WO2022029931A1 - Dc circuit breaker - Google Patents

Dc circuit breaker Download PDF

Info

Publication number
WO2022029931A1
WO2022029931A1 PCT/JP2020/030029 JP2020030029W WO2022029931A1 WO 2022029931 A1 WO2022029931 A1 WO 2022029931A1 JP 2020030029 W JP2020030029 W JP 2020030029W WO 2022029931 A1 WO2022029931 A1 WO 2022029931A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
contact body
exhaust port
side wall
movable contact
Prior art date
Application number
PCT/JP2020/030029
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 神納
雄大 相良
知裕 仲田
康平 松村
央 佐々木
将大 遠矢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/030029 priority Critical patent/WO2022029931A1/en
Priority to JP2022541413A priority patent/JP7330385B2/en
Publication of WO2022029931A1 publication Critical patent/WO2022029931A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/08Stationary parts for restricting or subdividing the arc, e.g. barrier plate

Definitions

  • This disclosure relates to a DC circuit breaker.
  • Patent Document 1 is a prior document that discloses the structure of a DC circuit breaker.
  • the arc extinguishing chamber pressure due to the arc is increased by almost eliminating the gap between the arc runner and the side wall, and the arc is driven (moved) at high speed by the gas flow.
  • the circuit breaker when the current detector detects the accident current, the circuit breaker starts by opening the contacts. By opening the contacts, an arc is generated between the contacts. An arc is a high temperature discharge that occurs with strong light. Accident current flows through the arc.
  • the current flowing through the circuit is limited by sufficiently extending this arc and raising the voltage of the arc above the power supply voltage of the circuit. As a result, a current zero point is created and the accident current is cut off.
  • both the breaking ability of the current in the large current region of several kA or more and the cutting of the current in the small current region of several A to several tens of A are required as the breaking ability.
  • the breaking ability in the case of a current in a small current region of about 50 A or less, the self-magnetic field formed by the arc current itself is small, and the driving force due to the self-magnetic field is weak. Therefore, in the current in the small current region, it is assumed that the driving force for driving the arc is weak, the arc sticks at the contact point, the arc does not extend sufficiently, and the cutoff is not performed well.
  • the present disclosure is based on such development and an object thereof is to provide a DC circuit breaker capable of facilitating the commutation of an arc generated at a contact to an arc runner for a current in a small current region. It is to be.
  • the DC circuit breaker includes a fixed contact body, a movable contact body, an arc extinguishing chamber, a pair of arc runners, and a pair of insulating side wall plates.
  • the fixed contact body has a fixed contact.
  • the movable contact body has a movable contact that comes into contact with the fixed contact and faces the constant contact body in the first direction, and an opening operation is performed in which the movable contact is separated from the fixed contact in the first direction.
  • the arc extinguishing chamber is arranged at a distance from the fixed contact body and the movable contact body in the second direction intersecting the first direction, and the arc generated between the fixed contact and the movable contact by the opening operation is generated. Extinguish.
  • the pair of arc runners are formed from the respective sides of the fixed contact body and the movable contact body toward the arc extinguishing chamber.
  • the pair of insulating side wall plates sandwich the fixed contact body, the movable contact body and the pair of arc runners, so that the fixed contact body, the movable contact body and the pair of arc runners intersect with the first direction and the second direction in the third direction. They are arranged at a distance from each other.
  • the pair of arcrunners includes a first part and a second part.
  • the first part includes a portion located on the side of the fixed contact body and the movable contact body.
  • the second part is connected to the first part and is located on the side of the arc extinguishing chamber.
  • the gap between the first portion and the insulating side wall plate in the third direction is wider than the gap between the second portion and the insulating side wall plate in the third direction.
  • the insulating side wall plate is formed with one or more exhaust ports including a first exhaust port for discharging the gas generated together with the arc to the outside by the opening operation.
  • the exhaust port is formed at a position where the arc is driven into the gap between the first portion and the insulating side wall plate by the flow of the generated gas toward the exhaust port, and further driven toward the second portion.
  • the gap between the first part of the pair of arc runners and the insulating side wall plate in the third direction is larger than the gap between the second part of the pair of arc runners and the insulating side wall plate in the third direction.
  • the insulating side wall plate is formed with one or more exhaust ports including a first exhaust port for discharging the gas generated together with the arc to the outside by the opening operation.
  • the exhaust port is formed at a position where the arc is driven into the gap between the first portion and the insulating side wall plate by the flow of the generated gas toward the exhaust port, and further driven toward the second portion.
  • FIG. 1 It is a perspective view which includes a part imaginary line which shows the whole image of the DC circuit breaker which concerns on Embodiment 1.
  • FIG. 1 it is a cross-sectional perspective view in the cross-sectional line II-II shown in FIG.
  • FIG. 1 it is sectional drawing in sectional line II-II shown in FIG.
  • FIG. 1 it is a perspective view which shows the structure of the 1st arc runner and the 2nd arc runner in the DC circuit breaker shown in FIG.
  • it is a top view which shows the arrangement relation of the 1st arc runner and the 2nd arc runner, and a pair of insulating side wall plates.
  • FIG. 7 it is a perspective view which shows the 1st state for demonstrating an example of operation of a DC circuit breaker.
  • FIG. 7 it is a perspective view which shows the 3rd state after the 2nd state shown in FIG.
  • FIG. 7 it is a perspective view which shows the 4th state after the 3rd state shown in FIG.
  • FIG. 7 it is a top view which shows the gas flow and arc drive for explaining the behavior of an arc.
  • it is a perspective view which shows the flow of a gas for demonstrating the behavior of an arc.
  • FIG. 1 shows the structure of the DC circuit breaker which concerns on Embodiment 2.
  • FIG. 1 it is a top view which shows the gas flow for explaining the behavior of an arc.
  • it is a perspective view which shows the flow of a gas for demonstrating the behavior of an arc.
  • It is a perspective view which shows the structure of the 1st arc runner and the 2nd arc runner in the DC circuit breaker which concerns on Embodiment 3.
  • FIG. in the same embodiment, it is a partially enlarged perspective view which shows the structure of a movable contact body. It is a 1st partial side view for demonstrating the behavior of an arc in the same embodiment.
  • FIG. 1 it is the 2nd partial side view for demonstrating the behavior of an arc. It is a top view which shows the structure including the magnet plate in the DC circuit breaker which concerns on Embodiment 4.
  • FIG. It is a perspective view for demonstrating the behavior of an arc in the same embodiment. It is a top view for demonstrating the behavior of an arc in the same embodiment.
  • Embodiment 1 The DC circuit breaker according to the first embodiment will be described. In this specification, the arrangement relationship will be appropriately described using the X-axis (direction) as the first direction, the Y-axis (direction) as the third direction, and the Z-axis (direction) as the second direction.
  • the DC circuit breaker 1 includes a fixed contact body 7, a movable contact body 11, an arc extinguishing chamber 19, and a first arc runner 3 and a second arc runner as a pair of arc runners. 5 and a pair of insulating side wall plates 27 are provided.
  • the fixed contact body 7 has a fixed contact 7a that comes into contact with the movable contact body 11.
  • the fixed contact body 7 is connected to the upper conductor 9.
  • the movable contact body 11 has a movable contact body 11a that comes into contact with the fixed contact body 7.
  • the movable contact body 11 is arranged so as to face the fixed contact body 7 in the X-axis direction.
  • the movable contact body 11 is connected to the movable conductor 13.
  • the movable conductor 13 is connected to the lower conductor 17 via a flexible shunt 15.
  • the movable contact body 11 is subjected to an opening operation in which the movable contact 11a is separated from the fixed contact 7a in the X-axis direction from the closed pole state in which the movable contact 11a is in contact with the fixed contact 7a. Further, from the open pole state, a closing operation is performed in which the movable contact 11a is brought into contact with the fixed contact 7a.
  • An actuator (not shown) for moving the movable contact body 11 along the X-axis direction is used for the opening pole operation and the closing pole operation.
  • the arc extinguishing chamber 19 is arranged at a distance from the fixed contact body 7 and the movable contact body 11 in the Z-axis direction as the second direction.
  • the arc extinguishing chamber 19 extinguishes the arc generated by the opening operation of separating the movable contact 11a from the fixed contact 7a.
  • the deaion grid 23 and the grid support plate 25 are alternately laminated.
  • the deaion grid 23 and the grid support plate 25 are laminated on the arc extinguishing chamber bottom plate 21.
  • the first arc runner 3 is formed from the side of the fixed contact body 7 toward the side of the arc extinguishing chamber 19.
  • the first arc runner 3 is formed of a magnetic material.
  • the second arc runner 5 is formed from the side of the movable contact body 11 toward the side of the arc extinguishing chamber 19.
  • the second arc runner 5 is made of a magnetic material.
  • the first arc runner 3 has a first inclined portion 3a as a first portion, a first bent portion 3b, and a second portion and a first horizontal portion 3c as an extending portion.
  • the first inclined portion 3a has an X-axis direction component (negative component) and a Z-axis direction component (positive component), and is formed from the side of the fixed contact body 7 toward the arc extinguishing chamber 19. ..
  • the first horizontal portion 3c extends along the X-axis direction.
  • the first horizontal portion 3c extends from a portion connected to the first inclined portion 3a via the first bending portion 3b to a side (X-axis negative direction) opposite to the side on which the second arc runner 5 is located. ..
  • the second arc runner 5 has a second inclined portion 5a as a first portion, a second bent portion 5b, and a second horizontal portion 5c as a second portion and an extending portion.
  • the second inclined portion 5a has an X-axis direction component (positive component) and a Z-axis direction component (positive component), and is formed from the side of the movable contact body 11 toward the arc extinguishing chamber 19. ..
  • the second horizontal portion 5c extends along the X-axis direction.
  • the second horizontal portion 5c extends from a portion connected to the second inclined portion 5a via the second bent portion 5b to the opposite side (X-axis positive direction) such as the side where the first arc runner 3 is located. ..
  • the pair of insulating side wall plates 27 sandwich the fixed contact body 7, the first arc runner 3, the movable contact body 11, and the second arc runner 5 so as to sandwich the fixed contact body 7, the first arc runner 3, the movable contact body 11, and the second arc runner 5.
  • 5 is arranged at a distance in the Y-axis direction as the third direction.
  • the insulating side wall plate 27 is formed of an insulating material such as a resin or an inorganic material.
  • FIG. 2 and FIG. 3 the insulating side wall plate 27 located on the Y-axis positive direction side of the pair of insulating side wall plates 27 is shown.
  • the pair of insulating side wall plates 27 are formed with a first exhaust port 31, a second exhaust port 33, a third exhaust port 35, and a fourth exhaust port 37 as exhaust ports 29.
  • Gas (heat gas) generated with the generation of an arc is discharged to the outside of the DC circuit breaker 1 from each of the first exhaust port 31, the second exhaust port 33, the third exhaust port 35, and the fourth exhaust port 37. .. Further, the generated gas is also discharged to the outside from the two ends (positive direction end and negative direction end) in the X-axis direction in the arc extinguishing chamber 19 (see FIG. 1).
  • the exhaust port 29 causes an arc by the flow of the generated gas toward the exhaust port, in a gap between the first arc runner 3 (first inclined portion 3a) and the insulating side wall plate 27, and in the second arc runner 5 (second inclined portion 5a). ) And the gap between the insulating side wall plate 27, respectively, and the position where the arc is driven toward the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5, respectively. Is located in.
  • the exhaust port 29 is formed at a position separated from the position where the fixed contact body 7 and the movable contact body 11 where the arc is generated are arranged in both the X-axis direction and the Z-axis direction.
  • Each of the first exhaust port 31 and the second exhaust port 33 is attached to the arc extinguishing chamber bottom plate 21 of the arc extinguishing chamber 19 arranged on the insulating side wall plate 27, the grid support plate 25 of the lowermost layer, and the insulating side wall plate 27. It is formed by a notch formed.
  • Each of the third exhaust port 35 and the fourth exhaust port 37 is formed as a through hole penetrating the insulating side wall plate 27.
  • the first 1 The exhaust port 31 is located between the first horizontal portion 3c and the arc extinguishing chamber 19.
  • the second exhaust port 33 is located between the second horizontal portion 5c and the arc extinguishing chamber 19.
  • the third exhaust port 35 is located on the side opposite to the side where the first exhaust port 31 is located with respect to the first horizontal portion 3c.
  • the fourth exhaust port 37 is located on the side opposite to the side where the second exhaust port 33 is located with respect to the second horizontal portion 5c.
  • a sufficient gap (space) is secured between the insulating side wall plate 27 and the portion of the first arc runner 3 (first inclined portion 3a) located on the side of the fixed contact body 7.
  • a sufficient gap (space) is secured between the insulating side wall plate 27 and the portion of the second arc runner 5 (second inclined portion 5a) located on the side of the movable contact body 11.
  • the first inclined portion 3a of the first arc runner 3 has a width as a first width in the Y-axis direction.
  • the width W1 of the portion of the first inclined portion 3a on the fixed contact body 7 side is narrower than the width W2 of the first horizontal portion 3c.
  • the width of the first inclined portion 3a gradually narrows from the portion connected to the first horizontal portion 3c (the first bending portion 3b) toward the portion located on the side of the fixed contact body 7. Therefore, the distance S1 (gap) between the portion of the first inclined portion 3a located on the side of the fixed contact body 7 and the insulating side wall plate 27 is the distance S2 (gap) between the first horizontal portion 3c and the insulating side wall plate 27. Wider than.
  • the second inclined portion 5a of the second arc runner 5 has a width as a first width in the Y-axis direction.
  • the width W1 of the portion of the second inclined portion 5a on the side of the movable contact body 11 is narrower than the width W2 of the second horizontal portion 5c.
  • the width of the second inclined portion 5a gradually narrows from the portion connected to the second horizontal portion 5c (second bending portion 5b) toward the portion located on the side of the movable contact body 11. Therefore, the distance S1 (gap) between the portion of the second inclined portion 5a located on the side of the movable contact body 11 and the insulating side wall plate 27 is the distance S2 (gap) between the second horizontal portion 5c and the insulating side wall plate 27. Wider than.
  • a sufficient gap (space) is secured between the portion of the first inclined portion 3a on the fixed contact body 7 side and the insulating side wall plate 27 as compared with the portion between the first horizontal portion 3c and the insulating side wall plate 2. .. Further, a sufficient gap (space) is secured between the portion on the movable contact body 11 side of the second inclined portion 5a and the insulating side wall plate 27 as compared with the space between the second horizontal portion 5c and the insulating side wall plate 2. Will be done.
  • the gas generated with the generation of the arc flows into the first exhaust port 31 to the fourth exhaust port 37, thereby causing the arc to flow into the gap between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27. It can be driven to (space) and the arc can be further commutated to the first horizontal section 3c and the second horizontal section 5c. This will be described later.
  • the operation of the DC circuit breaker 1 described above will be described.
  • the fixed contact body 7 fixed contact 7a
  • the movable contact body 11 movable contact 11a
  • the current of the circuit flows from the upper conductor 9 through the fixed contact body 7, the movable contact body 11, the movable conductor 13, and the flexible shunt 15, and then flows through the lower conductor 17.
  • the state in which the fixed contact body 7 (fixed contact 7a) and the movable contact body 11 (movable contact 11a) are separated from each other is the open pole state.
  • the current detector detects the accident current
  • an opening operation is performed in which the movable contact body 11 (movable contact 11a) is separated from the fixed contact body 7 (fixed contact 7a).
  • the movable contact body 11 (movable contact 11a) is separated along the X-axis direction as the first direction.
  • an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a).
  • the generated arc has an insulating side wall plate 27, a first arc runner 3 (first inclined portion 3a), and a second arc runner 5 due to the electromagnetic force generated by the arc itself and the gas flow generated by the heat of the arc. It is driven to the gap with (second inclined portion 5a) and further driven upward.
  • the upwardly driven arc is commutated to the first arc runner 3 and the second arc runner 5.
  • the arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c so as to straddle between the first horizontal portion 3c and the second horizontal portion 5c, and also drives the second horizontal portion. It drives 5c and at the same time extends upward due to buoyancy. As the length of the arc increases, the arc voltage rises. As the arc voltage rises, the current is limited and the current is cut off.
  • an arc 51 is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a).
  • the position where the arc 51 is generated depends on the contact position between the movable contact 11a and the fixed contact 7a. This contact position is rarely located at the center of the fixed contact body 7 and the movable contact body 11, and is located at a position deviated from the center.
  • the contact position is on the Y-axis negative direction side (front side of the paper surface) of the fixed contact body 7 and the movable contact body 11 will be described.
  • Gas is generated by the heat of the generated arc 51.
  • the gas flows toward the exhaust port 29 (first exhaust port 31 to fourth exhaust port 37).
  • the arc 51 On the fixed contact body 7 (first arc runner 3) side, the arc 51 has an insulating side wall plate 27 and a first arc runner 3 (first arc runner 3) due to the gas flow (arrow F1) toward the first exhaust port 31 and the third exhaust port 35. 1 It is driven into the gap (space) with the inclined portion 3a) (see FIG. 6).
  • the arc 51 On the movable contact body 11 (second arc runner 5) side, the arc 51 has an insulating side wall plate 27 and a second arc runner 5 (second arc runner 5) due to the gas flow (arrow F2) toward the second exhaust port 33 and the fourth exhaust port 37. 2 It is driven into the gap (space) with the inclined portion 5a) (see FIG. 6).
  • FIG. 7 as the exhaust port 29, among the pair of insulating side wall plates 27 shown in FIG. 6, the exhaust port 29 of the insulating side wall plate 27 located on the negative direction side of the Y-axis is shown by a two-dot chain line.
  • the arc 51 has the first exhaust port 31 and the first exhaust port 31 due to the gas flow (arrow F1) toward the first exhaust port 31 and the third exhaust port 35. 3 Driven while extending toward the exhaust port 35.
  • the arc 51 extends toward the second exhaust port 33 and the fourth exhaust port 37 due to the gas flow (arrow F2) toward the second exhaust port 33 and the fourth exhaust port 37. Driven. Further, the arc 51 is driven while extending upward by buoyancy.
  • the distance S2 (gap) between the first horizontal portion 3c and the insulating side wall plate 27 is narrower than the distance S1 (gap) between the portion of the first inclined portion 3a located on the fixed contact body 7 side and the insulating side wall plate 27. ..
  • the distance S2 (gap) between the second horizontal portion 5c and the insulating side wall plate 27 is narrower than the distance S1 (gap) between the portion of the second inclined portion 5a located on the movable contact body 11 side and the insulating side wall plate 27. ..
  • the arc 51 collides with the edge 3cc in the first horizontal portion 3c on the first arc runner 3 side.
  • the edge 5cc in the second horizontal portion 5c collides with the edge 5cc in the second horizontal portion 5c.
  • the arc 51 is commutated to the edge 3cc in the first horizontal portion 3c and the edge 5cc in the second horizontal portion 5c that collided with each other.
  • the arcs 51 commutated to the first horizontal portion 3c (first horizontal portion 3) and the second horizontal portion 5c (second arc runner 5) are the first horizontal portion 3c and the second horizontal portion. While extending between the portions 5c, the first horizontal portion 3c is driven and the second horizontal portion 5c is driven.
  • the arc 51 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy.
  • the arc voltage is expressed as the product of the length of the arc and the electric field of the arc.
  • the electric field of the arc is almost constant. From this relationship, when the arc 51 is extended, the arc voltage increases. When this arc voltage rises to exceed the power supply voltage of the circuit, the current of the circuit is limited and gradually decreases. Eventually, the circuit current will be zero and the cutoff will be complete.
  • the pair of insulating side wall plates 27 are formed with an exhaust port 29 for discharging the gas generated together with the arc to the outside.
  • a first exhaust port 31 and a third exhaust port 35 are formed on the first arc runner 3 side.
  • a second exhaust port 33 and a fourth exhaust port 37 are formed on the second arc runner 5 side.
  • the width W2 of the first horizontal portion 3c located on the side of the arc extinguishing chamber 19 is the first inclination located on the side of the fixed contact body 7 where the arc is generated. It is larger than the width W1 of the end portion of the portion 3a.
  • the distance S1 between the end of the first inclined portion 3a and the insulating side wall plate 27 is wider than the distance S2 between the first horizontal portion 3c and the insulating side wall plate 27.
  • the width W2 of the second horizontal portion 5c located on the side of the arc extinguishing chamber 19 is wider than the width W1 of the end portion of the second inclined portion 5a located on the side of the movable contact body 11 where the arc is generated. Is also big.
  • the distance S1 between the end of the second inclined portion 5a and the insulating side wall plate 27 is wider than the distance S2 between the second horizontal portion 5c and the insulating side wall plate 27.
  • FIGS. 11 and 12 show the gas (gas flow GF) generated together with the arc 51 flows toward the exhaust port 29 due to the opening operation of the fixed contact body 7 and the movable contact body 11.
  • the arc 51 is driven into the gap (space) between the portion of the first arc runner 3 (first inclined portion 3a) and the insulating side wall plate 27, and further, the exhaust port. It is driven while extending toward 29 (first exhaust port 31 and third exhaust port 35).
  • FIG. 12 shows the gas flow GF toward the exhaust port 29 located behind the first arc runner 3 and the second arc runner 5 (on the positive direction side of the Y axis) as a global flow of gas for convenience of drawing. ..
  • the arc 51 On the side of the second arc runner 5 (movable contact body 11), the arc 51 is driven into the gap (space) between the portion of the second arc runner 5 (second inclined portion 5a) and the insulating side wall plate 27, and further, the exhaust port 29. It is driven while extending toward (second exhaust port 33 and fourth exhaust port 37). Further, the arc 51 is driven while extending upward (on the arc extinguishing chamber 19 side) by buoyancy.
  • a first horizontal portion 3c and a second horizontal portion 5c having a width W2 larger than the width W1 are arranged on the side of the arc extinguishing chamber 19 in the first arc runner 3 and the second arc runner 5.
  • the distance S2 between the first horizontal portion 3c and the second horizontal portion 5c and the insulating side wall plate 27 is narrower than the distance S1.
  • the arc 51 in the small current region where the self-magnetic field is weak can be easily commutated to the first arc runner 3 and the second arc runner 5.
  • the arc 51 can be prevented from sticking at the fixed contact 7a and the movable contact 11a, and the current cutoff performance in the small current region can be improved.
  • the width W2 of the first horizontal portion 3c is larger than the width W1 of the end portion of the first inclined portion 3a, and the first inclined portion 3a and the first horizontal portion 3c. It is formed so that the width of the first inclined portion 3a becomes narrower toward the end portion of the first inclined portion 3a from the portion connected to the first inclined portion 3a.
  • the width W2 of the second horizontal portion 5c is larger than the width W1 of the end portion of the second inclined portion 5a, and the second inclined portion 5a and the second horizontal portion It is formed so that the width of the second inclined portion 5a becomes narrower from the portion connected to the 5c toward the end portion of the second inclined portion 5a.
  • the DC circuit breaker 1 is not limited to such a structure, and at least one of the first inclined portion 3a of the first arc runner 3 and the second inclined portion 5a of the second arc runner 5 has such a structure. If so, the desired effect can be obtained.
  • Embodiment 2 An example of the DC circuit breaker according to the second embodiment will be described. As shown in FIGS. 13 and 14, the DC circuit breaker 1 includes a first guide plate 39 and a second guide plate 41 that guide the gas generated together with the arc to the exhaust port 29.
  • the first guide plate 39 is arranged on the side where the first arc runner 3 is located.
  • the first guide plate 39 is inclined from the side of the fixed contact body 7 in a manner having an X-axis direction component (negative component) and a Z-axis direction component (positive component).
  • the first guide plate 39 is formed from one insulating side wall plate 27 to the other insulating side wall plate 27 in the pair of insulating side wall plates 27.
  • the second guide plate 41 is arranged on the side where the second arc runner 5 is located.
  • the second guide plate 41 is inclined from the side of the movable contact body 11 in a manner having an X-axis direction component (positive component) and a Z-axis direction component (positive component).
  • the second guide plate 41 is formed from one insulating side wall plate 27 to the other insulating side wall plate 27 in the pair of insulating side wall plates 27.
  • the first guide plate 39 and the second guide plate 41 are arranged so that the exhaust port 29 is located in the portion of the pair of insulating side wall plates 27 located between the first guide plate 39 and the second guide plate 41. Has been done. Since the configuration other than this is the same as the configuration of the DC circuit breaker 1 shown in FIGS. 2 and 3, the same members are designated by the same reference numerals, and the description thereof will not be repeated unless necessary. ..
  • the behavior of the arc generated by the opening operation of the DC circuit breaker 1 described above will be described.
  • an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a).
  • Gas is generated by the heat of the generated arc 51.
  • the generated gas flows toward the exhaust port 29.
  • the arc 51 is driven mainly by the flow of the gas in the gap (space) between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27, and is further driven while extending toward the exhaust port 29. Further, the arc 51 is driven while extending upward by buoyancy.
  • the arc 51 driven upward is commutated to the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5.
  • the arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy, so that the arc voltage rises. As the arc voltage rises, the current is limited and eventually the current is cut off.
  • a first guide plate 39 and a second guide plate 41 for guiding the flow of gas are arranged.
  • the gas generated together with the arc 51 can be efficiently guided to the exhaust port 29 by the first guide plate 39 and the second guide plate 41, and the gas toward the exhaust port 29 can be efficiently guided.
  • the flow increases.
  • FIG. 15 shows the gas flow GF toward the exhaust port 29 located behind the first arc runner 3 and the second arc runner 5 (on the positive direction side of the Y axis) as a global flow of gas for convenience of drawing. ..
  • the arc 51 is efficiently driven in the gap (space) between the first arc runner 3 and the insulating side wall plate 27, and further, the exhaust gas is exhausted. It is efficiently driven while extending toward the mouth 29.
  • the arc 51 is efficiently driven in the gap (space) between the second arc runner 5 and the insulating side wall plate 27, and is further efficiently driven while extending toward the exhaust port 29. ..
  • the arc 51 can be reliably commutated to the first horizontal portion 3c, and on the second arc runner 5 side, the arc 51 can be reliably commutated to the second horizontal portion 5c. As a result, the current can be reliably cut off.
  • Embodiment 3 As the DC circuit breaker according to the third embodiment, an example of the DC circuit breaker capable of improving the current breaking performance in the large current region will be described.
  • the movable contact body 11 in the DC circuit breaker 1 has a width as a second width in the Y-axis direction. Its width is formed so as to narrow toward the side where the arc extinguishing chamber 19 is located. As shown in FIG. 17, the width L2 of the tip end portion of the movable contact body 11 is shorter than the width L1 near the center in the Z-axis direction of the movable contact body 11. Further, the width L2 is shorter than the width W1 of the portion of the second inclined portion 5a of the second arc runner 5 on the side of the movable contact body 11.
  • the behavior of the arc generated by the opening operation of the DC circuit breaker 1 described above will be described.
  • an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a).
  • Gas is generated by the heat of the generated arc 51.
  • the generated gas flows toward the exhaust port 29.
  • the arc 51 is driven mainly by the flow of the gas in the gap (space) between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27, and is further driven while extending toward the exhaust port 29. Further, the arc 51 is driven while extending upward by buoyancy.
  • the arc 51 driven upward is commutated to the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5.
  • the arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy, so that the arc voltage rises. As the arc voltage rises, the current is limited and eventually the current is cut off.
  • the above-mentioned DC circuit breaker 1 can improve the current breaking performance in the small current region as well as the current breaking performance in the large current region of several kA or more. This will be described.
  • the arc generated by the opening operation tends to drive (move) the edge of the movable contact body 11 and stick at the acute-angled portion. Therefore, as shown in FIG. 18, in the movable contact body 11 having a substantially constant width L1, when the generated arc 51 moves to the corner portion 11c of the movable contact body 11, it tends to stick at the corner portion 11c. be. At this time, the arc 51 is driven between the second arc runner 5 and the insulating side wall plate 27 by the flow of the gas generated together with the arc 51 toward the exhaust port 29 (see FIG. 12).
  • the behavior of the arc of the current in the large current region is dominated by the electromagnetic force due to the self-magnetic field formed by the arc itself. Therefore, if there is no gas flow, the arc 51 can be easily commutated to the second arc runner 5 or the like, but the arc 51 is driven between the second arc runner 5 and the insulating side wall plate 27 by the gas flow. Therefore, it is assumed that the arc 51 is delayed in commutating to the second arc runner 5.
  • the generated arc 51 is driven (moved) from the portion of the movable contact body 11 having the width L1 to the portion having the narrow width L2. Further, the arc 51 is driven between the second arc runner 5 and the insulating side wall plate 27 by the flow of the gas generated together with the arc 51 toward the exhaust port 29 (see FIG. 12).
  • the arc 51 has moved to the portion of the movable contact body 11 having the narrow width L2, the arc 51 has a second arc runner as compared with the case of the movable contact body 11 shown in FIG. It will approach 5.
  • the arc 51 tends to collide with the second arc runner 5.
  • the arc 51 can be easily commutated to the second arc runner 5, and the arc voltage can be increased to cut off the current.
  • Embodiment 4 As the DC circuit breaker according to the fourth embodiment, an example of the DC circuit breaker that drives the arc upward by using the electromagnetic force will be described.
  • a pair of insulating side wall plates 27 are arranged so as to sandwich the first arc runner 3 and the second arc runner 5.
  • the magnetic pole plate 43 and the magnetic pole plate 45 are arranged so as to sandwich the pair of insulating side wall plates 27.
  • the magnetic pole plate 43 is arranged on the outside of one of the insulating side wall plates 27 of the pair of insulating side wall plates 27.
  • a magnetic pole plate 45 is arranged on the outside of the other insulating side wall plate 27.
  • the magnetic pole plate 43 includes, for example, a permanent magnet 47.
  • the magnetic pole plate 45 includes, for example, a permanent magnet 49.
  • the N pole of the permanent magnet 47 faces the magnetic pole plate 43
  • the S pole of the permanent magnet 49 faces the magnetic pole plate 45.
  • a uniform magnetic field MF is formed between the magnetic pole plate 43 and the magnetic pole plate 45 from the magnetic pole plate 43 toward the magnetic pole plate 45.
  • the behavior of the arc generated by the opening operation of the DC circuit breaker 1 described above will be described.
  • an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a).
  • Gas is generated by the heat of the generated arc 51.
  • the generated gas flows toward the exhaust port 29.
  • the arc 51 is driven mainly by the flow of the gas in the gap (space) between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27, and is further driven while extending toward the exhaust port 29. Further, the arc 51 is driven while extending upward by buoyancy.
  • the arc 51 driven upward is commutated to the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5.
  • the arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy, so that the arc voltage rises. As the arc voltage rises, the current is limited and eventually the current is cut off.
  • a uniform magnetic field MF is formed in the region where the arc 51 is generated.
  • the following electromagnetic force acts on the arc 51 depending on the relationship between the direction of the current flowing through the arc 51 and the direction of the magnetic field MF.
  • an electromagnetic force F31 (X-axis negative direction) acts on the portion of the arc 51 on the side where the first arc runner 3 is located.
  • An electromagnetic force F32 (in the positive direction on the X-axis) acts on the portion of the arc 51 on the side where the second arc runner 5 is located.
  • An electromagnetic force F33 (Z-axis positive direction) acts on the portion of the arc 51 located between the first arc runner 3 and the second arc runner 5.
  • the arc 51 extends toward the exhaust port 29 (the first exhaust port 31 and the third exhaust port 35) by both the gas flow (arrow F1) and the electromagnetic force F31. Driven while.
  • the arc 51 is driven by both the gas flow (arrow F2) and the electromagnetic force F32 while extending toward the exhaust port 29 (the second exhaust port 33 and the fourth exhaust port 37). Will be done.
  • the arc 51 is driven while extending upward by both the buoyancy force and the electromagnetic force F33.
  • FIG. 21 as the exhaust port 29, among the pair of insulating side wall plates 27 shown in FIG. 20, the exhaust port 29 of the insulating side wall plate 27 located on the negative direction side of the Y-axis is shown by a two-dot chain line.
  • the arc 51 is driven in the gap (space) between the first arc runner 3 and the insulating side wall plate 27, and the driving force for driving the arc 51 while extending toward the exhaust port 29 is further enhanced. Will be done.
  • the arc 51 is driven in the gap (space) between the second arc runner 5 and the insulating side wall plate 27, and the driving force for driving the arc 51 while extending toward the exhaust port 29 is further enhanced. Further, the driving force for driving the arc 51 while extending upward is enhanced.
  • the arc 51 is reliably commutated to the first horizontal portion 3c on the first arc runner 3 side, and the arc 51 is reliably commutated to the second horizontal portion 5c on the second arc runner 5 side. Can be shed. As a result, the current can be reliably cut off.
  • the first exhaust port 31, the second exhaust port 33, the third exhaust port 35, and the fourth exhaust port 37 are mentioned as the exhaust ports 29, but at least, By forming the first exhaust port 31 and the second exhaust port 33, a desired effect can be obtained.
  • This disclosure is effectively used for a DC circuit breaker equipped with an arc runner and an arc extinguishing chamber.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Breakers (AREA)

Abstract

In this DC circuit breaker (1), a pair of insulating side wall plates (27) are positioned so as to sandwich a securing contact (7), a first arc runner (3), a movable contact (11), and a second arc runner (5). A spacing (S1) between the insulating side wall plates (27) and a portion of a first inclined section (3a) of the first arc runner (3) that is on the side nearer to the fixed contact (7) is larger than a spacing (S2) between the insulating side wall plates (27) and a first horizontal section (3c). A spacing (S1) between the insulating side wall plates (27) and a portion of a second inclined section (5a) of the second arc runner (5) that is on the side nearer to the movable contact (11) is larger than a spacing (S2) between the insulating side wall plates (27) and a second horizontal section (5c). A first discharge port (31), a second discharge port (33), a third discharge port (35), and a fourth discharge port (37) are formed in the pair of insulating side wall plates (27) as discharge ports (29) for discharging a gas.

Description

直流遮断器DC circuit breaker
 本開示は、直流遮断器に関する。 This disclosure relates to a DC circuit breaker.
 直流回路における地絡事故または短絡事故の際に流れる電流(事故電流)を遮断する直流遮断器がある。直流遮断器の構造を開示した先行文献として、特許文献1がある。特許文献1に開示された直流遮断器では、アークランナと側壁との隙間をほぼなくすことによって、アークによる消弧室圧力を高め、ガス流によりアークを高速に駆動(移動)させている。 There is a DC circuit breaker that cuts off the current (accident current) that flows in the event of a ground fault or short circuit accident in a DC circuit. Patent Document 1 is a prior document that discloses the structure of a DC circuit breaker. In the DC circuit breaker disclosed in Patent Document 1, the arc extinguishing chamber pressure due to the arc is increased by almost eliminating the gap between the arc runner and the side wall, and the arc is driven (moved) at high speed by the gas flow.
実開平6-60943号公報Jikkenhei 6-60943 Gazette
 直流遮断器では、電流検出器が事故電流を検知すると、接点を開極することによって遮断動作を開始する。接点を開極することによって、接点間にはアークが発生する。アークは、強い光を伴って発生する高温の放電である。事故電流はアークを介して流れる。 In the DC circuit breaker, when the current detector detects the accident current, the circuit breaker starts by opening the contacts. By opening the contacts, an arc is generated between the contacts. An arc is a high temperature discharge that occurs with strong light. Accident current flows through the arc.
 直流遮断器では、このアークを十分に伸長させて、アークの電圧を回路の電源電圧よりも高めることで、回路に流れる電流が限流される。これにより、電流ゼロ点が作られて、事故電流が遮断される。 In a DC circuit breaker, the current flowing through the circuit is limited by sufficiently extending this arc and raising the voltage of the arc above the power supply voltage of the circuit. As a result, a current zero point is created and the accident current is cut off.
 アークを伸長させる手法としては、接点の近傍にアークを駆動させるためのアークランナを配置する手法がある。この手法では、接点間に発生したアークが、アークランナに転流される。転流されたアークは、アークランナに沿って駆動しながら伸長されることになる。 As a method of extending the arc, there is a method of arranging an arc runner for driving the arc in the vicinity of the contact point. In this method, the arc generated between the contacts is transferred to the arc runner. The commutated arc will be extended while being driven along the arc runner.
 この種の直流遮断器では、遮断能力として、数kA以上の大電流領域における電流の遮断と、数A~数十A程度の小電流領域における電流の遮断との双方の遮断能力が求められる。ここで、概ね50A程度以下の小電流領域の電流の場合、アーク電流自身によって形成される自己磁場は小さく、自己磁場による駆動力は弱い。このため、小電流領域の電流では、アークを駆動させる駆動力が弱く、アークが接点において膠着してしまい、アークが十分に伸長せず、遮断が良好に行われないことが想定される。 In this type of DC circuit breaker, both the breaking ability of the current in the large current region of several kA or more and the cutting of the current in the small current region of several A to several tens of A are required as the breaking ability. Here, in the case of a current in a small current region of about 50 A or less, the self-magnetic field formed by the arc current itself is small, and the driving force due to the self-magnetic field is weak. Therefore, in the current in the small current region, it is assumed that the driving force for driving the arc is weak, the arc sticks at the contact point, the arc does not extend sufficiently, and the cutoff is not performed well.
 このように、直流遮断器では、小電流領域の電流の遮断性能を確保するために、接点において発生したアークを、アークランナに転流しやすくすることが求められている。 As described above, in the DC circuit breaker, in order to secure the current breaking performance in the small current region, it is required to easily commutate the arc generated at the contact point to the arc runner.
 本開示は、そのような開発のもとになされたものであり、その目的は、小電流領域の電流について、接点において発生したアークを、アークランナに転流しやすくすることができる直流遮断器を提供することである。 The present disclosure is based on such development and an object thereof is to provide a DC circuit breaker capable of facilitating the commutation of an arc generated at a contact to an arc runner for a current in a small current region. It is to be.
 本開示に係る直流遮断器は、固定接触体と可動接触体と消弧室と一対のアークランナと一対の絶縁側壁板とを備えている。固定接触体は、固定接点を有する。可動接触体は、固定接点と接触する可動接点を有して定接触体と第1方向に対向し、可動接点を固定接点から第1方向に離す開極動作が行われる。消弧室は、固定接触体および可動接触体とは、第1方向と交差する第2方向に距離を隔てて配置され、開極動作により、固定接点と可動接点との間において発生したアークを消滅させる。一対のアークランナは、固定接触体および可動接触体のそれぞれの側から消弧室に向かって形成されている。一対の絶縁側壁板は、固定接触体、可動接触体および一対のアークランナを挟み込むように、固定接触体、可動接触体および一対のアークランナとは、第1方向および第2方向と交差する第3方向にそれぞれ距離を隔てて配置されている。一対のアークランナは、第1部と第2部とを含む。第1部は、固定接触体および可動接触体の側に位置する部分を含む。第2部は、第1部に繋がり、消弧室の側に位置する。第1部と絶縁側壁板との第3方向の隙間は、第2部と絶縁側壁板との第3方向の隙間よりも広い。絶縁側壁板には、開極動作によって、アークとともに発生したガスを外部へ排出する第1排気口を含む一つ以上の排気口が形成されている。排気口は、発生したガスの排気口へ向かう流れによって、アークを、第1部と絶縁側壁板との隙間へ駆動させ、さらに、第2部へ向けて駆動させる位置に形成されている。 The DC circuit breaker according to the present disclosure includes a fixed contact body, a movable contact body, an arc extinguishing chamber, a pair of arc runners, and a pair of insulating side wall plates. The fixed contact body has a fixed contact. The movable contact body has a movable contact that comes into contact with the fixed contact and faces the constant contact body in the first direction, and an opening operation is performed in which the movable contact is separated from the fixed contact in the first direction. The arc extinguishing chamber is arranged at a distance from the fixed contact body and the movable contact body in the second direction intersecting the first direction, and the arc generated between the fixed contact and the movable contact by the opening operation is generated. Extinguish. The pair of arc runners are formed from the respective sides of the fixed contact body and the movable contact body toward the arc extinguishing chamber. The pair of insulating side wall plates sandwich the fixed contact body, the movable contact body and the pair of arc runners, so that the fixed contact body, the movable contact body and the pair of arc runners intersect with the first direction and the second direction in the third direction. They are arranged at a distance from each other. The pair of arcrunners includes a first part and a second part. The first part includes a portion located on the side of the fixed contact body and the movable contact body. The second part is connected to the first part and is located on the side of the arc extinguishing chamber. The gap between the first portion and the insulating side wall plate in the third direction is wider than the gap between the second portion and the insulating side wall plate in the third direction. The insulating side wall plate is formed with one or more exhaust ports including a first exhaust port for discharging the gas generated together with the arc to the outside by the opening operation. The exhaust port is formed at a position where the arc is driven into the gap between the first portion and the insulating side wall plate by the flow of the generated gas toward the exhaust port, and further driven toward the second portion.
 本開示係る直流遮断器によれば、一対のアークランナの第1部と絶縁側壁板との第3方向の隙間は、一対のアークランナの第2部と絶縁側壁板との第3方向の隙間よりも広い。絶縁側壁板には、開極動作によって、アークとともに発生したガスを外部へ排出する第1排気口を含む一つ以上の排気口が形成されている。排気口は、発生したガスの排気口へ向かう流れによって、アークを、第1部と絶縁側壁板との隙間へ駆動させ、さらに、第2部へ向けて駆動させる位置に形成されている。これにより、発生したアークを一対のアークランナの第2部に容易に転流させることができる。その結果、小電流領域の電流のアークを膠着させることなく遮断することができ、遮断性能を向上することができる。 According to the DC circuit breaker according to the present disclosure, the gap between the first part of the pair of arc runners and the insulating side wall plate in the third direction is larger than the gap between the second part of the pair of arc runners and the insulating side wall plate in the third direction. wide. The insulating side wall plate is formed with one or more exhaust ports including a first exhaust port for discharging the gas generated together with the arc to the outside by the opening operation. The exhaust port is formed at a position where the arc is driven into the gap between the first portion and the insulating side wall plate by the flow of the generated gas toward the exhaust port, and further driven toward the second portion. As a result, the generated arc can be easily commutated to the second part of the pair of arc runners. As a result, the arc of the current in the small current region can be cut off without sticking, and the breaking performance can be improved.
実施の形態1に係る直流遮断器の全体像を示す、一部想像線を含む斜視図である。It is a perspective view which includes a part imaginary line which shows the whole image of the DC circuit breaker which concerns on Embodiment 1. 同実施の形態において、図1に示される断面線II-IIにおける断面斜視図である。In the same embodiment, it is a cross-sectional perspective view in the cross-sectional line II-II shown in FIG. 同実施の形態において、図1に示される断面線II-IIにおける断面図である。In the same embodiment, it is sectional drawing in sectional line II-II shown in FIG. 同実施の形態において、図1に示す直流遮断器における第1アークランナおよび第2アークランナの構造を示す斜視図である。In the same embodiment, it is a perspective view which shows the structure of the 1st arc runner and the 2nd arc runner in the DC circuit breaker shown in FIG. 同実施の形態において、排気口の配置を示す部分側面図である。It is a partial side view which shows the arrangement of the exhaust port in the same embodiment. 同実施の形態において、第1アークランナおよび第2アークランナと一対の絶縁側壁板との配置関係を示す上面図である。In the same embodiment, it is a top view which shows the arrangement relation of the 1st arc runner and the 2nd arc runner, and a pair of insulating side wall plates. 同実施の形態において、直流遮断器の動作の一例を説明するための第1の状態を示す斜視図である。In the same embodiment, it is a perspective view which shows the 1st state for demonstrating an example of operation of a DC circuit breaker. 同実施の形態において、図7に示す第1の状態の後の第2の状態を示す斜視図である。In the same embodiment, it is a perspective view which shows the 2nd state after the 1st state shown in FIG. 7. 同実施の形態において、図8に示す第2の状態の後の第3の状態を示す斜視図である。In the same embodiment, it is a perspective view which shows the 3rd state after the 2nd state shown in FIG. 同実施の形態において、図9に示す第3の状態の後の第4の状態を示す斜視図である。In the same embodiment, it is a perspective view which shows the 4th state after the 3rd state shown in FIG. 同実施の形態において、アークの挙動を説明するためのガスの流れとアークの駆動を示す上面図である。In the same embodiment, it is a top view which shows the gas flow and arc drive for explaining the behavior of an arc. 同実施の形態において、アークの挙動を説明するためのガスの流れを示す斜視図である。In the same embodiment, it is a perspective view which shows the flow of a gas for demonstrating the behavior of an arc. 実施の形態2に係る直流遮断器の構造を示す断面図である。It is sectional drawing which shows the structure of the DC circuit breaker which concerns on Embodiment 2. FIG. 同実施の形態において、アークの挙動を説明するためのガスの流れを示す上面図である。In the same embodiment, it is a top view which shows the gas flow for explaining the behavior of an arc. 同実施の形態において、アークの挙動を説明するためのガスの流れを示す斜視図である。In the same embodiment, it is a perspective view which shows the flow of a gas for demonstrating the behavior of an arc. 実施の形態3に係る直流遮断器における第1アークランナおよび第2アークランナの構造を示す斜視図である。It is a perspective view which shows the structure of the 1st arc runner and the 2nd arc runner in the DC circuit breaker which concerns on Embodiment 3. FIG. 同実施の形態において、可動接触体の構造を示す部分拡大斜視図である。In the same embodiment, it is a partially enlarged perspective view which shows the structure of a movable contact body. 同実施の形態において、アークの挙動を説明するための第1の部分側面図である。It is a 1st partial side view for demonstrating the behavior of an arc in the same embodiment. 同実施の形態において、アークの挙動を説明するための第2の部分側面図である。In the same embodiment, it is the 2nd partial side view for demonstrating the behavior of an arc. 実施の形態4に係る直流遮断器における磁石板を含む構造を示す上面図である。It is a top view which shows the structure including the magnet plate in the DC circuit breaker which concerns on Embodiment 4. FIG. 同実施の形態において、アークの挙動を説明するための斜視図である。It is a perspective view for demonstrating the behavior of an arc in the same embodiment. 同実施の形態において、アークの挙動を説明するための上面図である。It is a top view for demonstrating the behavior of an arc in the same embodiment.
 実施の形態1.
 実施の形態1に係る直流遮断器について説明する。この明細書では、配置関係を、第1方向としてのX軸(方向)、第3方向としてのY軸(方向)および第2方向としてのZ軸(方向)を用いて適宜説明する。
Embodiment 1.
The DC circuit breaker according to the first embodiment will be described. In this specification, the arrangement relationship will be appropriately described using the X-axis (direction) as the first direction, the Y-axis (direction) as the third direction, and the Z-axis (direction) as the second direction.
 図1、図2および図3に示すように、直流遮断器1は、固定接触体7と、可動接触体11と、消弧室19と、一対のアークランナとしての第1アークランナ3および第2アークランナ5と、一対の絶縁側壁板27とを備えている。 As shown in FIGS. 1, 2 and 3, the DC circuit breaker 1 includes a fixed contact body 7, a movable contact body 11, an arc extinguishing chamber 19, and a first arc runner 3 and a second arc runner as a pair of arc runners. 5 and a pair of insulating side wall plates 27 are provided.
 固定接触体7は、可動接触体11に接触する固定接点7aを有する。固定接触体7は、上部導体9に接続されている。可動接触体11は、固定接触体7に接触する可動接点11aを有する。可動接触体11は、固定接触体7とX軸方向に対向するように配置される。可動接触体11は、可動導体13に接続されている。可動導体13は、可撓シャント15を介して下部導体17に接続されている。 The fixed contact body 7 has a fixed contact 7a that comes into contact with the movable contact body 11. The fixed contact body 7 is connected to the upper conductor 9. The movable contact body 11 has a movable contact body 11a that comes into contact with the fixed contact body 7. The movable contact body 11 is arranged so as to face the fixed contact body 7 in the X-axis direction. The movable contact body 11 is connected to the movable conductor 13. The movable conductor 13 is connected to the lower conductor 17 via a flexible shunt 15.
 可動接触体11は、可動接点11aが固定接点7aに接触している閉極状態から、可動接点11aを固定接点7aからX軸方向に離す開極動作が行われる。また、開極状態から、可動接点11aを固定接点7aへ接触させる閉極動作が行われる。開極動作および閉極動作には、可動接触体11をX軸方向に沿って移動させるアクチュエータ(図示せず)が使用される。 The movable contact body 11 is subjected to an opening operation in which the movable contact 11a is separated from the fixed contact 7a in the X-axis direction from the closed pole state in which the movable contact 11a is in contact with the fixed contact 7a. Further, from the open pole state, a closing operation is performed in which the movable contact 11a is brought into contact with the fixed contact 7a. An actuator (not shown) for moving the movable contact body 11 along the X-axis direction is used for the opening pole operation and the closing pole operation.
 消弧室19は、固定接触体7および可動接触体11とは、第2方向としてのZ軸方向に距離を隔てて配置されている。消弧室19は、可動接点11aを固定接点7aから離す開極動作によって発生するアークを消滅させる。消弧室19では、デアイオングリッド23とグリッドサポート板25とが交互に積層されている。デアイオングリッド23およびグリッドサポート板25は、消弧室底板21の上に積層されている。 The arc extinguishing chamber 19 is arranged at a distance from the fixed contact body 7 and the movable contact body 11 in the Z-axis direction as the second direction. The arc extinguishing chamber 19 extinguishes the arc generated by the opening operation of separating the movable contact 11a from the fixed contact 7a. In the arc extinguishing chamber 19, the deaion grid 23 and the grid support plate 25 are alternately laminated. The deaion grid 23 and the grid support plate 25 are laminated on the arc extinguishing chamber bottom plate 21.
 第1アークランナ3は、固定接触体7の側から消弧室19の側に向かって形成されている。第1アークランナ3は、磁性材から形成されている。第2アークランナ5は、可動接触体11の側から消弧室19の側に向かって形成されている。第2アークランナ5は、磁性材から形成されている。 The first arc runner 3 is formed from the side of the fixed contact body 7 toward the side of the arc extinguishing chamber 19. The first arc runner 3 is formed of a magnetic material. The second arc runner 5 is formed from the side of the movable contact body 11 toward the side of the arc extinguishing chamber 19. The second arc runner 5 is made of a magnetic material.
 図4に示すように、第1アークランナ3は、第1部としての第1傾斜部3aと、第1曲げ部3bと、第2部および延在部としての第1水平部3cとを有する。第1傾斜部3aは、X軸方向成分(負成分)とZ軸方向成分(正成分)とを有する態様で、固定接触体7の側から消弧室19の側に向かって形成されている。第1水平部3cは、X軸方向に沿って延在する。第1水平部3cは、第1曲げ部3bを介して第1傾斜部3aに繋がる部分から、第2アークランナ5が位置する側とは反対の側(X軸負方向)に延在している。 As shown in FIG. 4, the first arc runner 3 has a first inclined portion 3a as a first portion, a first bent portion 3b, and a second portion and a first horizontal portion 3c as an extending portion. The first inclined portion 3a has an X-axis direction component (negative component) and a Z-axis direction component (positive component), and is formed from the side of the fixed contact body 7 toward the arc extinguishing chamber 19. .. The first horizontal portion 3c extends along the X-axis direction. The first horizontal portion 3c extends from a portion connected to the first inclined portion 3a via the first bending portion 3b to a side (X-axis negative direction) opposite to the side on which the second arc runner 5 is located. ..
 第2アークランナ5は、第1部としての第2傾斜部5aと、第2曲げ部5bと、第2部および延在部としての第2水平部5cとを有する。第2傾斜部5aは、X軸方向成分(正成分)とZ軸方向成分(正成分)とを有する態様で、可動接触体11の側から消弧室19の側に向かって形成されている。第2水平部5cは、X軸方向に沿って延在する。第2水平部5cは、第2曲げ部5bを介して第2傾斜部5aに繋がる部分から、第1アークランナ3が位置する側等は反対の側(X軸正方向)に延在している。 The second arc runner 5 has a second inclined portion 5a as a first portion, a second bent portion 5b, and a second horizontal portion 5c as a second portion and an extending portion. The second inclined portion 5a has an X-axis direction component (positive component) and a Z-axis direction component (positive component), and is formed from the side of the movable contact body 11 toward the arc extinguishing chamber 19. .. The second horizontal portion 5c extends along the X-axis direction. The second horizontal portion 5c extends from a portion connected to the second inclined portion 5a via the second bent portion 5b to the opposite side (X-axis positive direction) such as the side where the first arc runner 3 is located. ..
 一対の絶縁側壁板27は、固定接触体7、第1アークランナ3、可動接触体11および第2アークランナ5を挟み込むように、固定接触体7、第1アークランナ3、可動接触体11および第2アークランナ5とは、第3方向としてのY軸方向にそれぞれ距離を隔てて配置されている。絶縁側壁板27は、たとえば、樹脂または無機材料等の絶縁性材料から形成されている。なお、図2および図3では、一対の絶縁側壁板27のうちのY軸正方向側に位置する絶縁側壁板27が示されている。 The pair of insulating side wall plates 27 sandwich the fixed contact body 7, the first arc runner 3, the movable contact body 11, and the second arc runner 5 so as to sandwich the fixed contact body 7, the first arc runner 3, the movable contact body 11, and the second arc runner 5. 5 is arranged at a distance in the Y-axis direction as the third direction. The insulating side wall plate 27 is formed of an insulating material such as a resin or an inorganic material. In addition, in FIG. 2 and FIG. 3, the insulating side wall plate 27 located on the Y-axis positive direction side of the pair of insulating side wall plates 27 is shown.
 図5に示すように、一対の絶縁側壁板27には、排気口29として、第1排気口31、第2排気口33、第3排気口35および第4排気口37が形成されている。第1排気口31、第2排気口33、第3排気口35および第4排気口37のそれぞれから、アークの発生とともに発生したガス(熱ガス)が、直流遮断器1の外部へ排出される。また、発生したガスは、消弧室19におけるX軸方向の2つの端部(正方向端部および負方向端部)からも、外部へ排出されることになる(図1参照)。 As shown in FIG. 5, the pair of insulating side wall plates 27 are formed with a first exhaust port 31, a second exhaust port 33, a third exhaust port 35, and a fourth exhaust port 37 as exhaust ports 29. Gas (heat gas) generated with the generation of an arc is discharged to the outside of the DC circuit breaker 1 from each of the first exhaust port 31, the second exhaust port 33, the third exhaust port 35, and the fourth exhaust port 37. .. Further, the generated gas is also discharged to the outside from the two ends (positive direction end and negative direction end) in the X-axis direction in the arc extinguishing chamber 19 (see FIG. 1).
 排気口29は、発生したガスの排気口へ向かう流れによって、アークを、第1アークランナ3(第1傾斜部3a)と絶縁側壁板27との隙間と、第2アークランナ5(第2傾斜部5a)と絶縁側壁板27との隙間とにそれぞれ駆動させ、さらに、アークを、第1アークランナ3の第1水平部3cと、第2アークランナ5の第2水平部5cとに向けてそれぞれ駆動させる位置に配置されている。排気口29は、アークが発生する固定接触体7および可動接触体11が配置されている位置から、X軸方向とZ軸方向との双方に距離を隔てられた位置に形成されている。 The exhaust port 29 causes an arc by the flow of the generated gas toward the exhaust port, in a gap between the first arc runner 3 (first inclined portion 3a) and the insulating side wall plate 27, and in the second arc runner 5 (second inclined portion 5a). ) And the gap between the insulating side wall plate 27, respectively, and the position where the arc is driven toward the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5, respectively. Is located in. The exhaust port 29 is formed at a position separated from the position where the fixed contact body 7 and the movable contact body 11 where the arc is generated are arranged in both the X-axis direction and the Z-axis direction.
 第1排気口31および第2排気口33のそれぞれは、絶縁側壁板27の上に配置された消弧室19の消弧室底板21および最下層のグリッドサポート板25と、絶縁側壁板27に形成された切り欠きとによって形成されている。第3排気口35および第4排気口37のそれぞれは、絶縁側壁板27を貫通する貫通孔として形成されている。 Each of the first exhaust port 31 and the second exhaust port 33 is attached to the arc extinguishing chamber bottom plate 21 of the arc extinguishing chamber 19 arranged on the insulating side wall plate 27, the grid support plate 25 of the lowermost layer, and the insulating side wall plate 27. It is formed by a notch formed. Each of the third exhaust port 35 and the fourth exhaust port 37 is formed as a through hole penetrating the insulating side wall plate 27.
 図3、図4および図5に示すように、絶縁側壁板27、第1アークランナ3、第2アークランナ5、消弧室19の、Y軸方向からの平面視(X-Z平面)において、第1排気口31は、第1水平部3cと消弧室19との間に位置する。第2排気口33は、第2水平部5cと消弧室19との間に位置する。 As shown in FIGS. 3, 4 and 5, in the plan view (XZ plane) of the insulating side wall plate 27, the first arc runner 3, the second arc runner 5, and the arc extinguishing chamber 19 from the Y-axis direction, the first 1 The exhaust port 31 is located between the first horizontal portion 3c and the arc extinguishing chamber 19. The second exhaust port 33 is located between the second horizontal portion 5c and the arc extinguishing chamber 19.
 第3排気口35は、第1水平部3cに対して、第1排気口31が位置する側とは反対の側に位置する。第4排気口37は、第2水平部5cに対して、第2排気口33が位置する側とは反対の側に位置する。 The third exhaust port 35 is located on the side opposite to the side where the first exhaust port 31 is located with respect to the first horizontal portion 3c. The fourth exhaust port 37 is located on the side opposite to the side where the second exhaust port 33 is located with respect to the second horizontal portion 5c.
 絶縁側壁板27と、固定接触体7の側に位置する第1アークランナ3(第1傾斜部3a)の部分との間では、十分な隙間(空間)が確保される。絶縁側壁板27と、可動接触体11の側に位置する第2アークランナ5(第2傾斜部5a)の部分との間では、十分な隙間(空間)が確保される。 A sufficient gap (space) is secured between the insulating side wall plate 27 and the portion of the first arc runner 3 (first inclined portion 3a) located on the side of the fixed contact body 7. A sufficient gap (space) is secured between the insulating side wall plate 27 and the portion of the second arc runner 5 (second inclined portion 5a) located on the side of the movable contact body 11.
 図4および図6に示すように、第1アークランナ3の第1傾斜部3aは、Y軸方向に第1幅としての幅を有する。第1傾斜部3aにおける固定接触体7側の部分の幅W1は、第1水平部3cの幅W2よりも狭い。第1傾斜部3aの幅は、第1水平部3c(第1曲げ部3b)に接続されている部分から固定接触体7の側に位置する部分に向かって徐々に狭まっている。このため、第1傾斜部3aの固定接触体7の側に位置する部分と絶縁側壁板27との間隔S1(隙間)は、第1水平部3cと絶縁側壁板27との間隔S2(隙間)よりも広い。 As shown in FIGS. 4 and 6, the first inclined portion 3a of the first arc runner 3 has a width as a first width in the Y-axis direction. The width W1 of the portion of the first inclined portion 3a on the fixed contact body 7 side is narrower than the width W2 of the first horizontal portion 3c. The width of the first inclined portion 3a gradually narrows from the portion connected to the first horizontal portion 3c (the first bending portion 3b) toward the portion located on the side of the fixed contact body 7. Therefore, the distance S1 (gap) between the portion of the first inclined portion 3a located on the side of the fixed contact body 7 and the insulating side wall plate 27 is the distance S2 (gap) between the first horizontal portion 3c and the insulating side wall plate 27. Wider than.
 また、第2アークランナ5の第2傾斜部5aは、Y軸方向に第1幅としての幅を有する。第2傾斜部5aにおける可動接触体11側の部分の幅W1は、第2水平部5cの幅W2よりも狭い。第2傾斜部5aの幅は、第2水平部5c(第2曲げ部5b)に接続されている部分から可動接触体11の側に位置する部分に向かって徐々に狭まっている。このため、第2傾斜部5aの可動接触体11の側に位置する部分と絶縁側壁板27との間隔S1(隙間)は、第2水平部5cと絶縁側壁板27との間隔S2(隙間)よりも広い。 Further, the second inclined portion 5a of the second arc runner 5 has a width as a first width in the Y-axis direction. The width W1 of the portion of the second inclined portion 5a on the side of the movable contact body 11 is narrower than the width W2 of the second horizontal portion 5c. The width of the second inclined portion 5a gradually narrows from the portion connected to the second horizontal portion 5c (second bending portion 5b) toward the portion located on the side of the movable contact body 11. Therefore, the distance S1 (gap) between the portion of the second inclined portion 5a located on the side of the movable contact body 11 and the insulating side wall plate 27 is the distance S2 (gap) between the second horizontal portion 5c and the insulating side wall plate 27. Wider than.
 第1傾斜部3aにおける固定接触体7側の部分と絶縁側壁板27との間では、第1水平部3cと絶縁側壁板2との間に比べて、十分な隙間(空間)が確保される。また、第2傾斜部5aにおける可動接触体11側の部分と絶縁側壁板27との間では、第2水平部5cと絶縁側壁板2との間に比べて、十分な隙間(空間)が確保される。 A sufficient gap (space) is secured between the portion of the first inclined portion 3a on the fixed contact body 7 side and the insulating side wall plate 27 as compared with the portion between the first horizontal portion 3c and the insulating side wall plate 2. .. Further, a sufficient gap (space) is secured between the portion on the movable contact body 11 side of the second inclined portion 5a and the insulating side wall plate 27 as compared with the space between the second horizontal portion 5c and the insulating side wall plate 2. Will be done.
 これにより、アークの発生とともに発生したガスが、第1排気口31~第4排気口37へ流れ込むことによって、アークを、第1アークランナ3および第2アークランナ5と絶縁側壁板27との間の隙間(空間)へ駆動させ、さらに、アークを、第1水平部3cおよび第2水平部5cへ転流させることができる。これについては、後述する。 As a result, the gas generated with the generation of the arc flows into the first exhaust port 31 to the fourth exhaust port 37, thereby causing the arc to flow into the gap between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27. It can be driven to (space) and the arc can be further commutated to the first horizontal section 3c and the second horizontal section 5c. This will be described later.
 次に、上述した直流遮断器1の動作について説明する。直流遮断器1において、通電状態では、固定接触体7(固定接点7a)と可動接触体11(可動接点11a)とが接触した閉極状態にある。通電状態では、回路の電流は、上部導体9から、固定接触体7、可動接触体11、可動導体13、可撓シャント15を経て、下部導体17を流れる。 Next, the operation of the DC circuit breaker 1 described above will be described. In the DC circuit breaker 1, in the energized state, the fixed contact body 7 (fixed contact 7a) and the movable contact body 11 (movable contact 11a) are in contact with each other in a closed pole state. In the energized state, the current of the circuit flows from the upper conductor 9 through the fixed contact body 7, the movable contact body 11, the movable conductor 13, and the flexible shunt 15, and then flows through the lower conductor 17.
 一方、直流遮断器1において、固定接触体7(固定接点7a)と可動接触体11(可動接点11a)とが離間された状態が、開極状態である。電流検知器が事故電流を検知すると、可動接触体11(可動接点11a)を固定接触体7(固定接点7a)から離す開極動作が行われる。この場合、可動接触体11(可動接点11a)は、第1方向としてのX軸方向に沿って離される。 On the other hand, in the DC circuit breaker 1, the state in which the fixed contact body 7 (fixed contact 7a) and the movable contact body 11 (movable contact 11a) are separated from each other is the open pole state. When the current detector detects the accident current, an opening operation is performed in which the movable contact body 11 (movable contact 11a) is separated from the fixed contact body 7 (fixed contact 7a). In this case, the movable contact body 11 (movable contact 11a) is separated along the X-axis direction as the first direction.
 開極動作により、可動接触体11(可動接点11a)と固定接触体7(固定接点7a)との間で、アークが発生する。発生したアークは、アーク自身が形成する自己磁場による電磁力と、アークの熱に伴って生じるガス流とによって、絶縁側壁板27と第1アークランナ3(第1傾斜部3a)および第2アークランナ5(第2傾斜部5a)との隙間へ駆動され、さらに、上方に駆動される。上方に駆動したアークは、第1アークランナ3および第2アークランナ5に転流する。 By the opening operation, an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a). The generated arc has an insulating side wall plate 27, a first arc runner 3 (first inclined portion 3a), and a second arc runner 5 due to the electromagnetic force generated by the arc itself and the gas flow generated by the heat of the arc. It is driven to the gap with (second inclined portion 5a) and further driven upward. The upwardly driven arc is commutated to the first arc runner 3 and the second arc runner 5.
 第1アークランナ3および第2アークランナ5に転流したアークは、第1水平部3cと第2水平部5cとの間を跨ぐようにして、第1水平部3cを駆動するとともに、第2水平部5cを駆動し、同時に、浮力によって上方に伸長する。アークの長さが伸びることで、アーク電圧が上昇する。アーク電圧が上昇することで、電流が限流されて、電流が遮断されることになる。 The arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c so as to straddle between the first horizontal portion 3c and the second horizontal portion 5c, and also drives the second horizontal portion. It drives 5c and at the same time extends upward due to buoyancy. As the length of the arc increases, the arc voltage rises. As the arc voltage rises, the current is limited and the current is cut off.
 アークの挙動について、より具体的に説明する。まず、図7に示すように、開極動作が行われると、可動接触体11(可動接点11a)と固定接触体7(固定接点7a)との間で、アーク51が発生する。アーク51が発生する位置は、可動接点11aと固定接点7aとの接触位置に依存する。この接触位置が、固定接触体7および可動接触体11における中央に位置することはほとんどなく、中央からずれた位置にある。ここでは、接触位置が、固定接触体7および可動接触体11におけるY軸負方向側(紙面手前側)にある場合を想定して説明する。 The behavior of the arc will be explained more specifically. First, as shown in FIG. 7, when the pole opening operation is performed, an arc 51 is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a). The position where the arc 51 is generated depends on the contact position between the movable contact 11a and the fixed contact 7a. This contact position is rarely located at the center of the fixed contact body 7 and the movable contact body 11, and is located at a position deviated from the center. Here, the case where the contact position is on the Y-axis negative direction side (front side of the paper surface) of the fixed contact body 7 and the movable contact body 11 will be described.
 発生したアーク51の熱によってガスが発生する。ガスは、排気口29(第1排気口31~第4排気口37)に向かって流れる。固定接触体7(第1アークランナ3)側では、第1排気口31および第3排気口35へ向かうガスの流れ(矢印F1)によって、アーク51は、絶縁側壁板27と第1アークランナ3(第1傾斜部3a)との隙間(空間)へ駆動される(図6参照)。 Gas is generated by the heat of the generated arc 51. The gas flows toward the exhaust port 29 (first exhaust port 31 to fourth exhaust port 37). On the fixed contact body 7 (first arc runner 3) side, the arc 51 has an insulating side wall plate 27 and a first arc runner 3 (first arc runner 3) due to the gas flow (arrow F1) toward the first exhaust port 31 and the third exhaust port 35. 1 It is driven into the gap (space) with the inclined portion 3a) (see FIG. 6).
 可動接触体11(第2アークランナ5)側では、第2排気口33および第4排気口37へ向かうガスの流れ(矢印F2)によって、アーク51は、絶縁側壁板27と第2アークランナ5(第2傾斜部5a)との隙間(空間)へ駆動される(図6参照)。なお、図7では、排気口29として、図6に示す一対の絶縁側壁板27のうち、Y軸負方向側に位置する絶縁側壁板27の排気口29を二点鎖線で示す。 On the movable contact body 11 (second arc runner 5) side, the arc 51 has an insulating side wall plate 27 and a second arc runner 5 (second arc runner 5) due to the gas flow (arrow F2) toward the second exhaust port 33 and the fourth exhaust port 37. 2 It is driven into the gap (space) with the inclined portion 5a) (see FIG. 6). In FIG. 7, as the exhaust port 29, among the pair of insulating side wall plates 27 shown in FIG. 6, the exhaust port 29 of the insulating side wall plate 27 located on the negative direction side of the Y-axis is shown by a two-dot chain line.
 次に、図8に示すように、第1アークランナ3側では、第1排気口31および第3排気口35へ向かうガスの流れ(矢印F1)によって、アーク51は、第1排気口31および第3排気口35へ向かって伸長しながら駆動される。第2アークランナ5側では、第2排気口33および第4排気口37へ向かうガスの流れ(矢印F2)によって、アーク51は、第2排気口33および第4排気口37へ向かって伸長しながら駆動される。さらに、アーク51は、浮力によって上方にも伸長しながら駆動される。 Next, as shown in FIG. 8, on the first arc runner 3 side, the arc 51 has the first exhaust port 31 and the first exhaust port 31 due to the gas flow (arrow F1) toward the first exhaust port 31 and the third exhaust port 35. 3 Driven while extending toward the exhaust port 35. On the second arc runner 5 side, the arc 51 extends toward the second exhaust port 33 and the fourth exhaust port 37 due to the gas flow (arrow F2) toward the second exhaust port 33 and the fourth exhaust port 37. Driven. Further, the arc 51 is driven while extending upward by buoyancy.
 第1水平部3cと絶縁側壁板27との間隔S2(隙間)は、第1傾斜部3aの固定接触体7の側に位置する部分と絶縁側壁板27との間隔S1(隙間)よりも狭い。第2水平部5cと絶縁側壁板27との間隔S2(隙間)は、第2傾斜部5aの可動接触体11の側に位置する部分と絶縁側壁板27との間隔S1(隙間)よりも狭い。 The distance S2 (gap) between the first horizontal portion 3c and the insulating side wall plate 27 is narrower than the distance S1 (gap) between the portion of the first inclined portion 3a located on the fixed contact body 7 side and the insulating side wall plate 27. .. The distance S2 (gap) between the second horizontal portion 5c and the insulating side wall plate 27 is narrower than the distance S1 (gap) between the portion of the second inclined portion 5a located on the movable contact body 11 side and the insulating side wall plate 27. ..
 このため、アーク51が上方に伸長しながら駆動することで、第1アークランナ3側では、アーク51は、第1水平部3cにおけるエッジ3ccに衝突する。第2アークランナ5側では、第2水平部5cにおけるエッジ5ccに衝突する。 Therefore, when the arc 51 is driven while extending upward, the arc 51 collides with the edge 3cc in the first horizontal portion 3c on the first arc runner 3 side. On the second arcrunner 5 side, it collides with the edge 5cc in the second horizontal portion 5c.
 次に、図9に示すように、アーク51は、衝突した第1水平部3cにおけるエッジ3ccと、第2水平部5cにおけるエッジ5ccとに転流する。次に、図10に示すように、第1水平部3c(第1アークランナ3)および第2水平部5c(第2アークランナ5)に転流したアーク51は、第1水平部3cと第2水平部5cとの間を伸長しながら、第1水平部3cを駆動するとともに、第2水平部5cを駆動する。アーク51は、第1水平部3cおよび第2水平部5cを駆動するとともに、さらに、浮力によって上方に伸長する。 Next, as shown in FIG. 9, the arc 51 is commutated to the edge 3cc in the first horizontal portion 3c and the edge 5cc in the second horizontal portion 5c that collided with each other. Next, as shown in FIG. 10, the arcs 51 commutated to the first horizontal portion 3c (first horizontal portion 3) and the second horizontal portion 5c (second arc runner 5) are the first horizontal portion 3c and the second horizontal portion. While extending between the portions 5c, the first horizontal portion 3c is driven and the second horizontal portion 5c is driven. The arc 51 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy.
 ここで、アークの伸長とアーク電圧との関係について、簡単に説明する。アーク電圧は、アークの長さとアークの電界との積として表される。アークの電界は、概ね一定とされる。この関係から、アーク51が伸長すると、アーク電圧が高くなる。このアーク電圧が、回路の電源電圧を超えるまでに上昇すると、回路の電流は限流されて徐々に減少する。最終的に、回路の電流がゼロとなって遮断が完了することになる。 Here, the relationship between arc elongation and arc voltage will be briefly explained. The arc voltage is expressed as the product of the length of the arc and the electric field of the arc. The electric field of the arc is almost constant. From this relationship, when the arc 51 is extended, the arc voltage increases. When this arc voltage rises to exceed the power supply voltage of the circuit, the current of the circuit is limited and gradually decreases. Eventually, the circuit current will be zero and the cutoff will be complete.
 上述した直流遮断器1では、図2および図3等に示すように、一対の絶縁側壁板27に、アークとともに発生したガスを外部へ排出する排気口29が形成されている。排気口29として、第1アークランナ3側には、第1排気口31と第3排気口35とが形成されている。排気口29として、第2アークランナ5側には、第2排気口33と第4排気口37とが形成されている。 In the DC circuit breaker 1 described above, as shown in FIGS. 2 and 3, the pair of insulating side wall plates 27 are formed with an exhaust port 29 for discharging the gas generated together with the arc to the outside. As the exhaust port 29, a first exhaust port 31 and a third exhaust port 35 are formed on the first arc runner 3 side. As the exhaust port 29, a second exhaust port 33 and a fourth exhaust port 37 are formed on the second arc runner 5 side.
 また、図6に示すように、第1アークランナ3では、消弧室19の側に位置する第1水平部3cの幅W2が、アークが発生する固定接触体7の側に位置する第1傾斜部3aの端部の幅W1よりも大きい。第1傾斜部3aの端部と絶縁側壁板27との間隔S1は、第1水平部3cと絶縁側壁板27との間隔S2よりも広い。 Further, as shown in FIG. 6, in the first arc runner 3, the width W2 of the first horizontal portion 3c located on the side of the arc extinguishing chamber 19 is the first inclination located on the side of the fixed contact body 7 where the arc is generated. It is larger than the width W1 of the end portion of the portion 3a. The distance S1 between the end of the first inclined portion 3a and the insulating side wall plate 27 is wider than the distance S2 between the first horizontal portion 3c and the insulating side wall plate 27.
 第2アークランナ5では、消弧室19の側に位置する第2水平部5cの幅W2が、アークが発生する可動接触体11の側に位置する第2傾斜部5aの端部の幅W1よりも大きい。第2傾斜部5aの端部と絶縁側壁板27との間隔S1は、第2水平部5cと絶縁側壁板27との間隔S2よりも広い。 In the second arc runner 5, the width W2 of the second horizontal portion 5c located on the side of the arc extinguishing chamber 19 is wider than the width W1 of the end portion of the second inclined portion 5a located on the side of the movable contact body 11 where the arc is generated. Is also big. The distance S1 between the end of the second inclined portion 5a and the insulating side wall plate 27 is wider than the distance S2 between the second horizontal portion 5c and the insulating side wall plate 27.
 これにより、図11および図12に示すように、固定接触体7と可動接触体11との開極動作によって、アーク51とともに発生したガス(ガス流GF)が排気口29へ向かって流れることで、第1アークランナ3(固定接触体7)側では、アーク51は、第1アークランナ3(第1傾斜部3a)の部分と絶縁側壁板27との隙間(空間)へ駆動され、さらに、排気口29(第1排気口31および第3排気口35)へ向かって伸長しながら駆動される。なお、図12では、ガスの大局的な流れとして、作図の都合上、第1アークランナ3および第2アークランナ5の背後(Y軸正方向側)に位置する排気口29へ向かうガス流GFを示す。 As a result, as shown in FIGS. 11 and 12, the gas (gas flow GF) generated together with the arc 51 flows toward the exhaust port 29 due to the opening operation of the fixed contact body 7 and the movable contact body 11. On the side of the first arc runner 3 (fixed contact body 7), the arc 51 is driven into the gap (space) between the portion of the first arc runner 3 (first inclined portion 3a) and the insulating side wall plate 27, and further, the exhaust port. It is driven while extending toward 29 (first exhaust port 31 and third exhaust port 35). Note that FIG. 12 shows the gas flow GF toward the exhaust port 29 located behind the first arc runner 3 and the second arc runner 5 (on the positive direction side of the Y axis) as a global flow of gas for convenience of drawing. ..
 第2アークランナ5(可動接触体11)側では、アーク51は、第2アークランナ5(第2傾斜部5a)の部分と絶縁側壁板27との隙間(空間)へ駆動され、さらに、排気口29(第2排気口33および第4排気口37)へ向かって伸長しながら駆動される。さらに、アーク51は、浮力によって上方(消弧室19側)にも伸長しながら駆動される。 On the side of the second arc runner 5 (movable contact body 11), the arc 51 is driven into the gap (space) between the portion of the second arc runner 5 (second inclined portion 5a) and the insulating side wall plate 27, and further, the exhaust port 29. It is driven while extending toward (second exhaust port 33 and fourth exhaust port 37). Further, the arc 51 is driven while extending upward (on the arc extinguishing chamber 19 side) by buoyancy.
 第1アークランナ3および第2アークランナ5における消弧室19の側には、幅W1よりも大きい幅W2を有する第1水平部3cと第2水平部5cとが配置されている。第1水平部3cおよび第2水平部5cと絶縁側壁板27との間隔S2は、間隔S1よりも狭い。これにより、上方に駆動されたアーク51は、第1アークランナ3側では、第1水平部3cに衝突し、第2アークランナ5側では、第2水平部5cに衝突することになる。 A first horizontal portion 3c and a second horizontal portion 5c having a width W2 larger than the width W1 are arranged on the side of the arc extinguishing chamber 19 in the first arc runner 3 and the second arc runner 5. The distance S2 between the first horizontal portion 3c and the second horizontal portion 5c and the insulating side wall plate 27 is narrower than the distance S1. As a result, the arc 51 driven upward collides with the first horizontal portion 3c on the first arc runner 3 side and collides with the second horizontal portion 5c on the second arc runner 5 side.
 こうして、上述した直流遮断器1では、自己磁界が弱い小電流領域のアーク51を、第1アークランナ3および第2アークランナ5に容易に転流させることができる。その結果、アーク51が、固定接点7aおよび可動接点11aにおいて膠着するのを防止することができ、小電流領域の電流の遮断性能を改善することができる。 Thus, in the DC circuit breaker 1 described above, the arc 51 in the small current region where the self-magnetic field is weak can be easily commutated to the first arc runner 3 and the second arc runner 5. As a result, the arc 51 can be prevented from sticking at the fixed contact 7a and the movable contact 11a, and the current cutoff performance in the small current region can be improved.
 なお、上述した直流遮断器1では、第1アークランナ3における第1傾斜部3aの構造と、第2アークランナ5における第2傾斜部5aの構造として、次のような構造を例に挙げて説明した。 In the DC circuit breaker 1 described above, the following structures have been described as examples of the structure of the first inclined portion 3a in the first arc runner 3 and the structure of the second inclined portion 5a in the second arc runner 5. ..
 まず、第1アークランナ3における第1傾斜部3aでは、第1水平部3cの幅W2が、第1傾斜部3aの端部の幅W1よりも大きく、第1傾斜部3aと第1水平部3cとが繋がっている部分から第1傾斜部3aの端部に向かって、第1傾斜部3aの幅が狭くなるように形成されている。 First, in the first inclined portion 3a in the first arc runner 3, the width W2 of the first horizontal portion 3c is larger than the width W1 of the end portion of the first inclined portion 3a, and the first inclined portion 3a and the first horizontal portion 3c. It is formed so that the width of the first inclined portion 3a becomes narrower toward the end portion of the first inclined portion 3a from the portion connected to the first inclined portion 3a.
 次に、第2アークランナ5における第2傾斜部5aでは、第2水平部5cの幅W2が、第2傾斜部5aの端部の幅W1よりも大きく、第2傾斜部5aと第2水平部5cとが繋がっている部分から第2傾斜部5aの端部に向かって、第2傾斜部5aの幅が狭くなるように形成されている。 Next, in the second inclined portion 5a in the second arc runner 5, the width W2 of the second horizontal portion 5c is larger than the width W1 of the end portion of the second inclined portion 5a, and the second inclined portion 5a and the second horizontal portion It is formed so that the width of the second inclined portion 5a becomes narrower from the portion connected to the 5c toward the end portion of the second inclined portion 5a.
 直流遮断器1としては、このような構造に限られず、第1アークランナ3の第1傾斜部3aおよび第2アークランナ5の第2傾斜部5aの少なくともいずれか一方が、このような構造を有していれば、所望の効果を得ることができる。 The DC circuit breaker 1 is not limited to such a structure, and at least one of the first inclined portion 3a of the first arc runner 3 and the second inclined portion 5a of the second arc runner 5 has such a structure. If so, the desired effect can be obtained.
 実施の形態2.
 実施の形態2に係る直流遮断器の一例について説明する。図13および図14に示すように、直流遮断器1では、アークとともに発生したガスを排気口29へ導く第1ガイド板39と第2ガイド板41とを備えている。
Embodiment 2.
An example of the DC circuit breaker according to the second embodiment will be described. As shown in FIGS. 13 and 14, the DC circuit breaker 1 includes a first guide plate 39 and a second guide plate 41 that guide the gas generated together with the arc to the exhaust port 29.
 第1ガイド板39は、第1アークランナ3が位置する側に配置されている。第1ガイド板39は、固定接触体7の側からX軸方向成分(負成分)とZ軸方向成分(正成分)と有する態様で傾斜している。第1ガイド板39は、一対の絶縁側壁板27における一方の絶縁側壁板27から他方の絶縁側壁板27にわたり形成されている。 The first guide plate 39 is arranged on the side where the first arc runner 3 is located. The first guide plate 39 is inclined from the side of the fixed contact body 7 in a manner having an X-axis direction component (negative component) and a Z-axis direction component (positive component). The first guide plate 39 is formed from one insulating side wall plate 27 to the other insulating side wall plate 27 in the pair of insulating side wall plates 27.
 第2ガイド板41は、第2アークランナ5が位置する側に配置されている。第2ガイド板41は、可動接触体11の側からX軸方向成分(正成分)とZ軸方向成分(正成分)と有する態様で傾斜している。第2ガイド板41は、一対の絶縁側壁板27における一方の絶縁側壁板27から他方の絶縁側壁板27にわたり形成されている。 The second guide plate 41 is arranged on the side where the second arc runner 5 is located. The second guide plate 41 is inclined from the side of the movable contact body 11 in a manner having an X-axis direction component (positive component) and a Z-axis direction component (positive component). The second guide plate 41 is formed from one insulating side wall plate 27 to the other insulating side wall plate 27 in the pair of insulating side wall plates 27.
 第1ガイド板39と第2ガイド板41とは、第1ガイド板39と第2ガイド板41との間に位置する一対の絶縁側壁板27の部分に、排気口29が位置するように配置されている。なお、これ以外に構成については、図2および図3に示す直流遮断器1の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。 The first guide plate 39 and the second guide plate 41 are arranged so that the exhaust port 29 is located in the portion of the pair of insulating side wall plates 27 located between the first guide plate 39 and the second guide plate 41. Has been done. Since the configuration other than this is the same as the configuration of the DC circuit breaker 1 shown in FIGS. 2 and 3, the same members are designated by the same reference numerals, and the description thereof will not be repeated unless necessary. ..
 次に、上述した直流遮断器1の開極動作に伴って発生するアークの挙動について説明する。開極動作により、可動接触体11(可動接点11a)と固定接触体7(固定接点7a)との間で、アークが発生する。発生したアーク51の熱によってガスが発生する。発生したガスは、排気口29に向かって流れる。アーク51は、主としてそのガスの流れによって、第1アークランナ3および第2アークランナ5と絶縁側壁板27との隙間(空間)に駆動され、さらに、排気口29へ向かって伸長しながら駆動される、さらに、アーク51は、浮力によって上方に伸長しながら駆動される。 Next, the behavior of the arc generated by the opening operation of the DC circuit breaker 1 described above will be described. By the opening operation, an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a). Gas is generated by the heat of the generated arc 51. The generated gas flows toward the exhaust port 29. The arc 51 is driven mainly by the flow of the gas in the gap (space) between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27, and is further driven while extending toward the exhaust port 29. Further, the arc 51 is driven while extending upward by buoyancy.
 上方に駆動したアーク51は、第1アークランナ3の第1水平部3cおよび第2アークランナ5の第2水平部5cに転流する。第1アークランナ3および第2アークランナ5に転流したアークは、第1水平部3cおよび第2水平部5cを駆動するとともに、浮力によって上方にさらに伸長することで、アーク電圧が上昇する。アーク電圧が上昇することで、電流が限流されて、最終的に電流が遮断されることになる。 The arc 51 driven upward is commutated to the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5. The arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy, so that the arc voltage rises. As the arc voltage rises, the current is limited and eventually the current is cut off.
 上述した直流遮断器1では、ガスの流れをガイドする第1ガイド板39と第2ガイド板41とが配置されている。図14および図15に示すように、第1ガイド板39および第2ガイド板41によって、アーク51とともに発生したガスを、効率的に排気口29へ導くことができ、排気口29へ向かうガスの流れ(ガス流GF)が増加する。なお、図15では、ガスの大局的な流れとして、作図の都合上、第1アークランナ3および第2アークランナ5の背後(Y軸正方向側)に位置する排気口29へ向かうガス流GFを示す。 In the above-mentioned DC circuit breaker 1, a first guide plate 39 and a second guide plate 41 for guiding the flow of gas are arranged. As shown in FIGS. 14 and 15, the gas generated together with the arc 51 can be efficiently guided to the exhaust port 29 by the first guide plate 39 and the second guide plate 41, and the gas toward the exhaust port 29 can be efficiently guided. The flow (gas flow GF) increases. Note that FIG. 15 shows the gas flow GF toward the exhaust port 29 located behind the first arc runner 3 and the second arc runner 5 (on the positive direction side of the Y axis) as a global flow of gas for convenience of drawing. ..
 排気口29へ向かうガス流GFが増加することで、第1アークランナ3側では、アーク51は、第1アークランナ3と絶縁側壁板27との隙間(空間)に効率的に駆動され、さらに、排気口29へ向かって伸長しながら効率的に駆動される。第2アークランナ5側では、アーク51は、第2アークランナ5と絶縁側壁板27との隙間(空間)に効率的に駆動され、さらに、排気口29へ向かって伸長しながら効率的に駆動される。 By increasing the gas flow GF toward the exhaust port 29, on the first arc runner 3 side, the arc 51 is efficiently driven in the gap (space) between the first arc runner 3 and the insulating side wall plate 27, and further, the exhaust gas is exhausted. It is efficiently driven while extending toward the mouth 29. On the second arc runner 5 side, the arc 51 is efficiently driven in the gap (space) between the second arc runner 5 and the insulating side wall plate 27, and is further efficiently driven while extending toward the exhaust port 29. ..
 これにより、第1アークランナ3側では、アーク51を第1水平部3cに確実に転流させ、第2アークランナ5側では、アーク51を第2水平部5cに確実に転流させることができる。その結果、電流を確実に遮断させることができる。 Thereby, on the first arc runner 3 side, the arc 51 can be reliably commutated to the first horizontal portion 3c, and on the second arc runner 5 side, the arc 51 can be reliably commutated to the second horizontal portion 5c. As a result, the current can be reliably cut off.
 実施の形態3.
 実施の形態3に係る直流遮断器として、大電流領域の電流の遮断性能を改善することができる直流遮断器の一例について説明する。
Embodiment 3.
As the DC circuit breaker according to the third embodiment, an example of the DC circuit breaker capable of improving the current breaking performance in the large current region will be described.
 図16に示すように、直流遮断器1における可動接触体11では、Y軸方向に第2幅としての幅を有する。その幅は、消弧室19が位置する側に向かって狭くなる態様で形成されている。図17に示すように、可動接触体11の先端部の幅L2は、可動接触体11におけるZ軸方向の中央付近の幅L1よりも短い。また、幅L2は、第2アークランナ5の第2傾斜部5aにおける可動接触体11側の部分の幅W1よりも短い。 As shown in FIG. 16, the movable contact body 11 in the DC circuit breaker 1 has a width as a second width in the Y-axis direction. Its width is formed so as to narrow toward the side where the arc extinguishing chamber 19 is located. As shown in FIG. 17, the width L2 of the tip end portion of the movable contact body 11 is shorter than the width L1 near the center in the Z-axis direction of the movable contact body 11. Further, the width L2 is shorter than the width W1 of the portion of the second inclined portion 5a of the second arc runner 5 on the side of the movable contact body 11.
 なお、これ以外の構成については、図2~図6に示す直流遮断器1の構成と同様の構成を備えている。同一部材については同一符号を付し、必要である場合を除き、その説明を繰り返さないこととする。 The other configurations are the same as those of the DC circuit breaker 1 shown in FIGS. 2 to 6. The same members are designated by the same reference numerals, and the description thereof will not be repeated unless necessary.
 次に、上述した直流遮断器1の開極動作に伴って発生するアークの挙動について説明する。開極動作により、可動接触体11(可動接点11a)と固定接触体7(固定接点7a)との間で、アークが発生する。発生したアーク51の熱によってガスが発生する。発生したガスは、排気口29に向かって流れる。アーク51は、主としてそのガスの流れによって、第1アークランナ3および第2アークランナ5と絶縁側壁板27との隙間(空間)に駆動され、さらに、排気口29へ向かって伸長しながら駆動される、さらに、アーク51は、浮力によって上方に伸長しながら駆動される。 Next, the behavior of the arc generated by the opening operation of the DC circuit breaker 1 described above will be described. By the opening operation, an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a). Gas is generated by the heat of the generated arc 51. The generated gas flows toward the exhaust port 29. The arc 51 is driven mainly by the flow of the gas in the gap (space) between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27, and is further driven while extending toward the exhaust port 29. Further, the arc 51 is driven while extending upward by buoyancy.
 上方に駆動したアーク51は、第1アークランナ3の第1水平部3cおよび第2アークランナ5の第2水平部5cに転流する。第1アークランナ3および第2アークランナ5に転流したアークは、第1水平部3cおよび第2水平部5cを駆動するとともに、浮力によって上方にさらに伸長することで、アーク電圧が上昇する。アーク電圧が上昇することで、電流が限流されて、最終的に電流が遮断されることになる。 The arc 51 driven upward is commutated to the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5. The arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy, so that the arc voltage rises. As the arc voltage rises, the current is limited and eventually the current is cut off.
 上述した直流遮断器1では、小電流領域の電流の遮断性能とともに、数kA以上の大電流領域の電流の遮断性能を改善することができる。これについて説明する。 The above-mentioned DC circuit breaker 1 can improve the current breaking performance in the small current region as well as the current breaking performance in the large current region of several kA or more. This will be described.
 まず、開極動作によって発生したアークは、可動接触体11のエッジを駆動(移動)し、鋭角となっている部分で膠着する傾向がある。このため、図18に示すように、ほぼ一定の幅L1を有する可動接触体11では、発生したアーク51は、可動接触体11の角部11cまで移動すると、その角部11cにおいて膠着する傾向がある。このとき、アーク51とともに発生したガスが排気口29(図12参照)へ向かう流れによって、アーク51は、第2アークランナ5と絶縁側壁板27との間に駆動される。 First, the arc generated by the opening operation tends to drive (move) the edge of the movable contact body 11 and stick at the acute-angled portion. Therefore, as shown in FIG. 18, in the movable contact body 11 having a substantially constant width L1, when the generated arc 51 moves to the corner portion 11c of the movable contact body 11, it tends to stick at the corner portion 11c. be. At this time, the arc 51 is driven between the second arc runner 5 and the insulating side wall plate 27 by the flow of the gas generated together with the arc 51 toward the exhaust port 29 (see FIG. 12).
 ここで、大電流領域の電流のアークの挙動は、アーク自身が形成する自己磁場による電磁力が支配的になる。このため、ガスの流れがなければ、容易に第2アークランナ5等へ転流することができるものの、ガスの流れによって、アーク51が第2アークランナ5と絶縁側壁板27との間に駆動されるために、アーク51が、第2アークランナ5に転流するのが遅れることが想定される。 Here, the behavior of the arc of the current in the large current region is dominated by the electromagnetic force due to the self-magnetic field formed by the arc itself. Therefore, if there is no gas flow, the arc 51 can be easily commutated to the second arc runner 5 or the like, but the arc 51 is driven between the second arc runner 5 and the insulating side wall plate 27 by the gas flow. Therefore, it is assumed that the arc 51 is delayed in commutating to the second arc runner 5.
 一方、図19に示すように、上述した直流遮断器1では、発生したアーク51は、可動接触体11における幅L1を有する部分から、幅の狭い幅L2を有する部分へ駆動(移動)する。また、アーク51とともに発生したガスが排気口29(図12参照)へ向かう流れによって、アーク51は、第2アークランナ5と絶縁側壁板27との間に駆動される。 On the other hand, as shown in FIG. 19, in the above-mentioned DC circuit breaker 1, the generated arc 51 is driven (moved) from the portion of the movable contact body 11 having the width L1 to the portion having the narrow width L2. Further, the arc 51 is driven between the second arc runner 5 and the insulating side wall plate 27 by the flow of the gas generated together with the arc 51 toward the exhaust port 29 (see FIG. 12).
 このとき、アーク51は、可動接触体11における幅の狭い幅L2を有する部分へ移動していることで、図18に示す可動接触体11の場合と比べて、アーク51は、より第2アークランナ5に接近することなる。アーク51が第2アークランナ5に接近することで、アーク51が第2アークランナ5に衝突しやすくなる。これにより、アーク51を第2アークランナ5に容易に転流することができ、アーク電圧を上昇させて電流を遮断することができる。その結果、小電流領域の電流の遮断性能とともに、大電流領域の電流の遮断性能を改善することができる。 At this time, since the arc 51 has moved to the portion of the movable contact body 11 having the narrow width L2, the arc 51 has a second arc runner as compared with the case of the movable contact body 11 shown in FIG. It will approach 5. As the arc 51 approaches the second arc runner 5, the arc 51 tends to collide with the second arc runner 5. As a result, the arc 51 can be easily commutated to the second arc runner 5, and the arc voltage can be increased to cut off the current. As a result, it is possible to improve the current cutoff performance in the large current region as well as the current cutoff performance in the small current region.
 実施の形態4.
 実施の形態4に係る直流遮断器として、電磁力を利用してアークを上方へ駆動させる直流遮断器の一例について説明する。
Embodiment 4.
As the DC circuit breaker according to the fourth embodiment, an example of the DC circuit breaker that drives the arc upward by using the electromagnetic force will be described.
 図20に示すように、直流遮断器1では、第1アークランナ3および第2アークランナ5等を挟み込むように、一対の絶縁側壁板27が配置されている。その一対の絶縁側壁板27を挟み込むように、磁極板43と磁極板45とが配置されている。一対の絶縁側壁板27のうちの一方の絶縁側壁板27の外側に、磁極板43が配置されている。他方の絶縁側壁板27の外側に、磁極板45が配置されている。 As shown in FIG. 20, in the DC circuit breaker 1, a pair of insulating side wall plates 27 are arranged so as to sandwich the first arc runner 3 and the second arc runner 5. The magnetic pole plate 43 and the magnetic pole plate 45 are arranged so as to sandwich the pair of insulating side wall plates 27. The magnetic pole plate 43 is arranged on the outside of one of the insulating side wall plates 27 of the pair of insulating side wall plates 27. A magnetic pole plate 45 is arranged on the outside of the other insulating side wall plate 27.
 磁極板43は、たとえば、永久磁石47を備えている。磁極板45は、たとえば、永久磁石49を備えている。ここでは、永久磁石47のN極が磁極板43に対向し、永久磁石49のS極が磁極板45に対向するように配置されている。これにより、磁極板43と磁極板45との間では、磁極板43から磁極板45へ向かって、一様な磁場MFが形成される。 The magnetic pole plate 43 includes, for example, a permanent magnet 47. The magnetic pole plate 45 includes, for example, a permanent magnet 49. Here, the N pole of the permanent magnet 47 faces the magnetic pole plate 43, and the S pole of the permanent magnet 49 faces the magnetic pole plate 45. As a result, a uniform magnetic field MF is formed between the magnetic pole plate 43 and the magnetic pole plate 45 from the magnetic pole plate 43 toward the magnetic pole plate 45.
 次に、上述した直流遮断器1の開極動作に伴って発生するアークの挙動について説明する。開極動作により、可動接触体11(可動接点11a)と固定接触体7(固定接点7a)との間で、アークが発生する。発生したアーク51の熱によってガスが発生する。発生したガスは、排気口29に向かって流れる。アーク51は、主としてそのガスの流れによって、第1アークランナ3および第2アークランナ5と絶縁側壁板27との隙間(空間)に駆動され、さらに、排気口29へ向かって伸長しながら駆動される、さらに、アーク51は、浮力によって上方に伸長しながら駆動される。 Next, the behavior of the arc generated by the opening operation of the DC circuit breaker 1 described above will be described. By the opening operation, an arc is generated between the movable contact body 11 (movable contact 11a) and the fixed contact body 7 (fixed contact 7a). Gas is generated by the heat of the generated arc 51. The generated gas flows toward the exhaust port 29. The arc 51 is driven mainly by the flow of the gas in the gap (space) between the first arc runner 3 and the second arc runner 5 and the insulating side wall plate 27, and is further driven while extending toward the exhaust port 29. Further, the arc 51 is driven while extending upward by buoyancy.
 上方に駆動したアーク51は、第1アークランナ3の第1水平部3cおよび第2アークランナ5の第2水平部5cに転流する。第1アークランナ3および第2アークランナ5に転流したアークは、第1水平部3cおよび第2水平部5cを駆動するとともに、浮力によって上方にさらに伸長することで、アーク電圧が上昇する。アーク電圧が上昇することで、電流が限流されて、最終的に電流が遮断されることになる。 The arc 51 driven upward is commutated to the first horizontal portion 3c of the first arc runner 3 and the second horizontal portion 5c of the second arc runner 5. The arc commutated to the first arc runner 3 and the second arc runner 5 drives the first horizontal portion 3c and the second horizontal portion 5c, and further extends upward due to buoyancy, so that the arc voltage rises. As the arc voltage rises, the current is limited and eventually the current is cut off.
 上述した直流遮断器1では、図20に示すように、アーク51が発生する領域に、一様な磁場MFが形成されている。アーク51を流れる電流の向きと磁場MFの向きとの関係により、アーク51には、次のような電磁力が作用することになる。 In the DC circuit breaker 1 described above, as shown in FIG. 20, a uniform magnetic field MF is formed in the region where the arc 51 is generated. The following electromagnetic force acts on the arc 51 depending on the relationship between the direction of the current flowing through the arc 51 and the direction of the magnetic field MF.
 図21および図22に示すように、第1アークランナ3が位置する側のアーク51の部分には、電磁力F31(X軸負方向)が作用する。第2アークランナ5が位置する側のアーク51の部分には、電磁力F32(X軸正方向)が作用する。第1アークランナ3と第2アークランナ5との間に位置するアーク51の部分には、電磁力F33(Z軸正方向))が作用する。 As shown in FIGS. 21 and 22, an electromagnetic force F31 (X-axis negative direction) acts on the portion of the arc 51 on the side where the first arc runner 3 is located. An electromagnetic force F32 (in the positive direction on the X-axis) acts on the portion of the arc 51 on the side where the second arc runner 5 is located. An electromagnetic force F33 (Z-axis positive direction) acts on the portion of the arc 51 located between the first arc runner 3 and the second arc runner 5.
 このため、第1アークランナ3側では、アーク51は、ガスの流れ(矢印F1)と電磁力F31との双方によって、排気口29(第1排気口31および第3排気口35)に向かって伸長しながら駆動される。第2アークランナ5側では、アーク51は、ガスの流れ(矢印F2)と電磁力F32との双方によって、排気口29(第2排気口33および第4排気口37)に向かって伸長しながら駆動される。第1アークランナ3と第2アークランナ5との間に位置するアーク51の部分では、アーク51は、浮力と電磁力F33との双方によって、上方に向かって伸長しながら駆動される。なお、図21では、排気口29として、図20に示す一対の絶縁側壁板27のうち、Y軸負方向側に位置する絶縁側壁板27の排気口29を二点鎖線で示す。 Therefore, on the first arc runner 3 side, the arc 51 extends toward the exhaust port 29 (the first exhaust port 31 and the third exhaust port 35) by both the gas flow (arrow F1) and the electromagnetic force F31. Driven while. On the second arc runner 5 side, the arc 51 is driven by both the gas flow (arrow F2) and the electromagnetic force F32 while extending toward the exhaust port 29 (the second exhaust port 33 and the fourth exhaust port 37). Will be done. In the portion of the arc 51 located between the first arc runner 3 and the second arc runner 5, the arc 51 is driven while extending upward by both the buoyancy force and the electromagnetic force F33. In FIG. 21, as the exhaust port 29, among the pair of insulating side wall plates 27 shown in FIG. 20, the exhaust port 29 of the insulating side wall plate 27 located on the negative direction side of the Y-axis is shown by a two-dot chain line.
 これにより、第1アークランナ3側では、アーク51を、第1アークランナ3と絶縁側壁板27との隙間(空間)に駆動し、さらに、排気口29へ向かって伸長しながら駆動する駆動力が増強される。第2アークランナ5側では、アーク51を、第2アークランナ5と絶縁側壁板27との隙間(空間)に駆動し、さらに、排気口29へ向かって伸長しながら駆動する駆動力が増強される。さらに、アーク51を、上方に向かって伸長しながら駆動する駆動力が増強される。 As a result, on the first arc runner 3 side, the arc 51 is driven in the gap (space) between the first arc runner 3 and the insulating side wall plate 27, and the driving force for driving the arc 51 while extending toward the exhaust port 29 is further enhanced. Will be done. On the second arc runner 5 side, the arc 51 is driven in the gap (space) between the second arc runner 5 and the insulating side wall plate 27, and the driving force for driving the arc 51 while extending toward the exhaust port 29 is further enhanced. Further, the driving force for driving the arc 51 while extending upward is enhanced.
 駆動力が増強されることで、第1アークランナ3側では、アーク51を第1水平部3cに確実に転流させ、第2アークランナ5側では、アーク51を第2水平部5cに確実に転流させることができる。その結果、電流を確実に遮断させることができる。 By increasing the driving force, the arc 51 is reliably commutated to the first horizontal portion 3c on the first arc runner 3 side, and the arc 51 is reliably commutated to the second horizontal portion 5c on the second arc runner 5 side. Can be shed. As a result, the current can be reliably cut off.
 なお、各実施の形態において説明した直流遮断器1では、排気口29として、第1排気口31、第2排気口33、第3排気口35および第4排気口37を挙げたが、少なくとも、第1排気口31および第2排気口33が形成されていることで、所望の効果を得ることができる。 In the DC circuit breaker 1 described in each embodiment, the first exhaust port 31, the second exhaust port 33, the third exhaust port 35, and the fourth exhaust port 37 are mentioned as the exhaust ports 29, but at least, By forming the first exhaust port 31 and the second exhaust port 33, a desired effect can be obtained.
 各実施の形態において説明した直流遮断器については、必要に応じて種々組み合わせることが可能である。 The DC circuit breakers described in each embodiment can be combined in various ways as needed.
 今回開示された実施の形態は例示であってこれに制限されるものではない。本開示は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。 The embodiment disclosed this time is an example and is not limited to this. This disclosure is expressed by the scope of claims, not the scope described above, and is intended to include all modifications in the meaning and scope equivalent to the scope of claims.
 本開示は、アークランナおよび消弧室を備えた直流遮断器に有効に利用される。 This disclosure is effectively used for a DC circuit breaker equipped with an arc runner and an arc extinguishing chamber.
 1 直流遮断器、3 第1アークランナ、3a 第1傾斜部、3b 第1曲げ部、3c 第1水平部、3cc エッジ、5 第2アークランナ、5a 第2傾斜部、5b 第2曲げ部、5c 第2水平部、5cc エッジ、7 固定接触体、7a 固定接点、9 上部導体、11 可動接触体、11a 可動接点、11b 先端部、11bb エッジ、11c 角部、13 可動導体、15 可撓シャント、17 下部導体、19 消弧室、21 消弧室底板、23 デアイオングリッド、25 グリッドサポート板、27 絶縁側壁板、29 排気口、31 第1排気口、33 第2排気口、35 第3排気口、37 第4排気口、39 第1ガイド板、41 第2ガイド板、43、45 磁石板、47、49 永久磁石、51 アーク、F1、F2 矢印、F31、F32、F33 電磁力、W1、W2 幅、S1、S2 隙間、GF ガス流、L1、L2 幅、MF 磁場。 1 DC circuit breaker, 3 1st arc runner, 3a 1st inclined part, 3b 1st bent part, 3c 1st horizontal part, 3 cc edge, 5 2nd arc runner, 5a 2nd inclined part, 5b 2nd bent part, 5c second 2 horizontal part, 5cc edge, 7 fixed contact body, 7a fixed contact, 9 upper conductor, 11 movable contact body, 11a movable contact, 11b tip part, 11bb edge, 11c corner part, 13 movable conductor, 15 flexible shunt, 17 Lower conductor, 19 arc-extinguishing chamber, 21 arc-extinguishing chamber bottom plate, 23 deaion grid, 25 grid support plate, 27 insulating side wall plate, 29 exhaust port, 31 first exhaust port, 33 second exhaust port, 35 third exhaust port , 37 4th exhaust port, 39 1st guide plate, 41 2nd guide plate, 43, 45 magnet plate, 47, 49 permanent magnet, 51 arc, F1, F2 arrow, F31, F32, F33 electromagnetic force, W1, W2 Width, S1, S2 gap, GF gas flow, L1, L2 width, MF magnetic field.

Claims (8)

  1.  固定接点を有する固定接触体と、
     前記固定接点と接触する可動接点を有して前記固定接触体と第1方向に対向し、前記可動接点を前記固定接点から前記第1方向に離す開極動作が行われる可動接触体と、
     前記固定接触体および前記可動接触体とは、前記第1方向と交差する第2方向に距離を隔てて配置され、前記開極動作により、前記固定接点と前記可動接点との間において発生したアークを消滅させる消弧室と、
     前記固定接触体および前記可動接触体のそれぞれの側から前記消弧室に向かって形成された一対のアークランナと、
     前記固定接触体、前記可動接触体および一対の前記アークランナを挟み込むように、前記固定接触体、前記可動接触体および一対の前記アークランナとは、前記第1方向および前記第2方向と交差する第3方向にそれぞれ距離を隔てて配置された一対の絶縁側壁板と
    を備え、
     一対の前記アークランナは、
     前記固定接触体および前記可動接触体の側に位置する部分を含む第1部と、
     前記第1部に繋がり、前記消弧室の側に位置する第2部と
    を含み、
     前記第1部と前記絶縁側壁板との前記第3方向の隙間は、前記第2部と前記絶縁側壁板との前記第3方向の隙間よりも広く、
     前記絶縁側壁板には、前記開極動作によって、前記アークとともに発生したガスを外部へ排出する第1排気口を含む一つ以上の排気口が形成され、
     前記排気口は、発生した前記ガスの前記排気口へ向かう流れによって、前記アークを、前記第1部と前記絶縁側壁板との前記隙間へ駆動させ、さらに、前記第2部へ向けて駆動させる位置に形成された、直流遮断器。
    A fixed contact body with fixed contacts and
    A movable contact body having a movable contact that comes into contact with the fixed contact, facing the fixed contact body in the first direction, and performing an opening operation of separating the movable contact from the fixed contact in the first direction.
    The fixed contact body and the movable contact body are arranged at a distance in a second direction intersecting with the first direction, and an arc generated between the fixed contact and the movable contact by the opening operation. With an arc extinguishing chamber that extinguishes
    A pair of arc runners formed from the respective sides of the fixed contact body and the movable contact body toward the arc extinguishing chamber,
    A third direction in which the fixed contact body, the movable contact body and the pair of arc runners intersect the first direction and the second direction so as to sandwich the fixed contact body, the movable contact body and the pair of the arc runners. It is equipped with a pair of insulating side wall plates arranged at a distance in each direction.
    The pair of said arcrunners
    The first part including the portion located on the side of the fixed contact body and the movable contact body, and
    Including the second part connected to the first part and located on the side of the arc extinguishing chamber.
    The gap between the first part and the insulating side wall plate in the third direction is wider than the gap between the second part and the insulating side wall plate in the third direction.
    The insulating side wall plate is formed with one or more exhaust ports including a first exhaust port for discharging the gas generated together with the arc to the outside by the opening operation.
    The exhaust port drives the arc into the gap between the first portion and the insulating side wall plate by the flow of the generated gas toward the exhaust port, and further drives the arc toward the second portion. A DC circuit breaker formed at the position.
  2.  前記排気口は、前記絶縁側壁板、一対の前記アークランナ、前記消弧室、前記固定接触体および前記可動接触体の、前記第3方向からの平面視において、前記アークが発生する前記固定接触体および前記可動接触体が配置されている位置から、前記第1方向と前記第2方向との双方に距離を隔てられた位置に形成された、請求項1記載の直流遮断器。 The exhaust port is the fixed contact body in which the arc is generated in a plan view of the insulating side wall plate, the pair of arc runners, the arc extinguishing chamber, the fixed contact body, and the movable contact body from the third direction. The DC circuit breaker according to claim 1, wherein the DC circuit breaker is formed at a position separated from the position where the movable contact body is arranged in both the first direction and the second direction.
  3.  一対の前記アークランナは、前記第2部として、前記第1方向に沿って延在する延在部を含み、
     前記絶縁側壁板、一対の前記アークランナおよび前記消弧室の、前記第3方向からの平面視において、前記第1排気口は、前記延在部と前記消弧室との間に位置する、請求項1または2に記載の直流遮断器。
    The pair of arcrunners include, as the second part, an extension portion extending along the first direction.
    In a plan view of the insulating side wall plate, the pair of arc runners and the arc extinguishing chamber from the third direction, the first exhaust port is located between the extending portion and the arc extinguishing chamber. Item 2. The DC circuit breaker according to Item 1.
  4.  前記排気口は、第2排気口を有し、
     前記絶縁側壁板、一対の前記アークランナおよび前記消弧室の、前記第3方向からの平面視において、前記第2排気口は、前記延在部に対して、前記第1排気口が位置する側とは反対側に位置する、請求項3記載の直流遮断器。
    The exhaust port has a second exhaust port and has a second exhaust port.
    In a plan view of the insulating side wall plate, the pair of arc runners, and the arc extinguishing chamber from the third direction, the second exhaust port is on the side where the first exhaust port is located with respect to the extending portion. The DC circuit breaker according to claim 3, which is located on the opposite side to the above.
  5.  一対の前記絶縁側壁板における一方の前記絶縁側壁板から他方の前記絶縁側壁板にわたり形成され、前記アークとともに発生した前記ガスを前記排気口へ導くガイド板を備えた、請求項1~4のいずれか1項に記載の直流遮断器。 Any of claims 1 to 4, comprising a guide plate formed from one insulating side wall plate to the other insulating side wall plate in the pair of the insulating side wall plates and guiding the gas generated together with the arc to the exhaust port. The DC circuit breaker according to item 1.
  6.  一対の前記アークランナの少なくともいずれか一方における前記第1部は、前記第3方向に第1幅を有し、
     前記第1部は、前記第1部と前記第2部とが繋がる部分から前記固定接触体および前記可動接触体の側に位置する前記部分に向かって、前記第1幅が狭くなるように形成された、請求項1~5のいずれか1項に記載の直流遮断器。
    The first part in at least one of the pair of arcrunners has a first width in the third direction.
    The first portion is formed so that the first width becomes narrower from the portion where the first portion and the second portion are connected toward the portion located on the side of the fixed contact body and the movable contact body. The DC circuit breaker according to any one of claims 1 to 5.
  7.  前記可動接触体は、前記第3方向に第2幅を有し、
     前記可動接触体は、前記第2幅が、前記消弧室が位置する側に向かって狭くなる態様で形成された、請求項1~6のいずれか1項に記載の直流遮断器。
    The movable contact body has a second width in the third direction.
    The DC circuit breaker according to any one of claims 1 to 6, wherein the movable contact body is formed so that the second width becomes narrower toward the side where the arc extinguishing chamber is located.
  8.  前記固定接点と前記可動接点との間において発生したアークに対して、前記第3方向に沿って磁力線を印加する磁力線発生部を配置した、請求項1~7のいずれか1項に記載の直流遮断器。 The direct current according to any one of claims 1 to 7, wherein a magnetic field line generating portion for applying a magnetic field line to an arc generated between the fixed contact and the movable contact is arranged along the third direction. Circuit breaker.
PCT/JP2020/030029 2020-08-05 2020-08-05 Dc circuit breaker WO2022029931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/030029 WO2022029931A1 (en) 2020-08-05 2020-08-05 Dc circuit breaker
JP2022541413A JP7330385B2 (en) 2020-08-05 2020-08-05 DC circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030029 WO2022029931A1 (en) 2020-08-05 2020-08-05 Dc circuit breaker

Publications (1)

Publication Number Publication Date
WO2022029931A1 true WO2022029931A1 (en) 2022-02-10

Family

ID=80117782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030029 WO2022029931A1 (en) 2020-08-05 2020-08-05 Dc circuit breaker

Country Status (2)

Country Link
JP (1) JP7330385B2 (en)
WO (1) WO2022029931A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324038A (en) * 2006-06-02 2007-12-13 Mitsubishi Electric Corp Circuit breaker
JP2015130277A (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Dc high speed circuit breaker
WO2016088561A1 (en) * 2014-12-01 2016-06-09 三菱電機株式会社 Dc high-speed circuit breaker
WO2017183679A1 (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Contactor device for circuit breaker and circuit breaker using same contactor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103166A (en) * 1977-02-21 1978-09-08 Hitachi Ltd Magnetic breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324038A (en) * 2006-06-02 2007-12-13 Mitsubishi Electric Corp Circuit breaker
JP2015130277A (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Dc high speed circuit breaker
WO2016088561A1 (en) * 2014-12-01 2016-06-09 三菱電機株式会社 Dc high-speed circuit breaker
WO2017183679A1 (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Contactor device for circuit breaker and circuit breaker using same contactor device

Also Published As

Publication number Publication date
JP7330385B2 (en) 2023-08-21
JPWO2022029931A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US4375021A (en) Rapid electric-arc extinguishing assembly in circuit-breaking devices such as electric circuit breakers
JP5992603B2 (en) Switchgear
KR200460487Y1 (en) Circuit breaker with an arc extinguishing device
EP1911054B1 (en) Electromechanical circuit breaker and method of breaking the current in said electromechanical circuit breaker
KR100616084B1 (en) Pressure trip device of the circuit breaker
WO2013171903A1 (en) Circuit breaker for direct-current circuit and circuit breaker device for direct-current circuit
JP5121608B2 (en) Circuit breaker
JP2007324038A (en) Circuit breaker
JP2010251299A (en) Circuit breaker
WO2022029931A1 (en) Dc circuit breaker
EP0117288B1 (en) Switch with arc-extinguishing means
CN220172050U (en) Arc extinguishing chamber and circuit breaker
JP6516078B1 (en) Circuit breaker and circuit breaker method
JP2008066171A (en) Circuit breaker
CN111146028A (en) Direct current contactor contact arc extinguishing system
CN109920669A (en) A kind of arc-control device and arc-suppressing method with monoblock type arc insulating cover
JP7150178B2 (en) air circuit breaker
CN211529827U (en) Arc extinguishing system of direct current contactor
JP7068033B2 (en) Arc extinguishing device for DC high speed circuit breaker
JP2013140767A (en) Switch
CN211529826U (en) Direct current contactor contact arc extinguishing system
JP4069863B2 (en) Power switch
CN111180229A (en) Arc extinguishing device of direct current contactor
WO2022259347A1 (en) Dc circuit breaker
WO2019150613A1 (en) Circuit breaker and circuit breaking method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947970

Country of ref document: EP

Kind code of ref document: A1