WO2022029649A1 - Cryogenic magnetometer and method for measuring natural remanent magnetism in natural rock samples - Google Patents

Cryogenic magnetometer and method for measuring natural remanent magnetism in natural rock samples Download PDF

Info

Publication number
WO2022029649A1
WO2022029649A1 PCT/IB2021/057153 IB2021057153W WO2022029649A1 WO 2022029649 A1 WO2022029649 A1 WO 2022029649A1 IB 2021057153 W IB2021057153 W IB 2021057153W WO 2022029649 A1 WO2022029649 A1 WO 2022029649A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
magnetic
elongated body
magnetometer
measuring
Prior art date
Application number
PCT/IB2021/057153
Other languages
Spanish (es)
French (fr)
Inventor
Julio Juan GUIMPEL GARIJO
Victor CORREA
Pablo PEDRAZZINI
Marcelo VAZQUEZ MANSILLA
Javier Luzuriaga
Mariano GOMEZ BERISSO
Nicolas Hernandez
Original Assignee
Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet)
Comision Nacional De Energia Atomica (Cnea)
La. Te Andes Sociedad Anonima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet), Comision Nacional De Energia Atomica (Cnea), La. Te Andes Sociedad Anonima filed Critical Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet)
Publication of WO2022029649A1 publication Critical patent/WO2022029649A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields

Definitions

  • the present invention relates to the area of devices for measuring magnetic properties. More particularly, the present invention is related to a cryogenic magnetometer and a method using the same for the measurement of natural remanent magnetism in natural rock samples useful in studies of paleomagnetism.
  • patent application CN 105203973 A discloses a device for detecting weak magnetic signals, where said device comprises a low-temperature DC-type SQUID device, a vibration unit, a mobile platform unit, a data processing system to obtain magnetic parameters and a shielded room.
  • Said mobile platform which is responsible for moving a sample, can move along its three orthogonal axes and is located below the SQUID device. The movement of the mobile platform is automatically controlled by the data processing system.
  • Patent application DE 102017122028 Al describes a device for determining small magnetic fields using at least one SQUID sensor. This device seeks to reduce the effect of the earth's magnetic field so that it does not affect the measurements.
  • the SQUID sensor is connected to a data processing system for the subsequent acquisition of magnetic parameters.
  • cryogenic gases such as helium are used.
  • Patent DE 10061590 C1 describes a method and a device for measuring the remanent magnetization of materials, in particular rocks. Some typical processes in SQUID-type magnetometers are described, such as that the samples are subjected to thermal demagnetization and that the measurements of the remanent magnetization are carried out at room temperature. In addition, a quartz tube that transports the samples in and out of the magnetometer is described.
  • the commercially known magnetometers have disadvantages such as high measurement times per specimen of around 1 minute, which constitutes a strong restriction given the number of measurements that must be carried out in a typical study (typically about 1800 measurements in a set of 120 samples).
  • cryogenic magnetometer that allows high-sensitivity measurements and that is capable of performing measurements automatically in a significantly shorter time than commercially available cryogenic rock magnetometers, having a mechanically more efficient design. simple and robust.
  • the present invention provides a cryogenic magnetometer that uses gaseous helium and has a geometric arrangement which allows for a simpler design and a more robust sample handling system.
  • said magnetometer has a high sensitivity to detect magnetic signals and allows measurements to be made automatically in times 50% less than those of commercial rock magnetometers.
  • an object of the present invention is a cryogenic magnetometer for the measurement of natural remanent magnetism in natural rock samples comprising:
  • an elongated body with a circular cross-section comprising an upper part, a lower part, and an interior volume and surface, where the lower part comprises an opening;
  • cryogenic system located in the upper part of the elongated body, wherein said system comprises a cryogenerator comprising a cryogenic head and a compressor;
  • - a support structure that supports the elongated body, the cryogenic system, the means for detecting and measuring magnetic signals and the means for canceling the earth's magnetic field;
  • sample handling means located below the elongated body and supported by the support structure, wherein said sample handling means comprise a sample holder and a sample lifting system;
  • control and processing means in data communication with the cryogenic system, the means for detecting and measuring magnetic signals, the means for canceling the earth's magnetic field and the means for handling samples to control and receive information from each one of these.
  • the elongated body comprises on its inner surface a superconducting magnetic shield and a shield formed by layers of mu-metal.
  • the cryogenerator is of the gaseous He (helium) pulse tube type.
  • the magnetic signal detection and measurement means comprise at least two sensors sensitive to magnetic signals, preferably SQUID sensors and more preferably DC-type SQUID sensors.
  • the magnetometer of the present invention comprises demagnetization means by alternating fields located in the lower part of the elongated body.
  • the demagnetizing means comprise demagnetizing coils, preferably Helmholtz coils and solenoids.
  • the means for canceling the earth's magnetic field comprise a triaxial magnetic field sensor, preferably a triaxial fluxgate; three pairs of Helmholtz coils, preferably square, located inside the elongated body; and three pairs of Helmholtz coils, preferably square, located outside the elongated body.
  • the support structure comprises a plurality of horizontal and vertical bars.
  • the sample holder comprises a plurality of cavities for receiving respective rock samples to be analyzed.
  • the sample lifting system comprises a tube, preferably a quartz tube.
  • the sample handling means comprise several drive means, preferably servomotors.
  • Another object of the present invention is a method for measuring the natural remanent magnetism in natural rock samples using the magnetometer of the present invention, said method comprising the following steps:
  • control and processing means send commands for the positioning in X and Y directions of the sample holder such that a sample to be analyzed is placed on the elevation system of samples, and wherein said sample is raised and entered into the elongated body for measurement; and measure the magnetic moment vector.
  • the sample lifting system comprises a tube, preferably a quartz tube.
  • the demagnetizing means comprise demagnetizing coils, preferably Helmholtz coils and solenoids.
  • the step of measuring the magnetic moment vector comprises using the magnetic signal detection and measurement means to measure the magnetic moment vector, wherein said magnetic signal detection and measurement means magnetic signals comprise at least two sensors sensitive to magnetic signals, preferably SQUID sensors and more preferably DC-type SQUID sensors.
  • the step of measuring the magnetic moment vector comprises measuring the value of the Z component of the magnetic moment vector from a vertical signal (Z) measured by a SQUID sensor and measure the values of the X and Y components of the magnetic moment vector from transverse signals (XY) measured by another SQUID sensor by rotating the sample through angles A0 until completing 360°.
  • the step of measuring the magnetic moment vector comprises measuring the value of the Z component of the magnetic moment vector from a vertical signal (Z) measured by a SQUID sensor and measure the values of the X and Y components of the magnetic moment vector from transverse signals (XY) measured respectively by two other SQUID sensors by rotating the sample through angles A0 until completing 360°.
  • the value of the Z component of the magnetic moment vector is measured by performing ascent steps of a suitable length, preferably 5 mm, and recording the vertical signal Z for each step. ascent step.
  • the step of measuring the magnetic moment vector comprises using a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a certain frequency, and use another SQUID sensor to obtain transverse signals (X- Y) as a function of time while the sample is continuously rotated at a given rotation speed, where the signals obtained with Fourier transform are analyzed and the values of the X, Y and Z components of the magnetic moment vector are determined from of the amplitude and phase of the measured signals.
  • the step of measuring the magnetic moment vector comprises using a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a given frequency, and use two other SQUID sensors to respectively obtain transverse signals (XY) as a function of time while continuously rotating the sample at a given rotational speed, where the signals obtained with Fourier transform are analyzed and determined the values of the X, Y and Z components of the magnetic moment vector from the amplitude and phase of the measured signals.
  • a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a given frequency
  • XY transverse signals
  • the sample is oscillated with a suitable frequency and amplitude, preferably a frequency of 0.25 Hz and an amplitude of 10 mm.
  • the method of the present invention comprises an additional stage of performing subsequent steps of demagnetization by alternating magnetic fields, where the sample is lowered to the demagnetization means by alternating fields for its demagnetization in the three Cartesian axes and the magnetic field generated during each demagnetization step is monitored and controlled.
  • Figures 1A, IB and 1C show an isometric perspective view, a right side view and a front view, respectively, of an embodiment of the cryogenic magnetometer of the present invention.
  • Figures 2A and 2B show calibration curves of the SQUID sensors.
  • Figures 3A, 3B and 3C show comparative results of measurements in the X, Y and Z directions, respectively, of 10 sedimentary rock samples.
  • Figures 4A and 4B show an embodiment of a user interface.
  • cryogenic magnetometer measures the magnetic moment vector corresponding to a natural rock sample, said magnetic moment vector being part of the natural remanent magnetism of the rock sample. natural rock, and wherein said vector has components in X, Y and Z directions of a Cartesian coordinate system.
  • the measurement of the magnetic moment vector comprises the detection and measurement of magnetic signals that are then processed to determine said magnetic moment vector.
  • FIG. 1A, IB and 1C an isometric perspective view, a right side view and a front view, respectively, of an embodiment of the cryogenic magnetometer 1 of the present invention comprising a elongated body 2 of circular cross-section, a cryogenic system 3 located in the upper part of the elongated body 2, magnetic signal detection and measurement means 4 located in the upper part of the elongated body 2, and below the cryogenic system 3, means of the earth's magnetic field (not shown) located inside and outside the elongated body 2, a support structure 5 that supports the elongated body 2, the cryogenic system 3, the magnetic signal detection and measurement means 4 and the means cancellation of the earth's magnetic field; and sample handling means 6 located below the elongated body 2 and supported by the support structure 5.
  • the elongated body 2 comprises an opening in its lower part through which it allows the entry of a rock sample to be analyzed. Furthermore, the elongated body 2 comprises a volume and an inner surface, where the inner surface comprises a shield formed by layers of mu-metal and a superconducting magnetic shield. Said shields constitute a passive shield and isolate the interior of the elongated body 2 from possible external magnetic interference.
  • the cryogenic system 3 comprises a pulse tube type cryogenerator that uses gaseous He (free of liquid He).
  • the cryogenerator comprises, in turn, a cryogenic head and an He compressor. This means that it is not necessary to extract heat to maintain the liquid phase of He in a reservoir, so the cryogenic head can be turned off when it is not in use, which prolongs its useful life in addition to producing a net energy saving of the entire magnetometer.
  • the magnetic signal detection and measurement means 4 are located inside and outside the elongated body 2, in its upper part, and comprise at least two sensors sensitive to magnetic signals, where said sensors are preferably superconducting sensors of quantum interference (SQUID, for its acronym in English) and even more preferably DC type SQUID sensors. Said at least two SQUID sensors define a measurement zone within the elongated body 2 of the magnetometer of the present invention.
  • SQUID quantum interference
  • one SQUID sensor of the at least two SQUID sensors is used to measure the magnetic moment of the sample in the Z direction of a Cartesian coordinate system, where the direction Z is vertical and parallel to the longitudinal axis of the elongated body 2; and another SQUID sensor of the at least two SQUID sensors is used to measure the magnetic moment of the sample in the X and Y directions, perpendicular to the Z direction and parallel to the circular cross section of said elongated body 2.
  • three SQUID sensors are used, where each of them respectively measures one of the three components of the magnetic moment vector of the rock sample to be analyzed.
  • the terrestrial magnetic field cancellation means located inside and outside the elongated body 2 comprise a triaxial magnetic field sensor, preferably a triaxial fluxgate; three pairs of Helmholtz coils, preferably square, located inside the elongated body 2; and three pairs of Helmholtz coils, preferably square, located outside the elongated body 2 to carry out the cancellation of the earth's magnetic field in real time, a current source that feeds each of the pairs of Helmholtz coils inside the elongated body 2 and another current source that feeds each of the pairs of Helmholtz coils outside the elongated body 2.
  • the three pairs of Helmholtz coils located outside and around the elongated body 2 allow the cancellation of the earth's magnetic field in real time in the movement zone of a sample holder 7, which includes the sample handling means 6, obtaining fields smaller than 700 nT.
  • the triaxial fluxgate is used to measure the magnetic field present both in the movement zone of the sample holder and inside the elongated body 2.
  • the triaxial fluxgate first measures the magnetic field outside the elongated body 2 and then be inserted into it, through the opening that the elongated body 2 has at its bottom, by means of actuating means that allow its entry into the elongated body 2.
  • passive shielding consisting of the shield formed by layers of mu-metal and the superconducting shield of the elongated body 2, and an active cancellation, which consists of introducing the fluxgate through the same sample inlet hole and cancel in real time the remaining internal field (typically 50 nT) by means of the three pairs of internal Helmholtz coils.
  • the support structure 5 comprises a plurality of horizontal and vertical bars that support and raise the elongated body 2, the cryogenic system 3, the magnetic signal detection and measurement means 4 and the cancellation means above the ground. of the earth's magnetic field. In this way, a geometric layout is allowed in which the sample handling means 6, also supported by the support structure 5, are located below the elongated body 2.
  • cryogenic system 3 used needs to be in a vertical position and oriented downwards in order to function. This is due to the operation of the implemented thermodynamic cycle, so if it were oriented in another way, its cooling capacity would be very limited or null. That is why the commercially known magnetometers that use cryogenic systems similar or equal to the one used in the present invention have said cryogenic systems displaced from the body of the magnetometer and use a complex mechanical assembly that communicates both parts.
  • the geometric arrangement of the magnetometer of the present invention avoids said mechanical complexity since, when the rock samples to be analyzed are entered through the lower part of the elongated body, as will be explained in greater detail below, the cryogenic system can be mounted in the upper part and in line with said body, which generates a substantially simpler and much lower cost assembly.
  • the sample handling means 6 comprise a sample holder tray 7, as mentioned above, and a sample lifting system 8.
  • Said sample holder comprises a plurality of cavities to receive respective rock samples to be analyzed.
  • the sample elevation system comprises a tube 9, preferably a quartz tube, to raise a corresponding rock sample to the elongated body 2, enter through the opening comprising the body in its lower part and reach the measurement zone.
  • the handling means 6 comprise several drive means, such as servomotors, to move the sample holder and position the rock sample to be analyzed below the quartz tube and to subsequently raise said sample.
  • the quartz tube supports the corresponding sample to be analyzed inside the elongated body 2 of the magnetometer, said sample being supported by its own weight in the tube.
  • the geometric layout of the magnetometer of the present invention does not require that the rock sample to be analyzed has two perfectly flat and parallel faces to be measured, unlike commercial magnetometers. This is due to the fact that the sample is held from the same support face on the sample tray, so that it can present imperfections on the opposite face without harming the measurement.
  • a vacuum system sucks the upper face of the sample, opposite to the support face on the tray, so that both faces are required to be free of imperfections and to be parallel. This saves sample preparation time and cost, and avoids the need for a vacuum system to handle samples.
  • the magnetometer of the present invention further comprises demagnetization means by alternating fields in the lower part and inside the elongated body 2, where said demagnetizing means by alternating fields are supported and raised above from the ground through the support structure 5.
  • the means of demagnetization by alternating fields define a demagnetization zone and comprise a controller, a power amplifier, switching relays, capacitor banks, a solenoid and a pair of Helmholtz coils and a sensor. of current, where the solenoid and the pair of Helmholtz coils are fed by the capacitor banks to generate magnetic fields used for the demagnetization of the rock sample to be analyzed.
  • the means of demagnetization by alternating fields carry out a technique, known in paleomagnetism studies, which consists of demagnetizing by applying alternating fields of increasing amplitude and which allows the identification of different mineralogical components that contribute to the total magnetic moment vector of the sample.
  • the cryogenic magnetometer of the present invention comprises control and processing means that are in data communication with the cryogenic system; the means of detection and measurement of magnetic signals; the means of demagnetization by alternate fields, if you understand them; the means for canceling the earth's magnetic field and the means for handling samples to control and receive information from each of these, through the implementation of algorithms.
  • the magnetometer of the present invention that comprises the demagnetization means by alternating fields
  • these are placed in tandem with the magnetic signal detection and measurement means, both means being fully controlled by the control means and processing, as mentioned above, which significantly increases their productivity.
  • the processing of a sample does not require the permanent attention of a user and the manual migration of the sample from the means of detection and measurement of magnetic signals to the means of demagnetization by alternating fields or vice versa and, on the other hand, Processing times are significantly reduced by performing the entire process automatically, and it is even possible to leave the cryogenic magnetometer unattended for long periods of time.
  • FIG. 4A illustrates, by way of example, the geometry of the sample holder used, which has 120 cavities to receive rock samples to be analyzed. Each of the cavities is numbered to order the measurements made and assign the results of the measurements to the cavity where the analyzed rock was found.
  • a user can access each box, which represents a cavity containing a rock sample, to, for example, load its data, see the status of demagnetization stages, and access the graphs corresponding to each. sample, for example, within a collection of samples in a project, as illustrated in Figure 4B.
  • cryogenic magnetometer of the present invention allows means of detecting and measuring magnetic signals that detect and measure extremely weak signals, with noise levels of the order of 10' 12 Am 2 , IxlO" 9 emu, which they work in the vicinity of the demagnetization media by alternating fields with peak potential fields greater than 150 mT
  • the remanent magnetization measurements are made on samples at room temperature (295 K), while the demagnetization media detection and measurement of magnetic signals should be cooled below the material's superconducting transition temperature (9 K for SQUID sensors incorporating Nb) and located as close to the sample as possible to maximize signal intensity in the measurement, giving give rise to thermal gradients of the order of 100 — for which an effective thermal insulation is implemented between the outside at room temperature and the inside at cryogenic temperatures.
  • the interior of the magnetometer body is brought to a vacuum and the compressor of the cryogenic system is turned on to begin cooling until the operating temperature is reached, this being preferably 3.2 K.
  • the cancellation of the internal remanent magnetic field of the elongated body of the magnetometer is carried out automatically by means of cancellation of the terrestrial magnetic field controlled by the control and processing means. More specifically, the superconducting shield is heated above its transition temperature by internal heaters controlled by the control and processing means, the triaxial fluxgate is introduced through the same sample entry hole to the measurement zone and the three pairs of internal Helmholtz coils controlled by the control and processing means to cancel the field measured by the triaxial fluxgate. An internal remanent magnetic field less than or equal to 10 nT is obtained.
  • the magnetic field is measured in the area of movement of the sample holder through said triaxial fluxgate and the cancellation of the earth's magnetic field in said area is carried out through the three pairs of Helmholtz coils located outside and around the elongated body.
  • the superconducting shield is then cooled below its transition temperature again, completing the magnetometer firing protocol. Cooling is done by turning off the internal heaters, so that the temperature drops thanks to the cryogenic system, which remains on throughout the process.
  • a rock sample is placed in the measurement zone.
  • the control means send commands for positioning the sample holder in X and Y directions in such a way that said rock sample is spatially located on the tube. of quartz. Once in this position, the quartz tube is raised to the height of the lower base of the sample, so that it rests on the quartz tube, and the sample is raised to the measurement zone, entering the body elongated part of the magnetometer through the opening that said body comprises in its lower part.
  • the magnetic moment vector is measured.
  • a point-type measurement is carried out, where a SQUID sensor is used to obtain the vertical signal (Z) and another SQUID sensor to obtain the transverse signals (XY) by rotating the sample. so as to obtain the magnetic moment vector.
  • the value of the component Z of the magnetic moment vector is obtained by making ascending steps of, for example, about 5 mm in the entire measurement zone and recording the vertical signal Z, by means of which the magnetic flux is obtained in the Z direction.
  • m z is the Z component of the magnetic moment of the sample
  • a is a combination of fundamental constants
  • N and A are respectively the number of turns and the area of the pick-up coils
  • R is the radius of the turns and is the separation between the central turns and the outer turns of the coils of the SQUID sensor
  • the sample is rotated successively at angles A0, obtaining values for the transverse signal (XY) at each point, until completing 360° by means of a rotation motor and a mechanism designed to rotate the quartz tube.
  • the resulting measurements are adjusted by an equation known in the state of the art corresponding to the response of the pick-up coil array to a point magnetic dipole, which takes into account the amplitude of the measured signal (the magnetic moment in the plane), a constant value (the moment induced in the sample and the quartz tube by the possible field in the measurement zone, in addition to an initial offset in the sensor) and a linear component that takes into account a possible drift of the SQUID, characteristic of sensors of this type.
  • the phase of the measured signal corresponding to the signal peak represents the sample decline.
  • the response of the coils is practically indistinguishable from a sinusoidal function.
  • the punctual measurement process takes approximately 70 seconds in total, being possible to reduce this time by 16 seconds if a third SQUID is incorporated, since it would halve the measurement time of the transverse component (XY), which is of approximately 32 seconds.
  • the measurement of the sample is performed dynamically.
  • a SQUID sensor is used to obtain the vertical signal (Z) as a function of time while the position of the sample is oscillated at a certain frequency. This is achieved by implementing a movement algorithm of, for example, a vertical motor, which produces periodic oscillations of the quartz tube in said direction with the desired frequency, for example, 0.25 Hz, at the exact height of the greatest sensitivity of the pick-up coils and with an amplitude of, for example, 10 mm.
  • another SQUID sensor is used to obtain the transverse (X-Y) signals as a function of time while continuously rotating the sample at a given rotation speed. Both signals are analyzed with a Fourier transform and the magnetic moments X, Y and Z are determined from the amplitude and phase of the measured signals.
  • the dynamic measurement form allows several advantages, among them, that the measurement takes an approximate time of 30 seconds, being 50% less than traditional measurements, which considerably shortens the analysis times. Additionally, such a dynamic measurement method increases the sensitivity of the measurement and the signal-to-noise ratio compared to traditional methods. The latter is achieved by considering only the oscillation frequency of the sample in the measured signal and discarding the rest of the frequencies of the signal, which constitute noise and spurious signals of the measurement.
  • the measurement time is reduced by approximately 8 seconds in the dynamic measurement, since halves the acquisition time of the component in the XY plane (which is approximately 16 seconds). In this way, the measurement takes an approximate time of 22 seconds.
  • the volumetric magnetization, inclination and declination of the specimen can also be calculated.
  • the samples can be demagnetized to identify the mineralogical components that contribute to their total magnetic moment vector. Said demagnetization can be carried out thermally in a furnace or by means of demagnetization by alternating fields, which, as previously indicated, can be incorporated into the body of the magnetometer of the present invention.
  • the method of the present invention may include an optional fifth stage, which is not necessary to obtain the advantageous results that the magnetometer and method of the present invention allow to obtain in what regards the measurement of the magnetic moment vector.
  • subsequent demagnetization steps are carried out by alternating magnetic fields, if required, where the sample is lowered to the demagnetization zone, in particular, to the center of the demagnetization coils, for demagnetization in the three Cartesian axes and the magnetic field generated during each demagnetization step is monitored and controlled. More precisely, once the sample is in position, the real-time controller closes the switching relay corresponding to the demagnetization solenoid (vertical field) and generates a pure sinusoidal wave, whose frequency is the resonance frequency of the implemented electrical circuit, for example, 138 Hz, and whose growth and decrease profile can be selected by a user in advance.
  • the demagnetization solenoid vertical field
  • the same procedure is repeated to generate the same field in both transverse directions.
  • the degaussing process in all three directions takes approximately 60 seconds.
  • the controller monitors and controls in closed loop the field generated by the current sensor.
  • This demagnetization process is repeated as many times as specified by the user, applying fields with increasing magnitudes and performing magnetic moment measurements after each demagnetization step, in order to obtain the typical demagnetization curves and graphs of directional changes of the magnetic moment in paleomagnetism studies.
  • Once the sample is completely demagnetized by the last demagnetization step, it is deposited again in the sample tray, to continue the measurement process in the next scheduled sample. In this way, it is possible to identify the mineralogical components that contribute to the total magnetic moment vector of each of the samples in order to characterize them.
  • the cryogenic magnetometer of the present invention allows detecting signals in the order of 10' 7 emu (10' 10 Am 2 ) in standard samples of approximately 10 cm 3 , efficiently distinguishing said signals over the noise that interferes.
  • cryogenic magnetometer of the present invention was calibrated, measurements were made on real rock samples. 10 stable sedimentary rock samples were measured for cross-measurement between a 2G Enterprises Model 855 SRM cryogenic magnetometer and the cryogenic magnetometer of the present invention. The results of the measurements in the X, Y and Z directions are presented in Figures 3A, 3B and 3C, respectively. In said Figures, the cryogenic magnetometer of the present invention is called "CriAr".
  • the measurement method of the present invention notably increases the sensitivity of the cryogenic magnetometer and allows measurements to be made in a significantly shorter time than commercially available cryogenic rock magnetometers, being reduced by approximately half compared to said commercial magnetometers (measurements that use the developed dynamic method take 32 seconds, against approximately 60 seconds in commercial magnetometers), which is a great advantage since paleomagnetism is a technique that requires the measurement of a large number of samples (hundreds or thousands) and in this way there would be substantial time savings.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

A cryogenic magnetometer (1) for measuring natural remanent magnetism in natural rock samples, said magnetometer comprising an elongated body (2) of circular cross-section; a cryogenic system (3) located in the upper part of the elongated body; magnetic signal detecting and measuring means (4) located in the upper part of the elongated body; Earth's magnetic field cancelling means located both inside and outside the elongated body; a support structure (5); sample handling means (6) located below the elongated body and supported by the support structure; and controlling and processing means. A method for measuring natural remanent magnetism in natural rock samples using said cryogenic magnetometer.

Description

MAGNETÓMETRO CRIOGÉNICO Y MÉTODO PARA LA MEDICIÓN DEL MAGNETISMO REMANENTE NATURAL EN MUESTRAS DE ROCAS NATURALES CRYOGENIC MAGNETOMETER AND METHOD FOR MEASUREMENT OF NATURAL REMAINING MAGNETISM IN NATURAL ROCK SAMPLES
Area de la invención Invention Area
[0001] La presente invención se relaciona con el área de dispositivos para la medición de propiedades magnéticas. Más particularmente, la presente invención está relacionada a un magnetómetro criogénico y un método que utiliza el mismo para la medición del magnetismo remanente natural en muestras de rocas naturales útiles en estudios de paleomagnetismo.[0001] The present invention relates to the area of devices for measuring magnetic properties. More particularly, the present invention is related to a cryogenic magnetometer and a method using the same for the measurement of natural remanent magnetism in natural rock samples useful in studies of paleomagnetism.
Antecedentes de la invención Background of the invention
[0002] Es bien sabido que los estudios de paleomagnetismo son muy útiles para obtener información valiosa del campo magnético terrestre, el cual por diversos procesos físico- químicos queda registrado en rocas. De este modo, el hecho de poder medir el campo magnético en rocas es muy beneficioso para industrias, tal como la industria petrolera, ya que el magnetismo remanente natural en dichas rocas puede contener información clave sobre las formaciones de petróleo y las trampas geológicas que lo arraigan, pudiéndose reducir considerablemente costos de inversión. [0002] It is well known that paleomagnetism studies are very useful for obtaining valuable information on the Earth's magnetic field, which is recorded in rocks by various physical-chemical processes. In this way, the fact of being able to measure the magnetic field in rocks is very beneficial for industries, such as the oil industry, since the natural remnant magnetism in said rocks can contain key information about the oil formations and the geological traps that surround it. take root, being able to considerably reduce investment costs.
[0003] Existen en el estado de la técnica dispositivos que permiten medir la magnetización en muestras de diferentes materiales, entre ellos rocas naturales. Entre dichos dispositivos se encuentran los magnetómetros, los cuales, para el estudio de muestras de paleomagnetismo, presentan condiciones de diseño exigentes que usualmente colisionan entre sí. Los estudios de paleomagnetismo típicamente involucran la medición de cientos de especímenes, usualmente aplicando entre 10 y 20 pasos de desmagnetización parcial en cada uno. La automatización del sistema de medición resulta de gran interés práctico para disminuir la carga de trabajo en el operario, maximizar el factor de uso del equipamiento y minimizar la probabilidad de errores humanos en el proceso de medición. [0003] There are devices in the state of the art that allow magnetization to be measured in samples of different materials, including natural rocks. Among such devices are magnetometers, which, for the study of paleomagnetism samples, have demanding design conditions that usually collide with each other. Paleomagnetism studies typically involve measuring hundreds of specimens, usually applying between 10 and 20 partial demagnetization steps to each. The automation of the measurement system is of great practical interest to reduce the workload on the operator, maximize the use factor of the equipment and minimize the probability of human errors in the measurement process.
[0004] Por otro lado, existen documentos tales como la solicitud de patente CN 105203973 A, que divulga un dispositivo detector de señales magnéticas débiles, en donde dicho dispositivo comprende un dispositivo SQUID de tipo DC de baja temperatura, una unidad de vibración, una unidad de plataforma móvil, un sistema de procesamiento de datos de modo de obtener parámetros magnéticos y una sala blindada. [0005] Dicha plataforma móvil, que se encarga de mover una muestra, puede moverse a lo largo de sus tres ejes ortogonales y se encuentra por debajo del dispositivo SQUID. El movimiento de la plataforma móvil es controlado automáticamente por el sistema de procesamiento de datos. [0004] On the other hand, there are documents such as patent application CN 105203973 A, which discloses a device for detecting weak magnetic signals, where said device comprises a low-temperature DC-type SQUID device, a vibration unit, a mobile platform unit, a data processing system to obtain magnetic parameters and a shielded room. [0005] Said mobile platform, which is responsible for moving a sample, can move along its three orthogonal axes and is located below the SQUID device. The movement of the mobile platform is automatically controlled by the data processing system.
[0006] La solicitud de patente DE 102017122028 Al describe un dispositivo para determinar campos magnéticos pequeños utilizando al menos un sensor SQUID. En dicho dispositivo se busca reducir el efecto del campo magnético terrestre de modo que no afecten a las mediciones. El sensor SQUID está conectado a un sistema de procesamiento de datos para la posterior obtención de parámetros magnéticos. Además, se utilizan gases criogénicos tal como el helio. [0006] Patent application DE 102017122028 Al describes a device for determining small magnetic fields using at least one SQUID sensor. This device seeks to reduce the effect of the earth's magnetic field so that it does not affect the measurements. The SQUID sensor is connected to a data processing system for the subsequent acquisition of magnetic parameters. In addition, cryogenic gases such as helium are used.
[0007] La patente DE 10061590 C1 describe un método y un dispositivo para medir la magnetización remanente de materiales, en particular rocas. Se describen algunos procesos típicos en magnetómetros del tipo SQUID tales como que las muestras se someten a una desmagnetización térmica y que las mediciones de la magnetización remanente se realizan a temperatura ambiente. Además, se describe un tubo de cuarzo que transporta las muestras dentro y fuera del magnetómetro. [0007] Patent DE 10061590 C1 describes a method and a device for measuring the remanent magnetization of materials, in particular rocks. Some typical processes in SQUID-type magnetometers are described, such as that the samples are subjected to thermal demagnetization and that the measurements of the remanent magnetization are carried out at room temperature. In addition, a quartz tube that transports the samples in and out of the magnetometer is described.
[0008] Los documentos citados previamente divulgan dispositivos y métodos que presentan algunas o todas de las siguientes desventajas, siendo éstas: que implican mecanismos y diseños complejos para garantizar que el sistema criogénico funcione correctamente en la posición de diseño, y que el sistema de manipulación de muestras requiere que ambas caras de la muestra sean perfectamente planas y paralelas entre sí. [0008] The previously cited documents disclose devices and methods that have some or all of the following disadvantages, these being: that they involve complex mechanisms and designs to ensure that the cryogenic system works correctly in the design position, and that the handling system Sampler requires that both faces of the sample be perfectly flat and parallel to each other.
[0009] Asimismo, los magnetómetros comercialmente conocidos presentan desventajas tales como elevados tiempos de medición por espécimen de alrededor de 1 minuto, lo cual constituye una fuerte restricción dada la cantidad de mediciones que se deben realizar en un estudio típico (típicamente unas 1800 mediciones en un conjunto de 120 muestras). [0009] Likewise, the commercially known magnetometers have disadvantages such as high measurement times per specimen of around 1 minute, which constitutes a strong restriction given the number of measurements that must be carried out in a typical study (typically about 1800 measurements in a set of 120 samples).
[0010] En consecuencia, existe una necesidad de proveer un magnetómetro criogénico que permita mediciones de alta sensibilidad y que sea capaz de realizar mediciones de manera automática en un tiempo sensiblemente menor al de los magnetómetros criogénicos de rocas disponibles comercialmente, teniendo un diseño mecánicamente más sencillo y robusto.[0010] Consequently, there is a need to provide a cryogenic magnetometer that allows high-sensitivity measurements and that is capable of performing measurements automatically in a significantly shorter time than commercially available cryogenic rock magnetometers, having a mechanically more efficient design. simple and robust.
Breve Descripción de la Invención Brief Description of the Invention
[0011] En base a las consideraciones anteriores, la presente invención proporciona un magnetómetro criogénico que utiliza helio gaseoso y que presenta una disposición geométrica que permite un diseño sencillo y un sistema de manipulación de muestras más robusto. Asimismo, dicho magnetómetro posee una alta sensibilidad para detectar señales magnéticas y permite realizar mediciones de manera automática en tiempos 50% menores a los de los magnetómetros de rocas comerciales. [0011] Based on the above considerations, the present invention provides a cryogenic magnetometer that uses gaseous helium and has a geometric arrangement which allows for a simpler design and a more robust sample handling system. Likewise, said magnetometer has a high sensitivity to detect magnetic signals and allows measurements to be made automatically in times 50% less than those of commercial rock magnetometers.
[0012] En consecuencia, es un objeto de la presente invención un magnetómetro criogénico para la medición del magnetismo remanente natural en muestras de rocas naturales que comprende: [0012] Consequently, an object of the present invention is a cryogenic magnetometer for the measurement of natural remanent magnetism in natural rock samples comprising:
- un cuerpo alargado de sección transversal circular que comprende una parte superior, una parte inferior, y un volumen y superficie interior, en donde la parte inferior comprende una abertura; - an elongated body with a circular cross-section comprising an upper part, a lower part, and an interior volume and surface, where the lower part comprises an opening;
- un sistema criogénico ubicado en la parte superior del cuerpo alargado, en donde dicho sistema comprende un criogenerador que comprende un cabezal criogénico y un compresor; - a cryogenic system located in the upper part of the elongated body, wherein said system comprises a cryogenerator comprising a cryogenic head and a compressor;
- medios de detección y medición de señales magnéticas ubicados en la parte superior del cuerpo alargado, por debajo del sistema criogénico, en donde dichos medios de detección y medición de señales magnéticas se ubican adentro y afuera del cuerpo alargado; - magnetic signal detection and measurement means located in the upper part of the elongated body, below the cryogenic system, wherein said magnetic signal detection and measurement means are located inside and outside the elongated body;
- medios de anulación del campo magnético terrestre ubicados adentro y afuera del cuerpo alargado; - means for canceling the earth's magnetic field located inside and outside the elongated body;
- una estructura de soporte que soporta al cuerpo alargado, al sistema criogénico, a los medios de detección y medición de señales magnéticas y a los medios de anulación del campo magnético terrestre; - a support structure that supports the elongated body, the cryogenic system, the means for detecting and measuring magnetic signals and the means for canceling the earth's magnetic field;
- medios de manipulación de muestras ubicados debajo del cuerpo alargado y soportados por la estructura de soporte, en donde dichos medios de manipulación de muestras comprenden un portamuestras y un sistema de elevación de muestras; y- sample handling means located below the elongated body and supported by the support structure, wherein said sample handling means comprise a sample holder and a sample lifting system; Y
- medios de control y procesamiento en comunicación de datos con el sistema criogénico, los medios de detección y medición de señales magnéticas, los medios de anulación del campo magnético terrestre y los medios de manipulación de muestras para controlar a, y recibir información de, cada uno de éstos. - control and processing means in data communication with the cryogenic system, the means for detecting and measuring magnetic signals, the means for canceling the earth's magnetic field and the means for handling samples to control and receive information from each one of these.
[0013] En una forma de realización del magnetómetro de la presente invención, el cuerpo alargado comprende en su superficie interior un blindaje magnético superconductor y un blindaje formado por capas de mu-metal. [0013] In an embodiment of the magnetometer of the present invention, the elongated body comprises on its inner surface a superconducting magnetic shield and a shield formed by layers of mu-metal.
[0014] En una forma de realización del magnetómetro de la presente invención, el criogenerador es del tipo pulse tube de He (helio) gaseoso. [0015] En una forma de realización del magnetómetro de la presente invención, los medios de detección y medición de señales magnéticas comprenden al menos dos sensores sensibles a señales magnéticas, preferiblemente, sensores SQUID y más preferiblemente sensores SQUID de tipo DC. [0014] In an embodiment of the magnetometer of the present invention, the cryogenerator is of the gaseous He (helium) pulse tube type. [0015] In an embodiment of the magnetometer of the present invention, the magnetic signal detection and measurement means comprise at least two sensors sensitive to magnetic signals, preferably SQUID sensors and more preferably DC-type SQUID sensors.
[0016] En una forma de realización del magnetómetro de la presente invención, éste comprende medios de desmagnetización por campos altemos ubicados en la parte inferior del cuerpo alargado. Preferentemente, los medios de desmagnetización comprenden bobinas de desmagnetización, preferiblemente bobinas Helmholtz y solenoides. [0016] In an embodiment of the magnetometer of the present invention, it comprises demagnetization means by alternating fields located in the lower part of the elongated body. Preferably, the demagnetizing means comprise demagnetizing coils, preferably Helmholtz coils and solenoids.
[0017] En una forma de realización del magnetómetro de la presente invención, los medios de anulación del campo magnético terrestre comprenden un sensor triaxial de campo magnético, preferiblemente un fluxgate triaxial; tres pares de bobinas de Helmholtz, preferiblemente cuadradas, ubicadas adentro del cuerpo alargado; y tres pares de bobinas de Helmholtz, preferiblemente cuadradas, ubicadas afuera del cuerpo alargado. [0017] In an embodiment of the magnetometer of the present invention, the means for canceling the earth's magnetic field comprise a triaxial magnetic field sensor, preferably a triaxial fluxgate; three pairs of Helmholtz coils, preferably square, located inside the elongated body; and three pairs of Helmholtz coils, preferably square, located outside the elongated body.
[0018] En una forma de realización del magnetómetro de la presente invención, la estructura de soporte comprende una pluralidad de barras horizontales y verticales. [0018] In an embodiment of the magnetometer of the present invention, the support structure comprises a plurality of horizontal and vertical bars.
[0019] En una forma de realización del magnetómetro de la presente invención, el portamuestras comprende una pluralidad de cavidades para recibir respectivas muestras de roca a analizar. [0019] In an embodiment of the magnetometer of the present invention, the sample holder comprises a plurality of cavities for receiving respective rock samples to be analyzed.
[0020] En una forma de realización del magnetómetro de la presente invención, el sistema de elevación de muestras comprende un tubo, preferiblemente un tubo de cuarzo. [0020] In one embodiment of the magnetometer of the present invention, the sample lifting system comprises a tube, preferably a quartz tube.
[0021] En una forma de realización del magnetómetro de la presente invención, los medios de manipulación de muestras comprenden varios medios de accionamiento, preferiblemente servomotores. [0021] In an embodiment of the magnetometer of the present invention, the sample handling means comprise several drive means, preferably servomotors.
[0022] Es otro objeto de la presente invención un método para la medición del magnetismo remanente natural en muestras de rocas naturales utilizando el magnetómetro de la presente invención, comprendiendo dicho método las siguientes etapas: [0022] Another object of the present invention is a method for measuring the natural remanent magnetism in natural rock samples using the magnetometer of the present invention, said method comprising the following steps:
- llevar el sistema criogénico a vacío y encender el compresor para comenzar el enfriamiento hasta alcanzar la temperatura de operación; - bring the cryogenic system to vacuum and turn on the compressor to start cooling until reaching the operating temperature;
- realizar la anulación del campo magnético terrestre mediante los medios de anulación del campo magnético terrestre controlados por los medios de control y procesamiento;- performing the annulment of the earth's magnetic field by means of annulment means of the earth's magnetic field controlled by the control and processing means;
- colocar la muestra en una zona de medición, en donde los medios de control y procesamiento envían comandos para el posicionamiento en direcciones X e Y del portamuestras tal que una muestra a analizar sea ubicada sobre el sistema de elevación de muestras, y en donde dicha muestra es elevada e ingresada en el cuerpo alargado para su medición; y medir el vector momento magnético. - place the sample in a measurement zone, where the control and processing means send commands for the positioning in X and Y directions of the sample holder such that a sample to be analyzed is placed on the elevation system of samples, and wherein said sample is raised and entered into the elongated body for measurement; and measure the magnetic moment vector.
[0023] En una forma de realización del método de la presente invención, el sistema de elevación de muestras comprende un tubo, preferiblemente un tubo de cuarzo. [0023] In one embodiment of the method of the present invention, the sample lifting system comprises a tube, preferably a quartz tube.
[0024] En una forma de realización del método de la presente invención, los medios de desmagnetización comprenden bobinas de desmagnetización, preferiblemente bobinas Helmholtz y solenoides. [0024] In an embodiment of the method of the present invention, the demagnetizing means comprise demagnetizing coils, preferably Helmholtz coils and solenoids.
[0025] En una forma de realización del método de la presente invención, la etapa de medir el vector momento magnético comprende utilizar los medios de detección y medición de señales magnéticas para medir el vector momento magnético, en donde dichos medios de detección y medición de señales magnéticas comprenden al menos dos sensores sensibles a señales magnéticas, preferiblemente, sensores SQUID y más preferiblemente sensores SQUID de tipo DC. [0025] In an embodiment of the method of the present invention, the step of measuring the magnetic moment vector comprises using the magnetic signal detection and measurement means to measure the magnetic moment vector, wherein said magnetic signal detection and measurement means magnetic signals comprise at least two sensors sensitive to magnetic signals, preferably SQUID sensors and more preferably DC-type SQUID sensors.
[0026] En una forma de realización del método de la presente invención, la etapa de medir el vector momento magnético comprende medir el valor de la componente Z del vector momento magnético a partir de una señal vertical (Z) medida por un sensor SQUID y medir los valores de las componentes X e Y del vector momento magnético a partir de señales transversales (X-Y) medidas por otro sensor SQUID mediante la rotación de la muestra en ángulos A0 hasta completar 360°. [0026] In an embodiment of the method of the present invention, the step of measuring the magnetic moment vector comprises measuring the value of the Z component of the magnetic moment vector from a vertical signal (Z) measured by a SQUID sensor and measure the values of the X and Y components of the magnetic moment vector from transverse signals (XY) measured by another SQUID sensor by rotating the sample through angles A0 until completing 360°.
[0027] En una forma de realización del método de la presente invención, la etapa de medir el vector momento magnético comprende medir el valor de la componente Z del vector momento magnético a partir de una señal vertical (Z) medida por un sensor SQUID y medir los valores de las componentes X e Y del vector momento magnético a partir de señales transversales (X-Y) medidas respectivamente por otros dos sensores SQUID mediante la rotación de la muestra en ángulos A0 hasta completar 360°. [0027] In an embodiment of the method of the present invention, the step of measuring the magnetic moment vector comprises measuring the value of the Z component of the magnetic moment vector from a vertical signal (Z) measured by a SQUID sensor and measure the values of the X and Y components of the magnetic moment vector from transverse signals (XY) measured respectively by two other SQUID sensors by rotating the sample through angles A0 until completing 360°.
[0028] En una forma de realización preferida del método de la presente invención, el valor de la componente Z del vector momento magnético se mide realizando pasos de ascenso de una longitud adecuada, preferentemente, 5 mm, y registrando la señal vertical Z para cada paso de ascenso. [0028] In a preferred embodiment of the method of the present invention, the value of the Z component of the magnetic moment vector is measured by performing ascent steps of a suitable length, preferably 5 mm, and recording the vertical signal Z for each step. ascent step.
[0029] En una forma de realización del método de la presente invención, la etapa de medir el vector momento magnético comprende utilizar un sensor SQUID para obtener una señal vertical (Z) en función del tiempo mientras se hace oscilar la posición de la muestra a una frecuencia determinada, y utilizar otro sensor SQUID para obtener señales transversales (X- Y) en función del tiempo mientras se hace rotar continuamente la muestra a una velocidad de rotación determinada, en donde se analizan las señales obtenidas con transformada de Fourier y se determinan los valores de las componentes X, Y y Z del vector momento magnético a partir de la amplitud y fase de las señales medidas. [0029] In an embodiment of the method of the present invention, the step of measuring the magnetic moment vector comprises using a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a certain frequency, and use another SQUID sensor to obtain transverse signals (X- Y) as a function of time while the sample is continuously rotated at a given rotation speed, where the signals obtained with Fourier transform are analyzed and the values of the X, Y and Z components of the magnetic moment vector are determined from of the amplitude and phase of the measured signals.
[0030] En una forma de realización del método de la presente invención, la etapa de medir el vector momento magnético comprende utilizar un sensor SQUID para obtener una señal vertical (Z) en función del tiempo mientras se hace oscilar la posición de la muestra a una frecuencia determinada, y utilizar otros dos sensores SQUID para obtener respectivamente señales transversales (X-Y) en función del tiempo mientras se hace rotar continuamente la muestra a una velocidad de rotación determinada, en donde se analizan las señales obtenidas con transformada de Fourier y se determinan los valores de las componentes X, Y y Z del vector momento magnético a partir de la amplitud y fase de las señales medidas. [0030] In an embodiment of the method of the present invention, the step of measuring the magnetic moment vector comprises using a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a given frequency, and use two other SQUID sensors to respectively obtain transverse signals (XY) as a function of time while continuously rotating the sample at a given rotational speed, where the signals obtained with Fourier transform are analyzed and determined the values of the X, Y and Z components of the magnetic moment vector from the amplitude and phase of the measured signals.
[0031] En una forma de realización preferida del método de la presente invención, se hace oscilar a la muestra con una frecuencia y amplitud adecuadas, preferentemente, una frecuencia de 0,25 Hz y una amplitud de 10 mm. [0031] In a preferred embodiment of the method of the present invention, the sample is oscillated with a suitable frequency and amplitude, preferably a frequency of 0.25 Hz and an amplitude of 10 mm.
[0032] En una forma de realización del método de la presente invención, éste comprende una etapa adicional de realizar pasos subsiguientes de desmagnetización por campos magnéticos altemos, en donde se desciende la muestra hasta los medios de desmagnetización por campos altemos para su desmagnetización en los tres ejes cartesianos y se monitorea y controla el campo magnético generado durante cada paso de desmagnetización. [0032] In an embodiment of the method of the present invention, it comprises an additional stage of performing subsequent steps of demagnetization by alternating magnetic fields, where the sample is lowered to the demagnetization means by alternating fields for its demagnetization in the three Cartesian axes and the magnetic field generated during each demagnetization step is monitored and controlled.
Breve descripción de las figuras Brief description of the figures
[0033] Las Figuras 1A, IB y 1C muestran una vista en perspectiva isométrica, una vista lateral derecha y una vista frontal, respectivamente, de una forma de realización del magnetómetro criogénico de la presente invención. [0033] Figures 1A, IB and 1C show an isometric perspective view, a right side view and a front view, respectively, of an embodiment of the cryogenic magnetometer of the present invention.
[0034] Las Figuras 2A y 2B muestran curvas de calibración de los sensores SQUID. [0034] Figures 2A and 2B show calibration curves of the SQUID sensors.
[0035] Las Figuras 3A, 3B y 3C muestran resultados comparativos de mediciones en las direcciones X, Y y Z, respectivamente, de 10 muestras de rocas sedimentarias. [0035] Figures 3A, 3B and 3C show comparative results of measurements in the X, Y and Z directions, respectively, of 10 sedimentary rock samples.
[0036] Las Figuras 4A y 4B muestran una forma de realización de una interfaz de usuario.[0036] Figures 4A and 4B show an embodiment of a user interface.
Descripción detallada de la invención Detailed description of the invention
[0037] El magnetómetro criogénico y método de la presente invención serán descritos a continuación en detalle haciendo referencia a las Figuras 1A a 4B. [0038] A los efectos de la presente invención, debe entenderse que el magnetómetro criogénico de la presente invención realiza la medición del vector momento magnético correspondiente a una muestra de roca natural, siendo dicho vector momento magnético parte del magnetismo remanente natural de la muestra de roca natural, y en donde dicho vector tiene componentes en direcciones X, Y y Z de un sistema de coordenadas cartesianas. [0037] The cryogenic magnetometer and method of the present invention will now be described in detail with reference to Figures 1A to 4B. [0038] For the purposes of the present invention, it should be understood that the cryogenic magnetometer of the present invention measures the magnetic moment vector corresponding to a natural rock sample, said magnetic moment vector being part of the natural remanent magnetism of the rock sample. natural rock, and wherein said vector has components in X, Y and Z directions of a Cartesian coordinate system.
[0039] A los efectos de la presente invención, la medición del vector momento magnético comprende la detección y medición de señales magnéticas que luego son procesadas para determinar dicho vector momento magnético. [0039] For the purposes of the present invention, the measurement of the magnetic moment vector comprises the detection and measurement of magnetic signals that are then processed to determine said magnetic moment vector.
[0040] Haciendo referencia a las Figura 1A, IB y 1C, en éstas pueden apreciarse una vista en perspectiva isométrica, una vista lateral derecha y una vista frontal, respectivamente de una forma de realización del magnetómetro criogénico 1 de la presente invención que comprende un cuerpo alargado 2 de sección transversal circular, un sistema criogénico 3 ubicado en la parte superior del cuerpo alargado 2, medios de detección y medición de señales magnéticas 4 ubicados en la parte superior del cuerpo alargado 2, y por debajo del sistema criogénico 3, medios de anulación del campo magnético terrestre (no mostrados) ubicados adentro y afuera del cuerpo alargado 2, una estructura de soporte 5 que soporta al cuerpo alargado 2, al sistema criogénico 3, a los medios de detección y medición de señales magnéticas 4 y a los medios de anulación del campo magnético terrestre; y medios de manipulación 6 de muestras ubicados debajo del cuerpo alargado 2 y soportados por la estructura de soporte 5. [0040] Referring to Figures 1A, IB and 1C, an isometric perspective view, a right side view and a front view, respectively, of an embodiment of the cryogenic magnetometer 1 of the present invention comprising a elongated body 2 of circular cross-section, a cryogenic system 3 located in the upper part of the elongated body 2, magnetic signal detection and measurement means 4 located in the upper part of the elongated body 2, and below the cryogenic system 3, means of the earth's magnetic field (not shown) located inside and outside the elongated body 2, a support structure 5 that supports the elongated body 2, the cryogenic system 3, the magnetic signal detection and measurement means 4 and the means cancellation of the earth's magnetic field; and sample handling means 6 located below the elongated body 2 and supported by the support structure 5.
[0041] El cuerpo alargado 2 comprende una abertura en la parte inferior del mismo a través de la cual permite el ingreso de una muestra de roca a analizar. Además, el cuerpo alargado 2 comprende un volumen y una superficie interior, en donde la superficie interior comprende un blindaje formado por capas de mu-metal y un blindaje magnético superconductor. Dichos blindajes constituyen un blindaje pasivo y aíslan el interior del cuerpo alargado 2 de posibles interferencias magnéticas externas. [0041] The elongated body 2 comprises an opening in its lower part through which it allows the entry of a rock sample to be analyzed. Furthermore, the elongated body 2 comprises a volume and an inner surface, where the inner surface comprises a shield formed by layers of mu-metal and a superconducting magnetic shield. Said shields constitute a passive shield and isolate the interior of the elongated body 2 from possible external magnetic interference.
[0042] El sistema criogénico 3 comprende un criogenerador de tipo pulse tube que utiliza He gaseoso (libre de He líquido). El criogenerador comprende, a su vez, un cabezal criogénico y un compresor de He. Esto permite que no sea necesario extraer calor para mantener la fase líquida de He en un reservorio, por lo que el cabezal criogénico puede apagarse cuando no está siendo empleado, lo cual prolonga la vida útil del mismo además de producir un ahorro de energía neto de todo el magnetómetro. [0042] The cryogenic system 3 comprises a pulse tube type cryogenerator that uses gaseous He (free of liquid He). The cryogenerator comprises, in turn, a cryogenic head and an He compressor. This means that it is not necessary to extract heat to maintain the liquid phase of He in a reservoir, so the cryogenic head can be turned off when it is not in use, which prolongs its useful life in addition to producing a net energy saving of the entire magnetometer.
[0043] Es necesario aclarar que por criogenerador debe entenderse un dispositivo que permite obtener temperaturas criogénicas a través de un ciclo termodinámico de refrigeración, tal como se conocen en el estado de la técnica. [0044] Los medios de detección y medición de señales magnéticas 4 se ubican adentro y afuera del cuerpo alargado 2, en la parte superior del mismo, y comprenden al menos dos sensores sensibles a señales magnéticas, en donde dichos sensores son preferiblemente sensores superconductores de interferencia cuántica (SQUID, por sus siglas en ingles) y aún más preferiblemente sensores SQUID de tipo DC (corriente continua). Dichos al menos dos sensores SQUID definen una zona de medición dentro del cuerpo alargado 2 del magnetómetro de la presente invención. [0043] It is necessary to clarify that a cryogenerator should be understood as a device that allows cryogenic temperatures to be obtained through a thermodynamic refrigeration cycle, as is known in the state of the art. [0044] The magnetic signal detection and measurement means 4 are located inside and outside the elongated body 2, in its upper part, and comprise at least two sensors sensitive to magnetic signals, where said sensors are preferably superconducting sensors of quantum interference (SQUID, for its acronym in English) and even more preferably DC type SQUID sensors. Said at least two SQUID sensors define a measurement zone within the elongated body 2 of the magnetometer of the present invention.
[0045] En una forma de realización del magnetómetro de la presente invención, se utiliza un sensor SQUID de los al menos dos sensores SQUID para medir el momento magnético de la muestra en la dirección Z de un sistema de coordenadas cartesianas, en donde la dirección Z, es vertical y paralela al eje longitudinal del cuerpo alargado 2; y se utiliza otro sensor SQUID de los al menos dos sensores SQUID para medir el momento magnético de la muestra en las direcciones X e Y, perpendiculares a la dirección Z y paralelas a la sección transversal circular de dicho cuerpo alargado 2. [0045] In an embodiment of the magnetometer of the present invention, one SQUID sensor of the at least two SQUID sensors is used to measure the magnetic moment of the sample in the Z direction of a Cartesian coordinate system, where the direction Z is vertical and parallel to the longitudinal axis of the elongated body 2; and another SQUID sensor of the at least two SQUID sensors is used to measure the magnetic moment of the sample in the X and Y directions, perpendicular to the Z direction and parallel to the circular cross section of said elongated body 2.
[0046] En una forma de realización preferida del magnetómetro de la presente invención se utilizan tres sensores SQUID, donde cada uno de ellos mide respectivamente uno de los tres componentes del vector momento magnético de la muestra de roca a analizar. [0046] In a preferred embodiment of the magnetometer of the present invention, three SQUID sensors are used, where each of them respectively measures one of the three components of the magnetic moment vector of the rock sample to be analyzed.
[0047] Los medios de anulación del campo magnético terrestre ubicados adentro y afuera del cuerpo alargado 2 comprenden un sensor triaxial de campo magnético, preferiblemente un fluxgate triaxial; tres pares de bobinas de Helmholtz, preferiblemente cuadradas, ubicadas adentro del cuerpo alargado 2; y tres pares de bobinas de Helmholtz, preferiblemente cuadradas, ubicadas afuera del cuerpo alargado 2 para realizar la cancelación del campo magnético terrestre en tiempo real, una fuente de corriente que alimenta a cada uno de los pares de bobinas de Helmholtz dentro del cuerpo alargado 2 y otra fuente de corriente que alimenta a cada uno de los pares de bobinas Helmholtz afuera del cuerpo alargado 2. [0047] The terrestrial magnetic field cancellation means located inside and outside the elongated body 2 comprise a triaxial magnetic field sensor, preferably a triaxial fluxgate; three pairs of Helmholtz coils, preferably square, located inside the elongated body 2; and three pairs of Helmholtz coils, preferably square, located outside the elongated body 2 to carry out the cancellation of the earth's magnetic field in real time, a current source that feeds each of the pairs of Helmholtz coils inside the elongated body 2 and another current source that feeds each of the pairs of Helmholtz coils outside the elongated body 2.
[0048] Los tres pares de bobinas de Helmholtz ubicados afuera y alrededor del cuerpo alargado 2 permiten realizar la cancelación del campo magnético terrestre en tiempo real en la zona de movimiento de un portamuestras 7, que comprenden los medios de manipulación 6 de muestras, obteniéndose campos menores a 700 nT. [0048] The three pairs of Helmholtz coils located outside and around the elongated body 2 allow the cancellation of the earth's magnetic field in real time in the movement zone of a sample holder 7, which includes the sample handling means 6, obtaining fields smaller than 700 nT.
[0049] Los tres pares de bobinas de Helmholtz internos al cuerpo alargado 2 permiten la cancelación del campo remanente intemo, producto del campo magnético terrestre, en el cuerpo alargado 2. De este modo, la zona de medición estará en “campo cero”, es decir, el campo en dicha zona tenderá a anularse lo mejor posible. [0050] Para ambos casos se utiliza el fluxgate triaxial para medir el campo magnético presente tanto en la zona de movimiento del portamuestras como dentro del cuerpo alargado 2. Más detalladamente, el fluxgate triaxial mide primero el campo magnético afuera del cuerpo alargado 2 para luego ser introducido en este, a través de la abertura que el cuerpo alargado 2 tiene en su inferior, mediante medios de accionamiento que permiten su ingreso en el cuerpo alargado 2. [0049] The three pairs of Helmholtz coils internal to the elongated body 2 allow the cancellation of the internal remanent field, product of the earth's magnetic field, in the elongated body 2. In this way, the measurement zone will be in "zero field", that is, the field in said zone will tend to cancel out as best as possible. [0050] For both cases, the triaxial fluxgate is used to measure the magnetic field present both in the movement zone of the sample holder and inside the elongated body 2. In more detail, the triaxial fluxgate first measures the magnetic field outside the elongated body 2 and then be inserted into it, through the opening that the elongated body 2 has at its bottom, by means of actuating means that allow its entry into the elongated body 2.
[0051] En particular, para lograr la anulación del campo remanente intemo, se utiliza el blindaje pasivo constituido por el blindaje formado por capas de mu-metal y el blindaje superconductor del cuerpo alargado 2, y una cancelación activa, que consiste en introducir el fluxgate por el mismo orificio de ingreso de la muestra y anular en tiempo real el campo intemo restante (50 nT típicamente) mediante los tres pares de bobinas de Helmholtz intemas. [0051] In particular, to achieve the cancellation of the internal remnant field, passive shielding is used consisting of the shield formed by layers of mu-metal and the superconducting shield of the elongated body 2, and an active cancellation, which consists of introducing the fluxgate through the same sample inlet hole and cancel in real time the remaining internal field (typically 50 nT) by means of the three pairs of internal Helmholtz coils.
[0052] La estructura de soporte 5 comprende una pluralidad de barras horizontales y verticales que soportan y elevan por encima del suelo al cuerpo alargado 2, al sistema criogénico 3, a los medios de detección y medición de señales magnéticas 4 y a los medios de anulación del campo magnético terrestre. De este modo se permite una disposición geométrica en donde los medios de manipulación 6 de muestras, también soportados por la estructura de soporte 5, se ubiquen por debajo del cuerpo alargado 2. [0052] The support structure 5 comprises a plurality of horizontal and vertical bars that support and raise the elongated body 2, the cryogenic system 3, the magnetic signal detection and measurement means 4 and the cancellation means above the ground. of the earth's magnetic field. In this way, a geometric layout is allowed in which the sample handling means 6, also supported by the support structure 5, are located below the elongated body 2.
[0053] Cabe aclarar que el sistema criogénico 3 utilizado requiere estar en posición vertical y orientado hacia abajo para poder funcionar. Esto se debe al funcionamiento del ciclo termodinámico implementado, por lo que si se orientara de otra manera su capacidad de refrigeración sería muy limitada o nula. Es por ello que los magnetómetros comercialmente conocidos que emplean sistemas criogénicos similares o iguales al utilizado en la presente invención tienen desplazados dichos sistemas criogénicos del cuerpo del magnetómetro y utilizan un conjunto mecánico complejo que comunique ambas partes. En cambio, la disposición geométrica del magnetómetro de la presente invención evita dicha complejidad mecánica ya que, al ingresarse las muestras de roca a analizar por la parte inferior del cuerpo alargado, como se explicará en mayor detalle a continuación, el sistema criogénico puede estar montado en la parte superior y en línea con dicho cuerpo, lo cual genera un montaje sustancialmente más sencillo y de mucho menor costo. [0053] It should be clarified that the cryogenic system 3 used needs to be in a vertical position and oriented downwards in order to function. This is due to the operation of the implemented thermodynamic cycle, so if it were oriented in another way, its cooling capacity would be very limited or null. That is why the commercially known magnetometers that use cryogenic systems similar or equal to the one used in the present invention have said cryogenic systems displaced from the body of the magnetometer and use a complex mechanical assembly that communicates both parts. On the other hand, the geometric arrangement of the magnetometer of the present invention avoids said mechanical complexity since, when the rock samples to be analyzed are entered through the lower part of the elongated body, as will be explained in greater detail below, the cryogenic system can be mounted in the upper part and in line with said body, which generates a substantially simpler and much lower cost assembly.
[0054] Los medios de manipulación 6 de muestras comprenden una bandeja portamuestras 7, tal como se mencionó anteriormente, y un sistema de elevación de muestras 8. Dicho portamuestras comprende una pluralidad de cavidades para recibir respectivas muestras de roca a analizar. Por su parte, el sistema de elevación de muestras comprende un tubo 9, preferiblemente un tubo de cuarzo, para elevar una correspondiente muestra de roca hasta el cuerpo alargado 2, ingresar a través de la abertura que comprende el cuerpo en su parte inferior y llegar hasta la zona de medición. Además, los medios de manipulación 6 comprenden varios medios de accionamiento, tal como servomotores, para desplazar el portamuestras y posicionar la muestra de roca a ser analizada por debajo del tubo de cuarzo y para posteriormente elevar dicha muestra. [0054] The sample handling means 6 comprise a sample holder tray 7, as mentioned above, and a sample lifting system 8. Said sample holder comprises a plurality of cavities to receive respective rock samples to be analyzed. For its part, the sample elevation system comprises a tube 9, preferably a quartz tube, to raise a corresponding rock sample to the elongated body 2, enter through the opening comprising the body in its lower part and reach the measurement zone. In addition, the handling means 6 comprise several drive means, such as servomotors, to move the sample holder and position the rock sample to be analyzed below the quartz tube and to subsequently raise said sample.
[0055] El tubo de cuarzo soporta a la correspondiente muestra a analizar dentro del cuerpo alargado 2 del magnetómetro, estando dicha muestra soportada por su propio peso en el tubo. [0056] La disposición geométrica del magnetómetro de la presente invención no requiere que la muestra de roca a analizar presente dos caras perfectamente planas y paralelas para ser medida, a diferencia de los magnetómetros comerciales. Esto se debe a que la sujeción de la muestra se realiza desde la misma cara de apoyo sobre la bandeja portamuestras, de manera que puede presentar imperfecciones en la cara opuesta sin peijudicar la medición. En los magnetómetros comerciales un sistema de vacío succiona la cara superior de la muestra, opuesta a la cara de apoyo sobre la bandeja, de manera que se requiere que ambas caras estén libres de imperfecciones y sean paralelas. De esta manera, se ahorra en tiempo y costos de preparación de las muestras, y se evita la necesidad de un sistema de vacío para que manipule las muestras. [0055] The quartz tube supports the corresponding sample to be analyzed inside the elongated body 2 of the magnetometer, said sample being supported by its own weight in the tube. [0056] The geometric layout of the magnetometer of the present invention does not require that the rock sample to be analyzed has two perfectly flat and parallel faces to be measured, unlike commercial magnetometers. This is due to the fact that the sample is held from the same support face on the sample tray, so that it can present imperfections on the opposite face without harming the measurement. In commercial magnetometers, a vacuum system sucks the upper face of the sample, opposite to the support face on the tray, so that both faces are required to be free of imperfections and to be parallel. This saves sample preparation time and cost, and avoids the need for a vacuum system to handle samples.
[0057] En una forma de realización del magnetómetro de la presente invención, éste comprende además medios de desmagnetización por campos altemos en la parte inferior y dentro del cuerpo alargado 2, en donde dichos medios de desmagnetización por campos altemos están soportados y elevados por encima del suelo mediante la estmctura de soporte 5. Los medios de desmagnetización por campos altemos definen una zona de desmagnetización y comprenden un controlador, un amplificador de potencia, relays de conmutación, bancos de capacitores, un solenoide y un par de bobinas Helmholtz y un sensor de corriente, en donde el solenoide y el par de bobinas Helmholtz son alimentados por los bancos de capacitores para generar campos magnéticos utilizados para la desmagnetización de la muestra de roca a analizar. En particular, los medios de desmagnetización por campos altemos llevan a cabo una técnica, conocida en estudios de paleomagnetismo, que consiste en la desmagnetización por aplicación de campos altemos de amplitud creciente y que permite identificar diferentes componentes mineralógicos que contribuyen al vector de momento magnético total de la muestra. [0057] In an embodiment of the magnetometer of the present invention, it further comprises demagnetization means by alternating fields in the lower part and inside the elongated body 2, where said demagnetizing means by alternating fields are supported and raised above from the ground through the support structure 5. The means of demagnetization by alternating fields define a demagnetization zone and comprise a controller, a power amplifier, switching relays, capacitor banks, a solenoid and a pair of Helmholtz coils and a sensor. of current, where the solenoid and the pair of Helmholtz coils are fed by the capacitor banks to generate magnetic fields used for the demagnetization of the rock sample to be analyzed. In particular, the means of demagnetization by alternating fields carry out a technique, known in paleomagnetism studies, which consists of demagnetizing by applying alternating fields of increasing amplitude and which allows the identification of different mineralogical components that contribute to the total magnetic moment vector of the sample.
[0058] El magnetómetro criogénico de la presente invención comprende medios de control y procesamiento que están en comunicación de datos con el sistema criogénico; los medios de detección y medición de señales magnéticas; los medios de desmagnetización por campos altemos, en caso de comprenderlos; los medios de anulación del campo magnético terrestre y los medios de manipulación de muestras para controlar y recibir información de cada uno de éstos, mediante la implementación de algoritmos. [0058] The cryogenic magnetometer of the present invention comprises control and processing means that are in data communication with the cryogenic system; the means of detection and measurement of magnetic signals; the means of demagnetization by alternate fields, if you understand them; the means for canceling the earth's magnetic field and the means for handling samples to control and receive information from each of these, through the implementation of algorithms.
[0059] En la forma de realización del magnetómetro de la presente invención que comprende los medios de desmagnetización por campos altemos, éstos se colocan en tándem con los medios de detección y medición de señales magnéticas, siendo ambos medios totalmente controlados por los medios de control y procesamiento, como se mencionó anteriormente, lo cual aumenta notablemente la productividad de estos. Por un lado, el procesamiento de una muestra no requiere la atención permanente de un usuario y la migración manual de la muestra desde los medios de detección y medición de señales magnéticas hasta los medios de desmagnetización por campos altemos o viceversa y, por otro lado, se disminuye notablemente los tiempos de procesamiento al realizar todo el proceso de forma automática, siendo posible incluso dejar al magnetómetro criogénico desatendido por tiempos prolongados. [0059] In the embodiment of the magnetometer of the present invention that comprises the demagnetization means by alternating fields, these are placed in tandem with the magnetic signal detection and measurement means, both means being fully controlled by the control means and processing, as mentioned above, which significantly increases their productivity. On the one hand, the processing of a sample does not require the permanent attention of a user and the manual migration of the sample from the means of detection and measurement of magnetic signals to the means of demagnetization by alternating fields or vice versa and, on the other hand, Processing times are significantly reduced by performing the entire process automatically, and it is even possible to leave the cryogenic magnetometer unattended for long periods of time.
[0060] La información procesada por los medios de control y procesamiento puede ser representada en una interfaz de usuario tal como se ilustra, a modo de ejemplo, en las Figuras 4A y 4B. En la Figura 4A se ilustra, a modo de ejemplo, la geometría del portamuestras utilizado que tiene 120 cavidades para recibir muestras de roca a analizar. Cada una de las cavidades está enumerada para ordenar las mediciones realizadas y asignar los resultados de las mediciones a la cavidad en donde se encontraba la roca analizada. En otras palabras, un usuario puede acceder a cada casillero, que representa una cavidad que contiene una muestra de roca, para, por ejemplo, cargar los datos de la misma, ver estado de etapas de desmagnetización, y acceder a los gráficos correspondientes a cada muestra, por ejemplo, dentro de una colección de muestras de un proyecto, tal como se ilustra en la Figura 4B. Mediante la información almacenada y procesada puede, por ejemplo, determinarse los diferentes componentes mineralógicos que contribuyen al vector de momento magnético total de la muestra. [0060] The information processed by the control and processing means may be displayed on a user interface as illustrated, by way of example, in Figures 4A and 4B. Figure 4A illustrates, by way of example, the geometry of the sample holder used, which has 120 cavities to receive rock samples to be analyzed. Each of the cavities is numbered to order the measurements made and assign the results of the measurements to the cavity where the analyzed rock was found. In other words, a user can access each box, which represents a cavity containing a rock sample, to, for example, load its data, see the status of demagnetization stages, and access the graphs corresponding to each. sample, for example, within a collection of samples in a project, as illustrated in Figure 4B. By means of the stored and processed information it is possible, for example, to determine the different mineralogical components that contribute to the total magnetic moment vector of the sample.
[0061] Es necesario destacar que el magnetómetro criogénico de la presente invención permite medios de detección y medición de señales magnéticas que detecten y midan señales extremadamente débiles, con niveles de ruido del orden de 10‘12 A.m2, IxlO"9 emú, que funcionan en la cercanía de los medios de desmagnetización por campos altemos con campos picos potenciales mayores a 150 mT. Asimismo, las mediciones de magnetización remanente se realizan en muestras a temperatura ambiente (295 K), mientras que los medios de detección y medición de señales magnéticas deben enfriarse por debajo de la temperatura de transición a la superconductividad del material (9 K para sensores SQUID que incorporan Nb) y localizarse lo más próximo a la muestra posible para maximizar la intensidad de señal en la medición, dando lugar a gradientes térmicos del orden de 100
Figure imgf000014_0001
— para lo cual se implementa un aislamiento térmico efectivo entre el exterior a temperatura ambiente y el interior a temperaturas criogénicas.
[0061] It is necessary to emphasize that the cryogenic magnetometer of the present invention allows means of detecting and measuring magnetic signals that detect and measure extremely weak signals, with noise levels of the order of 10' 12 Am 2 , IxlO" 9 emu, which they work in the vicinity of the demagnetization media by alternating fields with peak potential fields greater than 150 mT Likewise, the remanent magnetization measurements are made on samples at room temperature (295 K), while the demagnetization media detection and measurement of magnetic signals should be cooled below the material's superconducting transition temperature (9 K for SQUID sensors incorporating Nb) and located as close to the sample as possible to maximize signal intensity in the measurement, giving give rise to thermal gradients of the order of 100
Figure imgf000014_0001
— for which an effective thermal insulation is implemented between the outside at room temperature and the inside at cryogenic temperatures.
[0062] A continuación, se detalla el método de medición, en forma de etapas, ejecutado por el magnetómetro de la presente invención. [0062] The measurement method, in the form of stages, executed by the magnetometer of the present invention is detailed below.
[0063] En una primera etapa, se lleva el interior del cuerpo del magnetómetro a vacío y se enciende el compresor del sistema criogénico para comenzar el enfriamiento hasta alcanzar la temperatura de operación, siendo ésta preferiblemente 3,2 K. [0063] In a first stage, the interior of the magnetometer body is brought to a vacuum and the compressor of the cryogenic system is turned on to begin cooling until the operating temperature is reached, this being preferably 3.2 K.
[0064] En una segunda etapa, se realiza la anulación del campo magnético remanente interno del cuerpo alargado del magnetómetro de manera automática mediante los medios de anulación del campo magnético terrestre controlados por los medios de control y procesamiento. Más específicamente, el blindaje superconductor es calentado por sobre su temperatura de transición mediante calefactores intemos controlados por los medios de control y procesamiento, se introduce el fluxgate triaxial por el mismo orificio de ingreso de la muestra hasta la zona da medición y se energizan los tres pares bobinas de Helmholtz intemas controladas por los medios de control y procesamiento para cancelar el campo medido por el fluxgate triaxial. Se obtiene un campo magnético remanente interno menor o igual a 10 nT. Cabe destacar que, antes de introducir el fluxgate triaxial dentro del cuerpo alargado del magnetómetro, se mide el campo magnético en la zona de movimiento del portamuestras a través de dicho fluxgate triaxial y se realiza la anulación del campo magnético terrestre en dicha zona a través de los tres pares de bobinas de Helmholtz ubicados afuera y alrededor del cuerpo alargado. [0064] In a second stage, the cancellation of the internal remanent magnetic field of the elongated body of the magnetometer is carried out automatically by means of cancellation of the terrestrial magnetic field controlled by the control and processing means. More specifically, the superconducting shield is heated above its transition temperature by internal heaters controlled by the control and processing means, the triaxial fluxgate is introduced through the same sample entry hole to the measurement zone and the three pairs of internal Helmholtz coils controlled by the control and processing means to cancel the field measured by the triaxial fluxgate. An internal remanent magnetic field less than or equal to 10 nT is obtained. It should be noted that, before introducing the triaxial fluxgate inside the elongated body of the magnetometer, the magnetic field is measured in the area of movement of the sample holder through said triaxial fluxgate and the cancellation of the earth's magnetic field in said area is carried out through the three pairs of Helmholtz coils located outside and around the elongated body.
[0065] A continuación, se enfría el blindaje superconductor por debajo de su temperatura de transición nuevamente, completando el protocolo de encendido del magnetómetro. El enfriamiento se realiza apagando los calefactores intemos, de manera que la temperatura desciende gracias al sistema criogénico, el cual permanece encendido durante todo el proceso. [0065] The superconducting shield is then cooled below its transition temperature again, completing the magnetometer firing protocol. Cooling is done by turning off the internal heaters, so that the temperature drops thanks to the cryogenic system, which remains on throughout the process.
[0066] En una tercera etapa, se coloca una muestra de roca en la zona de medición. Para ello, los medios de control envían comandos para el posicionamiento en direcciones X e Y del portamuestras de modo tal que dicha muestra de roca se ubique espacialmente sobre el tubo de cuarzo. Una vez en esta posición, se eleva el tubo de cuarzo hasta la altura de la base inferior de la muestra, de modo que ésta se apoye sobre el tubo de cuarzo, y se eleva la muestra hasta la zona de medición, ingresando en el cuerpo alargado del magnetómetro a través de la abertura que dicho cuerpo comprende en su parte inferior. [0066] In a third step, a rock sample is placed in the measurement zone. To do this, the control means send commands for positioning the sample holder in X and Y directions in such a way that said rock sample is spatially located on the tube. of quartz. Once in this position, the quartz tube is raised to the height of the lower base of the sample, so that it rests on the quartz tube, and the sample is raised to the measurement zone, entering the body elongated part of the magnetometer through the opening that said body comprises in its lower part.
[0067] En una cuarta, se mide el vector momento magnético. En una forma de realización de dicha cuarta etapa se realiza una medición de tipo puntual, en donde se utiliza un sensor SQUID para obtener la señal vertical (Z) y otro sensor SQUID para obtener las señales transversales (X-Y) mediante la rotación de la muestra de modo de obtener el vector de momento magnético. Más precisamente, se obtiene el valor de la componente Z del vector momento magnético realizando pasos de ascenso de, por ejemplo, unos 5 mm en toda la zona de medición y registrando la señal vertical Z, mediante la cual se obtiene el flujo magnético en la dirección Z. El flujo magnético está dado por la siguiente ecuación: f 2 1 1 ) d>(z) = mzaNA ( - - - [ l[fí2 + z2] /2 (fí2 + (z - a)2) (fí2 + (z + a)2) J donde mz es la componente Z del momento magnético de la muestra, a es una combinación de constantes fundamentales, Ny A son respectivamente el número de espiras y el área de las bobinas captoras, z es la posición a lo largo del eje Z de la muestra con z=0 indicando la posición de la bobina central, R es el radio de las espiras y a es la separación entre las espiras centrales y las extemas de las bobinas del sensor SQUID. De este modo, conociendo tanto el valor del flujo magnético en función de la coordenada Z como de los parámetros a, N, A, R y a se despeja m- de la ecuación anterior y se obtiene la componente Z del vector momento magnético. [0067] In a fourth, the magnetic moment vector is measured. In an embodiment of said fourth stage, a point-type measurement is carried out, where a SQUID sensor is used to obtain the vertical signal (Z) and another SQUID sensor to obtain the transverse signals (XY) by rotating the sample. so as to obtain the magnetic moment vector. More precisely, the value of the component Z of the magnetic moment vector is obtained by making ascending steps of, for example, about 5 mm in the entire measurement zone and recording the vertical signal Z, by means of which the magnetic flux is obtained in the Z direction. The magnetic flux is given by the following equation: f 2 1 1 ) d>(z) = m z aNA ( - - - [ l[fí 2 + z 2 ] /2 (fí 2 + (z - a ) 2 ) (fi 2 + (z + a) 2 ) J where m z is the Z component of the magnetic moment of the sample, a is a combination of fundamental constants, N and A are respectively the number of turns and the area of the pick-up coils, z is the position along the Z axis of the sample with z=0 indicating the position of the central coil, R is the radius of the turns and is the separation between the central turns and the outer turns of the coils of the SQUID sensor In this way, knowing both the value of the magnetic flux as a function of the Z coordinate and of the parameters a, N, A, R, m- is cleared from the equation ion above and the Z component of the magnetic moment vector is obtained.
[0068] Luego, la muestra es rotada sucesivamente en ángulos A0 obteniendo valores para la señal transversal (X-Y) en cada punto, hasta completar 360° mediante un motor de rotación y un mecanismo diseñado para rotar el tubo de cuarzo. Las mediciones resultantes son ajustadas por una ecuación conocida en el estado de la técnica correspondiente a la respuesta del arreglo de las bobinas captoras a un dipolo magnético puntual, que tiene en cuenta la amplitud de la señal medida (el momento magnético en el plano), un valor constante (el momento inducido en la muestra y el tubo de cuarzo por el posible campo en la zona de medición, además de un offset inicial en el sensor) y una componente lineal que tiene en cuenta una posible deriva (drift) de los SQUID, característica de los sensores de este tipo. Asimismo, la fase de la señal medida correspondiente al pico de señal representa la declinación de la muestra. Para esta componente transversal (X-Y) del momento magnético la respuesta de las bobinas es prácticamente indistinguible de una función senoidal. [0068] Then, the sample is rotated successively at angles A0, obtaining values for the transverse signal (XY) at each point, until completing 360° by means of a rotation motor and a mechanism designed to rotate the quartz tube. The resulting measurements are adjusted by an equation known in the state of the art corresponding to the response of the pick-up coil array to a point magnetic dipole, which takes into account the amplitude of the measured signal (the magnetic moment in the plane), a constant value (the moment induced in the sample and the quartz tube by the possible field in the measurement zone, in addition to an initial offset in the sensor) and a linear component that takes into account a possible drift of the SQUID, characteristic of sensors of this type. Likewise, the phase of the measured signal corresponding to the signal peak represents the sample decline. For this transverse component (XY) of the magnetic moment, the response of the coils is practically indistinguishable from a sinusoidal function.
[0069] El proceso de medición puntual demora aproximadamente 70 segundos en total, siendo posible reducir en 16 segundos este tiempo de incorporarse un tercer SQUID, dado que reduciría a la mitad el tiempo de medición de la componente transversal (X-Y), el cual es de aproximadamente 32 segundos. [0069] The punctual measurement process takes approximately 70 seconds in total, being possible to reduce this time by 16 seconds if a third SQUID is incorporated, since it would halve the measurement time of the transverse component (XY), which is of approximately 32 seconds.
[0070] En una forma de realización preferida de la cuarta etapa del método de la presente invención, se realiza la medición de la muestra de forma dinámica. Para ello, se utiliza un sensor SQUID para obtener la señal vertical (Z) en función del tiempo mientras se hace oscilar la posición de la muestra a una frecuencia determinada. Esto se logra implementando un algoritmo de movimiento de, por ejemplo, un motor vertical, que produce oscilaciones periódicas del tubo de cuarzo en dicha dirección con la frecuencia deseada, por ejemplo, 0,25 Hz, a la altura exacta de mayor sensibilidad de las bobinas captoras y con una amplitud de, por ejemplo, 10 mm. Posteriormente, se utiliza otro sensor SQUID para obtener las señales transversales (X-Y) en función del tiempo mientras se rota continuamente la muestra a una velocidad de rotación determinada. Ambas señales son analizadas con transformada de Fourier y los momentos magnéticos X, Y y Z se determinan a partir de la amplitud y fase de las señales medidas. [0070] In a preferred embodiment of the fourth stage of the method of the present invention, the measurement of the sample is performed dynamically. To do this, a SQUID sensor is used to obtain the vertical signal (Z) as a function of time while the position of the sample is oscillated at a certain frequency. This is achieved by implementing a movement algorithm of, for example, a vertical motor, which produces periodic oscillations of the quartz tube in said direction with the desired frequency, for example, 0.25 Hz, at the exact height of the greatest sensitivity of the pick-up coils and with an amplitude of, for example, 10 mm. Subsequently, another SQUID sensor is used to obtain the transverse (X-Y) signals as a function of time while continuously rotating the sample at a given rotation speed. Both signals are analyzed with a Fourier transform and the magnetic moments X, Y and Z are determined from the amplitude and phase of the measured signals.
[0071] La forma de medición dinámica permite varias ventajas, entre ellas, que la medición toma un tiempo aproximado de 30 segundos, siendo un 50% menor a mediciones tradicionales, lo cual acorta considerablemente los tiempos de análisis. Adicionalmente, dicha forma de medición dinámica aumenta la sensibilidad de la medición y la relación señal/ruido respecto a los métodos tradicionales. Esto último se logra considerando únicamente la frecuencia de oscilación de la muestra en la señal medida y descartando el resto de las frecuencias de la señal, que constituyen ruido y señales espurias de la medición. [0071] The dynamic measurement form allows several advantages, among them, that the measurement takes an approximate time of 30 seconds, being 50% less than traditional measurements, which considerably shortens the analysis times. Additionally, such a dynamic measurement method increases the sensitivity of the measurement and the signal-to-noise ratio compared to traditional methods. The latter is achieved by considering only the oscillation frequency of the sample in the measured signal and discarding the rest of the frequencies of the signal, which constitute noise and spurious signals of the measurement.
[0072] En caso de agregarse un tercer sensor SQUID que realice mediciones en dirección horizontal y ortogonal al eje de medición del otro sensor SQUID que mide señales transversales, se reduce el tiempo de medición en aproximadamente 8 segundos en la medición dinámica, dado que se reduce a la mitad el tiempo de adquisición de la componente en el plano X-Y (la cual es de aproximadamente 16 segundos). De este modo, la medición toma un tiempo aproximado de 22 segundos. [0072] In case of adding a third SQUID sensor that performs measurements in a horizontal direction and orthogonal to the measurement axis of the other SQUID sensor that measures transverse signals, the measurement time is reduced by approximately 8 seconds in the dynamic measurement, since halves the acquisition time of the component in the XY plane (which is approximately 16 seconds). In this way, the measurement takes an approximate time of 22 seconds.
[0073] Cabe destacar que en caso de incorporarse dicho tercer SQUID, la rotación de la muestra continúa siendo necesaria, dado que la medición busca detectar variaciones en la señal en cada dirección a medida que se realiza la rotación, tanto para el método dinámico como para la medición puntual. [0073] It should be noted that in the event that said third SQUID is incorporated, the rotation of the sample continues to be necessary, since the measurement seeks to detect variations in the signal in each direction as the rotation is performed, both for the dynamic method and for spot measurement.
[0074] Una vez obtenidos los valores de las tres componentes del vector de momento magnético, puede calcularse también la magnetización volumétrica, inclinación y declinación del espécimen. Asimismo, una vez obtenida el vector momento magnético puede procederse, en caso de ser requerido según el tipo de estudio a realizar, con la desmagnetización de las muestras para la identificación de los componentes mineralógicos que contribuyen al vector de momento magnético total de las mismas. Dicha desmagnetización puede realizarse de manera térmica en un homo o mediante medios de desmagnetización por campos altemos, los cuales como se indicó previamente, pueden estar incorporados dentro del cuerpo del magnetómetro de la presente invención. En caso de que se quiera realizar la desmagnetización de la muestra, el método de la presente invención puede comprender una quinta etapa opcional, la cual no es necesaria para obtener los resultados ventajosos que el magnetómetro y método de la presente invención permiten obtener en lo que respecta a la medición del vector momento magnético. [0074] Once the values of the three components of the magnetic moment vector have been obtained, the volumetric magnetization, inclination and declination of the specimen can also be calculated. Likewise, once the magnetic moment vector has been obtained, if required depending on the type of study to be carried out, the samples can be demagnetized to identify the mineralogical components that contribute to their total magnetic moment vector. Said demagnetization can be carried out thermally in a furnace or by means of demagnetization by alternating fields, which, as previously indicated, can be incorporated into the body of the magnetometer of the present invention. In case you want to perform the demagnetization of the sample, the method of the present invention may include an optional fifth stage, which is not necessary to obtain the advantageous results that the magnetometer and method of the present invention allow to obtain in what regards the measurement of the magnetic moment vector.
[0075] En base a lo descrito anteriormente, en dicha quinta y opcional etapa, se realizan pasos subsiguientes de desmagnetización por campos magnéticos altemos, en caso de ser requerido, en donde se desciende la muestra hasta la zona de desmagnetización, en particular, hasta el centro de las bobinas de desmagnetización, para su desmagnetización en los tres ejes cartesianos y se monitorea y controla el campo magnético generado durante cada paso de desmagnetización. Más precisamente, una vez la muestra está en posición, el controlador en tiempo real cierra el relay de conmutación correspondiente al solenoide de desmagnetización (campo vertical) y genera una onda senoidal pura, cuya frecuencia es la frecuencia de resonancia del circuito eléctrico implementado, por ejemplo, de 138 Hz, y cuyo perfil de crecimiento y decrecimiento puede ser seleccionado por un usuario de forma previa. El mismo procedimiento es repetido para generar idéntico campo en ambas direcciones transversales. El proceso de desmagnetización en las tres direcciones demora aproximadamente 60 segundos. Durante cada paso de desmagnetización, el controlador monitorea y controla a lazo cerrado el campo generado mediante el sensor de corriente. Este proceso de desmagnetización es repetido cuantas veces sea especificado por el usuario, aplicando campos con magnitudes crecientes y realizando mediciones de momento magnético luego de cada paso de desmagnetización, de manera de obtener las curvas de desmagnetización y gráficas de cambios direccionales del momento magnético típicas en los estudios de paleomagnetismo. Una vez desmagnetizada la muestra totalmente por el último paso de desmagnetización, la misma es depositada nuevamente en la bandeja portamuestras, para continuar el proceso de medición en la siguiente muestra programada. De este modo, se logran identificar los componentes mineralógicos que contribuyen al vector de momento magnético total de cada una de las muestras de modo de caracterizarlas. [0075] Based on what was described above, in said fifth and optional stage, subsequent demagnetization steps are carried out by alternating magnetic fields, if required, where the sample is lowered to the demagnetization zone, in particular, to the center of the demagnetization coils, for demagnetization in the three Cartesian axes and the magnetic field generated during each demagnetization step is monitored and controlled. More precisely, once the sample is in position, the real-time controller closes the switching relay corresponding to the demagnetization solenoid (vertical field) and generates a pure sinusoidal wave, whose frequency is the resonance frequency of the implemented electrical circuit, for example, 138 Hz, and whose growth and decrease profile can be selected by a user in advance. The same procedure is repeated to generate the same field in both transverse directions. The degaussing process in all three directions takes approximately 60 seconds. During each demagnetization step, the controller monitors and controls in closed loop the field generated by the current sensor. This demagnetization process is repeated as many times as specified by the user, applying fields with increasing magnitudes and performing magnetic moment measurements after each demagnetization step, in order to obtain the typical demagnetization curves and graphs of directional changes of the magnetic moment in paleomagnetism studies. Once the sample is completely demagnetized by the last demagnetization step, it is deposited again in the sample tray, to continue the measurement process in the next scheduled sample. In this way, it is possible to identify the mineralogical components that contribute to the total magnetic moment vector of each of the samples in order to characterize them.
Resultados experimentales Experimental results
[0076] En las Figuras 2A y 2B pueden apreciarse curvas de calibración de los sensores SQUID aplicando corrientes conocidas en bobinas de geometría conocidas. En particular, para realizar la calibración se generaron señales de momento magnético controlado inyectando corriente a pequeñas bobinas de cobre en la zona de medición, tanto en la dirección vertical (Z) como transversales (X e Y) para corroborar los cálculos de respuesta del sistema diseñado y definir constantes de calibración propias del magnetómetro criogénico de la presente invención. [0076] In Figures 2A and 2B, calibration curves of the SQUID sensors can be seen applying known currents in coils of known geometry. In particular, to perform the calibration, controlled magnetic moment signals were generated by injecting current into small copper coils in the measurement zone, both in the vertical (Z) and transverse (X and Y) directions to corroborate the system response calculations. designed and define calibration constants of the cryogenic magnetometer of the present invention.
[0077] Se utilizaron valores de corriente de 0,1 pA a 200 pA en ambas direcciones. Para evitar perturbaciones en la señal producto de la pieza plástica que sostenía las bobinas, en lugar de generar señales continuas de corriente, se generaron ondas cuadradas de amplitudes y frecuencia conocida. A través de un algoritmo de adquisición que utiliza transformadas rápida de Fourier, se obtuvo la amplitud de las componentes de dicha frecuencia. [0077] Current values from 0.1 pA to 200 pA in both directions were used. To avoid disturbances in the signal caused by the plastic part that held the coils, instead of generating continuous current signals, square waves of known amplitudes and frequencies were generated. Through an acquisition algorithm that uses fast Fourier transforms, the amplitude of the components of said frequency was obtained.
[0078] El magnetómetro criogénico de la presente invención permite detectar señales en el orden de 10‘7 emú (10‘10 A.m2) en muestras estándar de aproximadamente 10 cm3, distinguiendo eficientemente dichas señales por sobre el ruido que interfiere. [0078] The cryogenic magnetometer of the present invention allows detecting signals in the order of 10' 7 emu (10' 10 Am 2 ) in standard samples of approximately 10 cm 3 , efficiently distinguishing said signals over the noise that interferes.
[0079] Una vez calibrado el magnetómetro criogénico de la presente invención, se realizaron mediciones sobre muestras reales de rocas. Se midieron 10 muestras de rocas sedimentarias estables para realizar mediciones cruzadas entre un magnetómetro criogénico de 2G Enterprises, modelo 855 SRM, y el magnetómetro criogénico de la presente invención. Los resultados de las mediciones en las direcciones X, Y y Z se presentan en las Figuras 3A, 3B y 3C, respectivamente. En dichas Figuras, al magnetómetro criogénico de la presente invención se lo denomina “CriAr”. [0079] Once the cryogenic magnetometer of the present invention was calibrated, measurements were made on real rock samples. 10 stable sedimentary rock samples were measured for cross-measurement between a 2G Enterprises Model 855 SRM cryogenic magnetometer and the cryogenic magnetometer of the present invention. The results of the measurements in the X, Y and Z directions are presented in Figures 3A, 3B and 3C, respectively. In said Figures, the cryogenic magnetometer of the present invention is called "CriAr".
[0080] La magnetización de las muestras de origen sedimentario fue generada mediante ARM (magnetización remanente anhisterética, por sus siglas en inglés) en la dirección del eje de simetría de los especímenes (magnetización en eje Z), por lo que los valores resultantes en las 10 mediciones de las direcciones X e Y son cercanos a cero. En la Figura 3C se ilustra una vista ampliada de los valores de menor intensidad en el gráfico de correlación en la dirección Z. [0081] El método de medición de la presente invención aumenta notablemente la sensibilidad del magnetómetro criogénico y permite realizar mediciones en un tiempo sensiblemente menor al de los magnetómetros criogénicos de rocas disponibles comercialmente, reduciéndose aproximadamente hasta la mitad frente a dichos magnetómetros comerciales (las mediciones que utilizan el método dinámico desarrollado demoran 32 segundos, contra aproximadamente 60 segundos en los magnetómetros comerciales), lo cual es una gran ventaja ya que el paleomagnetismo es una técnica que requiere de la medición de una gran cantidad de muestras (cientos o miles) y de este modo habría ahorros de tiempo sustanciales. [0080] The magnetization of the samples of sedimentary origin was generated by ARM (anhysteretic remanent magnetization) in the direction of the axis of symmetry of the specimens (Z-axis magnetization), so the resulting values in all 10 measurements of the X and Y directions are close to zero. A magnified view of the lower intensity values in the correlation plot in the Z direction is illustrated in Figure 3C. [0081] The measurement method of the present invention notably increases the sensitivity of the cryogenic magnetometer and allows measurements to be made in a significantly shorter time than commercially available cryogenic rock magnetometers, being reduced by approximately half compared to said commercial magnetometers (measurements that use the developed dynamic method take 32 seconds, against approximately 60 seconds in commercial magnetometers), which is a great advantage since paleomagnetism is a technique that requires the measurement of a large number of samples (hundreds or thousands) and in this way there would be substantial time savings.

Claims

Reivindicaciones Claims
1. Un magnetómetro criogénico, caracterizado porque comprende: 1. A cryogenic magnetometer, characterized in that it comprises:
- un cuerpo alargado de sección transversal circular que comprende una parte superior, una parte inferior, y un volumen y superficie interior, en donde la parte inferior comprende una abertura; - an elongated body with a circular cross-section comprising an upper part, a lower part, and an interior volume and surface, where the lower part comprises an opening;
- un sistema criogénico ubicado en la parte superior del cuerpo alargado, en donde dicho sistema comprende un criogenerador que comprende un cabezal criogénico y un compresor; - a cryogenic system located in the upper part of the elongated body, wherein said system comprises a cryogenerator comprising a cryogenic head and a compressor;
- medios de detección y medición de señales magnéticas ubicados en la parte superior del cuerpo alargado, por debajo del sistema criogénico, en donde dichos medios de detección y medición de señales magnéticas se ubican adentro y afuera del cuerpo alargado; - magnetic signal detection and measurement means located in the upper part of the elongated body, below the cryogenic system, wherein said magnetic signal detection and measurement means are located inside and outside the elongated body;
- medios de anulación del campo magnético terrestre ubicados adentro y afuera del cuerpo alargado; - means for canceling the earth's magnetic field located inside and outside the elongated body;
- una estructura de soporte que soporta al cuerpo alargado, al sistema criogénico, a los medios de detección y medición de señales magnéticas y a los medios de anulación del campo magnético terrestre; - a support structure that supports the elongated body, the cryogenic system, the means for detecting and measuring magnetic signals and the means for canceling the earth's magnetic field;
- medios de manipulación de muestras ubicados debajo del cuerpo alargado y soportados por la estructura de soporte, en donde dichos medios de manipulación de muestras comprenden un portamuestras y un sistema de elevación de muestras; y- sample handling means located below the elongated body and supported by the support structure, wherein said sample handling means comprise a sample holder and a sample lifting system; Y
- medios de control y procesamiento en comunicación de datos con el sistema criogénico, los medios de detección y medición de señales magnéticas, los medios de anulación del campo magnético terrestre y los medios de manipulación de muestras para controlar a, y recibir información de, cada uno de éstos. - control and processing means in data communication with the cryogenic system, the means for detecting and measuring magnetic signals, the means for canceling the earth's magnetic field and the means for handling samples to control and receive information from each one of these.
2. El magnetómetro de acuerdo con la reivindicación 1, en donde el cuerpo alargado comprende en su superficie interior un blindaje magnético superconductor y un blindaje formado por capas de mu-metal. 2. The magnetometer according to claim 1, wherein the elongated body comprises on its inner surface a superconducting magnetic shield and a shield formed by layers of mu-metal.
3. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde el criogenerador es del tipo pulse tube de He (helio) gaseoso. 3. The magnetometer according to any one of the preceding claims, wherein the cryogenerator is of the gaseous He (helium) pulse tube type.
4. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde los medios de detección y medición de señales magnéticas comprenden al menos dos sensores sensibles a señales magnéticas. 4. The magnetometer according to any one of the preceding claims, wherein the means for detecting and measuring magnetic signals comprise at least two sensors sensitive to magnetic signals.
5. El magnetómetro de acuerdo con la reivindicación 4, en donde los al menos dos sensores sensibles a señales magnéticas son sensores SQUID. 5. The magnetometer according to claim 4, wherein the at least two sensors sensitive to magnetic signals are SQUID sensors.
6. El magnetómetro de acuerdo con la reivindicación 5, en donde los sensores SQUID son de tipo DC. 6. The magnetometer according to claim 5, wherein the SQUID sensors are of the DC type.
7. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, comprendiendo además medios de desmagnetización por campos altemos ubicados en la parte inferior del cuerpo alargado 7. The magnetometer according to any one of the preceding claims, further comprising demagnetization means by alternating fields located in the lower part of the elongated body
8. El magnetómetro de acuerdo con la reivindicación 7, en donde los medios de desmagnetización comprenden bobinas de desmagnetización. 8. The magnetometer according to claim 7, wherein the demagnetizing means comprise demagnetizing coils.
9. El magnetómetro de acuerdo con la reivindicación 8, en donde las bobinas de desmagnetización son bobinas Helmholtz y solenoides. 9. The magnetometer according to claim 8, wherein the demagnetizing coils are Helmholtz coils and solenoids.
10. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde los medios de anulación del campo magnético terrestre comprenden un sensor triaxial de campo magnético, tres pares de bobinas de Helmholtz ubicadas adentro del cuerpo alargado, y tres pares de bobinas de Helmholtz ubicadas afuera del cuerpo alargado. 10. The magnetometer according to any one of the preceding claims, wherein the means for canceling the earth's magnetic field comprise a triaxial magnetic field sensor, three pairs of Helmholtz coils located inside the elongated body, and three pairs of coils of Helmholtz located outside the elongated body.
11. El magnetómetro de acuerdo con la reivindicación 10, en donde el sensor triaxial es un fluxgate triaxial. 11. The magnetometer according to claim 10, wherein the triaxial sensor is a triaxial fluxgate.
12. El magnetómetro de acuerdo con la reivindicación 10, en donde las bobinas de Helmholtz son cuadradas. 12. The magnetometer according to claim 10, wherein the Helmholtz coils are square.
13. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde la estructura de soporte comprende una pluralidad de barras horizontales y verticales. 13. The magnetometer according to any one of the preceding claims, wherein the support structure comprises a plurality of horizontal and vertical bars.
14. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde el portamuestras comprende una pluralidad de cavidades para recibir respectivas muestras de roca a analizar. 14. The magnetometer according to any one of the preceding claims, wherein the sample holder comprises a plurality of cavities for receiving respective rock samples to be analyzed.
15. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde el sistema de elevación de muestras comprende un tubo. 15. The magnetometer according to any one of the preceding claims, wherein the sample lifting system comprises a tube.
16. El magnetómetro de acuerdo con la reivindicación 15, en donde el tubo es un tubo de cuarzo. 16. The magnetometer according to claim 15, wherein the tube is a quartz tube.
17. El magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, en donde los medios de manipulación de muestras comprenden medios de accionamiento.17. The magnetometer according to any one of the preceding claims, wherein the sample handling means comprise drive means.
18. Un método para la medición del magnetismo remanente natural en muestras de rocas naturales que utiliza el magnetómetro de acuerdo con una cualquiera de las reivindicaciones precedentes, comprendiendo dicho método las siguientes etapas: - llevar el sistema criogénico a vacío y encender el compresor para comenzar el enfriamiento hasta alcanzar la temperatura de operación; 18. A method for measuring the natural remanent magnetism in natural rock samples using the magnetometer according to any one of the preceding claims, said method comprising the following steps: - bring the cryogenic system to vacuum and turn on the compressor to start cooling until reaching the operating temperature;
- realizar la anulación del campo magnético terrestre mediante los medios de anulación del campo magnético terrestre controlados por los medios de control y procesamiento;- performing the annulment of the earth's magnetic field by means of annulment means of the earth's magnetic field controlled by the control and processing means;
- colocar la muestra en una zona de medición, en donde los medios de control y procesamiento envían comandos para el posicionamiento en direcciones X e Y del portamuestras tal que una muestra a analizar sea ubicada sobre el sistema de elevación de muestras, y en donde dicha muestra es elevada e ingresada en el cuerpo alargado para su medición; y medir el vector momento magnético. - placing the sample in a measurement zone, where the control and processing means send commands for the positioning in X and Y directions of the sample holder such that a sample to be analyzed is located on the sample elevation system, and where said sample is raised and entered into the elongated body for measurement; and measure the magnetic moment vector.
19. El método de acuerdo con la reivindicación 18, en donde la etapa de medir el vector momento magnético comprende medir el valor de la componente Z del vector momento magnético a partir de una señal vertical (Z) medida por un sensor SQUID y medir los valores de las componentes X e Y del vector momento magnético a partir de señales transversales (X-Y) medidas por otro sensor SQUID mediante la rotación de la muestra en ángulos A0 hasta completar 360°. 19. The method according to claim 18, wherein the step of measuring the magnetic moment vector comprises measuring the value of the Z component of the magnetic moment vector from a vertical signal (Z) measured by a SQUID sensor and measuring the values of the X and Y components of the magnetic moment vector from transverse signals (XY) measured by another SQUID sensor by rotating the sample through angles A0 until completing 360°.
20. El método de acuerdo con la reivindicación 18, en donde la etapa de medir el vector momento magnético comprende medir el valor de la componente Z del vector momento magnético a partir de una señal vertical (Z) medida por un sensor SQUID y medir los valores de las componentes X e Y del vector momento magnético a partir de señales transversales (X-Y) medidas respectivamente por otros dos sensores SQUID mediante la rotación de la muestra en ángulos A0 hasta completar 360°. 20. The method according to claim 18, wherein the step of measuring the magnetic moment vector comprises measuring the value of the Z component of the magnetic moment vector from a vertical signal (Z) measured by a SQUID sensor and measuring the values of the X and Y components of the magnetic moment vector from transverse signals (XY) measured respectively by two other SQUID sensors by rotating the sample through angles A0 until completing 360°.
21. El método de acuerdo con una cualquiera de las reivindicaciones 19 y 20, en donde el valor de la componente Z del vector momento magnético se mide realizando pasos de ascenso de una longitud adecuada y registrando la señal vertical Z para cada paso de ascenso. 21. The method according to any one of claims 19 and 20, wherein the value of the Z component of the magnetic moment vector is measured by performing ascent steps of a suitable length and recording the vertical signal Z for each ascent step.
22. El método de acuerdo con la reivindicación 21, en donde los pasos de ascenso son de 5 mm. 22. The method according to claim 21, wherein the steps of rise are 5 mm.
23. El método de acuerdo con la reivindicación 18, en donde la etapa de medir el vector momento magnético comprende utilizar un sensor SQUID para obtener una señal vertical (Z) en función del tiempo mientras se hace oscilar la posición de la muestra a una frecuencia determinada, y utilizar otro sensor SQUID para obtener señales transversales (X-Y) en función del tiempo mientras se hace rotar continuamente la muestra a una velocidad de rotación determinada, en donde se analizan las señales obtenidas con transformada de Fourier 21 y se determinan los valores de las componentes X, Y y Z del vector momento magnético a partir de la amplitud y fase de las señales medidas. 23. The method according to claim 18, wherein the step of measuring the magnetic moment vector comprises using a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a frequency determined, and use another SQUID sensor to obtain transverse (XY) signals as a function of time while continuously rotating the sample at a determined rotational speed, where the signals obtained are analyzed with Fourier transform 21 and the values of the X, Y and Z components of the magnetic moment vector are determined from the amplitude and phase of the measured signals.
24. El método de acuerdo con la reivindicación 18, en donde la etapa de medir el vector momento magnético comprende utilizar un sensor SQUID para obtener una señal vertical (Z) en función del tiempo mientras se hace oscilar la posición de la muestra a una frecuencia determinada, y utilizar otros dos sensores SQUID para obtener respectivamente señales transversales (X-Y) en función del tiempo mientras se hace rotar continuamente la muestra a una velocidad de rotación determinada, en donde se analizan las señales obtenidas con transformada de Fourier y se determinan los valores de las componentes X, Y y Z del vector momento magnético a partir de la amplitud y fase de las señales medidas. 24. The method according to claim 18, wherein the step of measuring the magnetic moment vector comprises using a SQUID sensor to obtain a vertical signal (Z) as a function of time while the position of the sample is oscillated at a frequency determined, and use two other SQUID sensors to respectively obtain transverse (XY) signals as a function of time while the sample is continuously rotated at a determined rotational speed, where the signals obtained with Fourier transform are analyzed and the values are determined. of the X, Y and Z components of the magnetic moment vector from the amplitude and phase of the measured signals.
25. El método de acuerdo con una cualquiera de las reivindicaciones 23 y 24, en donde se hace oscilar a la muestra con una frecuencia y amplitud adecuadas. 25. The method according to any one of claims 23 and 24, wherein the sample is made to oscillate with a suitable frequency and amplitude.
26. El método de acuerdo con la reivindicación 25, en donde la frecuencia es de 0,25 Hz y la amplitud de 10 mm. 26. The method according to claim 25, wherein the frequency is 0.25 Hz and the amplitude is 10 mm.
27. El método de acuerdo con una cualquiera de las reivindicaciones 18 a 26, comprendiendo además una etapa adicional de realizar pasos subsiguientes de desmagnetización por campos magnéticos altemos, en donde se desciende la muestra hasta los medios de desmagnetización por campos altemos para su desmagnetización en los tres ejes cartesianos y se monitorea y controla el campo magnético generado durante cada paso de desmagnetización. 27. The method according to any one of claims 18 to 26, further comprising an additional step of performing subsequent steps of demagnetization by alternating magnetic fields, where the sample is lowered to the demagnetization means by alternating fields for its demagnetization in the three Cartesian axes and the magnetic field generated during each demagnetization step is monitored and controlled.
PCT/IB2021/057153 2020-08-05 2021-08-04 Cryogenic magnetometer and method for measuring natural remanent magnetism in natural rock samples WO2022029649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063061468P 2020-08-05 2020-08-05
US63/061,468 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022029649A1 true WO2022029649A1 (en) 2022-02-10

Family

ID=77914402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/057153 WO2022029649A1 (en) 2020-08-05 2021-08-04 Cryogenic magnetometer and method for measuring natural remanent magnetism in natural rock samples

Country Status (2)

Country Link
AR (1) AR123148A1 (en)
WO (1) WO2022029649A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982597A2 (en) * 1998-08-28 2000-03-01 Neuromag Oy Method and apparatus for eliminating background interference signals from multichannel detector arrays
DE10061590C1 (en) 2000-12-11 2002-05-29 Bundesrep Deutschland Remnant magnetism measurement comprises using a SQUID magnetometer at high temperature
WO2008025102A1 (en) * 2006-09-01 2008-03-06 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for signal recovery
CN105203973A (en) 2015-09-18 2015-12-30 中国科学院电工研究所 Weak magnetism detection device
DE102017122028A1 (en) 2017-09-22 2019-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Device for determining small magnetic fields with at least one SQUID sensor
CN110118948A (en) * 2019-06-04 2019-08-13 中国科学院上海微***与信息技术研究所 A kind of the resultant field measurement method and device of based superconductive quantum inteferometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982597A2 (en) * 1998-08-28 2000-03-01 Neuromag Oy Method and apparatus for eliminating background interference signals from multichannel detector arrays
DE10061590C1 (en) 2000-12-11 2002-05-29 Bundesrep Deutschland Remnant magnetism measurement comprises using a SQUID magnetometer at high temperature
WO2008025102A1 (en) * 2006-09-01 2008-03-06 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for signal recovery
CN105203973A (en) 2015-09-18 2015-12-30 中国科学院电工研究所 Weak magnetism detection device
CN105203973B (en) * 2015-09-18 2018-05-01 中国科学院电工研究所 A kind of weak magnetic detection device
DE102017122028A1 (en) 2017-09-22 2019-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Device for determining small magnetic fields with at least one SQUID sensor
CN110118948A (en) * 2019-06-04 2019-08-13 中国科学院上海微***与信息技术研究所 A kind of the resultant field measurement method and device of based superconductive quantum inteferometer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DU JUNWEI ET AL: "Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples", PHYSICA C, NORTH-HOLLAND PUBLISHING, AMSTERDAM, NL, vol. 547, 17 January 2018 (2018-01-17), pages 1 - 6, XP085359322, ISSN: 0921-4534, DOI: 10.1016/J.PHYSC.2018.01.014 *
FEINBERG BENEDICT ET AL: "Placed in a steady magnetic field, the flux density inside a permalloy-shielded volume decreases over hours and days", AIP ADVANCES, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 8, no. 3, 5 March 2018 (2018-03-05), XP012226819, DOI: 10.1063/1.5009926 *
HIROKUNI ODA ET AL: "Scanning SQUID microscope system for geological samples: system integration and initial evaluation", EARTH, PLANETS AND SPACE, BIOMED CENTRAL LTD, LONDON, UK, vol. 68, no. 1, 12 November 2016 (2016-11-12), pages 1 - 19, XP021242040, DOI: 10.1186/S40623-016-0549-3 *
ROBERTS ET AL: "High-resolution magnetic analysis of sediment cores: Strengths, limitations and strategies for maximizing the value of long-core magnetic data", PHYSICS OF THE EARTH AND PLANETARY INTERIORS, ELSEVIER, AMSTERDAM, NL, vol. 156, no. 3-4, 14 July 2006 (2006-07-14), pages 162 - 178, XP028059129, ISSN: 0031-9201, [retrieved on 20060714], DOI: 10.1016/J.PEPI.2005.03.021 *
UEHARA M ET AL: "A spinner magnetometer for large Apollo lunar samples", REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 88, no. 10, 27 October 2017 (2017-10-27), XP012223248, ISSN: 0034-6748, [retrieved on 20171027], DOI: 10.1063/1.5008905 *

Also Published As

Publication number Publication date
AR123148A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US9116201B2 (en) Method for detecting zero-field resonance
CN106405457B (en) A kind of device and method detected for material ferromagnetism and magnetization property
Janosek et al. 1-pT noise fluxgate magnetometer for geomagnetic measurements and unshielded magnetocardiography
Hood et al. Gradient measurements in ground magnetic prospecting
US7002341B2 (en) Superconducting quantum interference apparatus and method for high resolution imaging of samples
JP2003255032A (en) Probe for nuclear magnetic resonance apparatus
Liu et al. Magneto-inductive magnetic gradient tensor system for detection of ferromagnetic objects
WO2022029649A1 (en) Cryogenic magnetometer and method for measuring natural remanent magnetism in natural rock samples
Dou et al. Design of biplane coils based on funnel algorithm for generating a near-zero magnetic environment in MSR
JP5904326B2 (en) How to set up NMR equipment
Zhang et al. Highly sensitive miniature scalar optical gradiometer
Chen et al. Modeling and experimental investigation of magnetic anomaly detection using advanced triaxial magnetoelectric sensors
Hibbs et al. A high‐resolution magnetic imaging system based on a SQUID magnetometer
Collinson Instruments and techniques in paleomagnetism and rock magnetism
Yue et al. Error Calibration for Full Tensor Magnetic Gradiometer Probe Based on Coordinate Transformation Method
US6563314B1 (en) Well logging method and apparatus for determining the nuclear magnetic resonance longitudinal magnetization decay of formations
Tsukamoto et al. Development of magnetic prospecting system with HTS SQUID gradiometer for exploration of metal resources
CN111351844A (en) Eddy current detection device based on superconducting quantum interferometer
Wikswo et al. Application of superconducting magnetometers to the measurement of the vector magnetocardiogram
US3924176A (en) Magnetometer using superconducting rotating body
CN110907870B (en) Magnetic shield device
Goodsonis Mobilizing magnetic resonance
Swithenby Magnetometry at liquid helium temperatures
Yan et al. Coil optimization in a fluxgate magnetometer with Co₆₈. ₂Fe₄. ₃Si₁₂. ₅B₁₅ amorphous wire cores for geomagnetic station observation
Yue et al. Fast error calibration for three-axis SQUID magnetometers based on full-space rotational and frequency-controllable magnetic field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777841

Country of ref document: EP

Kind code of ref document: A1