WO2022032427A1 - Cell list negotiation procedure for ue-specific paging areas - Google Patents

Cell list negotiation procedure for ue-specific paging areas Download PDF

Info

Publication number
WO2022032427A1
WO2022032427A1 PCT/CN2020/108119 CN2020108119W WO2022032427A1 WO 2022032427 A1 WO2022032427 A1 WO 2022032427A1 CN 2020108119 W CN2020108119 W CN 2020108119W WO 2022032427 A1 WO2022032427 A1 WO 2022032427A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
list
paging
base station
preferred cells
Prior art date
Application number
PCT/CN2020/108119
Other languages
French (fr)
Inventor
Nan Zhang
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108119 priority Critical patent/WO2022032427A1/en
Publication of WO2022032427A1 publication Critical patent/WO2022032427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a cell list negotiation procedure for user equipment (UE) -specific paging areas.
  • UE user equipment
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • paging messages for a UE may be transmitted over a large area/plurality of cells to provide an increased likelihood that the UE will receive a paging message based on the UE being located in one of the plurality of cells.
  • some radio resources may be wasted in comparison to transmitting the paging messages for a smaller list of cells that may be more likely to actually serve the UE.
  • paging messages for the UE may be transmitted in 100 cells, even though only 5 cells may be likely to serve the UE.
  • the UE may perform a negotiation procedure with the network to define/request a UE-preferred paging cell identifier (ID) list.
  • ID UE-preferred paging cell identifier
  • a specific UE may provide a request to the network indicative of preferred cells for serving the specific UE based on prior cell information/data that is recorded and maintained by the specific UE. If the network authorizes the UE-preferred paging cell ID lists, only the UE-preferred cells in the cell ID lists may transmit paging messages for the specific UE. If the cells on the UE-preferred paging cell ID list may not be used, the network may fallback to techniques based on tracking area identity (TAI) and/or radio access network (RAN) notification areas (NAs) (RNAs) .
  • TAI tracking area identity
  • RAN radio access network
  • NAs radio access network
  • the apparatus may be a wireless device at a UE that includes a memory and at least one processor coupled to the memory.
  • the memory may include instructions that, when executed by the at least one processor, cause the at least one processor to determine a cell ID list that includes one or more preferred cells for paging the UE; transmit the cell ID list to a base station for requesting authorization of the cell ID list; and receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  • the apparatus may be a wireless device at a base station that includes a memory and at least one processor coupled to the memory.
  • the memory may include instructions that, when executed by the at least one processor, cause the at least one processor to receive a cell ID list from a UE requesting authorization of the cell ID list including one or more preferred cells for paging the UE; determine whether to authorize the cell ID list; and transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call flow diagram illustrating communications between a UE and a base station.
  • FIG. 5 a diagram associated with a cell list negotiation procedure for UE-specific paging areas.
  • FIG. 6 is a flowchart of a method of wireless communication at a UE.
  • FIG. 7 is a flowchart of a method of wireless communication at a base station.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides quality of service (QoS) flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to determine a cell ID list that includes one or more preferred cells for paging the UE; transmit the cell ID list to the base station for requesting authorization of the cell ID list; and receive a paging signal from the base station based on whether the cell ID list is authorized.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • Wireless communication systems may be configured to share available system resources and provide various telecommunication services (e.g., telephony, video, data, messaging, broadcasts, etc. ) based on multiple-access technologies such as CDMA systems, TDMA systems, FDMA systems, OFDMA systems, SC-FDMA systems, TD-SCDMA systems, etc. that support communication with multiple users.
  • multiple-access technologies such as CDMA systems, TDMA systems, FDMA systems, OFDMA systems, SC-FDMA systems, TD-SCDMA systems, etc.
  • common protocols that facilitate communications with wireless devices are adopted in various telecommunication standards.
  • communication methods associated with eMBB, mMTC, and URLLC may be incorporated in the 5G NR telecommunication standard, while other aspects may be incorporated in the 4G LTE standard.
  • 5G NR telecommunication standard As mobile broadband technologies are part of a continuous evolution, further improvements in mobile broadband remain useful to continue the progression of such technologies.
  • FIG. 4 is a call flow diagram 400 illustrating communications between a UE 402 and a base station 404.
  • the UE 402 may determine a cell ID list for UE-preferred paging cells (e.g., based on a location history of the UE 402) .
  • the UE-preferred paging cell ID list may be transmitted to the base station 404 in association with a request for the base station 404 to authorize the UE-preferred paging cell ID list.
  • the UE-preferred paging cell ID list may be transmitted, at 408, to the base station 404 before the UE 402 enters an inactive/idle state.
  • the base station 404 may determine whether to authorize the UE-preferred paging cell ID list.
  • the UE 402 may receive, at 412, a configuration from the base station 404 for the UE-preferred cell ID list.
  • the UE 402 may exit the inactive/idle state if the UE 402 determines that the UE 402 is camping on a cell that is outside the cells of the UE-preferred paging cell ID list.
  • the UE 402 may indicate, at 416, that the location of the UE 402 is outside the cells included in the UE-preferred paging cell ID list.
  • the base station 404 may determine to de-authorize the UE-preferred paging cell ID list.
  • the UE may receive, at 418 an alternative cell list configuration that is different from the configuration for the UE-preferred paging cell ID list.
  • the UE 402 may receive a paging signal from the base station 404 base on whether the UE-preferred paging cell ID list is/is not authorized by the base station 404.
  • FIG. 5 is a diagram 500 associated with a cell list negotiation procedure for UE-specific paging areas.
  • Paging, tracking, and notification may be associated with two paging types that may include core network (CN) paging and RAN paging.
  • CN core network
  • both paging types may be modified to improve paging negotiation procedures and/or determinations regarding where a paging area may be defined.
  • the negotiations may be associated with both 5GC and RAN tracking areas.
  • CN paging may be a first logical paging type that may utilize a set of cells.
  • the cells may be associated with a tracking area list.
  • RAN notification area paging may be a second logical paging type that may be configured to update the tracking area list.
  • the cells in the paging/tracking area may be predefined by the network. That is, the network (e.g., 5GC) may use the tracking area list to send a paging message to the UE 502 in all of the cells in the predefined area.
  • the cells in the predefined area may further transmit paging messages via all the corresponding beams of each cell using a beam sweeping technique for a single/specific UE 502.
  • Paging performed from the RAN to the UE 502 while the UE 502 is in an inactive state may be based on RAN notification areas used for transmitting paging messages to the UE 502.
  • the cells in the RAN notification area may similarly transmit paging messages via all the corresponding beams using the beam sweeping technique for the single/specific UE.
  • the notification areas may correspond to a grouping of different cells, the cell list for the areas may be predefined by the network.
  • transmitting paging messages throughout a large area/group of cells may increase a likelihood that the UE 502 may receive the paging message, even if some radio resources used to perform the transmissions over the large area/group of cells are used unnecessarily.
  • Such techniques may provide improved mobility and reachability of the UE 502.
  • radio resources may be wasted in comparison to transmitting the paging message to a few cells that may serve the UE 502. For example, if the UE is served by 5 cells (e.g., A-E) , radio resources that are transmitted to other cells (e.g., F-H and/or other cells that are not shown) than the 5 cells that serve the UE 502 may be wasted for the UE 502.
  • 5 cells e.g., A-E
  • radio resources that are transmitted to other cells e.g., F-H and/or other cells that are not shown
  • the 5 cells that serve the UE 502 may be wasted for the UE 502.
  • mMTC and other NR applications thousands or even millions of high space density UEs may be in service at a same time. By decreasing radio resource waste, radio resource usage may be improved/optimized. For eMBB service, where UEs may transmit paging messages in all cells of the cell list, improving radio resource paging efficiency may improve radio resource usage while maintaining UE mobility.
  • UE negotiations with 5GC/NG-RAN may be performed based on the UE 502 initially providing a UE-preferred paging cell identifier (ID) list. If the cells on the UE-preferred cell ID list may not be used, the network may fall back to negotiations based on tracking area identity (TAI) techniques and/or RAN notification area (RNA) techniques.
  • a specific UE 502 may record and maintain a number of cell lists (e.g., PLMN cell ID lists) where the UE 502 has been recently located.
  • the UE recording scheme for the cell ID lists may be based on UE location information, time, UE movement information, end-user usage habits, and/or use artificial intelligence (AI) statistics and training.
  • the cell list may be generated based on statistics and an internal algorithm of the UE 502.
  • the UE 502 may then be configured to receive paging messages from the cells of the cell list maintained by the UE 502.
  • the UE 502 may transmit the UE-preferred paging cell ID list to the RAN or 5GC and the network may accept or reject the preferred/requested cell ID list.
  • the network may provide alternative cell lists, TAIs, and/or RNAs to the UE 502.
  • the UE 502 may store the alternative cell lists at the UE 502 and the network may transmit the paging messages based on one or more of the alternative cell lists. If the UE 502 is located on a cell that is not included in the alternative cell lists, the UE 502 may wake up and notify the network that the UE 502 is outside the list of cells indicated by the network.
  • the network may then provide an updated TAI cell list and/or an updated RNA.
  • the network e.g., CN or RAN
  • the network accepts the UE-preferred paging cell ID lists
  • only the preferred/approved cells in the cell ID lists may transmit paging messages to the UE 502.
  • the UE-preferred paging cell ID list may be triggered internally based on UE implementation while the UE 502 is in a connected state with the network.
  • the UE-preferred paging cell ID list may be indicated to the network via RRC message.
  • the UE 502 may wake up and notify 5GC/RAN, so that the network may provide the UE with updated tracking area and/or RAN information.
  • the UE 502 may perform a negotiation procedure with the network to define/request a UE-preferred paging cell ID list.
  • Individual UEs may each determine their own UE-specific cell lists based on a determined QoS for the UEs. The specific UEs may then respectively request the best cell lists for such UEs.
  • mMTC and other related applications where the UE 502 is largely motionless (e.g., positioned at a static location) may be improved via UE-specific cell lists, as there may be no need for large area cell notification schemes for largely motionless UEs.
  • the network may page such UEs by transmitting a paging message to a single cell in which the UE 502 is located.
  • the network may be configured to transmit the paging message to one or more additional cells.
  • the number of cells may still be small in comparison to large area cell notification schemes.
  • a UE-specific paging cell list may be determined and updated to balance UE mobility with radio resource usage.
  • the paging cell list may need to be maintained by UE 502, as only the UE 502 may be configured to record and monitor statistics for its own usage habits and conditions.
  • the UE 502 may be a smartphone located in an end-user’s home at midnight.
  • the UE 502 may indicate to the network that cell-A, cell-B, and cell-D comprise a UE-preferred/requested paging cell ID list, as only cell-A, cell-B, and cell-D may have been needed to serve the mobility of the UE 502 at midnight over the last year.
  • the determination of the UE-preferred cell list may be based on settings/determinations of the UE 502.
  • the network may accept the UE-preferred cell list, so that only cell-A, cell-B, and cell-D may transmit paging messages to the UE 502 at or around midnight.
  • the UE-preferred cell list may be in contrast to default tracking area/cell lists of the network, which may transmit paging messages to 50 or more cells.
  • the UE 502 may determine that the location of the UE 502 is now outside the coverage area of cell-A, cell-B, and cell-D, and notify the NW of the event.
  • the network may then transmit updated tracking area lists to the UE 502.
  • UE-specific cell lists may not only provide flexibility to UE mobility in a resource-efficient manner, but may also decrease a power consumption of the network and decrease wasted radio resources for mMTC and similar applications where the nature of the UE 502 is such that motion/mobility thereof is limited.
  • FIG. 6 is a flowchart 600 of a method of wireless communication at a UE.
  • the method may be performed by a UE (e.g., the UE 402) , which may include the memory 360 and which may be the entire UE 402 or a component of the UE 402, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359.
  • a UE e.g., the UE 402
  • the memory 360 which may be the entire UE 402 or a component of the UE 402, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359.
  • the UE may determine a cell ID list that includes one or more preferred cells for paging the UE.
  • the UE 402 may determine, at 406, a cell ID list for UE-preferred paging cells.
  • the determination, at 406, of the cell ID list may be based on a location history of the UE 402, where the location history may include at least one of UE location information, time, UE movement information, end-user usage habits, AI training based on information about the UE 402, or statistics for the UE 402.
  • the location history of the UE 402 may further include a PLMN cell ID list maintained at the UE 402.
  • the PLMN cell ID list may be indicative of cells that have served the UE 402.
  • the cell ID list that includes the one or more preferred cells for paging the UE 402 may be determined, at 406, based on a QoS for the UE 402.
  • the UE may transmit the cell ID list to a base station for requesting authorization of the cell ID list.
  • the UE 402 may transmit, at 408, the UE-preferred paging cell ID list to the base station 404.
  • the cell ID list that includes the one or more preferred cells for paging the UE may be transmitted, at 408, to the base station 404 based on an RRC message.
  • the UE may receive a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list. For example, referring to FIG. 4, the UE 402 may receive, at 412, a configuration from the base station 404 based on the UE-preferred cell ID list, if the UE-preferred cell ID list is authorized by the base station 404. Further, the paging signal may be received, at 420, in one of the one or more preferred cells for paging the UE 402, if the UE-preferred cell ID list is authorized by the base station 404.
  • the cell ID list that includes the one or more preferred cells for paging the UE 402 may be transmitted, at 408, to the base station 404 before the UE 402 enters an inactive state or an idle state.
  • the UE may exit the inactive state or the idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list. For example, referring to FIG. 4, the UE 402 may exit, at 414, the inactive/idle state if determined to be camping on a sell that is outside the cells of the UE-preferred cell ID list.
  • the UE may indicate, to the base station, that the UE is not located in the one or more preferred cells for paging the UE.
  • the UE 402 may indicate, at 416, to the base station 404 that a current location of the UE 402 is outside the UE-preferred cell ID list.
  • the UE may receive an alternative cell ID list if the base station does not authorize the cell ID list.
  • the UE 402 may receive, at 418, an alternative cell list configuration from the base station 404, if the UE-preferred cell ID list is not authorized by the base station 404.
  • the alternative cell ID list may be associated with updated information for at least one of a TAI or an RNA.
  • the UE may receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized. For example, referring to FIG. 4, the UE 402 may receive, at 420, a paging signal based on whether the UE-preferred cell ID list is/is not authorized.
  • the paging signal may be received by the UE 402 in one of the cells of the UE-preferred paging cell ID list, if the UE-preferred paging cell ID list is authorized by the base station 404, or the paging signal may be received by the UE 402 based on the alternative cell list, if the UE-preferred paging cell ID list is not authorized by the base station 404.
  • FIG. 7 is a flowchart 700 of a method of wireless communication at a base station.
  • the method may be performed by a base station (e.g., the base station 404) , which may include the memory 376 and which may be the entire base station 404 or a component of the base station 404, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
  • a base station e.g., the base station 404
  • the memory 376 may be the entire base station 404 or a component of the base station 404, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
  • the base station may receive a cell ID list from the UE requesting authorization of the cell ID list that includes one or more preferred cells for paging the UE.
  • the base station 404 may receive, at 408, the UE-preferred paging cell ID list from the UE 402.
  • the cell ID list that includes the one or more preferred cells for paging the UE 402 may be based on a QoS from the base station 404.
  • the cell ID list that includes the one or more preferred cells for paging the UE 402 may be received, at 408, from the UE 402 based on an RRC message.
  • the base station may determine whether to authorize the cell ID list. For example, referring to FIG. 4, the base station 404 may determine, at 410, whether to authorize the UE-preferred paging cell ID list (e.g., the cell ID list received at 408) .
  • the cell ID list may be based on a location history of the UE 404, the location history of the UE 402 may be based on at least one of UE location information, time, UE movement information, end-user usage habits, AI training based on information about the UE 402, or statistics for the UE 402.
  • the location history of the UE 402 may include a PLMN cell ID list maintained at the UE 402.
  • the PLMN cell ID list may be indicative of cells that have served the UE 402.
  • the cell ID list that includes the one or more preferred cells for paging the UE 402 may be received, at 408, from the UE 402 before the UE 402 enters an inactive state or an idle state.
  • the base station may receive an indication that the UE is not located in the one or more preferred cells for paging the UE (e.g., if the UE is camping on a cell that is not included in the cell ID list) , the indication being received after the UE exits the inactive state or the idle state.
  • the base station 404 may receive an indication, at 416, from the UE 402, that a current location of the UE 402 is outside the UE-preferred cell ID list.
  • the indication, at 416 may be received by the base station 404 after the UE exits, at 414, the inactive/idle state.
  • the base station may transmit an alternative cell ID list if the base station does not authorize the cell ID list.
  • the base station 404 may transmit, at 418, an alternative cell list configuration to the UE 402, if the UE-preferred cell ID list is not authorized by the base station 404.
  • the indication received, at 416, that the location of the UE 402 is outside the UE-preferred cell ID list may cause the cell list to not be authorized by the base station 404, such that the base station 404 may transmit, at 418, the alternative cell list configuration to the UE 402.
  • the alternative cell ID list may be associated with updated information for at least one of a TAI or a RNA.
  • the base station may transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized. For example, referring to FIG. 4, the base station 404 may transmit, at 420, a paging signal based on whether the UE-preferred cell ID list is/is not authorized.
  • the base station 404 may page the UE 402 using the one or more preferred cells identified on the cell ID list, if the base station 404 authorizes the cell ID list.
  • the paging signal may be transmitted in the one or more preferred cells for paging the UE 402 without transmission in additional cells.
  • the base station may page the UE 402 based on the alternative cell list, if the base station 404 does not authorize the UE-preferred paging cell list.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818.
  • the cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 804 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software.
  • the cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804.
  • the cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
  • the reception component 830 is configured, e.g., as described in connection with 606, 612, and 614, to receive a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list; receive an alternative cell ID list if the base station does not authorize the cell ID list; and receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  • the communication manager 832 includes a determination component 840 that is configured, e.g., as described in connection with 602, to determine a cell ID list that includes one or more preferred cells for paging the UE.
  • the communication manager 832 further includes an exit component 842 that is configured, e.g., as described in connection with 608, to exit an inactive state or an idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list.
  • the communication manager 832 additionally includes an indication component 844 that is configured, e.g., as described in connection with 610, to indicate to the base station that the UE is not located in the one or more preferred cells for paging the UE.
  • the transmission component 834 is configured, e.g., as described in connection with 604, to transmit the cell ID list to a base station for requesting authorization of the cell ID list.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 6. As such, each block in the aforementioned flowchart of FIG. 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for determining, transmitting, receiving, exiting, and indicating.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902.
  • the apparatus 902 is a BS and includes a baseband unit 904.
  • the baseband unit 904 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 904 may include a computer-readable medium /memory.
  • the baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software.
  • the baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934.
  • the communication manager 932 includes the one or more illustrated components.
  • the components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904.
  • the baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the reception component 930 is configured, e.g., as described in connection with 702 and 706, to receive a cell ID list from a UE requesting authorization of the cell ID list that includes one or more preferred cells for paging the UE; and receive an indication that the UE is not located in the one or more preferred cells for paging the UE.
  • the communication manager 932 includes a determination component 940 that is configured, e.g., as described in connection with 704, to determine whether to authorize the cell ID list.
  • the transmission component 934 is configured, e.g., as described in connection with 708 and 710, to transmit an alternative cell ID list if the base station does not authorize the cell ID list; and transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowcharts of FIG. 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 902 includes means for receiving, determining, and transmitting.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means.
  • the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • the UE may perform a negotiation procedure with the network to define/request a UE-preferred paging cell ID list.
  • a specific UE may provide a request to the network indicative of preferred cells for serving the specific UE based on prior cell information/data that is recorded and maintained by the specific UE. If the network authorizes the UE-preferred paging cell ID lists, only the UE-preferred cells in the cell ID lists may transmit paging messages for the specific UE. If the cells on the UE-preferred paging cell ID list may not be used, the network may fallback to techniques based on TAI and/or RNAs.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for a cell list negotiation procedure for UE-specific paging areas. A UE may determine a cell ID list that includes one or more preferred cells for paging the UE and transmit the cell ID list to a base station for requesting authorization of the cell ID list. The base station may determine whether to authorize the cell ID list and transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.

Description

CELL LIST NEGOTIATION PROCEDURE FOR UE-SPECIFIC PAGING AREAS BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a cell list negotiation procedure for user equipment (UE) -specific paging areas.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi- access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Due to UE mobility, paging messages for a UE may be transmitted over a large area/plurality of cells to provide an increased likelihood that the UE will receive a paging message based on the UE being located in one of the plurality of cells. However, when paging messages are transmitted for a large list of cells, some radio resources may be wasted in comparison to transmitting the paging messages for a smaller list of cells that may be more likely to actually serve the UE. For example, in some cases, paging messages for the UE may be transmitted in 100 cells, even though only 5 cells may be likely to serve the UE.
Accordingly, rather than paging messages being received by the UE based on a predefined list of cells from the network, the UE may perform a negotiation procedure with the network to define/request a UE-preferred paging cell identifier (ID) list. A specific UE may provide a request to the network indicative of preferred cells for serving the specific UE based on prior cell information/data that is recorded and maintained by the specific UE. If the network authorizes the UE-preferred paging cell ID lists, only the UE-preferred cells in the cell ID lists may transmit paging messages for the specific UE. If the cells on the UE-preferred paging cell ID list may not be used, the network may fallback to techniques based on tracking area identity (TAI) and/or radio access network (RAN) notification areas (NAs) (RNAs) .
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a wireless device at a UE that includes a memory and at least one processor coupled to the memory. The memory may include instructions that, when executed by the at least one processor, cause the at least one processor to determine a cell ID list that includes one or more preferred  cells for paging the UE; transmit the cell ID list to a base station for requesting authorization of the cell ID list; and receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a wireless device at a base station that includes a memory and at least one processor coupled to the memory. The memory may include instructions that, when executed by the at least one processor, cause the at least one processor to receive a cell ID list from a UE requesting authorization of the cell ID list including one or more preferred cells for paging the UE; determine whether to authorize the cell ID list; and transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call flow diagram illustrating communications between a UE and a base station.
FIG. 5 a diagram associated with a cell list negotiation procedure for UE-specific paging areas.
FIG. 6 is a flowchart of a method of wireless communication at a UE.
FIG. 7 is a flowchart of a method of wireless communication at a base station.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors,  microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio  Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers  may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue  sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service  (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides quality of service (QoS) flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station  102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to determine a cell ID list that includes one or more preferred cells for paging the UE; transmit the cell ID list to the base station for requesting authorization of the cell ID list; and receive a paging signal from the base station based on whether the cell ID list is authorized. Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3  being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts  (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through  ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX. Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined  by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368  to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
Wireless communication systems may be configured to share available system resources and provide various telecommunication services (e.g., telephony, video, data, messaging, broadcasts, etc. ) based on multiple-access technologies such as CDMA systems, TDMA systems, FDMA systems, OFDMA systems, SC-FDMA systems, TD-SCDMA systems, etc. that support communication with multiple users. In many cases, common protocols that facilitate communications with wireless devices are adopted in various telecommunication standards. For example, communication methods associated with eMBB, mMTC, and URLLC may be incorporated in the 5G NR telecommunication standard, while other aspects may be incorporated in the 4G LTE standard. As mobile broadband technologies are part of  a continuous evolution, further improvements in mobile broadband remain useful to continue the progression of such technologies.
FIG. 4 is a call flow diagram 400 illustrating communications between a UE 402 and a base station 404. At 406, the UE 402 may determine a cell ID list for UE-preferred paging cells (e.g., based on a location history of the UE 402) . At 408, the UE-preferred paging cell ID list may be transmitted to the base station 404 in association with a request for the base station 404 to authorize the UE-preferred paging cell ID list. The UE-preferred paging cell ID list may be transmitted, at 408, to the base station 404 before the UE 402 enters an inactive/idle state. At 410, the base station 404 may determine whether to authorize the UE-preferred paging cell ID list.
If the base station 404 authorizes the UE-preferred cell ID list, the UE 402 may receive, at 412, a configuration from the base station 404 for the UE-preferred cell ID list. At 414, the UE 402 may exit the inactive/idle state if the UE 402 determines that the UE 402 is camping on a cell that is outside the cells of the UE-preferred paging cell ID list. As a result thereof, the UE 402 may indicate, at 416, that the location of the UE 402 is outside the cells included in the UE-preferred paging cell ID list. Thus, the base station 404 may determine to de-authorize the UE-preferred paging cell ID list.
If the base station 404 does not authorize the UE-preferred paging cell ID list, the UE may receive, at 418 an alternative cell list configuration that is different from the configuration for the UE-preferred paging cell ID list. At 420, the UE 402 may receive a paging signal from the base station 404 base on whether the UE-preferred paging cell ID list is/is not authorized by the base station 404.
FIG. 5 is a diagram 500 associated with a cell list negotiation procedure for UE-specific paging areas. Paging, tracking, and notification (e.g., in 5G NR) may be associated with two paging types that may include core network (CN) paging and RAN paging. In examples, both paging types may be modified to improve paging negotiation procedures and/or determinations regarding where a paging area may be defined. Further, the negotiations may be associated with both 5GC and RAN tracking areas.
In some cases, tracking area lists for CN paging and RAN notification area paging may not meet mMTC or other NR standards. CN paging may be a first logical paging type that may utilize a set of cells. The cells may be associated with  a tracking area list. RAN notification area paging may be a second logical paging type that may be configured to update the tracking area list. The cells in the paging/tracking area may be predefined by the network. That is, the network (e.g., 5GC) may use the tracking area list to send a paging message to the UE 502 in all of the cells in the predefined area. The cells in the predefined area may further transmit paging messages via all the corresponding beams of each cell using a beam sweeping technique for a single/specific UE 502.
Paging performed from the RAN to the UE 502 while the UE 502 is in an inactive state may be based on RAN notification areas used for transmitting paging messages to the UE 502. The cells in the RAN notification area may similarly transmit paging messages via all the corresponding beams using the beam sweeping technique for the single/specific UE. While the notification areas may correspond to a grouping of different cells, the cell list for the areas may be predefined by the network. In aspects, transmitting paging messages throughout a large area/group of cells may increase a likelihood that the UE 502 may receive the paging message, even if some radio resources used to perform the transmissions over the large area/group of cells are used unnecessarily. Such techniques may provide improved mobility and reachability of the UE 502.
When paging messages are transmitted to a large list of cells (e.g., 100 cells) , radio resources may be wasted in comparison to transmitting the paging message to a few cells that may serve the UE 502. For example, if the UE is served by 5 cells (e.g., A-E) , radio resources that are transmitted to other cells (e.g., F-H and/or other cells that are not shown) than the 5 cells that serve the UE 502 may be wasted for the UE 502. For mMTC and other NR applications, thousands or even millions of high space density UEs may be in service at a same time. By decreasing radio resource waste, radio resource usage may be improved/optimized. For eMBB service, where UEs may transmit paging messages in all cells of the cell list, improving radio resource paging efficiency may improve radio resource usage while maintaining UE mobility.
UE negotiations with 5GC/NG-RAN may be performed based on the UE 502 initially providing a UE-preferred paging cell identifier (ID) list. If the cells on the UE-preferred cell ID list may not be used, the network may fall back to negotiations based on tracking area identity (TAI) techniques and/or RAN notification area (RNA) techniques. A specific UE 502 may record and maintain a number of cell  lists (e.g., PLMN cell ID lists) where the UE 502 has been recently located. The UE recording scheme for the cell ID lists may be based on UE location information, time, UE movement information, end-user usage habits, and/or use artificial intelligence (AI) statistics and training. In examples, the cell list may be generated based on statistics and an internal algorithm of the UE 502. The UE 502 may then be configured to receive paging messages from the cells of the cell list maintained by the UE 502.
Before the UE 502 switches to an inactive state or an idle state, the UE 502 may transmit the UE-preferred paging cell ID list to the RAN or 5GC and the network may accept or reject the preferred/requested cell ID list. For example, the network may provide alternative cell lists, TAIs, and/or RNAs to the UE 502. The UE 502 may store the alternative cell lists at the UE 502 and the network may transmit the paging messages based on one or more of the alternative cell lists. If the UE 502 is located on a cell that is not included in the alternative cell lists, the UE 502 may wake up and notify the network that the UE 502 is outside the list of cells indicated by the network. The network may then provide an updated TAI cell list and/or an updated RNA.
If the network (e.g., CN or RAN) accepts the UE-preferred paging cell ID lists, only the preferred/approved cells in the cell ID lists may transmit paging messages to the UE 502. The UE-preferred paging cell ID list may be triggered internally based on UE implementation while the UE 502 is in a connected state with the network. The UE-preferred paging cell ID list may be indicated to the network via RRC message. If the UE 502 is camping on a cell during the inactive/idle state and the UE 502 determines that the cell is not included in the UE-preferred/approved paging cell ID list, the UE 502 may wake up and notify 5GC/RAN, so that the network may provide the UE with updated tracking area and/or RAN information.
Rather than the UE 502 receiving a default cell list that may be predefined by the network, the UE 502 may perform a negotiation procedure with the network to define/request a UE-preferred paging cell ID list. Individual UEs may each determine their own UE-specific cell lists based on a determined QoS for the UEs. The specific UEs may then respectively request the best cell lists for such UEs. mMTC and other related applications where the UE 502 is largely motionless (e.g., positioned at a static location) may be improved via UE-specific cell lists, as there may be no need for large area cell notification schemes for largely motionless UEs.  Thus, in many cases, the network may page such UEs by transmitting a paging message to a single cell in which the UE 502 is located. In instances of signal failure, the network may be configured to transmit the paging message to one or more additional cells. However, the number of cells may still be small in comparison to large area cell notification schemes. Accordingly, a UE-specific paging cell list may be determined and updated to balance UE mobility with radio resource usage. The paging cell list may need to be maintained by UE 502, as only the UE 502 may be configured to record and monitor statistics for its own usage habits and conditions.
In an example, the UE 502 may be a smartphone located in an end-user’s home at midnight. The UE 502 may indicate to the network that cell-A, cell-B, and cell-D comprise a UE-preferred/requested paging cell ID list, as only cell-A, cell-B, and cell-D may have been needed to serve the mobility of the UE 502 at midnight over the last year. The determination of the UE-preferred cell list may be based on settings/determinations of the UE 502. The network may accept the UE-preferred cell list, so that only cell-A, cell-B, and cell-D may transmit paging messages to the UE 502 at or around midnight. The UE-preferred cell list may be in contrast to default tracking area/cell lists of the network, which may transmit paging messages to 50 or more cells. Continuing with the example, if the UE 502 determines that the time has changed to 9: 00 am, when the UE/end-user typically leaves the area of the home, the UE 502 may determine that the location of the UE 502 is now outside the coverage area of cell-A, cell-B, and cell-D, and notify the NW of the event. The network may then transmit updated tracking area lists to the UE 502. Accordingly, UE-specific cell lists may not only provide flexibility to UE mobility in a resource-efficient manner, but may also decrease a power consumption of the network and decrease wasted radio resources for mMTC and similar applications where the nature of the UE 502 is such that motion/mobility thereof is limited.
FIG. 6 is a flowchart 600 of a method of wireless communication at a UE. The method may be performed by a UE (e.g., the UE 402) , which may include the memory 360 and which may be the entire UE 402 or a component of the UE 402, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359.
At 602, the UE may determine a cell ID list that includes one or more preferred cells for paging the UE. For example, referring to FIG. 4, the UE 402 may  determine, at 406, a cell ID list for UE-preferred paging cells. The determination, at 406, of the cell ID list may be based on a location history of the UE 402, where the location history may include at least one of UE location information, time, UE movement information, end-user usage habits, AI training based on information about the UE 402, or statistics for the UE 402. The location history of the UE 402 may further include a PLMN cell ID list maintained at the UE 402. The PLMN cell ID list may be indicative of cells that have served the UE 402. The cell ID list that includes the one or more preferred cells for paging the UE 402 may be determined, at 406, based on a QoS for the UE 402.
At 604, the UE may transmit the cell ID list to a base station for requesting authorization of the cell ID list. For example, referring to FIG. 4, the UE 402 may transmit, at 408, the UE-preferred paging cell ID list to the base station 404. The cell ID list that includes the one or more preferred cells for paging the UE may be transmitted, at 408, to the base station 404 based on an RRC message.
At 606, the UE may receive a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list. For example, referring to FIG. 4, the UE 402 may receive, at 412, a configuration from the base station 404 based on the UE-preferred cell ID list, if the UE-preferred cell ID list is authorized by the base station 404. Further, the paging signal may be received, at 420, in one of the one or more preferred cells for paging the UE 402, if the UE-preferred cell ID list is authorized by the base station 404.
The cell ID list that includes the one or more preferred cells for paging the UE 402 may be transmitted, at 408, to the base station 404 before the UE 402 enters an inactive state or an idle state. At 608, the UE may exit the inactive state or the idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list. For example, referring to FIG. 4, the UE 402 may exit, at 414, the inactive/idle state if determined to be camping on a sell that is outside the cells of the UE-preferred cell ID list.
At 610, the UE may indicate, to the base station, that the UE is not located in the one or more preferred cells for paging the UE. For example, referring to FIG. 4, the UE 402 may indicate, at 416, to the base station 404 that a current location of the UE 402 is outside the UE-preferred cell ID list.
At 612, the UE may receive an alternative cell ID list if the base station does not authorize the cell ID list. For example, referring to FIG. 4, the UE 402 may receive,  at 418, an alternative cell list configuration from the base station 404, if the UE-preferred cell ID list is not authorized by the base station 404. The alternative cell ID list may be associated with updated information for at least one of a TAI or an RNA.
At 614, the UE may receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized. For example, referring to FIG. 4, the UE 402 may receive, at 420, a paging signal based on whether the UE-preferred cell ID list is/is not authorized. For instance, the paging signal may be received by the UE 402 in one of the cells of the UE-preferred paging cell ID list, if the UE-preferred paging cell ID list is authorized by the base station 404, or the paging signal may be received by the UE 402 based on the alternative cell list, if the UE-preferred paging cell ID list is not authorized by the base station 404.
FIG. 7 is a flowchart 700 of a method of wireless communication at a base station. The method may be performed by a base station (e.g., the base station 404) , which may include the memory 376 and which may be the entire base station 404 or a component of the base station 404, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
At 702, the base station may receive a cell ID list from the UE requesting authorization of the cell ID list that includes one or more preferred cells for paging the UE. For example, referring to FIG. 4, the base station 404 may receive, at 408, the UE-preferred paging cell ID list from the UE 402. The cell ID list that includes the one or more preferred cells for paging the UE 402 may be based on a QoS from the base station 404. Further, the cell ID list that includes the one or more preferred cells for paging the UE 402 may be received, at 408, from the UE 402 based on an RRC message.
At 704, the base station may determine whether to authorize the cell ID list. For example, referring to FIG. 4, the base station 404 may determine, at 410, whether to authorize the UE-preferred paging cell ID list (e.g., the cell ID list received at 408) . The cell ID list may be based on a location history of the UE 404, the location history of the UE 402 may be based on at least one of UE location information, time, UE movement information, end-user usage habits, AI training based on information about the UE 402, or statistics for the UE 402. The location history of  the UE 402 may include a PLMN cell ID list maintained at the UE 402. The PLMN cell ID list may be indicative of cells that have served the UE 402.
The cell ID list that includes the one or more preferred cells for paging the UE 402 may be received, at 408, from the UE 402 before the UE 402 enters an inactive state or an idle state. At 706, if the cell list is authorized, the base station may receive an indication that the UE is not located in the one or more preferred cells for paging the UE (e.g., if the UE is camping on a cell that is not included in the cell ID list) , the indication being received after the UE exits the inactive state or the idle state. For example, referring to FIG. 4, the base station 404 may receive an indication, at 416, from the UE 402, that a current location of the UE 402 is outside the UE-preferred cell ID list. The indication, at 416, may be received by the base station 404 after the UE exits, at 414, the inactive/idle state.
At 708, the base station may transmit an alternative cell ID list if the base station does not authorize the cell ID list. For example, referring to FIG. 4, the base station 404 may transmit, at 418, an alternative cell list configuration to the UE 402, if the UE-preferred cell ID list is not authorized by the base station 404. Additionally, the indication received, at 416, that the location of the UE 402 is outside the UE-preferred cell ID list may cause the cell list to not be authorized by the base station 404, such that the base station 404 may transmit, at 418, the alternative cell list configuration to the UE 402. The alternative cell ID list may be associated with updated information for at least one of a TAI or a RNA.
At 710, the base station may transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized. For example, referring to FIG. 4, the base station 404 may transmit, at 420, a paging signal based on whether the UE-preferred cell ID list is/is not authorized. In a first example, the base station 404 may page the UE 402 using the one or more preferred cells identified on the cell ID list, if the base station 404 authorizes the cell ID list. The paging signal may be transmitted in the one or more preferred cells for paging the UE 402 without transmission in additional cells. In a second example, the base station may page the UE 402 based on the alternative cell list, if the base station 404 does not authorize the UE-preferred paging cell list.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822  and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818. The cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180. The cellular baseband processor 804 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software. The cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. The communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804. The cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
The reception component 830 is configured, e.g., as described in connection with 606, 612, and 614, to receive a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list; receive an alternative cell ID list if the base station does not authorize the cell ID list; and receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized. The communication manager 832 includes a determination component 840 that is configured, e.g., as described in connection with 602, to determine a cell ID list that includes one or more preferred cells for paging the UE. The communication manager 832 further includes an exit  component 842 that is configured, e.g., as described in connection with 608, to exit an inactive state or an idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list. The communication manager 832 additionally includes an indication component 844 that is configured, e.g., as described in connection with 610, to indicate to the base station that the UE is not located in the one or more preferred cells for paging the UE. The transmission component 834 is configured, e.g., as described in connection with 604, to transmit the cell ID list to a base station for requesting authorization of the cell ID list.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 6. As such, each block in the aforementioned flowchart of FIG. 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the cellular baseband processor 804, includes means for determining, transmitting, receiving, exiting, and indicating. The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902. The apparatus 902 is a BS and includes a baseband unit 904. The baseband unit 904 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 904 may include a computer-readable medium /memory. The baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit  904 when executing software. The baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934. The communication manager 932 includes the one or more illustrated components. The components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904. The baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The reception component 930 is configured, e.g., as described in connection with 702 and 706, to receive a cell ID list from a UE requesting authorization of the cell ID list that includes one or more preferred cells for paging the UE; and receive an indication that the UE is not located in the one or more preferred cells for paging the UE. The communication manager 932 includes a determination component 940 that is configured, e.g., as described in connection with 704, to determine whether to authorize the cell ID list. The transmission component 934 is configured, e.g., as described in connection with 708 and 710, to transmit an alternative cell ID list if the base station does not authorize the cell ID list; and transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowcharts of FIG. 7 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 902, and in particular the baseband unit 904, includes means for receiving, determining, and transmitting. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the  controller/processor 375 configured to perform the functions recited by the aforementioned means.
Accordingly, rather than paging messages being received by the UE based on a predefined list of cells from the network, the UE may perform a negotiation procedure with the network to define/request a UE-preferred paging cell ID list. A specific UE may provide a request to the network indicative of preferred cells for serving the specific UE based on prior cell information/data that is recorded and maintained by the specific UE. If the network authorizes the UE-preferred paging cell ID lists, only the UE-preferred cells in the cell ID lists may transmit paging messages for the specific UE. If the cells on the UE-preferred paging cell ID list may not be used, the network may fallback to techniques based on TAI and/or RNAs.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect  described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2020108119-appb-000001
Figure PCTCN2020108119-appb-000002
Figure PCTCN2020108119-appb-000003
Figure PCTCN2020108119-appb-000004

Claims (68)

  1. A method of wireless communication at a user equipment (UE) , comprising:
    determining a cell identifier (ID) list that includes one or more preferred cells for paging the UE;
    transmitting the cell ID list to a base station for requesting authorization of the cell ID list; and
    receiving a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  2. The method of claim 1, wherein the cell ID list is based on a location history of the UE, the location history being based on at least one of UE location information, time, UE movement information, end-user usage habits, artificial intelligence (AI) training based on information about the UE, or statistics for the UE.
  3. The method of claim 2, wherein the location history of the UE includes a public land mobile network (PLMN) cell ID list maintained at the UE, the PLMN cell ID list indicative of cells that have served the UE.
  4. The method of claim 1, wherein the cell ID list that includes the one or more preferred cells for paging the UE is determined based on a quality of service (QoS) for the UE.
  5. The method of claim 1, wherein the cell ID list that includes the one or more preferred cells for paging the UE is transmitted to the base station based on a radio resource control (RRC) message.
  6. The method of claim 1, wherein the cell ID list that includes the one or more preferred cells for paging the UE is transmitted to the base station before the UE enters an inactive state or an idle state.
  7. The method of claim 6, further comprising:
    exiting the inactive state or the idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list; and
    indicating, to the base station, that the UE is not located in the one or more preferred cells for paging the UE.
  8. The method of claim 1, further comprising receiving a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list.
  9. The method of claim 8, wherein the paging signal is received in one of the one or more preferred cells for paging the UE.
  10. The method of claim 1, further comprising receiving an alternative cell ID list if the base station does not authorize the cell ID list.
  11. The method of claim 10, wherein the alternative cell ID list is associated with updated information for at least one of a tracking area identity (TAI) or a random access network notification area (RNA) .
  12. A method of wireless communication at a base station, comprising:
    receiving a cell identifier (ID) list from a user equipment (UE) requesting authorization of the cell ID list including one or more preferred cells for paging the UE;
    determining whether to authorize the cell ID list; and transmitting a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  13. The method of claim 12, wherein cell ID list is based on a location history of the UE, the location history of the UE being based on at least one of UE location information, time, UE movement information, end-user usage habits, artificial intelligence (AI) training based on information about the UE, or statistics for the UE.
  14. The method of claim 13, wherein the location history of the UE includes a public land mobile network (PLMN) cell ID list maintained at the UE, the PLMN cell ID list indicative of cells that have served the UE.
  15. The method of claim 12, wherein the cell ID list that includes the one or more preferred cells for paging the UE is based on a quality of service (QoS) from the base station.
  16. The method of claim 12, wherein the cell ID list that includes the one or more preferred cells for paging the UE is received from the UE based on a radio resource control (RRC) message.
  17. The method of claim 12, wherein the cell ID list that includes the one or more preferred cells for paging the UE is received from the UE before the UE enters an inactive state or an idle state.
  18. The method of claim 17, further comprising receiving an indication that the UE is not located in the one or more preferred cells for paging the UE if the UE is camping on a cell that is not included in the cell ID list, the indication being received after the UE exits the inactive state or the idle state.
  19. The method of claim 12, wherein the base station pages the UE using the one or more preferred cells identified on the cell ID list if the base station authorizes the cell ID list.
  20. The method of claim 19, wherein the paging signal is transmitted in the one or more preferred cells for paging the UE without transmission in additional cells.
  21. The method of claim 12, further comprising transmitting an alternative cell ID list if the base station does not authorize the cell ID list, wherein the base station pages the UE using the alternative cell ID list if the base station does not authorize the cell ID list.
  22. The method of claim 21, wherein the alternative cell ID list is associated with updated information for at least one of a tracking area identity (TAI) or a random access network notification area (RNA) .
  23. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    determine a cell identifier (ID) list that includes one or more preferred cells for paging the UE;
    transmit the cell ID list to a base station for requesting authorization of the cell ID list; and
    receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  24. The apparatus of claim 23, wherein the cell ID list is based on a location history of the UE, the location history being based on at least one of UE location information, time, UE movement information, end-user usage habits, artificial intelligence (AI) training based on information about the UE, or statistics for the UE.
  25. The apparatus of claim 24, wherein the location history of the UE includes a public land mobile network (PLMN) cell ID list maintained at the UE, the PLMN cell ID list indicative of cells that have served the UE.
  26. The apparatus of claim 23, wherein the cell ID list that includes the one or more preferred cells for paging the UE is determined based on a quality of service (QoS) for the UE.
  27. The apparatus of claim 23, wherein the cell ID list that includes the one or more preferred cells for paging the UE is transmitted to the base station based on a radio resource control (RRC) message.
  28. The apparatus of claim 23, wherein the cell ID list that includes the one or more preferred cells for paging the UE is transmitted to the base station before the UE enters an inactive state or an idle state.
  29. The apparatus of claim 28, wherein the at least one processor is further configured to:
    exit the inactive state or the idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list; and
    indicate, to the base station, that the UE is not located in the one or more preferred cells for paging the UE.
  30. The apparatus of claim 23, wherein the at least one processor is further configured to receive a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list.
  31. The apparatus of claim 30, wherein the paging signal is received in one of the one or more preferred cells for paging the UE.
  32. The apparatus of claim 23, wherein the at least one processor is further configured to receive an alternative cell ID list if the base station does not authorize the cell ID list.
  33. The apparatus of claim 32, wherein the alternative cell ID list is associated with updated information for at least one of a tracking area identity (TAI) or a random access network notification area (RNA) .
  34. An apparatus for wireless communication at a base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive a cell identifier (ID) list from a user equipment (UE) requesting authorization of the cell ID list including one or more preferred cells for paging the UE;
    determine whether to authorize the cell ID list; and
    transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  35. The apparatus of claim 23, wherein cell ID list is based on a location history of the UE, the location history of the UE being based on at least one of UE location information, time, UE movement information, end-user usage habits, artificial intelligence (AI) training based on information about the UE, or statistics for the UE.
  36. The apparatus of claim 35, wherein the location history of the UE includes a public land mobile network (PLMN) cell ID list maintained at the UE, the PLMN cell ID list indicative of cells that have served the UE.
  37. The apparatus of claim 23, wherein the cell ID list that includes the one or more preferred cells for paging the UE is based on a quality of service (QoS) from the base station.
  38. The apparatus of claim 23, wherein the cell ID list that includes the one or more preferred cells for paging the UE is received from the UE based on a radio resource control (RRC) message.
  39. The apparatus of claim 23, wherein the cell ID list that includes the one or more preferred cells for paging the UE is received from the UE before the UE enters an inactive state or an idle state.
  40. The apparatus of claim 39, wherein the at least one processor is further configured to receive an indication that the UE is not located in the one or more preferred cells for paging the UE if the UE is camping on a cell that is not included in the cell ID list, the indication being received after the UE exits the inactive state or the idle state.
  41. The apparatus of claim 23, wherein the base station pages the UE using the one or more preferred cells identified on the cell ID list if the base station authorizes the cell ID list.
  42. The apparatus of claim 41, wherein the paging signal is transmitted in the one or more preferred cells for paging the UE without transmission in additional cells.
  43. The apparatus of claim 23, wherein the at least one processor is further configured to transmit an alternative cell ID list if the base station does not authorize the cell ID list, wherein the base station pages the UE using the alternative cell ID list if the base station does not authorize the cell ID list.
  44. The apparatus of claim 43, wherein the alternative cell ID list is associated with updated information for at least one of a tracking area identity (TAI) or a random access network notification area (RNA) .
  45. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for determining a cell identifier (ID) list that includes one or more preferred cells for paging the UE;
    means for transmitting the cell ID list to a base station for requesting authorization of the cell ID list; and
    means for receiving a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  46. The apparatus of claim 45, wherein the cell ID list is based on a location history of the UE, the location history being based on at least one of UE location information, time, UE movement information, end-user usage habits, artificial intelligence (AI) training based on information about the UE, or statistics for the UE.
  47. The apparatus of claim 46, wherein the location history of the UE includes a public land mobile network (PLMN) cell ID list maintained at the UE, the PLMN cell ID list indicative of cells that have served the UE.
  48. The apparatus of claim 45, wherein the cell ID list that includes the one or more preferred cells for paging the UE is determined based on a quality of service (QoS) for the UE.
  49. The apparatus of claim 45, wherein the cell ID list that includes the one or more preferred cells for paging the UE is transmitted to the base station based on a radio resource control (RRC) message.
  50. The apparatus of claim 45, wherein the cell ID list that includes the one or more preferred cells for paging the UE is transmitted to the base station before the UE enters an inactive state or an idle state.
  51. The apparatus of claim 50, further comprising:
    means for exiting the inactive state or the idle state based on a determination that the UE is camping on a cell that is not included in the cell ID list; and
    means for indicating, to the base station, that the UE is not located in the one or more preferred cells for paging the UE.
  52. The apparatus of claim 45, further comprising means for receiving a configuration from the base station based on the cell ID list if the base station authorizes the cell ID list.
  53. The apparatus of claim 52, wherein the paging signal is received in one of the one or more preferred cells for paging the UE.
  54. The apparatus of claim 45, further comprising means for receiving an alternative cell ID list if the base station does not authorize the cell ID list.
  55. The apparatus of claim 54, wherein the alternative cell ID list is associated with updated information for at least one of a tracking area identity (TAI) or a random access network notification area (RNA) .
  56. An apparatus for wireless communication at a base station, comprising:
    means for receiving a cell identifier (ID) list from a user equipment (UE) requesting authorization of the cell ID list including one or more preferred cells for paging the UE;
    means for determining whether to authorize the cell ID list; and
    means for transmitting a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  57. The apparatus of claim 56, wherein cell ID list is based on a location history of the UE, the location history of the UE being based on at least one of UE location information, time, UE movement information, end-user usage habits, artificial intelligence (AI) training based on information about the UE, or statistics for the UE.
  58. The apparatus of claim 57, wherein the location history of the UE includes a public land mobile network (PLMN) cell ID list maintained at the UE, the PLMN cell ID list indicative of cells that have served the UE.
  59. The apparatus of claim 56, wherein the cell ID list that includes the one or more preferred cells for paging the UE is based on a quality of service (QoS) from the base station.
  60. The apparatus of claim 56, wherein the cell ID list that includes the one or more preferred cells for paging the UE is received from the UE based on a radio resource control (RRC) message.
  61. The apparatus of claim 56, wherein the cell ID list that includes the one or more preferred cells for paging the UE is received from the UE before the UE enters an inactive state or an idle state.
  62. The apparatus of claim 61, further comprising means for receiving an indication that the UE is not located in the one or more preferred cells for paging the UE if the UE is camping on a cell that is not included in the cell ID list, the indication being received after the UE exits the inactive state or the idle state.
  63. The apparatus of claim 56, wherein the base station pages the UE using the one or more preferred cells identified on the cell ID list if the base station authorizes the cell ID list.
  64. The apparatus of claim 63, wherein the paging signal is transmitted in the one or more preferred cells for paging the UE without transmission in additional cells.
  65. The apparatus of claim 56, further comprising means for transmitting an alternative cell ID list if the base station does not authorize the cell ID list, wherein the base station pages the UE using the alternative cell ID list if the base station does not authorize the cell ID list.
  66. The apparatus of claim 65, wherein the alternative cell ID list is associated with updated information for at least one of a tracking area identity (TAI) or a random access network notification area (RNA) .
  67. A computer-readable medium storing computer executable code, the code when executed by at least one processor causes the at least one processor to:
    determine a cell identifier (ID) list that includes one or more preferred cells for paging the UE;
    transmit the cell ID list to a base station for requesting authorization of the cell ID list; and
    receive a paging signal from the base station based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
  68. A computer-readable medium storing computer executable code, the code when executed by at least one processor causes the at least one processor to:
    receive a cell identifier (ID) list from a user equipment (UE) requesting authorization of the cell ID list including one or more preferred cells for paging the UE;
    determine whether to authorize the cell ID list; and
    transmit a paging signal to the UE based on whether the cell ID list that includes the one or more preferred cells for paging the UE is authorized.
PCT/CN2020/108119 2020-08-10 2020-08-10 Cell list negotiation procedure for ue-specific paging areas WO2022032427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108119 WO2022032427A1 (en) 2020-08-10 2020-08-10 Cell list negotiation procedure for ue-specific paging areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108119 WO2022032427A1 (en) 2020-08-10 2020-08-10 Cell list negotiation procedure for ue-specific paging areas

Publications (1)

Publication Number Publication Date
WO2022032427A1 true WO2022032427A1 (en) 2022-02-17

Family

ID=80247525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108119 WO2022032427A1 (en) 2020-08-10 2020-08-10 Cell list negotiation procedure for ue-specific paging areas

Country Status (1)

Country Link
WO (1) WO2022032427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500216A (en) * 2008-01-28 2009-08-05 大唐移动通信设备有限公司 Method, system, user equipment and network appliance for location region updating
CN103686935A (en) * 2012-09-07 2014-03-26 中兴通讯股份有限公司 Historical presence cell list generation method and paging method, and Femto gateway
US20160165476A1 (en) * 2010-04-29 2016-06-09 Interdigital Patent Holdings, Inc. Using personal wireless devices for network testing
US20190327649A1 (en) * 2017-01-06 2019-10-24 Huawei Technologies Co., Ltd. Grant-free resource allocation method, user equipment, and network device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500216A (en) * 2008-01-28 2009-08-05 大唐移动通信设备有限公司 Method, system, user equipment and network appliance for location region updating
US20160165476A1 (en) * 2010-04-29 2016-06-09 Interdigital Patent Holdings, Inc. Using personal wireless devices for network testing
CN103686935A (en) * 2012-09-07 2014-03-26 中兴通讯股份有限公司 Historical presence cell list generation method and paging method, and Femto gateway
US20190327649A1 (en) * 2017-01-06 2019-10-24 Huawei Technologies Co., Ltd. Grant-free resource allocation method, user equipment, and network device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Considerations of paging area configuration on the LTE lightweight connection", 3GPP DRAFT; R2-168742 CONSIDERATIONS OF PAGING AREA CONFIGURATION ON THE LTE LIGHTWEIGHT CONNECTION, vol. RAN WG2, 5 November 2016 (2016-11-05), Reno, Nevada, pages 1 - 3, XP051193228 *

Similar Documents

Publication Publication Date Title
US11595921B2 (en) Methods and apparatus for QCL assumptions for cross carrier multiple DCI
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US20230291525A1 (en) Activation of joint dl/ul tci states for mdci
US11800460B2 (en) Indication of potential NR UL transmission in NE-DC
US11452089B2 (en) Signaling to activate uplink trigger states
US11476984B2 (en) Flexible spectrum usage with carrier aggregation
WO2021163061A1 (en) Signaling of capability information by user equipment
US20210226761A1 (en) Component carrier group based bandwidth part switching
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
WO2021253328A1 (en) Method and apparatus for managing signal transmission power mode
US20220303105A1 (en) User equipment-assisted information for full-duplex user equipment
US20230035862A1 (en) Power rebalancing in a maximum permissible exposure event
US20220191774A1 (en) Adaptive discovery channel measurement time configurations
US20230276353A1 (en) Fast slicing switching via scg suspension or activation
US20230239123A1 (en) Associating transmission reception point with control resource set
WO2021223152A1 (en) Apparatus and method to restrain inappropriate measurement event
WO2022032427A1 (en) Cell list negotiation procedure for ue-specific paging areas
US11729706B2 (en) Methods and apparatus for multi-coreset PDCCH aggregation
US11626950B2 (en) Differential reporting of epre values for RS tones
WO2022056666A1 (en) Methods and apparatus for video over nr-dc
WO2022006855A1 (en) Avoid registration in standalone mode for non-standalone subscriber
US20230308860A1 (en) Intelligent detection of user equipment usage to improve user packet switched data experience in multi-subscriber identity module devices
US20220039006A1 (en) Dynamic cell functionality determination in l1/l2 based mobility
WO2022051923A1 (en) Activation of joint dl/ul tci state for single dci and multiple trps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948926

Country of ref document: EP

Kind code of ref document: A1