WO2022027666A1 - 一种时间同步方法及装置 - Google Patents

一种时间同步方法及装置 Download PDF

Info

Publication number
WO2022027666A1
WO2022027666A1 PCT/CN2020/107984 CN2020107984W WO2022027666A1 WO 2022027666 A1 WO2022027666 A1 WO 2022027666A1 CN 2020107984 W CN2020107984 W CN 2020107984W WO 2022027666 A1 WO2022027666 A1 WO 2022027666A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
configuration information
synchronization
message
tsn
Prior art date
Application number
PCT/CN2020/107984
Other languages
English (en)
French (fr)
Inventor
屈凯旸
徐小英
黄曲芳
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/107984 priority Critical patent/WO2022027666A1/zh
Publication of WO2022027666A1 publication Critical patent/WO2022027666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a time synchronization method and apparatus.
  • TSN Time Sensitive Network
  • PTP Precision Time Protocol
  • the timing signaling used for time synchronization in PTP is usually also called PTP message/PTP message. Therefore, the data transmitted in the TSN network can be divided into two categories: PTP messages used for timing, and data packets related to services.
  • Transparent Clock TC does not need to maintain time synchronization with other devices.
  • the TC has multiple clock ports, and forwards PTP packets between these ports, and performs forwarding delay correction on them, but does not synchronize the time from any one port.
  • Boundary Clock The boundary clock has multiple PTP ports in the same PTP domain to participate in time synchronization. After the boundary clock receives and synchronizes the clock signal of the previous node, it grants its own synchronized clock signal to next node.
  • Ordinary clock has only one PTP port in the same PTP domain to participate in time synchronization, and the ordinary clock gives its own clock signal to the next node.
  • the TC forwards the PTP packet.
  • the TC forwards the PTP packet, it will send the PTP packet to the TC in the correction field of the PTP packet. The delay is added.
  • the TSN receives the PTP message from the TC, it synchronizes its own clock based on the time information in it and the delay value contained in the correction field.
  • the currently formulated 5th generation can support TSN.
  • the 5G system is used as the TC, and the TSN is used as the master clock.
  • the 5G system only serves as a "bridge" to transparently transmit TSN messages, and cannot be used as the master clock to provide timing to the devices in the TSN.
  • the purpose of the embodiments of the present application is to provide a time synchronization method and apparatus to solve the problem of how to provide time to the TSN.
  • an embodiment of the present application provides a time synchronization method, including: after a first device acquires first configuration information in the TSN, according to the local timing time in the cellular network, according to the time indicated by the first configuration information A first packet is required to be sent to a second device; the first packet is used for time synchronization with the TSN, and the second device is a device in the cellular network or a device in a non-cellular network.
  • the first configuration information is used to indicate a time requirement in the TSN, where the time requirement includes at least one of a time synchronization period and a time precision; the first device is a device in a cellular network.
  • the time synchronization is performed for the devices in the TSN according to the local timing time in the cellular network, and the time synchronization period and time precision of the timing time TSN are required. Therefore, when the TSN master clock is unstable, the cellular network can be used as the master clock to provide time for non-cellular networks such as TSN, which can make the services of non-cellular networks such as TSN stable and reliable.
  • acquiring the first configuration information by the first device includes: the first device receives at least one configuration information; the first device minimizes the time synchronization period indicated in the at least one configuration information as the first configuration information, or use the configuration information with the highest time precision indicated in the at least one configuration information as the first configuration information, or use the at least one configuration information with the second configuration information
  • the configuration information associated with the device is used as the first configuration information.
  • the first configuration information is the configuration information with the smallest time synchronization period or the configuration information with the highest time accuracy, so that the cellular network can perform timing according to the best configuration information, and the timing accuracy or timing frequency can be improved.
  • the first packet includes a first synchronization time; the first synchronization time is determined according to the local timing time of the first device; or the first packet includes a first timestamp information and a first synchronization time, where the first timestamp information is the time obtained by the first device from a clock source of the cellular network to the first synchronization time.
  • the present application further provides a communication device, the communication device having any of the methods provided in the above-mentioned first aspect.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor configured to support the communication apparatus to perform the corresponding functions of the first device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and a second device or the like.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the first aspect which is not repeated here.
  • an embodiment of the present application provides a time synchronization method, including: a second device receives a first packet from a first device; the first packet is used for time synchronization with a delay-sensitive network TSN; the second device is a device in the cellular network or a device in a non-cellular network; the first device is a device in the cellular network; the second device generates a second message according to the first message, and send the second message to a third device; wherein, the third device is a device in a non-cellular network; the second message is a Precision Time Protocol PTP synchronization message; the second message satisfies
  • the time requirement indicated by the first configuration information the first configuration information is used to indicate the time requirement in the delay-sensitive network TSN, where the time requirement includes at least one of a time synchronization period and a time precision.
  • the time synchronization is performed for the devices in the TSN according to the local timing time in the cellular network, and the time synchronization period and time precision of the timing time TSN are required. Therefore, when the TSN master clock is unstable, the cellular network can be used as the master clock to provide time for non-cellular networks such as TSN, which can make the services of non-cellular networks such as TSN stable and reliable.
  • the method further includes: the second device receives the first configuration information from the first device; or, the second device receives at least one configuration information from the first device Configuration information, the first configuration information is the configuration information with the smallest time synchronization period indicated in the at least one configuration information, or the first configuration information is the configuration information with the highest time precision indicated in the at least one configuration information , or the first configuration information is configuration information associated with the second device in the at least one configuration information.
  • the first configuration information is the configuration information with the smallest time synchronization period or the configuration information with the highest time accuracy, so that the cellular network can perform timing according to the best configuration information, and the timing accuracy or timing frequency can be improved.
  • the first packet includes first time stamp information and a first synchronization time
  • the first time stamp information is obtained by the first device from a clock source of the cellular network.
  • the time of the first synchronization time; the first synchronization time is determined according to the local timing time of the first device.
  • the second packet includes time correction information and the first synchronization time; the time correction information is determined according to the first timestamp information and the second timestamp information, and the The second timestamp information is the time when the second device sends the second packet.
  • the time message enters the 5G system from the UPF and is transmitted to the UE through the base station.
  • the time message passes through the 5G system.
  • the first device in the cellular system enters the TSN system from the second device, which reduces the number of hops for time message transmission and increases the precision of time synchronization.
  • the first packet includes a first synchronization time, and the first synchronization time is determined according to the local timing time of the first device.
  • the second packet includes the second synchronization time
  • the second synchronization time is the local time of the second device.
  • the second device carries the local time of the second device in the second message.
  • the time message enters the 5G system from the UPF and is transmitted to the UE through the base station.
  • the second device enters the TSN system, which reduces the number of hops for time packet transmission and increases the precision of time synchronization.
  • the second packet further includes time type information, where the time type information is used to indicate the clock source type of the synchronization time in the second packet.
  • the clock source type is indicated by the time type information, so that the device in the TSN can select a clock source for time synchronization according to requirements, thereby improving the flexibility of the system.
  • the present application further provides a communication device, the communication device having any of the methods provided in the third aspect above.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor configured to support the communication apparatus to perform the corresponding functions of the second device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and the first device and other devices.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for performing the method in the first aspect or any of the possible implementations of the first aspect.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for executing the third aspect or the method in any possible implementation manner of the third aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to execute the first aspect or any one of the first aspects methods in possible implementations.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute any one of the third aspect and the third aspect above methods in possible implementations.
  • the present application provides a chip, comprising a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction , so that the first aspect or the method in any possible implementation manner of the first aspect is implemented.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction , so that the third aspect or the method in any possible implementation manner of the third aspect is implemented.
  • the present application provides a communication device, the communication device includes a processor, a memory and a transceiver, the transceiver is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor, configured to call the computer program or instructions from the memory to execute the method in the first aspect or any one of the possible implementations of the first aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a transceiver, the transceiver is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor, configured to call the computer program or instructions from the memory to execute the method in the third aspect or any one of the possible implementations of the third aspect.
  • the present application provides a communication system, including the communication device provided in the second aspect and the communication device provided in the fourth aspect.
  • FIG. 1 is a schematic diagram of a network architecture suitable for an embodiment of the present application
  • FIG. 2 is a schematic diagram of a 5G system as a transparent clock provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a framework of a 5G system as a master clock provided by an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a message structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of message transmission according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the embodiments of the present application may be applied to various mobile communication systems, for example, a new radio (new radio, NR) system, a long term evolution (long term evolution, LTE) system, an advanced long term evolution (advanced long term evolution, LTE-A) system, evolved long term evolution (evolved long term evolution, eLTE) system, future communication system and other communication systems.
  • a new radio new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • eLTE evolved long term evolution
  • future communication system and other communication systems.
  • the mobile communication system may also be referred to as a cellular network.
  • TSN can regard 5G system as a TSN bridge (TSN bridge), as shown in Figure 1.
  • TSN bridge TSN bridge
  • the 5G system includes user equipment (UE), radio access network (RAN) equipment, and user plane function (User Plane Function, UPF) equipment as an example.
  • UE user equipment
  • RAN radio access network
  • UPF User Plane Function
  • the service data packets of the TSN network can be sent upstream/downstream through the 5G system.
  • the access network equipment is called the next generation Node B (generation Node B, gNB) in the 5G new radio (new radio, NR) system, and is called the evolved Node B (evolutional Node B, eNB) in the LTE system, Names in other systems are not exemplified.
  • UE can also be called a terminal device.
  • it can be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, a smart bracelet, smart helmets, smart glasses), and other devices with wireless access capabilities, such as smart cars, various Internet of things (IOT) devices, including various smart home devices (such as smart meters and smart home appliances) and smart Urban equipment (such as security or monitoring equipment, intelligent road traffic facilities), etc.
  • IOT Internet of things
  • smart home devices such as smart meters and smart home appliances
  • smart Urban equipment such as security or monitoring equipment, intelligent road traffic facilities
  • TSN needs the 5G system to adapt to the PTP protocol.
  • the solution adopted by 3GPP is to treat the 5G system as a transparent clock.
  • the PTP issued by the TSN Grand Master clock (GM)
  • the message can be forwarded to the TSN end station through the 5G system.
  • TSN adapter at the boundary between the 5G system and TSN, which is used to process PTP protocol-related messages or TSN service data packets, such as the Device-side TSN Translator (DS-TT) connected to the UE in Figure 2.
  • DS-TT Device-side TSN Translator
  • NW-TT device-side TSN Translator
  • DS-TT can also be called UE-TT and other names, and can be a device connected to the UE or a logical function in the UE.
  • the NW-TT can be a device connected to the UPF or a logical function in the UPF.
  • the clocks of all network elements in the 5G system are synchronized, and the 5G system acts as a transparent clock.
  • the residence time of the PTP message in the transparent clock ie, the 5G system
  • the NW-TT adds the 5G timestamp t in to the PTP message.
  • the UE When the PTP message is sent to the terminal station in the TSN through the UE, the UE sends the PTP message
  • the 5G time is t out , then DS-TT modifies the value in the correction field of the PTP message to (t out -t in ), which is the stay time of the PTP message in the transparent clock (ie, the 5G system) .
  • the device in the TSN After the device in the TSN receives the PTP message, it synchronizes its own time based on the time information and the correction field in it.
  • TSN is used as the master clock
  • 5G system cannot serve as the master clock to provide time to the devices in the TSN.
  • the embodiment of the present application provides a framework in which a 5G system is used as a master clock, and reference may be made to FIG. 3 for details.
  • the 5G clock is the clock source of the 5G system and can be used as a 5G GM.
  • the clock signal of the 5G clock comes from the Global Positioning System (GPS) attached to the access network equipment, or from the terrestrial high-precision clock connected by a terrestrial cable.
  • GPS Global Positioning System
  • 5G system uses 5G GM to provide timing to TSN nodes (which can be terminal stations or TSN servers).
  • the access network equipment completes 5G time synchronization with the UE through the air interface, and the access network equipment completes the 5G time synchronization with the UPF through a wired connection.
  • the UE converts the message including the 5G time into the message format of the TSN domain through DS-TT (the specific value of the time is not changed, just the format is converted), and sent to the terminal station in the TSN, so that the terminal station The time is synchronized with the 5G time;
  • UPF converts the message including the 5G time to the message format of the TSN domain through NW-TT (the specific value of the time is not changed, but the format is converted), and sent to TSN server to synchronize the time of the TSN server with the 5G time.
  • the message including the 5G clock signal is transmitted in the 5G format in the 5G system, for example, it is transmitted in the form of a radio resource control (RRC) message on the air interface until the exit of the 5G system (DS-TT, NW-TT) are converted into the message format of the TSN domain.
  • RRC radio resource control
  • network elements in the 5G system can complete time synchronization through 5G clock packets.
  • Each node in the 5G system needs to synchronize its own clock with the clock of the previous node, and then transmit its own clock signal to the next node.
  • 23:10:10:00000 is sent to the UE through the 5G clock message. If the delay between the UE and the access network device is 5s, the UE can synchronize its own time to 23:10:15 on May 30, 2020 :00000 to complete the time synchronization with the access network equipment.
  • the 5G system as a whole can be regarded as a logical TSN bridging device.
  • the UPF side is connected to TSN through NW-TT
  • the UE side is connected to TSN through DS-TT.
  • TSN service data packets arrive at the NW-TT from the TSN network, they are forwarded in the 5G system through the Protocol Data Unit (PDU) session between the UPF and the UE, and sent to the corresponding TSN through the UE's DS-TT.
  • PDU Protocol Data Unit
  • the TSN service data packet is sent from the TSN node to the DS-TT, it is forwarded in the 5G system through the PDU session between the UE and the UPF, and the UPF can send the service data packet to the TSN network through the NW-TT. , or forwarded to another UE through a PDU session with another UE, and sent to another TSN node by another UE's DS-TT.
  • the above description takes the 5G system as an example.
  • the method provided in this application can also be applied to the LTE system and the future cellular network, that is, the LTE system or the future cellular network as the main The clock, which provides time to the devices in the TSN, will be described in detail below.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the involved network elements may be as shown in FIG. 4 .
  • the network elements included in the 5G system are: application function (AF), network element function (NEF), policy control function (PCF), SMF and UPF.
  • the network elements included in the TSN are a centralized network configuration (Centralized Network Configuration, CNC) controller, a centralized user configuration (Centralized User Configuration, CUC) controller, and a terminal station.
  • the embodiments of the present application can also be applied to cellular networks such as 4G systems.
  • the actions implemented by core network devices such as SMFs in 5G systems can be implemented by mobility management entities (Mobility Management Entity) in 4G systems. Entity, MME) implementation. The following descriptions are combined separately.
  • FIG. 5 it is a schematic flowchart of a time synchronization method according to an embodiment of the present application.
  • the method includes:
  • Step 501 The first device acquires first configuration information.
  • the first configuration information is used to indicate a time requirement in the TSN, and the time requirement includes at least one of a time synchronization period and a time precision; the first device is a device in a cellular network, and may also be a non- Devices in a cellular network.
  • the cellular network may refer to 4G, 5G and other networks.
  • Non-cellular networks may refer to systems such as TSN or telemedicine systems.
  • Step 502 The first device sends a first packet to the second device according to the local timing time in the cellular network and according to the time requirement indicated by the first configuration information in the TSN.
  • the first packet is used for time synchronization with the TSN
  • the second device is a device in the cellular network or a device in a non-cellular network.
  • the time synchronization is performed for the devices in the TSN according to the local timing time in the cellular network, and the time synchronization period and time precision of the timing time TSN are required. Therefore, when the TSN master clock is unstable, the cellular network can be used as the master clock to provide time for non-cellular networks such as TSN, which can make the services of non-cellular networks such as TSN stable and reliable.
  • the first device may be an access network device in a cellular network, such as an eNB in a 4G system, a gNB in a 5G system, etc.; the second device may be a UE in the 4G system, or a UE in the 5G system. UE or UPF etc.
  • the first configuration information may be transmitted by the device in the TSN to the first device through the core network device in the cellular network, and the first device may forward the first packet to the TSN through the second device, which will be described in detail below.
  • FIG. 6 it is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • the method includes:
  • Step 601 The core network device receives at least one configuration information from the central control device.
  • the central control device may be a device in a non-cellular network, such as a device in a TSN, for generating configuration information.
  • the central control device may also be referred to as a central control network element.
  • the central control network element may include, but is not limited to, a centralized network configuration (Centralized Network Configuration, CNC) controller, a centralized user configuration (Centralized User Configuration, CUC) controller, and the like.
  • the core network device may be a device in a cellular network.
  • the core network equipment may be UPF or SMF.
  • the core network device may be an MME or the like.
  • a possible transmission path of the configuration information is: from the CNC controller in the TSN, through AF, NEF, PCF, SMF, to UPF, and then from UPF to gNB .
  • the time requirement indicated by the configuration information may include at least one of a time synchronization period and a time precision.
  • the time synchronization period may be the default configured period; if the time requirement does not include the time precision, the time accuracy may be the default configured time precision.
  • time synchronization period included in the time requirement may be the period of the TSN timing service; the time precision included in the time requirement may be the time accuracy of the TSN timing service.
  • one piece of configuration information may be associated with one TSN domain (domain).
  • TSN is a virtual local area network (Virtual Local Area Network, VLAN) technology, that is to say, a TSN is a virtual local area network, devices in the same TSN constitute a TSN domain, and a TSN domain can correspond to a VLAN ID or domain name (domain number) ), the packets entering the TSN domain will be marked with the VLAN ID corresponding to the TSN domain.
  • VLAN Virtual Local Area Network
  • the core network device can determine the TSN domain associated with the configuration information in various ways.
  • the TSN domain associated with the configuration information may be determined according to the VLAN identifier in the TSN packet.
  • the TSN domain associated with the configuration information may be determined according to the domain name in the PTP message.
  • the association relationship between the VLAN ID or domain name and the device in the TSN domain can be pre-established, for example, the medium access control (Medium access control, MAC) address of the device in the TSN domain is stored Or the association relationship between an Internet Protocol (Internet Protocol, IP) address and the VLAN identifier or domain name of the TSN domain.
  • MAC Medium access control
  • IP Internet Protocol
  • Each UE may be associated with a TSN domain. If the core network device receives the configuration information from the UE, it may determine the TSN domain associated with the configuration information according to the MAC address or IP address of the UE.
  • TSN domain associated with the configuration information may also be determined in other ways, which will not be illustrated one by one here.
  • Step 602 The core network device sends at least one configuration information to the access network device.
  • the access network device is a device in the cellular network, for example, the access network device is a gNB in a 5G system. It should be noted that the core network device may send the at least one configuration information to the access network device through an interface (for example, an N3 interface) with the access network device.
  • an interface for example, an N3 interface
  • the core network device may send all the acquired configuration information to the access network device.
  • the core network device may further indicate to the first device a TSN domain associated with each configuration information in the at least one configuration information.
  • the core network device may send to the access network device the configuration information with the smallest indicated time synchronization period or the indicated configuration information with the highest time precision among the acquired at least one configuration information.
  • step 603 the access network device sends the at least one configuration information to the UE.
  • the UE is a device in the cellular network.
  • the access network device may send all the acquired configuration information to the UE.
  • the access network device may further indicate to the UE a TSN domain associated with each configuration information in the at least one configuration information.
  • the access network device may send to the UE the configuration information with the smallest indicated time synchronization period or the indicated configuration information with the highest time precision among the acquired at least one configuration information.
  • the access network device may send configuration information associated with the UE in the acquired at least one configuration information to the UE.
  • each UE may be associated with one TSN domain, and the access network device may send at least one associated TSN domain in the configuration information, the same configuration information as the TSN domain associated with the UE, to the UE.
  • the access network device sends the at least one configuration information is not limited in this embodiment of the present application, and the at least one configuration information may be sent through an RRC message (for example, an RRC reconfiguration message), or the MAC control element may be used to send the at least one configuration information.
  • RRC message for example, an RRC reconfiguration message
  • CE control element
  • Step 604 The access network device sends the first packet to the UE according to the local timing time in the cellular network and according to the time requirement indicated by the first configuration information in the TSN.
  • the local timing time in the cellular network may be the local time of the access network device, or the time obtained by the access network device from the satellite positioning system. It should be noted that the local time of the access network device is determined according to the time obtained from the satellite positioning system, or it may be the time of the terrestrial high-precision clock connected by the access network device through the terrestrial cable, or it may be The time from other access network equipment connected by the cable, or may be the time from the Global Terrestrial Timing Service (GTTS).
  • GTTS Global Terrestrial Timing Service
  • the access network device may periodically send the first packet to the UE according to the time synchronization period indicated by the first configuration information.
  • the first message may include the first synchronization time, and the first synchronization time is determined according to the local timing time, for example, the local timing time of the access network device is the clock of the access network device through the cellular network. obtained from the source, the first synchronization time may refer to the time of the clock source in the cellular network.
  • the clock source is a satellite positioning system attached to the access network equipment, such as GPS, or a terrestrial high-precision clock connected to the access network equipment through a terrestrial cable.
  • the access network device may obtain a GPS time packet including GPS time, and use the GPS time in the GPS time packet as the first synchronization time.
  • satellite positioning systems including but not limited to GPS and Beidou systems, include precise atomic clocks, which can ensure time synchronization and accurate positioning of satellite positioning systems.
  • the access network device may convert the acquired GPS time into the first synchronization time with the time precision indicated by the first configuration information.
  • the first message may be a message format in the cellular network, for example, may be an RRC message.
  • the first packet may also be called a 5G clock packet.
  • the access network device may provide timing for devices in at least one TSN domain.
  • the access network device may send the first packet to all UEs according to the same configuration information without distinguishing the TSN domain where the UE is located. For example, UE 1 is in TSN domain 1, UE 2 is in TSN domain 2, and the access network equipment sends the first message to UE 1 and UE 2 according to the first configuration information.
  • the first configuration information may be the configuration information with the smallest time synchronization period indicated in the at least one configuration information, or the first configuration information may be the highest time precision indicated in the at least one configuration information configuration information.
  • the access network device may send the first packet to the UE according to the TSN domain where the UE is located and according to the synchronization time period and/or time precision indicated by the configuration information corresponding to the TSN domain.
  • the first configuration information may be configuration information associated with the UE in the at least one configuration information. For example, when UE 1 is in TSN domain 1, the access network device may use the configuration information associated with TSN domain 1 in at least one configuration information as the configuration information associated with the UE, that is, as the first configuration information.
  • the access network device may also send the first packet to other network elements, for example, may send the first packet to the UPF.
  • the process shown in FIG. 6 is only an example, and does not represent the implementation of this application. Example limitation.
  • Step 605 The UE receives the first packet, generates a second packet according to the first packet, and sends the second packet to the terminal station.
  • the UE may add a PTP header to the first packet through DS-TT to obtain the second packet.
  • the UE may modify the first synchronization time in the first message to the second synchronization time, and the second synchronization time is the local time when the UE sends the second message.
  • the UE may carry the second synchronization time in the second packet, that is, the local time when the UE sends the second packet . Because the local time of the UE and the local time of the access network device are synchronized, the local time when the UE sends the second packet is equivalent to the time when the second packet is sent from the cellular network.
  • the UE after receiving the first packet, the UE does not generate the second packet based on the first packet, but generates the second packet including the second synchronization time through DS-TT.
  • the second synchronization time in the second packet is the local time when the UE sends the second packet.
  • the PTP protocol is used in the TSN to realize precise time synchronization between TSN devices, and the second message may be a PTP protocol message, specifically a PTP synchronization message.
  • the local time of the UE is synchronized with the local time of the access network device, so the time in the second packet is equivalent to the local time of the access network device, which is equivalent to the local timing in the cellular network time.
  • the first synchronization time carried by the access network device in the first packet is 23:10:10:00000 on May 30, 2020.
  • the UE can Do time synchronization. Specifically, if the delay between the UE and the access network device is 5s, the UE can synchronize its own time to 23:10:15:00000 on May 30, 2020.
  • the specific manner of determining the delay between the UE and the access network device is not limited in this embodiment of the present application. If the time when the UE sends the second packet is 23:10:20:00000 on May 30, 2020, the second synchronization time carried in the second packet is 23:10:20 on May 30, 2020: 00000.
  • the second packet may further include time type information, where the time type information is used to indicate the clock source type of the synchronization time in the second packet.
  • the clock source types include but are not limited to the following types: traditional TSN clock signals; cellular network (or mobile communication system) clock signals, which may specifically refer to 5G clock signals or 4G clock signals.
  • the clock source type indicated by the time type information is the cellular network clock signal, that is, the cellular network serves as the master clock for TSN timing.
  • the time type information may be carried through a suffix field (suffix field) of the second packet.
  • a suffix field (suffix field) of the second packet.
  • FIG. 7 it is a schematic diagram of the structure of the suffix field.
  • the suffix field includes type-length-value (TLV) type, TLV length (length of TLV), organization ID (organization ID), organization subtype (organization subtype), and data field (data field).
  • a TLV type is added, which is used to carry time type information and is dedicated to indicating "clock source type".
  • An organization ID is added, which is used to carry time type information and is dedicated to indicating the "clock source type”.
  • An organization subtype is added, which is used to carry time type information and is dedicated to indicating the "clock source type”.
  • the period and accuracy requirements for obtaining TSN timing services from TSN are provided, and on this basis, 5G time is used to time the equipment in TSN, so that when the TSN master clock is unstable, the 5G system can be used as the master clock.
  • the clock improves the stability of the clock and makes the TSN service stable and reliable.
  • the access network device actively sends the first packet including the first synchronization time.
  • other devices may also actively send the first packet including the first synchronization time to the device in the TSN. , such as UE or UPF, etc., which will be described below with reference to Embodiment 2.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the first device may be a UE
  • the second device may be a device in a non-cellular network, for example, a terminal station in a TSN.
  • the UE may provide time to the device in the TSN according to the time requirement in the TSN, which will be described in detail below.
  • the UE actively sends a message including the synchronization time to the device in the TSN, and other situations will not be repeated.
  • FIG. 8 it is a schematic flowchart of a time synchronization method provided by an embodiment of the present application.
  • the method includes:
  • Step 801 The core network device receives at least one configuration information from the central control device.
  • Step 802 The core network device sends at least one configuration information to the access network device.
  • Step 803 The access network device sends the at least one configuration information to the UE.
  • step 801 to step 803 For the specific content of step 801 to step 803, reference may be made to the description of step 601 to step 603, which will not be repeated here.
  • Step 804 The access network device sends a time synchronization message to the UE according to the local timing time in the cellular network.
  • the time synchronization message sent by the access network device is used for the UE to perform time synchronization, and the UE can synchronize the local time of the UE with the local time of the access network device according to the time synchronization message.
  • Step 805 The UE receives the time synchronization message, and according to the local timing time in the cellular network, sends the first message to the terminal station according to the time requirement indicated by the first configuration information in the TSN.
  • the local timing time in the cellular network may be the local time of the UE.
  • the quantity of configuration information obtained by the UE from the access network device is greater than 1, and in this case, the UE may use the configuration information associated with the terminal station in at least one configuration information as the first configuration information.
  • the terminal station is located in TSN domain 1, and the UE may regard the configuration information associated with TSN domain 1 in at least one configuration information as the configuration information associated with the terminal station, that is, as the first configuration information.
  • the UE acquires a piece of configuration information from an access network device, and the UE uses the configuration information as the first configuration information.
  • the UE may periodically send the first packet according to the time synchronization period indicated by the first configuration information.
  • the first message may include a synchronization time, where the first synchronization time is determined according to the local timing time of the UE, for example, may be the local time of the UE.
  • the time of the UE and the access network device are synchronized, so the first synchronization time in the first packet is also the local timing time in the cellular network.
  • the UE may convert the local time into the first synchronization time satisfying the time precision according to the time precision indicated by the first configuration information.
  • the first packet may be used for time synchronization of devices in the TSN, and the first packet may be a PTP protocol packet, specifically a PTP synchronization packet.
  • the first packet may further include time type information, where the time type information is used to indicate the clock source type of the synchronization time in the first packet.
  • time type information is used to indicate the clock source type of the synchronization time in the first packet.
  • the access network device acts as a non-transparent master clock to generate a 5G clock packet, that is, the first packet, to provide timing to the device in the TSN. Since the access network equipment generates the first packet according to the time requirements in the TSN system, it can meet the period and accuracy requirements of the TSN service, so when the TSN master clock is unstable, the 5G system can be used as the master clock to make the TSN service stable and reliable. .
  • the 5G system can also be used as a transparent clock mechanism in the prior art, and the 5G clock packet can be directly converted into a PTP protocol packet by the access network device.
  • the PTP protocol can be The location where the entry timestamp of the packet is entered is changed from the original UPF (connected NW-TT) to the access network device.
  • the first device may be an access network device in a cellular network, such as an eNB in an LTE system, a gNB in an NR system, etc.; the second device may be a UE in a 4G system, or a UE in a 5G system. UE or UPF etc.
  • the first device can directly generate a PTP protocol packet supported by the TSN, so that the second device can directly forward the first packet sent by the first device to the TSN.
  • the first packet sent by the access network device is a PTP protocol packet, and the UE does not need to perform the first synchronization time in the first packet after receiving the first packet. Update, which is described in detail below.
  • FIG. 9 it is a schematic flowchart of a time synchronization method according to an embodiment of the present application.
  • the method includes:
  • Step 901 The core network device receives at least one configuration information from the central control device.
  • Step 902 The core network device sends at least one configuration information to the access network device.
  • steps 901 to 902 For the specific content of steps 901 to 902, reference may be made to the descriptions of steps 601 to 602, which will not be repeated here.
  • Step 903 According to the local timing time in the cellular network, the access network device sends a first packet to the UE according to the time requirement indicated by the first configuration information in the TSN.
  • the first message is used for time synchronization of the devices in the TSN, and the first message may be a PTP protocol message, specifically a PTP synchronization message.
  • the first packet includes first timestamp information and a first synchronization time.
  • the first packet is generated by an access network device.
  • the first time stamp information is the time obtained by the access network device from the clock source of the cellular network to the first synchronization time.
  • the access network device may obtain the first timestamp information and the first synchronization time in the manner shown in FIG. 10 .
  • the access network device obtains the first synchronization time from the clock source of the cellular network.
  • the clock source is GPS as an example for illustration, and the access network device can receive the GPS time message.
  • the access network device When the access network device receives the GPS time packet, it can add the first timestamp to the correction field of the first packet, and then convert the GPS time in the GPS time packet into the first synchronization time, wherein the converted first timestamp
  • the format of a synchronization time meets the requirements in TSN.
  • the access network device puts the first synchronization time into the data field of the first packet, and finally sends the first packet.
  • the time stamp is added before the GPS time is converted, so that the time indicated by the time stamp is consistent with the time in the message.
  • the GPS time in the GPS time message is 23:10:20:00000 on May 30, 2020
  • the access network device obtains the GPS time including the GPS time at 23:10:20:00000 on May 30, 2020
  • the access network device determines that the first timestamp information is 23:10:20:00000 on May 30, 2020.
  • the access network device After converting the GPS time into the first synchronization time, the access network device sends a first packet including the first synchronization time and first timestamp information.
  • the access network device may also convert the time obtained from the clock source into the first synchronization time according to the time precision indicated by the first configuration information.
  • the access network device may also directly use the time obtained from the clock source as the first synchronization time.
  • the access network device may add the first timestamp information to the first packet through NW-TT.
  • the access network device may send the first packet to the UE according to the time synchronization period indicated by the first configuration information in the at least one configuration information. a message.
  • the first packet is obtained by the access network device from other devices, for example, when the access network device receives the first packet from other access network devices, the access network device can directly forward the first packet to devices such as UE or UPF.
  • Step 904 The UE sends the first message to the terminal station.
  • the UE may add time correction information in the correction field of the first message, where the time correction information indicates the stay time of the first message in the cellular network.
  • the time correction information is determined according to the first time stamp information and the second time stamp information, and the second time stamp information is the time when the second device sends the second packet.
  • the first synchronization time in the first packet is May 30, 2020 23:10:20:00000
  • the first timestamp information may be May 30, 2020 23:10:20:00000
  • the local time of the second packet is 23:10:25:00000 on May 30, 2020, so the time correction information can be 5s.
  • the UE may also add time type information in the first message, and for details, reference may be made to the foregoing description, which will not be repeated here.
  • the time packet including the synchronization time enters the cellular network from the core network device (eg UPF), and is transmitted to the UE through the access network device.
  • the time packet including the synchronization time directly enters the cellular network from the access network device and is transmitted to the UE, which reduces the number of hops transmitted from the time packet and increases the accuracy of time synchronization.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between various devices.
  • the first device or the second device may include a hardware structure and/or a software module, and implement the above in the form of a hardware structure, a software module, or a hardware structure plus a software module. each function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 1100 for implementing the function of the first device or the second device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1100 may include: a processing unit 1101 and a communication unit 1102 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the sending and receiving steps of the first device or the second device in the above method embodiments.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 1102 may be regarded as a receiving unit, and the device for implementing the sending function in the communication unit 1102 may be regarded as a transmitting unit, that is, the communication unit 1102 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or transceiver circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • a communication unit configured to acquire first configuration information;
  • the first configuration information is used to indicate a time requirement in the delay-sensitive network TSN, where the time requirement includes at least one of a time synchronization period and a time precision;
  • the communication the device is a device in a cellular network;
  • a processing unit configured to send a first message to the second device through the communication unit according to the local timing time in the cellular network and according to the time requirement indicated by the first configuration information in the TSN; the first message The text is used for time synchronization with the TSN, and the second device is a device in the cellular network or a device in a non-cellular network.
  • the communication unit is specifically configured to: receive at least one configuration information
  • the configuration information with the smallest time synchronization period indicated in the at least one configuration information as the first configuration information or using the configuration information with the highest time precision indicated in the at least one configuration information as the first configuration information, Or use the configuration information associated with the second device in the at least one configuration information as the first configuration information.
  • the first packet includes a first synchronization time; the first synchronization time is determined according to the local timing time of the communication device; or, the first packet includes first timestamp information and the first synchronization time, where the first time stamp information is the time obtained by the communication device from the clock source of the cellular network to the first synchronization time.
  • a communication unit configured to receive a first message from a first device; the first message is used for time synchronization with a delay-sensitive network TSN; the communication device is a device in the cellular network or a non-cellular network The device in; the first device is the device in the cellular network;
  • a processing unit configured to generate a second message according to the first message
  • the communication unit configured to send the second message to a third device
  • the third device is a device in a non-cellular network; the second message is a precision time protocol PTP synchronization message; the second message meets the time requirement indicated by the first configuration information: the first message
  • the configuration information is used to indicate a time requirement in the delay-sensitive network TSN, where the time requirement includes at least one of a time synchronization period and a time precision.
  • the communication unit is specifically configured to: receive the first configuration information from the first device; or receive at least one configuration information from the first device, the first configuration information
  • the information is the configuration information with the smallest time synchronization period indicated in the at least one configuration information, or the first configuration information is the configuration information with the highest time precision indicated in the at least one configuration information, or the first configuration information is configuration information associated with the communication device in the at least one configuration information.
  • the first packet includes first time stamp information and a first synchronization time
  • the first time stamp information is obtained by the first device from a clock source of the cellular network.
  • the time of the first synchronization time; the first synchronization time is determined according to the local timing time of the first device.
  • the second packet includes time correction information and the first synchronization time; the time correction information is determined according to the first timestamp information and the second timestamp information, and the The second time stamp information is the time when the communication device sends the second packet.
  • the first packet includes a first synchronization time
  • the first synchronization time is determined according to the local timing time of the first device.
  • the second packet includes the second synchronization time
  • the second synchronization time is the local time of the communication device.
  • the second packet further includes time type information, where the time type information is used to indicate the clock source type of the synchronization time in the second packet.
  • FIG. 12 shows an apparatus 1200 provided in this embodiment of the present application.
  • the apparatus shown in FIG. 12 may be a hardware circuit implementation of the apparatus shown in FIG. 11 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the first device or the second device in the above method embodiments.
  • FIG. 12 only shows the main components of the communication device.
  • the apparatus 1200 may also include at least one memory 1230 for storing program instructions and/or data.
  • Memory 1230 and processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may cooperate with the memory 1230.
  • Processor 1220 may execute program instructions stored in memory 1230 . At least one of the at least one memory may be included in the processor.
  • the apparatus 1200 shown in FIG. 12 includes at least one processor 1220 and a communication interface 1210 , and the processor 1220 is configured to execute the instructions or programs stored in the memory 1230 .
  • the processor 1220 is used to perform the operations performed by the processing unit 1101 in the above-mentioned embodiments
  • the communication interface 1210 is used to perform the operations performed by the communication unit 1102 in the above-mentioned embodiments.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or a communication interface.
  • the apparatus 1200 may also include a communication line 1240 .
  • the communication interface 1210, the processor 1220 and the memory 1230 may be connected to each other through a communication line 1240; the communication line 1240 may be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • the communication line 1240 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. It can be seen that, with the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • An embodiment of the present application further provides a communication system, where the system includes the first device and the second device described in any of the foregoing embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements a method process related to the first device in any of the above method embodiments.
  • the computer may be the above-mentioned first device.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements the method process related to the second device in any of the above method embodiments.
  • the computer may be the above-mentioned second device.
  • processors mentioned in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种时间同步方法及装置,其中方法包括:蜂窝网络中的第一设备根据所述蜂窝网络中本地授时时间,按照所述TSN中第一配置信息指示的时间要求向第二设备发送第一报文;所述第一报文用于与所述TSN进行时间同步,所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备。根据本申请实施例提供的方法,通过根据蜂窝网络中本地授时时间为TSN中的设备进行时间同步,并且授时时间TSN的时间同步周期和时间精度要求。因此当TSN主时钟不稳定时,可以使用蜂窝网络作为主时钟为TSN等非蜂窝网络授时,可以使得TSN等非蜂窝网络的业务平稳、可靠。

Description

一种时间同步方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种时间同步方法及装置。
背景技术
时延敏感网络(Time Sensitive Network,TSN)中,可以通过精密时间协议(Precision Time Protocol,PTP)来实现TSN设备之间的精确时间同步。PTP中用于时间同步的授时信令通常又称为PTP报文/PTP报文。因此TSN网络中传输的数据可以分为两类:用于授时的PTP报文,以及业务相关的数据包。
在PTP协议中定义了如下三种基本的时钟节点类型:
1,透明时钟(Transparent Clock,TC):TC不需要与其他设备保持时间同步。TC有多个时钟端口,在这些端口之间转发PTP报文,对其进行转发时延校正,但并不从任何一个端口同步时间。
2,边界时钟(Boundary Clock,BC):边界时钟在同一个PTP域内拥有多个PTP端口参与时间同步,边界时钟接收并同步上一个节点的时钟信号后,再将自己同步后的时钟信号授给下一个节点。
3,普通时钟(Ordinary Clock,OC):普通时钟在同一个PTP域内只有一个PTP端口参与时间同步,普通时钟将自己的时钟信号授给下一个节点。
当PTP报文经过TC时,TC转发该PTP报文会有一定的处理时延,TC在转发该PTP报文时,会在该PTP报文的修正字段(correction field)将PTP报文在TC的时延添加上去。TSN从TC收到PTP报文后,基于其中的时间信息以及修正字段包含的时延值对自身时钟进行同步。
目前制定的第5代移动通信(the 5th generation,5G)可以支持TSN。但是现在的讨论中,将5G***作为TC,由TSN作为主时钟,5G***仅作为“桥”透传TSN消息,无法作为主时钟向TSN内的设备授时。
为此,5G***作为主时钟时,如何向TSN内的设备授时,是一个亟待解决的问题。
发明内容
本申请实施方式的目的在于提供一种时间同步方法及装置,用以解决如何向TSN授时的问题。
第一方面,本申请实施例提供一种时间同步方法,包括:第一设备获取TSN中的第一配置信息之后,根据所述蜂窝网络中本地授时时间,按照所述第一配置信息指示的时间要求向第二设备发送第一报文;所述第一报文用于与所述TSN进行时间同步,所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备。其中所述第一配置信息用于指示TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项;所述第一设备为蜂窝网络中的设备。
根据本申请实施例提供的方法,通过根据蜂窝网络中本地授时时间为TSN中的设备进行时间同步,并且授时时间TSN的时间同步周期和时间精度要求。因此当TSN主时钟不 稳定时,可以使用蜂窝网络作为主时钟为TSN等非蜂窝网络授时,可以使得TSN等非蜂窝网络的业务平稳、可靠。
一种可能的设计中,所述第一设备获取第一配置信息,包括:所述第一设备接收至少一个配置信息;所述第一设备将所述至少一个配置信息中指示的时间同步周期最小的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中指示的时间精度最高的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中与所述第二设备关联的配置信息作为所述第一配置信息。
上述方案中,第一配置信息为时间同步周期最小的配置信息或者时间精度最高的配置信息,从而可以使得蜂窝网络按照最佳的配置信息进行授时,提高授时精度或者授时频率。
一种可能的设计中,所述第一报文包括第一同步时间;所述第一同步时间根据所述第一设备的本地授时时间确定;或者,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述第一设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中第一设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第二设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,本申请实施例提供一种时间同步方法,包括:第二设备接收来自第一设备的第一报文;所述第一报文用于与时延敏感网络TSN进行时间同步;所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备;所述第一设备为蜂窝网络中的设备;所述第二设备根据所述第一报文生成第二报文,并向第三设备发送所述第二报文;其中,所述第三设备为非蜂窝网络中的设备;所述第二报文为精密时间协议PTP同步报文;所述第二报文满足第一配置信息指示的时间要求:所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项。
根据本申请实施例提供的方法,通过根据蜂窝网络中本地授时时间为TSN中的设备进行时间同步,并且授时时间TSN的时间同步周期和时间精度要求。因此当TSN主时钟不稳定时,可以使用蜂窝网络作为主时钟为TSN等非蜂窝网络授时,可以使得TSN等非蜂窝网络的业务平稳、可靠。
一种可能的设计中,所述方法还包括:所述第二设备接收来自所述第一设备的所述第一配置信息;或者,所述第二设备接收来自所述第一设备的至少一个配置信息,所述第一配置信息为所述至少一个配置信息中指示的时间同步周期最小的配置信息,或者所述第一配置信息为所述至少一个配置信息中指示的时间精度最高的配置信息,或者所述第一配置 信息为所述至少一个配置信息中与所述第二设备关联的配置信息。
上述方案中,第一配置信息为时间同步周期最小的配置信息或者时间精度最高的配置信息,从而可以使得蜂窝网络按照最佳的配置信息进行授时,提高授时精度或者授时频率。
一种可能的设计中,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述第一设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间;所述第一同步时间根据所述第一设备的本地授时时间确定。
一种可能的设计中,所述第二报文包括时间修正信息和所述第一同步时间;所述时间修正信息为根据所述第一时间戳信息和第二时间戳信息确定的,所述第二时间戳信息为所述第二设备发送所述第二报文的时间。
上述方案中,通过在第二报文中携带第一设备的本地时间,相比于现有技术中时间报文从UPF进入5G***,经过基站传递至UE,本实施例中,时间报文通过蜂窝***内的第一设备从第二设备进入TSN***,减少了时间报文传递的跳数,增加了时间同步的精度。
一种可能的设计中,所述第一报文包括第一同步时间,所述第一同步时间根据所述第一设备的本地授时时间确定。
一种可能的设计中,所述第二报文包括所述第二同步时间,所述第二同步时间为所述第二设备的本地时间。
上述方案中,第二设备通过在第二报文中携带第二设备的本地时间,相比于现有技术中时间报文从UPF进入5G***,经过基站传递至UE,本实施例直接从第二设备进入TSN***,减少了时间报文传递的跳数,增加了时间同步的精度。
一种可能的设计中,所述第二报文中还包括时间类型信息,所述时间类型信息用于指示所述第二报文中的同步时间的时钟源类型。
上述方案中,通过时间类型信息指示时钟源类型,可以使得TSN中的设备根据需求选择时间同步的时钟源,提高***灵活性。第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中第二设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第一设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第三方面提供的方法中的描述,此处不做赘述。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面中任一种可能实现方式中的方法的指令。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任 一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第三方面及第三方面中任一种可能实现方式中的方法。
第九方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面或第一方面中任一种可能实现方式中的方法被实现。
第十方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第三方面或第三方面中任一种可能实现方式中方法被实现。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面或第一方面中任一种可能实现方式中的方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第三方面或第三方面中任一种可能实现方式中的方法。
第十三方面,本申请提供一种通信***,包括第二方面提供的通信装置以及第四方面提供的通信装置。
附图说明
图1为适用于本申请实施例的一种网络架构示意图;
图2为本申请实施例提供的一种5G***作为透明时钟的示意图;
图3为本申请实施例提供的一种5G***作为主时钟的框架示意图;
图4为本申请实施例提供的一种时间同步方法流程示意图;
图5为本申请实施例提供的一种时间同步方法流程示意图;
图6为本申请实施例提供的一种时间同步方法流程示意图;
图7为本申请实施例提供的一种报文结构示意图;
图8为本申请实施例提供的一种时间同步方法流程示意图;
图9为本申请实施例提供的一种时间同步方法流程示意图;
图10为本申请实施例提供的一种报文传输示意图;
图11为本申请实施例提供的一种通信装置结构示意图;
图12为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以应用于各种移动通信***,例如:新无线(new radio,NR)***、长期演进(long term evolution,LTE)***、先进的长期演进(advanced long term evolution, LTE-A)***、演进的长期演进(evolved long term evolution,eLTE)***、未来通信***等其它通信***。其中,移动通信***也可以称为蜂窝网络。
目前,第三代伙伴计划(the 3rd generation partnership project,3GPP)讨论了5G***支持TSN的方案,TSN可以将5G***看成是一个TSN桥接设备(TSN bridge),具体可以参考图1所示。图1中,以5G***包括用户设备(user equipment,UE)、无线接入网(radio access network,RAN)设备以及用户面功能(User Plane Function,UPF)设备为例。TSN网络的业务数据包可以通过5G***进行上行/下行发送。
其中,接入网设备,在5G新无线(new radio,NR)***中称为下一代节点B(generation Node B,gNB),在LTE***中称为演进节点B(evolutional Node B,eNB),在其它***中的名称不再举例说明。UE也可以被称为终端设备,实际应用中,可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
另一方面,TSN为了支持PTP协议,需要5G***适配PTP协议,3GPP采取的方案是将5G***当做一个透明时钟,如下图2所示,TSN主时钟(Grand Master clock,GM)发出的PTP报文可以通过5G***转发给TSN终端站(end station)。在5G***和TSN相连接的边界位置有TSN适配器,用于处理PTP协议相关的消息或TSN业务数据包,例如图2中与UE连接的设备侧TSN适配器(Device-side TSN Translator,DS-TT)和与UPF连接的设备侧TSN适配器(network-side TSN Translator,NW-TT)。DS-TT也可以称为UE-TT等名称,可以是连接到UE的一个设备,也可以是UE中的一个逻辑功能。相应的,NW-TT可以是连接到UPF的一个设备,也可以是UPF中的一个逻辑功能。
图2中,5G***内所有网元的时钟是同步的,5G***作为透明时钟,在转发来自TSN中的PTP报文时,将该PTP报文在透明时钟(即5G***)内的停留时间填写到该PTP报文的修正字段中。具体的,当PTP报文从UPF进入5G***时,NW-TT在PTP报文中加入5G时间戳t in,当PTP报文通过UE发送至TSN中的终端站时,UE发送该PTP报文的5G时间为t out,则DS-TT将该PTP报文的修正字段中的值修改为(t out-t in),该值就是PTP报文在透明时钟(即5G***)内的停留时间。TSN中的设备接收到PTP报文后,基于其中的时间信息以及修正字段对自身时间进行同步。
从上面的过程可知,现有技术中是以TSN作为主时钟,5G***无法作为主时钟向TSN中的设备授时。本申请实施例提供一种5G***作为主时钟的框架,具体可以参考图3所示。
图3中,5G时钟为5G***的时钟源,可以作为5G GM。5G时钟的时钟信号,即5G时间,来自于接入网设备外挂的全球定位***(Global Positioning System,GPS),或者源于通过陆地有线线缆所连接的陆地高精时钟等。5G***作为一个非透明时钟***(可以作为边界时钟,也可以作为普通时钟),用5G GM给TSN节点(可以为终端站,也可以为TSN服务器)授时。
接入网设备通过空口与UE完成5G时间同步,接入网设备通过有线连接的方式与UPF完成5G时间同步。图3中左侧,UE通过DS-TT将包括5G时间的报文转换为TSN域的报文格式(不改变时间的具体数值,只是转换格式),发给TSN中的终端站,使终端站的 时间与5G时间完成同步;图3中右侧,UPF通过NW-TT将包括5G时间的报文转换为TSN域的报文格式(不改变时间的具体数值,只是转换格式),发给TSN服务器,使TSN服务器的时间与5G时间完成同步。
需要说明的是,包括5G时钟信号的报文在5G***中传播是以5G的格式传输的,例如在空口以无线资源控制(radio resource control,RRC)消息的形式传输,直到在5G***的出口处(DS-TT、NW-TT)才被转换为TSN域的报文格式。
另外,5G***中的网元可以通过5G时钟报文完成时间同步。5G***中的每一个节点都需要先将自己的时钟和上一个节点的时钟同步后,再将自己的时钟信号传递到下一个节点,例如:接入网设备将5G时间2020年5月30日23:10:10:00000通过5G时钟报文发送给UE,假如UE与接入网设备之间的时延为5s,UE可以将自己的时间同步为2020年5月30日23:10:15:00000,从而完成和接入网设备的时间同步。
本申请实施例中,5G***整体可视作一个逻辑的TSN桥接设备。UPF侧通过NW-TT和TSN相连,UE侧通过DS-TT和TSN相连。TSN业务数据包从TSN网络到达NW-TT后,通过UPF和UE之间的协议数据单元(Protocol Data Unit,PDU)会话在5G***内进行转发,并通过UE的DS-TT发送到对应的TSN从节点。相应的,上行方向上,TSN业务数据包从TSN节点发出到达DS-TT后,通过UE和UPF之间的PDU会话在5G***内转发,UPF可以通过NW-TT将业务数据包发送到TSN网络,或者通过和另一个UE的PDU会话转发到另一个UE,由另一个UE的DS-TT发送到另一个TSN节点。
需要说明的是,上面的描述以5G***为例进行说明,在实际应用中,本申请提供的方法也可以应用在LTE***,以及未来的蜂窝网络中,即LTE***或者未来的蜂窝网络作为主时钟,向TSN中的设备授时,下面将详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以5G***为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他蜂窝网络中,相应的名称也可以用其他蜂窝网络中的对应功能的名称进行替代。
本申请实施例中,以5G***为例时,涉及到的网元可以如图4所示。当应用到其它蜂窝网络时,可以参考下面的描述在此不再赘述。图4中,5G***包括的网元为:应用功能(application function,AF)、网元功能(network element function,NEF)、策略控制功能(policy control function,PCF)、SMF以及UPF。TSN中包括的网元为集中式网络配置(Centralized Network Configuration,CNC)控制器、集中式用户配置(Centralized User Configuration,CUC)控制器以及终端站等。
需要说明的是,本申请实施例还可以应用于4G***等蜂窝网络,当应用于4G***时,5G***中SMF等核心网设备实现的动作可以由4G***中的移动性管理实体(Mobility Management Entity,MME)实现。下面结合分别描述。
参见图5,为本申请实施例提供的一种时间同步方法流程示意图。该方法包括:
步骤501:第一设备获取第一配置信息。
其中,所述第一配置信息用于指示TSN中的时间要求,所述时间要求包括时间同步周 期和时间精度中的至少一项;所述第一设备为蜂窝网络中的设备,也可以为非蜂窝网络中的设备。蜂窝网络可以是指4G、5G等网络。非蜂窝网络可以是指TSN或者远程医疗***等***。
步骤502:第一设备根据蜂窝网络中本地授时时间,按照所述TSN中所述第一配置信息指示的时间要求向第二设备发送第一报文。
其中,所述第一报文用于与所述TSN进行时间同步,所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备。
根据本申请实施例提供的方法,通过根据蜂窝网络中本地授时时间为TSN中的设备进行时间同步,并且授时时间TSN的时间同步周期和时间精度要求。因此当TSN主时钟不稳定时,可以使用蜂窝网络作为主时钟为TSN等非蜂窝网络授时,可以使得TSN等非蜂窝网络的业务平稳、可靠。
本申请实施例中,第一设备以及第二设备在不同应用场景中,可以存在多种情况,下面分别进行描述。
实施例一:
实施例一中,第一设备可以为蜂窝网络中的接入网设备,例如4G***中的eNB,5G***中的gNB等;第二设备可以为4G***中的UE,或者为5G***中的UE或UPF等。第一配置信息可以为TSN中的设备通过蜂窝网络中的核心网设备传输至第一设备的,第一设备可以将第一报文通过第二设备转发至TSN中,下面将详细进行描述。
参见图6,为本申请实施例提供的一种时间同步方法流程示意图。该方法包括:
步骤601:核心网设备接收来自中心控制设备的至少一个配置信息。
中心控制设备可以为非蜂窝网络中的设备,例如可以为TSN中的设备,用于生成配置信息。中心控制设备也可以称为中心控制网元。中心控制网元可以包括但不限于集中式网络配置(Centralized Network Configuration,CNC)控制器以及集中式用户配置(Centralized User Configuration,CUC)控制器等。
核心网设备可以为蜂窝网络中的设备。例如,蜂窝网络为5G***时,核心网设备可以是UPF或者SMF等。蜂窝网络为4G***时,核心网设备可以是MME等。
举例来说,结合前面的4所示,配置信息的一种可能的传输路径为:从TSN中的CNC控制器,依次通过AF、NEF、PCF、SMF,传输至UPF,再由UPF传输至gNB。
本申请实施例中,配置信息指示的时间要求可以包括时间同步周期和时间精度中的至少一项。其中,如果时间要求中没有包括时间同步周期,那么时间同步周期可以为默认配置的周期;如果时间要求中没有包括时间精度,那么时间精度可以为默认配置的时间精度。
需要说明的是,时间要求中包括的时间同步周期可以是TSN授时业务的周期;时间要求中包括的时间精度可以是TSN授时业务的时间精度。
进一步的,本申请实施例中,一个配置信息可以与一个TSN域(domain)关联。TSN是一种虚拟局域网(Virtual Local Area Network,VLAN)技术,也就是说一个TSN是一个虚拟局域网,处于同一个TSN的设备构成一个TSN域,一个TSN域可以对应一个VLAN标识或者域名(domain number),进入TSN域内的报文会被标记与该TSN域对应的VLAN标识。
核心网设备可以通过多种方式确定配置信息关联的TSN域。第一种可能的实现方式,配置信息通过TSN报文发送时,可以根据该TSN报文中的VLAN标识确定该配置信息关 联的TSN域。
第二种可能的实现方式,配置信息通过PTP报文发送时,可以根据该PTP报文中的域名确定该配置信息关联的TSN域。
第三种可能的实现方式,针对一个TSN域,可以预先建立VLAN标识或域名与处于该TSN域的设备的关联关系,例如保存TSN域的设备的媒体接入控制(medium access control,MAC)地址或网际互连协议(Internet Protocol,IP)地址与该TSN域的VLAN标识或域名的关联关系。每个UE可以关联一个TSN域,核心网设备如果接收来自UE的配置信息,可以根据该UE的MAC地址或IP地址确定该配置信息关联的TSN域。
以上只是示例,还可以通过其他方式确定配置信息关联的TSN域,在此不再逐一举例说明。
步骤602:核心网设备向接入网设备发送至少一个配置信息。
接入网设备为所述蜂窝网络中的设备,例如,所述接入网设备为5G***中的gNB。需要说明的是,核心网设备可以通过与接入网设备之间的接口(例如N3接口)将所述至少一个配置信息发给接入网设备。
一种可能的实现方式中,核心网设备可以将获取到的所有配置信息都发送至接入网设备。
在该实现方式中,核心网设备还可以向第一设备指示所述至少一个配置信息中每个配置信息关联的TSN域。
另一种可能的实现方式中,核心网设备可以将获取到的至少一个配置信息中,指示的时间同步周期最小的配置信息,或者指示的时间精度最高的配置信息,发送至接入网设备。
可选的,步骤603:接入网设备向UE发送所述至少一个配置信息。
其中,所述UE为所述蜂窝网络中的设备。
类似于步骤602,一种可能的实现方式中,接入网设备可以将获取到的所有配置信息都发送至UE。
在该实现方式中,接入网设备还可以向UE指示所述至少一个配置信息中每个配置信息关联的TSN域。
另一种可能的实现方式中,接入网设备可以将获取到的至少一个配置信息中,指示的时间同步周期最小的配置信息,或者指示的时间精度最高的配置信息,发送至UE。
另一种可能的实现方式中,接入网设备可以将获取到的至少一个配置信息中与UE关联的配置信息发送至UE。其中,如前所述,每个UE可以关联一个TSN域,接入网设备可以将至少一个配置信息中关联的TSN域,与UE关联的TSN域相同的配置信息,发送至UE。
需要说明的是,接入网设备具体如何发送至少一个配置信息,本申请实施例对此并不限定,可以通过RRC消息(例如RRC重配置消息)发送至少一个配置信息,也可以通过MAC控制元素(control element,CE)发送至少一个配置信息,也可以通过***消息发送至少一个配置信息。
步骤604:接入网设备根据蜂窝网络中本地授时时间,按照所述TSN中所述第一配置信息指示的时间要求向UE发送第一报文。
此实施例中,蜂窝网络中的本地授时时间可以为接入网设备的本地时间,或者接入网设备从卫星定位***获取到的时间。需要说明的是,接入网设备的本地时间是根据从卫星 定位***获取到的时间确定的,或者可以是接入网设备通过陆地有线线缆所连接的陆地高精时钟的时间,或者可以是来自通过线缆连接的其他接入网设备的时间,或者可以是来自全球路基时间服务(Global Terrestrial Timing Service,GTTS)的时间。
第一配置信息指示的时间要求包括时间同步周期时,接入网设备可以按照第一配置信息指示的时间同步周期,周期性的向UE发送第一报文。
可选的,第一报文中可以包括第一同步时间,所述第一同步时间为根据本地授时时间确定的,例如接入网设备的本地授时时间为接入网设备通过蜂窝网络内的时钟源获取到的,那么第一同步时间可以是指蜂窝网络内的时钟源的时间。如前所述,蜂窝网络为5G时,时钟源为接入网设备外挂的卫星定位***,例如GPS,或者接入网设备通过陆地有线线缆所连接的陆地高精时钟等。例如,时钟源为GPS时,接入网设备可以获取包括GPS时间的GPS时间报文,并将GPS时间报文中的GPS时间作为第一同步时间。
需要说明的是,卫星定位***,包括但不限于GPS以及北斗***等,卫星定位***包括精准的原子时钟,原子时钟可以保证卫星定位***时间同步以及定位准确。
第一配置信息指示的时间要求包括时间精度时,接入网设备可以将获取到的GPS时间转换为第一配置信息指示的时间精度的第一同步时间。
本申请实施例中,第一报文可以为所述蜂窝网络中的报文格式,例如可以为RRC消息。其中,当所述蜂窝网络为5G时,第一报文还可以称为5G时钟报文。
接入网设备可以为至少一个TSN域内的设备授时。一种实现方式中,接入网设备可以不区分UE所处的TSN域,对所有UE按照相同的配置信息进行第一报文的发送。例如UE 1处于TSN域1,UE 2处于TSN域2,接入网设备均按照第一配置信息向UE 1和UE 2发送第一报文。在该实现方式中,第一配置信息可以为所述至少一个配置信息中指示的时间同步周期最小的配置信息,或者所述第一配置信息可以为所述至少一个配置信息中指示的时间精度最高的配置信息。
另一种实现方式中,接入网设备可以根据UE所处的TSN域,按照该TSN域对应的配置信息指示的同步时间周期和/或时间精度向该UE发送第一报文。在该实现方式中,第一配置信息可以为所述至少一个配置信息中与所述UE关联的配置信息。例如UE 1处于TSN域1,接入网设备可以将至少一个配置信息中,与TSN域1关联的配置信息作为与所述UE关联的配置信息,即作为第一配置信息。
需要说明的是,步骤604中,接入网设备也可以向其它网元发送第一报文,例如可以向UPF发送第一报文,图6所示的流程只是示例,并不代表对本申请实施例的限定。
步骤605:UE接收第一报文,根据第一报文生成第二报文,并向终端站发送第二报文。
一种实现方式中,UE可以通过DS-TT给第一报文加上PTP包头获得第二报文。其中,UE可以将第一报文中的第一同步时间修改为第二同步时间,第二同步时间为UE发送第二报文时的本地时间。需要说明的是,由于第一报文传输至UE存在传输时延,为了提高授时的准确性,UE可以在第二报文中携带第二同步时间,即UE发送第二报文时的本地时间。因为UE的本地时间和接入网设备的本地时间是同步的,因此UE发送第二报文时的本地时间就相当于第二报文从蜂窝网络发出去时的时间。
另一种实现方式中,UE接收到第一报文之后,不是在第一报文的基础上生成第二报文,而是通过DS-TT生成包括第二同步时间的第二报文。第二报文中的第二同步时间为UE发送第二报文时的本地时间。
TSN中采用PTP协议实现TSN设备之间的精确时间同步,第二报文可以为PTP协议报文,具体可以是PTP同步报文。
需要说明的是,UE的本地时间是与接入网设备的本地时间同步的,因此第二报文中的时间,等同于接入网设备的本地时间,也就相当于蜂窝网络中的本地授时时间。
举例来说,接入网设备在第一报文中携带的第一同步时间为2020年5月30日23:10:10:00000,UE接收到第一报文之后,可以根据第一报文进行时间同步。具体的,假如UE与接入网设备之间的时延为5s,UE可以将自己的时间同步为2020年5月30日23:10:15:00000。UE与接入网设备之间的时延的具体确定方式,本申请实施例并不限定。UE发送第二报文时的时间如果为2020年5月30日23:10:20:00000,则第二报文中携带的第二同步时间为2020年5月30日23:10:20:00000。
进一步的,本申请实施例中,第二报文中还可以包括时间类型信息,所述时间类型信息用于指示第二报文中的同步时间的时钟源类型。时钟源类型包括但不限于以下类型:传统的TSN时钟信号;蜂窝网络(或者移动通信***)时钟信号,具体可以是指5G时钟信号或者4G时钟信号等。
举例来说,结合上面的描述,第二报文中的同步时间来自蜂窝网络时,时间类型信息指示的时钟源类型为蜂窝网络时钟信号,也就是说此时蜂窝网络作为主时钟为TSN授时。
举例来说,第二报文为PTP报文时,可以通过第二报文的后缀字段(suffix field)携带时间类型信息。如图7所示,为后缀字段的结构示意图。后缀字段包括类型长度值(type-length-value,TLV)类型、TLV长度(length of TLV)、组织标识(organization ID)、组织子类型(organization subtype)以及数据字段(data field)。当通过后缀字段携带时间类型信息时可以采用以下任一种方法:
1、增加一种TLV类型,用于承载时间类型信息,专用于指示“时钟源类型”。
2、增加一种organization ID,用于承载时间类型信息,专用于指示“时钟源类型”。
3、增加一种organization subtype,用于承载时间类型信息,专用于指示“时钟源类型”。
4、在Suffix field中增加至少一个字节,用于承载时间类型信息。
通过上面提供的方案,提供从TSN获取TSN授时业务的周期和精度要求,并在此基础之上采用5G时间为TSN内的设备授时,可以使得在TSN主时钟不稳定时,使用5G***作为主时钟,提高时钟的稳定性,使TSN业务平稳、可靠。
实施例一中,接入网设备主动发送包括第一同步时间的第一报文,本申请实施例中,还可以由其他设备主动向TSN内的设备发送包括第一同步时间的第一报文,例如UE或者UPF等,下面结合实施例二进行描述。
实施例二:
实施例二中,第一设备可以为UE,第二设备可以为非蜂窝网络中的设备,例如可以为TSN中的终端站。相比于实施例一,实施例二中,可以由UE按照TSN中的时间要求向TSN中的设备进行授时,下面将详细进行描述。
实施例二中,以UE发送主动向TSN内的设备发送包括同步时间的报文为例,其他情况不再赘述。
参见图8,为本申请实施例提供的一种时间同步方法流程示意图。该方法包括:
步骤801:核心网设备接收来自中心控制设备的至少一个配置信息。
步骤802:核心网设备向接入网设备发送至少一个配置信息。
步骤803:接入网设备向UE发送所述至少一个配置信息。
步骤801至步骤803的具体内容可以参考步骤601至步骤603的描述,在此不再赘述。
步骤804:接入网设备根据蜂窝网络中本地授时时间,向UE发送时间同步报文。
接入网设备发送的时间同步报文用于UE进行时间同步,UE可以根据时间同步报文实现将UE的本地时间与接入网设备的本地时间进行同步。
步骤805:UE接收时间同步报文,并根据蜂窝网络中本地授时时间,按照TSN中所述第一配置信息指示的时间要求向终端站发送第一报文。
此实施例中,蜂窝网络中的本地授时时间可以为UE的本地时间。
一种实现方式中,UE从接入网设备获取到的配置信息的数量大于1,此时UE可以将至少一个配置信息中与终端站关联的配置信息作为第一配置信息。例如终端站处于TSN域1,UE可以将至少一个配置信息中,与TSN域1关联的配置信息作为与所述终端站关联的配置信息,即作为第一配置信息。
另一种实现方式中,UE从接入网设备获取到一个配置信息,UE将该配置信息作为第一配置信息。
第一配置信息指示的时间要求包括时间同步周期时,UE可以按照第一配置信息指示的时间同步周期,周期性的发送第一报文。
可选的,第一报文中可以包括同步时间,所述第一同步时间为根据UE的本地授时时间确定,例如可以为UE的本地时间。如前所述,UE和接入网设备的时间是同步的,因此第一报文中的第一同步时间也就是蜂窝网络中的本地授时时间。
第一配置信息指示的时间要求包括时间精度时,UE可以根据第一配置信息指示的时间精度将本地时间转换为满足所述时间精度的第一同步时间。
本申请实施例中,所述第一报文可以用于所述TSN中的设备进行时间同步,第一报文可以为PTP协议报文,具体可以是PTP同步报文。
进一步的,本申请实施例中,第一报文中还可以包括时间类型信息,所述时间类型信息用于指示第一报文中的同步时间的时钟源类型。时间类型信息的具体内容可以参考实施例一中的描述,在此不再赘述。
实施例一和实施例二中,和现有技术不同的是,接入网设备作为非透明主时钟产生5G时钟报文,即第一报文,向TSN中的设备授时。由于接入网设备根据TSN***中时间要求产生第一报文,能够满足TSN业务的周期和精度要求,从而可以在TSN主时钟不稳定时,使用5G***作为主时钟,使TSN业务平稳、可靠。
本申请实施例中,还可以基于现有技术中,以5G***作为透明时钟的机制,由接入网设备将5G时钟报文直接转换为PTP协议报文,在该方式下,可以将PTP协议报文打入口时间戳的地点由原有的UPF(连接的NW-TT)改为接入网设备,具体可以参考下面的描述。
实施例三:
实施例三中,第一设备可以为蜂窝网络中的接入网设备,例如LTE***中的eNB,NR***中的gNB等;第二设备可以为4G***中的UE,或者为5G***中的UE或UPF等。第一设备可以直接生成TSN支持的PTP协议报文,第二设备从而可以将第一设备发送的第一报文直接转发至TSN中。相比于实施例一,在实施例三中,接入网设备发送的第一报文为PTP协议报文,UE接收到第一报文后不用对第一报文中的第一同步时间进行更 新,下面将详细进行描述。
参见图9,为本申请实施例提供的一种时间同步方法流程示意图。该方法包括:
步骤901:核心网设备接收来自中心控制设备的至少一个配置信息。
步骤902:核心网设备向接入网设备发送至少一个配置信息。
步骤901至步骤902的具体内容可以参考步骤601至步骤602的描述,在此不再赘述。
步骤903:接入网设备根据所述蜂窝网络中本地授时时间,按照所述TSN中所述第一配置信息指示的时间要求向UE发送第一报文。
其中,所述第一报文用于所述TSN中的设备进行时间同步,第一报文可以为PTP协议报文,具体可以是PTP同步报文。
所述第一报文包括第一时间戳信息和第一同步时间。
一种可能的实现方式中,第一报文为接入网设备生成的。在该实现方式中,所述第一时间戳信息为接入网设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间。举例来说,接入网设备可以采用如图10所示的方式获得第一时间戳信息和第一同步时间。图10中,接入网设备从蜂窝网络的时钟源获取第一同步时间,图10中以时钟源为GPS为例进行说明,接入网设备可以接收到GPS时间报文。接入网设备接收到GPS时间报文时,可以在第一报文的修正字段中加入第一时间戳,然后将GPS时间报文中的GPS时间转换为第一同步时间,其中转换后的第一同步时间的格式满足TSN中的要求。接入网设备将第一同步时间放入第一报文的数据字段中,最后发送所述第一报文。其中,在将GPS时间转换之前加时间戳,是为了使时间戳所指的时刻和报文中的时刻一致。
例如,GPS时间报文中的GPS时间为2020年5月30日23:10:20:00000,接入网设备在2020年5月30日23:10:20:00000时,获得包括该GPS时间的时间报文,接入网设备确定第一时间戳信息为2020年5月30日23:10:20:00000。接入网设备将GPS时间转换为第一同步时间之后,发送包括所述第一同步时间以及第一时间戳信息的第一报文。
需要说明的是,接入网设备还可以按照第一配置信息指示的时间精度将从时钟源获得的时间转换为第一同步时间。当然,接入网设备也可以直接将从时钟源获得的时间作为第一同步时间。接入网设备可以通过NW-TT在第一报文中加入第一时间戳信息。
进一步的,接入网设备可以按照至少一个配置信息中的第一配置信息指示的时间同步周期向UE发送第一报文,例如时间同步周期为10s,那么接入网设备按照10s为周期发送第一报文。
另一种可能的实现方式中,第一报文为接入网设备从其他设备获得的,例如从其他接入网设备接收第一报文,接入网设备可以直接将该第一报文转发至UE或者UPF等设备。
步骤904:UE向终端站发送第一报文。
其中,UE在发送第一报文之前,可以在第一报文的修正字段中加入时间修正信息,时间修正信息指示出第一报文在蜂窝网络中的停留时间。时间修正信息为根据所述第一时间戳信息和第二时间戳信息确定的,所述第二时间戳信息为所述第二设备发送所述第二报文的时间。例如,第一报文中的第一同步时间为2020年5月30日23:10:20:00000,第一时间戳信息可以为2020年5月30日23:10:20:00000,UE发送第二报文的本地时间为2020年5月30日23:10:25:00000,那么时间修正信息可以为5s。
UE还可以在第一报文中加入时间类型信息,具体可以参考前面的描述,在此不再赘述。
通过上面的流程可知,现有技术中,包括同步时间的时间报文从核心网设备(例如UPF)进入蜂窝网络,经过接入网设备传递至UE。而本申请实施例中,包括同步时间的时间报文直接从接入网设备进入蜂窝网络,并传递至UE,减少了从时间报文传递的跳数,增加了时间同步的精度。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一设备或第二设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图11所示,本申请实施例还提供一种装置1100用于实现上述方法中第一设备或第二设备的功能。例如,该装置可以为软件模块或者芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。该装置1100可以包括:处理单元1101和通信单元1102。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中第一设备或第二设备发送和接收的步骤。
以下,结合图11至图12详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1102中用于实现接收功能的器件视为接收单元,将通信单元1102中用于实现发送功能的器件视为发送单元,即通信单元1102包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置1100执行上面实施例中第一设备的功能时:
通信单元,用于获取第一配置信息;所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项;所述通信装置为蜂窝网络中的设备;
处理单元,用于根据所述蜂窝网络中本地授时时间,按照所述TSN中所述第一配置信息指示的时间要求通过所述通信单元向第二设备发送第一报文;所述第一报文用于与所述TSN进行时间同步,所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备。
一种可能的实现方式,所述通信单元具体用于:接收至少一个配置信息;
将所述至少一个配置信息中指示的时间同步周期最小的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中指示的时间精度最高的配置信息作为所述第一配置 信息,或者将所述至少一个配置信息中与所述第二设备关联的配置信息作为所述第一配置信息。
一种可能的实现方式,所述第一报文包括第一同步时间;所述第一同步时间根据所述通信装置的本地授时时间确定;或者,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述通信装置从所述蜂窝网络的时钟源获取到所述第一同步时间的时间。
通信装置1100执行上面实施例中第二设备的功能时:
通信单元,用于接收来自第一设备的第一报文;所述第一报文用于与时延敏感网络TSN进行时间同步;所述通信装置为所述蜂窝网络中的设备或非蜂窝网络中的设备;所述第一设备为蜂窝网络中的设备;
处理单元,用于根据所述第一报文生成第二报文;
所述通信单元,用于向第三设备发送所述第二报文;
其中,所述第三设备为非蜂窝网络中的设备;所述第二报文为精密时间协议PTP同步报文;所述第二报文满足第一配置信息指示的时间要求:所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项。
一种可能的实现方式,所述通信单元具体用于:接收来自所述第一设备的所述第一配置信息;或者,接收来自所述第一设备的至少一个配置信息,所述第一配置信息为所述至少一个配置信息中指示的时间同步周期最小的配置信息,或者所述第一配置信息为所述至少一个配置信息中指示的时间精度最高的配置信息,或者所述第一配置信息为所述至少一个配置信息中与所述通信装置关联的配置信息。
一种可能的实现方式,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述第一设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间;所述第一同步时间根据所述第一设备的本地授时时间确定。
一种可能的实现方式,所述第二报文包括时间修正信息和所述第一同步时间;所述时间修正信息为根据所述第一时间戳信息和第二时间戳信息确定的,所述第二时间戳信息为所述通信装置发送所述第二报文的时间。
一种可能的实现方式,所述第一报文包括第一同步时间,所述第一同步时间根据所述第一设备的本地授时时间确定。
一种可能的实现方式,所述第二报文包括所述第二同步时间,所述第二同步时间为所述通信装置的本地时间。
一种可能的实现方式,所述第二报文中还包括时间类型信息,所述时间类型信息用于指示所述第二报文中的同步时间的时钟源类型。
如图12所示为本申请实施例提供的装置1200,图12所示的装置可以为图11所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中第一设备或者第二设备的功能。为了便于说明,图12仅示出了该通信装置的主要部件。
装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令。 所述至少一个存储器中的至少一个可以包括于处理器中。
图12所示的装置1200包括至少一个处理器1220以及通信接口1210,处理器1220用于执行存储器1230中存储的指令或程序。存储器1230中存储的指令或程序被执行时,该处理器1220用于执行上述实施例中处理单元1101执行的操作,通信接口1210用于执行上述实施例中通信单元1102执行的操作,具体可以参考前面的描述,在此不再赘述。
在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是通信接口。
装置1200还可以包括通信线路1240。其中,通信接口1210、处理器1220以及存储器1230可以通过通信线路1240相互连接;通信线路1240可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1240可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例还提供了一种通信***,该***包括上述任一实施例所述的第一设备和第二设备。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与第一设备相关的方法流程。具体地,该计算机可以为上述第一设备。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与第二设备相关的方法流程。具体地,该计算机可以为上述第二设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种时间同步方法,其特征在于,包括:
    第一设备获取第一配置信息;所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项;所述第一设备为蜂窝网络中的设备;
    所述第一设备根据所述蜂窝网络中本地授时时间,按照所述TSN中所述第一配置信息指示的时间要求向第二设备发送第一报文;所述第一报文用于与所述TSN进行时间同步,所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备获取第一配置信息,包括:
    所述第一设备接收至少一个配置信息;
    所述第一设备将所述至少一个配置信息中指示的时间同步周期最小的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中指示的时间精度最高的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中与所述第二设备关联的配置信息作为所述第一配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一报文包括第一同步时间;所述第一同步时间根据所述第一设备的本地授时时间确定;
    或者,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述第一设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间。
  4. 一种时间同步方法,其特征在于,包括:
    第二设备接收来自第一设备的第一报文;所述第一报文用于与时延敏感网络TSN进行时间同步;所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备;所述第一设备为蜂窝网络中的设备;
    所述第二设备根据所述第一报文生成第二报文,并向第三设备发送所述第二报文;
    其中,所述第三设备为非蜂窝网络中的设备;所述第二报文为精密时间协议PTP同步报文;所述第二报文满足第一配置信息指示的时间要求:所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的所述第一配置信息;
    或者,所述第二设备接收来自所述第一设备的至少一个配置信息,所述第一配置信息为所述至少一个配置信息中指示的时间同步周期最小的配置信息,或者所述第一配置信息为所述至少一个配置信息中指示的时间精度最高的配置信息,或者所述第一配置信息为所述至少一个配置信息中与所述第二设备关联的配置信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述第一设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间;所述第一同步时间根据所述第一设备的本地授时时间确定。
  7. 根据权利要求6所述的方法,其特征在于,所述第二报文包括时间修正信息和所述第一同步时间;所述时间修正信息为根据所述第一时间戳信息和第二时间戳信息确定的, 所述第二时间戳信息为所述第二设备发送所述第二报文的时间。
  8. 根据权利要求4或5所述的方法,其特征在于,所述第一报文包括第一同步时间,所述第一同步时间根据所述第一设备的本地授时时间确定。
  9. 根据权利要求8所述的方法,其特征在于,所述第二报文包括所述第二同步时间,所述第二同步时间为所述第二设备的本地时间。
  10. 根据权利要求4至9任一所述的方法,其特征在于,所述第二报文中还包括时间类型信息,所述时间类型信息用于指示所述第二报文中的同步时间的时钟源类型。
  11. 一种通信装置,其特征在于,包括:
    通信单元,用于获取第一配置信息;所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项;所述通信装置为蜂窝网络中的设备;
    处理单元,用于根据所述蜂窝网络中本地授时时间,按照所述TSN中所述第一配置信息指示的时间要求通过所述通信单元向第二设备发送第一报文;所述第一报文用于与所述TSN进行时间同步,所述第二设备为所述蜂窝网络中的设备或非蜂窝网络中的设备。
  12. 根据权利要求11所述的装置,其特征在于,所述通信单元具体用于:
    接收至少一个配置信息;
    将所述至少一个配置信息中指示的时间同步周期最小的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中指示的时间精度最高的配置信息作为所述第一配置信息,或者将所述至少一个配置信息中与所述第二设备关联的配置信息作为所述第一配置信息。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第一报文包括第一同步时间;所述第一同步时间根据所述通信装置的本地授时时间确定;
    或者,所述第一报文包括第一时间戳信息和第一同步时间,所述第一时间戳信息为所述通信装置从所述蜂窝网络的时钟源获取到所述第一同步时间的时间。
  14. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自第一设备的第一报文;所述第一报文用于与时延敏感网络TSN进行时间同步;所述通信装置为所述蜂窝网络中的设备或非蜂窝网络中的设备;所述第一设备为蜂窝网络中的设备;
    处理单元,用于根据所述第一报文生成第二报文;
    所述通信单元,用于向第三设备发送所述第二报文;
    其中,所述第三设备为非蜂窝网络中的设备;所述第二报文为精密时间协议PTP同步报文;所述第二报文满足第一配置信息指示的时间要求:所述第一配置信息用于指示时延敏感网络TSN中的时间要求,所述时间要求包括时间同步周期和时间精度中的至少一项。
  15. 根据权利要求14所述的装置,其特征在于,所述通信单元具体用于:
    接收来自所述第一设备的所述第一配置信息;
    或者,接收来自所述第一设备的至少一个配置信息,所述第一配置信息为所述至少一个配置信息中指示的时间同步周期最小的配置信息,或者所述第一配置信息为所述至少一个配置信息中指示的时间精度最高的配置信息,或者所述第一配置信息为所述至少一个配置信息中与所述通信装置关联的配置信息。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第一报文包括第一时间戳 信息和第一同步时间,所述第一时间戳信息为所述第一设备从所述蜂窝网络的时钟源获取到所述第一同步时间的时间;所述第一同步时间根据所述第一设备的本地授时时间确定。
  17. 根据权利要求16所述的装置,其特征在于,所述第二报文包括时间修正信息和所述第一同步时间;所述时间修正信息为根据所述第一时间戳信息和第二时间戳信息确定的,所述第二时间戳信息为所述通信装置发送所述第二报文的时间。
  18. 根据权利要求14或15所述的装置,其特征在于,所述第一报文包括第一同步时间,所述第一同步时间根据所述第一设备的本地授时时间确定。
  19. 根据权利要求18所述的装置,其特征在于,所述第二报文包括所述第二同步时间,所述第二同步时间为所述通信装置的本地时间。
  20. 根据权利要求14至19任一所述的装置,其特征在于,所述第二报文中还包括时间类型信息,所述时间类型信息用于指示所述第二报文中的同步时间的时钟源类型。
  21. 一种通信装置,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求1至10中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至10中任一项所述的方法。
  23. 一种可读存储介质,其特征在于,包括计算机程序或指令,当通信装置执行所述计算机程序或指令时,如权利要求1至10中任意一项所述的方法被执行。
  24. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至10中任意一项所述的方法被执行。
PCT/CN2020/107984 2020-08-07 2020-08-07 一种时间同步方法及装置 WO2022027666A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107984 WO2022027666A1 (zh) 2020-08-07 2020-08-07 一种时间同步方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107984 WO2022027666A1 (zh) 2020-08-07 2020-08-07 一种时间同步方法及装置

Publications (1)

Publication Number Publication Date
WO2022027666A1 true WO2022027666A1 (zh) 2022-02-10

Family

ID=80118596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107984 WO2022027666A1 (zh) 2020-08-07 2020-08-07 一种时间同步方法及装置

Country Status (1)

Country Link
WO (1) WO2022027666A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745776A (zh) * 2022-06-13 2022-07-12 深圳艾灵网络有限公司 基于无线网络的时钟同步方法、装置、设备及介质
WO2022255932A1 (en) * 2021-06-04 2022-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Improving time synchronization accuracy in a wireless network
WO2024041360A1 (zh) * 2022-08-23 2024-02-29 中兴通讯股份有限公司 报文处理方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190347239A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Generalized configurable trigger
CN110611924A (zh) * 2019-09-27 2019-12-24 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质
CN110636547A (zh) * 2019-09-27 2019-12-31 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质
CN111490841A (zh) * 2020-03-23 2020-08-04 腾讯科技(深圳)有限公司 用于实现时间同步的方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190347239A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Generalized configurable trigger
CN110611924A (zh) * 2019-09-27 2019-12-24 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质
CN110636547A (zh) * 2019-09-27 2019-12-31 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质
CN111490841A (zh) * 2020-03-23 2020-08-04 腾讯科技(深圳)有限公司 用于实现时间同步的方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG ET AL.: "TSC Burst Arrival Time usage and Clock Reference", 3GPP TSG-SA WG2 MEETING #133 S2-1906752, 17 May 2019 (2019-05-17), XP051744107 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255932A1 (en) * 2021-06-04 2022-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Improving time synchronization accuracy in a wireless network
CN114745776A (zh) * 2022-06-13 2022-07-12 深圳艾灵网络有限公司 基于无线网络的时钟同步方法、装置、设备及介质
CN114745776B (zh) * 2022-06-13 2022-08-30 深圳艾灵网络有限公司 基于无线网络的时钟同步方法、装置、设备及介质
WO2024041360A1 (zh) * 2022-08-23 2024-02-29 中兴通讯股份有限公司 报文处理方法、电子设备及存储介质

Similar Documents

Publication Publication Date Title
TWI735052B (zh) 處理精確時序協定框之裝置及方法
US11405122B2 (en) 5G system support for conveying TSN time synchronization
US11909652B2 (en) Method, device and storage medium for quality of service (QoS) flow management of time sensitive data for transmission of ethernet packet filter sets
WO2022027666A1 (zh) 一种时间同步方法及装置
CN113572559B (zh) 同步的方法和装置
WO2020001585A1 (zh) 一种时钟同步的方法和装置
US11419072B2 (en) Method for processing a packet in a time-synchronized network and network element for processing a packet in a network
CN111436113B (zh) 支持时钟同步的方法及通信设备
WO2009155828A1 (zh) 修正域信息的处理方法及***
US20220217505A1 (en) Message transmission method and apparatus
US20230092723A1 (en) Communication Method, Apparatus, and Computer-Readable Storage Medium
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
WO2011032494A1 (zh) 精确时间协议报文处理方法和时钟设备
WO2021233313A1 (zh) 配置端口状态的方法、装置、***及存储介质
WO2020103540A1 (zh) 同步的方法和装置
WO2022242234A1 (zh) 报文传输的方法和装置
US20230042506A1 (en) Deterministic quality of service
WO2020221237A1 (zh) 调整时域资源边界的方法和通信装置
WO2024027633A1 (zh) 一种业务流属性配置方法、装置和***
WO2023185013A1 (zh) 一种通信方法及装置
WO2022237505A1 (zh) 一种通信方法、设备及***
WO2022155925A1 (zh) 无线通信方法、第一设备以及第二设备
WO2023065334A1 (zh) 无线通信方法、终端设备和网络设备
WO2024067040A1 (zh) 时钟同步方法和时钟同步装置
WO2023004557A1 (zh) 一种时间同步方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947885

Country of ref document: EP

Kind code of ref document: A1