WO2022034742A1 - 光変調器及び光変調素子の駆動方法 - Google Patents

光変調器及び光変調素子の駆動方法 Download PDF

Info

Publication number
WO2022034742A1
WO2022034742A1 PCT/JP2021/023145 JP2021023145W WO2022034742A1 WO 2022034742 A1 WO2022034742 A1 WO 2022034742A1 JP 2021023145 W JP2021023145 W JP 2021023145W WO 2022034742 A1 WO2022034742 A1 WO 2022034742A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
modulation element
voltage
light
electrode
Prior art date
Application number
PCT/JP2021/023145
Other languages
English (en)
French (fr)
Inventor
肇 宇都宮
隆 菊川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US17/928,386 priority Critical patent/US20230213791A1/en
Priority to CN202180039629.5A priority patent/CN115917410A/zh
Publication of WO2022034742A1 publication Critical patent/WO2022034742A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Definitions

  • the present invention relates to a light modulator and a method for driving a light modulation element.
  • Optical fiber communication converts an electric signal into an optical signal and transmits the optical signal by an optical fiber, and has features of wide band, low loss, and resistance to noise.
  • Patent Documents 1 and 2 describe a Mach-Zehnder type optical modulator in which an optical waveguide is formed by Ti (titanium) diffusion near the surface of a lithium niobate single crystal substrate. Further, Patent Document 2 describes to correct the operating point drift of the optical modulator.
  • the light modulators described in Patent Documents 1 and 2 operate at a high speed of 40 Gb / s or more, but have a long total length of about 10 cm.
  • Patent Document 3 describes a Mach-Zehnder type optical modulator using a c-axis oriented lithium niobate film.
  • the light modulator using the lithium niobate film is smaller and has a lower drive voltage than the light modulator using the lithium niobate single crystal substrate.
  • Optical modulators using lithium niobate have a large extinction ratio and can operate in the high frequency band, so they are used for long-distance communication such as between cities. Further, since an optical modulator using indium phosphide (InP) can operate in a high frequency band, it is expected to be used for long-distance communication.
  • InP indium phosphide
  • short- and medium-distance communications such as within and between data centers are increasing, and in such applications, when using an optical modulator using silicon or without using an optical modulator.
  • the emitted light may be directly modulated by the drive circuit of the laser diode. Modulation by an optical modulator using silicon or direct modulation cannot cope with further increase in frequency band.
  • an optical modulator that can operate in a high frequency band such as an optical modulator using a lithium niobate thin film or an optical modulator using indium phosphorus, for communication within or between data centers, it is driven. It is required to reduce the voltage.
  • the present invention has been made in view of the above problems, and drives an optical modulator that can be driven at a low voltage and has a small modulation loss, and an optical modulation element that can be driven at a low voltage and can suppress the modulation loss to a low level.
  • the purpose is to provide a method.
  • the light modulator according to the first aspect applies an electric field to the first optical waveguide, the second optical waveguide, the first electrode for applying an electric field to the first optical waveguide, and the second optical waveguide.
  • the control unit includes a light modulation element having a second electrode, and a control unit for controlling an applied voltage between the first electrode and the second electrode, and the control unit has a half wavelength of the light modulation element.
  • the operating point Vd is Vn +0.50V ⁇ Vd ⁇ Vn+0.75V ⁇ or Vn-0.75V ⁇ Vd ⁇ Vn-0.50V ⁇ , which is applied to the optical modulation element.
  • the applied voltage width Vpp which is the amplitude of the applied voltage, is set in the range of 0.22V ⁇ ⁇ Vpp ⁇ 0.50V ⁇ .
  • the first optical waveguide and the second optical waveguide may each include a ridge-shaped portion protruding from the first surface of the lithium niobate film.
  • the method for driving the light modulation element according to the second aspect is the first optical waveguide, the second optical waveguide, the first electrode located at a position overlapping the first optical waveguide in a plan view, and the second optical waveguide. It is a driving method of a light modulation element having a second electrode located at a position overlapping with a waveguide in a plan view, and when the half wavelength voltage of the light modulation element is V ⁇ and the null point voltage is Vn, the operation point Vd.
  • the range is ⁇ 0.50V ⁇ .
  • the first optical waveguide and the second optical waveguide may each include a ridge-shaped portion protruding from the first surface of the lithium niobate film.
  • the method for driving the light modulator and the light modulation element according to the above aspect can be driven at a low voltage and has a small modulation loss.
  • the x direction is, for example, the extending direction of the first optical waveguide 11.
  • the z direction is a direction perpendicular to the substrate Sb.
  • the z direction is a direction orthogonal to the x direction and the y direction.
  • the + z direction may be expressed as “up” and the ⁇ z direction may be expressed as “down”.
  • the top and bottom do not always match the direction in which gravity is applied.
  • FIG. 1 is a block diagram of the optical modulator 200 according to the first embodiment.
  • the light modulator 200 includes a light modulation element 100, a drive circuit 110, a DC bias application circuit 120, and a DC bias control circuit 130.
  • the drive circuit 110, the DC bias application circuit 120, and the DC bias control circuit 130 serve as a control unit.
  • the light modulation element 100 converts an electric signal into an optical signal.
  • the light modulation element 100 converts the input light Lin into the output light L out according to the modulation signal Sm .
  • the drive circuit 110 applies a modulation voltage Vm corresponding to the modulation signal Sm to the light modulation element 100.
  • the DC bias application circuit 120 applies a DC bias voltage Vdc to the light modulation element 100.
  • the DC bias control circuit 130 monitors the output light L out and controls the DC bias voltage Vdc output from the DC bias application circuit 120. By adjusting this DC bias voltage Vdc, the operating point Vd described later is controlled.
  • FIG. 2 is a plan view of the optical waveguide 10 of the light modulation element 100 as viewed from the z direction.
  • FIG. 3 is a plan view of the light modulation element 100 as viewed from the z direction.
  • FIG. 4 is a cross section cut along X1-X1'in FIG.
  • the light modulation element 100 has an optical waveguide 10 and electrodes 21, 22, 23, 24.
  • the light modulation element 100 includes a substrate Sb.
  • the substrate Sb may be any substrate on which an oxide film 40 such as a lithium niobate film can be formed as an epitaxial film, and a sapphire single crystal substrate or a silicon single crystal substrate is preferable.
  • the crystal orientation of the substrate Sb is not particularly limited.
  • the lithium niobate film has a property of being easily formed as a c-axis oriented epitaxial film with respect to the substrate Sb having various crystal orientations. Since the crystals constituting the c-axis oriented lithium niobate film have three-fold symmetry, it is desirable that the underlying substrate Sb also has the same symmetry. In the case of a sapphire single crystal substrate, it is desirable. In the case of a c-plane or silicon single crystal substrate, a (111) -plane substrate is preferable.
  • the optical waveguide 10 is a light passage through which light propagates inside.
  • the optical waveguide 10 has, for example, a first optical waveguide 11, a second optical waveguide 12, an input path 13, an output path 14, a branch portion 15, and a coupling portion 16.
  • the first optical waveguide 11 and the second optical waveguide 12 extend in the x direction, for example.
  • the lengths of the first optical waveguide 11 and the second optical waveguide 12 in the x direction are substantially the same.
  • the branch portion 15 is located between the input path 13 and the first optical waveguide 11 and the second optical waveguide 12.
  • the input path 13 is connected to the first optical waveguide 11 and the second optical waveguide 12 via the branch portion 15.
  • the coupling portion 16 is located between the first optical waveguide 11 and the second optical waveguide 12 and the output path 14.
  • the first optical waveguide 11 and the second optical waveguide 12 are connected to the output path 14 via the coupling portion 16.
  • the optical waveguide 10 includes a first optical waveguide 11 and a second optical waveguide 12 which are ridge-shaped portions protruding from the first surface 40a of the oxide film 40.
  • the first surface 40a is an upper surface of the oxide film 40 other than the ridge-shaped portion.
  • the ridge-shaped portion projects from the first surface 40a in the z direction and extends along the optical waveguide 10.
  • the shape of the X1-X1'cross section (cross section perpendicular to the traveling direction of light) of the ridge-shaped portion may be any shape as long as it can guide light, and may be, for example, a dome shape, a triangular shape, or a rectangular shape.
  • the width of the ridge-shaped portion in the y direction is, for example, 0.3 ⁇ m or more and 5.0 ⁇ m or less, and the height of the ridge-shaped portion (height protruding from the first surface 40a) is, for example, 0.1 ⁇ m or more. It is 0 ⁇ m or less.
  • the oxide film 40 is, for example, a c-axis oriented lithium niobate film.
  • the oxide film 40 is, for example, an epitaxial film epitaxially grown on the substrate Sb.
  • the epitaxial film is a single crystal film whose crystal orientations are aligned by the underlying substrate.
  • the epitaxial film is a film having a single crystal orientation in the z-direction and the xy in-plane direction, and the crystals are aligned in the x-axis, y-axis, and z-axis directions. Whether or not it is an epitaxial film can be proved, for example, by confirming the peak intensity and the extreme point at the orientation position in 2 ⁇ - ⁇ X-ray diffraction.
  • the oxide film 40 may be a lithium niobate film provided on the Si substrate via SiO 2 .
  • the composition of lithium niobate is Li x NbA yOz .
  • A is an element other than Li, Nb, and O.
  • x is 0.5 or more and 1.2 or less, preferably 0.9 or more and 1.05 or less.
  • y is 0 or more and 0.5 or less.
  • z is 1.5 or more and 4.0 or less, preferably 2.5 or more and 3.5 or less.
  • the elements of A are, for example, K, Na, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Cr, Mo, W, Fe, Co, Ni, Zn, Sc, Ce. Therefore, two or more kinds of these elements may be combined.
  • the film thickness of the oxide film 40 is, for example, 2 ⁇ m or less.
  • the film thickness of the oxide film 40 is the film thickness of a portion other than the ridge-shaped portion. If the film thickness of the oxide film 40 is thick, the crystallinity may decrease.
  • the film thickness of the oxide film 40 is, for example, about 1/10 or more of the wavelength of the light used. When the film thickness of the oxide film 40 is thin, the light is weakly confined and the light leaks to the substrate Sb and the buffer layer 30. If the film thickness of the oxide film 40 is thin, the change in the effective refractive index of the optical waveguide 10 may be small even if an electric field is applied to the oxide film 40.
  • the electrodes 21 and 22 are electrodes that apply a modulation voltage Vm to the optical waveguide 10.
  • the electrode 21 is an example of the first electrode
  • the electrode 22 is an example of the second electrode.
  • the first end 21a of the electrode 21 is connected to the power supply 31, and the second end 21b is connected to the terminating resistor 32.
  • the first end 22a of the electrode 22 is connected to the power supply 31, and the second end 22b is connected to the terminating resistor 32.
  • the power supply 31 is a part of the drive circuit 110 that applies the modulation voltage Vm to the light modulation element 100.
  • the electrodes 23 and 24 are electrodes that apply a DC bias voltage Vdc to the optical waveguide 10.
  • the first end 23a of the electrode 23 and the first end 24a of the electrode 24 are connected to the power supply 33.
  • the power supply 33 is a part of the DC bias application circuit 120 that applies the DC bias voltage Vdc to the light modulation element 100.
  • the line widths and line spacing of the electrodes 21 and 22 arranged in parallel for easy viewing are wider than they actually are. Therefore, the length of the portion where the electrode 21 and the first optical waveguide 11 overlap and the length of the portion where the electrode 22 and the second optical waveguide 12 overlap each other seem to be different, but these lengths are substantially the same. Is. Similarly, the length of the portion where the electrode 23 and the first optical waveguide 11 overlap each other and the length of the portion where the electrode 24 and the second optical waveguide 12 overlap each other are substantially the same.
  • the electrodes 23 and 24 may not be provided. Further, a ground electrode may be provided around the electrodes 21, 22, 23, 24.
  • Electrodes 21, 22, 23, 24 are on the oxide film 40 with the buffer layer 30 interposed therebetween. Electrodes 21 and 23 can each apply an electric field to the first optical waveguide 11. The electrodes 21 and 23 are respectively located at positions where they overlap with the first optical waveguide 11 in a plan view from the z direction, for example. The electrodes 21 and 23 are above the first optical waveguide 11, respectively. Electrodes 22 and 24 can each apply an electric field to the second optical waveguide 12. The electrodes 22 and 24 are respectively located at positions where they overlap with the second optical waveguide 12 in a plan view from the z direction, for example. The electrodes 22 and 24 are above the second optical waveguide 12, respectively.
  • the buffer layer 30 is between the optical waveguide 10 and the electrode 20.
  • the buffer layer 30 covers and protects the ridge-shaped portion. Further, the buffer layer 30 prevents the light propagating through the optical waveguide 10 from being absorbed by the electrode 20.
  • the buffer layer 30 has a lower refractive index than the oxide film 40.
  • the buffer layer 30 is, for example, SiO 2 , Al 2 O 3 , MgF 2 , La 2 O 3 , ZnO, HfO 2 , MgO, Y 2 O 3 , CaF 2 , In 2 O 3 , or a mixture thereof.
  • the light modulation element 100 can be manufactured by a known method.
  • the light modulation element 100 is manufactured using semiconductor processes such as epitaxial growth, photolithography, etching, vapor phase growth and metallization.
  • the light modulation element 100 converts an electric signal into an optical signal.
  • the light modulation element 100 modulates the input light Lin to the output light L out .
  • the modulation operation of the light modulation element 100 will be described.
  • the input light Lin input from the input path 13 branches into the first optical waveguide 11 and the second optical waveguide 12 and propagates.
  • the phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 is zero at the time of branching.
  • an applied voltage is applied between the electrode 21 and the electrode 22.
  • a differential signal having the same absolute value, opposite positive and negative electrodes, and not out of phase with each other may be applied to each of the electrode 21 and the electrode 22.
  • the refractive index of the first optical waveguide 11 and the second optical waveguide 12 changes depending on the electro-optic effect.
  • the refractive index of the first optical waveguide 11 changes by + ⁇ n from the reference refractive index n
  • the refractive index of the second optical waveguide 12 changes by ⁇ n from the reference refractive index n.
  • the difference in refractive index between the first optical waveguide 11 and the second optical waveguide 12 creates a phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12.
  • the light propagating through the first optical waveguide 11 and the second optical waveguide 12 merges in the output path 14 and is output as output light L out .
  • the output light L out is a superposition of the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12.
  • the intensity of the output light L out changes according to the phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12.
  • the light modulation element 100 modulates the input light Lin to the output light L out according to the electric signal.
  • a modulation voltage Vm corresponding to the modulation signal is applied to the electrodes 21 and 22 for applying the modulation voltage of the light modulation element 100.
  • the voltage applied to the electrodes 23 and 24 for applying the DC bias voltage, that is, the DC bias voltage Vdc output from the DC bias application circuit 120 is controlled by the DC bias control circuit 130.
  • the DC bias control circuit 130 adjusts the operating point Vd of the light modulation element 100 by controlling the DC bias voltage Vdc.
  • the operating point Vd is a voltage that is the center of the modulation voltage amplitude.
  • the DC bias control circuit 130 sets the operating point Vd of the light modulation element 100 within the voltage width R1.
  • the voltage width R1 is defined by the half wavelength voltage V ⁇ and the null point voltage Vn.
  • FIG. 5 is a diagram showing the relationship between the applied voltage and the output of the light modulator 200 according to the first embodiment.
  • the horizontal axis of FIG. 5 is the voltage applied to the light modulation element 100, and the vertical axis is the standardized output from the light modulation element 100.
  • the output is standardized as "1" when the phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 is zero.
  • the output of the light modulation element 100 becomes maximum when the applied voltage is zero. This is because when the applied voltage is zero, the phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 is zero.
  • the output from the light modulation element 100 gradually decreases as the applied voltage increases, and becomes extremely small at a certain point.
  • the voltage at which the output from the light modulation element 100 is minimized is the null point voltage Vn.
  • the null point voltage Vn can be confirmed by measuring the voltage when the light output from the light modulation element 100 becomes the minimum.
  • the half-wavelength voltage (half-wavelength phase modulation voltage) is a voltage for making the phase difference of light 180 ° in the Mach Zender type light modulator, and the light output from the light modulation element 100 ranges from the maximum to the minimum.
  • the voltage width of corresponds to the half-wavelength voltage V ⁇ .
  • the half-wavelength voltage V ⁇ can be confirmed by measuring the voltage at which the light output from the light modulation element 100 becomes the minimum and the voltage at which the light becomes the maximum. Specifically, when a voltage is applied to the electrodes 21 and 22 for applying a modulation voltage, the voltage when the light output from the light modulation element 100 becomes maximum (potential difference between the electrodes 21 and 22) and when the voltage becomes minimum. It can be confirmed by measuring the voltage (potential difference between the electrodes 21 and 22).
  • the half-wavelength voltage V ⁇ of the light modulation element 100 changes depending on the configuration of the light modulation element 100.
  • the half-wavelength voltage V ⁇ varies depending on, for example, the length of the electrode 21 on the first optical waveguide 11, the length of the electrode 22 on the second optical waveguide 12, and the like.
  • the length is the length in the propagation direction of light. In the case of the light modulation element 100 of FIG. 3, it is the length of the portion of the electrode 21 that overlaps with the first optical waveguide 11 or the length of the portion of the electrode 22 that overlaps with the second optical waveguide 12. This length is called the interaction length.
  • the interaction length When the interaction length is long, the half-wave voltage V ⁇ becomes small, and when the interaction length is short, the half-wave voltage V ⁇ becomes large.
  • the half-wavelength voltage V ⁇ can be reduced.
  • the half-wavelength voltage V ⁇ of the light modulation element 100 becomes large, for example, 4.9 V or more. Therefore, the light modulator 200 according to the present embodiment sets the operating point Vd within the voltage width R1 and controls the applied voltage width Vpp, which will be described later.
  • the voltage width R1 is in the range of Vn + 0.50 V ⁇ or more and Vn + 0.75 V ⁇ or less, or Vn ⁇ 0.75 V ⁇ or more and Vn ⁇ 0.50 V ⁇ or less. That is, the operating point Vd is designed so as to satisfy the following relational expression. Vn + 0.50V ⁇ ⁇ Vd ⁇ Vn + 0.75V ⁇ or Vn-0.75V ⁇ ⁇ Vd ⁇ Vn-0.50V ⁇
  • the operating point Vd may fluctuate depending on the temperature of the usage environment and the like. If the operating point Vd fluctuates during use, it is corrected by the DC bias control circuit 130.
  • the DC bias control circuit 130 corrects the fluctuation of the operating point Vd based on, for example, the branched light L b branched from the output light L out .
  • the drive circuit 110 controls the applied voltage width Vpp applied to the light modulation element 100.
  • the drive circuit 110 controls a high frequency voltage applied to the light modulation element 100.
  • the drive circuit 110 inputs an electric signal converted into an optical signal to the light modulation element 100.
  • the drive circuit 110 includes, for example, a power supply, a driver, and the like.
  • FIG. 6 is a diagram for explaining the applied voltage width Vpp of the optical modulator 200 according to the first embodiment.
  • FIG. 6 is a diagram in which an explanation of the applied voltage width Vpp is added to FIG.
  • the applied voltage width Vpp is a range of voltage used when operating the light modulation element 100.
  • a voltage within a predetermined voltage range is applied to the light modulation element 100 centering on the operating point Vd.
  • a high frequency voltage is applied to the light modulation element 100 with the operating point Vd as the center and the difference between the maximum value and the minimum value being the applied voltage width Vpp.
  • the output from the light modulation element 100 varies within a range corresponding to the applied voltage width Vpp.
  • the applied voltage width Vpp is a half-wavelength voltage V ⁇
  • a voltage in the range of Vn to Vn + V ⁇ is applied to the light modulation element 100.
  • the output from the light modulation element 100 has a minimum applied voltage at Vn and a maximum applied voltage at Vn + V ⁇ . That is, when the applied voltage width Vpp is set in the above range, the change width of the output of the light modulation element 100 becomes maximum.
  • the drive voltage required to drive the light modulation element 100 increases.
  • the drive circuit 110 sets the applied voltage width Vpp applied to the light modulation element 100 in the range of 0.22 V ⁇ ⁇ Vpp ⁇ 0.50 V ⁇ .
  • the applied voltage width Vpp can be confirmed by measuring the minimum voltage (potential difference between the electrodes 21 and 22) and the maximum voltage (potential difference between the electrodes 21 and 22) applied to the electrodes 21 and 22 for applying the modulation voltage.
  • FIG. 7 is a diagram showing the relationship between the applied voltage of the light modulator 200 and the extinction ratio according to the first embodiment.
  • the horizontal axis of FIG. 7 is the voltage applied to the light modulation element 100, and the vertical axis shows the ratio of the output light L out at the applied voltage to the output light L out at the null point voltage.
  • the extinction ratio is the ratio of the maximum value and the minimum value of the output light L out .
  • the light amount of the output light L out of the light modulation element 100 is relatively large. Works in the area.
  • the modulation loss in the light modulation element 100 becomes large, and the output light L out may not be sufficiently detected. be. That is, when the output light L out is converted into an electric signal, the signal component may be buried in noise and may not be detected.
  • the light modulation element 100 is driven in a region where the amount of light of the output light L out of the light modulation element 100 is sufficiently large, sufficient sensitivity can be obtained.
  • the operating point Vd is set within the voltage width R1 and the applied voltage width Vpp is set within a predetermined range, the light modulation element 100 can be used within the range where the modulation loss is 3 dB or less.
  • the extinction ratio is small in the region where the amount of light of the output light L out of the light modulation element 100 is sufficiently large.
  • the amount of light is larger than when the operating point Vd is set near the null point voltage Vn.
  • the extinction ratio becomes smaller.
  • the extinction ratio required for an optical modulator for a data center is smaller than that for an optical modulator for long-distance communication, and is about 3 dB to 9 dB. Therefore, if the operating point Vd is set within the voltage width R1 and the applied voltage width Vpp is set within a predetermined range, the extinction ratio can be set to 3 dB or more and can be used for a data center.
  • the drive voltage becomes large when trying to maximize the extinction ratio, but by setting the applied voltage width Vpp within a predetermined range, low voltage drive becomes possible. ..
  • the light modulator 200 according to the first embodiment can be driven at a low voltage and has a small modulation loss.
  • optical modulator 200 according to the first embodiment has been described as an example, but the present invention is not limited to the first embodiment, and various modifications are possible.
  • the operating point Vd may be Vn +0.62V ⁇ Vd ⁇ Vn+0.75V ⁇ or Vn-0.75V ⁇ Vd ⁇ Vn-0.62V ⁇
  • the applied voltage width Vpp may be in the range of 0.32V ⁇ Vpp ⁇ 0.50V ⁇ . ..
  • the modulation loss of the light modulation element 100 can be reduced to 2 dB or less.
  • the operating point Vd may be Vn +0.62V ⁇ Vd ⁇ Vn+0.73V ⁇ or Vn-0.73V ⁇ Vd ⁇ Vn-0.62V ⁇
  • the applied voltage width Vpp may be in the range of 0.32V ⁇ Vpp ⁇ 0.50V ⁇ . good.
  • FIG. 8 is a plan view of the light modulation element 101 according to the first deformation as a plan view from the z direction.
  • the light modulation element 101 has an optical waveguide 50 and electrodes 61, 62, 63, 64.
  • the optical waveguide 50 has a first optical waveguide 51, a second optical waveguide 52, an input path 53, an output path 54, a branch portion 55, and a coupling portion 56.
  • the optical waveguide 50 is different from the optical waveguide 10 in that the first optical waveguide 51 and the second optical waveguide 52 are curved in the middle. Other points of the optical waveguide 50 are the same as those of the optical waveguide 10.
  • Electrodes 61 and 62 are electrodes that apply a modulation voltage Vm to the optical waveguide 50.
  • the electrode 61 is an example of the first electrode
  • the electrode 62 is an example of the second electrode.
  • the first end 61a of the electrode 61 is connected to the power supply 31, and the second end 61b is connected to the terminating resistor 32.
  • the first end 62a of the electrode 62 is connected to the power supply 31, and the second end 62b is connected to the terminating resistor 32.
  • the electrodes 63 and 64 are electrodes that apply a DC bias Vdc to the optical waveguide 50.
  • the first end 63a of the electrode 63 and the first end 64a of the electrode 64 are connected to the power supply 33.
  • the length of the portion where the electrode 61 and the first optical waveguide 51 overlap, and the electrode 62 and the second optical waveguide 52 are Although the lengths of the overlapping portions are shown differently, these lengths are substantially the same. Similarly, the length of the portion where the electrode 63 and the first optical waveguide 51 overlap each other and the length of the portion where the electrode 64 and the second optical waveguide 52 overlap each other are substantially the same.
  • the electrode 61 and the electrode 62 are curved along the first optical waveguide 51 and the second optical waveguide 52.
  • the other points of the electrodes 61, 62, 63, and 64 are the same as those of the electrodes 21, 22, 23, and 24, respectively.
  • the light modulation element 101 has a small element size in the x direction because the first optical waveguide 51 and the second optical waveguide 52 are curved.
  • the light modulation element 101 can realize, for example, an element size of 100 mm 2 or less, preferably 50 mm 2 or less.
  • Optical modulators for data centers are required to be miniaturized. By curving the optical waveguide 50, the light modulation element 101 can be accommodated in a small size region corresponding to an existing light modulator for a data center.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

この光変調器は、第1光導波路(11)と、第2光導波路(12)と、前記第1光導波路(11)に電界を印加する第1電極(21)と、前記第2光導波路に電界を印加する第2電極(22)と、を有する光変調素子(100)と、前記第1電極(21)と前記第2電極(22)との間の印加電圧を制御する制御部(130)と、を備え、第1光導波路(11)及び第2光導波路(12)は、ニオブ酸リチウム膜(40)の第1面(40a)から突出するリッジ形状部をそれぞれ含み、前記制御部(130)は、前記光変調素子(100)の半波長電圧をVπ、null点電圧をVnとした際に、動作点VdをVn+0.50Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.50Vπとし、前記光変調素子(100)に印加される印加電圧の振幅である印加電圧幅Vppを0.22≦Vpp≦0.50の範囲とする。

Description

光変調器及び光変調素子の駆動方法
 本発明は、光変調器及び光変調素子の駆動方法に関する。
 本願は、2020年8月11日に、日本に出願された特願2020-135861号に基づき優先権を主張し、その内容をここに援用する。
 インターネットの普及に伴い通信量は飛躍的に増大しており、光ファイバ通信の重要性が非常に高まっている。光ファイバ通信は、電気信号を光信号に変換し、光信号を光ファイバにより伝送するものであり、広帯域、低損失、ノイズに強いという特徴を有する。
 光変調器は、電気信号を光信号に変換する。例えば、特許文献1、2には、ニオブ酸リチウム単結晶基板の表面付近にTi(チタン)拡散により光導波路を形成したマッハツェンダー型光変調器が記載されている。また特許文献2には、光変調器の動作点ドリフトを補正することが記載されている。特許文献1、2に記載の光変調器は、40Gb/s以上の高速で動作するが、全長が10cm前後と長い。
 これに対し、特許文献3には、c軸配向のニオブ酸リチウム膜を用いたマッハツェンダー型光変調器が記載されている。ニオブ酸リチウム膜を用いた光変調器は、ニオブ酸リチウム単結晶基板を用いた光変調器と比較して、小型であり、駆動電圧が低い。
特開2004-37695号公報 特許第4164179号公報 特開2019-45880号公報
 ニオブ酸リチウムを用いた光変調器は、消光比が大きく、高周波帯域で動作できるため、都市間のような長距離の通信用に用いられている。また、インジウムリン(InP)を用いた光変調器も高周波帯域での動作が可能であるため、長距離の通信用に用いられることが期待されている。一方で、近年、データセンター内及びデータセンター間のような短、中距離の通信も増えており、このような用途では、シリコンを用いた光変調器を使う場合や光変調器を使わずにレーザーダイオードの駆動回路で出射光を直接変調する場合がある。シリコンを用いた光変調器による変調や直接変調では、周波数帯域の更なる高周波化に対応できない。
 一方、ニオブ酸リチウム薄膜を用いた光変調器やインジウムリンを用いた光変調器のような高周波帯域で動作できる光変調器をデータセンター内またはデータセンター間の通信に適用するためには、駆動電圧を低電圧化することが求められる。
 本発明は上記問題に鑑みてなされたものであり、低電圧で駆動でき、さらに変調損失が小さい光変調器、及び、低電圧で駆動でき、変調損失を低く抑えることができる光変調素子の駆動方法を提供することを目的とする。
(1)第1の態様に係る光変調器は、第1光導波路と、第2光導波路と、前記第1光導波路に電界を印加する第1電極と、前記第2光導波路に電界を印加する第2電極と、を有する光変調素子と、前記第1電極と前記第2電極との間の印加電圧を制御する制御部と、を備え、前記制御部は、前記光変調素子の半波長電圧をVπ、null点電圧をVnとした際に、動作点VdをVn+0.50Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.50Vπとし、前記光変調素子に印加される印加電圧の振幅である印加電圧幅Vppを0.22Vπ≦Vpp≦0.50Vπの範囲とする。
(2)上記態様に係る光変調器において、前記第1光導波路及び前記第2光導波路は、ニオブ酸リチウム膜の第1面から突出するリッジ形状部をそれぞれ含んでもよい。
(3)第2の態様に係る光変調素子の駆動方法は、第1光導波路及び第2光導波路と、前記第1光導波路と平面視で重なる位置にある第1電極と、前記第2光導波路と平面視で重なる位置にある第2電極と、を有する光変調素子の駆動方法であって、前記光変調素子の半波長電圧をVπ、null点電圧をVnとした際に、動作点VdをVn+0.50Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.50Vπとし、前記光変調素子に印加される印加電圧の振幅である印加電圧幅Vppを0.22Vπ≦Vpp≦0.50Vπの範囲とする。
(4)上記態様に係る光変調素子の駆動方法において、前記第1光導波路及び前記第2光導波路は、ニオブ酸リチウム膜の第1面から突出するリッジ形状部をそれぞれ含んでもよい。
 上記態様にかかる光変調器及び光変調素子の駆動方法は、低電圧駆動でき、変調損失が少ない。
第1実施形態にかかる光変調器のブロック図である。 第1実施形態にかかる光変調素子の光導波路の平面図である。 第1実施形態にかかる光変調素子の平面図である。 第1実施形態にかかる光変調素子の断面図である。 第1実施形態にかかる光変調器の印加電圧と出力との関係を示す図である。 第1実施形態にかかる光変調器の印加電圧幅を説明するための図である。 第1実施形態にかかる光変調器の印加電圧と消光比との関係を示す図である。 第1変形例に係る光変調素子の平面図である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
 まず方向について定義する。基板Sbの一面の一方向をx方向、x方向と直交する方向をy方向とする。x方向は、例えば、第1光導波路11の延びる方向である。z方向は、基板Sbと垂直な方向である。z方向は、x方向及びy方向と直交する方向である。以下、+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。
 図1は、第1実施形態に係る光変調器200のブロック図である。光変調器200は、光変調素子100と駆動回路110と直流バイアス印加回路120と直流バイアス制御回路130とを有する。駆動回路110と直流バイアス印加回路120と直流バイアス制御回路130とで制御部となる。
 光変調素子100は、電気信号を光信号に変換する。光変調素子100は、入力された入力光Linを変調信号Smに応じて出力光Loutに変換する。
 駆動回路110は、変調信号Smに応じた変調電圧Vmを光変調素子100に印加する。直流バイアス印加回路120は、直流バイアス電圧Vdcを光変調素子100に印加する。直流バイアス制御回路130は、出力光Loutをモニターし、直流バイアス印加回路120から出力される直流バイアス電圧Vdcを制御する。この直流バイアス電圧Vdcを調整することより、後述する動作点Vdが制御される。
 図2は、光変調素子100の光導波路10をz方向から見た平面図である。図3は、光変調素子100をz方向から見た平面図である。図4は、図3におけるX1-X1’に沿って切断した断面である。光変調素子100は、光導波路10と電極21、22、23、24とを有する。
 光変調素子100は、基板Sbを含む。基板Sbとしては、ニオブ酸リチウム膜等の酸化膜40をエピタキシャル膜として形成させることができる基板であればよく、サファイア単結晶基板もしくはシリコン単結晶基板が好ましい。基板Sbの結晶方位は特に限定されない。なお、ニオブ酸リチウム膜はさまざまな結晶方位の基板Sbに対して、c軸配向のエピタキシャル膜として形成されやすいという性質を持っている。c軸配向のニオブ酸リチウム膜を構成する結晶は3回対称の対称性を有しているので、下地の基板Sbも同じ対称性を有していることが望ましく、サファイア単結晶基板の場合はc面、シリコン単結晶基板の場合は(111)面の基板が好ましい。
 光導波路10は、内部を光が伝搬する光の通路である。光導波路10は、例えば、第1光導波路11と第2光導波路12と入力路13と出力路14と分岐部15と結合部16とを有する。第1光導波路11及び第2光導波路12は、例えば、x方向に延びる。第1光導波路11と第2光導波路12のx方向の長さは、略同一である。分岐部15は、入力路13と第1光導波路11及び第2光導波路12との間にある。入力路13は、分岐部15を介して、第1光導波路11及び第2光導波路12と繋がる。結合部16は、第1光導波路11及び第2光導波路12と出力路14との間にある。第1光導波路11と第2光導波路12とは、結合部16を介して、出力路14と繋がる。
 光導波路10は、酸化膜40の第1面40aから突出するリッジ形状部である第1光導波路11及び第2光導波路12を含む。第1面40aは、酸化膜40のリッジ形状部以外の部分における上面である。リッジ形状部は、第1面40aからz方向に突出し、光導波路10に沿って延びる。リッジ形状部のX1-X1’断面(光の進行方向に垂直な断面)の形状は、光を導波できる形状であればその形状は問わず、例えばドーム状、三角形状、矩形状でもよい。リッジ形状部のy方向の幅は、例えば、0.3μm以上5.0μm以下であり、リッジ形状部の高さ(第1面40aからの突出高さ)は、例えば、0.1μm以上1.0μm以下である。
 酸化膜40は、例えば、c軸配向したニオブ酸リチウム膜である。酸化膜40は、例えば、基板Sb上にエピタキシャル成長したエピタキシャル膜である。エピタキシャル膜は、下地の基板によって結晶方位が揃えられた単結晶の膜のことである。エピタキシャル膜は、z方向およびxy面内方向に単一の結晶方位をもった膜であり、結晶がx軸、y軸及びz軸方向にともに揃って配向しているものである。エピタキシャル膜かどうかは、例えば、2θ-θX線回折における配向位置でのピーク強度と極点の確認を行うことで証明することができる。また、酸化膜40は、Si基板上にSiOを介して設けられたニオブ酸リチウム膜であってもよい。
 ニオブ酸リチウムの組成は、LiNbAである。Aは、Li、Nb、O以外の元素である。xは、0.5以上1.2以下であり、好ましくは0.9以上1.05以下である。yは、0以上0.5以下である。zは1.5以上4.0以下あり、好ましくは2.5以上3.5以下である。Aの元素は、例えば、K、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、Ceであり、これらの元素を2種類以上の組み合わせても良い。
 酸化膜40の膜厚は、例えば、2μm以下である。酸化膜40の膜厚とは、リッジ形状部以外の部分の膜厚である。酸化膜40の膜厚が厚いと、結晶性が低下する恐れがある。また酸化膜40の膜厚は、例えば、使用する光の波長の1/10程度以上である。酸化膜40の膜厚が薄いと、光の閉じ込めが弱くなり、基板Sbやバッファ層30に光が漏れる。酸化膜40の膜厚が薄いと、酸化膜40に電界を印加しても、光導波路10の実効屈折率の変化が小さくなるおそれがある。
 電極21、22は、光導波路10に変調電圧Vmを印加する電極である。電極21は、第1電極の一例であり、電極22は、第2電極の一例である。電極21の第1端21aは電源31に接続され、第2端21bは終端抵抗32に接続されている。電極22の第1端22aは電源31に接続され、第2端22bは終端抵抗32に接続されている。電源31は、変調電圧Vmを光変調素子100に印加する駆動回路110の一部である。
 電極23、24は、光導波路10に直流バイアス電圧Vdcを印加する電極である。電極23の第1端23a及び電極24の第1端24aは電源33に接続されている。電源33は、直流バイアス電圧Vdcを光変調素子100に印加する直流バイアス印加回路120の一部である。
 図3では、見易くするために並行して配置した電極21及び電極22の線幅、線間を実際よりも広くしている。そのため、電極21と第1光導波路11とが重畳する部分の長さと、電極22と第2光導波路12とが重畳する部分の長さとが、異なるように見えるが、これらの長さは略同一である。同様に、電極23と第1光導波路11とが重畳する部分の長さと、電極24と第2光導波路12とが重畳する部分の長さとは、略同一である。
 また電極21、22に直流バイアス電圧Vdcを重畳する場合は、電極23、24を設けなくてもよい。また電極21、22、23、24の周囲に接地電極を設けてもよい。
 電極21、22、23、24は、バッファ層30を挟んで、酸化膜40上にある。電極21、23はそれぞれ、第1光導波路11に電界を印加できる。電極21、23はそれぞれ、例えば、第1光導波路11とz方向からの平面視で重なる位置にある。電極21、23はそれぞれ、第1光導波路11の上方にある。電極22、24はそれぞれ、第2光導波路12に電界を印加できる。電極22、24はそれぞれ、例えば、第2光導波路12とz方向からの平面視で重なる位置にある。電極22、24はそれぞれ、第2光導波路12の上方にある。
 バッファ層30は、光導波路10と電極20との間にある。バッファ層30は、リッジ形状部を被覆し、保護する。またバッファ層30は、光導波路10を伝搬する光が電極20に吸収されることを防ぐ。バッファ層30は、酸化膜40より屈折率が低い。バッファ層30は、例えば、SiO、Al、MgF、La、ZnO、HfO、MgO、Y、CaF、In等又はこれらの混合物である。
 光変調素子100は、公知の方法で作製できる。例えばエピタキシャル成長、フォトリソグラフィ、エッチング、気相成長及びメタライズなどの半導体プロセスを用いて、光変調素子100は製造される。
 光変調素子100は、電気信号を光信号に変換する。光変調素子100は、入力光Linを出力光Loutに変調する。まず光変調素子100の変調動作について説明する。
 入力路13から入力された入力光Linは、第1光導波路11と第2光導波路12に分岐して伝搬する。第1光導波路11を伝搬する光と第2光導波路12を伝搬する光との位相差は、分岐した時点ではゼロである。
 次いで、電極21と電極22との間に印加電圧を加える。例えば、電極21と電極22のそれぞれに、絶対値が同じで、正負が反対であり、位相が互いにずれていない差動信号を印加してもよい。第1光導波路11及び第2光導波路12の屈折率は、電気光学効果によって変化する。例えば、第1光導波路11の屈折率は、基準の屈折率nから+Δn変化し、第2光導波路12の屈折率は、基準の屈折率nから-Δn変化する。
 第1光導波路11と第2光導波路12との屈折率の違いは、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光との間に位相差を生み出す。第1光導波路11及び第2光導波路12を伝搬した光は、出力路14で合流し、出力光Loutとして出力される。出力光Loutは、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光とを重ね合わせたものである。出力光Loutの強度は、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光の位相差に応じて変化する。例えば、位相差がπの偶数倍の場合は光が強め合い、πの奇数倍の場合は光が弱め合う。このような手順で、光変調素子100は、電気信号に応じて、入力光Linを出力光Loutに変調する。
 光変調素子100の変調電圧印加用の電極21、22には、変調信号に応じた変調電圧Vmが印加される。直流バイアス電圧印加用の電極23、24に印加される電圧、つまり、直流バイアス印加回路120から出力される直流バイアス電圧Vdcは、直流バイアス制御回路130により制御される。直流バイアス制御回路130は、直流バイアス電圧Vdcを制御することにより、光変調素子100の動作点Vdを調整する。動作点Vdとは変調電圧振幅の中心となる電圧である。
 直流バイアス制御回路130は、光変調素子100の動作点Vdを電圧幅R1内とする。電圧幅R1は、半波長電圧Vπ及びnull点電圧Vnから規定される。
 光変調素子100による光変調について図5を用いて説明する。図5は、第1実施形態にかかる光変調器200の印加電圧と出力との関係を示す図である。図5の横軸は光変調素子100に印加した電圧であり、縦軸は光変調素子100からの出力を規格化したものである。出力は、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光の位相差がゼロの場合を「1」として規格化している。
 次に、null点電圧Vn及び半波長電圧Vπについて説明する。
 光変調素子100の出力は、印加電圧がゼロの場合に最大となる。印加電圧がゼロの場合は、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光の位相差がゼロであるためである。
 光変調素子100からの出力は、印加電圧を大きくしていくと、徐々に小さくなり、ある点で極小となる。光変調素子100からの出力が極小となる電圧が、null点電圧Vnである。null点電圧Vnは光変調素子100から出力される光が極小になるときの電圧を計測することにより確認できる。具体的には、変調電圧印加用の電極21、22に電圧を印加し、光変調素子100から出力される光が極小になるときの電圧(電極21、22の電位差)を計測することにより確認できる。
 半波長電圧(半波長位相変調電圧)は、マッハツェンダー型光変調器で光の位相差を180°にするための電圧であり、光変調素子100から出力される光が極大から極小に至るまでの電圧幅が、半波長電圧Vπに対応する。null点電圧Vnを超える電圧を印加すると、光変調素子100からの出力は周期的に変化する。光変調素子100からの出力は、半波長電圧Vπごとに、極大、極小を繰り返す。半波長電圧Vπは光変調素子100から出力される光が極小となる電圧と極大となる電圧を計測することにより確認できる。具体的には、変調電圧印加用の電極21、22に電圧を印加し、光変調素子100から出力される光が極大になるときの電圧(電極21、22の電位差)と、極小になるときの電圧(電極21、22の電位差)を計測することにより確認できる。
 光変調素子100の半波長電圧Vπは、光変調素子100の構成によって変化する。半波長電圧Vπは、例えば、第1光導波路11上の電極21の長さ、第2光導波路12上の電極22の長さ等によって変化する。長さは、光の伝搬方向への長さである。図3の光変調素子100の場合、電極21のうちの第1光導波路11と重なる部分の長さ、又は、電極22のうちの第2光導波路12と重なる部分の長さである。この長さは、相互作用長と言われる。相互作用長が長いと半波長電圧Vπは小さくなり、相互作用長が短いと半波長電圧Vπが大きくなる。
 ニオブ酸リチウム薄膜を用いた光変調素子は、バルクのニオブ酸リチウムを用いた光変調素子と比較して効率的に光導波路に電界を印加できるため、半波長電圧Vπを小さくできる。しかしながら、データセンター用のトランシーバーに組み込むには、光変調素子100の更なる小型化が必要であり、光変調素子100の相互作用長を短くする必要がある。また光変調素子100の変調周波数の帯域を広げるためには、相互作用長を短くする必要がある。そのため、光変調素子100の半波長電圧Vπは、例えば、4.9V以上と大きくなってしまう。そこで、本実施形態にかかる光変調器200は、動作点Vdを電圧幅R1内とし、後述する印加電圧幅Vppを制御する。
 電圧幅R1は、Vn+0.50Vπ以上Vn+0.75Vπ以下の範囲又はVn-0.75Vπ以上Vn-0.50Vπ以下の範囲である。すなわち、動作点Vdは、以下の関係式を満たすように設計される。
 Vn+0.50Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.50Vπ
 動作点Vdは、使用環境の温度等で変動する場合がある。使用中に動作点Vdが変動した場合は、直流バイアス制御回路130で補正する。直流バイアス制御回路130は、例えば、出力光Loutから分岐した分岐光Lを基に、動作点Vdの変動を補正する。
 駆動回路110は、光変調素子100に印加する印加電圧幅Vppを制御する。駆動回路110は、光変調素子100に印加する高周波電圧を制御する。駆動回路110は、光信号に変換される電気信号を光変調素子100に入力する。駆動回路110は、例えば、電源、ドライバ等を含む。
 図6は、第1実施形態にかかる光変調器200の印加電圧幅Vppを説明するための図である。図6は、図5に印加電圧幅Vppの説明を加えた図である。
 印加電圧幅Vppは、光変調素子100を動作させる際に利用する電圧の範囲である。光変調素子100には、動作点Vdを中心に所定の電圧幅の範囲内の電圧が印加される。光変調素子100には、動作点Vdを中心として、最大値と最小値の差が印加電圧幅Vppである高周波電圧が印加される。光変調素子100からの出力は、印加電圧幅Vppに対応する範囲で変化する。
 例えば、動作点VdをVn+0.5πとし、印加電圧幅Vppを半波長電圧Vπとすると、光変調素子100にはVnからVn+Vπの範囲の電圧が印加される。光変調素子100からの出力は、印加電圧がVnで最小となり、印加電圧がVn+Vπで最大となる。すなわち、印加電圧幅Vppを上記の範囲に設定すると、光変調素子100の出力の変化幅が最大となる。一方で、光変調素子100を駆動させるのに必要な駆動電圧が大きくなる。
 駆動回路110は、光変調素子100に印加する印加電圧幅Vppを0.22Vπ≦Vpp≦0.50Vπの範囲とする。
 印加電圧幅Vppは変調電圧印加用の電極21、22に印加されている最小電圧(電極21、22の電位差)と最大電圧(電極21、22の電位差)を計測することにより確認できる。
 図7は、第1実施形態にかかる光変調器200の印加電圧と消光比との関係を示す図である。図7の横軸は、光変調素子100に印加した電圧であり、縦軸は印加した電圧における出力光Loutとnull点電圧における出力光Loutとの比を示している。消光比は、出力光Loutの最大値と最小値の比である。
 図5及び図7に示すように、動作点Vdを電圧幅R1内に設定し、印加電圧幅Vppを所定の範囲に設定すると、光変調素子100は出力光Loutの光量が相対的に大きい領域で動作する。
 出力光Loutの光量が相対的に小さい領域(null点電圧Vnの近傍)で光変調素子100を駆動すると、光変調素子100における変調損失が大きくなり、出力光Loutを十分検出できない場合がある。すなわち、出力光Loutを電気信号に変換する際に信号成分がノイズに埋もれてしまい、検知できなくなる可能性がある。
 これに対し、光変調素子100の出力光Loutの光量が十分大きい領域で光変調素子100を駆動すると、十分な感度を得ることができる。例えば、動作点Vdを電圧幅R1内に設定し、印加電圧幅Vppを所定の範囲に設定すると、変調損失が3dB以下の範囲で、光変調素子100を使うことができる。
 ここで、図7に示すように、光変調素子100の出力光Loutの光量が十分大きい領域は、消光比が小さい。例えば、印加電圧幅Vppが同じであるという条件のもと、動作点Vdをnull点電圧Vnから離れた位置に設定した場合、動作点Vdをnull点電圧Vn近傍に設定した場合より光量は大きくなるが消光比は小さくなる。しかしながら、データセンター用の光変調器に求められる消光比は、長距離の通信用の光変調器より小さく、3dBから9dB程度である。従って、動作点Vdを電圧幅R1内に設定し、印加電圧幅Vppを所定の範囲に設定すれば、消光比を3dB以上とすることができ、データセンター用に用いることができる。
 またニオブ酸リチウム膜を用いた光変調素子100は、消光比を最大化しようとすると駆動電圧が大きくなるが、印加電圧幅Vppを所定の範囲に設定することで、低電圧駆動が可能となる。
 上述のように、第1実施形態に係る光変調器200は、低電圧駆動でき、変調損失が少ない。
 ここまで第1実施形態に係る光変調器200を一例として説明したが、本発明は第1実施形態に限定されるものではなく、種々の変形が可能である。
 例えば、動作点VdをVn+0.62Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.62Vπとし、印加電圧幅Vppを0.32Vπ≦Vpp≦0.50Vπの範囲としてもよい。この場合、光変調素子100の変調損失を2dB以下にできる。
 また例えば、動作点VdをVn+0.62Vπ≦Vd≦Vn+0.73Vπ又はVn-0.73Vπ≦Vd≦Vn-0.62Vπとし、印加電圧幅Vppを0.32Vπ≦Vpp≦0.50Vπの範囲としてもよい。出力光Loutの出力が最大となる位置では、信号にひずみが生じやすい。このひずみが生じやすい領域を避けることで、再生信号の波形歪が抑えられる。
 また図8は、第1変形に係る光変調素子101をz方向から平面視した平面図である。光変調素子101は、光導波路50と電極61、62、63、64と有する。
 光導波路50は、第1光導波路51と第2光導波路52と入力路53と出力路54と分岐部55と結合部56とを有する。光導波路50は、第1光導波路51及び第2光導波路52が途中で湾曲している点が、光導波路10と異なる。光導波路50のその他の点は、光導波路10と同様である。
 電極61、62は、光導波路50に変調電圧Vmを印加する電極である。電極61は、第1電極の一例であり、電極62は、第2電極の一例である。電極61の第1端61aは電源31に接続され、第2端61bは終端抵抗32に接続されている。電極62の第1端62aは電源31に接続され、第2端62bは終端抵抗32に接続されている。電極63、64は、光導波路50に直流バイアスVdcを印加する電極である。電極63の第1端63a及び電極64の第1端64aは電源33に接続されている。
 図8では、並行して配置した電極61及び電極62の線幅、線間を広くしたため、電極61と第1光導波路51とが重畳する部分の長さと、電極62と第2光導波路52とが重畳する部分の長さとが、異なるように図示しているが、これらの長さは略同一である。同様に、電極63と第1光導波路51とが重畳する部分の長さと、電極64と第2光導波路52とが重畳する部分の長さとは、略同一である。
 電極61及び電極62が第1光導波路51及び第2光導波路52に沿って湾曲している点が、電極21及び電極22と異なる。電極61、62、63、64のそれぞれのその他の点は、電極21、22、23、24のそれぞれと同様である。
 光変調素子101は、第1光導波路51及び第2光導波路52が湾曲していることで、x方向の素子サイズが小さい。光変調素子101は、例えば、100mm以下、好ましくは50mm以下の素子サイズを実現できる。データセンター用の光変調器は小型化が求められている。光導波路50を湾曲させることで、既存のデータセンター用の光変調器に対応した小さいサイズの領域にも、光変調素子101を収容できる。
10、50 光導波路
11、51 第1光導波路
12、52 第2光導波路
13、53 入力路
14、54 出力路
15 分岐部
16 結合部
21、22、23、24、61、62、63、64 電極
30 バッファ層
40 酸化膜
40a 第1面
100、101 光変調素子
110 駆動回路
120 直流バイアス印加回路
130 直流バイアス制御回路
200 光変調器
in 入力光
out 出力光
 分岐光
Vd 動作点
Vn null点電圧
Vπ 半波長電圧
Vpp 印加電圧幅

Claims (4)

  1.  第1光導波路と、第2光導波路と、前記第1光導波路に電界を印加する第1電極と、前記第2光導波路に電界を印加する第2電極と、を有する光変調素子と、
     前記第1電極と前記第2電極との間の印加電圧を制御する制御部と、を備え、
     前記制御部は、
    前記光変調素子の半波長電圧をVπ、null点電圧をVnとした際に、動作点VdをVn+0.50Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.50Vπとし、
     前記光変調素子に印加される印加電圧の振幅である印加電圧幅Vppを0.22Vπ≦Vpp≦0.50Vπの範囲とする、光変調器。
  2.  前記第1光導波路及び前記第2光導波路は、ニオブ酸リチウム膜の第1面から突出するリッジ形状部をそれぞれ含む、請求項1に記載の光変調器。
  3.  第1光導波路及び第2光導波路と、前記第1光導波路と平面視で重なる位置にある第1電極と、前記第2光導波路と平面視で重なる位置にある第2電極と、を有する光変調素子の駆動方法であって、
     前記光変調素子の半波長電圧をVπ、null点電圧をVnとした際に、動作点VdをVn+0.50Vπ≦Vd≦Vn+0.75Vπ又はVn-0.75Vπ≦Vd≦Vn-0.50Vπとし、
     前記光変調素子に印加される印加電圧の振幅である印加電圧幅Vppを0.22Vπ≦Vpp≦0.50Vπの範囲とする、光変調素子の駆動方法。
  4.  前記第1光導波路及び前記第2光導波路は、ニオブ酸リチウム膜の第1面から突出するリッジ形状部をそれぞれ含む、請求項3に記載の光変調素子の駆動方法。
PCT/JP2021/023145 2020-08-11 2021-06-18 光変調器及び光変調素子の駆動方法 WO2022034742A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/928,386 US20230213791A1 (en) 2020-08-11 2021-06-18 Optical modulator and driving method of optical modulation element
CN202180039629.5A CN115917410A (zh) 2020-08-11 2021-06-18 光调制器及光调制元件的驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-135861 2020-08-11
JP2020135861A JP7400661B2 (ja) 2020-08-11 2020-08-11 光変調器及び光変調素子の駆動方法

Publications (1)

Publication Number Publication Date
WO2022034742A1 true WO2022034742A1 (ja) 2022-02-17

Family

ID=80247801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023145 WO2022034742A1 (ja) 2020-08-11 2021-06-18 光変調器及び光変調素子の駆動方法

Country Status (4)

Country Link
US (1) US20230213791A1 (ja)
JP (1) JP7400661B2 (ja)
CN (1) CN115917410A (ja)
WO (1) WO2022034742A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211400A (ja) * 1996-02-05 1997-08-15 Toshiba Corp 外部変調器の制御装置
JP2005326548A (ja) * 2004-05-13 2005-11-24 Fujitsu Ltd 光変調装置、光送信装置及び光変調方法
JP2015102686A (ja) * 2013-11-25 2015-06-04 日本電信電話株式会社 光変調器
US20170264389A1 (en) * 2014-12-02 2017-09-14 Xieon Networks S.À.R.L. Spectral inversion detection for polarization-division multiplexed optical transmission
JP2018182465A (ja) * 2017-04-07 2018-11-15 富士通オプティカルコンポーネンツ株式会社 光送信機、及び光伝送方法
JP2019045880A (ja) * 2013-11-15 2019-03-22 Tdk株式会社 光変調器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211400A (ja) * 1996-02-05 1997-08-15 Toshiba Corp 外部変調器の制御装置
JP2005326548A (ja) * 2004-05-13 2005-11-24 Fujitsu Ltd 光変調装置、光送信装置及び光変調方法
JP2019045880A (ja) * 2013-11-15 2019-03-22 Tdk株式会社 光変調器
JP2015102686A (ja) * 2013-11-25 2015-06-04 日本電信電話株式会社 光変調器
US20170264389A1 (en) * 2014-12-02 2017-09-14 Xieon Networks S.À.R.L. Spectral inversion detection for polarization-division multiplexed optical transmission
JP2018182465A (ja) * 2017-04-07 2018-11-15 富士通オプティカルコンポーネンツ株式会社 光送信機、及び光伝送方法

Also Published As

Publication number Publication date
CN115917410A (zh) 2023-04-04
JP2022032256A (ja) 2022-02-25
US20230213791A1 (en) 2023-07-06
JP7400661B2 (ja) 2023-12-19

Similar Documents

Publication Publication Date Title
US7447389B2 (en) Optical modulator
US10416525B2 (en) Method and apparatus for phase-matched optical and RF wave propagations for semiconductor-based MZM modulators
US11366344B2 (en) Optical modulator
JP6369147B2 (ja) 光導波路素子およびこれを用いた光変調器
US11086149B2 (en) Electro-optic device
US11460751B2 (en) Optical modulator
US11003043B2 (en) Optical modulator
JP2021157065A (ja) 光変調器
WO2022034742A1 (ja) 光変調器及び光変調素子の駆動方法
WO2022034766A1 (ja) 光変調器及び光変調素子の駆動方法
WO2022034767A1 (ja) 光変調素子及び光変調素子の駆動方法
US20230069468A1 (en) Optical waveguide element and optical modulation element
US20230122741A1 (en) Optical modulator
US20210103165A1 (en) Electro-optic device
US20220276513A1 (en) Optical modulation element and optical modulator
US20230115362A1 (en) Electro-optical device
WO2021192550A1 (ja) 光変調器及びその製造方法
US20230057036A1 (en) Optical modulation element
WO2022071356A1 (en) Optical modulator
US20230124507A1 (en) Electro-optical device
JP2021157064A (ja) 光変調器の製造方法及びこれに用いるフォトマスク
CN115145059A (zh) 光调制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855821

Country of ref document: EP

Kind code of ref document: A1