WO2022029872A1 - Optical fiber and optical fiber transmission system - Google Patents

Optical fiber and optical fiber transmission system Download PDF

Info

Publication number
WO2022029872A1
WO2022029872A1 PCT/JP2020/029775 JP2020029775W WO2022029872A1 WO 2022029872 A1 WO2022029872 A1 WO 2022029872A1 JP 2020029775 W JP2020029775 W JP 2020029775W WO 2022029872 A1 WO2022029872 A1 WO 2022029872A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
clad
present disclosure
acoustic
Prior art date
Application number
PCT/JP2020/029775
Other languages
French (fr)
Japanese (ja)
Inventor
隆 松井
陽子 山下
和秀 中島
泰志 坂本
信智 半澤
則幸 荒木
真一 青笹
諒太 今田
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/029775 priority Critical patent/WO2022029872A1/en
Publication of WO2022029872A1 publication Critical patent/WO2022029872A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Definitions

  • This disclosure relates to optical fibers and optical fiber transmission systems.
  • GAWBS Guided acoustic-wave Brillouin scattering
  • Non-Patent Documents 1 and 2 show that noise due to GAWBS can be reduced by an optical fiber having a plurality of pore structures uniform in the longitudinal direction.
  • An optical fiber having a pore structure has a problem that the manufacturing process is complicated and it is difficult to stably manufacture a long fiber, for example, a plurality of holes are formed in the optical fiber manufacturing process and precise control is required. Has.
  • the optical fiber of the present disclosure is An optical fiber having a clad and a core having a higher refractive index than the clad. At least one of the core or the clad is provided with one or more cavities located at positions other than the center of the core.
  • the optical fiber transmission system of the present disclosure is A transmitter that transmits optical signals and The optical fiber according to the present disclosure, which propagates an optical signal transmitted from the transmission unit, and A receiving unit that receives an optical signal propagated by the optical fiber, To prepare for.
  • An example of the structure of the optical fiber according to the present disclosure is shown.
  • An example of the AA'cross section is shown. It is a distribution of acoustic modes (TR 2, 7 modes) that induce GAWBS . It is an example of the scattering spectrum of GAWBS in a general-purpose single-mode optical fiber.
  • An example of the radial intensity of the acoustic mode is shown.
  • An example of the relationship between the power attenuation of the acoustic wave due to the cavity is shown.
  • An example of the system configuration of the present disclosure is shown.
  • the present disclosure is an optical fiber having a clad region and a core region having a higher refractive index than the clad region, and is discrete in one or in the longitudinal direction in either or both of the clad region and / or the core region of the optical fiber. It is characterized by having a hollow portion that is specifically arranged.
  • FIG. 1 shows a structural example of the optical fiber according to the present disclosure.
  • one or both of the regions of the clad 12 of the optical fiber and / or the region of the core 11 are provided with cavities 13 discretely arranged in the longitudinal direction.
  • the cavity portion 13 is arranged at a non-center position, that is, a position other than the center of the core 11.
  • FIG. 3 shows the distribution of acoustic modes (TR 2, 7 modes) that induce GAWBS .
  • TR 2, 7 modes acoustic modes
  • the acoustic wave spreads and is distributed throughout the clad, and the interaction with the light wave produces GAWBS. Therefore, in the present disclosure, the cavity portion 13 is arranged at a non-centered position in the optical fiber. As a result, the generated acoustic wave is lost and attenuated due to the presence of the cavity portion 13, and as a result, the GAWBS is reduced with respect to the propagated light.
  • one cavity 13 is arranged in the cross section, but it is preferable to arrange two or more of them because the acoustic wave can be more attenuated. Further, the cavity portion 13 can be arranged in the optical fiber at an arbitrary position and size by a processing technique such as laser processing using a femtosecond laser.
  • FIG. 4 is an example of the scattering spectrum of GAWBS in a general-purpose single-mode optical fiber.
  • a general-purpose optical fiber has multiple peaks discretely in a frequency band of 1 GHz or less, and particularly large scattering may occur in TR 2, 5 , TR 2, 7 , and TR 2, 13 modes of acoustic mode. I understand.
  • FIG. 5 shows an example of the radial intensity of the acoustic mode.
  • the horizontal axis is the normalized position r / D in which the center position r of the cavity 13 is standardized by the clad diameter D, and the vertical axis is the normalized acoustic wave intensity compared with the intensity of the acoustic wave when the cavity 13 is not present.
  • the center position r is the distance from the center of the core 11 to the center of the cavity 13.
  • the solid line, broken line, and dotted line represent TR 2, 5 , TR 2, 7 , and TR 2, 13 modes, respectively.
  • the normalized position r / D is small, that is, a relatively large intensity is generated at a position near the center, and this produces a large GAWBS by the interaction with the light wave.
  • the standardized position r / D has the highest strength at 0.02 to 0.12.
  • the cavity portion 13 is arranged at the normalized position r / D where the normalized acoustic wave intensity becomes large.
  • the normalized position r / D at which the standardized acoustic wave intensity is maximized, and the normalized position r / D where a plurality of acoustic modes overlap.
  • the present disclosure can efficiently attenuate the acoustic wave and reduce the GAWBS.
  • FIG. 6 shows an example of the relationship between the amount of power attenuation of the acoustic wave due to the cavity 13.
  • the horizontal axis is the normalized cavity diameter in which the diameter of the cavity 13 is standardized by the clad diameter, and the vertical axis is the reduction rate of the acoustic power as compared with the case where the cavity 13 is not present.
  • the acoustic mode was set to TR 2, 7 mode, which shows a large peak of GAWBS .
  • the cavity 13 is enlarged to receive and attenuate the loss, and a reduction effect of 10% or more can be obtained when the diameter of the normalized cavity is 0.07 or more. It is preferable to adopt a plurality of discrete arrangements in the longitudinal direction of the optical fiber or a plurality of arrangements in the cross section because a higher suppression effect can be obtained.
  • FIG. 7 shows an example of the optical fiber transmission system according to the present disclosure.
  • the transmission unit 91 and the reception unit 92 are connected by an optical fiber transmission line 93.
  • the optical fiber transmission line 93 of the present disclosure includes the optical fiber of the present disclosure at least in part.
  • the transmission unit 91 transmits an optical signal.
  • the optical fiber transmission line 93 propagates the optical signal transmitted from the transmission unit 91.
  • the receiving unit 92 receives the optical signal propagated in the optical fiber transmission line 93.
  • the optical signal can be, for example, an optical signal such as quantum communication or multi-level intensity / phase modulation (QAM: Quadrature Amplitude Modulation) that is greatly affected by GAWBS.
  • QAM Quadrature Amplitude Modulation
  • the optical fiber of the present disclosure can attenuate the acoustic wave generated in the optical fiber. Therefore, the noise power of the GAWBS generated in the optical fiber transmission line 93 is smaller than the noise power of the GAWBS generated by the same transmission power in the general-purpose single-mode fiber. Therefore, the optical fiber transmission system of the present disclosure can reduce the noise generated by GAWBS. For example, when the transmitting unit 91 and the receiving unit 92 transmit and receive optical signals using quantum communication or multi-valued intensity / phase modulation, the influence of GAWBS becomes large, so that the effects of the present disclosure can be further exerted.
  • the acoustic wave generated in the optical fiber is easily attenuated, and GAWBS is used. It is possible to reduce the noise caused by the noise.
  • This disclosure can be applied to the information and communication industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

The purpose of the present disclosure is to make it possible to easily attenuate acoustic waves generated in an optical fiber and reduce noise generated by guided acoustic-wave Brillouin scattering (GAWBS). The present disclosure is an optical fiber that includes cladding and a core for which the refractive index is higher than the cladding, wherein the core and/or the cladding is provided with at least one cavity section disposed in a position other than the center of the core.

Description

光ファイバ及び光ファイバ伝送システムFiber optics and fiber optic transmission systems
 本開示は、光ファイバ及び光ファイバ伝送システムに関する。 This disclosure relates to optical fibers and optical fiber transmission systems.
 量子通信や多値度の高いコヒーレント多値伝送では、信号伝送のために十分な信号-雑音比と偏波間のクロストークの低減が必要となる。特に光ファイバ中で発生するGAWBS(Guided acoustic-wave Brillouin scattering)は、伝送する光信号によって誘起される音響波により数GHz以下の偏波変調成分を生じ、雑音成分として伝送特性を制限することが知られている。 In quantum communication and coherent multi-valued transmission with high multi-valued degree, it is necessary to reduce the signal-to-noise ratio and crosstalk between polarizations sufficiently for signal transmission. In particular, GAWBS (Guided acoustic-wave Brillouin scattering) generated in an optical fiber may generate a polarization modulation component of several GHz or less by an acoustic wave induced by an optical signal to be transmitted, and may limit transmission characteristics as a noise component. Are known.
 非特許文献1及び2では、長手方向に一様な複数の空孔構造を有する光ファイバによって、GAWBSによる雑音を低減できることが示されている。空孔構造を有する光ファイバは、光ファイバの作製プロセスで複数の空孔を形成し精密な制御を要するなど、その製造プロセスが複雑になり長尺で安定的な作製が困難である、といった課題を有する。 Non-Patent Documents 1 and 2 show that noise due to GAWBS can be reduced by an optical fiber having a plurality of pore structures uniform in the longitudinal direction. An optical fiber having a pore structure has a problem that the manufacturing process is complicated and it is difficult to stably manufacture a long fiber, for example, a plurality of holes are formed in the optical fiber manufacturing process and precise control is required. Has.
 本開示は、光ファイバ中に生じる音響波を容易に減衰させ、GAWBSによって生じる雑音を低減することを目的とする。 It is an object of the present disclosure to easily attenuate the acoustic wave generated in the optical fiber and reduce the noise generated by GAWBS.
 本開示の光ファイバは、
 クラッドと前記クラッドよりも屈折率の高いコアとを有する光ファイバであって、
 前記コア又は前記クラッドの少なくともいずれかに、前記コアの中心以外の位置に配置されている1つ以上の空洞部を備える。
The optical fiber of the present disclosure is
An optical fiber having a clad and a core having a higher refractive index than the clad.
At least one of the core or the clad is provided with one or more cavities located at positions other than the center of the core.
 本開示の光ファイバ伝送システムは、
 光信号を送信する送信部と、
 前記送信部から送信された光信号を伝搬する、本開示に係る光ファイバと、
 前記光ファイバで伝搬された光信号を受信する受信部と、
 を備える。
The optical fiber transmission system of the present disclosure is
A transmitter that transmits optical signals and
The optical fiber according to the present disclosure, which propagates an optical signal transmitted from the transmission unit, and
A receiving unit that receives an optical signal propagated by the optical fiber,
To prepare for.
 本開示によれば、光ファイバ中に生じる音響波を容易に減衰させ、GAWBSによって生じる雑音を低減することができる。 According to the present disclosure, it is possible to easily attenuate the acoustic wave generated in the optical fiber and reduce the noise generated by GAWBS.
本開示に係る光ファイバの構造例を示す。An example of the structure of the optical fiber according to the present disclosure is shown. A-A’断面の一例を示す。An example of the AA'cross section is shown. GAWBSを誘起する音響モード(TR2,7モード)の分布である。It is a distribution of acoustic modes ( TR 2, 7 modes) that induce GAWBS . 汎用的な単一モード光ファイバにおけるGAWBSの散乱スペクトルの一例である。It is an example of the scattering spectrum of GAWBS in a general-purpose single-mode optical fiber. 音響モードの半径方向の強度の一例を示す。An example of the radial intensity of the acoustic mode is shown. 空洞部による音響波のパワー減衰量の関係の一例を示す。An example of the relationship between the power attenuation of the acoustic wave due to the cavity is shown. 本開示のシステム構成の一例を示す。An example of the system configuration of the present disclosure is shown.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The present disclosure is not limited to the embodiments shown below. Examples of these implementations are merely examples, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
 本開示は、クラッド領域と前記クラッド領域よりも屈折率の高いコア領域を有する光ファイバであって、光ファイバのクラッド領域もしくはコア領域内のいずれか、または両方に、1つもしくは長手方向に離散的に配置された空洞部を有することを特徴とする。 The present disclosure is an optical fiber having a clad region and a core region having a higher refractive index than the clad region, and is discrete in one or in the longitudinal direction in either or both of the clad region and / or the core region of the optical fiber. It is characterized by having a hollow portion that is specifically arranged.
(実施形態例1)
 図1に本開示に係る光ファイバの構造例を示す。図1に示すように光ファイバのクラッド12の領域もしくはコア11の領域内のいずれか、または両方に、1つもしくは長手方向に離散的に配置された空洞部13を有する。空洞部13は、図2に示すように、非中心位置、すなわちコア11の中心以外の位置に配置される。
(Embodiment Example 1)
FIG. 1 shows a structural example of the optical fiber according to the present disclosure. As shown in FIG. 1, one or both of the regions of the clad 12 of the optical fiber and / or the region of the core 11 are provided with cavities 13 discretely arranged in the longitudinal direction. As shown in FIG. 2, the cavity portion 13 is arranged at a non-center position, that is, a position other than the center of the core 11.
 図3はGAWBSを誘起する音響モード(TR2,7モード)の分布である。音響波はクラッド全体に広がって分布し、光波との相互作用によりGAWBSを生じる。そこで、本開示は、光ファイバ内の非中心の位置に空洞部13を配置する。これによって、発生した音響波は、空洞部13の存在により損失を受け減衰し、結果として伝搬光に対してGAWBSが減少することとなる。 FIG. 3 shows the distribution of acoustic modes ( TR 2, 7 modes) that induce GAWBS . The acoustic wave spreads and is distributed throughout the clad, and the interaction with the light wave produces GAWBS. Therefore, in the present disclosure, the cavity portion 13 is arranged at a non-centered position in the optical fiber. As a result, the generated acoustic wave is lost and attenuated due to the presence of the cavity portion 13, and as a result, the GAWBS is reduced with respect to the propagated light.
 ここで図1および図2では断面内に1つの空洞部13を配置したが、2つ以上の複数個を配置することで音響波をより減衰でき、好ましい。また光ファイバ中への空洞部13の配置は、フェムト秒レーザーを用いたレーザー加工などの加工技術により、任意の位置および大きさで配置することができる。 Here, in FIGS. 1 and 2, one cavity 13 is arranged in the cross section, but it is preferable to arrange two or more of them because the acoustic wave can be more attenuated. Further, the cavity portion 13 can be arranged in the optical fiber at an arbitrary position and size by a processing technique such as laser processing using a femtosecond laser.
 図4は汎用的な単一モード光ファイバにおけるGAWBSの散乱スペクトルの一例である。汎用的な光ファイバでは1GHz以下の周波数帯に離散的に複数のピークを有し、特に音響モードのTR2,5、TR2,7、TR2,13モードに対して大きな散乱が生じることが分かる。 FIG. 4 is an example of the scattering spectrum of GAWBS in a general-purpose single-mode optical fiber. A general-purpose optical fiber has multiple peaks discretely in a frequency band of 1 GHz or less, and particularly large scattering may occur in TR 2, 5 , TR 2, 7 , and TR 2, 13 modes of acoustic mode. I understand.
 図5は音響モードの半径方向の強度の一例を示している。横軸は空洞部13の中心位置rをクラッド直径Dで規格化した規格化位置r/Dであり、縦軸は空洞部13がない場合の音響波の強度と比較した規格化音響波強度である。中心位置rはコア11の中心から空洞部13の中心までの距離である。実線、破線、点線はそれぞれTR2,5、TR2,7、TR2,13モードを表す。 FIG. 5 shows an example of the radial intensity of the acoustic mode. The horizontal axis is the normalized position r / D in which the center position r of the cavity 13 is standardized by the clad diameter D, and the vertical axis is the normalized acoustic wave intensity compared with the intensity of the acoustic wave when the cavity 13 is not present. be. The center position r is the distance from the center of the core 11 to the center of the cavity 13. The solid line, broken line, and dotted line represent TR 2, 5 , TR 2, 7 , and TR 2, 13 modes, respectively.
 図に示すように、規格化位置r/Dが小さい、すなわち中心に近い位置で比較的大きな強度が生じており、これが光波との相互作用により大きなGAWBSを生じる。図5より、規格化位置r/Dが0.02~0.12において最も大きな強度とっている。また、r/D=0.2,0.33付近において各モードの規格化音響波強度が0.5以上となっていることから、複数の電界分布が大きな強度を有していることが分かる。 As shown in the figure, the normalized position r / D is small, that is, a relatively large intensity is generated at a position near the center, and this produces a large GAWBS by the interaction with the light wave. From FIG. 5, the standardized position r / D has the highest strength at 0.02 to 0.12. Further, since the normalized acoustic wave intensity of each mode is 0.5 or more in the vicinity of r / D = 0.2, 0.33, it can be seen that the plurality of electric field distributions have a large intensity. ..
 そこで、本開示では、これらの規格化音響波強度の大きくなる規格化位置r/Dに空洞部13を配置する。例えば、少なくともいずれかの規格化音響波強度が最大となる規格化位置r/Dや、複数の音響モードの重なる規格化位置r/Dである。図5の例では、例えば、TR2,7モードの最大ピークになるr/D=0.06、TR2,5、TR2,7、TR2,13モードの重なるr/D=0.02~0.12が例示できる。これにより、本開示は、効率よく音響波を減衰させ、GAWBSを低減することができる。 Therefore, in the present disclosure, the cavity portion 13 is arranged at the normalized position r / D where the normalized acoustic wave intensity becomes large. For example, at least one of the normalized position r / D at which the standardized acoustic wave intensity is maximized, and the normalized position r / D where a plurality of acoustic modes overlap. In the example of FIG. 5, for example, r / D = 0.06, which is the maximum peak in TR 2,7 mode, TR 2,5 , TR 2,7 , and TR 2,13 mode overlap r / D = 0.02. ~ 0.12 can be exemplified. Thereby, the present disclosure can efficiently attenuate the acoustic wave and reduce the GAWBS.
 図6は空洞部13による音響波のパワー減衰量の関係の一例を示している。横軸は空洞部13の直径をクラッド直径で規格化した規格化空洞直径であり、縦軸は空洞部13がない場合と比較した音響パワーの低減率である。ここで音響モードとしては、GAWBSの大きなピークを示すTR2,7モードとした。また空洞部13は音響モードの断面分布で音響波強度が最も強くなる点を中心に配置した。具体的には、図5のTR2,7モードの最大ピークになるr/D=0.06を用いた。図6に示すように音響モードは空洞部13を大きくすることで損失を受け減衰し、規格化空洞直径0.07以上で10%以上の低減効果が得られることが分かる。光ファイバの長手方向への離散的な複数配置、又は断面内に複数配置を採用すると、より高い抑圧効果が得られるので好ましい。 FIG. 6 shows an example of the relationship between the amount of power attenuation of the acoustic wave due to the cavity 13. The horizontal axis is the normalized cavity diameter in which the diameter of the cavity 13 is standardized by the clad diameter, and the vertical axis is the reduction rate of the acoustic power as compared with the case where the cavity 13 is not present. Here, the acoustic mode was set to TR 2, 7 mode, which shows a large peak of GAWBS . Further, the cavity portion 13 is arranged around the point where the acoustic wave intensity is the strongest in the cross-sectional distribution of the acoustic mode. Specifically, r / D = 0.06, which is the maximum peak of the TR 2 and 7 modes in FIG. 5, was used. As shown in FIG. 6, it can be seen that in the acoustic mode, the cavity 13 is enlarged to receive and attenuate the loss, and a reduction effect of 10% or more can be obtained when the diameter of the normalized cavity is 0.07 or more. It is preferable to adopt a plurality of discrete arrangements in the longitudinal direction of the optical fiber or a plurality of arrangements in the cross section because a higher suppression effect can be obtained.
(実施形態例2)
 図7に、本開示に係る光ファイバ伝送システムの一例を示す。本開示に係る光ファイバ伝送システムは、送信部91と受信部92が光ファイバ伝送路93で接続されている。本開示の光ファイバ伝送路93は、少なくとも一部に、本開示の光ファイバを含む。
(Embodiment Example 2)
FIG. 7 shows an example of the optical fiber transmission system according to the present disclosure. In the optical fiber transmission system according to the present disclosure, the transmission unit 91 and the reception unit 92 are connected by an optical fiber transmission line 93. The optical fiber transmission line 93 of the present disclosure includes the optical fiber of the present disclosure at least in part.
 送信部91は、光信号を送信する。光ファイバ伝送路93は、送信部91から送信された光信号を伝搬する。受信部92は、光ファイバ伝送路93で伝搬された光信号を受信する。光信号は、例えば、量子通信や多値の強度・位相変調(QAM:Quadrature Amplitude Modulation)などのGAWBSの影響が大きくなるような光信号でありうる。 The transmission unit 91 transmits an optical signal. The optical fiber transmission line 93 propagates the optical signal transmitted from the transmission unit 91. The receiving unit 92 receives the optical signal propagated in the optical fiber transmission line 93. The optical signal can be, for example, an optical signal such as quantum communication or multi-level intensity / phase modulation (QAM: Quadrature Amplitude Modulation) that is greatly affected by GAWBS.
 本開示の光ファイバは、光ファイバ中に生じる音響波を減衰させることができる。このため、光ファイバ伝送路93において生じるGAWBSの雑音電力が、汎用的な単一モードファイバにおいて同じ送信パワーで生じるGAWBSの雑音電力に比べて小さい。このため、本開示の光ファイバ伝送システムは、GAWBSによって生じる雑音を低減することができる。例えば、送信部91及び受信部92が量子通信や多値の強度・位相変調を用いて光信号を送受信する場合、GAWBSの影響が大きくなるため、本開示の効果をより発揮することができる。 The optical fiber of the present disclosure can attenuate the acoustic wave generated in the optical fiber. Therefore, the noise power of the GAWBS generated in the optical fiber transmission line 93 is smaller than the noise power of the GAWBS generated by the same transmission power in the general-purpose single-mode fiber. Therefore, the optical fiber transmission system of the present disclosure can reduce the noise generated by GAWBS. For example, when the transmitting unit 91 and the receiving unit 92 transmit and receive optical signals using quantum communication or multi-valued intensity / phase modulation, the influence of GAWBS becomes large, so that the effects of the present disclosure can be further exerted.
 以上説明したように、本開示は、光ファイバ中に1つもしくは複数の空洞部を断面内もしくは長手方向に離散的に配置することで、光ファイバ中に生じる音響波を容易に減衰させ、GAWBSによって生じる雑音を低減することができる。 As described above, in the present disclosure, by arranging one or more cavities in the optical fiber discretely in the cross section or in the longitudinal direction, the acoustic wave generated in the optical fiber is easily attenuated, and GAWBS is used. It is possible to reduce the noise caused by the noise.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communication industry.
11:コア
12:クラッド
13、13-1、13-2、13-3、13-4、13-5:空洞部
91:送信部
92:受信部
93:光ファイバ伝送路
11: Core 12: Clad 13, 13-1, 13-2, 13-3, 13-4, 13-5: Cavity 91: Transmitter 92: Receiver 93: Optical fiber transmission line

Claims (6)

  1.  クラッドと前記クラッドよりも屈折率の高いコアとを有する光ファイバであって、
     前記コア又は前記クラッドの少なくともいずれかに、前記コアの中心以外の位置に配置されている1つ以上の空洞部を備える、
     光ファイバ。
    An optical fiber having a clad and a core having a higher refractive index than the clad.
    At least one of the core or the clad is provided with one or more cavities located at positions other than the center of the core.
    Optical fiber.
  2.  前記空洞部は、前記光ファイバの長手方向に離散的に配置されている、
     請求項1に記載の光ファイバ。
    The cavities are discretely arranged in the longitudinal direction of the optical fiber.
    The optical fiber according to claim 1.
  3.  前記空洞部の少なくともいずれかは、前記コア及び前記クラッドを伝搬する音響波に含まれる複数の音響モードの重なる位置に配置されている、
     請求項1又は2に記載の光ファイバ。
    At least one of the cavities is arranged at overlapping positions of a plurality of acoustic modes contained in the acoustic wave propagating through the core and the clad.
    The optical fiber according to claim 1 or 2.
  4.  前記空洞部の少なくともいずれかは、前記コア及び前記クラッドを伝搬する音響波に含まれる少なくともいずれかの音響モードの強度が最大となる位置に配置されている、
     請求項1から3のいずれかに記載の光ファイバ。
    At least one of the cavities is arranged at a position where the intensity of at least one of the acoustic modes contained in the acoustic wave propagating through the core and the clad is maximized.
    The optical fiber according to any one of claims 1 to 3.
  5.  前記空洞部の少なくともいずれかは、前記コアの中心から前記空洞部の中心までの距離を前記クラッドの直径で規格化した規格化位置が0.02以上0.12以下の位置に配置されている、
     請求項1から4のいずれかに記載の光ファイバ。
    At least one of the cavities is arranged at a position where the standardized position where the distance from the center of the core to the center of the cavity is standardized by the diameter of the clad is 0.02 or more and 0.12 or less. ,
    The optical fiber according to any one of claims 1 to 4.
  6.  光信号を送信する送信部と、
     前記送信部から送信された光信号を伝搬する、請求項1から5のいずれかに記載の光ファイバと、
     前記光ファイバで伝搬された光信号を受信する受信部と、
     を備える光ファイバ伝送システム。
    A transmitter that transmits optical signals and
    The optical fiber according to any one of claims 1 to 5, which propagates an optical signal transmitted from the transmission unit.
    A receiving unit that receives an optical signal propagated by the optical fiber,
    Fiber optic transmission system.
PCT/JP2020/029775 2020-08-04 2020-08-04 Optical fiber and optical fiber transmission system WO2022029872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029775 WO2022029872A1 (en) 2020-08-04 2020-08-04 Optical fiber and optical fiber transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029775 WO2022029872A1 (en) 2020-08-04 2020-08-04 Optical fiber and optical fiber transmission system

Publications (1)

Publication Number Publication Date
WO2022029872A1 true WO2022029872A1 (en) 2022-02-10

Family

ID=80117916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029775 WO2022029872A1 (en) 2020-08-04 2020-08-04 Optical fiber and optical fiber transmission system

Country Status (1)

Country Link
WO (1) WO2022029872A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367539A (en) * 1991-06-11 1992-12-18 Fujikura Ltd Optical fiber
US5627921A (en) * 1993-10-14 1997-05-06 Telefonaktiebolaget Lm Ericsson Optical fiber for sensors including holes in cladding
JPH10142433A (en) * 1996-11-12 1998-05-29 Furukawa Electric Co Ltd:The Optical fiber for communication and its production
JP2006285234A (en) * 2005-03-22 2006-10-19 Matsushita Electric Ind Co Ltd Multicore optical fiber with integral diffractive element machined by ultrafast laser direct writing
US20070230861A1 (en) * 2004-05-14 2007-10-04 Igor Khrushchev Laser Inscribed Structures
JP2007532958A (en) * 2004-04-16 2007-11-15 ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド Optically active substrate with a cavity structure
JP2014115328A (en) * 2012-12-06 2014-06-26 Hitachi Metals Ltd Fiber bragg grating and method of manufacturing the same
JP2016537659A (en) * 2013-01-29 2016-12-01 オーエフエス ファイテル,エルエルシー Optical waveguide with built-in hologram
JP2019531487A (en) * 2016-08-10 2019-10-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method for determining bending and / or strain of an optical waveguide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367539A (en) * 1991-06-11 1992-12-18 Fujikura Ltd Optical fiber
US5627921A (en) * 1993-10-14 1997-05-06 Telefonaktiebolaget Lm Ericsson Optical fiber for sensors including holes in cladding
JPH10142433A (en) * 1996-11-12 1998-05-29 Furukawa Electric Co Ltd:The Optical fiber for communication and its production
JP2007532958A (en) * 2004-04-16 2007-11-15 ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド Optically active substrate with a cavity structure
US20070230861A1 (en) * 2004-05-14 2007-10-04 Igor Khrushchev Laser Inscribed Structures
JP2006285234A (en) * 2005-03-22 2006-10-19 Matsushita Electric Ind Co Ltd Multicore optical fiber with integral diffractive element machined by ultrafast laser direct writing
JP2014115328A (en) * 2012-12-06 2014-06-26 Hitachi Metals Ltd Fiber bragg grating and method of manufacturing the same
JP2016537659A (en) * 2013-01-29 2016-12-01 オーエフエス ファイテル,エルエルシー Optical waveguide with built-in hologram
JP2019531487A (en) * 2016-08-10 2019-10-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method for determining bending and / or strain of an optical waveguide

Similar Documents

Publication Publication Date Title
Hui Introduction to fiber-optic communications
KR950009564B1 (en) Device for tapping radiation from or injecting radiation into single made optical fiber
US8417069B2 (en) Multi dimension high security communication over multi mode fiber waveguide
JP4769120B2 (en) Optical communication system and access network provided with the same
US6434311B1 (en) Reducing mode interference in transmission of a high order mode in optical fibers
US9121993B2 (en) Multi-core optical fiber and method of optical transmission
KR102014300B1 (en) High bandwidth multimode optical fiber optimized for multimode and single-mode transmissions
US6327403B1 (en) Reducing mode interference in transmission of LP02 Mode in optical fibers
Chen et al. 30Gbit/s 3× 3 optical mode group division multiplexing system with mode-selective spatial filtering
US8774574B2 (en) Optical time domain reflectometry for multiple spatial mode fibers
Chen et al. Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm
EP3274746B1 (en) Graded index waveguide optical coupler
Li et al. 52 m/9 Gb/s PAM4 plastic optical fiber-underwater wireless laser transmission convergence with a laser beam reducer
WO2022029872A1 (en) Optical fiber and optical fiber transmission system
CN101741475B (en) Fiber-to-the-home planar lightwave circuit triplexer
JPS6237902B2 (en)
JP5117636B1 (en) Optical transmission method
JP4971331B2 (en) High bit rate transmission over multimode fiber
US8457465B1 (en) Optical attenuation system
JP2013522961A (en) Repeaterless long-distance optical fiber transmission system
Marcou et al. Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”
Hayashi et al. Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission
JP2005318532A (en) Optical signal transmission system and catv transmission system
Sakamoto et al. Fibre twisting and bending induced mode conversion characteristics in coupled multi-core fibre
US9146359B2 (en) Optical dispersion compensation module using fiber Bragg grating with multiple degrees of freedom for the optical field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP