WO2022032874A1 - 一种基于对抗神经网络的有资料地区水文参数率定方法 - Google Patents

一种基于对抗神经网络的有资料地区水文参数率定方法 Download PDF

Info

Publication number
WO2022032874A1
WO2022032874A1 PCT/CN2020/123715 CN2020123715W WO2022032874A1 WO 2022032874 A1 WO2022032874 A1 WO 2022032874A1 CN 2020123715 W CN2020123715 W CN 2020123715W WO 2022032874 A1 WO2022032874 A1 WO 2022032874A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrological
parameters
neural network
data
adversarial neural
Prior art date
Application number
PCT/CN2020/123715
Other languages
English (en)
French (fr)
Inventor
李胜
张�荣
刘晟一
田彪
丁交亮
彭江江
刘继军
Original Assignee
贵州东方世纪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州东方世纪科技股份有限公司 filed Critical 贵州东方世纪科技股份有限公司
Publication of WO2022032874A1 publication Critical patent/WO2022032874A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the hydrological parameter calibration technology, and in particular relates to a hydrological parameter calibration method based on an adversarial neural network in an area with data.
  • Hydrological models play an important role in the study of hydrological laws and in solving practical problems in production. With the rapid development of modern science and technology, information technology with computers and communications as the core is widely used in the fields of hydrology, water resources and hydraulic engineering. The research on hydrological models has developed rapidly, and is widely used in the study of basic hydrological laws, flood and drought disaster prevention, water resources evaluation and development and utilization, water environment and ecosystem protection, climate change and the analysis of the impact of human activities on water resources and water environment. and other fields. Therefore, it is of great scientific significance and application value to study how to improve the prediction accuracy of hydrological models.
  • the hydrological model needs to consider every link of the whole hydrological process of "precipitation - runoff - confluence", each link has many influencing factors, it is impossible to introduce every factor into the model arrived. Therefore, it is necessary to select these influencing factors to produce a certain prediction error.
  • the accuracy of the measured data and the size of the error are determined by the advanced and mature measurement technology, which affects the fitting degree of the model simulation, thereby affecting the prediction accuracy of the model.
  • These data include not only traditional hydrological (flow) meteorological (rainfall) data, but also factors such as geology, vegetation, soil and land use.
  • the parameters of the distributed hydrological model have clear physical meanings, and it is easy to estimate the variation range of the parameters, but it is difficult to determine the optimal value of the parameters.
  • the calibration of parameters is an important link to improve the prediction accuracy of hydrological models.
  • the parameter calibration of the hydrological model generally adopts the traditional trial-and-error method, that is, the parameter values of the hydrological model are continuously adjusted manually to meet the simulation accuracy requirements, but for the hydrological model without data
  • the calibration of model parameters, using this method has problems such as low calibration accuracy, which seriously affects the accuracy of hydrological forecasting.
  • the technical problem to be solved by the present invention is: to provide a method for calibrating hydrological parameters in areas with data based on an adversarial neural network, so as to solve the problem that the prior art adopts the traditional trial-and-error method for determining the parameters of the hydrological model of watersheds without data, that is, through The parameter values of the hydrological model are continuously adjusted manually to meet the requirements of simulation accuracy.
  • this method has problems such as low calibration accuracy, which seriously affects the accuracy of hydrological forecasting.
  • An adversarial neural network-based calibration method for hydrological parameters in areas with data which includes:
  • Step 1 Collect soil texture, vegetation coverage, land utilization, terrain data, runoff coefficient, total annual evaporation, gradient and slope data;
  • Step 2 Divide the calibration area into calculation units below 30 square kilometers;
  • Step 3 Determine the underlying surface and meteorological related factors of each parameter of each calculation unit according to the physical characteristics of the parameters of the hydrological model;
  • Step 4 The adversarial neural network GAN is used to automatically calibrate the hydrological parameters of the watershed with data.
  • the adversarial neural network GAN takes noise as the input, and optimizes the parameters through the hydrological model to obtain the optimal hydrological parameters for each unit.
  • the method for automatic calibration of hydrological parameters using the adversarial neural network GAN described in step 4 is:
  • Step 4.1 Generate samples with normally distributed noise as the input of the generator
  • Step 4.2 Input the generated sample set into the hydrological model for optimization to obtain the optimal parameters
  • Step 4.3 Input the optimal parameters output by the hydrological model and the samples generated by the generator to the discriminator to judge the true and false.
  • step 4.2 when the generated sample set is input into the hydrological model for optimization to obtain the optimal parameters, the deterministic coefficient is used as the optimization principle.
  • the invention divides the optimized area into countless independent computing units, and then uses the confrontation neural network GAN to automatically calibrate the hydrological parameters to realize the parameter calibration of the data area, so it can effectively solve the problem of the modern hydrological model due to its strong professionalism.
  • the resulting problem of difficulty in use can reduce a lot of tedious steps and work for professional manual parameter adjustment and calibration in practical applications.
  • the existing technology adopts the traditional trial and error method for the determination of the parameters of the hydrological model in the watershed with data, that is, the parameter values of the hydrological model are continuously adjusted manually to meet the simulation accuracy requirements.
  • Subjectivity, repetitive work, low efficiency and extremely high complexity which are not conducive to technical problems such as the application and promotion of hydrological models.
  • FIG. 1 is a schematic diagram of the automatic calibration process flow of the adversarial neural network GAN of the present invention for performing hydrological parameters on similar units.
  • An adversarial neural network-based calibration method for hydrological parameters in areas with data which includes:
  • Step 1 Collect soil texture, vegetation coverage, land utilization, terrain data, runoff coefficient, total annual evaporation, gradient and slope data;
  • Step 2 Divide the calibration area into calculation units below 30 square kilometers;
  • Step 3 Determine the underlying surface and meteorological related factors of each parameter of each calculation unit according to the physical characteristics of the parameters of the hydrological model;
  • Step 4 Use the adversarial neural network GAN to automatically calibrate the hydrological parameters of the watershed with data.
  • the adversarial neural network GAN takes noise as the input, and optimizes the parameters through the hydrological model to obtain the optimal hydrological parameters for each unit;
  • the method for automatic calibration of hydrological parameters using the adversarial neural network GAN described in step 4 is:
  • Step 4.1 Generate samples with normally distributed noise as the input of the generator
  • Step 4.2 Input the generated sample set into the hydrological model for optimization to obtain the optimal parameters
  • Step 4.3 Input the optimal parameters output by the hydrological model and the samples generated by the generator to the discriminator to judge the true and false.
  • step 4.2 when the generated sample set is input into the hydrological model for optimization to obtain the optimal parameters, the deterministic coefficient is used as the optimization principle.
  • GAN Generative Adversarial Networks
  • GAN The core idea of GAN comes from the Nash equilibrium of game theory. It sets the two parties involved as a generator and a discriminator. The purpose of the generator is to learn the real data distribution as much as possible, and the purpose of the discriminator is to discriminate as accurately as possible. Whether the input data comes from the real data or the generator; the two models need to be continuously optimized at the same time, each improving its own generating ability and discriminating ability, and the calculation is completed when the two reach a balance.
  • the certainty coefficient of the hydrological model can be seen to be improved from 0.78 in the initial stage to 0.86. It shows that the neural network can be used for the optimization of hydrological model parameters.
  • the deterministic coefficient is used as the optimization principle.
  • the learning ability of the deep learning network is quite strong.
  • the generated model can quickly converge to the range of the real sample. Since the real value also needs to be updated iteratively, it is extremely prone to overfitting problems, which directly lead to convergence. Slow or stuck in a local optimum.
  • the present invention solves these problems by using dormant local neurons, weight regularization, and adjustment of neuron data.
  • the core problem of the present invention is to find the optimal parameters of the data basin. Therefore, an optimal search strategy can be added to optimize the generated samples to improve the performance of the entire network.
  • the reason why the present invention adopts the adversarial neural network to derive the optimal parameters is that each iteration is generated by random changes in the best distribution space of the last time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于对抗神经网络的有资料地区水文参数率定方法,它包括:采集土壤质地、植被覆盖度、土地利用率、地形数据、径流系数、年蒸发总量、比降和坡度数据;将率定区域划分为30平方公里以下的计算单元;确定每一个计算单元每一个参数下垫面及气象相关因子;采用对抗神经网络GAN对有资料流域水文参数的自动率定,得到每个单元最优的水文参数;解决了现有技术工作重复性、效率低和复杂度极高,不利用水文模型的应用推广等技术问题。

Description

一种基于对抗神经网络的有资料地区水文参数率定方法 技术领域
本发明属于水文参数率定技术,尤其涉及一种基于对抗神经网络的有资料地区水文参数率定方法。
背景技术
水文模型在进行水文规律研究和解决生产实际问题中起着重要的作用,随着现代科学技术的飞速发展,以计算机和通信为核心的信息技术在水文水资源及水利工程科学领域的广泛应用,使水文模型的研究得到迅速发展,并广泛应用于水文基本规律研究、水旱灾害防治、水资源评价与开发利用、水环境和生态***保护、气候变化及人类活动对水资源和水环境影响分析等领域。因此,研究如何提高水文模型的预测精度,具有重要的科学意义和应用价值。
任何模型均伴有误差和不确定性,模型建模工作中,误差源是大量的,其误差来源主要有以下几个方面:
(1)被排除在外的因素引起的误差
在建模过程中,水文模型需要考虑“降水——产流——汇流”整个水文过程的每个环节,每个环节都有许多影响因子,把每个因子都引入到模型中是不可能做到的。所以要对这些影响因子有所选择产生一定的预测误差。
(2)实测历史记录资料的误差
实测数据资料精度的高低、误差的大小决定于测量技术的先进和成熟程度,影响模型模拟的拟合度,从而影响模型的预测精度。这些资料不但包括传统的水文(流量)气象(降雨)资料,还包括地质、植被、土壤和土地利用等因素。
(3)参数误差
分布式水文模型参数具有比较明确的物理意义,易于估计参数的变化范围,但是参数最优值难以确定。
(4)模型结构误差
在模型设计和建立过程中采用的不正确的计算方法,不合适的时间步长,不恰当的运行次序,不完整或有偏差的模型结构等都会引起模型预测误差。
为了消除上述原因引起的模型预测误差,参数的率定是提高水文模型预测精度的一个重要环节,大部分的流域水文模型特别是中小流域的一些参数不能直接通过观测试验确定,它们的取值却与流域的下垫面特征有着一定的关系,但却不能与流域的下垫面特征建立起关系,所以对于流域水文模型来说参数的率定仍然是一个困难的问题。
在现有技术中针对有资料流域具体应用时,水文模型的参数率定一般采用传统的试错法,即通过人工不断调整水文模型的参数值,以达到模拟精度要求,但是对于无资料的水文模型参数的率定,采用该方法就存在率定准确率低,严重影响水文预报精确度等问题。
发明内容
本发明要解决的技术问题是:提供一种基于对抗神经网络的有资料地区水文参数率定方法,以解决以解决现有技术针对无资料流域水文模型参数确定采用传统的试错法,即通过人工不断调整水文模型的参数值,以达 到模拟精度要求,采用该方法存在率定准确率低,严重影响水文预报精确度等问题。
本发明的技术方案是:
一种基于对抗神经网络的有资料地区水文参数率定方法,它包括:
步骤1、采集土壤质地、植被覆盖度、土地利用率、地形数据、径流系数、年蒸发总量、比降和坡度数据;
步骤2、将率定区域划分为30平方公里以下的计算单元;
步骤3、根据水文模型参数的物理特性,确定每一个计算单元每一个参数下垫面及气象相关因子;
步骤4、采用对抗神经网络GAN对有资料流域水文参数的自动率定,对抗神经网络GAN以噪声作为输入,通过水文模型进行参数优选,得到每个单元最优的水文参数。
步骤3所述每一个参数下垫面及气象相关因子为:
Figure PCTCN2020123715-appb-000001
Figure PCTCN2020123715-appb-000002
步骤4所述采用对抗神经网络GAN进行水文参数的自动率定的方法为:
步骤4.1、以正态分布的噪声作为生成器的输入生成样本;
步骤4.2、将生成的样本集输入到水文模型中进行优选得到最优参数;
步骤4.3、将水文模型输出的最优参数和生成器生成的样本输入到判别器的判别真假。
步骤4.2所述将生成的样本集输入到水文模型中进行优选得到最优参数时,是以确定性系数作为优选原则。
本发明有益效果:
本发明将优化区域划分为无数个独立的计算单元,然后采用对抗神经网络GAN进行水文参数的自动率定,实现有资料地区的参数率定,因此可以有效的解决了现代水文模型由于专业性强导致的使用困难的问题,可以在实际应用中减少了大量的专业人工参数调整与率定的繁琐步骤和工作。为各类水文模型推广应用,解决了现有技术针对有资料流域水文模型参数确定采用传统的试错法,即通过人工不断调整水文模型的参数值,以达到模拟精度要求,采用该方法存在人为主观性,工作重复性、效率低和复杂度极高,不利用水文模型的应用推广等技术问题。
附图说明:
图1为本发明对抗神经网络GAN对相似单元进行水文参数的自动率定流程示意图。
具体实施方式
一种基于对抗神经网络的有资料地区水文参数率定方法,它包括:
步骤1、采集土壤质地、植被覆盖度、土地利用率、地形数据、径流系数、年蒸发总量、比降和坡度数据;
步骤2、将率定区域划分为30平方公里以下的计算单元;
步骤3、根据水文模型参数的物理特性,确定每一个计算单元每一个参数下垫面及气象相关因子;
步骤4、采用对抗神经网络GAN对有资料流域水文参数的自动率定,对抗神经网络GAN以噪声作为输入,通过水文模型进行参数优选,得到每个单元最优的水文参数;
步骤3所述每一个参数下垫面及气象相关因子为:
Figure PCTCN2020123715-appb-000003
Figure PCTCN2020123715-appb-000004
步骤4所述采用对抗神经网络GAN进行水文参数的自动率定的方法为:
步骤4.1、以正态分布的噪声作为生成器的输入生成样本;
步骤4.2、将生成的样本集输入到水文模型中进行优选得到最优参数;
步骤4.3、将水文模型输出的最优参数和生成器生成的样本输入到判别器的判别真假。
步骤4.2所述将生成的样本集输入到水文模型中进行优选得到最优参数时,是以确定性系数作为优选原则。
对抗式生成网络(Generative Adversarial Networks,GAN)是生成 模型的一个子类,可以对现有数据样本的潜在分布进行估计,构建出可以符合数据分布的模型,并生成新的数据样本,并且模型具有一定的自学习能力,可以应用在半监督学习中。
GAN的核心思想来源于博弈论的纳什均衡,它设定的参与双方分别为一个生成器和一个判别器,生成器的目的是尽量去学***衡时即完成计算。
常规对抗神经网络是不能直接实现自动参数的率定,因为没有真实的样本。因此必须在每次生成器输出生成样本时,采用水文模型进行最优参数的选择,作为下次判别器迭代计算的真实样本输入。
可以看出判别器和生成器的损失值,它们都逐渐接近于1,说明模型是收敛的。
水文模型的确定性系数,可以看到由初期的0.78提升到0.86.说明神经网络可以用于水文模型参数优化。
可以看到当确定性系数比上次优秀时,损失值会突然增大,说明更新真实值后判定器会自动重新训练,且很快收敛。因此进行优选得到最优参数时,是以确定性系数作为优选原则。
深度学习网络的学习能力相当强,当给定一个真实样本后,生成模型可以迅速的收敛到真实样本的范围,由于真实值也是需要迭代更新的,所以极容易出现过拟合问题,直接导致收敛速度慢或陷入局部最优。本发明采用用休眠局部神经元、权重正则化和调整神经元数据等方法解决这些问题。
对于本发明最核心问题就是找出有资料流域的最优参数,因此可以加入最优搜寻策略对生成样本进行优选,提高整个网络的性能。
本发明采用对抗神经网络之所以能推出最优参数,是因为它每一次迭代都是在上次最好的一个分布空间内,随机变化来而产生。

Claims (4)

  1. 一种基于对抗神经网络的有资料地区水文参数率定方法,它包括:
    步骤1、采集土壤质地、植被覆盖度、土地利用率、地形数据、径流系数、年蒸发总量、比降和坡度数据;
    步骤2、将率定区域划分为30平方公里以下的计算单元;
    步骤3、根据水文模型参数的物理特性,确定每一个计算单元每一个参数下垫面及气象相关因子;
    步骤4、采用对抗神经网络GAN对有资料流域水文参数的自动率定,对抗神经网络GAN以噪声作为输入,通过水文模型进行参数优选,得到每个单元最优的水文参数。
  2. 根据权利要求1所述的一种基于对抗神经网络的有资料地区水文参数率定方法,其特征在于:步骤3所述每一个参数下垫面及气象相关因子为:
    Figure PCTCN2020123715-appb-100001
    Figure PCTCN2020123715-appb-100002
  3. 根据权利要求1所述的一种基于对抗神经网络的有资料地区水文参数率定方法,其特征在于:步骤4所述采用对抗神经网络GAN进行水文参数的自动率定的方法为:
    步骤4.1、以正态分布的噪声作为生成器的输入生成样本;
    步骤4.2、将生成的样本集输入到水文模型中进行优选得到最优参数;
    步骤4.3、将水文模型输出的最优参数和生成器生成的样本输入到判别器的判别真假。
  4. 根据权利要求3所述的一种基于对抗神经网络的有资料地区水文参数率定方法,其特征在于:步骤4.2所述将生成的样本集输入到水文模型中进行优选得到最优参数时,是以确定性系数作为优选原则。
PCT/CN2020/123715 2020-08-14 2020-10-26 一种基于对抗神经网络的有资料地区水文参数率定方法 WO2022032874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010820500.5A CN111914488B (zh) 2020-08-14 2020-08-14 一种基于对抗神经网络的有资料地区水文参数率定方法
CN202010820500.5 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022032874A1 true WO2022032874A1 (zh) 2022-02-17

Family

ID=73283208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123715 WO2022032874A1 (zh) 2020-08-14 2020-10-26 一种基于对抗神经网络的有资料地区水文参数率定方法

Country Status (2)

Country Link
CN (1) CN111914488B (zh)
WO (1) WO2022032874A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740155A (zh) * 2022-03-30 2022-07-12 内蒙古农业大学 一种森林生态***蒸散量的检测装置及方法
CN116108672A (zh) * 2023-02-17 2023-05-12 南京声远声学科技有限公司 一种基于地理信息***的户外声传播预测模型构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034003A (zh) * 2010-12-16 2011-04-27 南京大学 基于蓄水容量曲线和topmodel的流域水文模型的设计方法
CN111144552A (zh) * 2019-12-27 2020-05-12 河南工业大学 一种粮食品质多指标预测方法及装置
CN111160430A (zh) * 2019-12-19 2020-05-15 广东工业大学 一种基于人工智能算法的水资源优化配置方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI246338B (en) * 2004-04-09 2005-12-21 Asustek Comp Inc A hybrid model sprite generator and a method to form a sprite
KR101802455B1 (ko) * 2016-11-16 2017-11-28 한국외국어대학교 연구산학협력단 강우의 공간 규모를 고려한 강우 예측 시스템 및 방법
CN108133292A (zh) * 2017-12-25 2018-06-08 贵州东方世纪科技股份有限公司 一种基于人工智能的水土侵蚀计算方法
US11315012B2 (en) * 2018-01-12 2022-04-26 Intel Corporation Neural network training using generated random unit vector
AR109623A1 (es) * 2018-02-16 2019-01-09 Pescarmona Enrique Menotti Proceso y sistema de análisis y gestión hidrológica para cuencas
JP6799197B2 (ja) * 2018-05-10 2020-12-09 ヌヴォトンテクノロジージャパン株式会社 ニューラルネットワーク構築装置、情報処理装置、ニューラルネットワーク構築方法及びプログラム
CN109493303B (zh) * 2018-05-30 2021-08-17 湘潭大学 一种基于生成对抗网络的图像去雾方法
CN109840873A (zh) * 2019-02-02 2019-06-04 中国水利水电科学研究院 一种基于机器学习的无资料地区水文模型参数区域化方法
CN110533578A (zh) * 2019-06-05 2019-12-03 广东世纪晟科技有限公司 一种基于条件对抗神经网络的图像翻译方法
CN110598794A (zh) * 2019-09-17 2019-12-20 武汉思普崚技术有限公司 一种分类对抗的网络攻击检测方法及***
CN110633859B (zh) * 2019-09-18 2024-03-01 西安理工大学 一种两阶段分解集成的水文序列预测方法
CN110796253A (zh) * 2019-11-01 2020-02-14 中国联合网络通信集团有限公司 生成对抗网络的训练方法及设备
CN111080155B (zh) * 2019-12-24 2022-03-15 武汉大学 一种基于生成对抗网络的空调用户调频能力评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034003A (zh) * 2010-12-16 2011-04-27 南京大学 基于蓄水容量曲线和topmodel的流域水文模型的设计方法
CN111160430A (zh) * 2019-12-19 2020-05-15 广东工业大学 一种基于人工智能算法的水资源优化配置方法
CN111144552A (zh) * 2019-12-27 2020-05-12 河南工业大学 一种粮食品质多指标预测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG RUI: "Prediction of Runoff Series in Jiulong River Basin Based on LSTM Model", CHINA MASTER’S THESES FULL-TEXT DATABASE, 15 January 2020 (2020-01-15), XP055900094 *
GUO YI, WU XIN-MIAO, QIE ZHI-HONG, RAN YAN-LI: "Parameter Calibration of MIKE SHE Model Based on BP Neural Network", JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTITUTE, vol. 36, no. 3, 31 March 2019 (2019-03-31), pages 26 - 30, XP055900097, ISSN: 1001-5485, DOI: 10.11988/ckyyb.20170992 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740155A (zh) * 2022-03-30 2022-07-12 内蒙古农业大学 一种森林生态***蒸散量的检测装置及方法
CN114740155B (zh) * 2022-03-30 2023-10-10 内蒙古农业大学 一种森林生态***蒸散量的检测装置及方法
CN116108672A (zh) * 2023-02-17 2023-05-12 南京声远声学科技有限公司 一种基于地理信息***的户外声传播预测模型构建方法
CN116108672B (zh) * 2023-02-17 2024-01-23 南京声远声学科技有限公司 一种基于地理信息***的户外声传播预测模型构建方法

Also Published As

Publication number Publication date
CN111914488B (zh) 2023-09-01
CN111914488A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN109858647B (zh) 一种耦合gis和gbdt算法的区域洪涝灾害风险评价与预估方法
CN109272146B (zh) 一种基于深度学习模型和bp神经网络校正的洪水预测方法
CN110619432B (zh) 一种基于深度学习的特征提取水文预报的方法
Deng et al. Simulation of land use/land cover change and its effects on the hydrological characteristics of the upper reaches of the Hanjiang Basin
CN111461457A (zh) 一种基于粒子群优化bp神经网络的基坑位移预测方法
Dumedah et al. Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II
Yarar et al. Modelling level change in lakes using neuro-fuzzy and artificial neural networks
CN108345735A (zh) 一种流域水文模型参数校准方法
WO2022032874A1 (zh) 一种基于对抗神经网络的有资料地区水文参数率定方法
CN111259522B (zh) 一种水文模型在地理空间上多流域并行率定的方法
CN113139329B (zh) 一种基于水文相似性和人工神经网络的新安江模型参数率定方法
CN107133686A (zh) 基于时空数据模型的城市级pm2.5浓度预测方法
CN113176393B (zh) 一种基于hasm模型的土壤有机碳储量三维估算方法及***
WO2022032873A1 (zh) 一种基于对抗神经网络的无资料地区水文参数率定方法
CN116796799A (zh) 无水文资料地区中小流域洪水降雨量阈值模型创建方法
Fu et al. Assessment and prediction of regional climate based on a multimodel ensemble machine learning method
CN113111590A (zh) 一种基于人工神经网络的城市洪涝模型径流敏感参数识别方法
CN117787081A (zh) 一种基于Morris和Sobol法的水文模型参数不确定性分析方法
Zhai et al. Wet aggregate stability predicting of soil in multiple land-uses based on support vector machine
CN111914430B (zh) 基于聚类及粒子群优化的有资料地区水文参数率定方法
CN111914465A (zh) 基于聚类及粒子群优化的无资料地区水文参数率定方法
Jahangir et al. Application of artificial neural networks to the simulation of climate elements, drought forecast by two indicators of SPI and PNPI, and mapping of drought intensity; case study of Khorasan Razavi
CN117471575B (zh) 基于bo-lstm神经网络模型的台风浪波高预报方法
Sharma et al. SWAT model application for simulating water balance and water yield in the lower Sutlej Sub-basin
Goudarzia et al. Corrected Proof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949368

Country of ref document: EP

Kind code of ref document: A1