WO2022033539A1 - 低温戊烷洗烟气同时脱硫脱碳***及工艺 - Google Patents

低温戊烷洗烟气同时脱硫脱碳***及工艺 Download PDF

Info

Publication number
WO2022033539A1
WO2022033539A1 PCT/CN2021/112185 CN2021112185W WO2022033539A1 WO 2022033539 A1 WO2022033539 A1 WO 2022033539A1 CN 2021112185 W CN2021112185 W CN 2021112185W WO 2022033539 A1 WO2022033539 A1 WO 2022033539A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
solid
washing
temperature
liquid
Prior art date
Application number
PCT/CN2021/112185
Other languages
English (en)
French (fr)
Inventor
汪世清
郜时旺
肖平
蒋敏华
黄斌
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to DE112021001534.6T priority Critical patent/DE112021001534T5/de
Priority to JP2023600019U priority patent/JP3242966U/ja
Priority to EP21855589.4A priority patent/EP4197611A1/en
Priority to AU2021325250A priority patent/AU2021325250B2/en
Publication of WO2022033539A1 publication Critical patent/WO2022033539A1/zh
Priority to US17/823,320 priority patent/US20220412556A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • B01D7/02Crystallisation directly from the vapour phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the technical field of flue gas pollutant treatment and carbon emission reduction, and in particular relates to a system and a process for washing and cooling flue gas with low-temperature pentane liquid, and then condensing and removing sulfur dioxide and carbon dioxide in the flue gas at the same time.
  • the flue gas produced by thermal power generating units contains SO 2 , NO x and other pollutants, and also emits a large amount of greenhouse gas CO 2 .
  • SO 2 sulfur dioxide
  • NO x nitrogen dioxide
  • CO 2 carbon dioxide
  • the current mainstream flue gas desulfurization process generally adopts lye washing and removal, referred to as wet desulfurization.
  • Mature processes include ammonia desulfurization, limestone-gypsum desulfurization, dual-alkali desulfurization, etc.
  • the flue gas decarbonization technology is mainly based on chemical absorption method, represented by alcohol ammonia absorption method.
  • Wet desulfurization consumes a large amount of limestone or other chemicals, and it is easy to generate a large amount of desulfurization wastewater.
  • the chemical absorption decarbonization technology has the technical problems of high energy consumption and large loss of absorbent. Therefore, it has gradually become a research hotspot to seek alternative desulfurization and decarbonization technologies, especially technologies that can simultaneously perform desulfurization and decarbonization.
  • the object of the present invention is to provide a simultaneous desulfurization and decarbonization system and process for washing flue gas with low temperature pentane, to overcome the defects of the prior art, the present invention utilizes low temperature pentane washing and cooling flue gas, simultaneously SO 2 and The CO 2 is condensed and separated out, which is suitable for the un-desulfurized flue gas after dust removal.
  • the present invention adopts the following technical solutions:
  • the low-temperature pentane-washing flue gas simultaneous desulfurization and decarbonization system includes a water cooler.
  • the inlet of the water cooler is connected to the boiler flue gas after denitration and dust removal.
  • the bottom of the water cooler is provided with a flue gas condensate water outlet and a wet flue gas outlet of the water cooler.
  • the top of the scrubbing tower is provided with a cold flue gas outlet, the upper part is provided with a washing liquid inlet, and the bottom is provided with a
  • the solid-liquid mixture outlet, the cold flue gas outlet is connected to the chimney through the condenser, the solid-liquid mixture outlet is connected to the solid-liquid separator, the liquid outlet of the solid-liquid separator is connected to the washing liquid inlet through the evaporator, and the solid-liquid separation
  • the solid outlet of the device is connected to the rectification separation column, the bottom of the inner side of the rectification separation column is provided with a reboiler, the top of the rectification separation column is provided with a gaseous CO 2 outlet, and the bottom is provided with an H 2 O and SO 2 outlet.
  • the refrigerant outlet of the evaporator is connected to the refrigerant inlet of the evaporator, the refrigerant outlet of the evaporator is connected to the compressor, and the outlet of the compressor is connected to the refrigerant inlet of the condenser.
  • washing liquid is low temperature n-pentane.
  • solid-liquid mixture outlet is connected to the solid-liquid separator through a circulating pump.
  • the solid outlet of the solid-liquid separator is connected to the rectification separation tower through a thick slurry pump.
  • the top of the solid-liquid separator is also connected with a washing liquid supplement pipeline.
  • a low-temperature pentane washing flue gas simultaneous desulfurization and decarbonization process After denitration and dust removal, the boiler flue gas enters a water cooler to cool the flue gas to close to room temperature, and at the same time discharge the condensed water of the flue gas.
  • the flue gas enters the scrubbing tower, and is washed and cooled to the sublimation temperature of carbon dioxide by the scrubbing liquid sprayed from top to bottom, so that H 2 O, SO 2 and CO 2 in the flue gas are separated from the flue gas in solid form.
  • H 2 O, SO 2 and CO 2 are all insoluble in the washing liquid, they condense out and form a solid-liquid mixed slurry with the washing liquid, which flows out from the bottom of the washing tower and enters the solid-liquid separator to separate solid H 2 O, SO 2 and CO 2 , after the scrubbing liquid is cooled by the refrigerant to the set temperature in the evaporator, it enters the top of the scrubbing tower and is recycled.
  • the high-temperature refrigerant is discharged into the chimney after heat exchange to recover the cold energy.
  • the solid H 2 O, SO 2 and CO 2 separated by the solid-liquid separator is a thick slurry mixture, which is fed into the rectification separation tower by the thick slurry pump.
  • the reboiler at the bottom of the rectification separation column separates CO 2 from the top of the column by heating, as CO 2 by-product or for storage, SO 2 and H 2 O are discharged from the bottom of the column for subsequent production of sulfuric acid.
  • the water cooler cools the flue gas to near room temperature through indirect heat exchange or contact spray cooling.
  • top of the solid-liquid separator is also connected with a washing liquid replenishing pipeline to supplement part of the washing liquid carried away by the flue gas.
  • the present invention has the following beneficial technical effects:
  • the invention adopts low-temperature n-pentane to directly spray and cool the wet flue gas, and the wet flue gas is directly cooled from the temperature area above zero to the temperature area below zero. Exhaust the cooling system together without causing ice blockage.
  • the method of indirect heat exchange is adopted, and the raw flue gas is pre-cooled to the sub-zero temperature region by recovering the low-temperature net flue gas cooling capacity.
  • a molecular sieve In order to prevent the moisture of the flue gas from freezing and blocking the heat exchanger, it is necessary to add a molecular sieve before cooling. Dehumidification system.
  • the process of the present invention does not need to add a molecular sieve flue gas drying tower.
  • the low-temperature net flue gas cooling capacity of the present invention is recovered by the condenser of the refrigeration system, thereby reducing the energy consumption of refrigeration; carbon dioxide and sulfur dioxide in the flue gas are condensed and removed from the flue gas at the same time; and carbon dioxide and sulfur dioxide are separated by a rectifying tower due to different boiling points. , are recycled separately.
  • 1 is a schematic diagram of the low-temperature pentane washing integrated desulfurization and decarbonization process of the present invention.
  • the low-temperature pentane washing flue gas simultaneous desulfurization and decarbonization system includes a water cooler 1.
  • the inlet of the water cooler 1 is connected to the boiler flue gas after denitration and dust removal.
  • the bottom of the water cooler 1 is provided with a flue gas condensate water outlet.
  • the wet flue gas outlet is connected to the low-temperature n-pentane washing tower 2 for separating H 2 O, SO 2 and CO 2 in the wet flue gas in a solid form, and the top of the washing tower 2 is provided with a cold flue gas outlet, The upper part is provided with a washing liquid inlet, the bottom is provided with a solid-liquid mixture outlet, the cold flue gas outlet is connected to the chimney through the condenser 7, the solid-liquid mixture outlet is connected to the solid-liquid separator 4 through the circulating pump 3, and the solid-liquid mixture outlet is connected to the solid-liquid separator 4 through the circulating pump 3.
  • the top of the liquid separator 4 is connected with a washing liquid replenishing pipeline, the liquid outlet of the solid-liquid separator 4 is connected to the washing liquid inlet through the evaporator 5, and the solid outlet of the solid-liquid separator 4 is connected to the rectification separation tower through the thick slurry pump 9 10.
  • a reboiler is arranged at the bottom of the inner side of the rectification separation tower 10, a gaseous CO outlet is arranged at the top of the rectification separation column 10, an outlet of H 2 O and SO 2 is arranged at the bottom, and the refrigerant outlet of the condenser 7 passes through
  • the throttle valve 8 is connected to the refrigerant inlet of the evaporator 5 , the refrigerant outlet of the evaporator 5 is connected to the compressor 6 , and the outlet of the compressor 6 is connected to the refrigerant inlet of the condenser 7 .
  • the boiler flue gas After the boiler flue gas is denitrified and dedusted, it enters the water cooler 1, and the flue gas is cooled to near room temperature by indirect heat exchange or contact spray cooling, and the flue gas condensate is discharged at the same time.
  • the saturated wet flue gas after water cooling and cooling enters the low-temperature n-pentane washing tower 2, and is washed and cooled to the sublimation temperature of carbon dioxide by the low-temperature n-pentane liquid sprayed from top to bottom, so that H 2 O, SO 2 and CO 2 are separated from the flue gas in solid form.
  • H 2 O, SO 2 and CO 2 are all insoluble in pentane liquid, they condense out and form solid-liquid mixed slurry with pentane liquid, flow out from the bottom of washing tower 2, pass through low temperature circulating pump 3, and enter into solid-liquid separator 4. Separate solid H 2 O, SO 2 and CO 2 .
  • pentane washing liquid is cooled to the set temperature by the refrigerant in the evaporator 5, it enters the top of the washing tower 2 and is recycled.
  • the low-temperature clean flue gas after desulfurization and decarbonization enters the condenser 7, exchanges heat with the high-temperature refrigerant at the compressor outlet to recover the cold energy, and then discharges it into the chimney.
  • the solid H 2 O, SO 2 and CO 2 separated by the solid-liquid separator 4 is a thick slurry mixture, which is fed into the rectification separation tower 10 by the thick slurry pump 9 .
  • a reboiler is set at the bottom of the rectification separation tower 10, and CO 2 is separated from the top of the tower by heating, as CO 2 by-product or used for storage, SO 2 and H 2 O are discharged from the bottom of the tower for subsequent use in sulfuric acid production.
  • the pentane washing liquid is cooled to -120 °C by the carbon tetrafluoride refrigerant in the evaporator 5, and enters the top of the washing tower 2, and sprays and cools the flue gas.
  • the low-temperature clean flue gas after decarbonization enters the condenser 7, exchanges heat with the high-temperature refrigerant at the compressor outlet to recover the cold energy, and then discharges into the chimney.
  • the boiler flue gas After the boiler flue gas goes through processes such as denitration, dust removal and desulfurization, it enters the water cooler, where it is cooled to 30°C by water cooling, and the flue gas condensate is discharged at the same time.
  • the saturated wet flue gas after water cooling and cooling enters the molecular sieve drying tower.
  • the molecular sieve tower adopts the two-tower mode, and the processes of drying, regeneration and cooling are carried out respectively according to the set program.
  • the moisture in the flue gas is blown during the heating and regeneration process of the molecular sieve tower. Sweep out.
  • the dry flue gas after drying by the molecular sieve tower enters the cold energy recovery device, exchanges heat with the low-temperature clean flue gas, and is pre-cooled to the sub-zero temperature area. Since the moisture in the flue gas is removed by the molecular sieve, there will be no ice blockage in the cold energy recovery device.
  • the flue gas pre-cooled by the cold energy recovery device enters the low-temperature washing cooling tower, and is sprayed and cooled to -117 °C by the low-temperature washing liquid.
  • the liquid forms a solid-liquid mixed slurry, which flows out from the bottom of the washing tower, passes through a low-temperature circulating pump, and enters the solid-liquid separator to separate solid dry ice.
  • the low-temperature washing liquid is cooled to -120 °C by the carbon tetrafluoride refrigerant in the evaporator, enters the top of the washing tower, and sprays the cooling flue gas.
  • the decarbonized low-temperature clean flue gas is heated by the cold energy recovery device and then discharged into the chimney.
  • the two equipments of the molecular sieve drying tower and the cooling capacity recovery device are omitted. There is no risk of freezing and clogging in the sub-zero temperature area cooling.
  • the cooling capacity of the low-temperature clean flue gas is recovered through the condenser of the refrigeration system, reducing the cooling water Therefore, the process of the present invention has more application potential.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种低温戊烷洗烟气同时脱硫脱碳***及工艺,锅炉烟气经过脱硝、除尘和脱硫等工序后,进入到水冷器,通过水冷降温,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到低温戊烷洗涤塔,被由上而下喷淋的低温戊烷液体洗涤冷却,烟气中的二氧化碳以及水分以固态干冰和固态冰的形式从烟气中分离出来,与戊烷液体形成固液混合浆液,从洗涤塔塔底流出,经过低温循环泵,进入到固液分离器,分离出固态干冰和固态冰。戊烷洗涤液在蒸发器中被四氟化碳制冷剂冷却后,进入洗涤塔塔顶,喷淋冷却烟气。经脱碳后的低温净烟气进入到冷凝器,与压缩机出口高温制冷剂换热回收冷量后排入烟囱。

Description

低温戊烷洗烟气同时脱硫脱碳***及工艺
本申请要求于2020年08月14日日提交中国专利局、申请号为202010820840.8、发明名称为“低温戊烷洗烟气同时脱硫脱碳***及工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于烟气污染物治理和碳减排技术领域,具体涉及一种利用低温戊烷液体洗涤冷却烟气,进而将烟气中二氧化硫和二氧化碳同时冷凝脱除的***及工艺。
背景技术
火力发电机组产生的烟气中含有SO 2、NO x等污染物,同时也排放出大量的温室气体CO 2。为了保持国民经济的可持续发展,大力发展清洁低碳能源成为社会共识,因此烟气污染物脱除和二氧化碳捕集是煤炭能源适应清洁低碳发展要求的必然选择。
当前主流烟气脱硫工艺一般采用碱液洗涤脱除,简称湿法脱硫。成熟的工艺包括氨法脱硫、石灰石-石膏法脱硫、双碱法脱硫等。烟气脱碳技术则主要以化学吸收法为主,以醇氨吸收法为代表。湿法脱硫消耗大量的石灰石或其它化学药剂,且容易产生大量脱硫废水。化学吸收法脱碳技术则存在能耗高、吸收剂损耗大的技术难题。因此寻求替代脱硫脱碳技术,尤其是可以同时进行脱硫脱碳的技术逐渐成为研究热点。
发明内容
本发明的目的在于提供一种低温戊烷洗烟气同时脱硫脱碳***及工艺,以克服现有技术的缺陷,本发明利用低温戊烷洗涤冷却烟气,同时将烟气中的SO 2和CO 2冷凝分离出来,适用于除尘后未脱硫烟气。
为达到上述目的,本发明采用如下技术方案:
低温戊烷洗烟气同时脱硫脱碳***,包括水冷器,水冷器的入口连接经过脱硝和除尘后的锅炉烟气,水冷器的底部设置有烟气冷凝水出口,水冷器的湿烟气出口连接至用于将湿烟气中的H 2O、SO 2和CO 2以固态的形式分离出来的洗涤塔,洗涤塔的顶部设置有冷烟气出口,上部设置有洗涤 液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器连接至烟囱,所述固液混合物出口连接至固液分离器,固液分离器的液体出口通过蒸发器连接至洗涤液入口,固液分离器的固体出口连接至精馏分离塔,精馏分离塔内侧底部设置有再沸器,精馏分离塔的顶部设置有气态CO 2出口,底部设置有H 2O和SO 2出口,所述冷凝器的制冷剂出口连接至蒸发器的制冷剂入口,蒸发器的制冷剂出口连接至压缩机,压缩机的出口连接至冷凝器的制冷剂入口。
进一步地,所述洗涤液为低温正戊烷。
进一步地,所述固液混合物出口通过循环泵连接至固液分离器。
进一步地,所述固液分离器的固体出口通过稠浆泵连接至精馏分离塔。
进一步地,所述固液分离器顶部还连接有洗涤液补充管路。
一种低温戊烷洗烟气同时脱硫脱碳工艺,锅炉烟气经过脱硝和除尘后,进入到水冷器,将烟气降温至接近室温,同时排出烟气冷凝水,经水冷降温之后的饱和湿烟气进入到洗涤塔,被由上而下喷淋的洗涤液洗涤冷却至二氧化碳凝华温度,从而将烟气中的H 2O、SO 2和CO 2以固态的形式从烟气中分离出来,由于H 2O、SO 2和CO 2均不溶于洗涤液,冷凝出来后与洗涤液形成固液混合浆液,从洗涤塔塔底流出,进入到固液分离器,分离出固态H 2O、SO 2和CO 2,洗涤液在蒸发器中被制冷剂冷却至设定温度后,进入洗涤塔塔顶,循环使用,经脱硫脱碳后的低温净烟气进入到冷凝器,与压缩机出口高温制冷剂换热回收冷量后排入烟囱,由固液分离器分离出来的固态H 2O、SO 2和CO 2是一种浓稠浆状混合物,由稠浆泵输入精馏分离塔,精馏分离塔底部再沸器通过加热将CO 2从塔顶分离出来,作为CO 2副产品或者用于封存,SO 2和H 2O从塔底排出,用于后续制硫酸。
进一步地,所述水冷器通过间接换热或接触式喷淋降温方式将烟气降温至接近室温。
进一步地,所述固液分离器顶部还连接有洗涤液补充管路,以补充烟气带走的部分洗涤液。
与现有技术相比,本发明具有以下有益的技术效果:
本发明采用低温正戊烷直接喷淋冷却湿烟气,将湿烟气直接从零度以上温区冷却至零度以下温区,烟气中的水分在零下温区结冰后随着正戊烷 液体一同排出冷却***,不会造成冰堵。而现有技术采用间接换热的方式,通过回收低温净烟气冷量来将原烟气预冷至零度以下温区,为了防止烟气水分结冰堵塞换热器,需要在冷却前增设分子筛除湿***。本发明所述工艺则无需增设分子筛烟气干燥塔。此外,本发明低温净烟气冷量通过制冷***冷凝器回收,降低制冷能耗;烟气中二氧化碳和二氧化硫同时从烟气中冷凝脱除;并且二氧化碳和二氧化硫由于沸点不同,通过精馏塔分离,分别回收利用。
附图说明
说明书附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明低温戊烷洗一体化脱硫脱碳工艺示意图。
其中,1、水冷器;2、洗涤塔;3、循环泵;4、固液分离器;5、蒸发器;6、压缩机;7、冷凝器;8、节流阀;9、稠浆泵;10、精馏分离塔。
具体实施方式
下面对本发明作进一步详细描述:
低温戊烷洗烟气同时脱硫脱碳***,包括水冷器1,水冷器1的入口连接经过脱硝和除尘后的锅炉烟气,水冷器1的底部设置有烟气冷凝水出口,水冷器1的湿烟气出口连接至用于将湿烟气中的H 2O、SO 2和CO 2以固态的形式分离出来的低温正戊烷洗涤塔2,洗涤塔2的顶部设置有冷烟气出口,上部设置有洗涤液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器7连接至烟囱,所述固液混合物出口通过循环泵3连接至固液分离器4,所述固液分离器4顶部连接有洗涤液补充管路,固液分离器4的液体出口通过蒸发器5连接至洗涤液入口,固液分离器4的固体出口通过稠浆泵9连接至精馏分离塔10,精馏分离塔10内侧底部设置有再沸器,精馏分离塔10的顶部设置有气态CO 2出口,底部设置有H 2O和SO 2出口,所述冷凝器7的制冷剂出口通过节流阀8连接至蒸发器5的制冷剂入口,蒸发器5的制冷剂出口连接至压缩机6,压缩机6的出口连接至冷凝器7的制冷剂入口。
锅炉烟气经过脱硝和除尘后,进入到水冷器1,通过间接换热或接触式喷淋降温等方式将烟气降温至接近室温,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到低温正戊烷洗涤塔2,被由上而下喷淋的低温正戊烷液体洗涤冷却至二氧化碳凝华温度,从而将烟气中的H 2O、SO 2和CO 2以固态的形式从烟气中分离出来。由于H 2O、SO 2和CO 2均不溶于戊烷液体,冷凝出来后与戊烷液体形成固液混合浆液,从洗涤塔2塔底流出,经过低温循环泵3,进入到固液分离器4,分离出固态H 2O、SO 2和CO 2。戊烷洗涤液在蒸发器5中被制冷剂冷却至设定温度后,进入洗涤塔2塔顶,循环使用。经脱硫脱碳后的低温净烟气进入到冷凝器7,与压缩机出口高温制冷剂换热回收冷量后排入烟囱。由于烟气会带走少量戊烷,因此需要定期从固液分离器4中补充戊烷,维持物流平衡。由固液分离器4分离出来的固态H 2O、SO 2和CO 2是一种浓稠浆状混合物,由稠浆泵9输入精馏分离塔10。精馏分离塔10底部设置再沸器,通过加热将CO 2从塔顶分离出来,作为CO 2副产品或者用于封存,SO 2和H 2O从塔底排出,用于后续制硫酸利用。
为清楚说明本发明,下面结合实施例及附图,对本发明进行进一步详细说明。本领域技术人员了解,下述内容不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化,都在本发明的保护范围之内。
实施例
如附图1所示,锅炉烟气经过脱硝、除尘和脱硫等工序后,进入到水冷器1,通过水冷降温至30℃,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到低温戊烷洗涤塔2,被由上而下喷淋的低温戊烷液体洗涤冷却至-117℃,烟气中90%的二氧化碳以及99.99%以上的水分以固态干冰和固态冰的形式从烟气中分离出来,与戊烷液体形成固液混合浆液,从洗涤塔2塔底流出,经过循环泵3,进入到固液分离器4,分离出固态干冰和固态冰。戊烷洗涤液在蒸发器5中被四氟化碳制冷剂冷却至-120℃,进入洗涤塔2塔顶,喷淋冷却烟气。经脱碳后的低温净烟气进入到冷凝器7,与压缩机出口高温制冷剂换热回收冷量后排入烟囱。
对比例
锅炉烟气经过脱硝、除尘和脱硫等工序后,进入到水冷器,通过水冷 降温至30℃,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到分子筛干燥塔,分子筛塔采用两塔模式,按照设定程序分别进行干燥、再生、冷却等工序,烟气中的水分在分子筛塔加热再生过程中被吹扫出来。经过分子筛塔干燥后的干烟气进入到冷量回收器,与低温净烟气进行换热,被预冷至零度以下温区。由于烟气中水分被分子筛脱除,因此不会再冷量回收器中形成冰堵现象。经过冷量回收器预冷的烟气进入到低温洗涤冷却塔,被低温洗涤液喷淋冷却至-117℃,烟气中90%的二氧化碳以固态干冰形式从烟气中分离出来,与低温洗涤液形成固液混合浆液,从洗涤塔塔底流出,经过低温循环泵,进入到固液分离器,分离出固态干冰。低温洗涤液在蒸发器中被四氟化碳制冷剂冷却至-120℃,进入洗涤塔塔顶,喷淋冷却烟气。经脱碳后的低温净烟气经过冷量回收器加热后排入烟囱。
实施例和对比例相比,省却了分子筛干燥塔和冷量回收器两个设备,零下温区冷却没有结冰堵塞风险,低温净烟气的冷量通过制冷***冷凝器进行回收,降低冷却水用量,因此本发明所述工艺更具有应用潜力。

Claims (8)

  1. 低温戊烷洗烟气同时脱硫脱碳***,其特征在于,包括水冷器(1),所述水冷器(1)的入口连接经过脱硝和除尘后的锅炉烟气,所述水冷器(1)的底部设置有烟气冷凝水出口,所述水冷器(1)的湿烟气出口连接至用于将湿烟气中的H 2O、SO 2和CO 2以固态的形式分离出来的洗涤塔(2),所述洗涤塔(2)的顶部设置有冷烟气出口,上部设置有洗涤液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器(7)连接至烟囱,所述固液混合物出口连接至固液分离器(4),所述固液分离器(4)的液体出口通过蒸发器(5)连接至所述洗涤液入口,所述固液分离器(4)的固体出口连接至精馏分离塔(10),所述精馏分离塔(10)内侧底部设置有再沸器,所述精馏分离塔(10)的顶部设置有气态CO 2出口,底部设置有H 2O和SO 2出口,所述冷凝器(7)的制冷剂出口连接至所述蒸发器(5)的制冷剂入口,所述蒸发器(5)的制冷剂出口连接至压缩机(6),所述压缩机(6)的出口连接至所述冷凝器(7)的制冷剂入口。
  2. 根据权利要求1所述的低温戊烷洗烟气同时脱硫脱碳***,其特征在于,所述洗涤液为低温正戊烷。
  3. 根据权利要求1所述的低温戊烷洗烟气同时脱硫脱碳***,其特征在于,所述固液混合物出口通过循环泵(3)连接至所述固液分离器(4)。
  4. 根据权利要求1所述的低温戊烷洗烟气同时脱硫脱碳***,其特征在于,所述固液分离器(4)的固体出口通过稠浆泵(9)连接至所述精馏分离塔(10)。
  5. 根据权利要求1所述的低温戊烷洗烟气同时脱硫脱碳***,其特征在于,所述固液分离器(4)顶部还连接有洗涤液补充管路。
  6. 一种低温戊烷洗烟气同时脱硫脱碳工艺,基于权利要求1-5任一项所述的低温戊烷洗烟气同时脱硫脱碳***,其特征在于,锅炉烟气经过脱硝和除尘后,进入到水冷器(1),将烟气降温至接近室温,同时排出烟气冷凝水,经水冷降温之后的饱和湿烟气进入到洗涤塔(2),被由上而下喷淋的洗涤液洗涤冷却至二氧化碳凝华温度,从而将烟气中的H 2O、SO 2和CO 2以固态的形式从烟气中分离出来,由于H 2O、SO 2和CO 2均不溶于洗涤液,冷凝出来后与洗涤液形成固液混合浆液,从洗涤塔(2)塔底流出, 进入到固液分离器(4),分离出固态H 2O,SO 2和CO 2,洗涤液在蒸发器(5)中被制冷剂冷却至设定温度后,进入洗涤塔(2)塔顶,循环使用,经脱硫脱碳后的低温净烟气进入到冷凝器(7),与压缩机(6)出口高温制冷剂换热回收冷量后排入烟囱,由固液分离器(4)分离出来的固态H 2O,SO 2和CO 2是一种浓稠浆状混合物,由稠浆泵(9)输入精馏分离塔(10),精馏分离塔(10)底部再沸器通过加热将CO 2从塔顶分离出来,作为CO 2副产品或者用于封存,SO 2和H 2O从塔底排出,用于后续制硫酸。
  7. 根据权利要求6所述的一种低温戊烷洗烟气同时脱硫脱碳工艺,其特征在于,所述水冷器(1)通过间接换热或接触式喷淋降温方式将烟气降温至接近室温。
  8. 根据权利要求6所述的一种低温戊烷洗烟气同时脱硫脱碳工艺,其特征在于,所述固液分离器(4)顶部还连接有洗涤液补充管路,以补充烟气带走的部分洗涤液。
PCT/CN2021/112185 2020-08-14 2021-08-12 低温戊烷洗烟气同时脱硫脱碳***及工艺 WO2022033539A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021001534.6T DE112021001534T5 (de) 2020-08-14 2021-08-12 System und Verfahren zur gleichzeitigen Entschwefelung und Entkarbonisierung von Rauchgas durch Waschen mit tiefkaltem Pentan
JP2023600019U JP3242966U (ja) 2020-08-14 2021-08-12 煙道ガスの脱硫・脱炭システム
EP21855589.4A EP4197611A1 (en) 2020-08-14 2021-08-12 System and process for simultaneous desulfurization and decarburization by washing flue gas using low-temperature pentane
AU2021325250A AU2021325250B2 (en) 2020-08-14 2021-08-12 System and method for washing, desulfurizing and decarbonizing flue gas with low temperature pentane
US17/823,320 US20220412556A1 (en) 2020-08-14 2022-08-30 System and method for desulfurizing and decarbonizing flue gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010820840.8A CN111841067A (zh) 2020-08-14 2020-08-14 低温戊烷洗烟气同时脱硫脱碳***及工艺
CN202010820840.8 2020-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/823,320 Continuation US20220412556A1 (en) 2020-08-14 2022-08-30 System and method for desulfurizing and decarbonizing flue gas

Publications (1)

Publication Number Publication Date
WO2022033539A1 true WO2022033539A1 (zh) 2022-02-17

Family

ID=72968999

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/121304 WO2022032858A1 (zh) 2020-08-14 2020-10-15 低温戊烷洗烟气同时脱硫脱碳***及工艺
PCT/CN2021/112185 WO2022033539A1 (zh) 2020-08-14 2021-08-12 低温戊烷洗烟气同时脱硫脱碳***及工艺

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121304 WO2022032858A1 (zh) 2020-08-14 2020-10-15 低温戊烷洗烟气同时脱硫脱碳***及工艺

Country Status (7)

Country Link
US (1) US20220412556A1 (zh)
EP (1) EP4197611A1 (zh)
JP (1) JP3242966U (zh)
CN (1) CN111841067A (zh)
AU (1) AU2021325250B2 (zh)
DE (2) DE202021004278U1 (zh)
WO (2) WO2022032858A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841067A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳***及工艺
CN111841064A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗二氧化碳捕集***和方法
CN113756768A (zh) * 2021-09-03 2021-12-07 中石化石油机械股份有限公司三机分公司 烟气高压注气驱油一橇化油田设备
CN117482725B (zh) * 2023-12-12 2024-06-14 华北电力大学 一种燃煤电厂烟气脱硫脱碳及固化重金属的***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057293A (ja) * 2015-09-17 2017-03-23 新日鐵住金株式会社 硫化水素含有ガスからの湿式脱硫方法
CN206089038U (zh) * 2016-08-26 2017-04-12 江苏中圣高科技产业有限公司 烟气余热再生脱硫制取液态so2的装置
CN110152462A (zh) * 2019-06-18 2019-08-23 中国华能集团有限公司 一种低温冷凝烟气一体化脱硫脱硝***及方法
CN110180317A (zh) * 2019-06-18 2019-08-30 中国华能集团有限公司 一种同时脱除烟气中二氧化碳和二氧化硫的***及方法
CN111841067A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳***及工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003860A (ja) * 2000-06-19 2002-01-09 Namura Shipbuilding Co Ltd 廃プラスチック類の溶融油化装置
CN101559310A (zh) * 2008-10-31 2009-10-21 朱耀平 烟气净化装置
EP2531269A4 (en) * 2010-02-03 2014-02-19 Exxonmobil Upstream Res Co SYSTEM AND METHOD FOR USING A COLD LIQUID TO REMOVE COMPATIBLE GAS COMPONENTS FROM PROCESS GAS FLOWS
CN102583283B (zh) * 2012-01-13 2013-07-10 四川大学 一种熔融结晶法制备电子级磷酸的方法
CN102620523B (zh) * 2012-04-16 2014-10-15 上海交通大学 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺
CN104261502B (zh) * 2014-09-26 2016-08-24 马军 含有机溶剂废水处理方法及其装置
US10882001B2 (en) * 2017-03-06 2021-01-05 Hall Labs Llc Method for removing a foulant from a gas stream with minimal external refrigeration
CN109078447A (zh) * 2018-10-18 2018-12-25 中国华能集团清洁能源技术研究院有限公司 一种烟气回收干冰的装置及方法
CN210544174U (zh) * 2019-06-18 2020-05-19 中国华能集团有限公司 一种同时脱除烟气中二氧化碳和二氧化硫的***
CN212327453U (zh) * 2020-08-14 2021-01-12 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057293A (ja) * 2015-09-17 2017-03-23 新日鐵住金株式会社 硫化水素含有ガスからの湿式脱硫方法
CN206089038U (zh) * 2016-08-26 2017-04-12 江苏中圣高科技产业有限公司 烟气余热再生脱硫制取液态so2的装置
CN110152462A (zh) * 2019-06-18 2019-08-23 中国华能集团有限公司 一种低温冷凝烟气一体化脱硫脱硝***及方法
CN110180317A (zh) * 2019-06-18 2019-08-30 中国华能集团有限公司 一种同时脱除烟气中二氧化碳和二氧化硫的***及方法
CN111841067A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳***及工艺

Also Published As

Publication number Publication date
DE202021004278U1 (de) 2023-06-23
EP4197611A1 (en) 2023-06-21
WO2022032858A1 (zh) 2022-02-17
AU2021325250A1 (en) 2022-10-06
CN111841067A (zh) 2020-10-30
DE112021001534T5 (de) 2023-01-05
JP3242966U (ja) 2023-07-27
AU2021325250B2 (en) 2024-05-02
US20220412556A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2022033539A1 (zh) 低温戊烷洗烟气同时脱硫脱碳***及工艺
CN212327453U (zh) 低温戊烷洗烟气同时脱硫脱碳***
RU2484882C2 (ru) Способ удаления co2 (варианты)
WO2022033597A1 (zh) 低温戊烷洗二氧化碳捕集***和方法
CN110115910A (zh) 一种节能型二氧化碳捕集***及方法
CN109045976A (zh) 一种氨法脱硫烟气消白余热深度回收***及应用
US20110168020A1 (en) wash water method and system for a carbon dioxide capture process
CN114768488A (zh) 一种燃煤机组烟气二氧化碳捕集***
WO2022033512A1 (zh) 近零排放型烟气多污染物一体化脱除***及方法
CN104066494A (zh) 通过二氧化碳产品液体在水洗液体中捕集氨
CN209034090U (zh) 一种氨法脱硫烟气消白余热深度回收***
CN106268268A (zh) 一种再生氨并制取液态二氧化硫的脱硫装置及方法
CN212395926U (zh) 低温戊烷洗二氧化碳捕集***
CN115608133A (zh) 一种烟气碳捕集***和对烟气进行碳捕集的方法
CN216347344U (zh) 一种利用结晶氨法实现碳捕集与液化的装置
CN218012003U (zh) 用于氯化铵干燥的回转干燥尾气净化***
JPH0824818B2 (ja) 排気ガスの精製方法
US20230356143A1 (en) Ammonia-based carbon dioxide abatement system and method, and direct contact cooler therefore
CN219291039U (zh) 氨法脱碳***
US20240216854A1 (en) Method and device for washing and purification with low-temperature methanol
CN116603369A (zh) 一种高效吸收二氧化硫吸收剂
CN116928686A (zh) 一种耦合碳捕集的烟气余热深度利用***及方法
CN117815845A (zh) 集水平衡控制及***内热利用耦合的湿法碳捕集工艺
CN112944376A (zh) 一种有色烟羽脱除***及应用
CN115487649A (zh) 一种燃煤发电机组耦合蒸汽喷射器的碳捕集***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021325250

Country of ref document: AU

Date of ref document: 20210812

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023600019

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021855589

Country of ref document: EP

Effective date: 20230314