WO2022030932A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2022030932A1
WO2022030932A1 PCT/KR2021/010111 KR2021010111W WO2022030932A1 WO 2022030932 A1 WO2022030932 A1 WO 2022030932A1 KR 2021010111 W KR2021010111 W KR 2021010111W WO 2022030932 A1 WO2022030932 A1 WO 2022030932A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
island
pattern
insulator substrate
sensing
Prior art date
Application number
PCT/KR2021/010111
Other languages
French (fr)
Korean (ko)
Inventor
유도준
정종진
김용
Original Assignee
주식회사 센텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 센텍코리아 filed Critical 주식회사 센텍코리아
Publication of WO2022030932A1 publication Critical patent/WO2022030932A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Definitions

  • the present invention relates to a gas sensor. More particularly, it relates to a gas sensor that does not require wire bonding during packaging.
  • a gas sensor is for detecting a combustible gas or a toxic gas, and includes a catalytic combustion gas sensor, a semiconductor gas sensor, an electrochemical gas sensor, an optical gas sensor, and the like.
  • Catalytic combustion gas sensors are for detecting combustible gases.
  • the catalytic combustion gas sensor detects the combustible gas by using a change in resistance of a platinum coil or a platinum pattern due to reaction heat generated when a combustible gas such as hydrogen is burned in a catalyst layer.
  • Catalytic combustion gas sensors can be manufactured in a variety of ways.
  • a bead-type catalytic combustion gas sensor can be manufactured by covering a platinum coil with an alumina carrier and forming a catalyst layer on the surface.
  • the thick film type catalytic combustion gas sensor can be manufactured by forming a heater pattern on a ceramic substrate and then forming a catalyst layer on the heater pattern.
  • the MEMS-type catalytic combustion gas sensor can be manufactured by forming a ceramic layer on a silicon substrate using a semiconductor process, forming a zigzag-type platinum pattern thereon, and then forming a catalyst layer on the platinum pattern.
  • catalytic combustion gas sensor for detecting a hydrogen gas leak in a hydrogen electric vehicle.
  • An essential requirement for a catalytic combustion gas sensor used in a hydrogen electric vehicle is that it should be able to detect a hydrogen gas leak within about two seconds after the hydrogen electric vehicle is started.
  • the above-described bead type or thick film type catalytic combustion gas sensor has a problem in that it is difficult to detect hydrogen gas leakage in an early time because it takes a long time to heat the catalyst layer.
  • the MEMS type catalytic combustion gas sensor has a problem in that the manufacturing process is complicated.
  • the conventional thick film type catalytic combustion gas sensor has a problem in that durability is weak because it is supported by a wire.
  • terminals formed on a ceramic substrate coated with a catalyst layer and a stem pin of a package are electrically connected through wire bonding. And the ceramic substrate floats in a state supported only by the wire.
  • Such a wire bonding type gas sensor has a problem in that the contact point of the wire may be dropped or the wire itself may be broken due to an external impact, so that the durability is weak. In particular, it becomes more problematic when used in a vehicle that continuously generates vibrations. In addition, since it is difficult to automate the wire bonding operation and the process is performed manually, there is a problem in that the operation efficiency is lowered and the defect rate is high.
  • the semiconductor-type gas sensor using the change in electrical conductivity that occurs when the gas is in contact with the surface has a problem in that durability is weak, like the above-described thick film type catalytic combustion gas sensor, when wire bonding is used.
  • the present invention is to solve the above problems, and to provide a gas sensor of a new structure that has a faster gas response speed than a conventional gas sensor, can be mass-produced through automation, has a low defect rate, and has improved durability.
  • the purpose is to solve the above problems, and to provide a gas sensor of a new structure that has a faster gas response speed than a conventional gas sensor, can be mass-produced through automation, has a low defect rate, and has improved durability.
  • the present invention includes a sensing unit, wherein the sensing unit is an insulator in which an opening is formed to form an island, a support surrounding the island, and a pair of legs connecting the island and the support. a substrate; a heater pattern formed on one surface of the island; an electrode pattern connected to the heater pattern and extending through the leg portion; It provides a gas sensor including a sensing layer formed on at least one of one surface or the opposite surface on which the heater pattern of the island is formed.
  • the pair of leg portions provides a gas sensor having a curved shape convexly bent toward different directions.
  • the pair of leg portions provides a gas sensor in the form of being bent at right angles toward different directions.
  • the connecting portion of the leg portion and the island portion provides a gas sensor that gradually decreases in width while proceeding toward the leg portion.
  • the island portion is in the form of a rhombus, and the leg portion provides a gas sensor connected to the vertex of the island portion.
  • the gas sensor further includes a conductive pin inserted into the through hole, and the electrode pattern is electrically connected to the conductive pin.
  • the gas sensor further includes a conductive pin, wherein the insulator substrate is disposed on the conductive pin, and the electrode pattern is electrically connected to the conductive pin.
  • the insulator substrate is a zirconia or yttria-stabilized zirconia substrate.
  • a gas sensor that further includes a sensing pattern formed on a surface opposite to the surface on which the heater pattern of the island is formed, wherein the sensing layer is formed on the surface on which the sensing pattern is formed.
  • the gas sensor is a catalytic combustion gas sensor further comprising a compensating unit, wherein the compensating unit includes an insulator substrate, a heater pattern, and an insulator substrate having the same shape as that of the sensing unit, a heater pattern, and an electrode pattern, A gas sensor in which a sensing layer is not formed is provided on the island portion of the compensator.
  • a gas sensor in which the insulator substrate of the sensing unit and the insulator substrate of the compensating unit are integrally formed.
  • a gas sensor further comprising an insulating layer formed between the insulator substrate and the heater pattern of the island portion.
  • the insulating layer provides a gas sensor that is a glass layer.
  • the island part on which the heater pattern and the sensing layer are formed is connected to the support part by a thin leg part, and the remaining part of the island part is separated from the support part by the opening part, the island part and detection by heat of the heater pattern The layer heats up quickly. Therefore, there is an advantage in that the response speed is faster than that of the conventional gas sensor.
  • the island part, the support part, and the leg part are formed at once as a method of forming an opening in the insulator substrate, the process is simple and automation is easy.
  • FIG. 1 is a perspective view of a gas sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the gas sensor shown in FIG. 1 .
  • FIG. 3 is a circuit diagram for explaining a measuring method of the catalytic combustion gas sensor shown in FIG. 1 .
  • FIG. 4 is a perspective view of a gas sensor according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the embodiment shown in FIG.
  • 6 and 7 are plan views of still other embodiments of the present invention.
  • FIG. 8 is a plan view of a gas sensor according to another embodiment of the present invention.
  • the gas sensor 100 is a catalytic combustion gas sensor and largely includes a sensing unit 10 and a compensating unit 30 .
  • the sensing unit 10 includes an insulator substrate 11 , a heater pattern 20 , a sensing layer (catalyst layer) 22 , an electrode pattern 24 , and conductive pins 26 .
  • Various ceramic substrates such as an alumina substrate and a zirconia substrate may be used as the insulator substrate 11 .
  • a zirconia or yttria stabilized zirconia substrate having a relatively low thermal conductivity may be used. This is because if the thermal conductivity of the insulator substrate 11 is too high, heat is transferred to the vicinity of the sensing layer 22 and it takes a long time to heat the sensing layer 22 to a desired temperature.
  • a pair of openings 12 are formed in the insulator substrate 11 .
  • the island portion 13 in the insulator substrate 11 By removing a portion of the insulator substrate 11 to form a pair of openings 12 , the island portion 13 in the insulator substrate 11 , the support portion 14 surrounding the island portion 13 , and the island portion 13 . and a pair of leg portions 15 connecting the support portion 14 may be formed.
  • the opening 12 may be formed by a method such as laser processing or punching processing.
  • the opening 12 is preferably formed large enough so that water generated in an oxidation process such as hydrogen gas can escape.
  • an oxidation process such as hydrogen gas
  • the islands 13 are generally rectangular in shape, and the support 14 is generally in the shape of a rectangular frame surrounding the islands 13 .
  • the leg portion 15 extends from two opposite sides of the island portion 13 to the inner surface of the support portion 14 .
  • the leg portion 15 is formed to be thin and long in order to improve the heating efficiency of the island portion 13 by the heater pattern 20 .
  • the connecting portion 16 of the leg portion 15 and the island portion 13 is designed to gradually decrease in width while proceeding toward the leg portion 15 . This is because cracks may occur in the connection portion 16 of the island 13 and the leg 15 due to thermal shock caused by the temperature difference between the island 13 and the leg 15 .
  • a through hole 25 is formed in an outer portion of the insulator substrate 11 .
  • the heater pattern 20 is formed on one surface (the upper surface in FIGS. 1 and 2 ) of the island part 13 .
  • the heater pattern 20 may be made of platinum.
  • the heater pattern 20 may be formed by printing a paste in which conductive particles such as platinum, a binder, and a solvent are mixed on one surface of the island portion 13 by a screen printing method and then heat-treating the paste.
  • the heater pattern 20 serves to heat the island 13 . In addition, it also serves to sense the temperature change of the island (13). The resistance of the heater pattern 20 is changed according to the temperature. In the case of a platinum pattern, the resistance increases as the temperature increases.
  • the sensing layer 22 is formed on at least one of one surface or the opposite surface of the island portion 13 on which the heater pattern 20 is formed.
  • the combustible gas reacts with oxygen on the surface of the heated sensing layer 22 to generate heat of reaction. 1 and 2 , it is shown that the sensing layer 22 is formed to cover the heater pattern 20 on the surface on which the heater pattern 20 is formed.
  • the sensing layer 22 is formed on both sides of the island 13 , there is an advantage in that the sensitivity increases because the heat of reaction between oxygen and the combustible gas is generated on both sides of the island 13 .
  • the sensing layer 22 may be formed by applying a paste to which alumina and platinum or palladium are added by a screen printing method and then heat-treating the paste.
  • the electrode pattern 24 is electrically connected to the heater pattern 20 .
  • the electrode pattern 24 extends through the leg portion 15 to the through hole 25 formed in the insulator substrate 11 .
  • the electrode pattern 24 may be formed by printing the electrode paste by a sprint printing method and then performing heat treatment.
  • the gas sensor 100 includes conductive pins 26 inserted into the through-holes 25 of the insulator substrate 11 .
  • the electrode pattern 24 extending to the through hole 25 is electrically connected to the conductive pins 26 .
  • the compensating unit 30 has the same structure as the sensing unit 10 except for the sensing layer.
  • the compensator 30 includes an insulator substrate 31 , a heater pattern 40 , an electrode pattern 44 , and a conductive pin 46 , like the sensing unit 10 .
  • a pair of openings 32 are formed in the insulator substrate 31 , and by forming the pair of openings 32 , the island portion 33 , the support portion 34 surrounding the island portion 33 , and the island portion 33 . ) and a pair of leg portions 35 connecting the support portion 34 are formed.
  • FIG. 3 is a circuit diagram for explaining a measuring method of the catalytic combustion gas sensor shown in FIG. 1 .
  • each of the heater patterns 20 and 40 of the sensing unit 10 and the compensating unit 30 serves as two resistors among the four resistors of the Wheatstone bridge.
  • the resistance of the heater pattern 20 of the sensing unit 10 increases due to the reaction heat in the sensing layer 22, the equilibrium is broken and the output voltage between points A-B is detected. Combustible gas can be detected using this output voltage.
  • FIG. 4 is a perspective view of a gas sensor according to another embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the embodiment shown in FIG. 4 .
  • the sensing unit 110 and the compensating unit 130 are formed using a single insulator substrate 111 , and the heater pattern 120 and the sensing layer ( It is different from the embodiment shown in FIG. 1 in that the 122 is formed on different surfaces of the island 113 of the insulator substrate 111 .
  • the insulator substrate 111 has a pair of island portions 113 and 133, a support portion 114 surrounding the pair of island portions 113 and 133, a pair of island portions 113 and 133, and a support portion. Openings 112 and 132 are formed so that two pairs of leg portions 115 and 135 connecting the 114, respectively, are formed.
  • the glass layers 121 and 141 which are insulating layers, are formed between the island portions 113 and 133 of the insulator substrate 111 and the heater patterns 120 and 140 according to the embodiment shown in FIG. is different from
  • the glass layers 121 and 141 may be formed using a screen printing method or a deposition method.
  • the glass layers 121 and 141 serve to improve adhesion between the insulator substrate 111 and the heater patterns 120 and 140 . In addition, it also serves to improve the problem of poor insulation of the insulator substrate 111 at a high temperature.
  • both the sensing unit 110 and the compensating unit 130 can be formed using a single insulator substrate 111 , the volume is small and the heater pattern of the sensing unit 110 and the compensating unit 130 is small.
  • the process is simple, such as forming the electrodes 120 and 140 at once and forming the electrode patterns 124 and 144 at once.
  • the embodiment shown in FIGS. 1 and 2 has an advantage in that the reaction heat generated in the sensing unit 10 is not transferred to the compensating unit 30 through the insulator substrate 11 .
  • 6 and 7 are plan views of still other embodiments of the present invention.
  • the embodiment shown in FIG. 6 is different from the embodiment shown in FIGS. 1 and 2 in that the pair of leg parts 215 of the insulator substrate 211 are gently curved in a curved shape.
  • the leg portions 215 are convexly bent in different directions. That is, in FIG. 6 , the upper leg 215 is convexly curved to the left, and the lower leg 215 is convexly curved to the right.
  • the pair of leg portions 215 are symmetrical with respect to a 180 degree rotation with respect to the center of the island portion 213 .
  • the island portion 213 has a substantially square shape
  • the support portion 214 has a square frame shape.
  • the present embodiment is different from the embodiment shown in FIGS. 1 and 2 in that the insulator substrates 211 and 231 are disposed directly on the heads of the conductive pins (stem pins) 226 and 246 .
  • the heater pattern, the electrode pattern, and the sensing layer are formed on the lower surface of the insulator substrates 211 and 231 , and the electrode pattern may be connected to the heads of the conductive pins 226 and 246 through conductive paste or solder.
  • the embodiment shown in FIG. 7 is different from the embodiment shown in FIG. 6 in that the pair of leg parts 315 of the insulator substrate 311 are bent at right angles.
  • the pair of leg portions 315 are bent in different directions. That is, in FIG. 7 , the upper leg part 315 is curved to the left, and the lower leg part 315 is curved to the right.
  • the pair of leg portions 315 are symmetrical with respect to a 180 degree rotation with respect to the center of the island portion 313 .
  • the embodiments shown in FIGS. 6 and 7 have an advantage in that the leg portion is not damaged even at a high temperature of about 700° C. due to strong thermal durability. That is, in the embodiment shown in FIGS. 1 and 2 , all of the compressive stress due to thermal expansion of the leg part 15 at high temperature acts as a normal stress to the leg part 15 , but in the embodiment shown in FIGS. 6 and 7 . Since some of them act as shear stress, the thermal durability of the legs 215 and 315 is improved. In the embodiment shown in Figures 1 and 2, the leg portion 15 is damaged at about 500 °C.
  • FIG. 8 is a plan view of another embodiment of the present invention.
  • the embodiment shown in FIG. 8 is a semiconductor type gas sensor 500 .
  • the semiconductor gas sensor 500 shown in FIG. 8 does not have a compensating part, and the resistance of the sensing layer 422 is on the opposite surface (top surface in FIG. 8 ) of the island part 413 on which the heater pattern (not shown) is formed. It is different from the catalytic combustion gas sensor shown in FIGS. 1 and 2 in that a sensing pattern 423 for measuring a change is formed, and a sensing layer 422 is formed on the sensing pattern 423 .
  • the embodiment shown in FIG. 8 includes an insulator substrate 411 , a heater pattern (not shown), a sensing pattern 423 , a sensing layer 422 , an electrode pattern 424 , and a conductive pin 426 .
  • a ceramic substrate may be used as the insulator substrate 411 .
  • a zirconia or yttria stabilized zirconia substrate having a relatively low thermal conductivity may be used.
  • a pair of openings 412 are formed in the insulator substrate 411 .
  • the island portion 413 in the insulator substrate 411 By removing a portion of the insulator substrate 411 to form a pair of openings 412 , the island portion 413 in the insulator substrate 411 , the support portion 414 surrounding the island portion 413 , and the island portion 413 .
  • a pair of leg portions 415 connecting the and the support portion 414 may be formed.
  • the island 413 is generally square in shape, and the support 414 is generally in the shape of a square frame surrounding the island 413 .
  • the leg portion 415 extends from two opposite surfaces of the island portion 413 to the inner surface of the support portion 414 .
  • a heater pattern (not shown) is formed on one surface (lower surface in FIG. 8 ) of the island portion 413 .
  • the heater pattern may be made of platinum.
  • the heater pattern may be formed by printing a paste in which conductive particles such as platinum, a binder, and a solvent are mixed on one surface of the island portion 413 by a screen printing method and then heat-treating the paste. The heater pattern serves to heat the island portion 413 .
  • a glass layer may be formed between the heater pattern and the island portion 413 .
  • the glass layer may be formed using a screen printing method or a vapor deposition method.
  • the glass layer serves to improve adhesion between the insulator substrate 411 and the heater pattern.
  • the insulating property of the insulator substrate 411 is deteriorated at a high temperature, and thus the heater pattern and the sensing pattern 423 may be prevented from being short-circuited.
  • the sensing pattern 423 is formed on the opposite surface (upper surface in FIG. 8 ) of the island portion 413 on which the heater pattern is formed.
  • the sensing pattern 423 may be made of platinum.
  • the sensing pattern 423 may be formed by printing a paste in which conductive particles such as platinum, a binder, and a solvent are mixed on one surface of the island 413 by a screen printing method and then heat-treating the paste.
  • the sensing layer 422 is formed to cover the sensing pattern 423 on the surface of the island 413 on which the sensing pattern 423 is formed.
  • the sensing layer 422 includes a sensing material, such as SnO 2 and In 2 O 3 , whose electrical conductivity changes when in contact with a gas.
  • the sensing layer 422 may be formed by applying a paste to which a sensing material is added by a screen printing method and then performing heat treatment.
  • the electrode pattern 424 is electrically connected to the heater pattern and the sensing pattern 423 , respectively.
  • the electrode pattern 424 extends to the edge of the insulator substrate 411 through the leg portion 415 .
  • the electrode pattern 424 may be formed by printing an electrode paste by a sprint printing method and then performing heat treatment.
  • the electrode pattern 424 is electrically connected to the conductive pins 426 through a conductive face 425 or solder.
  • leg part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention relates to a gas sensor. The present invention provides a gas sensor comprising: an insulator substrate having a sensing portion, the sensing portion having an island portion, a support portion surrounding the island portion, and an opening formed such that a pair of leg portions are formed so as to connect the island portion and the support portion; a heater pattern formed on a surface of the island portion; an electrode pattern connected to the heater pattern and configured to extend through the leg portions; and a sensing layer formed on at least one of the surface of the island portion, on which the heater pattern is formed, and the opposite surface thereof. In connection with the gas sensor according to the present invention, the island portion on which the heater pattern and the sensing layer are formed is connected to the support portion by the thin leg portions, the remaining portion of the island portion is separated from the support portion by the opening, and the island portion and the sensing portion are accordingly heated quickly by heating of the heater pattern. Therefore, same has the advantage of a higher response rate than conventional gas sensors.

Description

가스 센서gas sensor
본 발명은 가스 센서에 관한 것이다. 더욱 상세하게는 패키징시에 와이어 본딩이 필요없는 가스 센서에 관한 것이다.The present invention relates to a gas sensor. More particularly, it relates to a gas sensor that does not require wire bonding during packaging.
가스 센서는 가연성 가스나 유독 가스 등을 감지하기 위한 것으로서, 접촉 연소식 가스 센서, 반도체식 가스 센서, 전기 화학식 가스 센서, 광학식 가스 센서 등이 있다.A gas sensor is for detecting a combustible gas or a toxic gas, and includes a catalytic combustion gas sensor, a semiconductor gas sensor, an electrochemical gas sensor, an optical gas sensor, and the like.
접촉 연소식 가스 센서는 가연성 가스를 감지하기 위한 것이다. 접촉 연소식 가스 센서는 촉매 층에서 수소와 같은 가연성 가스가 연소하면서 생기는 반응열에 의한 백금 코일이나 백금 패턴의 저항 변화를 이용하여 가연성 가스를 감지한다.Catalytic combustion gas sensors are for detecting combustible gases. The catalytic combustion gas sensor detects the combustible gas by using a change in resistance of a platinum coil or a platinum pattern due to reaction heat generated when a combustible gas such as hydrogen is burned in a catalyst layer.
접촉 연소식 가스 센서는 다양한 방법으로 제조할 수 있다. 예를 들어, 비드형 접촉 연소식 가스 센서는 백금 코일을 알루미나 담체로 덮고 그 표면에 촉매 층을 형성하는 방법으로 제조할 수 있다. 후막형 접촉 연소식 가스 센서는 세라믹 기판에 히터 패턴을 형성한 후 히터 패턴 위에 촉매 층을 형성하는 방법으로 제조할 수 있다.Catalytic combustion gas sensors can be manufactured in a variety of ways. For example, a bead-type catalytic combustion gas sensor can be manufactured by covering a platinum coil with an alumina carrier and forming a catalyst layer on the surface. The thick film type catalytic combustion gas sensor can be manufactured by forming a heater pattern on a ceramic substrate and then forming a catalyst layer on the heater pattern.
또한, MEMS형 접촉 연소식 가스 센서는 반도체 공정을 이용하여 실리콘 기판 위에 세라믹 층을 형성하고, 그 위에 지그재그 형 백금 패턴을 형성한 후 백금 패턴 위에 촉매 층을 형성하는 방법으로 제조할 수 있다.In addition, the MEMS-type catalytic combustion gas sensor can be manufactured by forming a ceramic layer on a silicon substrate using a semiconductor process, forming a zigzag-type platinum pattern thereon, and then forming a catalyst layer on the platinum pattern.
이러한 접촉 연소식 가스 센서의 작용을 간단히 설명하면 다음과 같다. 백금 코일이나 패턴에 전류를 흘려, 촉매 층을 200~300℃로 가열하면, 촉매 층의 표면에서 가연성 가스와 산소가 반응하면서 반응열이 생긴다. 그리고 이 반응열에 의해서 백금 코일이나 패턴의 온도가 상승한다. 백금은 온도가 상승하면, 전기 저항이 증가하기 때문에 백금 코일이나 패턴의 전기 저항의 변화를 통해서 가연성 가스를 감지할 수 있다.A brief description of the operation of such a catalytic combustion gas sensor is as follows. When an electric current is passed through a platinum coil or pattern to heat the catalyst layer to 200 to 300°C, heat of reaction is generated while combustible gas and oxygen react on the surface of the catalyst layer. And the temperature of a platinum coil and a pattern rises by this reaction heat. Since platinum increases its electrical resistance when the temperature rises, it is possible to detect a flammable gas through a change in the electrical resistance of a platinum coil or pattern.
최근에는 수소 전기차에서의 수소 가스 누출을 감지하기 위한 접촉 연소식 가스 센서가 요구되고 있다. 수소 전기차에 사용되는 접촉 연소식 가스 센서의 필수 요건은 수소 전기차의 시동이 걸린 후 약 2초 이내로 수소 가스 누출 여부를 감지할 수 있어야 한다는 것이다.Recently, there is a demand for a catalytic combustion gas sensor for detecting a hydrogen gas leak in a hydrogen electric vehicle. An essential requirement for a catalytic combustion gas sensor used in a hydrogen electric vehicle is that it should be able to detect a hydrogen gas leak within about two seconds after the hydrogen electric vehicle is started.
그런데 상술한 비드형이나 후막형 접촉 연소식 가스 센서는 촉매 층을 가열하는데 시간이 오래 걸리기 때문에 수소 가스 누출 여부를 이른 시간에 감지하기 어렵다는 문제가 있었다. 그리고 MEMS형 접촉 연소식 가스 센서는 제조공정이 복잡하다는 문제가 있었다.However, the above-described bead type or thick film type catalytic combustion gas sensor has a problem in that it is difficult to detect hydrogen gas leakage in an early time because it takes a long time to heat the catalyst layer. In addition, the MEMS type catalytic combustion gas sensor has a problem in that the manufacturing process is complicated.
또한, 종래의 후막형 접촉 연소식 가스 센서는 와이어에 의해서 지탱되기 때문에 내구성이 약하다는 문제도 있었다. 종래의 후막형 접촉 연소식 가스 센서는 촉매 층이 도포된 세라믹 기판에 형성된 단자들과 패키지의 스템핀이 와이어 본딩을 통해서 전기적으로 연결된다. 그리고 세라믹 기판은 와이어에 의해서만 지탱된 상태로 떠 있게 된다.In addition, the conventional thick film type catalytic combustion gas sensor has a problem in that durability is weak because it is supported by a wire. In the conventional thick film type catalytic combustion gas sensor, terminals formed on a ceramic substrate coated with a catalyst layer and a stem pin of a package are electrically connected through wire bonding. And the ceramic substrate floats in a state supported only by the wire.
이와 같은 와이어 본딩 방식의 가스 센서는 외부의 충격에 의해 와이어의 접점이 떨어지거나 와이어 자체가 끊어질 수 있어서, 내구성이 약하다는 문제가 있었다. 특히, 계속적으로 진동이 발생하는 차량에 사용될 경우에는 더욱 문제가 된다. 또한, 와이어 본딩 작업의 자동화가 곤란하여 수작업에 의해 공정이 진행되므로, 작업 효율이 떨어지며 불량률이 높다는 문제도 있다.Such a wire bonding type gas sensor has a problem in that the contact point of the wire may be dropped or the wire itself may be broken due to an external impact, so that the durability is weak. In particular, it becomes more problematic when used in a vehicle that continuously generates vibrations. In addition, since it is difficult to automate the wire bonding operation and the process is performed manually, there is a problem in that the operation efficiency is lowered and the defect rate is high.
또한, 표면에 가스가 접촉하였을 때 일어나는 전기전도도 변화를 이용하는 반도체식 가스 센서도 와이어 본딩을 사용하는 경우에는 상술한 후막형 접촉 연소식 가스 센서와 마찬가지로 내구성이 약하다는 문제점이 있다.In addition, the semiconductor-type gas sensor using the change in electrical conductivity that occurs when the gas is in contact with the surface has a problem in that durability is weak, like the above-described thick film type catalytic combustion gas sensor, when wire bonding is used.
[선행기술문헌][Prior art literature]
등록특허 10-1828549Registered Patent 10-1828549
등록특허 10-0929025Registered Patent 10-0929025
등록특허 10-0799810Registered Patent 10-0799810
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 종래의 가스 센서에 비해서 가스 응답 속도가 빠르며, 자동화를 통한 대량 생산이 가능하며, 불량률이 낮으며, 내구성이 향상된 새로운 구조의 가스 센서를 제공하는 것을 목적으로 한다.The present invention is to solve the above problems, and to provide a gas sensor of a new structure that has a faster gas response speed than a conventional gas sensor, can be mass-produced through automation, has a low defect rate, and has improved durability. The purpose.
상술한 목적을 달성하기 위해서, 본 발명은 감지부를 구비하며, 상기 감지부는, 섬부와, 상기 섬부를 둘러싸는 지지부와, 상기 섬부와 상기 지지부를 연결하는 한 쌍의 다리부가 형성되도록 개구부가 형성된 절연체 기판과; 상기 섬부의 일면에 형성되는 히터 패턴과; 상기 히터 패턴과 연결되며, 상기 다리부를 통해서 연장되는 전극 패턴과; 상기 섬부의 히터 패턴이 형성된 일면 또는 반대면 중 적어도 하나에 형성되는 감지 층을 포함하는 가스 센서를 제공한다.In order to achieve the above object, the present invention includes a sensing unit, wherein the sensing unit is an insulator in which an opening is formed to form an island, a support surrounding the island, and a pair of legs connecting the island and the support. a substrate; a heater pattern formed on one surface of the island; an electrode pattern connected to the heater pattern and extending through the leg portion; It provides a gas sensor including a sensing layer formed on at least one of one surface or the opposite surface on which the heater pattern of the island is formed.
또한, 상기 한 쌍의 다리부는 서로 다른 방향을 향해 볼록하게 굽은 곡선 형태인 가스 센서를 제공한다.In addition, the pair of leg portions provides a gas sensor having a curved shape convexly bent toward different directions.
또한, 상기 한 쌍의 다리부는 서로 다른 방향을 향해 직각으로 굽어 있는 형태인 가스 센서를 제공한다.In addition, the pair of leg portions provides a gas sensor in the form of being bent at right angles toward different directions.
또한, 상기 다리부와 상기 섬부의 연결부위는 상기 다리부 측으로 진행하면서 완만하게 폭이 줄어드는 가스 센서를 제공한다.In addition, the connecting portion of the leg portion and the island portion provides a gas sensor that gradually decreases in width while proceeding toward the leg portion.
또한, 상기 섬부는 마름모 형태이며, 상기 다리부는 상기 섬부의 꼭지점과 연결되는 가스 센서를 제공한다.In addition, the island portion is in the form of a rhombus, and the leg portion provides a gas sensor connected to the vertex of the island portion.
또한, 상기 절연체 기판에는 관통홀이 형성되며, 상기 관통홀에 삽입되는 전도성 핀을 더 포함하며, 상기 전극 패턴은 상기 전도성 핀과 전기적으로 연결되는 가스 센서를 제공한다.In addition, a through hole is formed in the insulator substrate, the gas sensor further includes a conductive pin inserted into the through hole, and the electrode pattern is electrically connected to the conductive pin.
또한, 전도성 핀을 더 포함하며, 상기 절연체 기판은 전도성 핀 위에 배치되며, 상기 전극 패턴은 상기 전도성 핀과 전기적으로 연결되는 가스 센서를 제공한다.The gas sensor further includes a conductive pin, wherein the insulator substrate is disposed on the conductive pin, and the electrode pattern is electrically connected to the conductive pin.
또한, 상기 절연체 기판은 지르코니아 또는 이트리아 안정화 지르코니아 기판인 가스 센서를 제공한다.In addition, there is provided a gas sensor in which the insulator substrate is a zirconia or yttria-stabilized zirconia substrate.
또한, 상기 섬부의 히터 패턴이 형성된 면의 반대 면에 형성된 감지 패턴을 더 포함하며, 상기 감지 층은 상기 감지 패턴이 형성된 면에 형성되는 가스 센서를 제공한다.In addition, there is provided a gas sensor that further includes a sensing pattern formed on a surface opposite to the surface on which the heater pattern of the island is formed, wherein the sensing layer is formed on the surface on which the sensing pattern is formed.
또한, 상기 가스 센서는 보상부를 더 포함하는 접촉 연소식 가스 센서로서, 상기 보상부는, 상기 감지부의 절연체 기판, 히터 패턴 및 전극 패턴과 동일한 형태의 절연체 기판, 히터 패턴 및 전극 패턴을 포함하며, 상기 보상부의 섬부에는 감지 층이 형성되지 않는 가스 센서를 제공한다.In addition, the gas sensor is a catalytic combustion gas sensor further comprising a compensating unit, wherein the compensating unit includes an insulator substrate, a heater pattern, and an insulator substrate having the same shape as that of the sensing unit, a heater pattern, and an electrode pattern, A gas sensor in which a sensing layer is not formed is provided on the island portion of the compensator.
또한, 상기 감지부의 절연체 기판과 상기 보상부의 절연체 기판은 일체로 이루어진 가스 센서를 제공한다.In addition, there is provided a gas sensor in which the insulator substrate of the sensing unit and the insulator substrate of the compensating unit are integrally formed.
또한, 상기 섬부의 절연체 기판과 상기 히터 패턴 사이에 형성된 절연층을 더 포함하는 가스 센서를 제공한다.In addition, there is provided a gas sensor further comprising an insulating layer formed between the insulator substrate and the heater pattern of the island portion.
또한, 상기 절연층은 글라스 층인 가스 센서를 제공한다.In addition, the insulating layer provides a gas sensor that is a glass layer.
본 발명에 따른 가스 센서는 히터 패턴과 감지 층이 형성되는 섬부가 얇은 다리부에 의해서 지지부와 연결되며, 섬부의 나머지 부분은 개구부에 의해서 지지부와 분리되어 있기 때문에 히터 패턴의 발열에 의해서 섬부 및 감지 층이 빠르게 가열된다. 따라서 종래의 가스 센서에 비해서 응답 속도가 빠르다는 장점이 있다.In the gas sensor according to the present invention, since the island part on which the heater pattern and the sensing layer are formed is connected to the support part by a thin leg part, and the remaining part of the island part is separated from the support part by the opening part, the island part and detection by heat of the heater pattern The layer heats up quickly. Therefore, there is an advantage in that the response speed is faster than that of the conventional gas sensor.
또한, 감지 층에서 발생할 수 있는 수분이 개구부를 통해서 쉽게 제거된다는 장점도 있다.In addition, there is an advantage that moisture that may be generated in the sensing layer is easily removed through the opening.
또한, 절연체 기판에 개구부를 형성하는 방법으로 섬부, 지지부, 다리부를 한 번에 형성하기 때문에 공정이 간단하고, 자동화가 용이하다는 장점이 있다.In addition, since the island part, the support part, and the leg part are formed at once as a method of forming an opening in the insulator substrate, the process is simple and automation is easy.
또한, 와이어 본딩 작업이 필요하지 않아서 자동화가 용이하고, 불량률이 낮으며, 내구성이 뛰어나다는 장점이 있다.In addition, since no wire bonding operation is required, there are advantages of easy automation, a low defect rate, and excellent durability.
도 1은 본 발명의 일실시예에 따른 가스 센서의 사시도이다.1 is a perspective view of a gas sensor according to an embodiment of the present invention.
도 2는 도 1에 도시된 가스 센서의 단면도이다.FIG. 2 is a cross-sectional view of the gas sensor shown in FIG. 1 .
도 3은 도 1에 도시된 접촉 연소식 가스 센서의 측정방법을 설명하기 위한 회로도이다.FIG. 3 is a circuit diagram for explaining a measuring method of the catalytic combustion gas sensor shown in FIG. 1 .
도 4는 본 발명의 다른 실시예에 따른 가스 센서의 사시도이다.4 is a perspective view of a gas sensor according to another embodiment of the present invention.
도 5는 도 4에 도시된 실시예의 단면도이다.5 is a cross-sectional view of the embodiment shown in FIG.
도 6과 7은 본 발명의 또 다른 실시예들의 평면도들이다. 6 and 7 are plan views of still other embodiments of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 가스 센서의 평면도이다.8 is a plan view of a gas sensor according to another embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면들에 의거하여 상세하게 설명한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, an embodiment of the present invention will be described in detail based on the accompanying drawings. The embodiments introduced below are provided as examples so that the spirit of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. And in the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like reference numerals refer to like elements throughout.
도 1은 본 발명의 일실시예에 따른 가스 센서의 사시도이며, 도 2는 도 1에 도시된 가스 센서의 단면도이다. 도 1과 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 가스 센서(100)는 접촉 연소식 가스센서로서 크게 감지부(10)와, 보상부(30)를 포함한다. 감지부(10)는 절연체 기판(11)과, 히터 패턴(20)과, 감지 층(촉매 층)(22)과, 전극 패턴(24)과, 전도성 핀(26)을 포함한다.1 is a perspective view of a gas sensor according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the gas sensor shown in FIG. 1 . 1 and 2 , the gas sensor 100 according to an embodiment of the present invention is a catalytic combustion gas sensor and largely includes a sensing unit 10 and a compensating unit 30 . The sensing unit 10 includes an insulator substrate 11 , a heater pattern 20 , a sensing layer (catalyst layer) 22 , an electrode pattern 24 , and conductive pins 26 .
절연체 기판(11)으로는 알루미나 기판, 지르코니아 기판 등 다양한 세라믹 기판이 사용될 수 있다. 바람직하게는, 열전도도가 비교적 낮은 지르코니아 또는 이트리아 안정화 지르코니아 기판이 사용될 수 있다. 절연체 기판(11)의 열전도도가 너무 높으면, 감지 층(22) 주변으로 열이 전달되어, 감지 층(22)을 원하는 온도까지 가열하는데 시간이 오래 걸리기 때문이다.Various ceramic substrates such as an alumina substrate and a zirconia substrate may be used as the insulator substrate 11 . Preferably, a zirconia or yttria stabilized zirconia substrate having a relatively low thermal conductivity may be used. This is because if the thermal conductivity of the insulator substrate 11 is too high, heat is transferred to the vicinity of the sensing layer 22 and it takes a long time to heat the sensing layer 22 to a desired temperature.
절연체 기판(11)에는 한 쌍의 개구부(12)가 형성된다. 절연체 기판(11)의 일부분을 제거하여 한 쌍의 개구부(12)를 형성함으로써, 절연체 기판(11)에 섬부(13)와, 섬부(13)를 둘러싸는 지지부(14)와, 섬부(13)와 지지부(14)를 연결하는 한 쌍의 다리부(15)를 형성할 수 있다.A pair of openings 12 are formed in the insulator substrate 11 . By removing a portion of the insulator substrate 11 to form a pair of openings 12 , the island portion 13 in the insulator substrate 11 , the support portion 14 surrounding the island portion 13 , and the island portion 13 . and a pair of leg portions 15 connecting the support portion 14 may be formed.
개구부(12)는 레이저를 이용한 가공이나 펀칭 가공 등의 방법으로 형성할 수 있다. 개구부(12)는 수소 가스 등의 산화 과정에서 발생하는 물이 빠져나갈 수 있도록 충분히 크게 형성되는 것이 바람직하다. 개구부(12)에 물이 맺히면 개구부(12)에 의한 열 차단 효과가 떨어지고, 히터 패턴(20)에 의한 열이 섬부(13)에 집중되지 않아서, 섬부(13)의 가열에 소요되는 시간이 길어질 수 있다.The opening 12 may be formed by a method such as laser processing or punching processing. The opening 12 is preferably formed large enough so that water generated in an oxidation process such as hydrogen gas can escape. When water is condensed on the opening 12 , the heat blocking effect by the opening 12 is reduced, and the heat by the heater pattern 20 is not concentrated on the island 13 , so the time required for heating the island 13 is reduced. can be lengthy
섬부(13)는 대체로 직사각형 형태이며, 지지부(14)는 대체로 섬부(13)를 둘러싸는 직사각형 프레임 형태이다. 다리부(15)는 섬부(13)의 서로 대향하는 두 면에서 지지부(14)의 내면까지 연장된다. 다리부(15)는 히터 패턴(20)에 의한 섬부(13)의 가열 효율을 향상시키기 위해 얇고 길게 형성된다.The islands 13 are generally rectangular in shape, and the support 14 is generally in the shape of a rectangular frame surrounding the islands 13 . The leg portion 15 extends from two opposite sides of the island portion 13 to the inner surface of the support portion 14 . The leg portion 15 is formed to be thin and long in order to improve the heating efficiency of the island portion 13 by the heater pattern 20 .
이때, 다리부(15)와 섬부(13)의 연결 부위(16)는 다리부(15) 측으로 진행하면서 완만하게 폭이 줄어들도록 설계되는 것이 바람직하다. 섬부(13)와 다리부(15)의 온도 차이로 인한 열 충격에 의해서 섬부(13)와 다리부(15)의 연결 부위(16)에 크랙이 발생할 수 있기 때문이다.At this time, it is preferable that the connecting portion 16 of the leg portion 15 and the island portion 13 is designed to gradually decrease in width while proceeding toward the leg portion 15 . This is because cracks may occur in the connection portion 16 of the island 13 and the leg 15 due to thermal shock caused by the temperature difference between the island 13 and the leg 15 .
또한, 절연체 기판(11)의 외곽 부분에는 관통홀(25)이 형성된다.In addition, a through hole 25 is formed in an outer portion of the insulator substrate 11 .
히터 패턴(20)은 섬부(13)의 일면(도 1과 2에서는 상면)에 형성된다. 히터 패턴(20)은 백금으로 이루어질 수 있다. 히터 패턴(20)은 백금과 같은 전도성 입자들과 바인더 및 용제가 혼합된 페이스트를 스크린 프린팅 방법으로 섬부(13)의 일면에 인쇄한 후 열처리하는 방법으로 형성할 수 있다. The heater pattern 20 is formed on one surface (the upper surface in FIGS. 1 and 2 ) of the island part 13 . The heater pattern 20 may be made of platinum. The heater pattern 20 may be formed by printing a paste in which conductive particles such as platinum, a binder, and a solvent are mixed on one surface of the island portion 13 by a screen printing method and then heat-treating the paste.
히터 패턴(20)은 섬부(13)를 가열하는 역할을 한다. 또한, 섬부(13)의 온도 변화를 감지하는 역할도 한다. 히터 패턴(20)은 온도에 따라서 저항이 변화한다. 백금 패턴일 경우에는 온도가 증가함에 따라서 저항이 증가한다.The heater pattern 20 serves to heat the island 13 . In addition, it also serves to sense the temperature change of the island (13). The resistance of the heater pattern 20 is changed according to the temperature. In the case of a platinum pattern, the resistance increases as the temperature increases.
감지 층(22)은 섬부(13)의 히터 패턴(20)이 형성된 일면 또는 반대면 중 적어도 하나에 형성된다. 가연성 가스는 가열된 감지 층(22)의 표면에서 산소와 반응하면서 반응열을 일으킨다. 도 1과 2에서는 히터 패턴(20)이 형성된 면에 히터 패턴을(20) 덮도록 감지 층(22)이 형성된 것으로 도시되어 있다.The sensing layer 22 is formed on at least one of one surface or the opposite surface of the island portion 13 on which the heater pattern 20 is formed. The combustible gas reacts with oxygen on the surface of the heated sensing layer 22 to generate heat of reaction. 1 and 2 , it is shown that the sensing layer 22 is formed to cover the heater pattern 20 on the surface on which the heater pattern 20 is formed.
섬부(13)의 양면 모두에 감지 층(22)을 형성하면, 산소와 가연성 가스의 반응열이 섬부(13) 양면에서 발생하기 때문에 감도가 더 커진다는 장점이 있다. If the sensing layer 22 is formed on both sides of the island 13 , there is an advantage in that the sensitivity increases because the heat of reaction between oxygen and the combustible gas is generated on both sides of the island 13 .
감지 층(22)은 알루미나와 백금 또는 파라듐이 첨가된 페이스트를 스크린 프린팅 방법으로 도포한 후 열처리하는 방법으로 형성할 수 있다.The sensing layer 22 may be formed by applying a paste to which alumina and platinum or palladium are added by a screen printing method and then heat-treating the paste.
전극 패턴(24)은 히터 패턴(20)과 전기적으로 연결된다. 전극 패턴(24)은 다리부(15)를 통해서 절연체 기판(11)에 형성된 관통홀(25)까지 연장된다. 전극 패턴(24)은 전극 페이스트를 스프린 프린팅 방법으로 인쇄한 후 열처리하는 방법으로 형성할 수 있다.The electrode pattern 24 is electrically connected to the heater pattern 20 . The electrode pattern 24 extends through the leg portion 15 to the through hole 25 formed in the insulator substrate 11 . The electrode pattern 24 may be formed by printing the electrode paste by a sprint printing method and then performing heat treatment.
또한, 가스 센서(100)는 절연체 기판(11)의 관통홀(25)에 삽입되는 전도성 핀(26)들을 포함한다. 관통홀(25)까지 연장된 전극 패턴(24)은 전도성 핀(26)들과 전기적으로 연결된다.In addition, the gas sensor 100 includes conductive pins 26 inserted into the through-holes 25 of the insulator substrate 11 . The electrode pattern 24 extending to the through hole 25 is electrically connected to the conductive pins 26 .
보상부(30)는 감지 층을 제외한 모든 구조가 감지부(10)와 동일하다. 보상부(30)는 감지부(10)와 마찬가지로 절연체 기판(31)과, 히터 패턴(40)과, 전극 패턴(44)과, 전도성 핀(46)을 포함한다. 절연체 기판(31)에는 한 쌍의 개구부(32)가 형성되며, 한 쌍의 개구부(32)를 형성함으로써, 섬부(33)와, 섬부(33)를 둘러싸는 지지부(34)와, 섬부(33)와 지지부(34)를 연결하는 한 쌍의 다리부(35)가 형성된다.The compensating unit 30 has the same structure as the sensing unit 10 except for the sensing layer. The compensator 30 includes an insulator substrate 31 , a heater pattern 40 , an electrode pattern 44 , and a conductive pin 46 , like the sensing unit 10 . A pair of openings 32 are formed in the insulator substrate 31 , and by forming the pair of openings 32 , the island portion 33 , the support portion 34 surrounding the island portion 33 , and the island portion 33 . ) and a pair of leg portions 35 connecting the support portion 34 are formed.
도 3은 도 1에 도시된 접촉 연소식 가스 센서의 측정방법을 설명하기 위한 회로도이다. 도 3에 도시된 바와 같이, 감지부(10)와 보상부(30)의 각각의 히터 패턴(20, 40)이 휘트스톤 브리지의 네 개의 저항 중 두 개의 저항 역할을 한다. 감지 층(22)에서의 반응열에 의해서 감지부(10)의 히터 패턴(20)의 저항이 증가하면 평형이 깨지면서 A-B 지점 사이의 출력 전압이 검출된다. 이러한 출력 전압을 이용하면 가연성 가스를 검출할 수 있다.FIG. 3 is a circuit diagram for explaining a measuring method of the catalytic combustion gas sensor shown in FIG. 1 . As shown in FIG. 3 , each of the heater patterns 20 and 40 of the sensing unit 10 and the compensating unit 30 serves as two resistors among the four resistors of the Wheatstone bridge. When the resistance of the heater pattern 20 of the sensing unit 10 increases due to the reaction heat in the sensing layer 22, the equilibrium is broken and the output voltage between points A-B is detected. Combustible gas can be detected using this output voltage.
도 4는 본 발명의 다른 실시예에 따른 가스 센서의 사시도이며, 도 5는 도 4에 도시된 실시예의 단면도이다.4 is a perspective view of a gas sensor according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view of the embodiment shown in FIG. 4 .
도 4에 도시된 실시예는 하나의 절연체 기판(111)을 이용하여 감지부(110)와 보상부(130)를 형성한다는 점과, 감지부(110)의 히터 패턴(120)과 감지 층(122)이 절연체 기판(111)의 섬부(113)의 서로 다른 면에 형성된다는 점에서 도 1에 도시된 실시예와 차이가 있다.In the embodiment shown in FIG. 4 , the sensing unit 110 and the compensating unit 130 are formed using a single insulator substrate 111 , and the heater pattern 120 and the sensing layer ( It is different from the embodiment shown in FIG. 1 in that the 122 is formed on different surfaces of the island 113 of the insulator substrate 111 .
본 실시예에서 절연체 기판(111)에는 한 쌍의 섬부(113, 133)와, 한 쌍의 섬부(113, 133)를 둘러싸는 지지부(114)와, 한 쌍의 섬부(113, 133)와 지지부(114)를 각각 연결하는 두 쌍의 다리부(115, 135)가 형성되도록 개구부(112, 132)가 형성된다.In the present embodiment, the insulator substrate 111 has a pair of island portions 113 and 133, a support portion 114 surrounding the pair of island portions 113 and 133, a pair of island portions 113 and 133, and a support portion. Openings 112 and 132 are formed so that two pairs of leg portions 115 and 135 connecting the 114, respectively, are formed.
또한, 본 실시예는 절연체 기판(111)의 섬부(113, 133)와 히터 패턴(120, 140) 사이에 절연층인 글라스 층(121, 141)이 형성된다는 점에서도 도 1에 도시된 실시예와 차이가 있다.Also, in the present embodiment, the glass layers 121 and 141, which are insulating layers, are formed between the island portions 113 and 133 of the insulator substrate 111 and the heater patterns 120 and 140 according to the embodiment shown in FIG. is different from
글라스 층(121, 141)은 스크린 프린팅 방법이나, 증착법을 이용하여 형성할 수 있다.The glass layers 121 and 141 may be formed using a screen printing method or a deposition method.
글라스 층(121, 141)은 절연체 기판(111)과 히터 패턴(120, 140) 사이의 접착력을 향상시키는 역할을 한다. 또한, 고온에서 절연체 기판(111)의 절연성이 떨어지는 문제를 개선하는 역할도 한다.The glass layers 121 and 141 serve to improve adhesion between the insulator substrate 111 and the heater patterns 120 and 140 . In addition, it also serves to improve the problem of poor insulation of the insulator substrate 111 at a high temperature.
본 실시예는 하나의 절연체 기판(111)을 이용하여 감지부(110)와 보상부(130)를 모두 형성할 수 있어서, 부피가 작고, 감지부(110)와 보상부(130)의 히터 패턴(120, 140)을 한 번에 형성하고, 전극 패턴(124, 144)을 한 번에 형성할 수 있다는 점 등 공정이 간단하다는 장점이 있다.In this embodiment, since both the sensing unit 110 and the compensating unit 130 can be formed using a single insulator substrate 111 , the volume is small and the heater pattern of the sensing unit 110 and the compensating unit 130 is small. There is an advantage in that the process is simple, such as forming the electrodes 120 and 140 at once and forming the electrode patterns 124 and 144 at once.
도 1과 2에 도시된 실시예는 감지부(10)에서 발생한 반응열이 절연체 기판(11)을 통해서 보상부(30)로 전달되지 않는다는 장점이 있다.The embodiment shown in FIGS. 1 and 2 has an advantage in that the reaction heat generated in the sensing unit 10 is not transferred to the compensating unit 30 through the insulator substrate 11 .
도 6과 7은 본 발명의 또 다른 실시예들의 평면도들이다.6 and 7 are plan views of still other embodiments of the present invention.
도 6에 도시된 실시예는 절연체 기판(211)의 한 쌍의 다리부(215)가 부드럽게 굽어 있는 곡선 형태라는 점에서 도 1과 2에 도시된 실시예와 차이가 있다. 다리부(215)는 서로 다른 방향으로 볼록하게 굽어 있다. 즉, 도 6에서 위쪽 다리부(215)는 좌측으로 볼록하게 굽어 있으며, 아래쪽 다리부(215)는 우측으로 볼록하게 굽어 있다. 한 쌍의 다리부(215)는 섬부(213)의 중심을 기준으로 180도 회전에 대해서 대칭이다. 본 실시예에 있어서, 섬부(213)는 대체로 정사각형 형태이며, 지지부(214)는 정사각형 프레임 형태이다. 지지부(210)를 기준으로 설명하였으나, 보상부(230)의 절연체 기판(231)도 동일한 형태이다. The embodiment shown in FIG. 6 is different from the embodiment shown in FIGS. 1 and 2 in that the pair of leg parts 215 of the insulator substrate 211 are gently curved in a curved shape. The leg portions 215 are convexly bent in different directions. That is, in FIG. 6 , the upper leg 215 is convexly curved to the left, and the lower leg 215 is convexly curved to the right. The pair of leg portions 215 are symmetrical with respect to a 180 degree rotation with respect to the center of the island portion 213 . In this embodiment, the island portion 213 has a substantially square shape, and the support portion 214 has a square frame shape. Although the description has been made based on the support part 210 , the insulator substrate 231 of the compensation part 230 has the same shape.
또한, 본 실시예에서는 절연체 기판(211, 231)이 전도성 핀(스템핀)(226, 246)의 헤드 위에 바로 배치된다는 점에서도 도 1과 2에 도시된 실시예와 차이가 있다. 본 실시예에서 히터 패턴과 전극 패턴 및 감지 층은 절연체 기판(211, 231)의 하면에 형성되며, 전극 패턴은 전도성 핀(226, 246)의 헤드와 전도성 페이스트나 솔더를 통해서 연결될 수 있다.In addition, the present embodiment is different from the embodiment shown in FIGS. 1 and 2 in that the insulator substrates 211 and 231 are disposed directly on the heads of the conductive pins (stem pins) 226 and 246 . In this embodiment, the heater pattern, the electrode pattern, and the sensing layer are formed on the lower surface of the insulator substrates 211 and 231 , and the electrode pattern may be connected to the heads of the conductive pins 226 and 246 through conductive paste or solder.
도 7에 도시된 실시예는 절연체 기판(311)의 한 쌍의 다리부(315)가 직각으로 굽어 있는 형태라는 점에서 도 6에 도시된 실시예와 차이가 있다. 한 쌍의 다리부(315)는 서로 다른 방향을 향해 굽어 있다. 즉, 도 7에서 위쪽 다리부(315)는 좌측으로 굽어 있으며, 아래쪽 다리부(315)는 우측으로 굽어 있다. 한 쌍의 다리부(315)는 섬부(313)의 중심을 기준으로 180도 회전에 대해서 대칭이다.The embodiment shown in FIG. 7 is different from the embodiment shown in FIG. 6 in that the pair of leg parts 315 of the insulator substrate 311 are bent at right angles. The pair of leg portions 315 are bent in different directions. That is, in FIG. 7 , the upper leg part 315 is curved to the left, and the lower leg part 315 is curved to the right. The pair of leg portions 315 are symmetrical with respect to a 180 degree rotation with respect to the center of the island portion 313 .
도 6과 7에 도시된 실시예들은 열적 내구성이 강하여 700℃ 정도의 고온에서도 다리부가 손상되지 않는다는 장점이 있다. 즉, 도 1과 2에 도시된 실시예에서는 고온에서의 다리부(15)의 열팽창에 의한 압축 응력 전부가 다리부(15)에 대한 수직 응력으로 작용하지만, 도 6과 7에 도시된 실시예들에서는 일부가 전단 응력으로 작용하기 때문에 다리부(215, 315)의 열적 내구성이 향상된다. 도 1과 2에 도시된 실시예에서는 500℃ 정도에서 다리부(15)가 손상된다.The embodiments shown in FIGS. 6 and 7 have an advantage in that the leg portion is not damaged even at a high temperature of about 700° C. due to strong thermal durability. That is, in the embodiment shown in FIGS. 1 and 2 , all of the compressive stress due to thermal expansion of the leg part 15 at high temperature acts as a normal stress to the leg part 15 , but in the embodiment shown in FIGS. 6 and 7 . Since some of them act as shear stress, the thermal durability of the legs 215 and 315 is improved. In the embodiment shown in Figures 1 and 2, the leg portion 15 is damaged at about 500 ℃.
도 8은 본 발명의 또 다른 실시예의 평면도이다. 도 8에 도시된 실시예는 반도체식 가스 센서(500)이다.8 is a plan view of another embodiment of the present invention. The embodiment shown in FIG. 8 is a semiconductor type gas sensor 500 .
도 8에 도시된 반도체식 가스 센서(500)는 보상부를 구비하지 않으며, 섬부(413)의 히터 패턴(미도시)이 형성된 면의 반대 면(도 8에서는 상면)에 감지 층(422)의 저항 변화를 측정하기 위한 감지 패턴(423)이 형성되며, 감지 층(422)이 감지 패턴(423) 위에 형성된다는 점에서 도 1과 2에 도시된 접촉 연소식 가스 센서와 차이가 있다.The semiconductor gas sensor 500 shown in FIG. 8 does not have a compensating part, and the resistance of the sensing layer 422 is on the opposite surface (top surface in FIG. 8 ) of the island part 413 on which the heater pattern (not shown) is formed. It is different from the catalytic combustion gas sensor shown in FIGS. 1 and 2 in that a sensing pattern 423 for measuring a change is formed, and a sensing layer 422 is formed on the sensing pattern 423 .
도 8에 도시된 실시예는 절연체 기판(411)과, 히터 패턴(미도시)과, 감지 패턴(423)과, 감지 층(422)과, 전극 패턴(424)과, 전도성 핀(426)을 포함한다.The embodiment shown in FIG. 8 includes an insulator substrate 411 , a heater pattern (not shown), a sensing pattern 423 , a sensing layer 422 , an electrode pattern 424 , and a conductive pin 426 . include
절연체 기판(411)으로는 세라믹 기판이 사용될 수 있다. 바람직하게는, 열전도도가 비교적 낮은 지르코니아 또는 이트리아 안정화 지르코니아 기판이 사용될 수 있다. A ceramic substrate may be used as the insulator substrate 411 . Preferably, a zirconia or yttria stabilized zirconia substrate having a relatively low thermal conductivity may be used.
절연체 기판(411)에는 한 쌍의 개구부(412)가 형성된다. 절연체 기판(411)의 일부분을 제거하여 한 쌍의 개구부(412)를 형성함으로써, 절연체 기판(411)에 섬부(413)와, 섬부(413)를 둘러싸는 지지부(414)와, 섬부(413)와 지지부(414)를 연결하는 한 쌍의 다리부(415)를 형성할 수 있다.A pair of openings 412 are formed in the insulator substrate 411 . By removing a portion of the insulator substrate 411 to form a pair of openings 412 , the island portion 413 in the insulator substrate 411 , the support portion 414 surrounding the island portion 413 , and the island portion 413 . A pair of leg portions 415 connecting the and the support portion 414 may be formed.
섬부(413)는 대체로 정사각형 형태이며, 지지부(414)는 대체로 섬부(413)를 둘러싸는 정사각형 프레임 형태이다. 다리부(415)는 섬부(413)의 서로 대향하는 두 면에서 지지부(414)의 내면까지 연장된다.The island 413 is generally square in shape, and the support 414 is generally in the shape of a square frame surrounding the island 413 . The leg portion 415 extends from two opposite surfaces of the island portion 413 to the inner surface of the support portion 414 .
히터 패턴(미도시)은 섬부(413)의 일면(도 8에서는 하면)에 형성된다. 히터 패턴은 백금으로 이루어질 수 있다. 히터 패턴은 백금과 같은 전도성 입자들과 바인더 및 용제가 혼합된 페이스트를 스크린 프린팅 방법으로 섬부(413)의 일면에 인쇄한 후 열처리하는 방법으로 형성할 수 있다. 히터 패턴은 섬부(413)를 가열하는 역할을 한다.A heater pattern (not shown) is formed on one surface (lower surface in FIG. 8 ) of the island portion 413 . The heater pattern may be made of platinum. The heater pattern may be formed by printing a paste in which conductive particles such as platinum, a binder, and a solvent are mixed on one surface of the island portion 413 by a screen printing method and then heat-treating the paste. The heater pattern serves to heat the island portion 413 .
또한, 도 4에 도시된 실시예와 같이, 히터 패턴과 섬부(413) 사이에 글라스 층을 형성할 수도 있다. 글라스 층은 스크린 프린팅 방법이나, 증착법을 이용하여 형성할 수 있다. 글라스 층은 절연체 기판(411)과 히터 패턴 사이의 접착력을 향상시키는 역할을 한다. 또한, 고온에서 절연체 기판(411)의 절연성이 떨어져서 히터 패턴과 감지 패턴(423)이 합선되는 현상을 방지하는 역할도 할 수 있다.In addition, as in the embodiment shown in FIG. 4 , a glass layer may be formed between the heater pattern and the island portion 413 . The glass layer may be formed using a screen printing method or a vapor deposition method. The glass layer serves to improve adhesion between the insulator substrate 411 and the heater pattern. In addition, the insulating property of the insulator substrate 411 is deteriorated at a high temperature, and thus the heater pattern and the sensing pattern 423 may be prevented from being short-circuited.
감지 패턴(423)은 섬부(413)의 히터 패턴이 형성된 면의 반대 면(도 8에서는 상면)에 형성된다. 감지 패턴(423)은 백금으로 이루어질 수 있다. 감지 패턴(423)은 히터 패턴과 마찬가지로 백금과 같은 전도성 입자들과 바인더 및 용제가 혼합된 페이스트를 스크린 프린팅 방법으로 섬부(413)의 일면에 인쇄한 후 열처리하는 방법으로 형성할 수 있다.The sensing pattern 423 is formed on the opposite surface (upper surface in FIG. 8 ) of the island portion 413 on which the heater pattern is formed. The sensing pattern 423 may be made of platinum. Like the heater pattern, the sensing pattern 423 may be formed by printing a paste in which conductive particles such as platinum, a binder, and a solvent are mixed on one surface of the island 413 by a screen printing method and then heat-treating the paste.
감지 층(422)은 섬부(413)의 감지 패턴(423)이 형성된 면에 감지 패턴(423)을 덮도록 형성된다. 감지 층(422)은 가스와 접촉하였을 때 전기전도도가 변화하는 SnO2, In2O3 등의 감지 물질을 포함한다. 감지 층(422)은 감지 물질이 첨가된 페이스트를 스크린 프린팅 방법으로 도포한 후 열처리하는 방법으로 형성할 수 있다.The sensing layer 422 is formed to cover the sensing pattern 423 on the surface of the island 413 on which the sensing pattern 423 is formed. The sensing layer 422 includes a sensing material, such as SnO 2 and In 2 O 3 , whose electrical conductivity changes when in contact with a gas. The sensing layer 422 may be formed by applying a paste to which a sensing material is added by a screen printing method and then performing heat treatment.
전극 패턴(424)은 히터 패턴 및 감지 패턴(423)과 각각 전기적으로 연결된다. 전극 패턴(424)은 다리부(415)를 통해서 절연체 기판(411)의 모서리까지 연장된다. 전극 패턴(424)은 전극 페이스트를 스프린 프린팅 방법으로 인쇄한 후 열처리하는 방법으로 형성할 수 있다. 전극 패턴(424)은 전도성 핀(426)들과 전도성 페이스(425)나 솔더를 통해 전기적으로 연결된다.The electrode pattern 424 is electrically connected to the heater pattern and the sensing pattern 423 , respectively. The electrode pattern 424 extends to the edge of the insulator substrate 411 through the leg portion 415 . The electrode pattern 424 may be formed by printing an electrode paste by a sprint printing method and then performing heat treatment. The electrode pattern 424 is electrically connected to the conductive pins 426 through a conductive face 425 or solder.
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.The embodiments described above are merely illustrative of preferred embodiments of the present invention, and the scope of the present invention is not limited to the described embodiments, and those skilled in the art within the technical spirit and claims of the present invention Various changes, modifications, or substitutions will be possible by, and such embodiments should be understood to fall within the scope of the present invention.
[부호의 설명][Explanation of code]
100, 200, 300, 400, 500: 가스 센서100, 200, 300, 400, 500: gas sensor
10, 110, 210, 3130: 감지부10, 110, 210, 3130: sensing unit
11, 111, 211, 311, 411: 절연체 기판11, 111, 211, 311, 411: insulator substrate
12, 112, 412: 개구12, 112, 412: opening
13, 113, 213, 313, 413: 섬부13, 113, 213, 313, 413: island
14, 114, 214, 314, 414: 지지부14, 114, 214, 314, 414: support
15, 115, 215, 315, 415: 다리부15, 115, 215, 315, 415: leg part
16, 116: 연결 부위16, 116: connection site
20, 120, 140: 히터 패턴20, 120, 140: heater pattern
121, 141: 글라스 층121, 141: glass layer
22, 122: 감지 층22, 122: sensing layer
24, 124: 전극 패턴24, 124: electrode pattern
26, 126: 전도성 핀26, 126: conductive pins
30, 130, 230, 330: 보상부30, 130, 230, 330: compensation unit

Claims (13)

  1. 감지부를 구비하며, 상기 감지부는,A sensing unit is provided, wherein the sensing unit comprises:
    섬부와, 상기 섬부를 둘러싸는 지지부와, 상기 섬부와 상기 지지부를 연결하는 한 쌍의 다리부가 형성되도록 개구부가 형성된 절연체 기판과,An insulator substrate having an opening to form an island, a support surrounding the island, and a pair of legs connecting the island and the support;
    상기 섬부의 일면에 형성되는 히터 패턴과,A heater pattern formed on one surface of the island portion;
    상기 히터 패턴과 연결되며, 상기 다리부를 통해서 연장되는 전극 패턴과,an electrode pattern connected to the heater pattern and extending through the leg portion;
    상기 섬부의 히터 패턴이 형성된 일면 또는 반대면 중 적어도 하나에 형성되는 감지 층을 포함하는 가스 센서.A gas sensor comprising a sensing layer formed on at least one of one surface and the opposite surface on which the heater pattern of the island is formed.
  2. 제1항에 있어서,According to claim 1,
    상기 한 쌍의 다리부는 서로 다른 방향을 향해 볼록하게 굽은 곡선 형태인 가스 센서.The pair of leg portions is a gas sensor having a curved shape that is convexly bent toward different directions.
  3. 제1항에 있어서,According to claim 1,
    상기 한 쌍의 다리부는 서로 다른 방향을 향해 직각으로 굽어 있는 형태인 가스 센서.The pair of leg portions are bent at right angles in different directions for a gas sensor.
  4. 제1항에 있어서,According to claim 1,
    상기 다리부와 상기 섬부의 연결부위는 상기 다리부 측으로 진행하면서 완만하게 폭이 줄어드는 가스 센서.A gas sensor in which the width of the connecting portion of the leg portion and the island portion gradually decreases while proceeding toward the leg portion.
  5. 제1항에 있어서,According to claim 1,
    상기 섬부는 마름모 형태이며, 상기 다리부는 상기 섬부의 꼭지점과 연결되는 가스 센서.The island is in the form of a rhombus, and the leg is a gas sensor connected to the vertex of the island.
  6. 제1항에 있어서,The method of claim 1,
    상기 절연체 기판에는 관통홀이 형성되며,A through hole is formed in the insulator substrate,
    상기 관통홀에 삽입되는 전도성 핀을 더 포함하며,It further comprises a conductive pin inserted into the through hole,
    상기 전극 패턴은 상기 전도성 핀과 전기적으로 연결되는 가스 센서.The electrode pattern is a gas sensor electrically connected to the conductive pin.
  7. 제1항에 있어서,According to claim 1,
    전도성 핀을 더 포함하며,It further comprises a conductive pin,
    상기 절연체 기판은 전도성 핀 위에 배치되며,The insulator substrate is disposed over the conductive pins,
    상기 전극 패턴은 상기 전도성 핀과 전기적으로 연결되는 가스 센서.The electrode pattern is a gas sensor electrically connected to the conductive pin.
  8. 제1항에 있어서,The method of claim 1,
    상기 절연체 기판은 지르코니아 또는 이트리아 안정화 지르코니아 기판인 가스 센서.The insulator substrate is a zirconia or yttria stabilized zirconia substrate.
  9. 제1항에 있어서,According to claim 1,
    상기 섬부의 히터 패턴이 형성된 면의 반대 면에 형성된 감지 패턴을 더 포함하며, 상기 감지 층은 상기 감지 패턴이 형성된 면에 형성되는 가스 센서.The gas sensor further includes a sensing pattern formed on a surface opposite to the surface on which the heater pattern of the island is formed, wherein the sensing layer is formed on the surface on which the sensing pattern is formed.
  10. 제1항에 있어서,The method of claim 1,
    상기 가스 센서는 보상부를 더 포함하는 접촉 연소식 가스 센서로서,The gas sensor is a catalytic combustion gas sensor further comprising a compensator,
    상기 보상부는,The compensation unit,
    상기 감지부의 절연체 기판, 히터 패턴 및 전극 패턴과 동일한 형태의 절연체 기판, 히터 패턴 및 전극 패턴을 포함하며,Including an insulator substrate, a heater pattern, and an electrode pattern of the same shape as the insulator substrate, the heater pattern and the electrode pattern of the sensing unit,
    상기 보상부의 섬부에는 감지 층이 형성되지 않는 가스 센서.A gas sensor in which a sensing layer is not formed on the island portion of the compensation unit.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 감지부의 절연체 기판과 상기 보상부의 절연체 기판은 일체로 이루어진 가스 센서.The insulator substrate of the sensing unit and the insulator substrate of the compensating unit are integrally formed with a gas sensor.
  12. 제1항에 있어서,The method of claim 1,
    상기 섬부의 절연체 기판과 상기 히터 패턴 사이에 형성된 절연층을 더 포함하는 가스 센서. The gas sensor further comprising an insulating layer formed between the insulator substrate of the island portion and the heater pattern.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 절연층은 글라스 층인 가스 센서.wherein the insulating layer is a glass layer.
PCT/KR2021/010111 2020-08-06 2021-08-03 Gas sensor WO2022030932A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200098399 2020-08-06
KR10-2020-0098399 2020-08-06
KR10-2020-0133314 2020-10-15
KR20200133314 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022030932A1 true WO2022030932A1 (en) 2022-02-10

Family

ID=80118313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010111 WO2022030932A1 (en) 2020-08-06 2021-08-03 Gas sensor

Country Status (2)

Country Link
KR (1) KR20220019227A (en)
WO (1) WO2022030932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240006109A (en) * 2022-07-05 2024-01-15 (주)센텍코리아 Gas sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875691A (en) * 1994-09-02 1996-03-22 Matsushita Electric Ind Co Ltd Gas sensor
KR19990071998A (en) * 1998-06-08 1999-09-27 윤종용 Hybrid Integrated Circuits for Gas Sensors
JP2011153996A (en) * 2010-01-28 2011-08-11 Figaro Engineerign Inc Gas sensor
KR101481659B1 (en) * 2013-02-28 2015-01-12 세종공업 주식회사 Packaging structure of gas sensor
KR101947047B1 (en) * 2017-08-30 2019-02-12 (주)포인트엔지니어링 Gas sensor and gas sensor package having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799810B1 (en) 2007-02-01 2008-01-31 유도준 Gas sensor entire set of pcb which has a chip of structure feasible for layer and parallel mount
KR100929025B1 (en) 2008-01-03 2009-11-27 한국에너지기술연구원 Plasma contact-fired hydrogen and combustible gas sensor and method of manufacturing the same
KR101828549B1 (en) 2016-10-31 2018-02-13 세종공업 주식회사 Catalytic combustion type Hydrogen Sensor for Icing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875691A (en) * 1994-09-02 1996-03-22 Matsushita Electric Ind Co Ltd Gas sensor
KR19990071998A (en) * 1998-06-08 1999-09-27 윤종용 Hybrid Integrated Circuits for Gas Sensors
JP2011153996A (en) * 2010-01-28 2011-08-11 Figaro Engineerign Inc Gas sensor
KR101481659B1 (en) * 2013-02-28 2015-01-12 세종공업 주식회사 Packaging structure of gas sensor
KR101947047B1 (en) * 2017-08-30 2019-02-12 (주)포인트엔지니어링 Gas sensor and gas sensor package having the same

Also Published As

Publication number Publication date
KR20220019227A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP4390225B2 (en) Sensor manufacturing method
WO2016165398A1 (en) Hydrogen gas sensor for online monitoring of hydrogen gas concentration in oil-immersed transformer and method for using same
WO2018182324A1 (en) Ammonia sensor
WO2022030932A1 (en) Gas sensor
WO2018182323A1 (en) Nox sensor
WO2019052037A1 (en) Capacitive sensor and preparation method therefor
WO2017188700A1 (en) Sensor
WO2011115321A1 (en) Micro gas sensor array
WO2018043792A1 (en) Micro gas sensor and micro gas sensor module
WO2018159899A1 (en) Dual heater gas sensor module
WO2022270810A1 (en) Gas heat conduction type hydrogen sensor having integrated structure
WO2024010246A1 (en) Gas sensor
WO2019103328A1 (en) Vertically layered hybrid temperature and humidity sensor and manufacturing method therefor
WO2018199601A1 (en) Sensor-mounted wafer
KR20170092252A (en) Flexible gas sensor and producing method thereof
JP5212286B2 (en) Thin film gas sensor and method of manufacturing thin film gas sensor
WO2018066752A1 (en) Sensor
CN214374455U (en) Device for detecting cracks of ceramic element of gas sensor
WO2016060493A1 (en) Flat plate-type oxygen sensor element
WO2022211540A1 (en) Sensor array for sensing hydrogen and hydrogen sensing system using same
JPH09218178A (en) Gas sensor and manufacture thereof
JPS61117444A (en) Gas detecting element
CN217212397U (en) Wide-range hydrogen sensor based on MEMS technology
WO2016148500A1 (en) Hydrogen detection sensor for detecting hydrogen of wide concentration range
WO2022139105A1 (en) Gas sensor and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853379

Country of ref document: EP

Kind code of ref document: A1