WO2022030822A1 - 뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템 - Google Patents

뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템 Download PDF

Info

Publication number
WO2022030822A1
WO2022030822A1 PCT/KR2021/009398 KR2021009398W WO2022030822A1 WO 2022030822 A1 WO2022030822 A1 WO 2022030822A1 KR 2021009398 W KR2021009398 W KR 2021009398W WO 2022030822 A1 WO2022030822 A1 WO 2022030822A1
Authority
WO
WIPO (PCT)
Prior art keywords
sig
blood flow
radius
cerebrovascular disease
aneurysm
Prior art date
Application number
PCT/KR2021/009398
Other languages
English (en)
French (fr)
Inventor
정슬기
이찬혁
Original Assignee
정슬기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정슬기 filed Critical 정슬기
Priority to US18/040,521 priority Critical patent/US20230284923A1/en
Priority to EP21853302.4A priority patent/EP4176806A1/en
Priority to JP2023532099A priority patent/JP2023536205A/ja
Publication of WO2022030822A1 publication Critical patent/WO2022030822A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/5635Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]

Definitions

  • the present invention relates to an MRA (Magnetic Resonance Angiography) application technology, and more particularly, a method of analyzing blood vessel images in MRA to calculate blood flow and related indicators, and using this to analyze the risk of cerebrovascular disease and stroke, and It's about the system.
  • MRA Magnetic Resonance Angiography
  • Cerebrovascular disease and stroke are diseases caused by pathological phenomena such as narrowing, occlusion, rupture or degeneration of blood vessels. When expressed in terms of blood flow, it can be expressed as a sudden decrease in blood flow (cerebral infarction) or a continuously low blood flow (cerebrovascular disease, vascular dementia) and blood flow out of the blood vessel.
  • Normal brain activity is possible only when the brain maintains a blood flow of 50ml/min/100g or more. If the blood flow drops rapidly to less than 20-30ml/min/100g, an ischemic cerebral infarction occurs. In addition, if the cerebral blood flow is insufficient as 30-50ml/min/100g, it may show degenerative brain disease due to a chronic lack of energy (oxygen and glucose). These include small vessel disease, dementia and other neurodegenerative diseases. In cerebral hemorrhage, changes in blood flow around the hematoma are known to be important prognostic factors, and cerebral aneurysms that cause subarachnoid hemorrhage are known to cause various changes in blood flow after rupture.
  • Measurement of cerebral blood flow is essential for long-term prognosis from initial diagnosis. In addition, it can be used as a predictor of disease occurrence, so its utility is high.
  • the typical methods for quantitative measurement of cerebral blood flow are ultrasound examination or phase contrast MR technique.
  • Other methods of local blood flow distribution in the brain are SPECT (Single Photon Emission Computed Tomography) or BOLD (Blood Oxygen-Level Dependent) MRI technique. make use of Ultrasound measures blood flow velocity and blood vessel diameter for the left and right common carotid arteries, vertebral arteries, and four blood vessels to obtain each blood flow, and summing them to obtain total brain blood flow.
  • Phase contrast MR can also be obtained by summing values obtained by performing MR imaging on each of the four blood vessels.
  • Phase contrast MR has the advantage of being able to accurately measure the blood flow velocity, but the structure and diameter of the blood vessels are poor in accuracy, and above all, it is useful in clinical practice due to the inconvenience of performing an examination for each blood vessel and the long scan time required. is low There is a need for a method that can measure blood flow in four or more blood vessels at the same time with one test in a short time in the clinical field.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to use SIG in an MRA image for SIG-BF of a vascular region and SIG-V, SIG-tCBF, and SIG-pCBF related factors. , to provide a method and system for diagnosing, predicting and monitoring a method for calculating SIG-colBF, ⁇ SIG ratio and SIG-BF ratio, and cerebrovascular disease and stroke using the same.
  • a method for analyzing the risk of cerebrovascular disease includes calculating a signal intensity gradient-blood flow (SIG-BF) of a blood vessel in an MRA image; Using the calculated SIG-BF, predicting the risk of cerebrovascular disease; includes.
  • SIG-BF signal intensity gradient-blood flow
  • SIG-BF is calculated using the following equation
  • SIG is the SIG at the vessel site
  • r is the vessel radius
  • the method for analyzing the risk of cerebrovascular disease further comprises; calculating SIG-V (SIG-Velocity, SIG blood flow velocity) of the vascular region using the following equation in the MRA image,
  • SIG is the SIG at the vessel site
  • r is the vessel radius
  • the SIG may be any one of a maximum value, a minimum value, and an average value of the SIG.
  • SIG-BF includes SIG-tCBF (SIG-total Cerebral Blood Flow), and the calculation step calculates SIG-tCBF using the following formula,
  • SIG-tCBF SIG rt cca ⁇ (r rt cca ) 3 + SIG lt cca ⁇ (r lt cca ) 3 + SIG rt va ⁇ (r rt va ) 3 + SIG lt va ⁇ (r lt va ) 3
  • SIG rt cca is SIG in the right common carotid artery region
  • r rt cca is the radius of the right common carotid artery
  • SIG lt cca is SIG in the left common carotid artery region
  • r lt cca is the radius of the left common carotid artery
  • SIG rt va is SIG in the right vertebral artery region
  • r rt va is the radius of the right vertebral artery
  • SIG lt va is the SIG in the left vertebral artery region
  • r lt va is the radius of the left vertebral artery.
  • SIG-BF includes SIG-parenchymal Cerebral Blood Flow (SIG-pCBF), and the calculation step calculates SIG-pCBF using the following formula,
  • SIG-pCBF SIG rt ica ⁇ (r rt ica ) 3 + SIG lt ica ⁇ (r lt ica ) 3 + SIG rt va ⁇ (r rt va ) 3 + SIG lt va ⁇ (r lt va ) 3
  • SIG rt ica and r rt ica are the SIG and radius at the distal end of the right internal carotid artery before bifurcation of the anterior and middle cerebral arteries
  • SIG lt ica and r lt ica are the distal regions of the left internal carotid artery before bifurcation of the anterior and middle cerebral artery
  • SIG and radius, SIG rt va and r rt va are the SIG and radius of the right vertebral artery before bifurcation of the posterior inferior cerebellar artery
  • SIG lt va and r lt va are the SIG and radius of the left vertebral artery before bifurcation of the posterior inferior cerebellar artery.
  • SIG-BF includes SIG-collateral Blood Flow (SIG-collateral Blood Flow) and the calculation step is,
  • SIG-colBF SIG-tCBF - SIG-pCBF
  • SIG-BF includes the SIG-BF ratio
  • the calculation step calculates the SIG-BF ratio using the following formula
  • SIG-BF ratio (SIG-BF-aneurysm)/(SIG-BF-preaneurysm)
  • SIG-BF-aneurysm is the SIG-BF of the aneurysm showing the maximum radius
  • SIG-BF-preaneurysm is the SIG-BF of the normal blood vessel proximal to the aneurysm.
  • the method for analyzing the risk of cerebrovascular disease further comprises; calculating the ⁇ SIG ratio of the vascular region using the following equation in the MRA image,
  • ⁇ SIG ratio ( ⁇ SIG-aneurysm)/( ⁇ SIG-preaneurysm)
  • ⁇ SIG-aneurysm is the difference between the maximum SIG and the minimum SIG of the aneurysmal vessel
  • ⁇ SIG-preaneurysm is the difference between the maximum SIG and the minimum SIG of the normal blood vessel proximal to the aneurysm.
  • a cerebrovascular disease risk analysis system a processor for calculating the SIG-BF of the blood vessel region in the MRA image, and predicting the cerebrovascular disease risk using the calculated SIG-BF; an output unit for outputting calculation results and prediction results by the processor; and a storage unit that provides a storage space necessary for the processor.
  • SIG-BF of the vascular region using SIG in the MRA image and related factors SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ⁇ SIG ratio And by extracting the SIG-BF ratio, qualitative/quantitative analysis of cerebrovascular hemodynamics and blood flow is possible.
  • 3 to 5 show a method for measuring an aneurysm
  • 6 is a vascular image of a 74-year-old asymptomatic female and a 37-year-old male with subarachnoid hemorrhage;
  • FIG. 8 is a block diagram of a cerebrovascular disease risk analysis system according to an embodiment of the present invention.
  • MIP Maximum Intensity Projection
  • an embodiment of the present invention proposes a method of deriving and imaging the characteristics of blood flow reaching the blood vessel through this.
  • blood flow is derived using these blood flow characteristics, and the risk of stroke and cerebrovascular disease is qualitatively/quantified by using this to increase diagnosis and disease predictability, and to monitor before and after treatment and determine a treatment method Suggest ways to make it usable.
  • Signal Intensity Gradient-Blood Flow presented in an embodiment of the present invention is as follows. First, according to the Poiseuille equation, the shear stress ( ⁇ ) is defined as in Equation 1 below.
  • is the shear stress
  • Q is the blood flow
  • is the blood viscosity
  • r is the radius of the vessel.
  • the blood flow (Qartery) in the vessel wall of the blood vessel can be converted into the following equation by applying SIG (Signal Intensity Gradient).
  • SIG means SIG (maximum, minimum, average value, etc.) in the blood vessel wall of the relevant blood vessel, and the blood flow obtained through this is called SIG-BF.
  • the blood flow velocity of the corresponding blood vessel can be obtained using SIG as follows.
  • Equation 3 if ⁇ r 2 of both sides is eliminated in Equation 3, it is as follows.
  • SIG uses the SIG (maximum, minimum, average value, etc.) at the relevant blood vessel site, and the blood flow velocity obtained through Equation 4 above is called SIG-V (SIG-Velocity, SIG blood flow velocity).
  • the average SIG values obtained by performing TOF MRA were 2.2 ⁇ 0.4 and 0.9 ⁇ 0.3 SI/min, respectively, in two tubes with a diameter of 2.1 cm while maintaining the average flow rate of 12.5 ⁇ 2.3 and 8.5 ⁇ 2.6L/min.
  • the radius of the inner diameter of blood vessels is less than 1 cm, and the average radius of the aorta, the largest artery in the human body, is about 0.89 cm.
  • Carotid TOF MRA was also performed on them, and SIG-BF was obtained from four blood vessels according to Equation 2 above.
  • the mean SIG-BF of the left and right common carotid arteries and vertebral arteries were 5.77 ⁇ 1.67, 5.95 ⁇ 0.48, 1.96 ⁇ 1.00, and 0.89 ⁇ 0.45 SI ⁇ cm 2 , respectively.
  • the correlation index was 0.93 (P ⁇ 0.001) (Fig. 1).
  • the mean blood flow rates of the left and right common carotid arteries and vertebral arteries were 39.5 ⁇ 16.2, 41.1 ⁇ 11.8, 29.6 ⁇ 8.4, and 27.1 ⁇ 10.7 cm/sec, and SIG-V was 16.3 ⁇ 4.0, 17.6 ⁇ 2.9, 13.1 ⁇ 3.5, and 10.0, respectively. ⁇ 2.5 SI.
  • the correlation index was 0.67 (P ⁇ 0.001).
  • tCBF total cerebral blood flow
  • SIG-tCBF is the sum of the SIG-BFs of four blood vessels, namely, two common carotid arteries (cca) and two vertebral arteries (va), and is defined as in Equation 5 below.
  • SIG-tCBF (SI cm 2 ) SIG rt cca ⁇ (r rt cca ) 3 + SIG lt cca ⁇ (r lt cca ) 3 + SIG rt va ⁇ (r rt va ) 3 + SIG lt va ⁇ (r lt va ) 3
  • SIG rt cca is SIG in the right common carotid artery region
  • r rt cca is the radius of the right common carotid artery
  • SIG lt cca is SIG in the left common carotid artery region
  • r lt cca is the radius of the left common carotid artery
  • SIG rt va is SIG in the right vertebral artery region
  • r rt va is the radius of the right vertebral artery
  • SIG lt va is the SIG in the left vertebral artery region
  • r lt va is the radius of the left vertebral artery.
  • SIG-tCBF showed a high correlation with the total cerebral blood flow obtained by ultrasonography of the common carotid and vertebral arteries.
  • the mean total cerebral blood flow obtained using time averaged mean flow velocity as a result of ultrasound examination was 13.5 ⁇ 1.4 cm 3 /sec.
  • the mean value of SIG-total cerebral blood flow obtained after Carotid TOF MRA was 14.6 ⁇ 2.8 SI ⁇ cm 2 .
  • 1 shows a method for measuring SIG-tCBF using MRA.
  • 1A is an axial (xy-axis) cross-section of two common carotid arteries and two vertebral arteries. In one cross-section, cross-sectional areas of four blood vessels can be obtained.
  • the SIG distribution of the common carotid artery and the vertebral artery is shown in B of FIG. 1 , and the cross-section indicated by a line is A (2D image) of FIG. 1 .
  • the SIG (SI/mm, mean ⁇ SD) of the left and right common carotid arteries and the left and right vertebral arteries were 4.16 ⁇ 1.11, 4.01 ⁇ 0.70, 5.33 ⁇ 1.24, and 5.56 ⁇ 0.91, respectively, and the SIG-BF (SI cm 2 ) was 3.63, respectively. 4.01, 0.88, and 0.92.
  • SIG-tCBF was 9.45 SI ⁇ cm 2 .
  • the left and right common carotid artery and left and right vertebral arteries obtained by carotid ultrasound were 4.33, 4.67, 0.85, and 0.99 cm 3 /sec, respectively, and the total cerebral blood flow was 10.85 cm 3 /sec.
  • intracranial TOF MRA is the most widely used angiography in clinical practice.
  • the common carotid artery or proximal vertebral artery is not scanned, whereas the internal carotid artery and its distal vessels (middle cerebral artery, anterior cerebral artery), and the distal vertebral artery (V4 portion) and basilar artery are photographed.
  • intracranial TOF MRA can only obtain blood flow to the cerebral parenchyma and brainstem through the anterior, middle, posterior cerebral arteries and basilar arteries.
  • the method was performed by using the SIG-BF of four places, the left and right vertebral arteries just before the final branching of the internal carotid artery, that is, the anterior internal carotid artery just before the branching of the anterior cerebral artery and the middle cerebral artery and the posterior inferior cerebellar artery. artery) and ophthalmic artery, only the blood flow to the brainstem and cerebral parenchyma is selectively obtained.
  • SIG-pCBF SIG-parenchymal Cerebral Blood Flow, SIG parenchymal blood flow
  • SIG-pCBF (SI cm 2 ) SIG rt ica ⁇ (r rt ica ) 3 + SIG lt ica ⁇ (r lt ica ) 3 + SIG rt va ⁇ (r rt va ) 3 + SIG lt va ⁇ (r lt va ) 3
  • SIG rt ica and r rt ica are the SIG and radius at the distal end of the right internal carotid artery before bifurcation of the anterior and middle cerebral arteries
  • SIG lt ica and r lt ica are the distal regions of the left internal carotid artery before bifurcation of the anterior and middle cerebral artery
  • SIG and radius, SIG rt va and r rt va are the SIG and radius of the right vertebral artery before bifurcation of the posterior inferior cerebellar artery
  • SIG lt va and r lt va are the SIG and radius of the left vertebral artery before bifurcation of the posterior inferior cerebellar artery.
  • Fig. 2 shows a case showing SIG-pCBF.
  • SIG-pCBF was obtained by summing the SIG-BFs at the ends of the left and right internal carotid arteries and the left and right vertebral arteries (anterior potential originating from the posterior inferior cerebellar artery). 2 is TOF MRA obtained from healthy adults.
  • the mean SIGs of the left and right internal carotid arteries and the left and right vertebral arteries were 6.86, 8.48, 9.67, and 11.2 SI/mm, and the SIG-BF (SI ⁇ cm 2 ) was 1.24, 1.25, and 1.30, respectively.
  • the cerebrum was the same on the left and right, and the cerebellum and brainstem showed more right vertebral artery blood flow.
  • SIG-pCBF was 4.52 SI ⁇ cm 2 .
  • SIG-collateral blood flow SIG-collateral blood flow, SIG collateral blood flow
  • Cerebral hemorrhage is divided into three main types: deep cerebral hemorrhage, subarachnoid hemorrhage, and traumatic cerebral hemorrhage. It is known that deep cerebral hemorrhage is highly correlated with lacunar cerebral infarction or small vessel disease, and subarachnoid hemorrhage is known to be caused by aneurysm rupture.
  • subarachnoid hemorrhage The symptoms of subarachnoid hemorrhage are a very serious disease that can cause a very severe headache and loss of consciousness, requiring immediate surgery or intensive treatment.
  • an aneurysm is also discovered as a potential risk factor for future subarachnoid hemorrhage, a very careful clinical decision is required even if subarachnoid hemorrhage does not occur. In other words, it is necessary to decide whether to treat the aneurysm by surgery or angioplasty using a stent, or whether to observe the clinical course.
  • Figure 6A is taken from a 74-year-old asymptomatic female
  • Figure 6B is taken from a 37-year-old male with subarachnoid hemorrhage. It is difficult to predict whether there will be a rupture risk.
  • MRA SIG and SIG-BF presented in an embodiment of the present invention can be utilized for risk prediction by overcoming various limitations of existing methods and obtaining consistent results in all patients.
  • each aneurysm could be divided into a region receiving inflow blood flow and the remaining region receiving no inflow blood flow. That is, it can be confirmed that the aneurysm is divided into a blood flow inlet portion and a recirculation portion of the introduced blood flow.
  • 7 is a TOF MRA of a 56-year-old female patient with asymptomatic aneurysm. As shown in FIG. 7A, an aneurysm is observed at the origin of the left middle cerebral artery M2 (arrow). 7B and 7C are the SIG analysis results for the aneurysm of the left middle cerebral artery in A.
  • the aneurysm can be divided into a region with a high SIG value on one side (blood flow, broken arrow) and a region with a low value on the other side (blood recirculation, curved arrow).
  • 7C is an image viewed from above.
  • the risk of rupture of an aneurysm is important to determine whether the aneurysm is subjected to, or can be subjected to, strong forces. Based on the characteristics described in FIG. 7, when the risk of aneurysm rupture is high, the SIG of the blood inflow part is high (good blood flow), whereas the area showing a very low value in the blood flow recirculation part (rupture risk zone) is together, it can be said that the aneurysmal blood flow is large.
  • ⁇ SIG ratio the ratio of the maximum difference between SIG
  • SIG-BF ratio the ratio of SIG-BF
  • Equation 8 Equation 8 below.
  • ⁇ SIG ratio ( ⁇ SIG-aneurysm)/( ⁇ SIG-preaneurysm)
  • ⁇ SIG-aneurysm is the difference between the maximum SIG and the minimum SIG of the aneurysm
  • ⁇ SIG-preaneurysm is the difference between the maximum SIG and the minimum SIG of the normal blood vessel proximal to the aneurysm.
  • the SIG-BF ratio is defined by Equation 9 below.
  • SIG-BF ratio (SIG-BF-aneurysm)/(SIG-BF-preaneurysm)
  • SIG-BF-aneurysm is the SIG-BF at the point showing the maximum inner radius of the aneurysm
  • SIG-BF-preaneurysm is the SIG-BF of the normal blood vessel proximal to the aneurysm.
  • the average ⁇ SIG ratio of the asymptomatic group was 0.58 and the SIG-BF ratio was 2.47, whereas the average ⁇ SIG ratio of the two patients with rupture was 1.39 and the SIG-BF ratio was 11.64. showed a big difference.
  • the area corresponding to the low SIG corresponding to the lower 20% of the tile within the aneurysm was 2.81 mm 2 in the asymptomatic group and 9.43 mm 2 in the ruptured group.
  • the system for analyzing the risk of cerebrovascular disease according to an embodiment of the present invention is a system for predicting the risk of cerebrovascular disease by calculating SIG-BF and related factors using the SIG of the blood vessel in the MRA image.
  • a cerebrovascular disease risk analysis system as shown, a computing unit including a communication unit 110, an output unit 120, a processor 130, an input unit 140, and a storage unit 150 system can be implemented.
  • the communication unit 110 is a means for communicating with an external device and connecting to an external network, and in an embodiment of the present invention, receives an MRA image of a patient from an MRA imaging device.
  • the processor 130 calculates SIG-BF, SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ⁇ SIG ratio, and SIG-BF ratio of the blood vessel region from the MRA image received through the communication unit 110 .
  • the processor 130 predicts the risk of cerebrovascular disease using the calculated factors. Specifically, the processor 130 predicts the risk of cerebrovascular disease based on the correlation between the factor and the cerebrovascular disease.
  • the output unit 120 is a display on which the factor values calculated by the processor 130 and the predicted cerebrovascular disease risk are displayed, and the input unit 140 is a means for receiving a user command.
  • the storage unit 150 provides a storage space necessary for the processor 130 to calculate factors and predict the risk of cerebrovascular disease.
  • SIG-BF, SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ⁇ SIG ratio, and SIG-BF ratio were presented as factors derived from SIG of blood vessels in the MRA image.
  • the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be any data storage device readable by the computer and capable of storing data.
  • the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
  • the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Psychology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

MRA 영상에서 혈관 부위 SIG-BF 산출 방법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템이 제공된다. 본 발명의 실시예에 따른 뇌혈관질환 위험도 분석 방법은, MRA 영상에서 혈관 부위의 SIG-BF를 산출하여, 뇌혈관질환 위험도를 예측한다. 이에 의해, 뇌경색, 뇌혈관질환, 뇌출혈 등에 대한 정확한 진단 및 모니터링이 가능해지며, 중장기 예후를 판별하고 최적의 치료제나 치료방법을 선별할 수 있게 되며, 미래 위험도를 예측할 수 있게 된다.

Description

뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템
본 발명은 MRA(Magnetic Resonance Angiography) 응용 기술에 관한 것으로, 더욱 상세하게는 MRA에서 혈관 영상을 분석하여 혈류량 및 이와 관련한 지표를 산출하고, 이를 이용하여 뇌혈관질환, 뇌졸중의 위험도를 분석하는 방법 및 시스템에 관한 것이다.
뇌혈관질환 및 뇌졸중(허혈성 및 출혈성)은 혈관의 협착, 폐색, 파열 혹은 퇴행 등과 같은 병리현상에 의해 발생하는 질환들이다. 혈류의 관점에서 표현하면, 혈류의 급격한 감소(뇌경색) 혹은 지속적으로 낮은 혈류량(뇌혈관질환, 혈관성치매) 및 혈관 밖으로의 혈액 유출 등과 같이 표현할 수 있다.
뇌는 혈류량 50ml/min/100g 이상을 유지해야 정상 뇌활동이 가능하다. 만약, 혈류량이 20-30ml/min/100g미만으로 급격히 떨어지면 허혈성 뇌경색에 빠지게 된다. 또한 뇌혈류량이 30-50ml/min/100g 정도로 부족한 뇌혈류량을 보이는 경우는, 만성적인 에너지(산소와 포도당)부족으로 퇴행성 뇌질환을 보일 수 있다. 소혈관질환(small vessel disease), 치매 및 기타 신경퇴행성질환 등이 이에 속한다. 뇌출혈은 혈종 주변으로의 혈류량 변화가 중요한 예후 인자로 알려져 있고, 지주막하출혈의 원인이 되는 뇌동맥류는 파열 이후 혈류량의 다양한 변화를 초래하는 것으로 알려져 있다.
뇌혈류량의 계측, 특히 환자의 임상변화에 따른 정확하고 반복적인 계측은 초기 진단에서부터 장기간의 예후 판단을 위해 필수적이다. 또한 질환 발생의 예측인자로 활용될 수 있어 그 활용도가 높다. 뇌혈류량은 초음파 검사 혹은 phase contrast MR 기법을 이용해 정량적으로 계측하는 방법이 대표적이며, 기타 뇌의 국소적 혈류분포는 SPECT(Single Photon Emission Computed Tomography)나 BOLD(Blood Oxygen-Level Dependent) MRI 기법 등을 활용한다. 초음파는 좌우 총경동맥과 추골동맥, 4개 혈관에 대해 혈류속도 및 혈관직경을 계측하여 각각의 혈류량을 얻고, 이를 합산하여 뇌총혈류량을 얻을 수 있다. Phase contrast MR 역시 네 개의 혈관에서 MR 촬영을 각각 시행하여 얻은 값을 합산하여 구할 수 있다.
초음파검사는 임상에서 가장 널리 활용되나, 검사자의 검진경험에 의존도가 높고, 특히 추골동맥의 검사가 용이하지 않고, 혈관변이를 정확히 파악하기 힘들다. Phase contrast MR은 혈류속도를 정확히 계측할 수 있는 장점이 있으나 혈관의 구조나 직경은 정확도가 떨어지고, 무엇보다 해당 혈관 각각에 대해 검사를 수행해야하는 번거러움과 장시간의 스캔시간이 요구된다는 단점으로 임상에서 활용도는 낮다. 임상현장에서 짧은 시간 한번의 검사로 네 개 이상의 혈관에 대해 동시에 혈류량을 계측할 수 있는 방법이 필요하다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, MRA 영상에서 SIG를 이용하여 혈관 부위의 SIG-BF 및 이와 관련된 인자들인 SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ΔSIG ratio 및 SIG-BF ratio을 산출하는 방법 및 이들을 이용한 뇌혈관질환 및 뇌졸중을 진단, 예측 및 모니터링하는 방법 및 시스템을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 뇌혈관질환 위험도 분석 방법은, MRA 영상에서 혈관 부위의 SIG-BF(Signal Intensity Gradient-Blood Flow)를 산출하는 단계; 산출된 SIG-BF를 이용하여, 뇌혈관질환 위험도를 예측하는 단계;를 포함한다.
산출 단계는, 다음의 식을 이용하여 SIG-BF를 산출하며,
SIG-BF = SIG*πr3
여기서, SIG는 혈관 부위에서 SIG이고, r은 혈관 반지름이다.
본 발명의 실시예에 따른 뇌혈관질환 위험도 분석 방법은, MRA 영상에서 다음의 식을 이용하여 혈관 부위의 SIG-V(SIG-Velocity, SIG 혈류속도)를 산출하는 단계;를 더 포함하고,
SIG-Velocity = SIG*r
여기서, SIG는 혈관 부위에서 SIG이고, r은 혈관 반지름이다.
SIG는, SIG의 최대값, 최소값, 평균값 중 어느 하나일 수 있다.
SIG-BF는, SIG-tCBF(SIG-total Cerebral Blood Flow)를 포함하고, 산출 단계는, 다음의 식을 이용하여 SIG-tCBF를 산출하며,
SIG-tCBF = SIGrt ccaπ(rrt cca)3 + SIGlt ccaπ(rlt cca)3 + SIGrt vaπ(rrt va)3 + SIGlt vaπ(rlt va)3
여기서, SIGrt cca는 우측 총경동맥 부위에서의 SIG, rrt cca는 우측 총경동맥의 반지름, SIGlt cca는 좌측 총경동맥 부위에서의 SIG, rlt cca는 좌측 총경동맥의 반지름, SIGrt va는 우측 추골동맥 부위에서의 SIG, rrt va는 우측 추골동맥의 반지름, SIGlt va는 좌측 추골동맥 부위에서의 SIG, rlt va는 좌측 추골동맥의 반지름이다.
SIG-BF는, SIG-pCBF(SIG-parenchymal Cerebral Blood Flow)를 포함하고, 산출 단계는, 다음의 식을 이용하여 SIG-pCBF를 산출하며,
SIG-pCBF = SIGrt icaπ(rrt ica)3 + SIGlt icaπ(rlt ica)3 + SIGrt vaπ(rrt va)3 + SIGlt vaπ(rlt va)3
여기서, SIGrt ica와 rrt ica는 전뇌동맥과 중뇌동맥 분지 전 우측 내경동맥 말단 부위에서의 SIG와 반지름, SIGlt ica와 rlt ica는 전뇌동맥과 중뇌동맥 분지 전 좌측 내경동맥 말단 부위에서의 SIG와 반지름, SIGrt va와 rrt va는 후하소뇌동맥 분지 전 우측 추골동맥 부위에서의 SIG와 반지름, SIGlt va와 rlt va는 후하소뇌동맥 분지 전 좌측 추골동맥 부위에서의 SIG와 반지름이다.
SIG-BF는, SIG-colBF(SIG-collateral Blood Flow)를 포함하고 산출 단계는,
SIG-colBF = SIG-tCBF - SIG-pCBF
위 식을 이용하여 SIG-colBF를 산출한다.
SIG-BF는, SIG-BF ratio를 포함하고, 산출 단계는, 다음의 식을 이용하여 SIG-BF ratio를 산출하며,
SIG-BF ratio = (SIG-BF-aneurysm)/(SIG-BF-preaneurysm)
여기서, SIG-BF-aneurysm는 최대 반지름을 보이는 동맥류의 SIG-BF이고, SIG-BF-preaneurysm는 동맥류 근위부 정상 혈관의 SIG-BF이다.
본 발명의 실시예에 따른 뇌혈관질환 위험도 분석 방법은, MRA 영상에서 다음의 식을 이용하여 혈관 부위의 ΔSIG ratio를 산출하는 단계;를 더 포함하고,
ΔSIG ratio = (ΔSIG-aneurysm)/(ΔSIG-preaneurysm)
여기서, ΔSIG-aneurysm는 동맥류 혈관의 최대 SIG와 최소 SIG의 차이며, ΔSIG-preaneurysm는 동맥류 근위부 정상 혈관의 최대 SIG와 최소 SIG의 차이다.
한편, 본 발명의 다른 실시예에 따른, 뇌혈관질환 위험도 분석 시스템은, MRA 영상에서 혈관 부위의 SIG-BF를 산출하고, 산출된 SIG-BF를 이용하여 뇌혈관질환 위험도를 예측하는 프로세서; 프로세서에 의한 산출 결과와 예측 결과를 출력하는 출력부; 및 프로세서에 필요한 저장공간을 제공하는 저장부;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, MRA 영상에서 SIG를 이용하여 혈관 부위의 SIG-BF 및 이와 관련된 인자들인 SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ΔSIG ratio 및 SIG-BF ratio을 추출하여, 뇌혈관 혈류역학과 혈류량에 대한 정성/정량적 분석이 가능하다.
또한, 본 발명의 실시예들에 따르면, 혈관질환의 다양한 특성에 따라 위 인자들을 이용하여, 뇌경색, 뇌혈관질환, 뇌출혈 등에 대한 정확한 진단 및 모니터링이 가능해지며, 중장기 예후를 판별하고 최적의 치료제나 치료방법을 선별할 수 있게 되며, 미래 위험도를 예측할 수 있게 된다.
도 1은 MRA를 활용한 SIG-tCBF 측정법,
도 2는 SIG-pCBF를 보이는 한 증례,
도 3 내지 도 5는 동맥류 계측방법,
도 6은 74세 무증상 여성과 37세 지주막하출혈 남성의 혈관 영상,
도 7은 56세 무증상 동맥류를 보인 여성 환자의 TOF MRA, 그리고,
도 8은 본 발명의 일 실시예에 따른 뇌혈관질환 위험도 분석 시스템의 블럭도이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
1. SIG-BF / SIG-V
CT, MR 혹은 침습적 혈관조영술에서 얻어진 정보는 모두 검은 바탕에 흰 색의 혈관을 보여주는, MIP(Maximum Intensity Projection) 방식으로 표현된다. 이는, 혈관을 해부학적으로(예, 협착) 고찰할 수 있도록 역점을 둔 것이다. TOF-MRA도 임상현장에서는 다른 혈관조영술과 차이 없이 MIP 영상만 제공되고 있는 실정이다.
그러나, TOF-MRA로부터 SIG(Signal Intensity Gradient)를 유도할 수 있으므로, 본 발명의 실시예에서는 이를 통해 혈관에 닿는 혈류 특성을 도출하여 영상화하는 방법을 제시한다.
구체적으로, 본 발명의 실시예에서는, 이러한 혈류 특성을 이용하여 혈류량을 도출하고, 이를 활용하여 뇌졸중 및 뇌혈관질환의 위험도를 정성/정량화하여 진단 및 질환 예측도를 높이고 치료 전후 모니터링 및 치료 방법 결정에 활용할 수 있도록 하는 방안을 제시한다.
본 발명의 실시예에서 제시하는 SIG-BF(Signal Intensity Gradient-Blood Flow, SIG 혈류량)는 다음과 같다. 먼저, Poiseuille equation에 의하면, 전단응력(τ)은 다음의 식 1과 같이 정의된다.
[식 1]
τ = 4Qη/(πr3)
여기서, τ는 전단응력, Q는 혈류량, η는 혈액점도, r는 혈관 반지름이다.
식 1에서 전단응력(τ)을 SIG로 치환하면, 해당 혈관의 혈관벽에서 혈류량(Qartery)는 SIG(Signal Intensity Gradient)를 응용해 다음과 같은 식으로 변환할 수 있다.
[식 2]
Qartery = (τπr3)/4η ≒ SIGπr3 (unit, SI·cm2)
식 2에서 SIG는 해당 혈관의 혈관벽 부위에서의 SIG(최대, 최소, 평균값 등)를 의미하며, 이을 통해 얻은 혈류량을 SIG-BF라 명명한다.
한편, 식 2에서 Qartery = velocity*πr2 으로 치환하면 해당 혈관의 혈류속도를 SIG를 이용해 다음과 같이 얻을 수 있다.
[식 3]
Qartery = velocity*πr2 ≒ SIGπr3
그리고, 식 3에서 양 변의 πr2을 소거하면, 다음과 같다.
[식 4]
Velocity = SIG*r (unit, SI)
식 4에서 SIG는 해당 혈관 부위에서의 SIG(최대, 최소, 평균값 등)를 이용하며, 위 식 4를 통해 얻은 혈류속도를 SIG-V(SIG-Velocity, SIG 혈류속도)라 명명한다.
Phantom 연구결과, 직경 2.1cm 두 개의 튜브에 평균 유량 12.5±2.3, 8.5±2.6L/min 유지한 상태에서 TOF MRA를 시행하고 얻은 SIG 평균값은 각각 2.2±0.4, 0.9±0.3 SI/min 이었다. 그리고, SIG-BF는 각각 8.0±1.45, 3.27±1.09 SI·cm2으로, SIG-BF와 실제 유량은 상관계수 b=0.95, p<0.01이었다. 혈관 내경의 반지름은 1cm미만이며, 인체에서 가장 큰 동맥인 대동맥의 평균 반지름은 약 0.89cm이다.
임상연구에서 경동맥 및 추골동맥 초음파 검사를 통해 얻은 혈관별 혈류량과 TOF MRA 시행 후 얻은 SIG-BF 및 SIG-V의 상관관계를 살펴보았다. 건강한 성인 8명 총 31개 혈관에 대한 초음파 검사 시행하였다(1명의 우측추골동맥은 관찰되지 않았다). 초음파 검사를 이용해 time averaged mean flow velocity 및 직경을 구하고, 이를 이용하여 얻은 좌우총경동맥, 좌우추골동맥 평균 혈류량 (± 표준편차)은 각각 5.42±0.61, 6.34±1.34, 1.42±0.54, 0.88±0.37m3/sec이었다. 이들에서 또한 Carotid TOF MRA를 시행하였고, 상기 식 2에 따라 SIG-BF를 네 개 혈관에서 얻었다. 좌우 총경동맥과 추골동맥의 평균 SIG-BF는 각각 5.77±1.67, 5.95±0.48, 1.96±1.00, 0.89±0.45 SI·cm2 등의 소견을 보였다. 두 검사간 상관지수는 좌경동맥 (b=0.69), 우경동맥 (b=0.71), 좌추골동맥 (b=0.73), 우추골동맥 (b=0.61, all P values<0.01) 등이었고, 네 혈관 모두에 대한 inter-arterial correlation 검사결과 상관지수는 0.93 (P<0.001)이었다 (도 1).
또한, 좌우 총경동맥과 추골동맥 평균 혈류속도는 39.5±16.2, 41.1±11.8, 29.6±8.4, 27.1±10.7 cm/sec이었고, SIG-V는 각각 16.3±4.0, 17.6±2.9, 13.1±3.5, 10.0±2.5 SI 였다. 이들 혈관들의 두 검사간 상관계수는 좌경동맥 (b=0.47), 우경동맥 (b=0.68), 좌추골동맥 (b=0.63), 우추골동맥 (b=0.64, all P values<0.01) 등이었고, 네 혈관 모두에 대한 interarterial correlation 검사결과 상관지수는 0.67 (P<0.001)이었다.
2. SIG-tCBF
뇌혈관질환은 혈류량과 직간접으로 연관되므로, 이를 위해 총뇌혈류량(total Cerebral Blood Flow, tCBF)을 구해 정량분석한다. 본 발명의 실시예에서는 SIG-BF를 이용하여 SIG-tCBF(SIG-total Cerebral Blood Flow, SIG 총뇌혈류량)을 얻는 방안을 제시한다.
SIG-tCBF는 4혈관, 즉 두 총경동맥(common carotid artery, cca)과 두 추골동맥(vertebral artery, va)의 SIG-BF를 합산한 값으로, 다음의 식 5와 같이 정의한다.
[식 5]
SIG-tCBF (SI·cm2) = SIGrt ccaπ(rrt cca)3 + SIGlt ccaπ(rlt cca)3 + SIGrt vaπ(rrt va)3 + SIGlt vaπ(rlt va)3
여기서, SIGrt cca는 우측 총경동맥 부위에서의 SIG, rrt cca는 우측 총경동맥의 반지름, SIGlt cca는 좌측 총경동맥 부위에서의 SIG, rlt cca는 좌측 총경동맥의 반지름, SIGrt va는 우측 추골동맥 부위에서의 SIG, rrt va는 우측 추골동맥의 반지름, SIGlt va는 좌측 추골동맥 부위에서의 SIG, rlt va는 좌측 추골동맥의 반지름이다.
임상연구 결과 SIG-tCBF는 총경동맥 및 추골동맥 초음파 검사를 통해 얻은 총뇌혈류량과 높은 연관성을 보였다. 건강한 성인 8명에서 초음파 검사결과 time averaged mean flow velocity를 활용하여 얻은 총뇌혈류량 평균값은 13.5±1.4 cm3/sec 였다. Carotid TOF MRA를 시행 후 얻은 SIG-총뇌혈류량 평균값은 14.6±2.8 SI·cm2였다. 혈관 초음파와 SIG-tCBF은 상관분석 결과 상관지수 b=0.66, p<0.01 를 보였다(도 1).
도 1에는 MRA를 활용한 SIG-tCBF 측정 방법을 나타나 있다. 도 1의 A에는 두 총경동맥과 두 추골동맥의 axial(xy축) 단면인데, 한 단면에서 4개 혈관의 단면적을 얻을 수 있다. 도 1의 B에는 총경동맥과 추골동맥의 SIG 분포가 표시되어 있는데, 선으로 나타낸 단면이 도 1의 A(2D 영상)이다. 좌우 총경동맥, 좌우 추골동맥의 SIG(SI/mm, mean±SD)는 각각 4.16±1.11, 4.01±0.70, 5.33±1.24, 5.56±0.91이며, SIG-BF (SI·cm2)는 각각 3.63, 4.01, 0.88, 0.92 였다. SIG-tCBF는 9.45 SI·cm2 였다. 참고로 경동맥초음파를 이용해 얻은 좌우 총경동맥, 좌우 추골동맥 혈류량은 각각 4.33, 4.67, 0.85, 0.99 cm3/sec 였고, 총뇌혈류량은 10.85 cm3/sec였다.
3. SIG-pCBF / SIG-colBF
carotid TOF MRA와 별개로, intracranial TOF MRA는 임상에서 가장 널리 사용되는 혈관촬영이다. 그러나, intracranial TOF MRA는 총경동맥이나 추골동맥 근위부는 스캔되지 않고, 반면 내경동맥과 그 원위부 혈관(중뇌동맥, 전뇌동맥), 그리고 추골동맥 원위부(V4 portion)와 기저동맥이 촬영된다. 비록 carotid TOF MRA와 같이 총뇌혈류량을 유도하는 데는 적절치 않으나, intracranial TOF MRA는 전,중,후뇌동맥 및 기저동맥을 통한 뇌실질 및 뇌간 부위로 향하는 혈류량만을 구할 수 있다.
방법은 내경동맥(internal carotid artery)의 최종 분지 직전 즉, 전뇌동맥과 중뇌동맥 분지 바로 전 내경동맥과 후하소뇌동맥 분지 전 좌우 추골동맥, 총 네 곳의 SIG-BF를 활용하면 외경동맥(external carotid artery)과 안동맥(ophthalmic artery)으로의 혈류량을 제외한 뇌간, 뇌실질로 가는 혈류량만 선택적으로 구하게 된다. 이를 SIG-pCBF(SIG-parenchymal Cerebral Blood Flow, SIG 뇌실질혈류량)라 명명하고, 다음 식 6과 같이 정의한다.
[식 6]
SIG-pCBF (SI·cm2) = SIGrt icaπ(rrt ica)3 + SIGlt icaπ(rlt ica)3 + SIGrt vaπ(rrt va)3 + SIGlt vaπ(rlt va)3
여기서, SIGrt ica와 rrt ica는 전뇌동맥과 중뇌동맥 분지 전 우측 내경동맥 말단 부위에서의 SIG와 반지름, SIGlt ica와 rlt ica는 전뇌동맥과 중뇌동맥 분지 전 좌측 내경동맥 말단 부위에서의 SIG와 반지름, SIGrt va와 rrt va는 후하소뇌동맥 분지 전 우측 추골동맥 부위에서의 SIG와 반지름, SIGlt va와 rlt va는 후하소뇌동맥 분지 전 좌측 추골동맥 부위에서의 SIG와 반지름이다.
도 2에 SIG-pCBF를 보이는 한 증례를 나타내었다. 좌우 내경동맥 말단부와 좌우 추골동맥(후하소뇌동맥 기시 전부위), 4곳에서의 SIG-BF를 합산하여 SIG-pCBF를 얻는다. 도 2는 건강한 성인에서 얻은 TOF MRA로, 좌우 내경동맥, 좌우 추골동맥의 평균 SIG는 6.86, 8.48, 9.67, 11.2 SI/mm였고, SIG-BF(SI·cm2)는 각각 1.24, 1.25, 1.30, 0.73으로 대뇌는 좌우 동일했고, 소뇌와 뇌간은 우측 추골동맥 혈류량이 더 많은 양상을 보였다. SIG-pCBF는 4.52 SI·cm2였다.
한편, 전술한 SIG-tCBF에서 SIG-pCBF를 감산하면 안동맥과 외경동맥으로 가는 SIG-colBF(SIG-collateral blood flow, SIG 측부순환혈류량)을 다음과 같이 얻을 수 있다.
[식 7]
SIG-colBF (SI·cm2) = SIG-tCBF - SIG-pCBF
4. ΔSIG ratio / SIG-BF ratio
뇌출혈은 크게 3가지, 즉, 심부뇌출혈, 지주막하출혈, 외상성뇌출혈 등으로 나뉜다. 심부뇌출혈은 특성이 열공성 뇌경색이나 소혈관질환(small vessel disease)과의 연관성이 큰 것으로 알려져 있고, 지주막하출혈은 동맥류(aneurysm) 파열에 의한 것으로 알려져 있다.
지주막하출혈의 증상은 매우 심한 두통 발생과 함께 의식소실을 야기할 수 있고, 즉각적인 수술이나 집중치료가 요구되는 매우 위중한 병이다. 동맥류는 또한 향후 지주막하출혈을 야기할 수 있는 잠재적인 위험인자로 발견 시, 비록 지주막하출혈이 발생하지 않은 경우라도 매우 신중한 임상 결정이 요구된다. 즉, 수술이나 스텐트를 이용한 혈관성형술 등으로 동맥류를 치료할 것인지, 아니면 임상경과를 살피며 관찰할 것인지 결정해야 한다.
동맥류 기존 분류법은 모양이나 형태의 측정이 주가 되었다. 현재까지 많은 분석을 통해 크기, 형태, Aspect ratio(도 3,4), bleb 유무, 혈류입사각(flow angle, 도 5) 등이 동맥류 파열의 주요 위험인자로 보고 되었다. 또한 컴퓨터 시뮬레이션을 이용한(CFD) 연구에서는 낮은 전단응력을 갖는 뇌동맥류가 파열 위험이 높다고 보고되었다. 그러나, 3차원 동맥류를 길이나 입사각과 같은 2차원 개념으로 정확히 계측하기란 쉽지 않으며, 계측자간 이견 위험이 높다. 또한 CFD와 같은 컴퓨터 시뮬레이션도 환자에 맞는 inlet/outlet 조정과 적절한 3D 표면세팅 등, 현실적으로 여러 여건을 충족하여 모든 환자에서 같은 환경/기법으로 일정한 결과를 얻기 어렵다.
기존의 TOF MRA 뿐만 아니라 모든 혈관촬영은 동맥류의 존재 여부를 파악하는 진단이 주된 결과이다. 동맥류의 파열 위험도를 알려주는 혈역학적 방법에 대한 선행연구는 보고되었으나 실제 임상에서 스크리닝을 위해 사용할 수 있는 방법은 거의 없는 상태이다. 예를 들어, 도 6의 A는 74세 무증상 여성으로부터 촬영된 것이고, 도 6의 B는 37세 지주막하출혈 남성으로부터 촬영된 것인데, 두 경우 모두 좌중뇌동맥 M2 분지에서 동맥류가 관찰되나, 혈관 영상만으로는 파열 위험 여부를 예측하기 어렵다.
하지만, 본 발명의 실시예에서 제시하는 MRA SIG 및 SIG-BF는 기존 방법들의 여러 제한점을 극복하고, 모든 환자에서 일관된 결과를 얻어내어 위험도 예측에 활용할 수 있다.
80명의 파열되지 않은 뇌동맥류 MRA SIG를 분석한 결과, 각각의 동맥류는 유입되는 혈류를 받는 부위와 유입 혈류를 받지 않는 나머지 부위로 나눌 수 있었다. 즉, 동맥류는 혈류 유입부와 유입된 혈류의 재순환부로 나뉘는 현상을 확인할 수 있다. 도 7은 56세 무증상 동맥류를 보인 여성 환자의 TOF MRA인데, 도 7의 A에 나타난 바와 같이 좌측 중뇌동맥 M2 기시부에 동맥류가 관찰된다(arrow). 도 7의 B와 C는 A의 좌중뇌동맥의 동맥류에 대한 SIG 분석 결과이다. 동맥류 일측에서 높은 SIG 값을 보이는 부위(혈류유입부, broken arrow)와 반대편의 낮은 값을 보이는 부위(혈류재순환부, curved arrow)로 나눌 수 있다. 도 7의 C는 위에서 내려다 본 영상이다.
동맥류 파열 위험도는 동맥류가 강한 힘을 받는지 혹은 받을 수 있는지 여부를 파악하는 게 중요하다. 도 7에서 기술한 특성에 근거해 볼 때, 동맥류 파열 위험도가 큰 경우는 혈액유입부의 SIG는 높고(혈류유입이 잘 됨), 반면 혈류재순환부에서는 매우 낮은 값을 보이는 영역(파열위험부)이 함께 있으며, 동맥류 혈류량이 큰 경우라 할 수 있다.
뇌동맥류의 파열 위험성에 대한 정량 분석을 위해, 본 발명의 실시예에서는 ΔSIG ratio(SIG의 최대 차이값 비율)와 SIG-BF ratio(SIG-BF 비율)의 개념을 제시한다.
ΔSIG ratio는 다음의 식 8로 정의한다.
[식 8]
ΔSIG ratio = (ΔSIG-aneurysm)/(ΔSIG-preaneurysm)
여기서, ΔSIG-aneurysm는 동맥류의 최대 SIG와 최소 SIG의 차이며, ΔSIG-preaneurysm는 동맥류 근위부 정상 혈관의 최대 SIG와 최소 SIG의 차이다.
SIG-BF ratio는 다음의 식 9로 정의한다.
[식 9]
SIG-BF ratio = (SIG-BF-aneurysm)/(SIG-BF-preaneurysm)
여기서, SIG-BF-aneurysm는 동맥류 내부 최대 반지름을 보이는 지점의 SIG-BF이고, SIG-BF-preaneurysm는 동맥류 근위부 정상 혈관의 SIG-BF이다.
동맥류 전 정상부위와 동맥류의 SIG 및 SIG-BF 분석 결과, 무증상군의 평균 ΔSIG ratio는 0.58, SIG-BF ratio는 2.47 인데 반하여, 파열이 있는 2명의 평균 ΔSIG ratio는 1.39, SIG-BF ratio는 11.64로 큰 차이를 보였다. 또한 동맥류 내의 하위 20% tile에 해당하는 낮은 SIG에 해당하는 영역은 무증상군에서는 2.81mm2이었고, 파열군에서는 9.43mm2로 파열군의 경우 낮은 SIG를 갖는 혈류재순환부가 더 넓은 소견을 보였다.
5. 뇌혈관질환 위험도 분석 시스템
도 8은 본 발명의 일 실시예에 따른 뇌혈관질환 위험도 분석 시스템의 블럭도이다. 본 발명의 실시예에 따른 뇌혈관질환 위험도 분석 시스템은, MRA 영상에서 혈관 부위의 SIG를 이용하여 SIG-BF 및 이와 관련된 인자들을 산출하여, 뇌혈관질환 위험도를 예측하기 위한 시스템이다.
본 발명의 실시예에 따른 뇌혈관질환 위험도 분석 시스템은, 도시된 바와 같이, 통신부(110), 출력부(120), 프로세서(130), 입력부(140) 및 저장부(150)를 포함하는 컴퓨팅 시스템으로 구현 가능하다.
통신부(110)는 외부 기기와 통신하고 외부 네트워크에 접속하기 위한 수단으로, 본 발명의 실시예에서는 MRA 촬영장치로부터 환자의 MRA 영상을 수신하여 준다.
프로세서(130)는 통신부(110)를 통해 수신되는 MRA 영상으로부터 혈관 부위의 SIG-BF, SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ΔSIG ratio 및 SIG-BF ratio을 산출한다.
그리고, 프로세서(130)는 산출된 인자들을 이용하여 뇌혈관질환 위험도를 예측한다. 구체적으로, 프로세서(130)는 인자와 뇌혈관질환 간의 상관 관계를 기초로, 뇌혈관질환 위험도를 예측한다.
뇌혈관질환 위험도를 예측하기 위해 이용하는 인자의 종류와 개수에 대한 제한은 없다. 질환 마다 적정한 인자가 적용된다.
출력부(120)는 프로세서(130)에 의해 산출된 인자값들 및 예측된 뇌혈관질환 위험도가 표시되는 디스플레이이고, 입력부(140)는 사용자 명령을 입력받기 위한 수단이다.
저장부(150)는 프로세서(130)가 인자 산출 및 뇌혈관질환 위험도 예측을 수행함에 있어 필요한 저장공간을 제공한다.
6. 변형예
지금까지, MRA 영상에서 SIG를 이용하여 혈관 부위의 SIG를 산출하고, 산출된 인자들로부터 뇌질환혈관의 위험도를 예측하는 방법 및 시스템에 대해 바람직한 실시예를 들어 상세히 설명하였다.
위 실시예에서는 MRA 영상에서 혈관의 SIG로부터 도출하는 인자들로, SIG-BF, SIG-V, SIG-tCBF, SIG-pCBF, SIG-colBF, ΔSIG ratio 및 SIG-BF ratio를 제시g하였다.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터 간에 연결된 네트워크를 통해 전송될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (10)

  1. MRA 영상에서 혈관 부위의 SIG-BF(Signal Intensity Gradient-Blood Flow)를 산출하는 단계;
    산출된 SIG-BF를 이용하여, 뇌혈관질환 위험도를 예측하는 단계;를 포함하는 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  2. 청구항 1에 있어서,
    산출 단계는,
    다음의 식을 이용하여 SIG-BF를 산출하며,
    SIG-BF = SIGπr3
    여기서, SIG는 혈관 부위에서 SIG이고, r은 혈관 반지름인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  3. 청구항 1에 있어서,
    MRA 영상에서 다음의 식을 이용하여 혈관 부위의 SIG-V(SIG-Velocity, SIG 혈류속도)를 산출하는 단계;를 더 포함하고,
    SIG-Velocity = SIG*r
    여기서, SIG는 혈관 부위에서 SIG이고, r은 혈관 반지름인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  4. 청구항 2 또는 청구항 3에 있어서,
    SIG는,
    SIG의 최대값, 최소값, 평균값 중 어느 하나인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  5. 청구항 1에 있어서,
    SIG-BF는,
    SIG-tCBF(SIG-total Cerebral Blood Flow)를 포함하고,
    산출 단계는,
    다음의 식을 이용하여 SIG-tCBF를 산출하며,
    SIG-tCBF = SIGrt ccaπ(rrt cca)3 + SIGlt ccaπ(rlt cca)3 + SIGrt vaπ(rrt va)3 + SIGlt vaπ(rlt va)3
    여기서, SIGrt cca는 우측 총경동맥 부위에서의 SIG, rrt cca는 우측 총경동맥의 반지름, SIGlt cca는 좌측 총경동맥 부위에서의 SIG, rlt cca는 좌측 총경동맥의 반지름, SIGrt va는 우측 추골동맥 부위에서의 SIG, rrt va는 우측 추골동맥의 반지름, SIGlt va는 좌측 추골동맥 부위에서의 SIG, rlt va는 좌측 추골동맥의 반지름인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  6. 청구항 1에 있어서,
    SIG-BF는,
    SIG-pCBF(SIG-parenchymal Cerebral Blood Flow)를 포함하고,
    산출 단계는,
    다음의 식을 이용하여 SIG-pCBF를 산출하며,
    SIG-pCBF = SIGrt icaπ(rrt ica)3 + SIGlt icaπ(rlt ica)3 + SIGrt vaπ(rrt va)3 + SIGlt vaπ(rlt va)3
    여기서, SIGrt ica와 rrt ica는 전뇌동맥과 중뇌동맥 분지 전 우측 내경동맥 말단 부위에서의 SIG와 반지름, SIGlt ica와 rlt ica는 전뇌동맥과 중뇌동맥 분지 전 좌측 내경동맥 말단 부위에서의 SIG와 반지름, SIGrt va와 rrt va는 후하소뇌동맥 분지 전 우측 추골동맥 부위에서의 SIG와 반지름, SIGlt va와 rlt va는 후하소뇌동맥 분지 전 좌측 추골동맥 부위에서의 SIG와 반지름인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  7. 청구항 1에 있어서,
    SIG-BF는,
    SIG-colBF(SIG-collateral Blood Flow)를 포함하고
    산출 단계는,
    SIG-colBF = SIG-tCBF - SIG-pCBF
    위 식을 이용하여 SIG-colBF를 산출하는 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  8. 청구항 1에 있어서,
    SIG-BF는,
    SIG-BF ratio를 포함하고,
    산출 단계는,
    다음의 식을 이용하여 SIG-BF ratio를 산출하며,
    SIG-BF ratio = (SIG-BF-aneurysm)/(SIG-BF-preaneurysm)
    여기서, SIG-BF-aneurysm는 동맥류 최대 반지름의 SIG-BF이고, SIG-BF-preaneurysm는 동맥류 근위부 정상 혈관의 SIG-BF인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  9. 청구항 1에 있어서,
    MRA 영상에서 다음의 식을 이용하여 혈관 부위의 ΔSIG ratio를 산출하는 단계;를 더 포함하고,
    ΔSIG ratio = (ΔSIG-aneurysm)/(ΔSIG-preaneurysm)
    여기서, ΔSIG-aneurysm는 동맥류의 최대 SIG와 최소 SIG의 차이며, ΔSIG-preaneurysm는 동맥류 근위부 정상 혈관의 최대 SIG와 최소 SIG의 차인 것을 특징으로 하는 뇌혈관질환 위험도 분석 방법.
  10. MRA 영상에서 혈관 부위의 SIG-BF(Signal Intensity Gradient-Blood Flow)를 산출하고, 산출된 SIG-BF를 이용하여 뇌혈관질환 위험도를 예측하는 프로세서;
    프로세서에 의한 산출 결과와 예측 결과를 출력하는 출력부; 및
    프로세서에 필요한 저장공간을 제공하는 저장부;를 포함하는 것을 특징으로 하는 뇌혈관질환 위험도 분석 시스템.
PCT/KR2021/009398 2020-08-05 2021-07-21 뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템 WO2022030822A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/040,521 US20230284923A1 (en) 2020-08-05 2021-07-21 Blood flow calculation method using vascular signal intensity gradient of brain magnetic resonance angiography and system for analyzing risk of cerebrovascular disease and stroke using same
EP21853302.4A EP4176806A1 (en) 2020-08-05 2021-07-21 Blood flow calculation method using vascular signal intensity gradient of brain magnetic resonance angiography and system for analyzing risk of cerebrovascular disease and stroke using same
JP2023532099A JP2023536205A (ja) 2020-08-05 2021-07-21 脳磁気共鳴血管造影検査の血管信号強度グラジエントを用いた血流算出法、並びにそれを用いた脳血管疾患及び脳卒中危険度の分析システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0097740 2020-08-05
KR1020200097740A KR102462075B1 (ko) 2020-08-05 2020-08-05 뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템

Publications (1)

Publication Number Publication Date
WO2022030822A1 true WO2022030822A1 (ko) 2022-02-10

Family

ID=80117419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009398 WO2022030822A1 (ko) 2020-08-05 2021-07-21 뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템

Country Status (5)

Country Link
US (1) US20230284923A1 (ko)
EP (1) EP4176806A1 (ko)
JP (1) JP2023536205A (ko)
KR (1) KR102462075B1 (ko)
WO (1) WO2022030822A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140014605A (ko) * 2012-07-25 2014-02-06 전북대학교산학협력단 Tof-mra를 이용한 혈류특성 및 mr-신호강도구배(전단율) 유도방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101955012B1 (ko) 2017-03-28 2019-03-08 한국전자통신연구원 뇌졸중 예측과 분석 시스템 및 방법
KR20190132710A (ko) 2018-05-21 2019-11-29 한국표준과학연구원 NIHSS(National Institutes of Health Stroke Scale)를 이용한 뇌졸중 중증도의 예측 및 분석 방법과 시스템

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140014605A (ko) * 2012-07-25 2014-02-06 전북대학교산학협력단 Tof-mra를 이용한 혈류특성 및 mr-신호강도구배(전단율) 유도방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAN KAP-SOO, LEE SANG HYUK, RYU HAN UK, PARK SE-HYOUNG, CHUNG GYUNG-HO, CHO YOUNG I., JEONG SEUL-KI: "Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography", BIOMED RESEARCH INTERNATIONAL, HINDAWI PUBLISHING CORPORATION, vol. 2017, 1 January 2017 (2017-01-01), pages 1 - 8, XP055894227, ISSN: 2314-6133, DOI: 10.1155/2017/7087086 *
IBRAHIM A.Y., AMIRABADI A., SHROFF M.M., DLAMINI N., DIRKS P., MUTHUSAMI P.: "Fractional Flow on TOF-MRA as a Measure of Stroke Risk in Children with Intracranial Arterial Stenosis", AMERICAN JOURNAL OF NEURORADIOLOGY, US, vol. 41, no. 3, 1 March 2020 (2020-03-01), US , pages 535 - 541, XP055894223, ISSN: 0195-6108, DOI: 10.3174/ajnr.A6441 *
LIEBESKIND DAVID S., KOSINSKI ANDRZEJ S., LYNN MICHAEL J., SCALZO FABIEN, FONG ALBERT K., FARIBORZ PARI, CHIMOWITZ MARC I., FELDMA: "Noninvasive Fractional Flow on MRA Predicts Stroke Risk of Intracranial Stenosis : MRA Fractional Flow Predicts Stroke", JOURNAL OF NEUROIMAGING, LITTLE, BROWN AND CO., BOSTON, US, vol. 25, no. 1, 1 January 2015 (2015-01-01), US , pages 87 - 91, XP055894215, ISSN: 1051-2284, DOI: 10.1111/jon.12101 *
WANG YUZHAO, GAO DUO, LIU HUAIJUN: "Evaluation of Cerebral Blood Flow Dynamics in Transient Ischemic Attacks Patients with Fast Cine Phase Contrast Magnetic Resonance Angiography", COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, TAYLOR & FRANCIS, vol. 2020, 13 April 2020 (2020-04-13), pages 1 - 6, XP055894220, ISSN: 1748-670X, DOI: 10.1155/2020/4097829 *

Also Published As

Publication number Publication date
EP4176806A1 (en) 2023-05-10
KR102462075B1 (ko) 2022-11-01
KR102462075B9 (ko) 2022-12-27
JP2023536205A (ja) 2023-08-23
US20230284923A1 (en) 2023-09-14
KR20220017593A (ko) 2022-02-14

Similar Documents

Publication Publication Date Title
Izumi et al. MR imaging of the parotid gland in Sjögren's syndrome: a proposal for new diagnostic criteria.
WO2018186589A1 (ko) 개인 맞춤형 뇌질병 진단 및 상태 판정을 위한 의료 영상 처리 시스템 및 방법
Lange et al. Neuroimaging in chronic fatigue syndrome
WO2017051944A1 (ko) 의료 영상 판독 과정에서 사용자의 시선 정보를 이용한 판독 효율 증대 방법 및 그 장치
Matsumoto et al. Associations of brachial-ankle pulse wave velocity and carotid atherosclerotic lesions with silent cerebral lesions
Dietz et al. Relation between intelligence and psychopathology among preschoolers
Qi et al. Default mode network connectivity and related white matter disruption in type 2 diabetes mellitus patients concurrent with amnestic mild cognitive impairment
Ohno et al. Oxygen-enhanced MRI for patients with connective tissue diseases: comparison with thin-section CT of capability for pulmonary functional and disease severity assessment
WO2017135681A1 (ko) 망막 또는 맥락막 내 혈관조영 광가간섭 단층촬영 장치 및 이를 이용한 질병 진단방법
WO2022030822A1 (ko) 뇌자기공명혈관조영술의 혈관 신호강도그래디언트를 이용한 혈류산출법 및 이를 이용한 뇌혈관질환 및 뇌졸중 위험도 분석 시스템
Whitby et al. Corroboration of in utero MRI using post-mortem MRI and autopsy in foetuses with CNS abnormalities
Masselli et al. Are second trimester apparent diffusion coefficient values of the short uterine cervix associated with impending preterm delivery?
Gustavson et al. Associations among executive function Abilities, free Water, and white matter microstructure in early old age
Neto et al. Magnetic resonance angiography and transcranial Doppler ultrasound findings in patients with a clinical diagnosis of vertebrobasilar insufficiency
Yelverton et al. Changes in Vertebral Artery Blood Flow in Different Head Positions and Post–Cervical Manipulative Therapy
Bonilha et al. The role of neuroimaging in the investigation of patients with single seizures, febrile seizures, or refractory partial seizures
Zhou et al. Application of 3D-ASL in hemodynamic analysis and prognosis evaluation of vascular cognitive impairment
Dzananovic et al. Evaluation of congenital hydronephrosis with static and dynamic magnetic resonance urography in Comparation to dynamic renal scintigraphy
Guggenberger et al. High-resolution magnetic resonance imaging visualizes intracranial large artery involvement in giant cell arteritis
Pu et al. Relationship between leukoaraiosis and cerebral large artery stenosis
García et al. Diagnosis of delayed cerebral ischaemia and cerebral vasospasm in subarachnoid haemorrhage
WO2017090805A1 (ko) 인구통계학적 요소 및 운동학적 요소를 기반으로 피험자의 골격근 단면적 산출 모델을 결정하는 방법 및 장치
WO2017111315A1 (ko) Mra 영상을 이용하여 관류 특성 확인용 추가 영상을 얻기 위한 방법 및 시스템
Arca et al. Massive neonatal arterial ischemic stroke
Matsumura et al. Prediction of the cerebral hyperperfusion phenomenon after carotid endarterectomy using a transit time flowmeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023532099

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021853302

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE