QoS preferences indicated in the QoS assistance information. For example, in some aspects, the network controller 130 may ignore the QoS preferences (or a subset of the QoS preferences) based at least in part on a determination that none of the identified set of available network slice instances satisfies the QoS preferences (or the subset of the QoS preferences) . In this case, the network controller 130 may select a network slicing instance without considering the QoS preferences or by considering QoS preferences other than the ignored subset of QoS preferences. Additionally, and/or alternatively, if the network controller 130 determines that no network slicing instance satisfies the QoS preferences, the network controller 130 may select no network slicing instance for the UE 120.
As further shown in Fig. 3, and by reference number 315, the network controller 130 may transmit an indication of allowed NSSAI associated with the selected network slicing instance to the UE 120. The allowed NSSAI may include one or more S-NSSAIs associated with the selected network slicing instance for the UE 120. In some aspects, such as in the example 300 of Fig. 3, the network controller 130 may transmit the indication of the allowed NSSAI to the base station 110, and the base  station 110 may transmit the indication of the allowed NSSAI to the UE 120. For example, the base station 110 may transmit the indication of the allowed NSSAI to the UE 120 in an RRC message. In some aspects, the network controller 130 may transmit the indication of the allowed NSSAI to the UE 120 in a NAS message.
As further shown in Fig. 3, and by reference number 320, the UE 120 can engage in the communication session via the network slicing instance selected for the UE 120. For example, the UE 120 can transmit communications to the base station 110 and/or the network controller 130 and/or receive communications from the base station 110 and/or the network controller 130 via the selected network slicing instance.
As described above in connection with Fig. 3, the UE 120 may transmit, to the network controller 130 in the core network, requested NSSAI for a requested network slicing instance and a QoS assistance message associated with the requested NSSAI. The QoS assistance message may include one or more quality of service preferences for the requested network slicing instance. The network controller 130 may select a network slicing instance for the UE 120 based at least in part on the requested NSSAI and the QoS assistance message associated with the requested NSSAI. As a result, a network slicing instance that best satisfies the QoS preferences of the UE 120 may be selected for the UE 120.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 400 is an example where the UE (e.g., UE 120) performs operations associated with network slicing registration using requested NSSAI and a quality of service assistance message.
As shown in Fig. 4, in some aspects, process 400 may include transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI (block 410) . For example, the UE (e.g., using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested  NSSAI, and a quality of service assistance message associated with the requested NSSAI, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include receiving an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI (block 420) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282) may receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the quality of service assistance message is included in the request for the network slicing instance.
In a second aspect, alone or in combination with the first aspect, the request for the network slicing instance is transmitted in a first message and the quality of service assistance message is transmitted in a second message.
In a third aspect, alone or in combination with one or more of the first and second aspects, the requested NSSAI includes one or more S-NSSAIs and the quality of service assistance message includes quality of service assistance information associated with an S-NSSAI of the one or more S-NSSAIs included in the requested NSSAI.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the quality of service assistance message includes respective quality of service assistance information associated with each of the one or more S-NSSAIs included in the requested NSSAI.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the quality of service assistance message indicates one or more quality of service preferences for the network slicing instance requested by the UE.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the one or more quality of service preferences for the network slicing instance requested by the UE include at least one of a preferred guaranteed bit rate, a preferred delay budget, or a preferred bandwidth.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the quality of service assistance message includes a quality of service flow identifier that indicates the one or more quality of service preferences for the network slicing instance requested by the UE.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the requested NSSAI includes an indication of a slice type for the network slicing instance requested by the UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the indication of the allowed NSSAI associated with the selected network slicing instance for the UE is based at least in part on the indication of the slice type included in the requested NSSAI and based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the indication of the slice type indicates at least one of a first slice type associated with enhanced mobile broadband communications, a second slice type associated with ultra-reliable low-latency communications, a third slice type associated with Internet of Things communications, or a fourth slice type associated with vehicle-to-everything communications.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the quality of service assistance message is included in at least one of a NAS message or an RRC message.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the wireless network device is a network controller in a core network and the quality of service assistance message is included in the NAS message.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the wireless network device is a base station and the quality of service assistance message is included in the RRC message.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a network controller, in accordance with various aspects of the present disclosure. Example process 500 is an example where the network controller (e.g.,  network controller 130) performs operations associated with network slicing registration using requested NSSAI and a quality of service assistance message.
As shown in Fig. 5, in some aspects, process 500 may include receiving a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI (block 510) . For example, the network controller (e.g., using communication unit 294, controller/processor 290, and/or memory 292) may receive a request for a network slicing instance for a UE, wherein the request for the network slicing instance includes requested NSSAI, and a quality of service assistance message associated with the requested NSSAI, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI (block 520) . For example, the network controller (e.g., using communication unit 294, controller/processor 290, and/or memory 292) may determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 500 includes transmitting, to the UE, an indication of allowed NSSAI associated with the selected network slicing instance for the UE.
In a second aspect, alone or in combination with the first aspect, the quality of service assistance message is included in the request for the network slicing instance.
In a third aspect, alone or in combination with one or more of the first and second aspects, the request for the network slicing instance is received in a first message and the quality of service assistance message is received in a second message.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the requested NSSAI includes one or more S-NSSAIs and the quality of service assistance message includes quality of service assistance information associated with an S-NSSAI of the one or more S-NSSAIs included in the requested NSSAI.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the quality of service assistance message includes respective quality of service assistance information associated with each of the one or more S-NSSAIs included in the requested NSSAI.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the quality of service assistance message indicates one or more quality of service preferences for the network slicing instance requested by the UE.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the one or more quality of service preferences for the network slicing instance requested by the UE include at least one of a preferred guaranteed bit rate, a preferred delay budget, or a preferred bandwidth.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the quality of service assistance message includes a quality of service flow identifier that indicates the one or more quality of service preferences for the network slicing instance requested by the UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the requested NSSAI includes an indication of a slice type for the network slicing instance requested by the UE.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the indication of the slice type indicates at least one of a first slice type associated with enhanced mobile broadband communications, a second slice type associated with ultra-reliable low-latency communications, a third slice type associated with Internet of Things communications, or a fourth slice type associated with vehicle-to-everything communications.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, determining the selected network slicing instance for the UE comprises determining the selected network slicing instance for the UE based at least in part on the indication of the slice type included in the requested NSSAI and based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, determining the selected network slicing instance for the UE comprises identifying a set of available network slicing instances associated with the slice type indicated in the requested NSSAI, and selecting the selected network slicing  instance for the UE from the set of available network slicing instances based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the quality of service assistance message is included in at least one of a NAS message or an RRC message.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the quality of service assistance message is received from the UE.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the quality of service assistance message is received from a base station.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than  the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (37)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    receiving an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  2. The method of claim 1, wherein the quality of service assistance message is included in the request for the network slicing instance.
  3. The method of claim 1, wherein the request for the network slicing instance is transmitted in a first message and the quality of service assistance message is transmitted in a second message.
  4. The method of claim 1, wherein the requested NSSAI includes one or more single-NSSAIs (S-NSSAIs) and the quality of service assistance message includes quality of service assistance information associated with an S-NSSAI of the one or more S-NSSAIs included in the requested NSSAI.
  5. The method of claim 4, wherein the quality of service assistance message includes respective quality of service assistance information associated with each of the one or more S-NSSAIs included in the requested NSSAI.
  6. The method of claim 1, wherein the quality of service assistance message indicates one or more quality of service preferences for the network slicing instance requested by the UE.
  7. The method of claim 6, wherein the one or more quality of service preferences for the network slicing instance requested by the UE include at least one of a preferred guaranteed bit rate, a preferred delay budget, or a preferred bandwidth.
  8. The method of claim 6, wherein the quality of service assistance message includes a quality of service flow identifier that indicates the one or more quality of service preferences for the network slicing instance requested by the UE.
  9. The method of claim 6, wherein the requested NSSAI includes an indication of a slice type for the network slicing instance requested by the UE.
  10. The method of claim 9, wherein the indication of the allowed NSSAI associated with the selected network slicing instance for the UE is based at least in part on the indication of the slice type included in the requested NSSAI and based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
  11. The method of claim 9, wherein the indication of the slice type indicates at least one of a first slice type associated with enhanced mobile broadband communications, a second slice type associated with ultra-reliable low-latency communications, a third slice type associated with Internet of Things communications, or a fourth slice type associated with vehicle-to-everything communications.
  12. The method of claim 1, wherein the quality of service assistance message is included in at least one of a non-access stratum (NAS) message or a radio resource control (RRC) message.
  13. The method of claim 12, wherein the wireless network device is a network controller in a core network and the quality of service assistance message is included in the NAS message.
  14. The method of claim 12, wherein the wireless network device is a base station and the quality of service assistance message is included in the RRC message.
  15. A method of wireless communication performed by a network controller, comprising:
    receiving a request for a network slicing instance for a user equipment (UE) , wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  16. The method of claim 15, further comprising:
    transmitting, to the UE, an indication of allowed NSSAI associated with the selected network slicing instance for the UE.
  17. The method of claim 15, wherein the quality of service assistance message is included in the request for the network slicing instance.
  18. The method of claim 15, wherein the request for the network slicing instance is received in a first message and the quality of service assistance message is received in a second message.
  19. The method of claim 15, wherein the requested NSSAI includes one or more single-NSSAIs (S-NSSAIs) and the quality of service assistance message includes quality of service assistance information associated with an S-NSSAI of the one or more S-NSSAIs included in the requested NSSAI.
  20. The method of claim 19, wherein the quality of service assistance message includes respective quality of service assistance information associated with each of the one or more S-NSSAIs included in the requested NSSAI.
  21. The method of claim 15, wherein the quality of service assistance message indicates one or more quality of service preferences for the network slicing instance requested by the UE.
  22. The method of claim 21, wherein the one or more quality of service preferences for the network slicing instance requested by the UE include at least one of a preferred guaranteed bit rate, a preferred delay budget, or a preferred bandwidth.
  23. The method of claim 21, wherein the quality of service assistance message includes a quality of service flow identifier that indicates the one or more quality of service preferences for the network slicing instance requested by the UE.
  24. The method of claim 21, wherein the requested NSSAI includes an indication of a slice type for the network slicing instance requested by the UE.
  25. The method of claim 24, wherein the indication of the slice type indicates at least one of a first slice type associated with enhanced mobile broadband communications, a second slice type associated with ultra-reliable low-latency communications, a third slice type associated with Internet of Things communications, or a fourth slice type associated with vehicle-to-everything communications.
  26. The method of claim 24, wherein determining the selected network slicing instance for the UE comprises:
    determining the selected network slicing instance for the UE based at least in part on the indication of the slice type included in the requested NSSAI and based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
  27. The method of claim 24, wherein determining the selected network slicing instance for the UE comprises:
    identifying a set of available network slicing instances associated with the slice type indicated in the requested NSSAI; and
    selecting the selected network slicing instance for the UE from the set of available network slicing instances based at least in part on the one or more quality of service preferences indicated by the quality of service assistance message.
  28. The method of claim 15, wherein the quality of service assistance message is included in at least one of a non-access stratum (NAS) message or a radio resource control (RRC) message.
  29. The method of claim 15, wherein the quality of service assistance message is received from the UE.
  30. The method of claim 15, wherein the quality of service assistance message is received from a base station.
  31. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  32. A network controller for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive a request for a network slicing instance for a user equipment (UE) , wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  33. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    transmit, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    receive an indication of allowed NSSAI associated with a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  34. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a network controller, cause the network controller to:
    receive a request for a network slicing instance for a user equipment (UE) , wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    determine a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  35. An apparatus for wireless communication, comprising:
    means for transmitting, to a wireless network device, a request for a network slicing instance, wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    means for receiving an indication of allowed NSSAI associated with a selected network slicing instance based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  36. An apparatus for wireless communication, comprising:
    means for receiving a request for a network slicing instance for a user equipment (UE) , wherein the request for the network slicing instance includes requested network slice selection assistance information (NSSAI) , and a quality of service assistance message associated with the requested NSSAI; and
    means for determining a selected network slicing instance for the UE based at least in part on the requested NSSAI and the quality of service assistance message associated with the requested NSSAI.
  37. A method, device, apparatus, computer program product, non-transitory computer-readable medium, user equipment, base station, node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
PCT/CN2020/110406 2020-08-21 2020-08-21 Network slicing registration using requested nssai and quality of service assistance message WO2022036663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110406 WO2022036663A1 (en) 2020-08-21 2020-08-21 Network slicing registration using requested nssai and quality of service assistance message

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110406 WO2022036663A1 (en) 2020-08-21 2020-08-21 Network slicing registration using requested nssai and quality of service assistance message

Publications (1)

Publication Number Publication Date
WO2022036663A1 true WO2022036663A1 (en) 2022-02-24

Family

ID=80323365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110406 WO2022036663A1 (en) 2020-08-21 2020-08-21 Network slicing registration using requested nssai and quality of service assistance message

Country Status (1)

Country Link
WO (1) WO2022036663A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343306A (en) * 2016-04-28 2017-11-10 中兴通讯股份有限公司 The system of selection of network section and device
WO2018128076A1 (en) * 2017-01-06 2018-07-12 Nec Corporation Communication system and methods that adapt rrc procedures to a 5g network implementing network slicing
CN108632945A (en) * 2017-03-20 2018-10-09 华为技术有限公司 A kind of network slice selection method, user equipment and the network equipment
CN109891832A (en) * 2016-06-15 2019-06-14 康维达无线有限责任公司 The discovery of network slice and selection
CN110662274A (en) * 2018-06-29 2020-01-07 财团法人工业技术研究院 Method for accessing network slice and user device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343306A (en) * 2016-04-28 2017-11-10 中兴通讯股份有限公司 The system of selection of network section and device
CN109891832A (en) * 2016-06-15 2019-06-14 康维达无线有限责任公司 The discovery of network slice and selection
WO2018128076A1 (en) * 2017-01-06 2018-07-12 Nec Corporation Communication system and methods that adapt rrc procedures to a 5g network implementing network slicing
CN108632945A (en) * 2017-03-20 2018-10-09 华为技术有限公司 A kind of network slice selection method, user equipment and the network equipment
CN110662274A (en) * 2018-06-29 2020-01-07 财团法人工业技术研究院 Method for accessing network slice and user device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Key Issues for Support of Network Slicing in RAN", 3GPP DRAFT; R2-1700099, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, 7 January 2017 (2017-01-07), Spokane, Washington, USA, XP051203850 *

Similar Documents

Publication Publication Date Title
EP3718344B1 (en) Techniques and apparatuses for providing system information updates in a system using bandwidth parts
WO2021141831A1 (en) Timing advance update for non-serving cell
WO2022052015A1 (en) Uplink transmit switching for two frequency bands
WO2021119648A1 (en) Downlink control information based beam and pathloss reference signal configuration activation
WO2021222918A1 (en) Rate matching for piggyback downlink control information
US11871422B2 (en) Frequency allocation for channel state information reference signals
WO2021243690A1 (en) Public land mobile network search after protocol data unit rejection
WO2021155404A1 (en) Techniques for indicating a user equipment capability for simultaneous beam update across multiple component carriers
US11546032B2 (en) Beam direction selection for transmission and reception in full duplex operation
US20210235307A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021253262A1 (en) Processing of two-stage downlink control information
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
EP3925391A1 (en) Access barring and radio resource control connection in new radio to long-term evolution voice fallback
WO2022036663A1 (en) Network slicing registration using requested nssai and quality of service assistance message
US11706660B2 (en) Sidelink and UU link buffer status report
WO2022126405A1 (en) Techniques for measuring neighbor cells using prioritization of the neighbor cells that is based at least in part on associations of the neighbor cells with network operators
WO2022073165A1 (en) Techniques for indicating frequency band during blind handover
WO2022041239A1 (en) Techniques for selecting cells using network slice selection assistance information
WO2022056701A1 (en) Optimized protocol data unit session establishment procedure
WO2022061579A1 (en) Performance of secondary cell group adding procedures or handover or redirection procedures
WO2022067467A1 (en) Preprocessing operations for sensor data
WO2021208074A1 (en) Data service with dual subscriber information modules
US20210274471A1 (en) Techniques for selecting resources from resource maps obtained from nearby devices
WO2021226983A1 (en) Hysteresis increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021232179A1 (en) Restoration of vehicle to everything service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949873

Country of ref document: EP

Kind code of ref document: A1