WO2022032560A1 - Flexible network slice selection procedure - Google Patents

Flexible network slice selection procedure Download PDF

Info

Publication number
WO2022032560A1
WO2022032560A1 PCT/CN2020/108837 CN2020108837W WO2022032560A1 WO 2022032560 A1 WO2022032560 A1 WO 2022032560A1 CN 2020108837 W CN2020108837 W CN 2020108837W WO 2022032560 A1 WO2022032560 A1 WO 2022032560A1
Authority
WO
WIPO (PCT)
Prior art keywords
route selection
priority
application
data connection
flexible
Prior art date
Application number
PCT/CN2020/108837
Other languages
French (fr)
Inventor
Nan Zhang
Zhiguo Li
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108837 priority Critical patent/WO2022032560A1/en
Publication of WO2022032560A1 publication Critical patent/WO2022032560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the following relates to wireless communications, including a flexible network slice selection procedure.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may have one or more applications that may each involve communications with a network.
  • the UE may connect to the network in order to allow the application to communicate with the network, where the network connection is governed by a route selection descriptor (RSD) .
  • RSD route selection descriptor
  • An RSD if followed, allows the UE to connect the application to a network slicing instance. Improved techniques for managing the use of RSDs to connect an application to a network slice may be desirable.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support a flexible network slice selection procedure.
  • the described techniques provide for a UE to select a route selection descriptor (RSD) to connect an application of the UE to a network slice based on a priority of the RSD being flexible and in some cases, based on a request from the application to use a particular RSD or network slice.
  • RSD route selection descriptor
  • a UE may receive, from an application of the UE, a request to establish a data connection with a wireless network.
  • the UE may identify that a route selection policy for the wireless network includes a set of route selection options (e.g., RSDs) corresponding to the data connection requested by the application.
  • each of the set of route selection options may include a priority for use of the route selection option with respect to others of the set of route selection options.
  • the UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, where the indicator may be included within a field of the set of route selection options.
  • the UE may establish a data connection via an application-specified route selection option based on the priority being flexible.
  • a method of wireless communications at a UE may include receiving, from an application of the UE, a request to establish a data connection with a wireless network, identifying that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determining that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establishing a data connection via an application-specified route selection option based on the priority being flexible.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the apparatus may include means for receiving, from an application of the UE, a request to establish a data connection with a wireless network, identifying that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determining that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establishing a data connection via an application-specified route selection option based on the priority being flexible.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible.
  • receiving the request to establish the data connection further may include operations, features, means, or instructions for receiving the application-specified route selection option from the application of the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from establishing the data connection via a highest priority route selection option of the set of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority may be flexible.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from establishing the data connection via any higher priority route selection option of the set of route selection options that may have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority may be flexible.
  • the application-specified route selection option includes a lower priority that may be lower than a highest priority included in any of the set of route selection options.
  • determining that one or more of the set of route selection options includes the indicator that the priority may be flexible may include operations, features, means, or instructions for identifying a value of a flexible precedence flag in the field of the one or more of the set of route selection options.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the application of the UE, a request to establish a second data connection, the request including a second application-specified route selection option, and establishing the second data connection via the second application-specified route selection option based on the priority being flexible.
  • the UE disconnects from the data connection to establish the second data connection.
  • the UE may be connected to the data connection and the second data connection simultaneously.
  • each of the set of route selection options may be associated with a different network slicing instance.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a base station, the route selection policy for the wireless network.
  • a method of wireless communications at a base station may include identifying a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmitting the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establishing a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the apparatus may include means for identifying a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmitting the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establishing a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • transmitting the route selection policy to the UE may include operations, features, means, or instructions for including, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the set of route selection options.
  • the application-specified route selection option may be associated with a network slicing instance preferred by the application.
  • the application-specified route selection option includes a priority that may be lower than a highest priority included in any of the set of route selection options.
  • the application-specified route selection option includes a priority that may be lower than all of higher priority route selection options that include the indicator that the priority may be flexible.
  • each of the set of route selection options may be associated with a different network slicing instance.
  • FIG. 1 illustrates an example of a system for wireless communications that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a system for wireless communications that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • FIGs. 12 through 15 show flowcharts illustrating methods that support a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • a UE may establish a connection with a base station associated with a cellular radio network (e.g., a 5G core (5GC) network) .
  • a cellular radio network e.g., a 5G core (5GC) network
  • the base station may generally configure, indicate, or otherwise convey to the UE various policies, protocols, and the like, for the cellular radio network.
  • the UE may receive an access policy (e.g., a UE route selection policy (URSP) or a network slice selection policy (NSSP) ) identifying an access preference rule for the UE to use for connections to a core network function of the cellular radio network (e.g., for connections to a 5G core network (5GC) or a network slice) .
  • an access policy e.g., a UE route selection policy (URSP) or a network slice selection policy (NSSP) ) identifying an access preference rule for the UE to use for connections to a core network function of the cellular radio network (e.g
  • an application of a UE may request for the UE to establish a connection with the network so that the application may run.
  • the URSP the UE is configured with may correspond to an NSSP and may generally indicate how the UE is to preferentially connect the application to network slicing instances.
  • a network slice is a complete logical network including a radio access network (RAN) and a core network (CN) .
  • the network slice may provide telecommunication services and network capabilities, which may vary (or not) from slice to slice.
  • the URSP may indicate a set of route selection descriptors (RSDs) (e.g., route selection options) that the UE may use to connect the application to a network slicing instance.
  • RSDs route selection descriptors
  • Pre-defined protocols may configure each RSD to be associated with a different network slicing instance and different priority value (e.g., precedence value) , where the priority may rank the RSDs.
  • the UE may be configured to select an RSD following the priority values. For example, the UE may try to connect to the RSDs associated with the highest value to start, if the UE is able to connect to a network slice via the RSD with highest priority, the UE should. If the UE is unable to connect to the RSD of the highest priority, the UE may attempt to connect to the RSD with the next highest priority, and so on. As such, the UE may not connect to a network slice via lower priority RSDs unless the UE cannot connect via an RSD of a higher priority.
  • the pre-defined protocol e.g., URSP, NSSP
  • the UE may be configured to only use that RSD and thus the network slice associated with that RSD.
  • the UE may not be able to connect to the preferred network slice if the UE is able to connect to a network slice via an RSD of a higher priority.
  • some application may have complex uses (e.g., Wechat, Google, TikTok, Amazon) , where within the runtime of the application, it may be beneficial for the application to connect to different network slices, but due to the pre-defined protocol, the UE may be unable to perform such connections.
  • the conventional protocol may not meet the complex use cases of some applications which may lead to decreased network performance and reliability.
  • each RSD may be configured to include an indication of whether the priority of the RSD is flexible, for example, through an additional field (e.g., flexible precedence field, or flexible priority field) of the RSD or an existing field of the RSD.
  • each RSD indicated by URSP may include the flexible priority field, or a subset of the RSDs may include the priority field, where some RSDs indicated by the URSP may not include the priority field.
  • the UE may use the priority fields to determine whether the UE may use the RSD despite the priority value of the RSD.
  • the UE may look to the priority field of an RSD if an application requests a specific RSD, or a specific network slice associated with an RSD, otherwise, the UE may follow the priority rule. For example, a UE may receive a request from an application for the UE to connect the application to a certain network slice. The UE may determine whether the RSD associated with the requested network slice includes the flexible priority field. If the RSD does include the flexible priority field, and the flexible priority field indicates that the priority of that RSD is flexible, then the UE may attempt to connect to the network slice associated with that RSD, regardless of the priority associated with that RSD.
  • the described techniques may support improvements in application performance of a UE by allowing a UE to use a requested RSD regardless of the priority of the RSD, in some cases.
  • the described techniques may improve reliability and decrease latency among other advantages.
  • supported techniques may include improved network operations and, in some examples, may promote network efficiencies, among other benefits.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to flexible network slice selection procedure.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a UE 115 may communicate with a base station 105, where the communications may support the use of an application of the UE 115.
  • the UE 115 may receive a URSP corresponding to an NSSP of a network (such as a network associated with wireless communications system 100) .
  • a network slice is a complete logical network including a radio access network (RAN) and a core network (CN) .
  • the network slice provides telecommunication services and network capabilities, which may vary (or not) from slice to slice.
  • a UE may access multiple network slices simultaneously through a single RAN.
  • the URSP may include one or more RSDs or route selection options which define the RAN connections used to access a given network slice.
  • a UE 115 may select an RSD to connect the application of the UE 115 to a network slice based on a priority of the RSD being flexible and in some cases, based on a request from the application to use a particular RSD or network slice.
  • a UE 115 may receive, from an application of the UE 115, a request to establish a data connection with a wireless network.
  • the UE 115 may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application.
  • each of the set of route selection options may include a priority for use of the route selection option with respect to others of the set of route selection options.
  • the UE 115 may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, where the indicator may be included within a field of the set of route selection options (e.g., flexible precedence field, flexible priority field) .
  • the UE 115 may establish a data connection via an application-specified route selection option based on the priority being flexible. In some cases, the connection may be established through a base station 105, or a base station 105 may aid the connection establishment procedure.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may include base station 105-aand UE 115-a, which may be examples of a base station 105 and a UE 115 as described with reference to FIG. 1.
  • Base station 105-a may serve a geographic coverage area 110-a.
  • UE 115-a may be configured to determine whether to use an RSD to connect an application 205 to a network slice regardless of a priority value associated with the RSD.
  • other wireless devices such as a base station 105, may implement a network slice selection procedure.
  • UE 115-a may communicate with base station 105-a via communication links 210, where base station 105-a may support the use of an application 205 (e.g., video application, streaming application, chat application, voice application) by UE 115-a.
  • application 205 e.g., video application, streaming application, chat application, voice application
  • UE 115-a may transmit uplink signals to base station 105-a via communication link 210-a and base station 105-a may transmit downlink signals to UE 115-avia communication link 210-b.
  • UE 115-a may manage one or more applications 205, where UE 115-a may communicate with the one or more applications 205 via communication link 210-c.
  • an application 205 may request for UE 115-a to establish a connection with the data network, for example through base station 105-a, so that the application 205 may run, where UE 115-a may establish the data connection with a network slice through an RSD.
  • base station 105-a may indicate, or otherwise convey to UE 115-a various policies, protocols, and the like, for the cellular radio network. Accordingly, UE 115-a may receive an access policy (e.g., a URSP, a NSSP) identifying an access preference rule for the UE 115 to use for connections to a core network function of the cellular radio network (e.g., for connections to a 5G core network (5GC) or a network slice) .
  • an access policy e.g., a URSP, a NSSP
  • the access preference rules may be assigned to RSDs that are each associated with a network slicing instance.
  • UE 115-a may first attempt to establish a data session with the network (e.g., via base station 105-a) for a particular application 205 using a session establishment procedure (e.g., a protocol data unit (PDU) session establishment procedure) .
  • a session establishment procedure e.g., a protocol data unit (PDU) session establishment procedure
  • UE 115-a may transmit one or more session request messages to base station 105-a, each session request message including a different RSD.
  • the RSD may include various information regarding the data session UE 115-a is attempting to establish for the application 205, including an indication of a session and service continuity (SSC) mode, network slice information, a PDU session type, an access type, or the like.
  • UE 115-a may select, for each session request message, a different RSD from a set of RSDs stored at UE 115-a (e.g., based on NSSP or URSP) , where each RSD may include different parameters.
  • UE 115-a may transmit session request messages including different (e.g., sequentially selected) RSDs until UE 115-a receives a session accept message from base station 105-a responsive to one of the session request messages.
  • UE 115-a may establish the data session and communicate with base station 105-a accordingly throughout the run time of the application 205.
  • UE 115-a may sequentially select the RSDs based on a priority (e.g., precedence) associated with each RSD, where the priority associated with each RSD may be configured by URSP or NSSP. For example, UE 115-a may try to connect to the RSDs associated with the highest priority value to start, if UE 115-a is able to connect to a network slice via the RSD with highest priority, UE 115-a should. If UE 115-a is unable to connect to the RSD of the highest priority, UE 115-a may attempt to connect to the RSD with the next highest priority, and so on.
  • a priority e.g., precedence
  • UE 115-a may not connect to a network slice via lower priority RSDs unless UE 115-a cannot connect via an RSD of a higher priority.
  • UE 115-a may be configured to only use that RSD and thus the network slice associated with that RSD.
  • UE 115-a may not be able to connect to the preferred network slice if UE 115-a is able to connect to a network slice via an RSD of a higher priority.
  • some applications 205 may have complex uses (e.g., Wechat, Google, TikTok, Amazon) , where within the runtime of the application 205, the application 205 may benefit by connecting to multiple different network slices, but due to the pre-defined protocol, UE 115-a may be unable to perform such connections.
  • the conventional protocol may not meet the complex use cases of some applications 205 which may lead to decreased network performance and reliability.
  • each RSD may be configured to include an additional field (e.g., flexible precedence field, or flexible priority field) that may indicate the flexibility of the priority of the RSD.
  • an existing field may be used to indicate flexibility of the priority of the RSD.
  • each RSD indicated by the URSP may include the flexible priority field, or a subset of the RSDs may include the priority field, where some RSDs indicated by the URSP may not include the priority field.
  • UE 115-a may use the priority fields to determine whether UE 115-a may use the RSD despite the priority value of the RSD.
  • UE 115-a may look to the priority field of an RSD if an application 205 requests a specific RSD, or a specific network slice associated with an RSD, otherwise, UE 115-a may follow the priority rule. For example, UE 115-a may receive a request from an application for UE 115-a to connect the application 205 to a certain network slice. UE 115-a may determine whether the RSD associated with the requested network slice includes the flexible priority field. If the RSD does, and the flexible priority field indicates that the priority of that RSD is flexible, then UE 115-a may attempt to connect to the network slice associated with that RSD regardless of the priority associated with that RSD.
  • the flexible priority field may indicate that priority is flexible through a value, such as a 0 or 1 (or any other values) , where the value associated with the RSD being flexible or inflexible may be preconfigured, or dynamically or semi-statically signaled.
  • UE 115-a may receive an indication or be preconfigured with an indication that a 1 indicates that an RSD has flexible priority and a 0 indicates that an RSD does not have flexible priority.
  • the flexible priority field may indicate that priority is flexible through a through some other indication, such as “true” or “false” (or any other indication) , where “true” may indicate that the RSD has flexible priority and “false” may indicate that an RSD does not have flexible priority.
  • an RSD may be configured to include the flexible priority only if the RSD has flexible priority.
  • an RSDs lack or a flexible priority field may indicate that the RSD does not have flexible priority.
  • UE 115-a receive, from an application, a request including a preferred network slice of the application 205.
  • an application may be preconfigured (e.g., pre-associated) with a preferred network slice.
  • UE 115-a may receive a request from an application for UE 115-a to allow the application to run (e.g., a request to establish a connection with base station 105-a) .
  • UE 115-a may determine whether UE 115-a has stored information regarding the application, such as a stored network slicing preference.
  • the application 205 may request to be connected to a different network slice than the one the application 205 is currently connected to.
  • an application 205 may currently be connected to a first network slice (e.g., S-NSSAI-eMMB) that is associated with a high priority.
  • the application may change functions or otherwise determine that a second network slice (e.g., S-NSSAI-URLLC) that is associated with a lower priority is preferable and may send a request to UE 115-a that indicates the second network slice as the preferred network slice.
  • both the first network slice and the second network need to be associated with flexible priority, or just the first network slice or the second network slice may need to be associated with flexible priority for UE 115-a to be able to switch connections.
  • UE 115-a may determine whether the first network slice, or the second network slice, or both are associated with RSDs that are associated with flexible priorities. If the first network slice, or the second network slice, or both are associated with flexible priorities, then UE 115-a may attempt to connect the application 205 to the second network slice.
  • an application 205 may indicate to UE 115-a multiple requests for connections through different network slices throughout the run time of an application 205. If each network slice the application 205 requests each time is associated with an RSD that has flexible priority, then UE 115-a may attempt to connect the application 205 to the requested network slice. In some cases, the application 205 may request to be connected to multiple network slices simultaneously. If one or more of the requested network slices are associated with RSDs that have flexible priority, then UE 115-a may attempt to connect the application 205 to each of the requested network slices simultaneously.
  • UE 115-a may default to connecting the application 205 to a network slice via the highest priority RSD and UE 115-a may identify a request from the application 205 to connect to certain network slice associated with a lower priority RSD. In some cases, UE 115-a may maintain the connection vie the highest priority RSD and simultaneously establish a connection via the requested RSD.
  • FIG. 3 illustrates an example of a process flow 300 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the process flow 300 may illustrate an example network slice selection scheme for establishing a connection between an application 305 of a UE 115 and a network slice.
  • UE 115-b may receive one or more requests from one or more applications 305 of UE 115-b for UE 115-b to connect each application 305 to a particular network slice and in some examples to base station 105-b.
  • Base station 105-b and UE 115-b may be examples of the corresponding wireless devices described with reference to FIGs. 1 and 2.
  • a different type of wireless device e.g., a base station 105 may perform the procedure.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • base station 105-b may identify a route selection policy (e.g., URSP) associated with data connections between UE 115-b and base station 105-b in a wireless network.
  • the route selection policy may include a set of route selection options (e.g., RSDs) corresponding to a data connection, where each of the set of route selection options includes a priority for use of the route selection option with respect to others of the plurality of route selection options. For example, each route selection option may be assigned a different priority value.
  • base station 105-b may transmit the route selection policy to UE 115-b, where one or more of the set of route selection options of the route selection policy includes a field with an indicator that a respective priority is flexible. For example, all or a subset of the route selection options may include a field that indicates whether the priority associated with the respective route selection option is flexible.
  • UE 115-b may receive, from application 305 of UE 115-b, a request to establish a data connection with a wireless network.
  • UE 115-b may receive, from application 305, an application-specified route selection option.
  • the application-specified route selection option may be included in the request to establish a data connection or may be received via a separate message.
  • UE 115-b may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by application 305.
  • each of the set of route selection options may include a priority for use of the route selection option with respect to others of the set of route selection options.
  • Each of the set of route selection options may be associated with a different network slicing instance.
  • UE 115-b may identify the route selection policy based on the signaling at 315.
  • UE 115-b may store the route selection policy.
  • the application-specified route selection option UE 115-b may receive may include a lower priority that is lower than a highest priority included in any of the set of route selection options.
  • UE 115-b may determine that one or more of the set of route selection options includes an indicator that the priority is flexible.
  • the indicator may be included within a field of the set of route selection options (e.g., flexible priority field, flexible precedence field) .
  • UE 115-b may identify a value of a flexible precedence flag in the field of the one or more of the set of route selection options.
  • UE 115-b may establish a data connection via an application-specified route selection option based on the priority being flexible. In some cases, UE 115-b may refrain from establishing a data connection via a highest priority route selection option of the set of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible. In some cases, UE 115-b may refrain from establishing a data connection via any higher priority route selection option of the set of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  • UE 115-b may receive, from application 305 of UE 115-b, a request (e.g., a second result) to establish a second data connection, where the request includes a second application-specified route selection option.
  • UE 115-b may establish the second data connection via the second application-specified route selection option based on the priority being flexible.
  • UE 115-b disconnect from the first data connection (e.g., the existing data connection) to establish the second data connection.
  • UE 115-b may connect to the first data connection and the second data connection simultaneously.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • the communications manager 415 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 405 to more efficiently connect an application to a network slicing instance via an RSD.
  • a device 405 may receive an indication of a preferred network slicing instance from an application and the device may attempt to use the RSD associated with the network slicing instance if a flexible priority field associated with the RSD indicates that the RSD has flexible priority.
  • the UE 115 may be able to connect the application to a preferred network slice without running through the RSD based on priority.
  • a processor of a UE 115 may increase reliability and efficiency in connecting an application to a network slice and increase the performance of an application of the UE 115.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 540.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include a connection request receiver 520, a route selection policy manager 525, a flexible priority manager 530, and a data connection manager 535.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the connection request receiver 520 may receive, from an application of the UE, a request to establish a data connection with a wireless network.
  • the route selection policy manager 525 may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the flexible priority manager 530 may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options.
  • the data connection manager 535 may establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the transmitter 540 may transmit signals generated by other components of the device 505.
  • the transmitter 540 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 540 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 540 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include a connection request receiver 610, a route selection policy manager 615, a flexible priority manager 620, a data connection manager 625, and a precedence flag identifier 630. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the connection request receiver 610 may receive, from an application of the UE, a request to establish a data connection with a wireless network.
  • the route selection policy manager 615 may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the flexible priority manager 620 may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options.
  • the data connection manager 625 may establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the connection request receiver 610 may receive the application-specified route selection option from the application of the UE.
  • the data connection manager 625 may refrain from establishing the data connection via a highest priority route selection option of the set of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
  • the data connection manager 625 may refrain from establishing the data connection via any higher priority route selection option of the set of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  • the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the set of route selection options.
  • the precedence flag identifier 630 may identify a value of a flexible precedence flag in the field of the one or more of the set of route selection options.
  • the connection request receiver 610 may receive, from the application of the UE, a request to establish a second data connection, the request including a second application-specified route selection option.
  • the data connection manager 625 may establish the second data connection via the second application-specified route selection option based on the priority being flexible.
  • the UE disconnects from the data connection to establish the second data connection.
  • the UE is connected to the data connection and the second data connection simultaneously.
  • each of the set of route selection options is associated with a different network slicing instance.
  • the route selection policy manager 615 may receive, from a base station, the route selection policy for the wireless network.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the communications manager 710 may receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting flexible network slice selection procedure) .
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
  • the communications manager 815 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 815 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 935.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may be an example of aspects of the communications manager 815 as described herein.
  • the communications manager 915 may include a route selection policy component 920, a route selection policy transmitter 925, and a data connection component 930.
  • the communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
  • the route selection policy component 920 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the route selection policy transmitter 925 may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible.
  • the data connection component 930 may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the transmitter 935 may transmit signals generated by other components of the device 905.
  • the transmitter 935 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 935 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein.
  • the communications manager 1005 may include a route selection policy component 1010, a route selection policy transmitter 1015, a data connection component 1020, and a precedence flag component 1025. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the route selection policy component 1010 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the route selection policy transmitter 1015 may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible.
  • the data connection component 1020 may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the precedence flag component 1025 may include, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the set of route selection options.
  • the application-specified route selection option is associated with a network slicing instance preferred by the application. In some cases, the application-specified route selection option includes a priority that is lower than a highest priority included in any of the set of route selection options. In some cases, the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible. In some cases, each of the set of route selection options is associated with a different network slicing instance.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
  • buses e.g., bus 1150
  • the communications manager 1110 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting flexible network slice selection procedure) .
  • the inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from an application of the UE, a request to establish a data connection with a wireless network.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a connection request receiver as described with reference to FIGs. 4 through 7.
  • the UE may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a route selection policy manager as described with reference to FIGs. 4 through 7.
  • the UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a flexible priority manager as described with reference to FIGs. 4 through 7.
  • the UE may establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a data connection manager as described with reference to FIGs. 4 through 7.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from an application of the UE, a request to establish a data connection with a wireless network.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a connection request receiver as described with reference to FIGs. 4 through 7.
  • the UE may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a route selection policy manager as described with reference to FIGs. 4 through 7.
  • the UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a flexible priority manager as described with reference to FIGs. 4 through 7.
  • the UE may establish a data connection via an application-specified route selection option based on the priority being flexible.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a data connection manager as described with reference to FIGs. 4 through 7.
  • the UE may receive, from the application of the UE, a request to establish a second data connection, the request including a second application-specified route selection option.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a connection request receiver as described with reference to FIGs. 4 through 7.
  • the UE may establish the second data connection via the second application-specified route selection option based on the priority being flexible.
  • the operations of 1330 may be performed according to the methods described herein. In some examples, aspects of the operations of 1330 may be performed by a data connection manager as described with reference to FIGs. 4 through 7.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a route selection policy component as described with reference to FIGs. 8 through 11.
  • the base station may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a route selection policy transmitter as described with reference to FIGs. 8 through 11.
  • the base station may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a data connection component as described with reference to FIGs. 8 through 11.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a route selection policy component as described with reference to FIGs. 8 through 11.
  • the base station may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a route selection policy transmitter as described with reference to FIGs. 8 through 11.
  • the base station may include, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the set of route selection options.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a precedence flag component as described with reference to FIGs. 8 through 11.
  • the base station may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a data connection component as described with reference to FIGs. 8 through 11.
  • Example 1 A method for wireless communications at a user equipment (UE) , comprising: receiving, from an application of the UE, a request to establish a data connection with a wireless network; identifying that a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options; determining that one or more of the plurality of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the plurality of route selection options; and establishing the data connection via an application-specified route selection option based at least in part on the priority being flexible.
  • a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options; determining that one or more of the plurality of route selection options
  • Example 2 The method of example 1, wherein receiving a request to establish a data connection further comprises: receiving the application-specified route selection option from the application of the UE.
  • Example 3 The method of example 2, further comprising: refraining from establishing a data connection via a highest priority route selection option of the plurality of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
  • Example 4 The method of any of examples 2 or 3, further comprising: refraining from establishing a data connection via any higher priority route selection option of the plurality of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  • Example 5 The method of any of examples 1 through 4, wherein the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the plurality of route selection options.
  • Example 6 The method of any of examples 1 through 5, wherein determining that one or more of the plurality of route selection options includes the indicator that the priority is flexible comprises: identifying a value of a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  • Example 7 The method of any of examples 1 through 6, further comprising: receiving, from the application of the UE, a request to establish a second data connection, the request comprising a second application-specified route selection option; and establishing the second data connection via the second application-specified route selection option based at least in part on the priority being flexible.
  • Example 8 The method of example 7, wherein the UE disconnects from the data connection to establish the second data connection.
  • Example 9 The method of any of examples 7 or 8, wherein the UE is connected to the data connection and the second data connection simultaneously.
  • Example 10 The method of any of examples 1 through 9, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  • Example 11 The method of any of examples 1 through 10, further comprising: receiving, from the base station, the route selection policy for the wireless network.
  • Example 12 An apparatus comprising at least one means for performing a method of any of examples 1 to 11.
  • Example 13 An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 1 to 11.
  • Example 14 A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 1 to 11.
  • Example 15 A method for wireless communications at a base station, comprising: identifying a route selection policy associated with data connections between a user equipment (UE) and the base station in a wireless network, the route selection policy including a plurality of route selection options corresponding to a data connection, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options; transmitting the route selection policy to the UE, one or more of the plurality of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible; and establishing a data connection with the UE via an application-specified route selection option based at least in part on the priority being flexible.
  • UE user equipment
  • Example 16 The method of example 15, wherein transmitting the route selection policy to the UE comprises: including, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  • Example 17 The method of any of examples 15 or 16, wherein the application-specified route selection option is associated with a network slicing instance preferred by the application.
  • Example 18 The method of any of examples 15 through 17, wherein the application-specified route selection option includes a priority that is lower than a highest priority included in any of the plurality of route selection options.
  • Example 19 The method of any of examples 15 through 18, wherein the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible.
  • Example 20 The method of any of examples 15 through 19, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  • Example 21 An apparatus comprising at least one means for performing a method of any of examples 15 to 20.
  • Example 22 An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 15 to 20.
  • Example 23 A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 15 to 20.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from an application, a request to establish a data connection with a wireless network. The UE may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application. In some cases, each of the plurality of route selection options may include a priority for use of the route selection option with respect to others of the plurality of route selection options. The UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible. The indicator may be included within a field of the set of route selection options. The UE may establish the data connection via an application-specified route selection option based on the priority being flexible.

Description

FLEXIBLE NETWORK SLICE SELECTION PROCEDURE
FIELD OF TECHNOLOGY
The following relates to wireless communications, including a flexible network slice selection procedure.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless communications system, a UE may have one or more applications that may each involve communications with a network. The UE may connect to the network in order to allow the application to communicate with the network, where the network connection is governed by a route selection descriptor (RSD) . An RSD, if followed, allows the UE to connect the application to a network slicing instance. Improved techniques for managing the use of RSDs to connect an application to a network slice may be desirable.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support a flexible network slice selection procedure. Generally, the described techniques provide for a UE to select a route selection descriptor (RSD) to connect an  application of the UE to a network slice based on a priority of the RSD being flexible and in some cases, based on a request from the application to use a particular RSD or network slice. For example, a UE may receive, from an application of the UE, a request to establish a data connection with a wireless network. The UE may identify that a route selection policy for the wireless network includes a set of route selection options (e.g., RSDs) corresponding to the data connection requested by the application. In some cases, each of the set of route selection options may include a priority for use of the route selection option with respect to others of the set of route selection options. The UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, where the indicator may be included within a field of the set of route selection options. The UE may establish a data connection via an application-specified route selection option based on the priority being flexible.
A method of wireless communications at a UE is described. The method may include receiving, from an application of the UE, a request to establish a data connection with a wireless network, identifying that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determining that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establishing a data connection via an application-specified route selection option based on the priority being flexible.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data  connection via an application-specified route selection option based on the priority being flexible.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, from an application of the UE, a request to establish a data connection with a wireless network, identifying that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determining that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establishing a data connection via an application-specified route selection option based on the priority being flexible.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the request to establish the data connection further may include operations, features, means, or instructions for receiving the application-specified route selection option from the application of the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from establishing the data connection via a highest priority route selection option of the set of route selection options based on receiving the application-specified route  selection option and based on at least the highest priority route selection option including the indicator that the priority may be flexible.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from establishing the data connection via any higher priority route selection option of the set of route selection options that may have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority may be flexible.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the application-specified route selection option includes a lower priority that may be lower than a highest priority included in any of the set of route selection options.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining that one or more of the set of route selection options includes the indicator that the priority may be flexible may include operations, features, means, or instructions for identifying a value of a flexible precedence flag in the field of the one or more of the set of route selection options.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the application of the UE, a request to establish a second data connection, the request including a second application-specified route selection option, and establishing the second data connection via the second application-specified route selection option based on the priority being flexible.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE disconnects from the data connection to establish the second data connection.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE may be connected to the data connection and the second data connection simultaneously.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each of the set of route selection options may be associated with a different network slicing instance.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a base station, the route selection policy for the wireless network.
A method of wireless communications at a base station is described. The method may include identifying a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmitting the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establishing a data connection with the UE via an application-specified route selection option based on the priority being flexible.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for identifying a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with  respect to others of the set of route selection options, transmitting the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establishing a data connection with the UE via an application-specified route selection option based on the priority being flexible.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the route selection policy to the UE may include operations, features, means, or instructions for including, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the set of route selection options.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the application-specified route selection option may be associated with a network slicing instance preferred by the application.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the application-specified route selection option includes a priority that may be lower than a highest priority included in any of the set of route selection options.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the application-specified route selection option includes a priority that may be lower than all of higher priority route selection options that include the indicator that the priority may be flexible.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each of the set of route selection options may be associated with a different network slicing instance.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a system for wireless communications that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices that support a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIG. 10 shows a block diagram of a communications manager that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure.
FIGs. 12 through 15 show flowcharts illustrating methods that support a flexible network slice selection procedure in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a UE may establish a connection with a base station associated with a cellular radio network (e.g., a 5G core (5GC) network) . Whenever a UE establishes a connection with a base station, the base station may generally configure, indicate, or otherwise convey to the UE various policies, protocols, and the like, for the cellular radio network. Accordingly, the UE may receive an access policy (e.g., a UE route selection policy (URSP) or a network slice selection policy (NSSP) ) identifying an access preference rule for the UE to use for connections to a core network function of the cellular radio network (e.g., for connections to a 5G core network (5GC) or a network slice) . In some cases, an application of a UE may request for the UE to establish a connection with the network so that the application may run. The URSP the UE is configured with may correspond to an NSSP and may generally indicate how the UE is to preferentially connect the application to network slicing instances. A network slice is a complete logical network including a radio access network (RAN) and a core network (CN) . The network slice may provide telecommunication services and network capabilities, which may vary (or not) from slice to slice. The URSP may indicate a set of route selection descriptors (RSDs) (e.g., route selection options) that the UE may use to connect the application to a network slicing instance. Pre-defined protocols may configure each RSD to be associated with a different network slicing instance and different priority value (e.g., precedence value) , where the priority may rank the RSDs.
Based on the pre-defined protocol (e.g., URSP, NSSP) , the UE may be configured to select an RSD following the priority values. For example, the UE may try to connect to the RSDs associated with the highest value to start, if the UE is able to connect to a network slice via the RSD with highest priority, the UE should. If the UE is unable to connect to the RSD of the highest priority, the UE may attempt to connect to the RSD with the next highest priority, and so on. As such, the UE may not connect to a network slice via lower priority RSDs unless the UE cannot connect via an RSD of a higher priority. In some cases, once the UE connects to the RSD of the highest priority the UE is able, the UE may be configured to only use that RSD and thus the network slice associated with that RSD. However, it may be preferable for some applications to connect to certain network slices. For example, an application may have enhanced performance when connected to a network slice that happens to be associated with a low priority RSD. However, due to the pre-defined protocol, the UE  may not be able to connect to the preferred network slice if the UE is able to connect to a network slice via an RSD of a higher priority. Further, some application may have complex uses (e.g., Wechat, Google, TikTok, Amazon) , where within the runtime of the application, it may be beneficial for the application to connect to different network slices, but due to the pre-defined protocol, the UE may be unable to perform such connections. As such, the conventional protocol may not meet the complex use cases of some applications which may lead to decreased network performance and reliability.
To improve network performance, reliability, and flexibility, each RSD may be configured to include an indication of whether the priority of the RSD is flexible, for example, through an additional field (e.g., flexible precedence field, or flexible priority field) of the RSD or an existing field of the RSD. In some cases, each RSD indicated by URSP may include the flexible priority field, or a subset of the RSDs may include the priority field, where some RSDs indicated by the URSP may not include the priority field. The UE may use the priority fields to determine whether the UE may use the RSD despite the priority value of the RSD. In some cases, the UE may look to the priority field of an RSD if an application requests a specific RSD, or a specific network slice associated with an RSD, otherwise, the UE may follow the priority rule. For example, a UE may receive a request from an application for the UE to connect the application to a certain network slice. The UE may determine whether the RSD associated with the requested network slice includes the flexible priority field. If the RSD does include the flexible priority field, and the flexible priority field indicates that the priority of that RSD is flexible, then the UE may attempt to connect to the network slice associated with that RSD, regardless of the priority associated with that RSD.
Particular aspects of the subject matter described herein may be implemented to realize one or more advantages. The described techniques may support improvements in application performance of a UE by allowing a UE to use a requested RSD regardless of the priority of the RSD, in some cases. The described techniques may improve reliability and decrease latency among other advantages. As such, supported techniques may include improved network operations and, in some examples, may promote network efficiencies, among other benefits.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to a process flow. Aspects  of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to flexible network slice selection procedure.
FIG. 1 illustrates an example of a wireless communications system 100 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2,  Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The  wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol  period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with  different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility  management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications  system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna  elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In some wireless communications systems, such as wireless communications system 100, a UE 115 may communicate with a base station 105, where the communications may support the use of an application of the UE 115. The UE 115 may receive a URSP corresponding to an NSSP of a network (such as a network associated with wireless communications system 100) . A network slice is a complete logical network including a radio access network (RAN) and a core network (CN) . In some cases, the network slice provides telecommunication services and network capabilities, which may vary (or not) from slice to slice. A UE may access multiple network slices simultaneously through a single RAN. The URSP may include one or more RSDs or route selection options which define the RAN connections used to access a given network slice.
The techniques described herein provide for a UE 115 to select an RSD to connect the application of the UE 115 to a network slice based on a priority of the RSD being flexible and in some cases, based on a request from the application to use a particular RSD or network slice. For example, a UE 115 may receive, from an application of the UE 115, a request to establish a data connection with a wireless network. The UE 115 may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application. In some cases, each of the set of route selection options may include a priority for use of the route selection option with respect to others of the set of route selection options. The UE 115 may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, where the indicator may be included within a field of the set of route selection options (e.g., flexible precedence field, flexible priority field) . The UE 115 may establish a data connection via an application-specified route selection option based on the priority being flexible. In some cases, the connection may be established through a base station 105, or a base station 105 may aid the connection establishment procedure.
FIG. 2 illustrates an example of a wireless communications system 200 that supports a flexible network slice selection procedure in accordance with aspects of the  present disclosure. The wireless communications system 200 may include base station 105-aand UE 115-a, which may be examples of a base station 105 and a UE 115 as described with reference to FIG. 1. Base station 105-a may serve a geographic coverage area 110-a. In some cases, UE 115-a may be configured to determine whether to use an RSD to connect an application 205 to a network slice regardless of a priority value associated with the RSD. Additionally or alternatively, other wireless devices, such as a base station 105, may implement a network slice selection procedure.
In some cases, UE 115-a may communicate with base station 105-a via communication links 210, where base station 105-a may support the use of an application 205 (e.g., video application, streaming application, chat application, voice application) by UE 115-a. For example, UE 115-a may transmit uplink signals to base station 105-a via communication link 210-a and base station 105-a may transmit downlink signals to UE 115-avia communication link 210-b. In some cases, UE 115-a may manage one or more applications 205, where UE 115-a may communicate with the one or more applications 205 via communication link 210-c. For example, an application 205 may request for UE 115-a to establish a connection with the data network, for example through base station 105-a, so that the application 205 may run, where UE 115-a may establish the data connection with a network slice through an RSD.
Upon establishing a connection with base station 105-a, base station 105-a may indicate, or otherwise convey to UE 115-a various policies, protocols, and the like, for the cellular radio network. Accordingly, UE 115-a may receive an access policy (e.g., a URSP, a NSSP) identifying an access preference rule for the UE 115 to use for connections to a core network function of the cellular radio network (e.g., for connections to a 5G core network (5GC) or a network slice) . In some cases, the access preference rules may be assigned to RSDs that are each associated with a network slicing instance.
To access an Internet protocol (IP) multimedia subsystem (IMS) , the Internet, video, or other network slice (e.g., network slicing instance) , UE 115-a may first attempt to establish a data session with the network (e.g., via base station 105-a) for a particular application 205 using a session establishment procedure (e.g., a protocol data unit (PDU) session establishment procedure) . In such session establishment procedures, UE 115-a may transmit one or more session request messages to base station 105-a, each session request  message including a different RSD. The RSD may include various information regarding the data session UE 115-a is attempting to establish for the application 205, including an indication of a session and service continuity (SSC) mode, network slice information, a PDU session type, an access type, or the like. In some cases, UE 115-a may select, for each session request message, a different RSD from a set of RSDs stored at UE 115-a (e.g., based on NSSP or URSP) , where each RSD may include different parameters. UE 115-a may transmit session request messages including different (e.g., sequentially selected) RSDs until UE 115-a receives a session accept message from base station 105-a responsive to one of the session request messages. Upon reception of the session accept message, UE 115-a may establish the data session and communicate with base station 105-a accordingly throughout the run time of the application 205.
UE 115-a may sequentially select the RSDs based on a priority (e.g., precedence) associated with each RSD, where the priority associated with each RSD may be configured by URSP or NSSP. For example, UE 115-a may try to connect to the RSDs associated with the highest priority value to start, if UE 115-a is able to connect to a network slice via the RSD with highest priority, UE 115-a should. If UE 115-a is unable to connect to the RSD of the highest priority, UE 115-a may attempt to connect to the RSD with the next highest priority, and so on. As such, UE 115-a may not connect to a network slice via lower priority RSDs unless UE 115-a cannot connect via an RSD of a higher priority. In some cases, once UE 115-a connects to the RSD of the highest priority UE 115-a is able, UE 115-a may be configured to only use that RSD and thus the network slice associated with that RSD. However, it may be preferable for some applications 205 to connect to certain network slices. For example, an application may have enhanced performance when connected to a network slice, where the network slice may happen to be associated with a low priority RSD. However, due to the pre-defined protocol (e.g., URSP, NSSP) , UE 115-a may not be able to connect to the preferred network slice if UE 115-a is able to connect to a network slice via an RSD of a higher priority. Further, some applications 205 may have complex uses (e.g., Wechat, Google, TikTok, Amazon) , where within the runtime of the application 205, the application 205 may benefit by connecting to multiple different network slices, but due to the pre-defined protocol, UE 115-a may be unable to perform such connections. As such, the conventional protocol may not meet the complex use cases of some applications 205 which may lead to decreased network performance and reliability.
To improve network performance, reliability, and flexibility, each RSD may be configured to include an additional field (e.g., flexible precedence field, or flexible priority field) that may indicate the flexibility of the priority of the RSD. In some implementations, an existing field may be used to indicate flexibility of the priority of the RSD. In some cases, each RSD indicated by the URSP may include the flexible priority field, or a subset of the RSDs may include the priority field, where some RSDs indicated by the URSP may not include the priority field. UE 115-a may use the priority fields to determine whether UE 115-a may use the RSD despite the priority value of the RSD. In some cases, UE 115-a may look to the priority field of an RSD if an application 205 requests a specific RSD, or a specific network slice associated with an RSD, otherwise, UE 115-a may follow the priority rule. For example, UE 115-a may receive a request from an application for UE 115-a to connect the application 205 to a certain network slice. UE 115-a may determine whether the RSD associated with the requested network slice includes the flexible priority field. If the RSD does, and the flexible priority field indicates that the priority of that RSD is flexible, then UE 115-a may attempt to connect to the network slice associated with that RSD regardless of the priority associated with that RSD. The flexible priority field may indicate that priority is flexible through a value, such as a 0 or 1 (or any other values) , where the value associated with the RSD being flexible or inflexible may be preconfigured, or dynamically or semi-statically signaled. For example, UE 115-a may receive an indication or be preconfigured with an indication that a 1 indicates that an RSD has flexible priority and a 0 indicates that an RSD does not have flexible priority. Additionally or alternatively, the flexible priority field may indicate that priority is flexible through a through some other indication, such as “true” or “false” (or any other indication) , where “true” may indicate that the RSD has flexible priority and “false” may indicate that an RSD does not have flexible priority. In some cases, an RSD may be configured to include the flexible priority only if the RSD has flexible priority. For example, an RSDs lack or a flexible priority field may indicate that the RSD does not have flexible priority.
In some cases, UE 115-a receive, from an application, a request including a preferred network slice of the application 205. Additionally or alternatively, an application may be preconfigured (e.g., pre-associated) with a preferred network slice. For example, UE 115-a may receive a request from an application for UE 115-a to allow the application to run (e.g., a request to establish a connection with base station 105-a) . Upon receiving the request,  UE 115-a may determine whether UE 115-a has stored information regarding the application, such as a stored network slicing preference.
In some cases, the application 205 may request to be connected to a different network slice than the one the application 205 is currently connected to. For example, an application 205 may currently be connected to a first network slice (e.g., S-NSSAI-eMMB) that is associated with a high priority. The application may change functions or otherwise determine that a second network slice (e.g., S-NSSAI-URLLC) that is associated with a lower priority is preferable and may send a request to UE 115-a that indicates the second network slice as the preferred network slice. In some cases, both the first network slice and the second network need to be associated with flexible priority, or just the first network slice or the second network slice may need to be associated with flexible priority for UE 115-a to be able to switch connections. UE 115-a may determine whether the first network slice, or the second network slice, or both are associated with RSDs that are associated with flexible priorities. If the first network slice, or the second network slice, or both are associated with flexible priorities, then UE 115-a may attempt to connect the application 205 to the second network slice.
In some cases, an application 205 may indicate to UE 115-a multiple requests for connections through different network slices throughout the run time of an application 205. If each network slice the application 205 requests each time is associated with an RSD that has flexible priority, then UE 115-a may attempt to connect the application 205 to the requested network slice. In some cases, the application 205 may request to be connected to multiple network slices simultaneously. If one or more of the requested network slices are associated with RSDs that have flexible priority, then UE 115-a may attempt to connect the application 205 to each of the requested network slices simultaneously. In some cases, UE 115-a may default to connecting the application 205 to a network slice via the highest priority RSD and UE 115-a may identify a request from the application 205 to connect to certain network slice associated with a lower priority RSD. In some cases, UE 115-a may maintain the connection vie the highest priority RSD and simultaneously establish a connection via the requested RSD.
FIG. 3 illustrates an example of a process flow 300 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The  process flow 300 may illustrate an example network slice selection scheme for establishing a connection between an application 305 of a UE 115 and a network slice. For example, UE 115-b may receive one or more requests from one or more applications 305 of UE 115-b for UE 115-b to connect each application 305 to a particular network slice and in some examples to base station 105-b. Base station 105-b and UE 115-b may be examples of the corresponding wireless devices described with reference to FIGs. 1 and 2. In some cases, instead of UE 115-b implementing the network slice selection procedure, a different type of wireless device (e.g., a base station 105) may perform the procedure. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 310, base station 105-b may identify a route selection policy (e.g., URSP) associated with data connections between UE 115-b and base station 105-b in a wireless network. The route selection policy may include a set of route selection options (e.g., RSDs) corresponding to a data connection, where each of the set of route selection options includes a priority for use of the route selection option with respect to others of the plurality of route selection options. For example, each route selection option may be assigned a different priority value.
At 315, base station 105-b may transmit the route selection policy to UE 115-b, where one or more of the set of route selection options of the route selection policy includes a field with an indicator that a respective priority is flexible. For example, all or a subset of the route selection options may include a field that indicates whether the priority associated with the respective route selection option is flexible.
At 320, UE 115-b may receive, from application 305 of UE 115-b, a request to establish a data connection with a wireless network. In some cases, UE 115-b may receive, from application 305, an application-specified route selection option. The application-specified route selection option may be included in the request to establish a data connection or may be received via a separate message.
At 325, UE 115-b may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by application 305. In some cases, each of the set of route selection options may  include a priority for use of the route selection option with respect to others of the set of route selection options. Each of the set of route selection options may be associated with a different network slicing instance. In some implementations, UE 115-b may identify the route selection policy based on the signaling at 315. In some cases, UE 115-b may store the route selection policy. In some cases, the application-specified route selection option UE 115-b may receive may include a lower priority that is lower than a highest priority included in any of the set of route selection options.
At 330, UE 115-b may determine that one or more of the set of route selection options includes an indicator that the priority is flexible. In some cases, the indicator may be included within a field of the set of route selection options (e.g., flexible priority field, flexible precedence field) . In some cases, UE 115-b may identify a value of a flexible precedence flag in the field of the one or more of the set of route selection options.
At 335, UE 115-b may establish a data connection via an application-specified route selection option based on the priority being flexible. In some cases, UE 115-b may refrain from establishing a data connection via a highest priority route selection option of the set of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible. In some cases, UE 115-b may refrain from establishing a data connection via any higher priority route selection option of the set of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
In some case, UE 115-b may receive, from application 305 of UE 115-b, a request (e.g., a second result) to establish a second data connection, where the request includes a second application-specified route selection option. UE 115-b may establish the second data connection via the second application-specified route selection option based on the priority being flexible. In some cases, UE 115-b disconnect from the first data connection (e.g., the existing data connection) to establish the second data connection. In some cases, UE 115-b may connect to the first data connection and the second data connection simultaneously.
FIG. 4 shows a block diagram 400 of a device 405 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The  device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some  examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
The communications manager 415 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 405 to more efficiently connect an application to a network slicing instance via an RSD. For example, a device 405 may receive an indication of a preferred network slicing instance from an application and the device may attempt to use the RSD associated with the network slicing instance if a flexible priority field associated with the RSD indicates that the RSD has flexible priority. As such, the UE 115 may be able to connect the application to a preferred network slice without running through the RSD based on priority.
Based on implementing the flexible priority field as described herein, a processor of a UE 115 (e.g., controlling the receiver 410, the transmitter 420, or the transceiver 720 as described with reference to FIG. 7) may increase reliability and efficiency in connecting an application to a network slice and increase the performance of an application of the UE 115.
FIG. 5 shows a block diagram 500 of a device 505 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 540. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include a connection request receiver 520, a route selection policy manager 525, a flexible priority manager 530, and a data connection manager 535. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The connection request receiver 520 may receive, from an application of the UE, a request to establish a data connection with a wireless network. The route selection policy manager 525 may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The flexible priority manager 530 may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options. The data connection manager 535 may establish a data connection via an application-specified route selection option based on the priority being flexible.
The transmitter 540 may transmit signals generated by other components of the device 505. In some examples, the transmitter 540 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 540 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 540 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a communications manager 605 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein. The communications manager 605 may include a connection  request receiver 610, a route selection policy manager 615, a flexible priority manager 620, a data connection manager 625, and a precedence flag identifier 630. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The connection request receiver 610 may receive, from an application of the UE, a request to establish a data connection with a wireless network. The route selection policy manager 615 may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The flexible priority manager 620 may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options. The data connection manager 625 may establish a data connection via an application-specified route selection option based on the priority being flexible.
In some examples, the connection request receiver 610 may receive the application-specified route selection option from the application of the UE. In some examples, the data connection manager 625 may refrain from establishing the data connection via a highest priority route selection option of the set of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible. In some examples, the data connection manager 625 may refrain from establishing the data connection via any higher priority route selection option of the set of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
In some cases, the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the set of route selection options. The precedence flag identifier 630 may identify a value of a flexible precedence flag in the field of the one or more of the set of route selection options.
In some examples, the connection request receiver 610 may receive, from the application of the UE, a request to establish a second data connection, the request including a second application-specified route selection option. In some examples, the data connection  manager 625 may establish the second data connection via the second application-specified route selection option based on the priority being flexible. In some cases, the UE disconnects from the data connection to establish the second data connection. In some cases, the UE is connected to the data connection and the second data connection simultaneously.
In some cases, each of the set of route selection options is associated with a different network slicing instance. In some examples, the route selection policy manager 615 may receive, from a base station, the route selection policy for the wireless network.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
The communications manager 710 may receive, from an application of the UE, a request to establish a data connection with a wireless network, identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options, and establish a data connection via an application-specified route selection option based on the priority being flexible.
The I/O controller 715 may manage input and output signals for the device 705. The I/O controller 715 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 715 may utilize an operating system such as 
Figure PCTCN2020108837-appb-000001
or another known operating system. In other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O  controller 715 may be implemented as part of a processor. In some cases, a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include random-access memory (RAM) and read-only memory (ROM) . The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting flexible network slice selection procedure) .
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but  may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a block diagram 800 of a device 805 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a base station 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and establish a data connection with the UE via an application-specified route selection option based on the priority being flexible. The communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
The communications manager 815, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 815, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 815, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 815, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 820 may transmit signals generated by other components of the device 805. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 820 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a device 905 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805, or a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 935. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to flexible network slice selection procedure, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may be an example of aspects of the communications manager 815 as described herein. The communications manager 915 may include a route selection policy component 920, a route selection policy transmitter 925, and  a data connection component 930. The communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
The route selection policy component 920 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The route selection policy transmitter 925 may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible. The data connection component 930 may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
The transmitter 935 may transmit signals generated by other components of the device 905. In some examples, the transmitter 935 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 935 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein. The communications manager 1005 may include a route selection policy component 1010, a route selection policy transmitter 1015, a data connection component 1020, and a precedence flag component 1025. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The route selection policy component 1010 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The route selection policy transmitter 1015 may transmit the route selection policy to the UE, one or  more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible. The data connection component 1020 may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
The precedence flag component 1025 may include, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the set of route selection options.
In some cases, the application-specified route selection option is associated with a network slicing instance preferred by the application. In some cases, the application-specified route selection option includes a priority that is lower than a highest priority included in any of the set of route selection options. In some cases, the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible. In some cases, each of the set of route selection options is associated with a different network slicing instance.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
The communications manager 1110 may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options, transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible, and  establish a data connection with the UE via an application-specified route selection option based on the priority being flexible.
The network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM, ROM, or a combination thereof. The memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting flexible network slice selection procedure) .
The inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a flowchart illustrating a method 1200 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1205, the UE may receive, from an application of the UE, a request to establish a data connection with a wireless network. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a connection request receiver as described with reference to FIGs. 4 through 7.
At 1210, the UE may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options.  The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a route selection policy manager as described with reference to FIGs. 4 through 7.
At 1215, the UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a flexible priority manager as described with reference to FIGs. 4 through 7.
At 1220, the UE may establish a data connection via an application-specified route selection option based on the priority being flexible. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a data connection manager as described with reference to FIGs. 4 through 7.
FIG. 13 shows a flowchart illustrating a method 1300 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may receive, from an application of the UE, a request to establish a data connection with a wireless network. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a connection request receiver as described with reference to FIGs. 4 through 7.
At 1310, the UE may identify that a route selection policy for the wireless network includes a set of route selection options corresponding to the data connection requested by the application, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The operations of 1310 may be performed according to the methods described herein. In  some examples, aspects of the operations of 1310 may be performed by a route selection policy manager as described with reference to FIGs. 4 through 7.
At 1315, the UE may determine that one or more of the set of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the set of route selection options. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a flexible priority manager as described with reference to FIGs. 4 through 7.
At 1320, the UE may establish a data connection via an application-specified route selection option based on the priority being flexible. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a data connection manager as described with reference to FIGs. 4 through 7.
At 1325, the UE may receive, from the application of the UE, a request to establish a second data connection, the request including a second application-specified route selection option. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a connection request receiver as described with reference to FIGs. 4 through 7.
At 1330, the UE may establish the second data connection via the second application-specified route selection option based on the priority being flexible. The operations of 1330 may be performed according to the methods described herein. In some examples, aspects of the operations of 1330 may be performed by a data connection manager as described with reference to FIGs. 4 through 7.
FIG. 14 shows a flowchart illustrating a method 1400 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1405, the base station may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a route selection policy component as described with reference to FIGs. 8 through 11.
At 1410, the base station may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a route selection policy transmitter as described with reference to FIGs. 8 through 11.
At 1415, the base station may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a data connection component as described with reference to FIGs. 8 through 11.
FIG. 15 shows a flowchart illustrating a method 1500 that supports a flexible network slice selection procedure in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1505, the base station may identify a route selection policy associated with data connections between a UE and the base station in a wireless network, the route selection policy including a set of route selection options corresponding to a data connection, each of  the set of route selection options including a priority for use of the route selection option with respect to others of the set of route selection options. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a route selection policy component as described with reference to FIGs. 8 through 11.
At 1510, the base station may transmit the route selection policy to the UE, one or more of the set of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a route selection policy transmitter as described with reference to FIGs. 8 through 11.
At 1515, the base station may include, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the set of route selection options. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a precedence flag component as described with reference to FIGs. 8 through 11.
At 1520, the base station may establish a data connection with the UE via an application-specified route selection option based on the priority being flexible. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a data connection component as described with reference to FIGs. 8 through 11.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Example 1: A method for wireless communications at a user equipment (UE) , comprising: receiving, from an application of the UE, a request to establish a data connection with a wireless network; identifying that a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;  determining that one or more of the plurality of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the plurality of route selection options; and establishing the data connection via an application-specified route selection option based at least in part on the priority being flexible.
Example 2: The method of example 1, wherein receiving a request to establish a data connection further comprises: receiving the application-specified route selection option from the application of the UE.
Example 3: The method of example 2, further comprising: refraining from establishing a data connection via a highest priority route selection option of the plurality of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
Example 4: The method of any of examples 2 or 3, further comprising: refraining from establishing a data connection via any higher priority route selection option of the plurality of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
Example 5: The method of any of examples 1 through 4, wherein the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the plurality of route selection options.
Example 6: The method of any of examples 1 through 5, wherein determining that one or more of the plurality of route selection options includes the indicator that the priority is flexible comprises: identifying a value of a flexible precedence flag in the field of the one or more of the plurality of route selection options.
Example 7: The method of any of examples 1 through 6, further comprising: receiving, from the application of the UE, a request to establish a second data connection, the request comprising a second application-specified route selection option; and establishing the second data connection via the second application-specified route selection option based at least in part on the priority being flexible.
Example 8: The method of example 7, wherein the UE disconnects from the data connection to establish the second data connection.
Example 9: The method of any of examples 7 or 8, wherein the UE is connected to the data connection and the second data connection simultaneously.
Example 10: The method of any of examples 1 through 9, wherein each of the plurality of route selection options is associated with a different network slicing instance.
Example 11: The method of any of examples 1 through 10, further comprising: receiving, from the base station, the route selection policy for the wireless network.
Example 12: An apparatus comprising at least one means for performing a method of any of examples 1 to 11.
Example 13: An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 1 to 11.
Example 14: A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 1 to 11.
Example 15: A method for wireless communications at a base station, comprising: identifying a route selection policy associated with data connections between a user equipment (UE) and the base station in a wireless network, the route selection policy including a plurality of route selection options corresponding to a data connection, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options; transmitting the route selection policy to the UE, one or more of the plurality of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible; and establishing a data connection with the UE via an application-specified route selection option based at least in part on the priority being flexible.
Example 16: The method of example 15, wherein transmitting the route selection policy to the UE comprises: including, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the plurality of route selection options.
Example 17: The method of any of examples 15 or 16, wherein the application-specified route selection option is associated with a network slicing instance preferred by the application.
Example 18: The method of any of examples 15 through 17, wherein the application-specified route selection option includes a priority that is lower than a highest priority included in any of the plurality of route selection options.
Example 19: The method of any of examples 15 through 18, wherein the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible.
Example 20: The method of any of examples 15 through 19, wherein each of the plurality of route selection options is associated with a different network slicing instance.
Example 21: An apparatus comprising at least one means for performing a method of any of examples 15 to 20.
Example 22: An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 15 to 20.
Example 23: A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 15 to 20.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the  description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose  processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques,  however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (68)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, from an application of the UE, a request to establish a data connection with a wireless network;
    identifying that a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    determining that one or more of the plurality of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the plurality of route selection options; and
    establishing a data connection via an application-specified route selection option based at least in part on the priority being flexible.
  2. The method of claim 1, wherein receiving the request to establish the data connection further comprises:
    receiving the application-specified route selection option from the application of the UE.
  3. The method of claim 2, further comprising:
    refraining from establishing the data connection via a highest priority route selection option of the plurality of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
  4. The method of claim 2, further comprising:
    refraining from establishing the data connection via any higher priority route selection option of the plurality of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  5. The method of claim 1, wherein the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the plurality of route selection options.
  6. The method of claim 1, wherein determining that one or more of the plurality of route selection options includes the indicator that the priority is flexible comprises:
    identifying a value of a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  7. The method of claim 1, further comprising:
    receiving, from the application of the UE, a request to establish a second data connection, the request comprising a second application-specified route selection option; and
    establishing the second data connection via the second application-specified route selection option based at least in part on the priority being flexible.
  8. The method of claim 7, wherein the UE disconnects from the data connection to establish the second data connection.
  9. The method of claim 7, wherein the UE is connected to the data connection and the second data connection simultaneously.
  10. The method of claim 1, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  11. The method of claim 1, further comprising:
    receiving, from a base station, the route selection policy for the wireless network.
  12. A method for wireless communications at a base station, comprising:
    identifying a route selection policy associated with data connections between a user equipment (UE) and the base station in a wireless network, the route selection policy including a plurality of route selection options corresponding to a data connection, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    transmitting the route selection policy to the UE, one or more of the plurality of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible; and
    establishing a data connection with the UE via an application-specified route selection option based at least in part on the priority being flexible.
  13. The method of claim 12, wherein transmitting the route selection policy to the UE comprises:
    including, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  14. The method of claim 12, wherein the application-specified route selection option is associated with a network slicing instance preferred by the application.
  15. The method of claim 12, wherein the application-specified route selection option includes a priority that is lower than a highest priority included in any of the plurality of route selection options.
  16. The method of claim 12, wherein the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible.
  17. The method of claim 12, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  18. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from an application of the UE, a request to establish a data connection with a wireless network;
    identify that a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested  by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    determine that one or more of the plurality of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the plurality of route selection options; and
    establish a data connection via an application-specified route selection option based at least in part on the priority being flexible.
  19. The apparatus of claim 18, wherein the instructions to receive the request to establish the data connection further are executable by the processor to cause the apparatus to:
    receive the application-specified route selection option from the application of the UE.
  20. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    refrain from establishing the data connection via a highest priority route selection option of the plurality of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
  21. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    refrain from establishing the data connection via any higher priority route selection option of the plurality of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  22. The apparatus of claim 18, wherein the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the plurality of route selection options.
  23. The apparatus of claim 18, wherein the instructions to determine that one or more of the plurality of route selection options includes the indicator that the priority is flexible are executable by the processor to cause the apparatus to:
    identify a value of a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  24. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the application of the UE, a request to establish a second data connection, the request comprising a second application-specified route selection option; and
    establish the second data connection via the second application-specified route selection option based at least in part on the priority being flexible.
  25. The apparatus of claim 24, wherein the UE disconnects from the data connection to establish the second data connection.
  26. The apparatus of claim 24, wherein the UE is connected to the data connection and the second data connection simultaneously.
  27. The apparatus of claim 18, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  28. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from a base station, the route selection policy for the wireless network.
  29. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a route selection policy associated with data connections between a user equipment (UE) and the base station in a wireless network, the route  selection policy including a plurality of route selection options corresponding to a data connection, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    transmit the route selection policy to the UE, one or more of the plurality of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible; and
    establish a data connection with the UE via an application-specified route selection option based at least in part on the priority being flexible.
  30. The apparatus of claim 29, wherein the instructions to transmit the route selection policy to the UE are executable by the processor to cause the apparatus to:
    include, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  31. The apparatus of claim 29, wherein the application-specified route selection option is associated with a network slicing instance preferred by the application.
  32. The apparatus of claim 29, wherein the application-specified route selection option includes a priority that is lower than a highest priority included in any of the plurality of route selection options.
  33. The apparatus of claim 29, wherein the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible.
  34. The apparatus of claim 29, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  35. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, from an application of the UE, a request to establish a data connection with a wireless network;
    means for identifying that a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested  by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    means for determining that one or more of the plurality of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the plurality of route selection options; and
    means for establishing a data connection via an application-specified route selection option based at least in part on the priority being flexible.
  36. The apparatus of claim 35, wherein the means for receiving the request to establish the data connection further comprises:
    means for receiving the application-specified route selection option from the application of the UE.
  37. The apparatus of claim 36, further comprising:
    means for refraining from establishing the data connection via a highest priority route selection option of the plurality of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
  38. The apparatus of claim 36, further comprising:
    means for refraining from establishing the data connection via any higher priority route selection option of the plurality of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  39. The apparatus of claim 35, wherein the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the plurality of route selection options.
  40. The apparatus of claim 35, wherein the means for determining that one or more of the plurality of route selection options includes the indicator that the priority is flexible comprises:
    means for identifying a value of a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  41. The apparatus of claim 35, further comprising:
    means for receiving, from the application of the UE, a request to establish a second data connection, the request comprising a second application-specified route selection option; and
    means for establishing the second data connection via the second application-specified route selection option based at least in part on the priority being flexible.
  42. The apparatus of claim 41, wherein the UE disconnects from the data connection to establish the second data connection.
  43. The apparatus of claim 41, wherein the UE is connected to the data connection and the second data connection simultaneously.
  44. The apparatus of claim 35, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  45. The apparatus of claim 35, further comprising:
    means for receiving, from a base station, the route selection policy for the wireless network.
  46. An apparatus for wireless communications at a base station, comprising:
    means for identifying a route selection policy associated with data connections between a user equipment (UE) and the base station in a wireless network, the route selection policy including a plurality of route selection options corresponding to a data connection, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    means for transmitting the route selection policy to the UE, one or more of the plurality of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible; and
    means for establishing a data connection with the UE via an application-specified route selection option based at least in part on the priority being flexible.
  47. The apparatus of claim 46, wherein the means for transmitting the route selection policy to the UE comprises:
    means for including, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  48. The apparatus of claim 46, wherein the application-specified route selection option is associated with a network slicing instance preferred by the application.
  49. The apparatus of claim 46, wherein the application-specified route selection option includes a priority that is lower than a highest priority included in any of the plurality of route selection options.
  50. The apparatus of claim 46, wherein the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible.
  51. The apparatus of claim 46, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  52. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from an application of the UE, a request to establish a data connection with a wireless network;
    identify that a route selection policy for the wireless network includes a plurality of route selection options corresponding to the data connection requested by the application, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    determine that one or more of the plurality of route selection options includes an indicator that the priority is flexible, the indicator included within a field of the plurality of route selection options; and
    establish a data connection via an application-specified route selection option based at least in part on the priority being flexible.
  53. The non-transitory computer-readable medium of claim 52, wherein the instructions to receive the request to establish the data connection further are executable to:
    receive the application-specified route selection option from the application of the UE.
  54. The non-transitory computer-readable medium of claim 53, wherein the instructions are further executable to:
    refrain from establishing the data connection via a highest priority route selection option of the plurality of route selection options based on receiving the application-specified route selection option and based on at least the highest priority route selection option including the indicator that the priority is flexible.
  55. The non-transitory computer-readable medium of claim 53, wherein the instructions are further executable to:
    refrain from establishing the data connection via any higher priority route selection option of the plurality of route selection options that have higher priorities than the application-specified route selection option based on each of the higher priority route selection options including the indicator that the priority is flexible.
  56. The non-transitory computer-readable medium of claim 52, wherein the application-specified route selection option includes a lower priority that is lower than a highest priority included in any of the plurality of route selection options.
  57. The non-transitory computer-readable medium of claim 52, wherein the instructions to determine that one or more of the plurality of route selection options includes the indicator that the priority is flexible are executable to:
    identify a value of a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  58. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    receive, from the application of the UE, a request to establish a second data connection, the request comprising a second application-specified route selection option; and
    establish the second data connection via the second application-specified route selection option based at least in part on the priority being flexible.
  59. The non-transitory computer-readable medium of claim 58, wherein the UE disconnects from the data connection to establish the second data connection.
  60. The non-transitory computer-readable medium of claim 58, wherein the UE is connected to the data connection and the second data connection simultaneously.
  61. The non-transitory computer-readable medium of claim 52, wherein each of the plurality of route selection options is associated with a different network slicing instance.
  62. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    receive, from a base station, the route selection policy for the wireless network.
  63. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    identify a route selection policy associated with data connections between a user equipment (UE) and the base station in a wireless network, the route selection policy including a plurality of route selection options corresponding to a data connection, each of the plurality of route selection options including a priority for use of the route selection option with respect to others of the plurality of route selection options;
    transmit the route selection policy to the UE, one or more of the plurality of route selection options of the route selection policy including a field with an indicator that a respective priority is flexible; and
    establish a data connection with the UE via an application-specified route selection option based at least in part on the priority being flexible.
  64. The non-transitory computer-readable medium of claim 63, wherein the instructions to transmit the route selection policy to the UE are executable to:
    include, in the transmission of the route selection policy, a flexible precedence flag in the field of the one or more of the plurality of route selection options.
  65. The non-transitory computer-readable medium of claim 63, wherein the application-specified route selection option is associated with a network slicing instance preferred by the application.
  66. The non-transitory computer-readable medium of claim 63, wherein the application-specified route selection option includes a priority that is lower than a highest priority included in any of the plurality of route selection options.
  67. The non-transitory computer-readable medium of claim 63, wherein the application-specified route selection option includes a priority that is lower than all of higher priority route selection options that include the indicator that the priority is flexible.
  68. The non-transitory computer-readable medium of claim 63, wherein each of the plurality of route selection options is associated with a different network slicing instance.
PCT/CN2020/108837 2020-08-13 2020-08-13 Flexible network slice selection procedure WO2022032560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108837 WO2022032560A1 (en) 2020-08-13 2020-08-13 Flexible network slice selection procedure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108837 WO2022032560A1 (en) 2020-08-13 2020-08-13 Flexible network slice selection procedure

Publications (1)

Publication Number Publication Date
WO2022032560A1 true WO2022032560A1 (en) 2022-02-17

Family

ID=80247523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108837 WO2022032560A1 (en) 2020-08-13 2020-08-13 Flexible network slice selection procedure

Country Status (1)

Country Link
WO (1) WO2022032560A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153766A1 (en) * 2018-02-09 2019-08-15 Oppo广东移动通信有限公司 Wireless communication method, network device, and terminal device
WO2019227313A1 (en) * 2018-05-29 2019-12-05 Nokia Shanghai Bell Co., Ltd. Method, apparatus and computer readable media for policy distribution
CN110557798A (en) * 2019-08-26 2019-12-10 中国联合网络通信集团有限公司 method and device for determining URSP
CN111491346A (en) * 2020-05-13 2020-08-04 腾讯科技(深圳)有限公司 Multicast communication method, device, computer readable medium and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153766A1 (en) * 2018-02-09 2019-08-15 Oppo广东移动通信有限公司 Wireless communication method, network device, and terminal device
WO2019227313A1 (en) * 2018-05-29 2019-12-05 Nokia Shanghai Bell Co., Ltd. Method, apparatus and computer readable media for policy distribution
CN110557798A (en) * 2019-08-26 2019-12-10 中国联合网络通信集团有限公司 method and device for determining URSP
CN111491346A (en) * 2020-05-13 2020-08-04 腾讯科技(深圳)有限公司 Multicast communication method, device, computer readable medium and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON.: "Key Issue #6 new Solution: Network controlled enforcement of simultaneous usage of network slices based on user preference.", SA WG2 MEETING #139E,S2-2003596., 22 May 2020 (2020-05-22), XP051889655 *

Similar Documents

Publication Publication Date Title
US11611916B2 (en) Primary cell and primary secondary cell management for cells within an activated cell set
US11751174B2 (en) Signaling for configuring downlink transmissions
US11792812B2 (en) Search space configurations for multi-component carrier scheduling
US20230354362A1 (en) Resource block set allocation for subband full duplex operation
EP4189909A1 (en) Frequency configuration for control resource set in non-terrestrial networks
CN115868207A (en) Method for establishing protocol data unit conversation
WO2021151378A1 (en) Cross-carrier scheduling techniques for wireless communications systems
WO2021155555A1 (en) Transmission configuration indicator state activation for multiple transmission reception points
WO2022160168A1 (en) Techniques for network-initiated panel activation or deactivation at a user equipment (ue)
WO2021062603A1 (en) Reference signal overhead reduction
WO2022032560A1 (en) Flexible network slice selection procedure
WO2022052037A1 (en) Configuring route selection policies
WO2023082174A1 (en) Supplementary uplink switching for switching multiple radio frequency bands
US11690094B2 (en) Techniques for traffic steering between access links and sidelinks in wireless communications systems
US11949504B2 (en) Techniques for indicating duplex mode capability
WO2021168770A1 (en) Listen before talk techniques for wireless communications systems
US12004075B2 (en) Physical cell identifier limit configuration
WO2022041095A1 (en) Techniques for re-ordering radio access network priorities
WO2023184334A1 (en) Response enhancements for multiple random access procedures
WO2022147753A1 (en) Techniques for selecting a slice-based random access procedure
WO2023150953A1 (en) Uplink transmission switching for multiple radio frequency bands
US20230123622A1 (en) Techniques for configuring component carriers for sidelink communications
WO2023004529A1 (en) Techniques for performing quality of service management for sidelink communications
US20220110149A1 (en) Providing cross-carrier scheduling control information for a primary cell via both a secondary cell and the primary cell
WO2021203356A1 (en) Control resource interleaving for 6 ghz band communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949059

Country of ref document: EP

Kind code of ref document: A1