WO2022031013A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2022031013A1
WO2022031013A1 PCT/KR2021/010241 KR2021010241W WO2022031013A1 WO 2022031013 A1 WO2022031013 A1 WO 2022031013A1 KR 2021010241 W KR2021010241 W KR 2021010241W WO 2022031013 A1 WO2022031013 A1 WO 2022031013A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
layer
mmol
added
Prior art date
Application number
PCT/KR2021/010241
Other languages
English (en)
French (fr)
Inventor
정민우
이동훈
서상덕
이정하
한수진
박슬찬
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210101875A external-priority patent/KR102591468B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180034264.7A priority Critical patent/CN115551852A/zh
Publication of WO2022031013A1 publication Critical patent/WO2022031013A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, It may be made of an electron injection layer, etc.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention relates to a compound represented by the following formula (1).
  • Each X is independently N or CH, wherein at least two of X are N,
  • Y is O or S
  • L 1 is a direct bond, or a substituted or unsubstituted C 6-60 arylene
  • L 2 is a direct bond, or a substituted or unsubstituted C 6-60 arylene
  • Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 6- containing one or more heteroatoms selected from the group consisting of N, O and S 60 heteroaryl;
  • R 1 is substituted or unsubstituted C 6-60 aryl, or C 6-60 heteroaryl including any one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S,
  • R 2 are each independently hydrogen, or deuterium
  • At least one of Ar 1 , Ar 2 and R 1 is substituted with one or more deuterium, or at least one of R 2 is deuterium.
  • the compound represented by Chemical Formula 1 described above may be used as a material for the organic material layer of the organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • the compound represented by the above formula (1) may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a hole transport layer 3 , a light emitting layer 4 , an electron injection and transport layer 5 , and a cathode 6 .
  • FIG. 2 is a substrate (1), an anode (2), a hole injection layer (7), a hole transport layer (3), an electron blocking layer (8), a light emitting layer (4), a hole blocking layer (9), an electron injection and transport layer ( 5) and an example of an organic light-emitting device including a cathode 6 are shown.
  • substituted or unsubstituted refers to deuterium, a halogen group, a cyano group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, an alkoxy group, an aryloxy group, an alkyl group Thioxy group, arylthioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group, aralkylamine substituted or unsubstituted with one or more substituents selected from the group consisting of a group, a heteroarylamine group, an arylamine group, an arylphosphine group, or a
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group having aromaticity. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may include, but is not limited to, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a triphenylenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, and the like.
  • heteroaryl is a heteroaryl containing at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms.
  • heteroaryl include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group, Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the above-described aryl group.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among heteroarylamines the description regarding heteroaryl described above may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • the description of the above-described aryl group may be applied, except that arylene is a divalent group.
  • the description of the above-described heteroaryl may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description regarding heteroaryl described above may be applied, except that it is formed by combining two substituents.
  • the present invention provides a compound represented by Formula 1 above.
  • Chemical Formula 1 and the compound represented by the Chemical Formula 1 will be described in detail as follows.
  • each X is independently N or CH; At least two of X are N.
  • all of X may be N.
  • Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 6- containing one or more heteroatoms selected from the group consisting of N, O and S 60 heteroaryl.
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, naphthyl, naphthyl phenyl, phenanthrenyl, carbazol-9-yl, 9-phenyl-9H-carbazolyl, dibenzofuranyl , or dibenzothiophenyl.
  • Ar 1 and Ar 2 are unsubstituted; It may be one substituted with one or more deuterium.
  • Ar 1 and Ar 2 are each independently, unsubstituted biphenylyl, naphthyl, phenanthrenyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, 9-phenyl -9H-carbazolyl, or phenyl unsubstituted or substituted with 5 deuterium.
  • L 1 may be a direct bond or a substituted or unsubstituted C 6-60 arylene.
  • L 1 may be a direct bond, phenylene, biphenylene, or naphthylene.
  • L 2 may be a direct bond, or a substituted or unsubstituted C 6-60 arylene.
  • L 1 may be a direct bond or phenylene.
  • Y is O or S, for example, may be O.
  • R 1 may be substituted or unsubstituted C 6-60 aryl, or C 6-60 heteroaryl including any one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S.
  • R 1 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl; R 1 may be unsubstituted or substituted with one or more deuterium.
  • R 2 may be each independently hydrogen or deuterium.
  • At least one of Ar 1 , Ar 2 and R 1 is substituted with one or more deuterium, or at least one of R 2 is deuterium.
  • the compound represented by Formula 1 may be any one selected from the group consisting of the following compounds:
  • the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 1 below.
  • X, Y, L 1 , L 2 , Ar 1 , Ar 2 , R 1 , and R 2 have the same definitions as in Formula 1.
  • Z is halogen, preferably chloro.
  • the Suzuki coupling reaction in Scheme 1 is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by the formula (1).
  • the present invention provides an organic light emitting device comprising a first electrode, a second electrode provided to face the first electrode, and one or more organic material layers provided between the first electrode and the second electrode, At least one layer of the organic material layer includes the compound represented by Formula 1, and provides an organic light emitting device.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, the hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 The indicated compounds are included.
  • the organic material layer may include a light emitting layer, the light emitting layer includes the compound represented by Formula 1 above.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention further comprises a hole injection layer and a hole transport layer between the first electrode and the light emitting layer, and an electron transport layer and an electron injection layer between the light emitting layer and the second electrode in addition to the light emitting layer as an organic layer can have a structure that
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number or a larger number of organic layers.
  • an anode, one or more organic material layers and a cathode are sequentially stacked on a substrate, wherein the first electrode is an anode and the second electrode is a cathode.
  • the first electrode is a cathode and the second electrode is an anode
  • a cathode, one or more organic material layers and an anode are sequentially stacked on a substrate of an inverted type organic structure. It may be a light emitting device.
  • the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a hole transport layer 3 , a light emitting layer 4 , an electron injection and transport layer 5 , and a cathode 6 .
  • the compound represented by Formula 1 may be included in the hole transport layer.
  • the compound represented by Formula 1 may be included in the hole injection layer, the hole transport layer, or the electron suppression layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting diode according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), metal oxide such as indium zinc oxide (IZO), ZnO: Al or SnO 2 : combinations of oxides with metals such as Sb, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole and polyaniline and conductive polymers, such as, but not limited to these.
  • metals such as vanadium, chromium, copper, zinc, gold or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), metal oxide such as indium zinc oxide (IZO), ZnO: Al or SnO 2 : combinations of oxides with metals such as Sb, poly(3-methylthi
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof, such as LiF/Al or LiO 2 /Al. multi-layered materials, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material.
  • organic substances anthraquinones, and conductive polymers of polyaniline and polythiophene series, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the hole transport material is a material that can transport holes from the anode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. material is suitable.
  • the hole transport material the compound represented by Formula 1, or an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together may be used, but the present invention is not limited thereto. .
  • the electron suppression layer is formed on the hole transport layer, preferably provided in contact with the light emitting layer, adjusts hole mobility, prevents excessive movement of electrons, and increases the hole-electron coupling probability, thereby increasing the efficiency of the organic light emitting device It means a layer that plays a role in improving
  • the electron blocking layer includes an electron blocking material, and as an example of the electron blocking material, a compound represented by Formula 1 or an arylamine-based organic material may be used, but is not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ), carbazole-based compounds, dimerized styryl compounds, BAlq, 10-hydroxybenzoquinoline-metal compounds, benzoxazole, benzthiazole and benz
  • the light emitting layer may include a host material and a dopant material as described above.
  • the host material may further include a condensed aromatic ring derivative or a heterocyclic compound containing compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene, and the like, having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to control electron mobility and prevent excessive movement of holes to increase the hole-electron coupling probability, thereby improving the efficiency of the organic light emitting device layer that plays a role.
  • the hole blocking layer includes a hole blocking material.
  • the hole blocking material include an electron withdrawing group such as an azine derivative including triazine, a triazole derivative, an oxadiazole derivative, a phenanthroline derivative, and a phosphine oxide derivative. compounds may be used, but the present invention is not limited thereto.
  • the electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from the electrode and transporting the received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • the electron injection and transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable.
  • Specific examples of the electron injection and transport material include, but are not limited to, an Al complex of 8-hydroxyquinoline, a complex including Alq 3 , an organic radical compound, a hydroxyflavone-metal complex, and a triazine derivative.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. derivatives, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high luminous efficiency.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • A-3 (20 g, 67.1 mmol) and phenyl boronic acid (8.2 g, 67.1 mmol) were added to tetrahydrofuran (in 400 ml), and the mixture was stirred and refluxed. Thereafter, potassium carbonate (27.8 g, 201.4 mmol) was dissolved in water (28 ml), and after stirring sufficiently, tetrakis (triphenylphosphine) palladium (0) (2.3 g, 2 mmol) was added. After the reaction for 2 hours, after cooling to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • A-3 (20 g, 67.1 mmol) and [1,1'-biphenyl]-3-ylboronic acid (13.3 g, 67.1 mmol) were placed in tetrahydrofuran (400 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, potassium carbonate (27.8 g, 201.4 mmol) was dissolved in water (28 ml), and after stirring sufficiently, tetrakis (triphenylphosphine) palladium (0) (2.3 g, 2 mmol) was added. After reaction for 1 hour, after cooling to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • sub 3-1 15 g, 28.6 mmol
  • bis (pinacolato) diboron 8 g, 31.4 mmol
  • potassium acetate 8.2 g, 85.7 mmol
  • bis (dibenzylideneacetone) palladium (0) 0.5 g, 0.9 mmol
  • tricyclohexylphosphine 0.5 g, 1.7 mmol
  • A-3 (20 g, 67.1 mmol) and dibenzo [b, d] furan-4-ylboronic acid (14.2 g, 67.1 mmol) were placed in tetrahydrofuran (400 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, potassium carbonate (27.8 g, 201.4 mmol) was dissolved in water (28 ml), and after stirring sufficiently, tetrakis (triphenylphosphine) palladium (0) (2.3 g, 2 mmol) was added. After reaction for 1 hour, after cooling to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • sub 1-2 (10 g, 18.5 mmol) and 2-chloro-4-phenyl-6- (phenyl-D5) -1,3,5-triazine (5 g, 18.5 mmol) were mixed with tetrahydrofuran. (200 ml), stirred and refluxed. Thereafter, potassium carbonate (7.7 g, 55.4 mmol) was dissolved in water (8 ml), and after stirring sufficiently, tetrakis(triphenylphosphine)palladium (0.6 g, 0.6 mmol) was added. After the reaction for 2 hours, after cooling to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • sub 1-2 (10 g, 18.5 mmol) and 2-chloro-4,6-bis (phenyl-D5) -1,3,5-triazine (5.1 g, 18.5 mmol) were mixed with tetrahydrofuran ( 200 ml), stirred and refluxed. Thereafter, potassium carbonate (7.7 g, 55.4 mmol) was dissolved in water (8 ml), and after stirring sufficiently, tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.6 mmol) was added. After the reaction for 3 hours, after cooling to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,300 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • a hole injection layer was formed by thermal vacuum deposition of the following HI-1 compound to a thickness of 50 ⁇ on the ITO transparent electrode prepared as described above.
  • the following HT-1 compound was thermally vacuum-deposited to a thickness of 250 ⁇ on the hole injection layer to form a hole transport layer, and the following HT-2 compound was vacuum-deposited to a thickness of 50 ⁇ on the HT-1 deposited film to form an electron blocking layer.
  • Compound 1 prepared in Example 1 above, the following YGH-1 compound, and phosphorescent dopant YGD-1 as a light emitting layer on the HT-2 deposited film were co-deposited in a weight ratio of 44:44:12 to form a light emitting layer having a thickness of 400 ⁇ .
  • ET-1 compound was vacuum deposited to a thickness of 250 ⁇ on the light emitting layer to form an electron transport layer
  • ET-2 compound and Li were vacuum deposited in a weight ratio of 98:2 on the electron transport layer to form an electron injection layer with a thickness of 100 ⁇ formed.
  • a cathode was formed by depositing aluminum to a thickness of 1000 ⁇ on the electron injection layer.
  • the deposition rate of organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was maintained at 1 ⁇ 10 -7 ⁇ 5 ⁇ 10 -8 torr did
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 1 was used instead of Compound 1 of Example 1 in Experimental Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in Experimental Example 1.
  • the compounds of CE1 in Table 1 below are as follows.
  • Substrate 2 Anode
  • hole transport layer 4 light emitting layer
  • Electron injection and transport layer 6 Cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 8월 4일자 한국 특허 출원 제10-2020-0097603호 및 2021년 8월 3일자 한국 특허 출원 제10-2021-0101875호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물에 관한 것이다.
[화학식 1]
Figure PCTKR2021010241-appb-img-000001
상기 화학식 1에서,
X는 각각 독립적으로, N 또는 CH이되, 상기 X 중 2 이상은 N이고,
Y는 O 또는 S이고,
L1은 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
L2는 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-60 헤테로아릴이고,
R1은 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-60 헤테로아릴이고,
R2는 각각 독립적으로 수소, 또는 중수소이고,
단, Ar1, Ar2 및 R1 중 적어도 하나가 하나 이상의 중수소로 치환되거나, 또는 R2 중 적어도 하나가 중수소이다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
Figure PCTKR2021010241-appb-img-000002
Figure PCTKR2021010241-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 사이클로알킬기, 알케닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기, 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나; 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021010241-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021010241-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021010241-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 방향족성(aromaticity)을 갖는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 트리페닐레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
(화합물)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
이하, 상기 화학식 1 및 이 화학식으로 표시되는 화합물을 상세히 설명하면 다음과 같다.
X는 각각 독립적으로, N 또는 CH이되; 상기 X 중 2 이상은 N이다.
구체적으로, X는 모두 N일 수 있다.
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-60 헤테로아릴일 수 있다.
구체적으로, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 나프틸 페닐, 페난쓰레닐, 카바졸-9-일, 9-페닐-9H-카바졸릴, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있다. 이 경우, 상기 Ar1 및 Ar2는 비치환되거나; 하나 이상의 중수소로 치환된 것일 수 있다.
예컨대, Ar1 및 Ar2는 각각 독립적으로, 비치환된 비페닐릴, 나프틸, 페난쓰레닐, 나프틸페닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 9-페닐-9H-카바졸릴, 또는 비치환되거나 5개의 중수소로 치환된 페닐일 수 있다.
L1은 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌일 수 있다.
예컨대, L1은 직접 결합, 페닐렌, 비페닐렌, 또는 나프틸렌일 수 있다.
L2은 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌일 수 있다.
예컨대, L1은 직접 결합, 또는 페닐렌일 수 있다.
Y은 O 또는 S이고, 예컨대 O일 수 있다.
R1은 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-60 헤테로아릴일 수 있다.
예컨대, R1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이고; 상기 R1은 비치환되거나, 하나 이상의 중수소로 치환된 것일 수 있다.
R2는 각각 독립적으로 수소, 또는 중수소일 수 있다.
단, 화학식 1은 상기 정의를 만족하면서, 동시에 Ar1, Ar2 및 R1 중 적어도 하나가 하나 이상의 중수소로 치환되거나, 또는 R2 중 적어도 하나가 중수소이다.
보다 구체적인 예를 들어, 상기 화학식 1로 표시되는 화합물은, 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021010241-appb-img-000007
Figure PCTKR2021010241-appb-img-000008
Figure PCTKR2021010241-appb-img-000009
Figure PCTKR2021010241-appb-img-000010
Figure PCTKR2021010241-appb-img-000011
Figure PCTKR2021010241-appb-img-000012
또한, 본 발명은 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다.
[반응식 1]
Figure PCTKR2021010241-appb-img-000013
상기 반응식 1에서, X, Y, L1, L2, Ar1, Ar2, R1 및 R2의 정의는 화학식 1의 정의와 같다. 또한 반응식 1에서 Z는 할로겐이고, 바람직하게는 클로로이다.
상기 반응식 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에, 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
(유기 발광 소자)
한편, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 발광층 이외에, 상기 제1전극과 상기 발광층 사이의 정공주입층 및 정공수송층, 및 상기 발광층과 상기 제2전극 사이의 전자수송층 및 전자주입층을 더 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 상기 제1 전극이 양극이고 상기 제2 전극은 음극인, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 상기 제1 전극이 음극이고 상기 제2 전극은 양극인, 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공수송층에 포함될 수 있다.
도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 또는 전자억제층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 상기 정공 수송 물질로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3), 카르바졸 계열 화합물, 이량체화 스티릴(dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자, 스피로(spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이에 한정되는 것은 아니다.
상기 발광층은 상술한 바와 같이 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되는 것은 아니다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체, 트리아졸 유도체, 옥사디아졸 유도체, 페난트롤린 유도체, 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물, 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 배면 발광(Bottom emission) 소자, 전면 발광 (Top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
[제조예]
제조예 1 : 화합물 sub 1-2의 제조
먼저 화합물 A-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000014
질소 분위기에서 2-브로모-6-플루오로페놀(100 g, 526.5 mmol)과 (4-클로로-2-플루오로페닐)보론산(91.6 g, 526.5 mmol)을 테트라하이드로퓨란(2000 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(218.3 g, 1579.4 mmol)를 물(218 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(18.2 g, 15.8 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름(6739 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 회색의 고체 화합물 A-1(99.7 g, 수율 74%, MS: [M+H]+ = 257)을 제조하였다.
다음으로 화합물 A-2를 제조하였다.
Figure PCTKR2021010241-appb-img-000015
질소 분위기에서 A-1(70 g, 273.4 mmol)와 N-브로모 석신아미드(48.7 g, 273.4 mmol)를 클로로포름(350 ml)에 넣고 교반 및 0℃로 냉각하였다. 이후 1 시간 반응 후 상온으로 식힌 후 물을 투입하였다. 이후 유기층과 물층을 분리 후 유기층을 농축하였다. 이를 다시 클로로포름(913 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 A-2(65.7 g, 수율 72%, MS: [M+H]+ = 334.9)을 제조하였다.
다음으로 화합물 A-3을 제조하였다.
Figure PCTKR2021010241-appb-img-000016
질소 분위기에서 A-2(50 g, 149.7 mmol)를 디메틸포름아마이드(250 ml)에 넣고 포타슘카보네이트를 투입한 후 교반 및 140℃로 가열하였다. 이후 7 시간 반응 후 상온으로 식힌 후 물을 투입하였다. 이후 형성된 고체를 여과 하였다.이를 다시 클로로포름(380 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 A-2(27 g, 수율 71%, MS: [M+H]+ = 255)을 제조하였다.
다음으로 화합물 A-4을 제조하였다.
Figure PCTKR2021010241-appb-img-000017
질소 분위기에서 A-3(20 g, 67.1 mmol)와 페닐 보론산(8.2 g, 67.1 mmol)을 테트라하이드로퓨란(400 ml에) 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(27.8 g, 201.4 mmol)를 물(28 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(2.3 g, 2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(397 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 A-4(14.9 g, 수율 75%, MS: [M+H]+ = 297)을 제조하였다.
이후 화합물 sub 1-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000018
질소 분위기에서 A-4(15 g, 50.7 mmol)와 9H-카바졸-1,3,4,5,6,8-D6(8.8 g, 50.7 mmol)를 디메틸포름아마이드(300 ml)에 넣고 교반 및 환류하였다. 이후 삼인산포타슘(32.3 g, 152 mmol)을 투입하고 충분히 교반한 후 3 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(228 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 sub 1-1(16.8 g, 수율 74%, MS: [M+H]+ = 450.2)을 제조하였다.
이후 화합물 sub 1-2를 제조하였다.
Figure PCTKR2021010241-appb-img-000019
질소 분위기에서 sub 1-1(15 g, 33.4 mmol)와 비스(피나콜라토)디보론(9.3 g, 36.7 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(9.6 g, 100.2 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.6 g, 1 mmol) 및 트리시클로헥실포스핀(0.6 g, 2 mmol)을 투입하였다. 7 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(181 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올 재결정을 통해 흰색의 고체 화합물 sub 1-2(15.9 g, 수율 88%, MS: [M+H]+ = 542.3)을 제조하였다.
제조예 2 : 화합물 sub 2-2의 제조
먼저 화합물 sub 2-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000020
질소 분위기에서 A-4(15 g, 50.7 mmol)와 9H-카바졸-1,2,3,4,5,6,7,8-D8(8.9 g, 50.7 mmol)를 디메틸포름아마이드(300 ml)에 넣고 교반 및 환류하였다. 이후 삼인산포타슘(32.3 g, 152 mmol)을 투입하고 충분히 교반한 후 7 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(229 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 sub 1-2(13.7 g, 수율 60%, MS: [M+H]+ = 452.2)을 제조하였다.
다음으로 화합물 sub 2-2를 제조하였다.
Figure PCTKR2021010241-appb-img-000021
질소 분위기에서 sub 2-1(15 g, 33.2 mmol)와 비스(피나콜라토)디보론(9.3 g, 36.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(9.6 g, 99.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.6 g, 1 mmol) 및 트리시클로헥실포스핀(0.6 g, 2 mmol)을 투입하였다. 6 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(181 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올 재결정을 통해 흰색의 고체 화합물 sub 2-2(10.3 g, 수율 57%, MS: [M+H]+ = 544.3)을 제조하였다.
제조예 3 : 화합물 sub 3-2의 제조
먼저 화합물 B-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000022
질소 분위기에서 A-3(20 g, 67.1 mmol)와 [1,1'-비페닐]-3-일보론산(13.3 g, 67.1mmol)를 테트라하이드로퓨란(400 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(27.8 g, 201.4 mmol)를 물(28 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(2.3 g, 2 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(500 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 B-1(16.2 g, 수율 65%, MS: [M+H]+ = 373.1)을 제조하였다.
다음으로 화합물 sub 3-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000023
질소 분위기에서 B-1(15 g, 40.3 mmol)와 9H-카바졸-1,3,4,5,6,8-D6(7 g, 40.3 mmol)를 디메틸포름아마이드(300 ml)에 넣고 교반 및 환류하였다. 이후 삼인산포타슘(25.7 g, 120.9 mmol)을 투입하고 충분히 교반한 후 6 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(213 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 sub 3-1(15.3 g, 수율 72%, MS: [M+H]+ = 529.2)을 제조하였다.
다음으로 화합물 sub 3-2을 제조하였다.
Figure PCTKR2021010241-appb-img-000024
질소 분위기에서 sub 3-1(15 g, 28.6 mmol)와 비스(피나콜라토)디보론(8 g, 31.4 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(8.2 g, 85.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.5 g, 0.9 mmol) 및 트리시클로헥실포스핀(0.5 g, 1.7 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(176 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올 재결정을 통해 회색의 고체 화합물 sub 3-2(8.8g, 수율 50%, MS: [M+H]+ = 618.3)을 제조하였다.
제조예 4 : 화합물 sub 4-2의 제조
먼저 화합물 C-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000025
질소 분위기에서 A-3(20 g, 67.1 mmol)와 디벤조[b,d]퓨란-4-일보론산(14.2 g, 67.1mmol)를 테트라하이드로퓨란(400 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(27.8 g, 201.4 mmol)를 물(28 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(2.3 g, 2 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름(518 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 C-1(20.2 g, 수율 78%, MS: [M+H]+ = 387.1)을 제조하였다.
다음으로 화합물 sub 4-1을 제조하였다.
Figure PCTKR2021010241-appb-img-000026
질소 분위기에서 C-1(15 g, 38.9 mmol)와 9H-카바졸-1,3,4,5,6,8-D6(6.7 g, 38.9 mmol)를 디메틸포름아마이드(300 ml)에 넣고 교반 및 환류하였다. 이후 삼인산포타슘(24.7 g, 116.6 mmol)을 투입하고 충분히 교반한 후 3 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(209 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 sub 4-1(12.6 g, 수율 60%, MS: [M+H]+ = 540.2)을 제조하였다.
다음으로 화합물 sub 4-2을 제조하였다.
Figure PCTKR2021010241-appb-img-000027
질소 분위기에서 sub 4-1(15 g, 27.8 mmol)와 비스(피나콜라토)디보론(7.8 g, 30.6 mmol)을 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(8 g, 83.5 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.5 g, 0.8 mmol) 및 트리시클로헥실포스핀(0.5 g, 1.7 mmol)을 투입하였다. 6 시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름(176 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 흰색의 고체 화합물 sub 4-2(9.8 g, 수율 56%, MS: [M+H]+ = 632.3)을 제조하였다.
[실시예]
실시예 1 : 화합물 1의 합성
Figure PCTKR2021010241-appb-img-000028
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4,6-디페닐-1,3,5-트리아진(4.9 g, 18.5 mmol)를 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(238 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 1(7 g, 수율 59%, MS: [M+H]+ = 646.3)을 제조하였다.
실시예 2 : 화합물 2의 합성
Figure PCTKR2021010241-appb-img-000029
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-([1,1'-비페닐]-4-일)-4-클로로-6-페닐-1,3,5-트리아진(6.3 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(267 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 2(8.4 g, 수율 63%, MS: [M+H]+ = 723.3)을 제조하였다.
실시예 3 : 화합물 3의 합성
Figure PCTKR2021010241-appb-img-000030
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-([1,1'-비페닐]-3-일)-4-클로로-6-페닐-1,3,5-트리아진(6.3 g, 18.5 mmol)를 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(267 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 3(6.9 g, 수율 52%, MS: [M+H]+ = 723.3)을 제조하였다.
실시예 4 : 화합물 4의 합성
Figure PCTKR2021010241-appb-img-000031
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-(나프탈렌-2-일)-6-페닐-1,3,5-트리아진(5.9 g, 18.5 mmol)를 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(257 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 4(7.2 g, 수율 56%, MS: [M+H]+ = 697.3)을 제조하였다.
실시예 5 : 화합물 5의 합성
Figure PCTKR2021010241-appb-img-000032
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-(디벤조[b,d]퓨란-4-일)-6-페닐-1,3,5-트리아진(6.6 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(272 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 5(8.4 g, 수율 62%, MS: [M+H]+ = 737.3)을 제조하였다.
실시예 6 : 화합물 6의 합성
Figure PCTKR2021010241-appb-img-000033
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진(6.6 g, 18.5 mmol)를 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(272 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 6(9.8 g, 수율 72%, MS: [M+H]+ = 737.3)을 제조하였다.
실시예 7 : 화합물 7의 합성
Figure PCTKR2021010241-appb-img-000034
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-(디벤조[b,d]퓨란-2-일)-6-페닐-1,3,5-트리아진(6.6 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(272 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 7(10.6 g, 수율 78%, MS: [M+H]+ = 737.3)을 제조하였다.
실시예 8 : 화합물 8의 합성
Figure PCTKR2021010241-appb-img-000035
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진(6.6 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(272 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 8(7.9 g, 수율 58%, MS: [M+H]+ = 737.3)을 제조하였다.
실시예 9 : 화합물 9의 합성
Figure PCTKR2021010241-appb-img-000036
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-(디벤조[b,d]싸이오펜-4-일)-6-페닐-1,3,5-트리아진(6.9 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(278 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 9(11 g, 수율 79%, MS: [M+H]+ = 753.3)을 제조하였다.
실시예 10 : 화합물 10의 합성
Figure PCTKR2021010241-appb-img-000037
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9H-카바졸(6.6 g, 18.5 mmol)를 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(272 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 10(10.7 g, 수율 79%, MS: [M+H]+ = 736.3)을 제조하였다.
실시예 11 : 화합물 11의 합성
Figure PCTKR2021010241-appb-img-000038
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4-페닐-6-(페닐-D5)-1,3,5-트리아진(5 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0.6 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(241 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 11(9.3 g, 수율 77%, MS: [M+H]+ = 652.3)을 제조하였다.
실시예 12 : 화합물 12의 합성
Figure PCTKR2021010241-appb-img-000039
질소 분위기에서 sub 1-2(10 g, 18.5 mmol)와 2-클로로-4,6-비스(페닐-D5)-1,3,5-트리아진(5.1 g, 18.5 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.7 g, 55.4 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(243 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 12(8.5 g, 수율 70%, MS: [M+H]+ = 657.3)을 제조하였다.
실시예 13 : 화합물 13의 합성
Figure PCTKR2021010241-appb-img-000040
질소 분위기에서 sub 2-2(10 g, 18.4 mmol)와 2-클로로-4,6-디페닐-1,3,5-트리아진(4.9 g, 18.4 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.6 g, 55.2 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(239 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 13(6.8 g, 수율 57%, MS: [M+H]+ = 649.3)을 제조하였다.
실시예 14 : 화합물 14의 합성
Figure PCTKR2021010241-appb-img-000041
질소 분위기에서 sub 2-2(10 g, 18.4 mmol)와 2-([1,1'-비페닐]-3-일)-4-클로로-6-페닐-1,3,5-트리아진(6.3 g, 18.4 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(7.6 g, 55.2 mmol)를 물(8 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(267 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 14(7.1 g, 수율 53%, MS: [M+H]+ = 725.3)을 제조하였다.
실시예 15 : 화합물 15의 합성
Figure PCTKR2021010241-appb-img-000042
질소 분위기에서 sub 3-2(10 g, 16.2 mmol)와 2-클로로-4,6-디페닐-1,3,5-트리아진(4.3 g, 16.2 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(6.7 g, 48.6 mmol)를 물(7 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.5 mmol)을 투입하였다. 1 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(234 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 15(6.6 g, 수율 56%, MS: [M+H]+ = 723.3)을 제조하였다.
실시예 16 : 화합물 16의 합성
Figure PCTKR2021010241-appb-img-000043
질소 분위기에서 sub 4-2(10 g, 15.6 mmol)와 2-클로로-4,6-디페닐-1,3,5-트리아진(4.2 g, 15.6 mmol)을 테트라하이드로퓨란(200 ml)에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(6.5 g, 46.8 mmol)를 물(6 ml)에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름(230 mL)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 옅은 노랑의 고체 화합물 Compound 16(5.9 g, 수율 51%, MS: [M+H]+ = 737.3)을 제조하였다.
[실험예]
실험예 1
ITO(indium tin oxide)가 1,300Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
상기와 같이 준비된 ITO 투명 전극 위에 하기 HI-1 화합물을 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 250Å의 두께로 열 진공 증착하여 정공수송층을 형성하고, HT-1 증착막 위에 하기 HT-2 화합물을 50Å 두께로 진공 증착하여 전자저지층을 형성하였다. 상기 HT-2 증착막 위에 발광층으로서 앞서 실시예 1에서 제조한 화합물 1, 하기 YGH-1 화합물, 및 인광도펀트 YGD-1을 44:44:12의 중량비로 공증착하여 400Å 두께의 발광층을 형성하였다.
상기 발광층 위에 하기 ET-1 화합물을 250Å의 두께로 진공 증착하여 전자수송층을 형성하고, 상기 전자수송층 위에 하기 ET-2 화합물 및 Li를 98:2의 중량비로 진공 증착하여 100Å 두께의 전자주입층을 형성하였다. 상기 전자주입층 위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2021010241-appb-img-000044
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1×10-7 ~ 5×10-8 torr를 유지하였다.
<실험예 2 내지 16>
상기 실험예 1에서 실시예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
<비교 실험예 1 내지 3>
상기 실험예 1에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1의 CE1의 화합물은 하기와 같다.
Figure PCTKR2021010241-appb-img-000045
상기 실험예 및 비교실험예에서 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 전압과 효율을 측정하였고, 50 mA/cm2의 전류 밀도에서 수명을 측정하여 그 결과를 하기 표 1에 나타내었다. 이때, LT95는 초기 휘도 대비 95%가 되는 시간을 의미한다
화합물 전압(V)
(@10mA/cm2)
효율(Cd/A)
(@10mA/cm2)
색좌표
(x,y)
수명(h)
(LT95 at 50mA/cm2)
실험예 1 화합물 1 4.1 82.5 0.44, 0.54 347
실험예 2 화합물 2 4.2 83.4 0.44, 0.54 364
실험예 3 화합물 3 4.3 84.4 0.44, 0.54 397
실험예 4 화합물 4 4.0 80.5 0.44, 0.54 325
실험예 5 화합물 5 4.0 83.4 0.44, 0.54 375
실험예 6 화합물 6 4.2 81.5 0.44, 0.54 484
실험예 7 화합물 7 4.0 85.4 0.44, 0.54 289
실험예 8 화합물 8 3.9 79.6 0.44, 0.54 395
실험예 9 화합물 9 4.3 79.7 0.44, 0.54 514
실험예 10 화합물 10 4.4 79.2 0.44, 0.54 474
실험예 11 화합물 11 4.1 82.7 0.44, 0.54 386
실험예 12 화합물 12 4.1 82.5 0.44, 0.54 427
실험예 13 화합물 13 4.1 82.5 0.44, 0.54 409
실험예 14 화합물 14 4.2 85.4 0.44, 0.54 425
실험예 15 화합물 15 4.2 84.4 0.44, 0.54 459
실험예 16 화합물 16 4.3 83.4 0.44, 0.54 425
비교실험예 1 CE 1 4.0 71.0 0.44, 0.54 120
비교실험예 2 CE 2 4.1 80.8 0.44, 0.54 195
비교실험예 3 CE 3 3.9 82.5 0.44, 0.54 215
상기 표 1에서 나타난 바와 같이, 본 발명의 화합물을 발광층 물질로 사용할 경우, 비교 실험예에 비하여 효율 및 수명이 우수한 특성을 나타내는 것을 확인할 수 있었다. 이는 코어 치환기인 디벤조퓨란기에 트리아진 및 카바졸기가 치환되면서 전자안정성이 증가된 것으로 보여진다. 특히 추가적인 아릴기와 카바졸기에 한 개 이상의 중수소 치환시 수명 증가에 우수한 특성이 보인다. 이 또한 전자안정성이 증가된 것으로 보여진다.
[부호의 설명]
1: 기판 2: 양극
3: 정공수송층 4: 발광층
5: 전자주입 및 수송층 6: 음극
7: 정공주입층 8: 전자억제층
9: 정공저지층

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2021010241-appb-img-000046
    상기 화학식 1에서,
    X는 각각 독립적으로, N 또는 CH이되, 상기 X 중 2 이상은 N이고,
    Y는 O 또는 S이고,
    L1은 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    L2는 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-60 헤테로아릴이고,
    R1은 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-60 헤테로아릴이고,
    R2는 각각 독립적으로 수소, 또는 중수소이고,
    단, Ar1, Ar2 및 R1 중 적어도 하나가 하나 이상의 중수소로 치환되거나, 또는 R2 중 적어도 하나가 중수소이다.
  2. 제1항에 있어서,
    L1은 직접 결합, 페닐렌, 비페닐렌, 또는 나프틸렌인 것인,
    화합물.
  3. 제1항에 있어서,
    L2는 직접 결합 또는 페닐렌인 것인,
    화합물.
  4. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 나프틸 페닐, 페난쓰레닐, 카바졸-9-일, 9-페닐-9H-카바졸릴, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
    상기 Ar1 및 Ar2는 비치환되거나; 하나 이상의 중수소로 치환된 것인,
    화합물.
  5. 제1항에 있어서,
    R1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
    상기 R1은 비치환되거나, 하나 이상의 중수소로 치환된 것인,
    화합물.
  6. 제1항에 있어서,
    X는 모두 N인,
    화합물.
  7. 제1항에 있어서,
    Y는 O인 것인,
    화합물.
  8. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은,
    하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2021010241-appb-img-000047
    Figure PCTKR2021010241-appb-img-000048
    Figure PCTKR2021010241-appb-img-000049
    Figure PCTKR2021010241-appb-img-000050
    Figure PCTKR2021010241-appb-img-000051
    Figure PCTKR2021010241-appb-img-000052
  9. 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  10. 제9항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인,
    유기 발광 소자.
PCT/KR2021/010241 2020-08-04 2021-08-04 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2022031013A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180034264.7A CN115551852A (zh) 2020-08-04 2021-08-04 新型化合物及包含其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0097603 2020-08-04
KR20200097603 2020-08-04
KR10-2021-0101875 2021-08-03
KR1020210101875A KR102591468B1 (ko) 2020-08-04 2021-08-03 신규한 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2022031013A1 true WO2022031013A1 (ko) 2022-02-10

Family

ID=80117545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010241 WO2022031013A1 (ko) 2020-08-04 2021-08-04 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (2)

Country Link
CN (1) CN115551852A (ko)
WO (1) WO2022031013A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074706A1 (en) * 2021-04-16 2022-10-19 LG Display Co., Ltd. Deuterated heterocyclic compound, organic light emitting device including the same and composition for organic layer of organic light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20180051355A (ko) * 2016-11-07 2018-05-16 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20180108425A (ko) * 2017-03-24 2018-10-04 희성소재 (주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20190030963A (ko) * 2017-09-15 2019-03-25 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20200012798A (ko) * 2018-07-27 2020-02-05 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021125552A1 (ko) * 2019-12-20 2021-06-24 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20180051355A (ko) * 2016-11-07 2018-05-16 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20180108425A (ko) * 2017-03-24 2018-10-04 희성소재 (주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20190030963A (ko) * 2017-09-15 2019-03-25 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20200012798A (ko) * 2018-07-27 2020-02-05 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021125552A1 (ko) * 2019-12-20 2021-06-24 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074706A1 (en) * 2021-04-16 2022-10-19 LG Display Co., Ltd. Deuterated heterocyclic compound, organic light emitting device including the same and composition for organic layer of organic light emitting device

Also Published As

Publication number Publication date
CN115551852A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021080253A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031028A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022235101A1 (ko) 유기 발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022060047A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021040467A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2021149954A1 (ko) 유기 발광 소자
WO2021033980A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231021A1 (ko) 유기 발광 소자
WO2020246835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020185054A9 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020149656A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020111886A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020009442A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023055177A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2022231164A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852455

Country of ref document: EP

Kind code of ref document: A1