WO2022030734A1 - Negative electrode active material, comprising sn-ti-based ceramic bodies, for secondary battery and method for manufacturing same - Google Patents

Negative electrode active material, comprising sn-ti-based ceramic bodies, for secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2022030734A1
WO2022030734A1 PCT/KR2021/006257 KR2021006257W WO2022030734A1 WO 2022030734 A1 WO2022030734 A1 WO 2022030734A1 KR 2021006257 W KR2021006257 W KR 2021006257W WO 2022030734 A1 WO2022030734 A1 WO 2022030734A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
active material
negative electrode
ceramic
ceramic body
Prior art date
Application number
PCT/KR2021/006257
Other languages
French (fr)
Korean (ko)
Inventor
최용원
Original Assignee
주식회사 나래나노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나래나노텍 filed Critical 주식회사 나래나노텍
Publication of WO2022030734A1 publication Critical patent/WO2022030734A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative active material for a secondary battery comprising a ceramic body made of a mixture of Li 2 O, SnO 2 and TiO 2 and a method for manufacturing the same.
  • Lithium secondary batteries are widely used as essential parts for supplying energy to mobile devices, and recently, research for using lithium secondary batteries as a power source for electric vehicles is being actively conducted. Specifically, research to provide a lithium secondary battery having high energy density and capacity, and long-term stable lifespan characteristics is continuing.
  • carbon-based materials such as graphite are commercially available.
  • the carbon-based material has a low theoretical capacity (372 mAh/g in the case of graphite)
  • Si-based or tin (Sn)-based materials having a higher theoretical capacity than carbon-based materials have been studied as negative electrode materials for lithium secondary batteries.
  • Si-based negative electrode material has a very high theoretical capacity, volume expansion of up to 300% occurs during the reaction with lithium, resulting in loss or deformation of the negative electrode active material, which is peeled off from the negative electrode current collector, resulting in a rapid decrease in battery capacity.
  • Sn-based negative electrode material has a lower theoretical capacity than Si-based negative electrode material, but the volume expansion rate is also somewhat lower. However, the volume change of the Sn-based negative electrode material is still large, so a method for suppressing deterioration due to the volume change is required.
  • TiO 2 As a way to suppress the volume change of the Sn-based anode material, a recent study is to combine the TiO 2 -based anode material.
  • TiO 2 has a very low volumetric expansion rate (less than 3%) characteristics, so it is a stable negative electrode material called "zero-strain".
  • zero-strain a stable negative electrode material
  • Another object of the present invention is to provide a secondary battery negative electrode material slurry, a secondary battery negative electrode, and a secondary battery comprising the negative electrode active material for secondary batteries.
  • an anode active material for a secondary battery includes a ceramic body made of a mixture containing Li 2 O, SnO 2 and TiO 2 .
  • the negative active material for a secondary battery according to another embodiment of the present invention is characterized in that it includes a ceramic composite in which a carbon-based material is coated on the surface of the ceramic body.
  • the method 100 for manufacturing a ceramic body for a secondary battery negative active material is characterized in that it includes the following steps:
  • step b1) thermally treating the mixture of step a1) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (120);
  • step b1) pulverizing the ceramic phase of step b1) to obtain a ceramic body in the form of nanoparticles (130).
  • the method 200 of manufacturing a ceramic composite for a secondary battery negative active material according to another embodiment of the present invention is characterized in that it includes the following steps:
  • step b2) heat-treating the mixture of step a2) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (220);
  • step b2) pulverizing the ceramic phase of step b2) to obtain a ceramic body in the form of nanoparticles (230);
  • step d2) coating a carbon-based material on the particle surface of the ceramic body obtained in step c2) (240).
  • the secondary battery negative electrode active material according to the embodiment of the present invention, a conductive material, a binder and a solvent are included, wherein the negative electrode active material is based on the total weight of the slurry It is characterized in that it is included in an amount of 4 to 70% by weight.
  • the negative electrode for a secondary battery according to an embodiment of the present invention is a negative electrode current collector; and a negative electrode active material layer formed on the negative electrode current collector, wherein the negative electrode active material layer includes the negative electrode material slurry for a secondary battery according to an embodiment of the present invention.
  • the secondary battery according to an embodiment of the present invention is characterized in that it includes the negative electrode for the secondary battery according to the embodiment of the present invention.
  • the negative active material for a secondary battery including a specific ceramic body and a method for manufacturing the same a negative electrode material slurry, a negative electrode for a secondary battery, and a secondary battery including a specific ceramic body according to embodiments of the present invention, the following effects are achieved.
  • the negative active material for a secondary battery of the present invention includes a ceramic body based on Li 2 O—SnO 2 —TiO 2 , and thus has high capacity and thermal capacity, low coefficient of thermal expansion, high fire resistance and excellent thermal shock resistance. Through this, it is possible to prevent the risk of battery explosion due to the large volume expansion of the conventional Sn-based negative electrode material and a sudden decrease in lifespan. In addition, since the Li + ion component is reinforced, it is possible to prevent a problem in that efficiency is lowered due to partial loss of Li + ions at the initial stage of discharge. As a result, it is possible to provide a lithium secondary battery having a high capacity, excellent cycle life, and improved efficiency.
  • the negative active material for a secondary battery of the present invention may further include a coating layer coated with a carbon-based material on the surface of the ceramic body, thereby improving the low electrical conductivity of the Sn-Ti-based negative electrode material.
  • FIG. 1 is a view showing a flowchart of a method 100 for manufacturing a ceramic body for a secondary battery negative active material according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method 200 for manufacturing a ceramic composite for a secondary battery negative active material according to an embodiment of the present invention.
  • the present invention provides an anode active material for a secondary battery including a ceramic body made of a mixture of Li 2 O, SnO 2 and TiO 2 .
  • the negative active material for secondary batteries of the present invention includes the ceramic body, thereby maximizing the high-capacity characteristics of Sn, and improving fire resistance and thermal shock resistance, so that the thermal expansion coefficient at high temperature is low, and lithium ion-reinforced characteristics can be retained. , as a result, it is possible to provide a secondary battery having a high capacity, excellent cycle life, and improved efficiency.
  • the ceramic body included in the anode active material for a secondary battery of the present invention is prepared by mixing Li 2 O, SnO 2 and TiO 2 mixture.
  • Li 2 O in the mixture may be included in an amount of 2 to 20 wt%, preferably 2 to 15 wt%, based on the total weight of the mixture.
  • a material containing Li various materials such as Li 2 CO 3 , LiO 2 , LiCo 3 O 4 , LiCoO 2 can be applied, but the content of impurities is small and the oxidation number can be easily controlled by the reaction of oxygen and hydrogen LiO 2 is most suitable
  • Li 2 O is included within the above range, a sufficient amount of Li + ions can be supplemented and battery performance improvement can be expected, but if the blending amount of Li 2 O is less than 2 wt%, sufficient Li + ions cannot be formed. , If it exceeds 20% by weight, the risk of explosion may increase.
  • SnO 2 in the mixture may be included in an amount of 30 to 60 wt %, preferably 30 to 50 wt %, based on the total weight of the mixture.
  • SnO 2 When SnO 2 is included within the above range, sufficient conductivity can be obtained, and it can be easily combined with Li + ions, thereby increasing ionic conductivity.
  • the blending amount of SnO 2 is less than 30 wt%, there may be restrictions in improving ionic conductivity, and if the blending amount of SnO 2 is more than 60 wt%, the battery life is reduced due to excessive volume expansion during ion movement. .
  • TiO 2 may be included in an amount of 30 to 60 wt%, preferably 30 to 50 wt%, based on the total weight of the mixture.
  • the capacity of the negative electrode material can be effectively increased because the reactivity with Li + ions is good. If the blending amount of TiO 2 is less than 30 wt%, the reactivity with Li + ions is reduced, and if it is more than 60 wt%, conductivity is lowered, so that the capacity of the battery may be reduced.
  • the mixture may further include a material including various oxides in addition to the mixing component, for example, Al 2 O 3 , Si, Ta 2 O 5 , ZrO 2 , or a mixture thereof.
  • the average particle diameter (D 50 ) of the ceramic body may be 0.01 to 20 ⁇ m, preferably 0.05 to 5 ⁇ m.
  • the average particle diameter (D 50 ) of the ceramic body is within the above range, the density of the electrode can be increased when it is formed as a negative electrode, and the small-sized particles have the effect of widening the surface area, which makes it easier to react with Li + ions. can If the average particle diameter (D 50 ) of the ceramic body is less than 0.01 ⁇ m, the manufacturing process is very difficult and the particles are too small to limit the movement of Li + ions. When it is formed as an electrode, many pores may be formed inside the electrode, and thus electrical conductivity may decrease.
  • the molar ratio of LiO 2 and SnO 2 contained in the ceramic body may be 0.1 to 4.0, preferably 0.3 to 3.5.
  • the molar ratio of LiO 2 and TiO 2 may be 0.1 to 3.0, preferably 0.15 to 2.0.
  • the ceramic body has a low coefficient of thermal expansion (CTE).
  • the average coefficient of thermal expansion of the ceramic body may be preferably 0.1 to 20 ⁇ 10 -6 m/°C at a temperature of 25 to 200 °C.
  • the present invention provides a negative active material for a secondary battery comprising a ceramic composite in which a carbon-based material is coated on the surface of the ceramic body.
  • the negative active material for a secondary battery of the present invention includes a ceramic composite coated with a carbon-based material on the surface of the ceramic body, thereby improving the low electrical conductivity of the Sn-Ti-based negative electrode material.
  • the carbon-based material may be, for example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; carbon fiber; Carbon nanotubes and the like can be used.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • carbon fiber Carbon nanotubes and the like can be used.
  • the thickness of the coating layer may be 2 to 500 nm, preferably 10 to 100 nm.
  • the thickness of the carbon coating layer is within the above range, electrical conductivity is improved on the surface of the anode active material, so that Li + ions can move.
  • the thickness of the carbon coating layer is less than 2 nm, there is no effect of improving the electrical conductivity, and if it exceeds 500 nm, an excessive carbon layer is formed on the surface and cannot be combined with Li + ions.
  • the present invention provides a method (100) for manufacturing a ceramic body for a secondary battery negative active material, the manufacturing method comprising the following steps:
  • step b1) thermally treating the mixture of step a1) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (120);
  • step b1) pulverizing the ceramic phase of step b1) to obtain a ceramic body in the form of nanoparticles (130).
  • the blending amount of each component in a1) step 110 is 2 to 20 wt% of Li 2 O, 2 to 20 wt% of SnO 2 based on the total weight of the mixture 30-60 weight %, and TiO 2 It may be 30-60 weight %.
  • the blending amount of each component may be 2 to 15 wt% of Li 2 O, 30 to 50 wt% of SnO 2 , and 30 to 50 wt% of TiO 2 based on the total weight of the mixture.
  • the heat treatment of b1) step 120 may be to put the mixture in an electric furnace at a temperature of 1250 to 1500° C. and to treat it for 1 to 10 hours.
  • the atmosphere of the electric furnace may form an atmospheric pressure, a vacuum or a reducing atmosphere.
  • a gas selected from the group consisting of nitrogen, argon, hydrogen, and a mixed gas thereof may be injected to perform the operation under an inert atmosphere, and in some cases may be performed under vacuum.
  • the ceramic phase generated after crystallization in step 120 of b1) is selected from the group consisting of Li 4 Ti 5 O 12 , SnO 2 and mixtures thereof. and Li 4 Ti 5 O 12 crystal phase is mainly formed.
  • the resulting crystal structure may vary depending on the heat treatment temperature, time, and atmosphere, and in order to improve reactivity with Li + ions, the greater the content of Li 4 Ti 5 O 12 , the better.
  • the pulverization in c1) step 130 may be performed using a ball mill or a jet mill. Specifically, when using a ball mill equipment, a ZrO 2 ball having a diameter of 50 to 100 ⁇ m is used and rotated at a speed of 500 to 1000 rpm, and the milling processing time is suitable for 10 to 30 minutes.
  • the pulverization may be performed using a thermal plasma method.
  • the pulverization is a step of selectively vaporizing a ceramic composition containing Li 4 Ti 5 O 12 and SnO 2 as main components of the crystallized ceramic phase through RF thermal plasma, and rapidly cooling the vaporized material to nanocrystallize to produce fusion.
  • the voltage of the plasma torch is 10 ⁇ 70 kW
  • the gas to form the plasma is injected using argon 30 ⁇ 70 LPM
  • the temperature of the chamber can be 100 ⁇ 3000 °C.
  • the average particle diameter (D) of the ceramic body produced after the pulverization of the c1) step 130 or c2) step 230 50 ) may be 0.01 to 20 ⁇ m, preferably 0.05 to 5 ⁇ m.
  • the present invention provides a method 200 for manufacturing a ceramic composite for a secondary battery negative active material, the method comprising the following steps:
  • step b2) heat-treating the mixture of step a2) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (220);
  • step b2) pulverizing the ceramic phase of step b2) to obtain a ceramic body in the form of nanoparticles (230);
  • step d2) coating a carbon-based material on the particle surface of the ceramic body obtained in step c2) (240).
  • step 210, b2) step 220, c2) step 230 are, respectively, the secondary battery of the present invention.
  • A1) step 110, b1) step 120, and c1) step 130 in the method 100 for manufacturing a ceramic composite for a negative electrode active material of a battery are the same as those of step 130 .
  • step d2) 240 may be performed using a ball mill or a jet mill, or may be performed using a thermal plasma method.
  • step 240 is performed using a ball mill, for example, a ZrO 2 ball having a diameter of 50 to 100 ⁇ m is rotated at a speed of 500 to 1000 rpm, and the milling processing time is suitable for 1 to 3 hours. do.
  • a ball mill for example, a ZrO 2 ball having a diameter of 50 to 100 ⁇ m is rotated at a speed of 500 to 1000 rpm, and the milling processing time is suitable for 1 to 3 hours. do.
  • step d2) 240 may include the following steps:
  • the voltage of the plasma torch may be 10 ⁇ 70 kW
  • the gas for forming plasma is preferably argon
  • the injection amount of argon is preferably 30 ⁇ 70 LPM
  • the temperature of the chamber is preferably 100 to 3000 °C.
  • the thickness of the carbon coating layer in the ceramic composite obtained in d2-3) step 243 may be 2 to 500 nm, preferably 2 to 100 nm.
  • the present invention provides a negative electrode material slurry comprising the above-described negative active material for secondary batteries.
  • the anode material slurry for a secondary battery of the present invention includes the anode active material for a secondary battery of the present invention described above, a conductive material, a binder, and a solvent.
  • the negative electrode material slurry for secondary batteries of the present invention may contain 30 to 70% by weight of the anode active material for secondary batteries of the present invention, the conductive material and the binder in a total amount based on the total weight of the slurry, and 30 to 70% by weight of the solvent. .
  • the negative active material may be included in an amount of 4 to 70 wt% based on the total weight of the slurry excluding the solvent. If the content of the negative active material is less than 4% by weight, the capacity improvement effect is insignificant, and if it exceeds 70% by weight, sufficient conductivity between the particles is not ensured and the lifespan of the negative electrode material is reduced.
  • the conductive material included in the anode material slurry for a secondary battery of the present invention is not particularly limited as long as it has conductivity without causing chemical change in the secondary battery, and examples of the conductive material include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive materials such as polyphenylene derivatives.
  • carbon black is particularly preferable because it improves the conductivity between active materials and can be located in the voids between the active materials due to the small size of the particles.
  • the conductive material may be included in an amount of 0.1 to 20% by weight based on the total weight of the slurry excluding the solvent. If the content of the conductive material is less than 0.1 wt%, the effect of improving the conductivity is insignificant, and if it exceeds 20 wt%, the flow of Li + ions is rather hindered and the capacity of the battery is reduced.
  • the binder included in the negative electrode material slurry for a secondary battery of the present invention is not particularly limited as long as it is a conventional binder used for preparing the negative electrode active material slurry, and examples of the binder include acrylonitrile-butadiene rubber, styrene-butadiene rubber as an aqueous binder.
  • aqueous binder is particularly preferable in terms of being easily dispersed without using a toxic solvent, and specifically, styrene-butadiene rubber and carboxymethyl cellulose or a mixture thereof may be used.
  • the negative electrode material slurry for a secondary battery of the present invention may include the binder in an amount of 0.1 to 3% by weight based on the total weight of the slurry excluding the solvent. If the content of the binder is less than 0.1% by weight, the active material or the conductive material is not easily dispersed, and if it is more than 3% by weight, the viscosity may increase, making it difficult to prepare a slurry or coating may be difficult.
  • the solvent contained in the negative electrode material slurry for a secondary battery of the present invention includes an organic solvent such as methylpyrrolidone (NMP) or water, and these solvents may be used alone or in combination of two or more. Among them, it is preferable to use water in consideration of environmental pollution or human harm caused by evaporation of the solvent.
  • NMP methylpyrrolidone
  • the present invention provides a negative electrode comprising the negative electrode material slurry for a secondary battery.
  • the negative electrode for a secondary battery of the present invention the negative electrode current collector; and an anode active material layer formed on the anode current collector, wherein the anode active material layer includes the anode material slurry for a secondary battery of the present invention described above.
  • the negative electrode for the secondary battery may be manufactured by a conventional method known in the art, for example, the negative electrode active material, the conductive material, the binder and the solvent are mixed and stirred to prepare the negative electrode material slurry, and then applied to the negative electrode current collector. It can be prepared by applying, drying, and then pressing.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the secondary battery, and for example, copper, gold, stainless steel, aluminum, nickel, titanium, calcined carbon, on the surface of copper or stainless steel. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. can be used. In addition, various types of films, sheets, foils, nets, porous bodies, foams, nonwovens, and the like may be used. Preferably, a copper sheet may be used in terms of suppressing oxidation reaction with the active material.
  • the present invention provides a secondary battery including the negative electrode for the secondary battery.
  • the secondary battery of the present invention includes the above-described negative electrode for a secondary battery, a positive electrode facing the negative electrode, a separator and an electrolyte interposed between the negative electrode for the secondary battery and the positive electrode.
  • the positive electrode may be manufactured by a conventional method known in the art.
  • a positive electrode may be manufactured by mixing and stirring a solvent, a binder, a conductive material, or a dispersing agent with the positive electrode active material to prepare a slurry, applying the slurry to the positive electrode current collector, pressing and drying the mixture.
  • the positive electrode current collector is a metal that has high conductivity and can be easily adhered to the slurry of the positive electrode active material, and is not particularly limited as long as it has high conductivity without causing a chemical change in the secondary battery in the voltage range of the battery, for example
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, etc. may be used.
  • the adhesive force of the positive electrode active material may be increased.
  • the current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body, and the like.
  • Examples of the solvent for forming the positive electrode include organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, and dimethyl acetamide or water, and these solvents are used alone or in two types. The above can be mixed and used.
  • organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, and dimethyl acetamide or water, and these solvents are used alone or in two types. The above can be mixed and used.
  • polyvinylidene fluoride-hexafluoropropylene copolymer PVDF-co-HFP
  • polyvinylidene fluoride polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose ( CMC1), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene propylene diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR) , fluororubber, polyacrylic acid, and polymers in which hydrogen is substituted with Li, Na or Ca, or various types of binder polymers such as various copolymers may be used.
  • EPDM ethylene propylene diene monomer
  • SBR styrene butadiene rubber
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the secondary battery, and for example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; conductive tubes such as carbon nanotubes; metal powders such as fluorocarbon, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • conductive tubes such as carbon nanotubes
  • metal powders such as fluorocarbon, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the separator constituting the secondary battery of the present invention is a conventional porous polymer film conventionally used as a separator, for example, ethylene homopolymer, propylene homopolymer, ethylene butene copolymer, ethylene hexene copolymer, and ethylene methacrylate copolymer.
  • a porous polymer film made of a polyolefin-based polymer such as such can be used alone or by laminating them, and alternatively, a conventional porous nonwoven fabric, such as a high melting point glass fiber, polyethylene terephthalate fiber, etc., can be used, but this not limited
  • the electrolyte constituting the secondary battery of the present invention may include a lithium salt commonly used in the electrolyte for a lithium secondary battery, and the anions constituting the lithium salt include, for example, F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - ,
  • electrolyte examples include, but are not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten-type inorganic electrolyte that can be used for manufacturing a lithium secondary battery.
  • the external shape of the secondary battery of the present invention may be a cylindrical shape, a square shape, a pouch shape, or a coin shape, but is not particularly limited.
  • the secondary battery of the present invention can be used not only as a battery cell of a small device, but also as a unit battery in a battery module of a medium or large device including a plurality of battery cells.
  • the medium-large device may be, for example, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or an electric power storage system (ESS), but is not limited thereto.
  • each Example 2 to 20 wt% of Li 2 O powder, 50 wt% of SnO 2 powder, and 30 to 48 wt% of TiO 2 powder were mixed according to each example. Then, the mixed mixture was put into an electric furnace set at a temperature of 1350° C., and heat-treated under an inert atmosphere for 2 hours. After the heat treatment, a crystal phase in which Li 4 Ti 5 O 12 and SnO 2 were mixed was formed in the crystallized ceramic phase. Then, the crystallized ceramic phase was pulverized through treatment at a speed of 500 rpm for about 30 minutes using a ZrO 2 ball to obtain a ceramic body for a negative electrode active material having a nanoparticle size.
  • the average particle diameter (D 50 ) of the finally produced ceramic body was 4.5 ⁇ m, and the coefficient of thermal expansion was 1.2 ⁇ 10 ⁇ 6 m/° C. in a temperature range of 20 to 200° C.
  • the coefficient of thermal expansion was measured in a temperature range of 25 ⁇ 200 °C using a TMA (Thermo Mechanical Analyzer).
  • Example 6 in Example 3, 10% by weight of Li 2 O powder, 50% by weight of SnO 2 powder, and 40% by weight of TiO 2 powder was mixed by changing the weight% of SnO 2 and TiO 2 .
  • 10 wt% of Li 2 O powder, 40 wt% of SnO 2 powder, and 50 wt% of TiO 2 powder were mixed.
  • the mixed mixture was put into an electric furnace set at a temperature of 1350° C., and heat-treated under an inert atmosphere for 2 hours. After the heat treatment, a crystal phase in which Li 4 Ti 5 O 12 and SnO 2 were mixed was formed in the crystallized ceramic phase.
  • the crystallized ceramic phase was pulverized through treatment at a speed of 500 rpm for about 30 minutes using a ZrO 2 ball to obtain a ceramic body for a negative electrode active material having a nanoparticle size.
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Li 2 O 20 50 100 150 200 100 SnO 2 500 500 500 500 400 TiO 2 480 450 400 350 300 500
  • Examples 7 to 9 Preparation of ceramic composite for negative electrode active material
  • 2 to 10 wt% of Li 2 O powder, 50 wt% of SnO 2 powder, and 40 to TiO 2 powder according to each embodiment 48% by weight Then, the mixed mixture was put into an electric furnace set at a temperature of 1350° C., and heat-treated under an inert atmosphere for 2 hours. After the heat treatment, a crystal phase in which Li 4 Ti 5 O 12 and SnO 2 were mixed was formed in the crystallized ceramic phase. Then, the crystallized ceramic was pulverized through treatment at a speed of 500 rpm for about 30 minutes using a ZrO 2 ball to obtain a nanoparticle-sized primary ceramic body.
  • a carbon-based material was mixed with the primary ceramic body and then a ball mill was performed to obtain a ceramic composite for an anode active material coated with the carbon-based material.
  • the blending amount of the carbon-based material was 3 parts by weight based on 100 parts by weight of the total weight of the primary ceramic body, and the ball mill time was set to 1 to 3 hours.
  • the average particle diameter (D 50 ) of the finally produced ceramic composite for negative electrode active material was 2.9 ⁇ m in Example 7, 1.3 ⁇ m in Example 8, and 0.2 ⁇ m in Example 9.
  • Example 8 Primary ceramic body Li 2 O 20 50 100 SnO 2 500 500 500 TiO 2 480 450 400 carbon-based material Super-P 30 30 30 processing time 1 hours 2 hours 3 hours
  • Comparative Example 1 In Comparative Example 1, a slurry was prepared by putting a negative active material having a general composition used as a negative electrode slurry. For the negative active material, artificial graphite and natural graphite were mixed, and at this time, 90% by weight of artificial graphite and 10% by weight of natural graphite were mixed with respect to the total weight of the active material.
  • a uniform negative electrode slurry was prepared by mixing the negative electrode active material, conductive material, binder, and solvent prepared in Examples 1 to 9 and Comparative Example 1.
  • 1000 g of an anode active material, 30 g of carbon black as a conductive material, 2.3 g of styrene-butadiene rubber and 1.05 g of carboxymethylcellulose as a binder were used.
  • 966 g of water was used as a solvent. At this time, the solid content in the negative electrode slurry was maintained at a level of about 50%.
  • the prepared negative electrode slurry was coated on one surface of a copper current collector, dried and rolled, and then punched to a predetermined size to prepare a negative electrode.
  • a metal containing Li was used as an anode, which is a counter electrode, and NCM622 was used.
  • 1M LiPF 6 is dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (EMC) are mixed in a volume ratio of 30:70 as electrolytes. was injected to prepare coin-type half-cells of Examples 10 to 18 and Comparative Example 2.
  • Charge-discharge evaluation was performed on the batteries of Examples 10 to 18 and Comparative Example 2, and the battery capacity was measured.
  • Each of the batteries prepared in Examples 10 to 18 and Comparative Example 2 was charged at 25° C. with a constant current (CC) of 0.1 C until 5 mV, and then charged at a constant voltage (CV) so that the charging current was 0.005 C (cut -off current), the first charging was performed. After leaving it for 20 minutes, it was discharged with a constant current (CC) of 0.1 C until it became 1.5 V, and the capacity was measured.
  • CC constant current
  • CV constant voltage
  • Example 11 Example 12
  • Example 13 Example 14 Comparative Example 15 negative active material
  • Example 1 1000
  • Example 2 1000
  • Example 3 1000
  • Example 4 1000
  • Example 5 1000
  • Example 6 1000
  • 30 30
  • Carboxymethylcellulose 1.05 1.05 1.05 1.05 1.05
  • Styrene-Butadiene Rubber 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 water
  • Coin Cell Evaluation Capacity (mAh/g) 195 202 206 212 221 201
  • Example 16 Example 17
  • Example 18 Comparative Example 2 negative active material
  • Example 7 1000
  • Example 8 1000
  • Carbon Black (Super-P) 30 30
  • 30 30
  • Carboxymethylcellulose 1.05 1.05 1.05 1.05
  • Styrene-Butadiene Rubber 2.3 2.3 2.3 2.3 water
  • 966 966 966 966 Coin Cell Evaluation Capacity (mAh/g) 203 214 219 183
  • Examples 1 to 6, which are ceramic bodies for negative electrode active materials according to the present invention, and Examples 7 to 9, which are ceramic composites for negative electrode active materials according to the present invention, are used as negative electrode active materials.
  • the battery capacity was higher than that of the battery of Comparative Example 2 using Comparative Example 1 as a negative active material.
  • the other conditions were the same, but the carbon coating was not applied.
  • the capacity was higher than that of the batteries of Examples 10 to 12 using Examples 1 to 3 as the negative active material, and thus more improved effects could be obtained. It can be seen that the lithium secondary battery maximizes the high-capacity characteristics of the Sn-based anode material, and the stability is improved, so that the thermal expansion coefficient is lowered, thereby preventing volume expansion and improving the cycle life.

Abstract

The present invention relates to a negative electrode active material for a secondary battery, comprising ceramic bodies produced from a mixture of Li2O, SnO2, and TiO2, and a method for manufacturing same.

Description

SN-TI계 세라믹체를 포함하는 이차전지용 음극 활물질과 이의 제조방법Anode active material for secondary battery containing SN-TI ceramic body and method for manufacturing the same
본 발명은 Li2O, SnO2 및 TiO2의 혼합물로 제조된 세라믹체를 포함하는 이차전지용 음극 활물질과 이의 제조방법에 관한 것이다.The present invention relates to a negative active material for a secondary battery comprising a ceramic body made of a mixture of Li 2 O, SnO 2 and TiO 2 and a method for manufacturing the same.
리튬 이차전지는 모바일 기기에 에너지를 공급하는 필수 부품으로 널리 사용되고 있으며, 최근에는 리튬 이차전지를 전기자동차의 동력원으로 사용하기 위한 연구도 활발히 진행되고 있다. 구체적으로, 높은 에너지 밀도와 용량, 및 장기간 안정적인 수명 특성을 갖는 리튬 이차전지를 제공하고자 하는 연구가 계속되고 있다.Lithium secondary batteries are widely used as essential parts for supplying energy to mobile devices, and recently, research for using lithium secondary batteries as a power source for electric vehicles is being actively conducted. Specifically, research to provide a lithium secondary battery having high energy density and capacity, and long-term stable lifespan characteristics is continuing.
리튬 이차전지의 음극재로서, 흑연 등의 탄소계 물질이 상용화되어 있다. 하지만, 탄소계 물질은 이론 용량이 낮기 때문에(흑연의 경우, 372 mAh/g), 고용량, 고출력 사양의 배터리에 적용하기에는 원하는 성능에 도달할 수 없다는 한계가 있다.As a negative electrode material for lithium secondary batteries, carbon-based materials such as graphite are commercially available. However, since the carbon-based material has a low theoretical capacity (372 mAh/g in the case of graphite), there is a limit that the desired performance cannot be reached when applied to a battery having a high capacity and high output specification.
최근에는 탄소계 재료보다 이론 용량이 높은 실리콘(Si)계 또는 주석(Sn)계 재료가 리튬 이차전지의 음극재로 연구되고 있다. Si계 음극재는 이론 용량이 매우 높지만, 리튬과 반응 도중 300%에 달하는 부피 팽창이 일어나 음극 활물질이 손실되거나 변형되고, 이에 따라 음극 집전체로부터 박리되어 전지 용량이 빠르게 감소되는 문제가 있다. Sn계 음극재는 Si계 음극재보다 이론 용량은 낮지만, 부피 팽창률도 다소 낮은 편이다. 그러나, Sn계 음극재의 부피 변화는 여전히 커서 부피 변화에 따른 열화를 억제할 수 있는 방안이 필요하다. Recently, silicon (Si)-based or tin (Sn)-based materials having a higher theoretical capacity than carbon-based materials have been studied as negative electrode materials for lithium secondary batteries. Although the Si-based negative electrode material has a very high theoretical capacity, volume expansion of up to 300% occurs during the reaction with lithium, resulting in loss or deformation of the negative electrode active material, which is peeled off from the negative electrode current collector, resulting in a rapid decrease in battery capacity. Sn-based negative electrode material has a lower theoretical capacity than Si-based negative electrode material, but the volume expansion rate is also somewhat lower. However, the volume change of the Sn-based negative electrode material is still large, so a method for suppressing deterioration due to the volume change is required.
Sn계 음극재의 부피 변화를 억제하기 위한 방안으로 최근 검토되고 있는 것은 TiO2계 음극재를 결합하는 것이다. TiO2는 매우 낮은 부피 팽창률(3% 미만) 특성을 갖고 있어 "제로 변형(zero-strain)"으로 불리는 안정적인 음극재이다. 그러나, TiO2계 음극재는 전기 전도성이 낮기 때문에, 전기 전도성의 추가 개선이 여전히 필요하다.As a way to suppress the volume change of the Sn-based anode material, a recent study is to combine the TiO 2 -based anode material. TiO 2 has a very low volumetric expansion rate (less than 3%) characteristics, so it is a stable negative electrode material called "zero-strain". However, since TiO 2 based anode materials have low electrical conductivity, further improvement of electrical conductivity is still needed.
따라서, Sn계 재료가 가지는 고용량의 장점 및 TiO2계 음극재가 가지는 낮은 부피 팽창률의 장점을 최대화하면서도, 낮은 전기 전도성의 단점을 보완하고 초기 효율이 저하되는 것을 방지할 수 있는 새로운 음극재와 이를 제조하기 위한 방법이 요구된다.Therefore, while maximizing the advantage of the high capacity of the Sn-based material and the low volume expansion rate of the TiO 2 -based anode material, the disadvantage of low electrical conductivity and the production of the same A way to do this is required.
본 발명의 목적은 Li2O, SnO2 및 TiO2의 혼합물로 제조된 세라믹체를 포함함으로써, 높은 용량, 낮은 부피 팽창률 및 개선된 효율과 수명 특성을 가지는 이차전지용 음극 활물질과 이의 제조방법을 제공하는 것이다.It is an object of the present invention to include a ceramic body made of a mixture of Li 2 O, SnO 2 and TiO 2 , thereby providing a negative active material for a secondary battery having a high capacity, a low volumetric expansion rate, and improved efficiency and lifespan characteristics, and a method for manufacturing the same will do
본 발명의 또 다른 목적은 상기 이차전지용 음극 활물질을 포함하는 이차전지용 음극재 슬러리, 이차전지용 음극, 및 이차전지를 제공하는 것이다.Another object of the present invention is to provide a secondary battery negative electrode material slurry, a secondary battery negative electrode, and a secondary battery comprising the negative electrode active material for secondary batteries.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 이차전지용 음극 활물질은 Li2O, SnO2 및 TiO2를 포함하는 혼합물로 제조된 세라믹체를 포함하는 것을 특징으로 한다.In order to solve the above problems, an anode active material for a secondary battery according to an embodiment of the present invention includes a ceramic body made of a mixture containing Li 2 O, SnO 2 and TiO 2 .
또한, 본 발명의 또 다른 실시예에 따른 이차전지용 음극 활물질은 상기 세라믹체 표면에 탄소계 재료가 코팅된 세라믹 복합체를 포함하는 것을 특징으로 한다.In addition, the negative active material for a secondary battery according to another embodiment of the present invention is characterized in that it includes a ceramic composite in which a carbon-based material is coated on the surface of the ceramic body.
또한, 본 발명의 일 실시예에 따른 이차전지 음극 활물질용 세라믹체의 제조방법(100)은 하기 단계를 포함하는 것을 특징으로 한다:In addition, the method 100 for manufacturing a ceramic body for a secondary battery negative active material according to an embodiment of the present invention is characterized in that it includes the following steps:
a1) 각각 분말 형태인 Li2O, SnO2 및 TiO2를 혼합하는 단계(110);a1) mixing Li 2 O, SnO 2 and TiO 2 in powder form, respectively (110);
b1) 단계 a1)의 혼합물을 1250~1500℃의 온도에서 1~10시간 동안 열처리하여 세라믹 상으로 결정화하는 단계(120); 및b1) thermally treating the mixture of step a1) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (120); and
c1) 단계 b1)의 세라믹 상을 분쇄하여 나노입자 형태의 세라믹체를 수득하는 단계(130).c1) pulverizing the ceramic phase of step b1) to obtain a ceramic body in the form of nanoparticles (130).
또한, 본 발명의 또 다른 실시예에 따른 이차전지 음극 활물질용 세라믹 복합체의 제조방법(200)은 하기 단계를 포함하는 것을 특징으로 한다:In addition, the method 200 of manufacturing a ceramic composite for a secondary battery negative active material according to another embodiment of the present invention is characterized in that it includes the following steps:
a2) 각각 분말 형태인 Li2O, SnO2 및 TiO2를 혼합하는 단계(210);a2) mixing Li 2 O, SnO 2 and TiO 2 in powder form, respectively (210);
b2) 단계 a2)의 혼합물을 1250~1500℃의 온도에서 1~10시간 동안 열처리하여 세라믹 상으로 결정화하는 단계(220);b2) heat-treating the mixture of step a2) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (220);
c2) 단계 b2)의 세라믹 상을 분쇄하여 나노입자 형태의 세라믹체를 수득하는 단계(230); 및c2) pulverizing the ceramic phase of step b2) to obtain a ceramic body in the form of nanoparticles (230); and
d2) 단계 c2)에서 수득한 세라믹체의 입자 표면에 탄소계 재료를 코팅하는 단계(240).d2) coating a carbon-based material on the particle surface of the ceramic body obtained in step c2) (240).
또한, 본 발명의 일 실시예에 따른 이차전지용 음극재 슬러리로서, 상기 본 발명의 일 실시예에 따른 이차전지용 음극 활물질, 도전재, 바인더 및 용매를 포함하며, 상기 음극 활물질은 슬러리 총 중량에 대하여 4~70 중량%로 포함되는 것을 특징으로 한다.In addition, as a secondary battery negative electrode material slurry according to an embodiment of the present invention, the secondary battery negative electrode active material according to the embodiment of the present invention, a conductive material, a binder and a solvent are included, wherein the negative electrode active material is based on the total weight of the slurry It is characterized in that it is included in an amount of 4 to 70% by weight.
또한, 본 발명의 일 실시예에 따른 이차전지용 음극은 음극 집전체; 상기 음극 집전체 상에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 상기 본 발명의 일 실시예에 따른 이차전지용 음극재 슬러리를 포함하는 것을 특징으로 한다.In addition, the negative electrode for a secondary battery according to an embodiment of the present invention is a negative electrode current collector; and a negative electrode active material layer formed on the negative electrode current collector, wherein the negative electrode active material layer includes the negative electrode material slurry for a secondary battery according to an embodiment of the present invention.
또한, 본 발명의 일 실시예에 따른 이차전지는 상기 본 발명의 일 실시예에 따른 이차전지용 음극을 포함하는 것을 특징으로 한다.In addition, the secondary battery according to an embodiment of the present invention is characterized in that it includes the negative electrode for the secondary battery according to the embodiment of the present invention.
본 발명의 실시예들에 따른 특정 세라믹체를 포함하는 이차전지용 음극 활물질 및 이의 제조방법, 음극재 슬러리, 이차전지용 음극, 및 이차전지에 따르면 다음의 효과가 달성된다.According to the negative active material for a secondary battery including a specific ceramic body and a method for manufacturing the same, a negative electrode material slurry, a negative electrode for a secondary battery, and a secondary battery including a specific ceramic body according to embodiments of the present invention, the following effects are achieved.
1. 본 발명의 이차전지용 음극 활물질은, Li2O-SnO2-TiO2 기반의 세라믹체를 포함함으로써, 높은 용량 및 열용량, 낮은 열팽창계수, 높은 내화성 및 우수한 내열 충격성의 특성을 지닐 수 있다. 이를 통해, 종래 Sn계 음극재의 큰 부피 팽창에 기인한 전지 폭발의 위험과 급격한 수명 저하를 방지할 수 있다. 또한, Li+ 이온 성분이 보강되므로, 방전 초기에 Li+ 이온이 일부 소실되어 효율이 저하되는 문제를 방지할 수 있다. 결과적으로, 고용량, 우수한 사이클 수명 및 개선된 효율을 가지는 리튬 이차전지를 제공할 수 있다.1. The negative active material for a secondary battery of the present invention includes a ceramic body based on Li 2 O—SnO 2 —TiO 2 , and thus has high capacity and thermal capacity, low coefficient of thermal expansion, high fire resistance and excellent thermal shock resistance. Through this, it is possible to prevent the risk of battery explosion due to the large volume expansion of the conventional Sn-based negative electrode material and a sudden decrease in lifespan. In addition, since the Li + ion component is reinforced, it is possible to prevent a problem in that efficiency is lowered due to partial loss of Li + ions at the initial stage of discharge. As a result, it is possible to provide a lithium secondary battery having a high capacity, excellent cycle life, and improved efficiency.
2. 본 발명의 이차전지용 음극 활물질은, 상기 세라믹체 표면에 탄소계 재료가 코팅된 코팅층을 더 포함함으로써, Sn-Ti계 음극재의 낮은 전기 전도성을 개선할 수 있다.2. The negative active material for a secondary battery of the present invention may further include a coating layer coated with a carbon-based material on the surface of the ceramic body, thereby improving the low electrical conductivity of the Sn-Ti-based negative electrode material.
도 1은 본 발명의 일 실시예에 따른 이차전지 음극 활물질용 세라믹체의 제조방법(100)의 플로우차트를 도시한 도면이다.1 is a view showing a flowchart of a method 100 for manufacturing a ceramic body for a secondary battery negative active material according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 이차전지 음극 활물질용 세라믹 복합체의 제조방법(200)의 플로우차트를 도시한 도면이다.FIG. 2 is a flowchart illustrating a method 200 for manufacturing a ceramic composite for a secondary battery negative active material according to an embodiment of the present invention.
이하에서는 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세히 기술한다.Hereinafter, the present invention will be described in more detail to help the understanding of the present invention.
이차전지용 음극 활물질Anode active material for secondary battery
본 발명은 Li2O, SnO2 및 TiO2의 혼합물로 제조된 세라믹체를 포함하는 이차전지용 음극 활물질을 제공한다.The present invention provides an anode active material for a secondary battery including a ceramic body made of a mixture of Li 2 O, SnO 2 and TiO 2 .
본 발명의 이차전지용 음극 활물질은, 상기 세라믹체를 포함함으로써, Sn의 고용량 특성을 최대화하면서도, 내화성 및 내열 충격성이 향상되어 고온에서의 열팽창계수가 낮고, 리튬 이온이 보강된 특성을 보유할 수 있으며, 결과적으로 고용량, 우수한 사이클 수명 및 개선된 효율을 가지는 이차전지를 제공할 수 있다.The negative active material for secondary batteries of the present invention includes the ceramic body, thereby maximizing the high-capacity characteristics of Sn, and improving fire resistance and thermal shock resistance, so that the thermal expansion coefficient at high temperature is low, and lithium ion-reinforced characteristics can be retained. , as a result, it is possible to provide a secondary battery having a high capacity, excellent cycle life, and improved efficiency.
본 발명의 이차전지용 음극 활물질에 포함되는 상기 세라믹체는 Li2O, SnO2 및 TiO2가 배합된 혼합물로 제조된다.The ceramic body included in the anode active material for a secondary battery of the present invention is prepared by mixing Li 2 O, SnO 2 and TiO 2 mixture.
상기 혼합물 중 Li2O는 혼합물 총 중량에 대하여 2~20 중량%로 포함될 수 있으며, 바람직하게는 2~15 중량%로 포함될 수 있다. Li을 포함하는 물질은 Li2CO3, LiO2, LiCo3O4, LiCoO2 등의 다양한 물질이 적용될 수 있으나, 불순물의 함량이 적고 산소와 수소가 반응하여 쉽게 산화수를 제어할 수 있는 LiO2가 가장 적당하다. Li2O가 상기 범위 내로 포함되는 경우, 충분한 양의 Li+ 이온을 보충할 수 있어 전지 성능 향상을 기대할 수 있으나, Li2O의 배합량이 2 중량% 미만이면 충분한 Li+ 이온을 형성할 수 없으며, 20 중량% 초과이면 폭발의 위험성 등이 증가할 수 있다. Li 2 O in the mixture may be included in an amount of 2 to 20 wt%, preferably 2 to 15 wt%, based on the total weight of the mixture. As a material containing Li, various materials such as Li 2 CO 3 , LiO 2 , LiCo 3 O 4 , LiCoO 2 can be applied, but the content of impurities is small and the oxidation number can be easily controlled by the reaction of oxygen and hydrogen LiO 2 is most suitable When Li 2 O is included within the above range, a sufficient amount of Li + ions can be supplemented and battery performance improvement can be expected, but if the blending amount of Li 2 O is less than 2 wt%, sufficient Li + ions cannot be formed. , If it exceeds 20% by weight, the risk of explosion may increase.
상기 혼합물 중 SnO2는 혼합물 총 중량에 대하여 30~60 중량%로 포함될 수 있으며, 바람직하게는 30~50 중량%로 포함될 수 있다. SnO2가 상기 범위 내로 포함되는 경우, 충분한 전도성을 얻을 수 있으며, Li+ 이온과 쉽게 결합할 수 있어 이온전도도를 높이는 효과가 있다. 하지만 SnO2의 배합량이 30 중량% 미만이면 이온전도도 향상에 제약이 생길 수 있으며, SnO2의 배합량이 60 중량% 초과이면 이온의 이동 시 과도한 부피 팽창으로 인해 전지의 수명이 저하되는 문제가 발생한다.SnO 2 in the mixture may be included in an amount of 30 to 60 wt %, preferably 30 to 50 wt %, based on the total weight of the mixture. When SnO 2 is included within the above range, sufficient conductivity can be obtained, and it can be easily combined with Li + ions, thereby increasing ionic conductivity. However, if the blending amount of SnO 2 is less than 30 wt%, there may be restrictions in improving ionic conductivity, and if the blending amount of SnO 2 is more than 60 wt%, the battery life is reduced due to excessive volume expansion during ion movement. .
상기 혼합물 중 TiO2는 혼합물 총 중량에 대하여 30~60 중량%로 포함될 수 있으며, 바람직하게는 30~50 중량%로 포함될 수 있다. TiO2가 상기 범위 내로 포함되는 경우, Li+ 이온과의 반응성이 좋기 때문에 음극재의 용량을 효과적으로 증대시킬 수 있다. TiO2의 배합량이 30 중량% 미만이면 Li+ 이온과의 반응성이 떨어지며, 60 중량% 초과이면 전도성이 떨어지기 때문에 전지의 용량 저하가 발생할 수 있다.In the mixture, TiO 2 may be included in an amount of 30 to 60 wt%, preferably 30 to 50 wt%, based on the total weight of the mixture. When TiO 2 is included within the above range, the capacity of the negative electrode material can be effectively increased because the reactivity with Li + ions is good. If the blending amount of TiO 2 is less than 30 wt%, the reactivity with Li + ions is reduced, and if it is more than 60 wt%, conductivity is lowered, so that the capacity of the battery may be reduced.
상기 혼합물은 상기 혼합 성분 외에도 다양한 산화물을 포함한 물질을 더 포함할 수 있으며, 그 예로는 Al2O3, Si, Ta2O5, ZrO2, 또는 이들의 혼합물을 들 수 있다.The mixture may further include a material including various oxides in addition to the mixing component, for example, Al 2 O 3 , Si, Ta 2 O 5 , ZrO 2 , or a mixture thereof.
상기 세라믹체의 평균 입경(D50)은, 0.01~20 ㎛, 바람직하게는 0.05~5 ㎛일 수 있다. 세라믹체의 평균 입경(D50)이 상기 범위인 경우, 음극 전극으로 형성하였을 때 전극의 밀도를 높일 수 있으며, 작은 크기의 입자로 인해 표면적이 넓어지는 효과가 있어 더욱 쉽게 Li+ 이온과 반응할 수 있다. 세라믹체의 평균 입경(D50)이 0.01 ㎛ 미만이면 제조과정이 매우 까다롭고 입자가 너무 작아 Li+ 이온의 이동을 제한할 수 있으며, 20 ㎛ 초과이면 입자의 크기가 커서 표면적 증대 효과는 우수하나 전극으로 형성했을 때 전극 내부에 많은 기공을 형성할 수 있어 전기 전도도가 감소할 수 있다.The average particle diameter (D 50 ) of the ceramic body may be 0.01 to 20 μm, preferably 0.05 to 5 μm. When the average particle diameter (D 50 ) of the ceramic body is within the above range, the density of the electrode can be increased when it is formed as a negative electrode, and the small-sized particles have the effect of widening the surface area, which makes it easier to react with Li + ions. can If the average particle diameter (D 50 ) of the ceramic body is less than 0.01 μm, the manufacturing process is very difficult and the particles are too small to limit the movement of Li + ions. When it is formed as an electrode, many pores may be formed inside the electrode, and thus electrical conductivity may decrease.
상기 세라믹체에 함유되는 LiO2와 SnO2의 몰 비는 0.1~4.0, 바람직하게는 0.3~3.5일 수 있다. 또한 LiO2와 TiO2의 몰 비는 0.1~3.0, 바람직하게는 0.15~2.0 일 수 있다.The molar ratio of LiO 2 and SnO 2 contained in the ceramic body may be 0.1 to 4.0, preferably 0.3 to 3.5. In addition, the molar ratio of LiO 2 and TiO 2 may be 0.1 to 3.0, preferably 0.15 to 2.0.
상기 세라믹체는 열팽창계수(CTE: Coefficient of Thermal Expansion)가 낮은 특성을 갖는다. 상기 세라믹체의 평균 열팽창계수는 바람직하게는 25~200℃의 온도에서 0.1~20×10-6 m/℃일 수 있다.The ceramic body has a low coefficient of thermal expansion (CTE). The average coefficient of thermal expansion of the ceramic body may be preferably 0.1 to 20 × 10 -6 m/℃ at a temperature of 25 to 200 ℃.
또한, 본 발명은 상기 세라믹체 표면에 탄소계 재료가 코팅된 세라믹 복합체를 포함하는, 이차전지용 음극 활물질을 제공한다.In addition, the present invention provides a negative active material for a secondary battery comprising a ceramic composite in which a carbon-based material is coated on the surface of the ceramic body.
본 발명의 이차전지용 음극 활물질은, 상기 세라믹체 표면에 탄소계 재료가 코팅된 세라믹 복합체를 포함함으로써, Sn-Ti계 음극재의 낮은 전기 전도성을 개선할 수 있다.The negative active material for a secondary battery of the present invention includes a ceramic composite coated with a carbon-based material on the surface of the ceramic body, thereby improving the low electrical conductivity of the Sn-Ti-based negative electrode material.
상기 탄소계 재료는, 예를 들어 천연흑연이나 인조흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유; 탄소 나노튜브 등이 사용될 수 있다. The carbon-based material may be, for example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; carbon fiber; Carbon nanotubes and the like can be used.
본 발명의 이차전지용 음극 활물질에서 상기 코팅층의 두께는 2~500 nm, 바람직하게는 10~100 nm일 수 있다. 탄소 코팅층의 두께가 상기 범위일 경우, 음극 활물질 표면에 전기전도도가 개선되어 Li+ 이온이 이동할 수 있다. 하지만, 탄소 코팅층의 두께가 2 nm 미만이면 전기 전도도 개선 효과가 없으며, 500 nm 초과이면 표면에 과도한 탄소층이 형성되어 Li+ 이온과 결합할 수 없게 된다.In the negative active material for a secondary battery of the present invention, the thickness of the coating layer may be 2 to 500 nm, preferably 10 to 100 nm. When the thickness of the carbon coating layer is within the above range, electrical conductivity is improved on the surface of the anode active material, so that Li + ions can move. However, if the thickness of the carbon coating layer is less than 2 nm, there is no effect of improving the electrical conductivity, and if it exceeds 500 nm, an excessive carbon layer is formed on the surface and cannot be combined with Li + ions.
이차전지 음극 활물질용 세라믹체의 제조방법Manufacturing method of ceramic body for secondary battery negative active material
본 발명은 이차전지 음극 활물질용 세라믹체의 제조방법(100)을 제공하며, 상기 제조방법은 하기 단계를 포함한다:The present invention provides a method (100) for manufacturing a ceramic body for a secondary battery negative active material, the manufacturing method comprising the following steps:
a1) 각각 분말 형태인 Li2O, SnO2 및 TiO2를 혼합하는 단계(110);a1) mixing Li 2 O, SnO 2 and TiO 2 in powder form, respectively (110);
b1) 단계 a1)의 혼합물을 1250~1500℃의 온도에서 1~10시간 동안 열처리하여 세라믹 상으로 결정화하는 단계(120); 및b1) thermally treating the mixture of step a1) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (120); and
c1) 단계 b1)의 세라믹 상을 분쇄하여 나노입자 형태의 세라믹체를 수득하는 단계(130).c1) pulverizing the ceramic phase of step b1) to obtain a ceramic body in the form of nanoparticles (130).
본 발명의 이차전지 음극 활물질용 세라믹체의 제조방법(100)에서, 상기 a1) 단계(110)에서 각 성분의 배합량은, 혼합물 총 중량에 대하여 Li2O가 2~20 중량%, SnO2가 30~60 중량%, 및 TiO2가 30~60 중량%일 수 있다. 바람직하게는, 각 성분의 배합량은 혼합물 총 중량에 대하여 Li2O가 2~15 중량%, SnO2가 30~50 중량%, 및 TiO2가 30~50 중량%일 수 있다.In the method for manufacturing a ceramic body for a secondary battery negative active material of the present invention (100), the blending amount of each component in a1) step 110 is 2 to 20 wt% of Li 2 O, 2 to 20 wt% of SnO 2 based on the total weight of the mixture 30-60 weight %, and TiO 2 It may be 30-60 weight %. Preferably, the blending amount of each component may be 2 to 15 wt% of Li 2 O, 30 to 50 wt% of SnO 2 , and 30 to 50 wt% of TiO 2 based on the total weight of the mixture.
본 발명의 이차전지 음극 활물질용 세라믹체의 제조방법(100)에서, 상기 b1) 단계(120)의 열처리는, 1250~1500℃ 온도의 전기로에 혼합물을 넣고 1~10시간 동안 처리하는 것일 수 있다. 이때 전기로의 분위기는 대기압, 진공 또는 환원 분위기를 형성할 수 있다. 바람직하게는 질소, 아르곤, 수소 및 이들의 혼합 가스로 이루어진 군에서 선택되는 가스를 주입하여 불활성 분위기 하에서 수행될 수 있으며, 경우에 따라 진공 하에서 수행될 수 있다.In the method 100 for manufacturing a ceramic body for a secondary battery negative active material of the present invention, the heat treatment of b1) step 120 may be to put the mixture in an electric furnace at a temperature of 1250 to 1500° C. and to treat it for 1 to 10 hours. . At this time, the atmosphere of the electric furnace may form an atmospheric pressure, a vacuum or a reducing atmosphere. Preferably, a gas selected from the group consisting of nitrogen, argon, hydrogen, and a mixed gas thereof may be injected to perform the operation under an inert atmosphere, and in some cases may be performed under vacuum.
본 발명의 이차전지 음극 활물질용 세라믹체의 제조방법(100)에서, 상기 b1) 단계(120)의 결정화 후 생성되는 세라믹 상은, Li4Ti5O12, SnO2 및 이의 혼합물로 이루어진 군에서 선택될 수 있고, Li4Ti5O12 결정상이 주로 형성된다. 이때 생성되는 결정 구조는 열처리 온도 및 시간, 분위기에 따라 달라질 수 있으며 Li+ 이온과의 반응성을 개선하기 위해서는 Li4Ti5O12의 함량이 많을수록 좋다.In the method 100 for manufacturing a ceramic body for a secondary battery negative active material of the present invention, the ceramic phase generated after crystallization in step 120 of b1) is selected from the group consisting of Li 4 Ti 5 O 12 , SnO 2 and mixtures thereof. and Li 4 Ti 5 O 12 crystal phase is mainly formed. At this time, the resulting crystal structure may vary depending on the heat treatment temperature, time, and atmosphere, and in order to improve reactivity with Li + ions, the greater the content of Li 4 Ti 5 O 12 , the better.
본 발명의 이차전지 음극 활물질용 세라믹체의 제조방법(100)에서, 상기 c1) 단계(130)에서의 분쇄는 볼밀 또는 제트밀 등을 이용하여 수행될 수 있다. 구체적으로, 볼밀 장비를 활용할 경우에는 50~100 ㎛ 직경의 ZrO2 볼을 사용하여 500~1000 rpm 속도로 회전시키며, 밀링 처리 시간은 10~30분이 적당하다. In the method 100 for manufacturing a ceramic body for a secondary battery negative active material of the present invention, the pulverization in c1) step 130 may be performed using a ball mill or a jet mill. Specifically, when using a ball mill equipment, a ZrO 2 ball having a diameter of 50 to 100 μm is used and rotated at a speed of 500 to 1000 rpm, and the milling processing time is suitable for 10 to 30 minutes.
또는, 상기 분쇄는 열 플라즈마법을 이용하여 수행될 수 있다. 구체적으로, 상기 분쇄는 결정화된 세라믹 상을 RF 열 플라즈마를 통해 Li4Ti5O12와 SnO2를 주성분으로 하는 세라믹 조성물을 선택적으로 기화시키는 단계와 기화된 물질을 급랭시켜 나노 결정화시켜 융합 생성하는 단계를 포함할 수 있다. 이때 플라즈마 토치의 전압은 10~70 kW로 하고, 플라즈마를 형성하는 가스는 아르곤을 사용하여 30~70 LPM을 주입하며, 챔버의 온도는 100~3000℃로 할 수 있다.Alternatively, the pulverization may be performed using a thermal plasma method. Specifically, the pulverization is a step of selectively vaporizing a ceramic composition containing Li 4 Ti 5 O 12 and SnO 2 as main components of the crystallized ceramic phase through RF thermal plasma, and rapidly cooling the vaporized material to nanocrystallize to produce fusion. may include steps. At this time, the voltage of the plasma torch is 10 ~ 70 kW, the gas to form the plasma is injected using argon 30 ~ 70 LPM, the temperature of the chamber can be 100 ~ 3000 ℃.
본 발명의 이차전지 음극 활물질용 세라믹체의 제조방법(100) 및 제조방법(200)에서, 상기 c1) 단계(130) 또는 c2) 단계(230)의 분쇄 후 생성되는 세라믹체의 평균 입경(D50)은, 0.01~20 ㎛, 바람직하게는 0.05~5 ㎛일 수 있다.In the method 100 and the method 200 for manufacturing a ceramic body for a secondary battery negative active material of the present invention, the average particle diameter (D) of the ceramic body produced after the pulverization of the c1) step 130 or c2) step 230 50 ) may be 0.01 to 20 μm, preferably 0.05 to 5 μm.
이차전지 음극 활물질용 세라믹 복합체의 제조방법Manufacturing method of ceramic composite for secondary battery negative active material
본 발명은 이차전지 음극 활물질용 세라믹 복합체의 제조방법(200)을 제공하며, 상기 방법은 하기 단계를 포함한다:The present invention provides a method 200 for manufacturing a ceramic composite for a secondary battery negative active material, the method comprising the following steps:
a2) 각각 분말 형태인 Li2O, SnO2 및 TiO2를 혼합하는 단계(210);a2) mixing Li 2 O, SnO 2 and TiO 2 in powder form, respectively (210);
b2) 단계 a2)의 혼합물을 1250~1500℃의 온도에서 1~10시간 동안 열처리하여 세라믹 상으로 결정화하는 단계(220);b2) heat-treating the mixture of step a2) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase (220);
c2) 단계 b2)의 세라믹 상을 분쇄하여 나노입자 형태의 세라믹체를 수득하는 단계(230); 및c2) pulverizing the ceramic phase of step b2) to obtain a ceramic body in the form of nanoparticles (230); and
d2) 단계 c2)에서 수득한 세라믹체의 입자 표면에 탄소계 재료를 코팅하는 단계(240).d2) coating a carbon-based material on the particle surface of the ceramic body obtained in step c2) (240).
본 발명의 이차전지 음극 활물질용 세라믹 복합체의 제조방법(200)에서, 상기 a2) 단계(210), b2) 단계(220), c2) 단계(230)의 구체적인 내용은 각각, 상기 본 발명의 이차전지 음극 활물질용 세라믹 복합체의 제조방법(100)에서의 a1) 단계(110), b1) 단계(120), c1) 단계(130)와 동일하다.In the method 200 for manufacturing the ceramic composite for a secondary battery negative active material of the present invention, the specific details of the a2) step 210, b2) step 220, c2) step 230 are, respectively, the secondary battery of the present invention. A1) step 110, b1) step 120, and c1) step 130 in the method 100 for manufacturing a ceramic composite for a negative electrode active material of a battery are the same as those of step 130 .
본 발명의 이차전지 음극 활물질용 세라믹 복합체의 제조방법(200)에서, 상기 d2) 단계(240)는 볼밀 또는 제트밀을 이용하여 수행되거나, 또는 열 플라즈마법을 이용하여 수행될 수 있다. In the method 200 for manufacturing the ceramic composite for a secondary battery negative active material of the present invention, step d2) 240 may be performed using a ball mill or a jet mill, or may be performed using a thermal plasma method.
상기 d2) 단계(240)가 볼밀을 이용하여 수행되는 경우, 예를 들어 50~100 ㎛ 직경의 ZrO2 볼을 사용하여 500~1000 rpm 속도로 회전시키며, 밀링 처리 시간은 1~3시간이 적당하다.When the d2) step 240 is performed using a ball mill, for example, a ZrO 2 ball having a diameter of 50 to 100 μm is rotated at a speed of 500 to 1000 rpm, and the milling processing time is suitable for 1 to 3 hours. do.
또는, 상기 d2) 단계(240)가 열 플라즈마법을 이용하여 수행되는 경우, 상기 d2) 단계(240)는 다음 단계를 포함할 수 있다:Alternatively, when step d2) 240 is performed using a thermal plasma method, step d2) 240 may include the following steps:
d2-1) 상기 c2) 단계(230)에서 얻어진 세라믹 입자를 탄소계 재료와 혼합하는 단계(241);d2-1) c2) mixing the ceramic particles obtained in step 230 with a carbon-based material (241);
d2-2) 상기 d2-1)의 혼합물 중 세라믹 입자를 제외한 탄소계 재료를 RF 열 플라즈마를 통해 기화시키는 단계(242); 및d2-2) vaporizing a carbon-based material excluding ceramic particles in the mixture of d2-1) through RF thermal plasma (242); and
d2-3) 상기 d2-2)에서 기화된 물질을 급랭시켜 탄소계 재료가 코팅된 세라믹 복합체를 수득하는 단계(243).d2-3) obtaining a ceramic composite coated with a carbon-based material by quenching the material vaporized in d2-2) (243).
상기 d2-2) 단계(242)에서, 플라즈마 토치의 전압은 10~70 kW일 수 있고, 플라즈마를 형성하는 가스는 아르곤이 바람직하며, 아르곤의 주입량은 30~70 LPM이 바람직하고, 챔버의 온도는 100~3000℃인 것이 바람직하다.In the d2-2) step 242, the voltage of the plasma torch may be 10 ~ 70 kW, the gas for forming plasma is preferably argon, the injection amount of argon is preferably 30 ~ 70 LPM, the temperature of the chamber is preferably 100 to 3000 ℃.
상기 d2-3) 단계(243)에서 수득된 세라믹 복합체 중 탄소 코팅층의 두께는 2~500 nm, 바람직하게는 2~100 nm일 수 있다.The thickness of the carbon coating layer in the ceramic composite obtained in d2-3) step 243 may be 2 to 500 nm, preferably 2 to 100 nm.
이차전지용 음극재 슬러리, 이차전지용 음극, 및 이차전지Anode material slurry for secondary battery, anode for secondary battery, and secondary battery
본 발명은 전술한 이차전지용 음극 활물질을 포함하는 음극재 슬러리를 제공한다.The present invention provides a negative electrode material slurry comprising the above-described negative active material for secondary batteries.
본 발명의 이차전지용 음극재 슬러리는, 전술한 본 발명의 이차전지용 음극 활물질과, 도전재, 바인더 및 용매를 포함한다. The anode material slurry for a secondary battery of the present invention includes the anode active material for a secondary battery of the present invention described above, a conductive material, a binder, and a solvent.
본 발명의 이차전지용 음극재 슬러리는, 전술한 본 발명의 이차전지용 음극 활물질과 도전재 및 바인더를 슬러리의 총 중량에 대해서 합계량으로 30~70 중량%, 용매를 30~70 중량% 포함할 수 있다. 슬러리 내에서 음극 활물질은 용매를 제외한 슬러리 총 중량에 대하여 4~70 중량%로 포함될 수 있다. 상기 음극 활물질의 함유량이 4 중량% 미만이면 용량 개선 효과가 미미하고, 70 중량% 초과이면 입자와 입자 사이에 충분한 전도성이 확보되지 않아 음극재의 수명이 떨어지게 된다.The negative electrode material slurry for secondary batteries of the present invention may contain 30 to 70% by weight of the anode active material for secondary batteries of the present invention, the conductive material and the binder in a total amount based on the total weight of the slurry, and 30 to 70% by weight of the solvent. . In the slurry, the negative active material may be included in an amount of 4 to 70 wt% based on the total weight of the slurry excluding the solvent. If the content of the negative active material is less than 4% by weight, the capacity improvement effect is insignificant, and if it exceeds 70% by weight, sufficient conductivity between the particles is not ensured and the lifespan of the negative electrode material is reduced.
본 발명의 이차전지용 음극재 슬러리에 포함되는 도전재는, 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이면 특별히 제한되지 않으며, 상기 도전재의 예로는 천연흑연이나 인조흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등을 들 수 있다. 그 중에서도 카본블랙이 활물질 간의 전도도를 개선하는 측면과 입자의 크기가 작아 활물질 간 공극에 위치할 수 있어 특히 바람직하다.The conductive material included in the anode material slurry for a secondary battery of the present invention is not particularly limited as long as it has conductivity without causing chemical change in the secondary battery, and examples of the conductive material include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive materials such as polyphenylene derivatives. Among them, carbon black is particularly preferable because it improves the conductivity between active materials and can be located in the voids between the active materials due to the small size of the particles.
상기 도전재는 용매를 제외한 슬러리 총 중량에 대하여 0.1~20 중량%로 포함될 수 있다. 도전재의 함유량이 0.1 중량% 미만이면 전도도 개선 효과가 미미하고, 20 중량% 초과이면 오히려 Li+ 이온의 흐름을 방해하여 전지의 용량이 떨어지게 된다.The conductive material may be included in an amount of 0.1 to 20% by weight based on the total weight of the slurry excluding the solvent. If the content of the conductive material is less than 0.1 wt%, the effect of improving the conductivity is insignificant, and if it exceeds 20 wt%, the flow of Li + ions is rather hindered and the capacity of the battery is reduced.
본 발명의 이차전지용 음극재 슬러리에 포함되는 바인더는, 음극 활물질용 슬러리 제조에 사용되는 통상적인 바인더이면 특별히 제한되지 않으며, 상기 바인더의 예로는 수계 바인더로서 아크릴로니트릴-부타디엔고무, 스티렌-부타디엔 고무, 아크릴 고무, 또는 이들의 혼합물; 또는 비수계 바인더로서 폴리비닐알코올, 카르복시메틸셀룰로즈, 히드록시프로필렌셀룰로즈, 디아세틸렌셀룰로즈, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플루오라이드(PVdF), 폴리에틸렌, 폴리프로필렌, 또는 이들의 혼합물을 들 수 있다. 그 중에서도 수계 바인더가 독성의 용매를 사용하지 않고 쉽게 분산되는 측면에서 특히 바람직하며, 구체적으로 스티렌-부타디엔 고무 및 카르복시메틸셀룰로즈 또는 이를 혼합하여 사용할 수 있다.The binder included in the negative electrode material slurry for a secondary battery of the present invention is not particularly limited as long as it is a conventional binder used for preparing the negative electrode active material slurry, and examples of the binder include acrylonitrile-butadiene rubber, styrene-butadiene rubber as an aqueous binder. , acrylic rubber, or mixtures thereof; Or polyvinyl alcohol, carboxymethyl cellulose, hydroxypropylene cellulose, diacetylene cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) as a non-aqueous binder, polyethylene, polypropylene, or mixtures thereof. Among them, the aqueous binder is particularly preferable in terms of being easily dispersed without using a toxic solvent, and specifically, styrene-butadiene rubber and carboxymethyl cellulose or a mixture thereof may be used.
본 발명의 이차전지용 음극재 슬러리는, 상기 바인더를 용매를 제외한 슬러리 총 중량에 대하여 합계량으로 0.1~3 중량%로 포함할 수 있다. 바인더의 함유량이 0.1 중량% 미만이면 활물질 또는 도전재가 쉽게 분산되지 않으며, 3 중량% 초과이면 점도가 높아져 슬러리로 제조되기 어렵거나 코팅이 어려울 수 있다.The negative electrode material slurry for a secondary battery of the present invention may include the binder in an amount of 0.1 to 3% by weight based on the total weight of the slurry excluding the solvent. If the content of the binder is less than 0.1% by weight, the active material or the conductive material is not easily dispersed, and if it is more than 3% by weight, the viscosity may increase, making it difficult to prepare a slurry or coating may be difficult.
본 발명의 이차전지용 음극재 슬러리에 포함되는 용매는, 메틸피롤리돈(NMP) 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 그 중에서도 용매가 증발되면서 발생되는 환경오염이나 인체 유해성 등을 고려하여 물을 사용하는 것이 바람직하다.The solvent contained in the negative electrode material slurry for a secondary battery of the present invention includes an organic solvent such as methylpyrrolidone (NMP) or water, and these solvents may be used alone or in combination of two or more. Among them, it is preferable to use water in consideration of environmental pollution or human harm caused by evaporation of the solvent.
본 발명은 상기 이차전지용 음극재 슬러리를 포함하는 음극을 제공한다.The present invention provides a negative electrode comprising the negative electrode material slurry for a secondary battery.
본 발명의 이차전지용 음극은, 음극 집전체; 상기 음극 집전체 상에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 전술한 본 발명의 이차전지용 음극재 슬러리를 포함한다. The negative electrode for a secondary battery of the present invention , the negative electrode current collector; and an anode active material layer formed on the anode current collector, wherein the anode active material layer includes the anode material slurry for a secondary battery of the present invention described above.
상기 이차전지용 음극은, 당 분야에 알려져 있는 통상적인 방법으로 제조될 수 있으며, 예컨대 상기 음극 활물질, 도전재, 바인더 및 용매를 혼합 및 교반하여 상기 음극재 슬러리를 제조한 후, 이를 음극 집전체에 도포하고 건조한 후 압착하여 제조할 수 있다.The negative electrode for the secondary battery may be manufactured by a conventional method known in the art, for example, the negative electrode active material, the conductive material, the binder and the solvent are mixed and stirred to prepare the negative electrode material slurry, and then applied to the negative electrode current collector. It can be prepared by applying, drying, and then pressing.
상기 음극 집전체는, 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이면 특별히 제한되지 않으며, 예를 들어 구리, 금, 스테인리스 강, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 강의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등을 사용할 수 있다. 또한, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태의 것을 사용할 수 있다. 바람직하게는 활물질과의 산화 반응을 억제하는 측면에서 구리 시트를 사용할 수 있다.The negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the secondary battery, and for example, copper, gold, stainless steel, aluminum, nickel, titanium, calcined carbon, on the surface of copper or stainless steel. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. can be used. In addition, various types of films, sheets, foils, nets, porous bodies, foams, nonwovens, and the like may be used. Preferably, a copper sheet may be used in terms of suppressing oxidation reaction with the active material.
본 발명은 상기 이차전지용 음극을 포함하는 이차전지를 제공한다.The present invention provides a secondary battery including the negative electrode for the secondary battery.
본 발명의 이차전지는 전술한 이차전지용 음극, 상기 음극에 대향하는 양극, 상기 이차전지용 음극 및 상기 양극 사이에 개재된 분리막 및 전해질을 포함한다. The secondary battery of the present invention includes the above-described negative electrode for a secondary battery, a positive electrode facing the negative electrode, a separator and an electrolyte interposed between the negative electrode for the secondary battery and the positive electrode.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 바인더, 도전재 또는 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 양극 집전체에 도포하고 압착한 뒤 건조하여 양극을 제조할 수 있다.The positive electrode may be manufactured by a conventional method known in the art. For example, a positive electrode may be manufactured by mixing and stirring a solvent, a binder, a conductive material, or a dispersing agent with the positive electrode active material to prepare a slurry, applying the slurry to the positive electrode current collector, pressing and drying the mixture.
상기 양극 집전체는 전도성이 높고 상기 양극 활물질의 슬러리가 용이하게 접착될 수 있는 금속으로, 전지의 전압 범위에서 이차전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이면 특별히 제한되지 않으며, 예를 들어 스테인레스 강, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 강 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 집전체 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용할 수 있다.The positive electrode current collector is a metal that has high conductivity and can be easily adhered to the slurry of the positive electrode active material, and is not particularly limited as long as it has high conductivity without causing a chemical change in the secondary battery in the voltage range of the battery, for example For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, etc. may be used. In addition, by forming fine irregularities on the surface of the current collector, the adhesive force of the positive electrode active material may be increased. The current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body, and the like.
상기 양극 활물질은, 예를 들어 리튬 코발트 산화물(LiCoO2); 리튬 니켈 산화물(LiNiO2); Li[NiaCobMncMd]O2(여기서, M은 Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고, 0.3≤a<1.0, 0≤b≤0.5, 0≤c≤0.5, 0≤d≤0.1, a+b+c+d=1임); Li(LiaM1 b-a-b'M2 b')O2-cAc(여기서, 0≤a≤0.2, 0.6≤b≤1, 0≤b'≤0.2, 0≤c≤0.2이고, M1은 Mn과, Ni, Co, Fe, Cr, V, Cu, Zn 및 Ti로 이루어진 군에서 선택되는 1종 이상을 포함하며, M2는 Al, Mg 및 B로 이루어진 군에서 선택되는 1종 이상이고, A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상임) 등의 층상 화합물이나 하나 이상의 전이금속으로 치환된 화합물; Li1+aMn2-aO4(여기서, 0≤a≤0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-aMaO2(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, 0.01≤a≤0.3임)로 나타내는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-aMaO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta이고, 0.01≤a≤0.1임) 또는 Li2Mn3MO8(여기서, M = Fe, Co, Ni, Cu 또는 Zn)로 나타내는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; LiFe3O4, Fe2(MoO4)3 등을 들 수 있으나, 이에 제한되지 않는다. 구체적으로, 상기 양극 활물질은 LiNixCoyMnzO2(0≤x, y, z≤1이고, x+y+z=1임)인 것으로서, 니켈, 코발트, 망간 비에 따라 NCM111(x:y:z=1:1:1), NCM523(x:y:z=5:2:3), NCM622(x:y:z=6:2:2), NCM811(x:y:z=8:1:1)으로 지칭되는 것 등을 사용할 수 있다.The positive active material may include, for example, lithium cobalt oxide (LiCoO 2 ); lithium nickel oxide (LiNiO 2 ); Li[Ni a Co b Mn c M d ]O 2 (where M is any one selected from the group consisting of Al, Ga, and In, or two or more of them, 0.3≤a<1.0, 0≤b≤ 0.5, 0≤c≤0.5, 0≤d≤0.1, a+b+c+d=1); Li(Li a M 1 ba-b' M 2 b' )O 2-c A c (where 0≤a≤0.2, 0.6≤b≤1, 0≤b'≤0.2, 0≤c≤0.2, M 1 includes Mn and at least one selected from the group consisting of Ni, Co, Fe, Cr, V, Cu, Zn and Ti, and M 2 is one selected from the group consisting of Al, Mg and B or more, and A is at least one selected from the group consisting of P, F, S and N) or a layered compound such as a compound substituted with one or more transition metals; Lithium manganese oxides, such as Li 1+a Mn 2-a O 4 (where 0≤a≤0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site-type lithium nickel oxide represented by the formula LiNi 1-a M a O 2 (wherein M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, and 0.01≤a≤0.3); Formula LiMn 2-a M a O 2 (where M = Co, Ni, Fe, Cr, Zn or Ta, and 0.01≤a≤0.1) or Li 2 Mn 3 MO 8 (where M = Fe, Co, lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; disulfide compounds; LiFe 3 O 4 , Fe 2 (MoO 4 ) 3 and the like, but is not limited thereto. Specifically, the positive active material is LiNi x Co y Mn z O 2 (0≤x, y, z≤1, and x+y+z=1), according to the nickel, cobalt, manganese ratio NCM111 (x :y:z=1:1:1), NCM523(x:y:z=5:2:3), NCM622(x:y:z=6:2:2), NCM811(x:y:z=) 8:1:1) may be used.
상기 양극을 형성하기 위한 용매로는, NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Examples of the solvent for forming the positive electrode include organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, and dimethyl acetamide or water, and these solvents are used alone or in two types. The above can be mixed and used.
상기 바인더로는, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC1), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌 프로필렌 디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리아크릴산 및 이들의 수소가 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.As the binder, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose ( CMC1), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene propylene diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR) , fluororubber, polyacrylic acid, and polymers in which hydrogen is substituted with Li, Na or Ca, or various types of binder polymers such as various copolymers may be used.
상기 도전재는 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이면 특별히 제한되지 않으며, 예를 들어 천연흑연이나 인조흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 탄소 나노튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the secondary battery, and for example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; conductive tubes such as carbon nanotubes; metal powders such as fluorocarbon, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.The dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
본 발명의 이차전지를 구성하는 분리막은, 종래에 분리막으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌 부텐 공중합체, 에틸렌 헥센 공중합체 및 에틸렌 메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 다르게는 통상적인 다공성 부직포, 예컨대 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되지 않는다.The separator constituting the secondary battery of the present invention is a conventional porous polymer film conventionally used as a separator, for example, ethylene homopolymer, propylene homopolymer, ethylene butene copolymer, ethylene hexene copolymer, and ethylene methacrylate copolymer. A porous polymer film made of a polyolefin-based polymer such as such can be used alone or by laminating them, and alternatively, a conventional porous nonwoven fabric, such as a high melting point glass fiber, polyethylene terephthalate fiber, etc., can be used, but this not limited
본 발명의 이차전지를 구성하는 전해질은, 리튬 이차전지용 전해질에 통상적으로 사용되는 리튬염을 포함할 수 있으며, 상기 리튬염을 구성하는 음이온으로는 예를 들어 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-으로 이루어진 군에서 선택된 어느 하나일 수 있다.The electrolyte constituting the secondary battery of the present invention may include a lithium salt commonly used in the electrolyte for a lithium secondary battery, and the anions constituting the lithium salt include, for example, F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 , CH 3 CO 2 , SCN and (CF 3 CF 2 SO 2 ) 2 N may be any one selected from the group consisting of.
상기 전해질은, 리튬 이차전지 제조에 사용 가능한 유기 액체 전해질, 무기 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 예로 들 수 있으나, 이로 제한되지 않는다.Examples of the electrolyte include, but are not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten-type inorganic electrolyte that can be used for manufacturing a lithium secondary battery.
본 발명의 이차전지의 외형은 원통형, 각형, 파우치형 또는 코인형일 수 있으나, 특별히 제한되지 않는다.The external shape of the secondary battery of the present invention may be a cylindrical shape, a square shape, a pouch shape, or a coin shape, but is not particularly limited.
본 발명의 이차전지는 소형 디바이스의 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀을 포함하는 중대형 디바이스의 전지모듈에 단위전지로도 사용될 수 있다. 상기 중대형 디바이스는 예를 들어 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장 시스템(ESS)일 수 있으나, 이로 제한되는 것은 아니다.The secondary battery of the present invention can be used not only as a battery cell of a small device, but also as a unit battery in a battery module of a medium or large device including a plurality of battery cells. The medium-large device may be, for example, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or an electric power storage system (ESS), but is not limited thereto.
실시예Example
이하, 본 발명의 내용을 실시예 및 시험예를 들어 보다 구체적으로 설명한다. 이들 실시예 및 시험예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐, 본 발명의 범주 및 범위가 하기 실시예 및 시험예에 의해 제한되는 것은 아니다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples and Test Examples. These Examples and Test Examples are provided for illustrative purposes only to aid understanding of the present invention, and the scope and scope of the present invention are not limited by the following Examples and Test Examples.
<음극 활물질의 제조><Production of negative electrode active material>
실시예 1~5: 음극 활물질용 세라믹체의 제조Examples 1-5: Preparation of ceramic body for negative electrode active material
각각의 실시예에 따라 Li2O 분말 2~20 중량%, SnO2 분말 50 중량% 및 TiO2 분말을 각각의 실시예에 따라 30~48 중량%로 혼합하였다. 이어서, 혼합된 혼합물을 1350℃의 온도로 설정된 전기로에 넣고, 불활성 분위기 하에서 2시간 열처리하였다. 열처리 후 결정화된 세라믹 상은 Li4Ti5O12와 SnO2가 혼합된 결정상이 형성되었다. 이어서, 결정화된 세라믹 상을 ZrO2 볼을 이용하여 500 rpm의 속도로 약 30분간 처리를 통해 분쇄하여 나노입자 크기의 음극 활물질용 세라믹체를 수득하였다. 최종 생성된 세라믹체의 평균 입경(D50)은 4.5 ㎛, 열팽창계수는 20~200℃의 온도 범위에서 1.2×10-6 m/℃이었다. 열팽창계수는 TMA(Thermo Mechanical Analyzer)를 이용하여 25~200℃의 온도범위에서 측정하였다.According to each Example, 2 to 20 wt% of Li 2 O powder, 50 wt% of SnO 2 powder, and 30 to 48 wt% of TiO 2 powder were mixed according to each example. Then, the mixed mixture was put into an electric furnace set at a temperature of 1350° C., and heat-treated under an inert atmosphere for 2 hours. After the heat treatment, a crystal phase in which Li 4 Ti 5 O 12 and SnO 2 were mixed was formed in the crystallized ceramic phase. Then, the crystallized ceramic phase was pulverized through treatment at a speed of 500 rpm for about 30 minutes using a ZrO 2 ball to obtain a ceramic body for a negative electrode active material having a nanoparticle size. The average particle diameter (D 50 ) of the finally produced ceramic body was 4.5 μm, and the coefficient of thermal expansion was 1.2×10 −6 m/° C. in a temperature range of 20 to 200° C. The coefficient of thermal expansion was measured in a temperature range of 25 ~ 200 ℃ using a TMA (Thermo Mechanical Analyzer).
실시예 6: 음극 활물질용 세라믹체의 제조Example 6: Preparation of ceramic body for negative electrode active material
실시예 6에서는 실시예 3에서 Li2O 분말 10 중량%, SnO2 분말 50 중량% 및 TiO2 분말을 40 중량%로 혼합한 것에서 SnO2와 TiO2의 중량%를 변경하여 혼합하였다. 실시예 6에서는 Li2O 분말 10 중량%, SnO2 분말 40 중량% 및 TiO2 분말을 50 중량%로 혼합하였다. 이어서, 혼합된 혼합물을 1350℃의 온도로 설정된 전기로에 넣고, 불활성 분위기 하에서 2시간 열처리하였다. 열처리 후 결정화된 세라믹 상은 Li4Ti5O12와 SnO2가 혼합된 결정상이 형성되었다. 이어서, 결정화된 세라믹 상을 ZrO2 볼을 이용하여 500 rpm의 속도로 약 30분간 처리를 통해 분쇄하여 나노입자 크기의 음극 활물질용 세라믹체를 수득하였다. In Example 6, in Example 3, 10% by weight of Li 2 O powder, 50% by weight of SnO 2 powder, and 40% by weight of TiO 2 powder was mixed by changing the weight% of SnO 2 and TiO 2 . In Example 6, 10 wt% of Li 2 O powder, 40 wt% of SnO 2 powder, and 50 wt% of TiO 2 powder were mixed. Then, the mixed mixture was put into an electric furnace set at a temperature of 1350° C., and heat-treated under an inert atmosphere for 2 hours. After the heat treatment, a crystal phase in which Li 4 Ti 5 O 12 and SnO 2 were mixed was formed in the crystallized ceramic phase. Then, the crystallized ceramic phase was pulverized through treatment at a speed of 500 rpm for about 30 minutes using a ZrO 2 ball to obtain a ceramic body for a negative electrode active material having a nanoparticle size.
위 실시예 1~6에서 사용한 각 성분의 배합량을 하기 표 1에 요약하였다(단위: g).The blending amounts of each component used in Examples 1 to 6 are summarized in Table 1 below (unit: g).
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6
Li2OLi 2 O 2020 5050 100100 150150 200200 100100
SnO2 SnO 2 500500 500500 500500 500500 500500 400400
TiO2 TiO 2 480480 450450 400400 350350 300300 500500
실시예 7~9: 음극 활물질용 세라믹 복합체의 제조실시예 1~3과 동일하게 Li2O 분말 2~10 중량%, SnO2 분말 50 중량% 및 TiO2 분말을 각각의 실시예에 따라 40~48 중량%로 혼합하였다. 이어서, 혼합된 혼합물을 1350℃의 온도로 설정된 전기로에 넣고, 불활성 분위기 하에서 2시간 열처리하였다. 열처리 후 결정화된 세라믹 상은 Li4Ti5O12와 SnO2가 혼합된 결정상이 형성되었다. 이어서, 결정화된 세라믹 상에 ZrO2 볼을 이용하여 500 rpm의 속도로 약 30분간 처리를 통해 분쇄하여 나노입자 크기의 1차 세라믹체를 수득하였다. 이어서, 1차 세라믹체에 탄소계 재료를 혼합한 뒤 볼밀을 수행하여 탄소계 재료가 코팅된 음극 활물질용 세라믹 복합체를 수득하였다. 이때, 탄소계 재료의 배합량은 1차 세라믹체의 총 중량 100 중량부를 기준으로 3 중량부로 하였으며, 볼밀 시간은 1~3시간으로 하였다. 최종 생성된 음극 활물질용 세라믹 복합체의 평균 입경(D50)은 실시예 7은 2.9 ㎛, 실시예 8은 1.3 ㎛, 실시예 9는 0.2 ㎛이었다. Examples 7 to 9: Preparation of ceramic composite for negative electrode active material In the same manner as in Examples 1 to 3, 2 to 10 wt% of Li 2 O powder, 50 wt% of SnO 2 powder, and 40 to TiO 2 powder according to each embodiment 48% by weight. Then, the mixed mixture was put into an electric furnace set at a temperature of 1350° C., and heat-treated under an inert atmosphere for 2 hours. After the heat treatment, a crystal phase in which Li 4 Ti 5 O 12 and SnO 2 were mixed was formed in the crystallized ceramic phase. Then, the crystallized ceramic was pulverized through treatment at a speed of 500 rpm for about 30 minutes using a ZrO 2 ball to obtain a nanoparticle-sized primary ceramic body. Then, a carbon-based material was mixed with the primary ceramic body and then a ball mill was performed to obtain a ceramic composite for an anode active material coated with the carbon-based material. At this time, the blending amount of the carbon-based material was 3 parts by weight based on 100 parts by weight of the total weight of the primary ceramic body, and the ball mill time was set to 1 to 3 hours. The average particle diameter (D 50 ) of the finally produced ceramic composite for negative electrode active material was 2.9 μm in Example 7, 1.3 μm in Example 8, and 0.2 μm in Example 9.
위 실시예 7~9에서 사용한 각 성분의 배합비(단위: g)와 처리 시간을 하기 표 2에 요약하였다.The compounding ratio (unit: g) and treatment time of each component used in Examples 7 to 9 above are summarized in Table 2 below.
구분division 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9
1차
세라믹체
Primary
ceramic body
Li2OLi 2 O 2020 5050 100100
SnO2 SnO 2 500500 500500 500500
TiO2 TiO 2 480480 450450 400400
탄소계
재료
carbon-based
material
Super-PSuper-P 3030 3030 3030
처리 시간processing time 1시간1 hours 2시간2 hours 3시간3 hours
비교예 1비교예 1에서 통상 음극 슬러리로 사용되는 일반적인 조성의 음극 활물질을 넣어 슬러리를 제조하였다. 음극 활물질은 인조흑연과 천연흑연을 혼합하였고, 이때 활물질 전체의 중량에 대하여 인조흑연은 90 중량%, 천연흑연은 10 중량%로 혼합하였다. Comparative Example 1 In Comparative Example 1, a slurry was prepared by putting a negative active material having a general composition used as a negative electrode slurry. For the negative active material, artificial graphite and natural graphite were mixed, and at this time, 90% by weight of artificial graphite and 10% by weight of natural graphite were mixed with respect to the total weight of the active material.
<음극 및 리튬 이차전지의 제조><Manufacture of negative electrode and lithium secondary battery>
실시예 1~9 및 비교예 1에서 제조된 음극 활물질, 도전재, 바인더, 및 용매를 혼합하여 균일한 음극 슬러리를 제조하였다. 상기 슬러리는 음극 활물질을 1000 g, 도전재로서 카본블랙을 30 g, 바인더로서 스티렌-부타디엔 고무 2.3 g과 카르복시메틸셀룰로즈 1.05 g을 사용하였다. 용매는 물을 966 g 사용하였다. 이때 음극 슬러리에서 고형분의 함량은 약 50% 수준을 유지하였다.A uniform negative electrode slurry was prepared by mixing the negative electrode active material, conductive material, binder, and solvent prepared in Examples 1 to 9 and Comparative Example 1. For the slurry, 1000 g of an anode active material, 30 g of carbon black as a conductive material, 2.3 g of styrene-butadiene rubber and 1.05 g of carboxymethylcellulose as a binder were used. As a solvent, 966 g of water was used. At this time, the solid content in the negative electrode slurry was maintained at a level of about 50%.
상기 제조된 음극 슬러리를 구리 집전체의 일면에 코팅하고, 건조 및 압연한 후 일정 크기로 펀칭하여 음극을 제조하였다.The prepared negative electrode slurry was coated on one surface of a copper current collector, dried and rolled, and then punched to a predetermined size to prepare a negative electrode.
상대 전극인 양극으로 Li을 포함하는 금속을 사용하였고 NCM622을 사용하였다. 상기 음극과 Li 양극 사이에는 폴리에틸렌 15 ㎛ 두께의 분리막을 개재시킨 후, 전해질로서 에틸렌 카보네이트(EC) 및 디에틸 카보네이트(EMC)를 30:70의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해질을 주입하여 실시예 10~18 및 비교예 2의 코인형 반쪽전지를 제조하였다.A metal containing Li was used as an anode, which is a counter electrode, and NCM622 was used. After interposing a polyethylene 15 μm thick separator between the negative electrode and the Li positive electrode, 1M LiPF 6 is dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (EMC) are mixed in a volume ratio of 30:70 as electrolytes. was injected to prepare coin-type half-cells of Examples 10 to 18 and Comparative Example 2.
실시예 10~18 및 비교예 2의 전지에 대해서 충방전 평가를 수행하여, 전지 용량을 측정하였다. 실시예 10~18 및 비교예 2의 제조된 전지 각각을 25℃에서 0.1 C의 정전류(CC)로 5 mV가 될 때까지 충전하고, 이후 정전압(CV)으로 충전하여 충전 전류가 0.005 C(cut-off current)이 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 0.1 C의 정전류(CC)로 1.5 V가 될 때까지 방전하여 용량을 측정하였다.Charge-discharge evaluation was performed on the batteries of Examples 10 to 18 and Comparative Example 2, and the battery capacity was measured. Each of the batteries prepared in Examples 10 to 18 and Comparative Example 2 was charged at 25° C. with a constant current (CC) of 0.1 C until 5 mV, and then charged at a constant voltage (CV) so that the charging current was 0.005 C (cut -off current), the first charging was performed. After leaving it for 20 minutes, it was discharged with a constant current (CC) of 0.1 C until it became 1.5 V, and the capacity was measured.
위 실시예 10~18 및 비교예 2에서 사용한 각 성분의 배합량(단위: g)과 용량 평가 결과를 하기 표 3 및 4에 요약하였다.The compounding amount (unit: g) and capacity evaluation results of each component used in Examples 10 to 18 and Comparative Example 2 are summarized in Tables 3 and 4 below.
구분division 실시예 10Example 10 실시예 11Example 11 실시예 12Example 12 실시예 13Example 13 실시예 14Example 14 비교예 15Comparative Example 15
음극 활물질negative active material 실시예 1 1000Example 1 1000 실시예 2
1000
Example 2
1000
실시예 3
1000
Example 3
1000
실시예 4
1000
Example 4
1000
실시예 5
1000
Example 5
1000
실시예 6
1000
Example 6
1000
카본블랙(Super-P)Carbon Black (Super-P) 3030 3030 3030 3030 3030 3030
카르복시메틸셀룰로즈Carboxymethylcellulose 1.051.05 1.051.05 1.051.05 1.051.05 1.051.05 1.051.05
스티렌-부타디엔 고무Styrene-Butadiene Rubber 2.32.3 2.32.3 2.32.3 2.32.3 2.32.3 2.32.3
water 966966 966966 966966 966966 966966 966966
Coin Cell 평가 용량 (mAh/g)Coin Cell Evaluation Capacity (mAh/g) 195195 202202 206206 212212 221221 201201
구분division 실시예 16Example 16 실시예 17Example 17 실시예 18Example 18 비교예 2Comparative Example 2
음극 활물질negative active material 실시예 7 1000Example 7 1000 실시예 8
1000
Example 8
1000
실시예 9
1000
Example 9
1000
비교예 1
1000
Comparative Example 1
1000
카본블랙(Super-P)Carbon Black (Super-P) 3030 3030 3030 3030
카르복시메틸셀룰로즈Carboxymethylcellulose 1.051.05 1.051.05 1.051.05 1.051.05
스티렌-부타디엔 고무Styrene-Butadiene Rubber 2.32.3 2.32.3 2.32.3 2.32.3
water 966966 966966 966966 966966
Coin Cell 평가 용량 (mAh/g)Coin Cell Evaluation Capacity (mAh/g) 203203 214214 219219 183183
상기 표 3 및 4의 결과에서와 같이, 본 발명에 따른 음극 활물질용 세라믹체인 실시예 1~6과 본 발명에 따른 음극 활물질용 세라믹 복합체인 실시예 7~9를 음극 활물질로 사용한 실시예 10~18의 전지의 경우, 비교예 1을 음극 활물질로 사용한 비교예 2의 전지에 비해 높은 전지 용량을 나타내었다. 또한, 실시예 1~3의 세라믹체의 표면에 탄소 코팅을 한 실시예 7~9의 세라믹 복합체를 음극 활물질로 사용한 실시예 16~18의 전지의 경우, 다른 조건은 동일하되 탄소 코팅을 하지 않은 실시예 1~3을 음극 활물질로 사용한 실시예 10~12의 전지보다 용량이 더 높게 나타나 더욱 개선된 효과를 얻을 수 있음을 확인하였다.이를 통해, 본 발명에 따른 음극 활물질용 세라믹체를 사용하는 리튬 이차전지는, Sn계 음극재의 고용량 특성을 최대화하면서도, 안정성이 향상되어 열팽창계수가 낮아져 부피 팽창을 막을 수 있으며 사이클 수명이 개선될 수 있음을 알 수 있다.As shown in the results of Tables 3 and 4, Examples 1 to 6, which are ceramic bodies for negative electrode active materials according to the present invention, and Examples 7 to 9, which are ceramic composites for negative electrode active materials according to the present invention, are used as negative electrode active materials. In the case of the battery of 18, the battery capacity was higher than that of the battery of Comparative Example 2 using Comparative Example 1 as a negative active material. In addition, in the case of the batteries of Examples 16 to 18 in which the ceramic composites of Examples 7 to 9, in which the surface of the ceramic bodies of Examples 1 to 3 were coated with carbon, were used as negative active materials, the other conditions were the same, but the carbon coating was not applied. It was confirmed that the capacity was higher than that of the batteries of Examples 10 to 12 using Examples 1 to 3 as the negative active material, and thus more improved effects could be obtained. It can be seen that the lithium secondary battery maximizes the high-capacity characteristics of the Sn-based anode material, and the stability is improved, so that the thermal expansion coefficient is lowered, thereby preventing volume expansion and improving the cycle life.

Claims (11)

  1. Li2O, SnO2 및 TiO2를 포함하는 혼합물로 제조된 세라믹체를 포함하는 이차전지용 음극 활물질.Li 2 O, SnO 2 and TiO 2 Anode active material for a secondary battery comprising a ceramic body made of a mixture containing.
  2. Li2O, SnO2 및 TiO2를 포함하는 혼합물로 제조된 세라믹체 표면에 탄소계 재료가 코팅된 세라믹 복합체를 포함하는 이차전지용 음극 활물질.A negative active material for a secondary battery, comprising a ceramic composite in which a carbon-based material is coated on a surface of a ceramic body made of a mixture containing Li 2 O, SnO 2 and TiO 2 .
  3. 제1항 또는 제2항에 있어서, 3. The method of claim 1 or 2,
    상기 혼합물은 2~20 중량%의 Li2O, 30~60 중량%의 SnO2 및 30~60 중량%의 TiO2를 포함하는, 이차전지용 음극 활물질.The mixture is 2 to 20% by weight of Li 2 O, 30 to 60% by weight of SnO 2 and 30 to 60% by weight of TiO 2 A negative active material for a secondary battery comprising:
  4. 제1항 또는 제2항에 있어서, 3. The method of claim 1 or 2,
    상기 세라믹체의 평균 입경(D50)은 0.01~20 ㎛인, 이차전지용 음극 활물질.The average particle diameter (D 50 ) of the ceramic body is 0.01 to 20 μm, a negative active material for a secondary battery.
  5. 제1항 또는 제2항에 있어서, 3. The method of claim 1 or 2,
    상기 세라믹체는 25~200℃의 온도에서의 평균 열팽창계수가 0.1~20×10-6 m/℃인, 이차전지용 음극 활물질.The ceramic body has an average coefficient of thermal expansion at a temperature of 25 to 200 ℃ 0.1 to 20 × 10 -6 m / ℃, a negative active material for a secondary battery.
  6. 제2항에 있어서, 3. The method of claim 2,
    상기 세라믹 복합체 중 탄소계 재료가 코팅된 코팅층의 두께는 2~500 nm인, 이차전지용 음극 활물질.The thickness of the coating layer coated with the carbon-based material of the ceramic composite is 2 ~ 500 nm, a negative active material for a secondary battery.
  7. 이차전지 음극 활물질용 세라믹체의 제조방법으로서, 하기 단계를 포함하는 방법:A method for manufacturing a ceramic body for a secondary battery negative active material, comprising the following steps:
    a1) 각각 분말 형태인 Li2O, SnO2 및 TiO2를 혼합하는 단계;a1) mixing Li 2 O, SnO 2 and TiO 2 in powder form, respectively;
    b1) 단계 a1)의 혼합물을 1250~1500℃의 온도에서 1~10시간 동안 열처리하여 세라믹 상으로 결정화하는 단계; 및b1) heat-treating the mixture of step a1) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase; and
    c1) 단계 b1)의 세라믹 상을 분쇄하여 나노입자 형태의 세라믹체를 수득하는 단계.c1) pulverizing the ceramic phase of step b1) to obtain a ceramic body in the form of nanoparticles.
  8. 이차전지 음극 활물질용 세라믹 복합체의 제조방법으로서, 하기 단계를 포함하는 방법:A method for manufacturing a ceramic composite for a secondary battery negative active material, comprising the following steps:
    a2) 각각 분말 형태인 Li2O, SnO2 및 TiO2를 혼합하는 단계;a2) mixing Li 2 O, SnO 2 and TiO 2 in powder form, respectively;
    b2) 단계 a2)의 혼합물을 1250~1500℃의 온도에서 1~10시간 동안 열처리하여 세라믹 상으로 결정화하는 단계;b2) heat-treating the mixture of step a2) at a temperature of 1250 to 1500° C. for 1 to 10 hours to crystallize it into a ceramic phase;
    c2) 단계 b2)의 세라믹 상을 분쇄하여 나노입자 형태의 세라믹체를 수득하는 단계; 및c2) pulverizing the ceramic phase of step b2) to obtain a ceramic body in the form of nanoparticles; and
    d2) 단계 c2)에서 수득한 세라믹체의 입자 표면에 탄소계 재료를 코팅하는 단계.d2) coating a carbon-based material on the particle surface of the ceramic body obtained in step c2).
  9. 이차전지용 음극재 슬러리로서,As a negative electrode material slurry for a secondary battery,
    제1항 또는 제2항에 따른 음극 활물질, 도전재, 바인더 및 용매를 포함하며,It contains the negative active material according to claim 1 or 2, a conductive material, a binder and a solvent,
    상기 음극 활물질은 슬러리 총 중량에 대하여 4~70 중량%로 포함되는, 이차전지용 음극재 슬러리.The negative active material is included in an amount of 4 to 70% by weight based on the total weight of the slurry, the negative electrode material slurry for a secondary battery.
  10. 음극 집전체;negative electrode current collector;
    상기 음극 집전체 상에 형성된 음극 활물질층을 포함하며,It includes a negative electrode active material layer formed on the negative electrode current collector,
    상기 음극 활물질층은 제9항에 따른 음극재 슬러리를 포함하는 이차전지용 음극.The negative electrode active material layer is a negative electrode for a secondary battery comprising the negative electrode material slurry according to claim 9.
  11. 제10항에 따른 이차전지용 음극을 포함하는 이차전지.A secondary battery comprising the negative electrode for a secondary battery according to claim 10.
PCT/KR2021/006257 2020-08-06 2021-05-20 Negative electrode active material, comprising sn-ti-based ceramic bodies, for secondary battery and method for manufacturing same WO2022030734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200098388A KR102318880B1 (en) 2020-08-06 2020-08-06 Anode active material for secondary battery comprising Sn-Ti based ceramic and method for manufacturing the same
KR10-2020-0098388 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030734A1 true WO2022030734A1 (en) 2022-02-10

Family

ID=78476351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006257 WO2022030734A1 (en) 2020-08-06 2021-05-20 Negative electrode active material, comprising sn-ti-based ceramic bodies, for secondary battery and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102318880B1 (en)
WO (1) WO2022030734A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110080827A (en) * 2010-01-07 2011-07-13 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
KR20150142117A (en) * 2014-06-10 2015-12-22 동국대학교 산학협력단 Dual structured negative active material of lithium secondary batteries
KR20170134258A (en) * 2016-05-27 2017-12-06 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2327370A1 (en) * 2000-12-05 2002-06-05 Hydro-Quebec New method of manufacturing pure li4ti5o12 from the ternary compound tix-liy-carbon: effect of carbon on the synthesis and conductivity of the electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110080827A (en) * 2010-01-07 2011-07-13 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
KR20150142117A (en) * 2014-06-10 2015-12-22 동국대학교 산학협력단 Dual structured negative active material of lithium secondary batteries
KR20170134258A (en) * 2016-05-27 2017-12-06 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KWANG MIN, YANG, KANG YUN CHAN, JEONG SANG MUN, CHOI YUN JU, KIM YANG SOO: "Electrochemical Properties of Spherical Hollow Composite Powders with Various Li 4 Ti 5 O 12 /SnO 2 Ratios Prepared by Spray Pyrolysis", INT. J. ELECTROCHEM. SCI. INTERNATIONAL JOURNAL, 10 September 2013 (2013-09-10), pages 11972 - 11983, XP055894044, Retrieved from the Internet <URL:http://www.electrochemsci.org/papers/vol8/81011972.pdf> *
YANG A-REUM, NA BYUNG-KI: "Manufacturing and Electrochemical Characteristics of SnO 2 /Li 4 Ti 5 O 12 for Lithium Ion Battery", CLEAN TECHNOLOGY, HAN'GUG CHEONGJEONG GI'SUL HAGHOE; KOREAN SOCIETY OF CLEAN TECHNOLOGY, KR, vol. 21, no. 4, 31 December 2015 (2015-12-31), KR , pages 265 - 270, XP055894042, ISSN: 1598-9712, DOI: 10.7464/ksct.2015.21.4.265 *

Also Published As

Publication number Publication date
KR102318880B1 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2016204565A1 (en) Silicon oxide-carbon-polymer composite, and anode active material comprising same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2018164405A1 (en) Anode active material, anode comprising anode active material, and secondary battery comprising anode
WO2016148441A1 (en) Lithium metal oxide, and negative electrode active material for lithium secondary battery having same, and manufaturing method therefor
WO2011155770A2 (en) Cathode active material for lithium secondary battery and lithium secondary battery provided with same
WO2019235890A1 (en) Anode slurry for lithium secondary battery and method for preparing same
WO2019103499A1 (en) Anode active material for lithium secondary battery, and preparation method therefor
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2019083332A2 (en) Silicon-carbon composite and lithium secondary battery comprising same
WO2018062883A2 (en) Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same
WO2020149681A1 (en) Anode and secondary battery comprising anode
WO2020242257A1 (en) Negative electrode and secondary battery comprising negative electrode
WO2019103498A1 (en) Silicon-based particle-polymer composite, and cathode active material containing same
WO2017082680A1 (en) Anode active material and lithium secondary battery comprising same
WO2019221450A1 (en) Anode, and lithium secondary battery comprising anode
WO2020040613A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2022030734A1 (en) Negative electrode active material, comprising sn-ti-based ceramic bodies, for secondary battery and method for manufacturing same
WO2019066275A2 (en) Positive electrode active material for lithium secondary battery, and method for producing positive electrode active material
WO2018135929A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2021085946A1 (en) Method for preparing anode active material, anode active material, anode comprising same, and secondary battery comprising the anode
WO2021141460A1 (en) Artificial graphite, method for preparing artificial graphite, anode comprising same, and lithium secondary battery
WO2018225971A1 (en) Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode
WO2018225959A1 (en) Anode active material and anode and lithium secondary battery comprising same
WO2022250506A1 (en) All-solid-state lithium secondary battery and method for manufacturing same
WO2019059653A1 (en) Cathode active material for secondary battery, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852941

Country of ref document: EP

Kind code of ref document: A1