WO2022033424A1 - 资源传输方法、装置及通信设备 - Google Patents

资源传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2022033424A1
WO2022033424A1 PCT/CN2021/111499 CN2021111499W WO2022033424A1 WO 2022033424 A1 WO2022033424 A1 WO 2022033424A1 CN 2021111499 W CN2021111499 W CN 2021111499W WO 2022033424 A1 WO2022033424 A1 WO 2022033424A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
scheduling
pusch
uplink transmission
puschs
Prior art date
Application number
PCT/CN2021/111499
Other languages
English (en)
French (fr)
Inventor
李娜
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21855476.4A priority Critical patent/EP4199627A4/en
Priority to KR1020237007613A priority patent/KR20230048102A/ko
Priority to JP2023509553A priority patent/JP2023537957A/ja
Publication of WO2022033424A1 publication Critical patent/WO2022033424A1/zh
Priority to US18/108,049 priority patent/US20230189259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a resource transmission method, an apparatus and a communication device.
  • uplink transmission methods are divided into dynamic grant based and configured grant based.
  • the transmission parameters are dynamically indicated by the physical layer signaling;
  • the transmission parameters are semi-statically configured by the upper layer, or jointly configured and indicated by the upper layer and the physical layer.
  • the terminal can only adopt a fixed uplink transmission mode in the unlicensed frequency band. It can be seen that the flexibility of the uplink transmission of the terminal in the unlicensed frequency band is relatively poor.
  • the present application provides a resource transmission method, apparatus and communication device, which can solve the problem of poor flexibility of uplink transmission of a terminal in an unlicensed frequency band in the related art.
  • a resource transmission method applied to a terminal, and the method includes:
  • first information includes at least one of configuration information and scheduling information for uplink transmission
  • an uplink transmission mode is determined; wherein the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • a resource transmission method applied to a network side device, and the method includes:
  • the first information includes at least one of configuration information and uplink transmission scheduling information, and the first information is used to indicate an uplink transmission mode of the terminal, and the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or The uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • a resource transmission apparatus which is applied to a terminal, and the apparatus includes:
  • an acquisition module configured to acquire first information, where the first information includes at least one of configuration information and scheduling information for uplink transmission;
  • a determining module configured to determine an uplink transmission mode based on the first information, wherein the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • a resource transmission apparatus which is applied to a network side device, and the apparatus includes:
  • a sending module configured to send the first information to the terminal
  • the first information includes at least one of configuration information and uplink transmission scheduling information, and the first information is used to indicate an uplink transmission mode of the terminal, and the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or The uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being implemented when executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the resource transmission method described in the first aspect are implemented, or The steps of implementing the resource transmission method according to the second aspect.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the resource according to the first aspect A transmission method, or implement the resource transmission method according to the second aspect.
  • a computer program product stored in a readable storage medium, the computer program product is executed by at least one processor to implement the resource transmission method as described in the first aspect, or to implement the second aspect.
  • the resource transmission method is not limited to:
  • a communication device configured to execute the resource transmission method as described in the first aspect or the resource transmission method as described in the second aspect.
  • the terminal obtains the configuration information and/or the scheduling information of the uplink transmission in the first information, and then determines the uplink transmission mode, the uplink transmission mode supports frequency hopping in the unlicensed frequency band, or the uplink transmission
  • the method does not support frequency hopping in the unlicensed frequency band, and the behavior of the terminal in the unlicensed frequency band is clarified, so that the terminal can realize two uplink transmission modes of frequency hopping or no frequency hopping in the unlicensed frequency band, which enhances the uplink transmission of the terminal in the unlicensed frequency band. Transmission flexibility.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is a flowchart of a resource transmission method provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of an uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2b is a schematic diagram of another uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2c is a schematic diagram of another uplink transmission manner of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2d is a schematic diagram of another uplink transmission manner of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2e is a schematic diagram of another uplink transmission manner of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2f is a schematic diagram of another uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2g is a schematic diagram of another uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2h is a schematic diagram of another uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2j is a schematic diagram of another uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 2k is a schematic diagram of another uplink transmission mode of the resource transmission method provided by the embodiment of the present application.
  • FIG. 3 is a flowchart of another resource transmission method provided by an embodiment of the present application.
  • FIG. 4 is a structural diagram of a resource transmission apparatus provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of another resource transmission apparatus provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-mobile Personal Computer (UMPC), Mobile Internet Device (MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • MID Wearable Device
  • VUE vehicle-mounted device
  • PUE pedestrian terminal
  • wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 is a flowchart of a resource transmission method provided by an embodiment of the present application, where the resource transmission method is applied to a terminal.
  • the resource transmission method includes the following steps:
  • Step 201 Obtain first information, where the first information includes at least one item of configuration information and scheduling information for uplink transmission.
  • the configuration information may be used to indicate whether the terminal supports frequency hopping in an unlicensed frequency band.
  • the configuration information indicates that the terminal supports frequency hopping in the unlicensed frequency band.
  • the first information further includes scheduling information for uplink and downlink transmission, and the scheduling information is used to indicate the uplink transmission mode of the terminal in the unlicensed frequency band; Or the configuration information indicates that the terminal does not support frequency hopping in an unlicensed frequency band.
  • the first information also does not include scheduling information for uplink transmission.
  • the first information may also be scheduling information that only includes uplink and downlink transmission, and the scheduling information may indicate that the terminal supports frequency hopping in an unlicensed frequency band.
  • the first information satisfies at least one of the following:
  • the first information may be configured by a network-side device and sent to the terminal, or the first information may also be specified based on a protocol.
  • Step 202 Determine an uplink transmission mode based on the first information, wherein the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • the terminal determines whether to support frequency hopping in the unlicensed frequency band based on the configuration information in the first information and/or the scheduling information of uplink transmission. For example, if the configuration information indicates that the terminal does not support frequency hopping in the unlicensed frequency band, the terminal will not perform frequency hopping in the uplink transmission of the unlicensed frequency band; if the first information indicates that the terminal supports frequency hopping in the unlicensed frequency band , the terminal will also use the frequency hopping mode to implement uplink transmission in the unlicensed frequency band.
  • the scheduling information can also indicate transmission parameters such as the uplink transmission type of the terminal, the transmission length of the Physical Uplink Shared Channel (PUSCH), the transmission start symbol, and the candidate transmission position of the PUSCH.
  • PUSCH Physical Uplink Shared Channel
  • An optional implementation manner of the scheduling information in the embodiment of the present application will be described.
  • the uplink transmission mode supports Intra-slot frequency hopping in licensed frequency bands.
  • the number of candidate PUSCHs in the time slot may be indicated by cg-nrofPUSCH-InSlot in the scheduling information.
  • the terminal can support frequency hopping in the time slot of the unlicensed frequency band.
  • the intra-slot frequency hopping is applicable to single-slot uplink transmission and multi-slot uplink transmission.
  • the scheduling information indicates that the uplink transmission is PUSCH based on grant scheduling
  • the number of candidate PUSCHs in a time slot is 1, and the number of consecutive time slots is greater than 1
  • the uplink transmission mode supports the unlicensed PUSCH.
  • the number of consecutive time slots may be indicated by cg-nrofSlots-r16 in the scheduling information.
  • the terminal can support frequency hopping in the time slot of the unlicensed frequency band, and can also support the frequency hopping in the unlicensed frequency band. Frequency hopping between time slots.
  • the uplink transmission mode supports the transmission in the unlicensed frequency band. Frequency hopping within time slots;
  • the first preset condition includes at least one of the following:
  • the terminal is not configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the PUSCH aggregation factor may be indicated by the pusch-Aggregation Factor in the scheduling information, and the number of repetitions of the PUSCH may be indicated by the number of repetitions in the scheduling information.
  • the terminal when the scheduling information indicates that the number of repetitions of PUSCH is 1, the uplink scheduling allows scheduling of at least two PUSCHs, and the time domain resources of the scheduled at least two PUSCHs are located in the same time slot, then the terminal supports PUSCH in the same time slot. Frequency hopping within a time slot.
  • the scheduling information indicates that the PUSCH aggregation factor is not configured, and the uplink scheduling allows scheduling of one PUSCH, the terminal supports PUSCH frequency hopping within the time slot.
  • the first preset condition indicated by the scheduling information may also be in other specific forms, which are not listed one by one in this application.
  • the uplink transmission mode supports frequency hopping and/or frequency hopping in the time slot of the unlicensed frequency band. or frequency hopping between time slots;
  • the second preset condition includes at least one of the following:
  • the terminal is configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is greater than 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the second preset condition indicated by the scheduling information may also be in other specific forms, which are not listed one by one in this application.
  • the frequency hopping mode of frequency hopping within a time slot and/or frequency hopping between time slots may be configured by a network side device.
  • the network-side device may send configuration information to the terminal to indicate which frequency hopping mode the terminal uses to perform intra-slot frequency hopping and/or inter-slot frequency hopping.
  • the specific manner of the frequency hopping mode may refer to subsequent implementations description in the method.
  • the terminal when the uplink scheduling allows scheduling of at least two PUSCHs, and the time domain resources of the scheduled at least two PUSCHs are located in at least one time slot, the terminal only transmits the data in the first time slot. PUSCH. That is, no matter whether the time domain resources of the at least two PUSCHs are located in the same time slot or in different time slots, the terminal only transmits the PUSCH in the first time slot.
  • the terminal may transmit the same PUSCH or transmit different PUSCHs in one dynamic scheduling and/or one grant scheduling period.
  • the uplink transmission mode when the terminal determines that the uplink transmission mode supports frequency hopping in an unlicensed frequency band, the uplink transmission mode supports at least one of the following frequency hopping modes:
  • the time position of the frequency hopping is determined according to at least one of the following:
  • the uplink transmission mode of the terminal supports frequency hopping within the PUSCH.
  • one PUSCH occupies seven orthogonal frequency division multiplex (OFDM) symbols in time, and the frequency hopping in the PUSCH is that one PUSCH realizes frequency hopping in two frequency bands.
  • a hop can be occupied symbol the number of symbols occupied by the second hop is symbol, is the total number of symbols occupied by one PUSCH in time.
  • the first hop occupies 3 symbols in time, and the second hop occupies 4 symbols, so as to realize frequency hopping in the PUSCH.
  • the time position of the frequency hopping in the time slot (the position of the second hop) Determined according to the actually transmitted PUSCH.
  • the position of frequency hopping in the time slot is determined according to the actually transmitted PUSCH, the first hop in the time slot is N/2, the second hop is NN/2, where N is the actually transmitted PUSCH in the time slot number.
  • 1 PUSCH occupies 4 OFDM symbols in time, and the status of the first two PUSCH candidate transmission positions in the first time slot is failed, that is, no PUSCH is actually transmitted, and the actual The number of PUSCHs transmitted is 1, and the PUSCH does not frequency hop in the first time slot; the actual number of PUSCHs transmitted in the second time slot is 3, and the first hop and the second hop in the time slot The value of is the same, then the second PUSCH and the third PUSCH are both transmitted in the second frequency band.
  • the position of the second hop of the frequency hopping in the time slot is based on the configured PUSCH Candidate transmission locations are determined.
  • the time position of the frequency hopping in the time slot is determined according to the actually transmitted PUSCH, the first hop in the time slot is N/2, and the second hop is NN/2, where N is the actual transmission of the PUSCH in the time slot number of.
  • 1 PUSCH occupies 4 OFDM symbols in time, and the status of the first two PUSCH candidate transmission positions in the first time slot is failed, that is, no PUSCH is actually transmitted, and the actual
  • the number of PUSCH transmitted is 1, and the frequency hopping position in the time slot is determined according to the configured PUSCH candidate transmission position, and then the transmission position of the PUSCH actually transmitted in the first time slot is also shown in Figure 2e;
  • the number of PUSCHs actually transmitted in the second time slot is 3, and the values of the first hop and the second hop in this time slot are the same, so the second PUSCH and the third PUSCH are both in the second time slot. frequency band transmission.
  • the time position of the frequency hopping is determined according to the actually transmitted PUSCH.
  • 1 PUSCH occupies 4 OFDM symbols in time, and the status of the first PUSCH candidate transmission position in the first time slot is failed, that is, no PUSCH is actually transmitted, and the actual The number of transmitted PUSCHs is 2, and the time position of frequency hopping in this time slot is determined according to the first PUSCH actually transmitted, the first PUSCH is located in the first frequency band, and the second PUSCH is located in the second frequency band; this implementation
  • the frequency hopping mode is frequency hopping between consecutive PUSCHs, and the number of repetitions of PUSCH is 4, and then the first PUSCH (that is, the third PUSCH) in the second time slot is relative to the last PUSCH in the first time slot.
  • Frequency hopping is used to determine the transmission positions of the 4 PUSCHs in the time slot, as
  • the time position of the frequency hopping is determined according to the configured PUSCH candidate transmission positions.
  • 1 PUSCH occupies 4 OFDM symbols in time, and the status of the first PUSCH candidate transmission position in the first time slot is failed, that is, no PUSCH is actually transmitted, and the frequency hopping in this time slot
  • the transmission position of the PUSCH is determined according to the configured PUSCH candidate transmission position, and the transmission position of the first PUSCH is also shown in Figure 2h; in this embodiment, the frequency hopping mode is frequency hopping between consecutive PUSCHs, and the number of repetitions of the PUSCH is 4.
  • the transmission positions of the other three subsequent PUSCHs are also determined based on the first PUSCH, as shown in Figure 2h.
  • the time position of the frequency hopping is determined according to the actually transmitted PUSCH.
  • one PUSCH occupies 4 OFDM symbols in time, and the statuses of the three PUSCH candidate transmission positions in the first time slot are all failed, that is, the first time slot does not actually transmit PUSCH, and the PUSCH is in the second time slot.
  • the time slot starts transmission, and in this embodiment, the frequency hopping mode is inter-slot frequency hopping, and the number of PUSCH repetitions is 2. Two PUSCHs can be transmitted in one time slot, and there is no frequency hopping in this time slot.
  • the time position of the frequency hopping is determined according to the configured PUSCH candidate transmission position.
  • one PUSCH occupies 4 OFDM symbols in time, and the status of the three PUSCH candidate transmission positions in the first time slot is all failed, that is, the first time slot does not actually transmit PUSCH, and the PUSCH is in the second time slot.
  • the time slot starts transmission; in this embodiment, the frequency hopping mode is frequency hopping between time slots, and the time position of frequency hopping is determined according to the configured PUSCH candidate transmission position, and then the PUSCH in the second time slot is relative to the PUSCH in the first time slot.
  • the candidate transmission position is frequency hopping.
  • the number of repetitions of the PUSCH is 2. Two PUSCHs can be transmitted in one time slot, and there is no frequency hopping in this time slot.
  • the above-mentioned frequency hopping mode may be a network side device configuration, for example, the network side device may send configuration information to the terminal to indicate the frequency hopping mode supported by the terminal.
  • the terminal can transmit the same or different PUSCHs in one dynamic scheduling and/or one grant period.
  • the terminal obtains configuration information and/or scheduling information of uplink transmission, and then determines the uplink transmission mode, and the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • the unlicensed frequency band frequency hopping clarifies the behavior of the terminal in the unlicensed frequency band, so that the terminal can realize two uplink transmission modes of frequency hopping or no frequency hopping in the unlicensed frequency band, and enhances the flexibility of the uplink transmission of the terminal in the unlicensed frequency band. sex.
  • FIG. 3 is a flowchart of another resource transmission method provided by an embodiment of the present application, where the resource transmission method is applied to a network side device.
  • the resource transmission method includes the following steps:
  • Step 301 Send first information to a terminal; wherein the first information includes at least one of configuration information and scheduling information for uplink transmission, the first information is used to indicate an uplink transmission mode of the terminal, and the uplink transmission
  • the method supports frequency hopping in the unlicensed frequency band, or the uplink transmission method does not support frequency hopping in the unlicensed frequency band.
  • the uplink transmission mode supports the unlicensed frequency band. Frequency hopping within a time slot.
  • the scheduling information indicates that the uplink transmission is PUSCH based on grant scheduling
  • the number of candidate PUSCHs in a time slot is 1, and the number of consecutive time slots is greater than 1
  • the uplink transmission mode supports the unlicensed PUSCH.
  • the uplink transmission mode supports frequency hopping within the time slot of the unlicensed frequency band
  • the first preset condition includes at least one of the following:
  • the terminal is not configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the uplink transmission mode supports frequency hopping and/or frequency hopping in the time slot of the unlicensed frequency band. or frequency hopping between time slots;
  • the second preset condition includes at least one of the following:
  • the terminal is configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is greater than 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the first information is used to instruct the terminal to transmit only the first PUSCH in slots.
  • the uplink transmission mode when the uplink transmission mode supports frequency hopping in an unlicensed frequency band, the uplink transmission mode supports at least one of the following frequency hopping modes:
  • the time position of frequency hopping is determined according to at least one of the following:
  • the terminal transmits the same or different PUSCHs in one dynamic scheduling and/or one grant scheduling period.
  • the network side device sends first information to the terminal, where the first information is used to indicate an uplink transmission mode of the terminal, the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not Supports frequency hopping in the unlicensed frequency band, which clarifies the behavior of the terminal in the unlicensed frequency band, so that the terminal can realize two uplink transmission modes of frequency hopping or no frequency hopping in the unlicensed frequency band, and enhances the terminal in the unlicensed frequency band.
  • Uplink flexibility is used to indicate an uplink transmission mode of the terminal, the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not Supports frequency hopping in the unlicensed frequency band, which clarifies the behavior of the terminal in the unlicensed frequency band, so that the terminal can realize two uplink transmission modes of frequency hopping or no frequency hopping in the unlicensed frequency band, and enhances the terminal in the unlicensed frequency band. Uplink flexibility.
  • the execution body may be a resource transmission apparatus, or a control module in the resource transmission apparatus for executing the resource transmission method.
  • the resource transmission device provided by the embodiment of the present application is described by taking the resource transmission method performed by the resource transmission device as an example.
  • FIG. 4 is a structural diagram of a resource transmission apparatus provided by an embodiment of the present application.
  • the resource transmission apparatus may be applied to a terminal.
  • the resource transmission apparatus includes a processor.
  • the resource transmission apparatus 400 includes:
  • an obtaining module 401 configured to obtain first information, where the first information includes at least one of configuration information and scheduling information for uplink transmission;
  • the determining module 402 is configured to determine an uplink transmission mode based on the first information, wherein the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • the first information satisfies any one of the following:
  • the uplink transmission mode supports the unlicensed frequency band. Frequency hopping within a time slot.
  • the scheduling information indicates that the uplink transmission is PUSCH based on grant scheduling
  • the number of candidate PUSCHs in a time slot is 1, and the number of consecutive time slots is greater than 1
  • the uplink transmission mode supports the unlicensed PUSCH.
  • the uplink transmission mode supports frequency hopping within the time slot of the unlicensed frequency band
  • the first preset condition includes at least one of the following:
  • the terminal is not configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the uplink transmission mode supports frequency hopping and/or frequency hopping in the time slot of the unlicensed frequency band. or frequency hopping between time slots;
  • the second preset condition includes at least one of the following:
  • the terminal is configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is greater than 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the apparatus when the uplink scheduling allows scheduling of at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot, the apparatus only transmits the PUSCH in the first time slot.
  • the frequency hopping mode of the intra-slot frequency hopping and/or the inter-slot frequency hopping is configured by the network side device.
  • the uplink transmission mode when the uplink transmission mode supports frequency hopping in an unlicensed frequency band, the uplink transmission mode supports at least one of the following frequency hopping modes:
  • the time position of frequency hopping is determined according to at least one of the following:
  • the apparatus transmits the same or different PUSCHs in one dynamic scheduling and/or one grant scheduling period.
  • the resource transmission apparatus determines an uplink transmission mode by acquiring configuration information and/or uplink transmission scheduling information in the first information, and the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or
  • the above uplink transmission method does not support frequency hopping in the unlicensed frequency band, which clarifies the behavior of the resource transmission device in the unlicensed frequency band, so that the resource transmission device can implement two uplink transmission methods of frequency hopping or no frequency hopping in the unlicensed frequency band, enhancing the The flexibility of the resource transmission device for uplink transmission in the unlicensed frequency band is improved.
  • the resource transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the resource transmission device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the resource transmission apparatus provided in the embodiment of the present application can implement the various processes implemented by the resource transmission method embodiment of FIG. 2, and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 5 is a structural diagram of another resource transmission apparatus provided by an embodiment of the present application.
  • the resource transmission apparatus may be applied to a network side device.
  • the resource transmission apparatus includes a processor.
  • the resource transmission apparatus 500 includes:
  • a sending module 501 configured to send first information to a terminal; wherein the first information includes at least one of configuration information and scheduling information for uplink transmission, the first information is used to indicate an uplink transmission mode of the terminal, and the The above uplink transmission mode supports frequency hopping in the unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • the uplink transmission mode supports the unlicensed frequency band. Frequency hopping within a time slot.
  • the scheduling information indicates that the uplink transmission is PUSCH based on grant scheduling
  • the number of candidate PUSCHs in a time slot is 1, and the number of consecutive time slots is greater than 1
  • the uplink transmission mode supports the unlicensed PUSCH.
  • the uplink transmission mode supports frequency hopping within the time slot of the unlicensed frequency band
  • the first preset condition includes at least one of the following:
  • the terminal is not configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the uplink transmission mode supports frequency hopping and/or frequency hopping in the time slot of the unlicensed frequency band. or frequency hopping between time slots;
  • the second preset condition includes at least one of the following:
  • the terminal is configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is greater than 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the first information is used to instruct the terminal to transmit only the first PUSCH in slots.
  • the uplink transmission mode when the uplink transmission mode supports frequency hopping in an unlicensed frequency band, the uplink transmission mode supports at least one of the following frequency hopping modes:
  • the time position of frequency hopping is determined according to at least one of the following:
  • the apparatus transmits the same or different PUSCHs in one dynamic scheduling and/or one grant scheduling period.
  • the resource transmission device provided by the embodiment of the present application sends first information to the terminal, where the first information is used to indicate an uplink transmission mode of the terminal, and the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission
  • the method does not support frequency hopping in the unlicensed frequency band, and the behavior of the terminal in the unlicensed frequency band is clarified through the resource transmission device, so that the terminal can realize two uplink transmission methods of frequency hopping or no frequency hopping in the unlicensed frequency band, which enhances the terminal Flexibility for uplink transmission in unlicensed bands.
  • the resource transmission apparatus provided in the embodiment of the present application can implement the various processes implemented in the above-mentioned embodiment of the resource transmission method in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the resource transmission method embodiment shown in FIG. 2 is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, each process of the resource transmission method embodiment shown in FIG. 3 described above can be implemented, and the same technical effect can be achieved. Repeat.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710 and other components .
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and then processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the processor 710 is configured to acquire first information, where the first information includes at least one of configuration information and scheduling information for uplink transmission;
  • an uplink transmission mode is determined; wherein the uplink transmission mode supports frequency hopping in an unlicensed frequency band, or the uplink transmission mode does not support frequency hopping in the unlicensed frequency band.
  • the first information satisfies any one of the following:
  • the uplink transmission mode supports the unlicensed frequency band. Frequency hopping within a time slot.
  • the scheduling information indicates that the uplink transmission is PUSCH based on grant scheduling
  • the number of candidate PUSCHs in a time slot is 1, and the number of consecutive time slots is greater than 1
  • the uplink transmission mode supports the unlicensed PUSCH.
  • the uplink transmission mode supports frequency hopping within the time slot of the unlicensed frequency band
  • the first preset condition includes at least one of the following:
  • the terminal is not configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the uplink transmission mode supports frequency hopping and/or frequency hopping in the time slot of the unlicensed frequency band. or frequency hopping between time slots;
  • the second preset condition includes at least one of the following:
  • the terminal is configured with a PUSCH aggregation factor
  • the number of repetitions of the PUSCH based on the dynamic indication is greater than 1;
  • Uplink scheduling allows scheduling of 1 PUSCH
  • the uplink scheduling allows scheduling at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot.
  • the terminal when the uplink scheduling allows scheduling of at least two PUSCHs, and the scheduled time domain resources of the at least two PUSCHs are located in at least one time slot, the terminal only transmits the PUSCH in the first time slot.
  • the frequency hopping mode of the intra-slot frequency hopping and/or the inter-slot frequency hopping is configured by the network side device.
  • the uplink transmission mode when the uplink transmission mode supports frequency hopping in an unlicensed frequency band, the uplink transmission mode supports at least one of the following frequency hopping modes:
  • the time position of frequency hopping is determined according to at least one of the following:
  • the terminal transmits the same or different PUSCHs in one dynamic scheduling and/or one grant scheduling period.
  • the terminal 700 can implement each process of the above-mentioned embodiment of the resource transmission method shown in FIG. 2 , and can achieve the same technical effect, which is not repeated here.
  • the terminal obtains the configuration information and/or the scheduling information of the uplink transmission in the first information, and then determines the uplink transmission mode, the uplink transmission mode supports frequency hopping in the unlicensed frequency band, or the uplink transmission mode Does not support frequency hopping in the unlicensed frequency band, clarifies the behavior of the terminal in the unlicensed frequency band, so that the terminal can realize two uplink transmission modes of frequency hopping or no frequency hopping in the unlicensed frequency band, and enhances the terminal's uplink transmission in the unlicensed frequency band flexibility.
  • the network device 800 includes: an antenna 81 , a radio frequency device 82 , and a baseband device 83 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 83 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 83 .
  • the baseband apparatus 83 includes a processor 84 and a memory 85 .
  • the baseband device 83 may include, for example, at least one baseband board on which a plurality of chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 84 and is connected to the memory 85 to call the program in the memory 85 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 83 may further include a network interface 86 for exchanging information with the radio frequency device 82, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored on the memory 85 and executable on the processor 84, and the processor 84 invokes the instructions or programs in the memory 85 to execute the modules shown in FIG. 5 .
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the resource transmission method embodiment shown in FIG. 2 above is implemented, Alternatively, each process of the embodiment of the resource transmission method shown in FIG. 3 can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the resource transmission described in FIG. 2 above.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the resource transmission described in FIG. 2 above.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • each module of the above device is only a division of logical functions, and in actual implementation, all or part of it may be integrated into a physical entity, or it may be physically separated.
  • These modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the acquisition module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned apparatus to realize, in addition, it may also be stored in the memory of the above-mentioned apparatus in the form of program code, and a certain processing element of the above-mentioned apparatus may Call and execute the above function to get the module.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源传输方法、装置及通信设备。资源传输方法应用于终端时,包括:获取第一信息,第一信息包括配置信息和上行传输的调度信息中的至少一项;基于第一信息,确定上行传输方式;其中,上行传输方式支持在非授权频段跳频,或者上行传输方式不支持在非授权频段跳频。

Description

资源传输方法、装置及通信设备
相关申请的交叉引用
本申请主张在2020年08月12日在中国提交的中国专利申请号No.202010809437.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种资源传输方法、装置及通信设备。
背景技术
在通信***中,上行传输方式分为基于动态调度(dynamic grant based)和基于授权调度(configured grant based)。动态调度的上行传输,其传输参数由物理层信令动态指示;授权调度的上行传输,其传输参数由高层半静态配置,或者是由高层和物理层共同配置、指示。目前,根据相关协议,终端在非授权频段只能采用固定的一种上行传输方式,可见,目前终端在非授权频段上的上行传输灵活性比较差。
发明内容
本申请提供了一种资源传输方法、装置及通信设备,能够解决相关技术中终端在非授权频段上的上行传输灵活性比较差的问题。
第一方面,提供了一种资源传输方法,应用于终端,所述方法包括:
获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项;
基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
第二方面,提供了一种资源传输方法,应用于网络侧设备,所述方法包括:
向终端发送第一信息;
其中,所述第一信息包括配置信息和上行传输的调度信息中的至少一项,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
第三方面,提供了一种资源传输装置,应用于终端,所述装置包括:
获取模块,用于获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项;
确定模块,用于基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
第四方面,提供了一种资源传输装置,应用于网络侧设备,所述装置包括:
发送模块,用于向终端发送第一信息;
其中,所述第一信息包括配置信息和上行传输的调度信息中的至少一项,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
第五方面,提供了一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的资源传输方法的步骤,或者实现如第二方面所述的资源传输方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的资源传输方法的步骤,或者实现如第二方面所述的资源传输方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的资源传输方法,或实现如第二方面所述的资源传输方法。
第八方面,提供了一种计算机程序产品,存储在可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的资源传输方法,或实现如第二方面所述的资源传输方法。
第九方面,提供了一种通信设备,所述通信设备用于执行如第一方面所 述的资源传输方法,或如第二方面所述的资源传输方法。
在本申请实施例中,终端获取第一信息中的配置信息和/或上行传输的调度信息,进而以确定上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频,明确了终端在非授权频段的行为,使得终端能够在非授权频段实现跳频或不跳频两种上行传输方式,增强了终端在非授权频段上行传输的灵活性。
附图说明
图1是本申请实施例可应用的一种无线通信***的框图;
图2是本申请实施例提供的一种资源传输方法的流程图;
图2a是本申请实施例提供的资源传输方法的一种上行传输方式示意图;
图2b是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2c是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2d是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2e是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2f是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2g是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2h是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2j是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图2k是本申请实施例提供的资源传输方法的另一种上行传输方式示意图;
图3是本申请实施例提供的另一种资源传输方法的流程图;
图4是本申请实施例提供的一种资源传输装置的结构图;
图5是本申请实施例提供的另一种资源传输装置的结构图;
图6是本申请实施例提供的一种通信设备的结构图;
图7是本申请实施例提供的一种终端的结构图;
图8是本申请实施例提供的一种网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR***应用以外的应用,如第6代(6 th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的资源传输方法进行详细地说明。
请参照图2,图2是本申请实施例提供的一种资源传输方法的流程图,所述资源传输方法应用于终端。如图2所示,所述资源传输方法包括以下步骤:
步骤201、获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项。
其中,所述配置信息可以是用于指示终端是否支持在非授权频段跳频。例如所述配置信息指示终端支持在非授权频段跳频,这种情况下,所述第一信息还包括上下传输的调度信息,所述调度信息用于指示终端在非授权频段的上行传输方式;或者所述配置信息指示所述终端不支持在非授权频段跳频,这种情况下,所述第一信息也就不包括上行传输的调度信息。需要说明的是, 所述第一信息也可以是只包括上下传输的调度信息,所述调度信息可以是指示终端支持在非授权频段跳频。
本申请实施例中,所述第一信息满足如下至少一项:
由网络侧设备配置;
协议规定。
也就是说,所述第一信息可以是网络侧设备配置并发送给终端的,或者所述第一信息也可以是基于协议规定的。
步骤202、基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
可以理解地,终端在获取到所述第一信息后,基于所述第一信息中的配置信息和/或上行传输的调度信息,以确定是否支持在非授权频段跳频。例如,若所述配置信息指示终端不支持在非授权频段跳频,则终端在所述非授权频段的上行传输也就不跳频;若所述第一信息指示终端支持在非授权频段跳频,则终端也就会采用跳频模式在所述非授权频段实现上行传输。
需要说明的是,所述调度信息还能够指示终端的上行传输类型、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输长度、传输起始符号、PUSCH的候选传输位置等传输参数,以下将对本申请实施例中调度信息的可选实施方式进行说明。
可选的,在所述调度信息指示上行传输为基于授权调度(Configured Grant based,CG)的PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频(Intra-slot frequency hopping)。其中,所述时隙内的候选PUSCH数目可以是通过调度信息中的cg-nrofPUSCH-InSlot来指示。
本实施方式中,对于CG PUSCH,当cg-nrofPUSCH-InSlot=1时,则终端可以支持在非授权频段的时隙内跳频。需要说明的是,所述时隙内跳频适用于单时隙上行传输和多时隙上行传输。当PUSCH的重复次数K=1,如图2a所示,PUSCH的符号长度为7,PUSCH的上行传输方式为在单时隙的时隙内跳频;当PUSCH的重复次数大于1,例如图2b所示,PUSCH的重复次数 K=2,PUSCH的上行传输方式为在多个时隙的时隙内跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频(Inter-slot frequency hopping)。其中,所述连续时隙数可以是通过调度信息中的cg-nrofSlots-r16来指示。
本实施方式中,对于CG PUSCH,当cg-nrofPUSCH-InSlot=1且cg-nrofSlots-r16>1时,则终端可以支持在非授权频段的时隙内跳频,也可以支持在非授权频段的时隙间跳频。需要说明的是,所述时隙内跳频和/或时隙件跳频的跳频模式可以是由网络侧设备配置。如图2c所示,PUSCH的符号长度为14,PUSCH的重复次数K=2,PUSCH的上行传输方式为在时隙间跳频。
可选的,在所述调度信息指示上行传输为基于动态调度(Dynamic Grant based,DG)的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
其中,所述第一预设条件包括如下至少一项:
所述终端未被配置PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数为1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
需要说明的是,所述PUSCH聚合因子可以通过调度信息中的pusch-Aggregation Factor来指示,所述PUSCH的重复次数可以是通过调度信息中的number of repetitions来指示。
例如,对于DG PUSCH,当调度信息指示PUSCH的重复次数为1,上行调度允许调度至少两个PUSCH,且调度的至少两个PUSCH的时域资源都位于同一个时隙内,则终端支持PUSCH在时隙内跳频。或者,对于DG PUSCH,当调度信息指示PUSCH聚合因子未配置,上行调度允许调度1个PUSCH,则终端支持PUSCH在时隙内跳频。当然,调度信息指示的第一预设条件还可以是其他的具体形式,本申请不做一一列举。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
其中,所述第二预设条件包括如下至少一项:
所述终端被配置了PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数大于1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
也就是说,对于DG PUSCH,在调度信息指示上述第二预设条件中的至少一项时,终端支持PUSCH在时隙内跳频和/或时隙间跳频。例如,所述调度信息指示高层配置了PUSCH聚合因子,则终端支持PUSCH在时隙内跳频。或者,所述调度信息指示PUSCH的重复次数K=2,上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于不同的时隙内,则终端支持PUSCH在时隙间跳频。当然,调度信息指示的第二预设条件还可以是其他的具体形式,本申请不做一一列举。
其中,所述时隙内跳频和/或时隙间跳频的跳频模式可以是网络侧设备配置。例如,网络侧设备可以是向终端发送配置信息,以指示终端使用哪种跳频模式进行时隙内跳频和/或时隙间跳频,所述跳频模式的具体方式可以是参照后续实施方式中的描述。
需要说明的是,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述终端只传输第一个时隙内的PUSCH。也就是说,无论所述至少两个PUSCH的时域资源是位于同一个时隙内还是位于不同的时隙内,终端只传输第一个时隙内的PUSCH。
进一步地,终端在一次动态调度中和/或一个授权调度周期内,可以是传输相同的PUSCH,或者是传输不同的PUSCH。
本申请实施例中,终端在确定所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
PUSCH内的跳频;
时隙内的至少两个PUSCH间的跳频;
连续的PUSCH间的跳频;
时隙间跳频。
其中,所述跳频的时间位置根据如下至少一项确定:
PUSCH的实际传输位置;
配置的PUSCH候选传输位置。
以下将通过具体的实施方式对上述四种跳频模式进行解释说明。
在第一种实施方式中,所述终端的上行传输方式支持PUSCH内的跳频。请参照图2d,1个PUSCH在时间上占据7个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号,PUSCH内的跳频也就是1个PUSCH在两个频带实现跳频,第一个hop可以是占据
Figure PCTCN2021111499-appb-000001
符号,第二个hop占据的符号数为
Figure PCTCN2021111499-appb-000002
符号,
Figure PCTCN2021111499-appb-000003
是1个PUSCH在时间上占据的总的符号数。如图2d所示,第一个hop在时间上占据3个符号,第二个hop占据4个符号,这样以实现PUSCH内的跳频。图2d中,PUSCH的重复次数K=4。
在第二种实施方式中,在所述终端支持的跳频模式为时隙内的至少两个PUSCH间的跳频的情况下,时隙内跳频的时间位置(第二个hop的位置)根据实际传输的PUSCH确定。本实施方式中,时隙内跳频的位置根据实际传输的PUSCH确定,时隙内第一个hop是N/2,第二个hop是N-N/2,其中N是时隙内PUSCH实际传输的个数。
请参照图2e,1个PUSCH在时间上占据4个OFDM符号,第一个时隙内前两个PUSCH候选传输位置的状态为失败,也即实际上没有传输PUSCH,第一个时隙内实际传输的PUSCH的个数为1个,第一个时隙内PUSCH不跳频;第二时隙内实际传输的PUSCH的个数为3个,该时隙内第一个hop和第二个hop的值是一样的,则第二个PUSCH和第三个PUSCH都是在第二频带传输。
在第三种实施方式中,在所述终端支持的跳频模式为时隙内的至少两个 PUSCH间的跳频的情况下,时隙内跳频的第二个hop的位置根据配置的PUSCH候选传输位置确定。本实施方式中,时隙内跳频的时间位置根据实际传输的PUSCH确定,时隙内第一个hop是N/2,第二个hop是N-N/2,其中N是时隙内PUSCH实际传输的个数。
请参照图2f,1个PUSCH在时间上占据4个OFDM符号,第一个时隙内前两个PUSCH候选传输位置的状态为失败,也即实际上没有传输PUSCH,第一个时隙内实际传输的PUSCH的个数为1个,而该时隙内跳频的位置根据配置的PUSCH候选传输位置确定,进而第一个时隙内实际传输的PUSCH的传输位置也就如图2e所示;第二时隙内实际传输的PUSCH的个数为3个,该时隙内第一个hop和第二个hop的值是一样的,则第二个PUSCH和第三个PUSCH都是在第二频带传输。
在第四种实施方式中,在所述终端支持的跳频模式为连续的PUSCH间的跳频的情况下,跳频的时间位置根据实际传输的PUSCH确定。请参照图2g,1个PUSCH在时间上占据4个OFDM符号,第一个时隙内第一个PUSCH候选传输位置的状态为失败,也即实际上没有传输PUSCH,第一个时隙内实际传输的PUSCH的个数为2个,该时隙内跳频的时间位置根据实际传输的第一个PUSCH确定,第一个PUSCH位于第一频带,进而第二个PUSCH位于第二频带;本实施方式中跳频模式为连续的PUSCH间的跳频,PUSCH的重复次数为4,进而第二时隙内的第一个PUSCH(也即第三个PUSCH)相对于第一时隙内最后一个PUSCH跳频,以此确定4个PUSCH在时隙内的传输位置,如图2g所示。
在第五种实施方式中,在所述终端支持的跳频模式为连续的PUSCH间的跳频的情况下,跳频的时间位置根据配置的PUSCH候选传输位置确定。请参照图2h,1个PUSCH在时间上占据4个OFDM符号,第一个时隙内第一个PUSCH候选传输位置的状态为失败,也即实际上没有传输PUSCH,该时隙内的跳频的PUSCH的传输位置根据配置的PUSCH候选传输位置确定,第一个PUSCH的传输位置也就如图2h所示;本实施方式中跳频模式为连续的PUSCH间的跳频,PUSCH的重复次数为4,后续其他三个PUSCH的传输位置也就基于第一个PUSCH确定,如图2h所示。
在第六种实施方式中,在所述终端支持的跳频模式为时隙间跳频的情况下,跳频的时间位置根据实际传输的PUSCH确定。请参照图2j,1个PUSCH在时间上占据4个OFDM符号,第一时隙的三个PUSCH候选传输位置的状态均为失败,也即第一时隙实际上没有传输PUSCH,PUSCH在第二时隙开始传输,而本实施方式中跳频模式为时隙间跳频,PUSCH的重复次数为2,2个PUSCH能够在一个时隙内传输,该时隙内也就不存在跳频。
在第七种实施方式中,在所述终端支持的跳频模式为时隙间跳频的情况下,跳频的时间位置根据配置的PUSCH候选传输位置确定。请参照图2k,1个PUSCH在时间上占据4个OFDM符号,第一时隙的三个PUSCH候选传输位置的状态均为失败,也即第一时隙实际上没有传输PUSCH,PUSCH在第二时隙开始传输;本实施方式中跳频模式为时隙间跳频,跳频的时间位置根据配置的PUSCH候选传输位置确定,进而第二时隙内的PUSCH相对于第一时隙中的PUSCH候选传输位置跳频,本实施方式中PUSCH的重复次数为2,2个PUSCH能够在一个时隙内传输,该时隙内不存在跳频。
需要说明的是,上述跳频模式可以是网络侧设备配置,例如可以是网络侧设备向终端发送配置信息,以指示终端支持的跳频模式。另外,在本申请实施例提供的上述跳频模式下,终端能够在一次动态调度中和/或一个授权周期内传输相同或不同的PUSCH。
本申请实施例提供的方案,终端获取配置信息和/或上行传输的调度信息,进而以确定上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频,明确了终端在非授权频段的行为,使得终端能够在非授权频段实现跳频或不跳频两种上行传输方式,增强了终端在非授权频段上的上行传输灵活性。
请参照图3,图3是本申请实施例提供的另一种资源传输方法的流程图,所述资源传输方法应用于网络侧设备。如图3所示,所述资源传输方法包括以下步骤:
步骤301、向终端发送第一信息;其中,所述第一信息包括配置信息和上行传输的调度信息中的至少一项,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支 持在所述非授权频段跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
其中,所述第一预设条件包括如下至少一项:
所述终端未被配置PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数为1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
其中,所述第二预设条件包括如下至少一项:
所述终端被配置了PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数大于1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述第一信息用于指示终端只传输第一个时隙内的PUSCH。
可选的,在所述上行传输方式支持在非授权频段跳频的情况下,所述上 行传输方式支持如下至少一种跳频模式:
PUSCH内的跳频;
时隙内的至少两个PUSCH间的跳频;
连续的PUSCH间的跳频;
时隙间跳频。
可选的,跳频的时间位置根据如下至少一项确定:
PUSCH的实际传输位置;
配置的PUSCH候选传输位置。
可选的,在所述跳频模式下,所述终端在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
需要说明的是,上述各可选的实施方式可以参照图2所述的资源传输方法实施例中的具体描述,本实施例对此不再赘述。
本申请实施例中,网络侧设备向终端发送第一信息,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频,进而也就明确了终端在非授权频段的行为,使得终端能够在非授权频段实现跳频或不跳频两种上行传输方式,增强了终端在非授权频段上行传输的灵活性。
需要说明的是,上述资源传输方法,执行主体可以为资源传输装置,或者,该资源传输装置中的用于执行资源传输方法的控制模块。本申请实施例中以资源传输装置执行资源传输方法为例,说明本申请实施例提供的资源传输装置。
请参照图4,图4是本申请实施例提供的一种资源传输装置的结构图,所述资源传输装置可以是应用于终端。可选的,所述资源传输装置包括处理器。如图4所示,资源传输装置400包括:
获取模块401,用于获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项;
确定模块402,用于基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
可选的,所述第一信息满足如下任意一项:
由网络侧设备配置;
协议规定。
可选的,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
其中,所述第一预设条件包括如下至少一项:
所述终端未被配置PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数为1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
其中,所述第二预设条件包括如下至少一项:
所述终端被配置了PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数大于1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述装置只传输第一个时 隙内的PUSCH。
可选的,所述时隙内跳频和/或时隙间跳频的跳频模式由网络侧设备配置。
可选的,在所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
PUSCH内的跳频;
时隙内的至少两个PUSCH间的跳频;
连续的PUSCH间的跳频;
时隙间跳频。
可选的,跳频的时间位置根据如下至少一项确定:
PUSCH的实际传输位置;
配置的PUSCH候选传输位置。
可选的,在所述跳频模式下,所述装置在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
本申请实施例提供的资源传输装置,通过获取第一信息中的配置信息和/或上行传输的调度信息,进而以确定上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频,明确了资源传输装置在非授权频段的行为,使得资源传输装置能够在非授权频段实现跳频或不跳频两种上行传输方式,增强了资源传输装置在非授权频段上行传输的灵活性。
本申请实施例中的资源传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的资源传输装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
本申请实施例提供的资源传输装置能够实现图2资源传输方法实施例实 现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参照图5,图5是本申请实施例提供的另一种资源传输装置的结构图,所述资源传输装置可以是应用于网络侧设备。可选的,所述资源传输装置包括处理器。如图5所示,资源传输装置500包括:
发送模块501,用于向终端发送第一信息;其中,所述第一信息包括配置信息和上行传输的调度信息中的至少一项,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
其中,所述第一预设条件包括如下至少一项:
所述终端未被配置PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数为1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
其中,所述第二预设条件包括如下至少一项:
所述终端被配置了PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数大于1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述第一信息用于指示终端只传输第一个时隙内的PUSCH。
可选的,在所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
PUSCH内的跳频;
时隙内的至少两个PUSCH间的跳频;
连续的PUSCH间的跳频;
时隙间跳频。
可选的,跳频的时间位置根据如下至少一项确定:
PUSCH的实际传输位置;
配置的PUSCH候选传输位置。
可选的,在所述跳频模式下,所述装置在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
本申请实施例提供的资源传输装置,通过向终端发送第一信息,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频,进而通过资源传输装置明确了终端在非授权频段的行为,使得终端能够在非授权频段实现跳频或不跳频两种上行传输方式,增强了终端在非授权频段上行传输的灵活性。
本申请实施例提供的资源传输装置能够实现上述图3资源传输方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述图2所述资源传输方法实施例的各个过程,且能达到相同的技 术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述图3所述资源传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器710逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包 括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项;
基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
可选的,所述第一信息满足如下任意一项:
由网络侧设备配置;
协议规定。
可选的,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
可选的,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
其中,所述第一预设条件包括如下至少一项:
所述终端未被配置PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数为1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
其中,所述第二预设条件包括如下至少一项:
所述终端被配置了PUSCH聚合因子;
基于动态指示的所述PUSCH的重复次数大于1;
上行调度允许调度1个PUSCH;
上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
可选的,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述终端只传输第一个时隙内的PUSCH。
可选的,所述时隙内跳频和/或时隙间跳频的跳频模式由网络侧设备配置。
可选的,在所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
PUSCH内的跳频;
时隙内的至少两个PUSCH间的跳频;
连续的PUSCH间的跳频;
时隙间跳频。
可选的,跳频的时间位置根据如下至少一项确定:
PUSCH的实际传输位置;
配置的PUSCH候选传输位置。
可选的,在所述跳频模式下,所述终端在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
需要说明的是,所述终端700能够实现上述图2所述资源传输方法实施例的各个过程,并能达到相同的技术效果,这里不再赘述。
本申请实施例中,终端获取第一信息中的配置信息和/或上行传输的调度 信息,进而以确定上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频,明确了终端在非授权频段的行为,使得终端能够在非授权频段实现跳频或不跳频两种上行传输方式,增强了终端在非授权频段上行传输的灵活性。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图2所述资源传输方法实施例的各个过程,或者实现上述图3所述资源传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘 等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述图2所述资源传输方法实施例的各个过程,或者实现上述图3所述资源传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
应理解以上设备的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件 的形式实现。例如,获取模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上获取模块的功能。其它模块的实现与之类似。此外,这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种资源传输方法,应用于终端,包括:
    获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项;
    基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
  2. 根据权利要求1所述的方法,其中,所述第一信息满足如下任意一项:
    由网络侧设备配置;
    协议规定。
  3. 根据权利要求1所述的方法,其中,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
  4. 根据权利要求1所述的方法,其中,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
  5. 根据权利要求1所述的方法,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
    其中,所述第一预设条件包括如下至少一项:
    所述终端未被配置PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数为1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  6. 根据权利要求1所述的方法,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
    其中,所述第二预设条件包括如下至少一项:
    所述终端被配置了PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数大于1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  7. 根据权利要求6所述的方法,其中,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述终端只传输第一个时隙内的PUSCH。
  8. 根据权利要求4或6所述的方法,其中,所述时隙内跳频和/或时隙间跳频的跳频模式由网络侧设备配置。
  9. 根据权利要求1-6中任一项所述的方法,其中,在所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
    PUSCH内的跳频;
    时隙内的至少两个PUSCH间的跳频;
    连续的PUSCH间的跳频;
    时隙间跳频。
  10. 根据权利要求9所述的方法,其中,跳频的时间位置根据如下至少一项确定:
    PUSCH的实际传输位置;
    配置的PUSCH候选传输位置。
  11. 根据权利要求9所述的方法,其中,在所述跳频模式下,所述终端在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
  12. 一种资源传输方法,应用于网络侧设备,包括:
    向终端发送第一信息;
    其中,所述第一信息包括配置信息和上行传输的调度信息中的至少一项,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
  13. 根据权利要求12所述的方法,其中,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
  14. 根据权利要求12所述的方法,其中,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
  15. 根据权利要求12所述的方法,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
    其中,所述第一预设条件包括如下至少一项:
    所述终端未被配置PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数为1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  16. 根据权利要求12所述的方法,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
    其中,所述第二预设条件包括如下至少一项:
    所述终端被配置了PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数大于1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  17. 根据权利要求16所述的方法,其中,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述第一信息用于指示终端只传输第一个时隙内的PUSCH。
  18. 根据权利要求12-16中任一项所述的方法,其中,在所述上行传输方 式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
    PUSCH内的跳频;
    时隙内的至少两个PUSCH间的跳频;
    连续的PUSCH间的跳频;
    时隙间跳频。
  19. 根据权利要求18所述的方法,其中,跳频的时间位置根据如下至少一项确定:
    PUSCH的实际传输位置;
    配置的PUSCH候选传输位置。
  20. 根据权利要求18所述的方法,其中,在所述跳频模式下,所述终端在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
  21. 一种资源传输装置,应用于终端,包括:
    获取模块,用于获取第一信息,所述第一信息包括配置信息和上行传输的调度信息中的至少一项;
    确定模块,用于基于所述第一信息,确定上行传输方式;其中,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
  22. 根据权利要求21所述的装置,其中,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
  23. 根据权利要求21所述的装置,其中,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
  24. 根据权利要求21所述的装置,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
    其中,所述第一预设条件包括如下至少一项:
    所述终端未被配置PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数为1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  25. 根据权利要求21所述的装置,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
    其中,所述第二预设条件包括如下至少一项:
    所述终端被配置了PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数大于1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  26. 根据权利要求25所述的装置,其中,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述装置只传输第一个时隙内的PUSCH。
  27. 根据权利要求21-26中任一项所述的装置,其中,在所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
    PUSCH内的跳频;
    时隙内的至少两个PUSCH间的跳频;
    连续的PUSCH间的跳频;
    时隙间跳频。
  28. 根据权利要求27所述的装置,其中,跳频的时间位置根据如下至少一项确定:
    PUSCH的实际传输位置;
    配置的PUSCH候选传输位置。
  29. 根据权利要求27所述的装置,其中,在所述跳频模式下,所述装置 在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
  30. 一种资源传输装置,应用于网络侧设备,包括:
    发送模块,用于向终端发送第一信息;
    其中,所述第一信息包括配置信息和上行传输的调度信息中的至少一项,所述第一信息用于指示终端的上行传输方式,所述上行传输方式支持在非授权频段跳频,或者所述上行传输方式不支持在所述非授权频段跳频。
  31. 根据权利要求30所述的装置,其中,在所述调度信息指示上行传输为基于授权调度的物理上行共享信道PUSCH,且时隙内的候选PUSCH数目为1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频。
  32. 根据权利要求30所述的装置,其中,在所述调度信息指示上行传输为基于授权调度的PUSCH,时隙内的候选PUSCH数目为1且连续时隙数大于1的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频。
  33. 根据权利要求30所述的装置,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第一预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频;
    其中,所述第一预设条件包括如下至少一项:
    所述终端未被配置PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数为1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  34. 根据权利要求30所述的装置,其中,在所述调度信息指示上行传输为基于动态调度的PUSCH,且满足第二预设条件的情况下,所述上行传输方式支持在所述非授权频段的时隙内跳频和/或时隙间跳频;
    其中,所述第二预设条件包括如下至少一项:
    所述终端被配置了PUSCH聚合因子;
    基于动态指示的所述PUSCH的重复次数大于1;
    上行调度允许调度1个PUSCH;
    上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内。
  35. 根据权利要求34所述的装置,其中,在上行调度允许调度至少两个PUSCH,且调度的所述至少两个PUSCH的时域资源位于至少一个时隙内的情况下,所述第一信息用于指示终端只传输第一个时隙内的PUSCH。
  36. 根据权利要求30-35中任一项所述的装置,其中,在所述上行传输方式支持在非授权频段跳频的情况下,所述上行传输方式支持如下至少一种跳频模式:
    PUSCH内的跳频;
    时隙内的至少两个PUSCH间的跳频;
    连续的PUSCH间的跳频;
    时隙间跳频。
  37. 根据权利要求36所述的装置,其中,跳频的时间位置根据如下至少一项确定:
    PUSCH的实际传输位置;
    配置的PUSCH候选传输位置。
  38. 根据权利要求36所述的装置,其中,在所述跳频模式下,所述装置在一次动态调度中和/或一个授权调度周期内传输相同或不同的PUSCH。
  39. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-11中任一项所述的资源传输方法的步骤,或者实现如权利要求12-20中任一项所述的资源传输方法的步骤。
  40. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-11中任一项所述的资源传输方法的步骤,或者实现如权利要求12-20中任一项所述的资源传输方法的步骤。
  41. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-11中任一项所述的资源传输方法的步骤,或者实现如权利要求12-20中任一项所述的资源传输方法的步骤。
  42. 一种计算机程序产品,存储在可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1-11中任一项所述的资源传输方法的步骤,或者实现如权利要求12-20中任一项所述的资源传输方法的步骤。
  43. 一种通信设备,所述通信设备用于执行如权利要求1-11中任一项所述的资源传输方法的步骤,或者如权利要求12-20中任一项所述的资源传输方法的步骤。
PCT/CN2021/111499 2020-08-12 2021-08-09 资源传输方法、装置及通信设备 WO2022033424A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21855476.4A EP4199627A4 (en) 2020-08-12 2021-08-09 RESOURCE TRANSMISSION METHOD AND DEVICE AND COMMUNICATION DEVICE
KR1020237007613A KR20230048102A (ko) 2020-08-12 2021-08-09 자원 전송 방법, 장치 및 통신 장치
JP2023509553A JP2023537957A (ja) 2020-08-12 2021-08-09 リソース伝送方法、装置及び通信機器
US18/108,049 US20230189259A1 (en) 2020-08-12 2023-02-10 Resource transmission method, resource transmission apparatus, and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010809437.5A CN114080043B (zh) 2020-08-12 2020-08-12 资源传输方法、装置及通信设备
CN202010809437.5 2020-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/108,049 Continuation US20230189259A1 (en) 2020-08-12 2023-02-10 Resource transmission method, resource transmission apparatus, and communications device

Publications (1)

Publication Number Publication Date
WO2022033424A1 true WO2022033424A1 (zh) 2022-02-17

Family

ID=80246921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111499 WO2022033424A1 (zh) 2020-08-12 2021-08-09 资源传输方法、装置及通信设备

Country Status (6)

Country Link
US (1) US20230189259A1 (zh)
EP (1) EP4199627A4 (zh)
JP (1) JP2023537957A (zh)
KR (1) KR20230048102A (zh)
CN (1) CN114080043B (zh)
WO (1) WO2022033424A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230087489A (ko) * 2020-10-11 2023-06-16 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 상향링크 채널을 전송하는 방법 및 이를 위한 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106550468A (zh) * 2016-11-07 2017-03-29 北京佰才邦技术有限公司 数据传输方法和基站
WO2018064525A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Frequency hopping for unlicensed internet of things
CN109428626A (zh) * 2017-09-05 2019-03-05 华为技术有限公司 一种信号传输方法、相关设备及***
WO2020051152A1 (en) * 2018-09-07 2020-03-12 Intel Corporation UPLINK CONTROL INFORMATION (UCI) MULTIPLEXING ON MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873435B2 (en) * 2017-05-04 2020-12-22 Qualcomm Incorporated Configurable intra-slot frequency hopping for a variable length uplink control channel
US11419129B2 (en) * 2018-02-14 2022-08-16 Lg Electronics Inc. Method for performing uplink transmission through frequency hopping in wireless communication system and device therefor
WO2020036464A1 (ko) * 2018-08-16 2020-02-20 주식회사 케이티 비면허 대역에서 주파수 호핑 방법 및 장치
EP3648386A1 (en) * 2018-11-01 2020-05-06 Comcast Cable Communications, LLC Uplink transmissions using multiple active resources
CN111490860B (zh) * 2019-01-10 2021-09-14 华为技术有限公司 一种参考信号传输方法及装置
CN111246582B (zh) * 2020-01-20 2023-04-07 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064525A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Frequency hopping for unlicensed internet of things
CN106550468A (zh) * 2016-11-07 2017-03-29 北京佰才邦技术有限公司 数据传输方法和基站
CN109428626A (zh) * 2017-09-05 2019-03-05 华为技术有限公司 一种信号传输方法、相关设备及***
WO2020051152A1 (en) * 2018-09-07 2020-03-12 Intel Corporation UPLINK CONTROL INFORMATION (UCI) MULTIPLEXING ON MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199627A4 *

Also Published As

Publication number Publication date
EP4199627A1 (en) 2023-06-21
EP4199627A4 (en) 2023-12-20
CN114080043B (zh) 2023-11-10
JP2023537957A (ja) 2023-09-06
US20230189259A1 (en) 2023-06-15
CN114080043A (zh) 2022-02-22
KR20230048102A (ko) 2023-04-10

Similar Documents

Publication Publication Date Title
WO2017166839A1 (zh) 一种前导码的配置方法、发送方法和相关设备
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022002199A1 (zh) Pusch信号的映射方法、终端及网络侧设备
WO2022148389A1 (zh) 编码调制符号数的确定方法、装置及通信设备
WO2022063072A1 (zh) 上行信道传输方法、装置及终端
WO2022028468A1 (zh) 信息确定方法、信息发送方法、终端及网络侧设备
EP4175344A1 (en) Measurement indication method, terminal, and network side device
WO2022033424A1 (zh) 资源传输方法、装置及通信设备
WO2022237616A1 (zh) 资源池配置方法、装置、终端及网络侧设备
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
WO2022017466A1 (zh) 消息发送、消息接收方法、装置及通信设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022143979A1 (zh) 通信传输方法、装置和通信设备
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2022012592A1 (zh) 反馈信息传输方法、装置、终端及网络侧设备
WO2022007951A1 (zh) 资源传输方法、装置及通信设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2022179498A1 (zh) 初始下行bwp的scs的指示方法和设备
WO2023280100A1 (zh) 初始带宽部分确定方法、装置及相关设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2022194275A1 (zh) 物理上行控制信道资源的确定方法、终端及网络侧设备
WO2022152273A1 (zh) Srs传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509553

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317010966

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237007613

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021855476

Country of ref document: EP

Effective date: 20230313