WO2022027278A1 - 轨道式无需光电传感器的光电和光热一体化追踪*** - Google Patents

轨道式无需光电传感器的光电和光热一体化追踪*** Download PDF

Info

Publication number
WO2022027278A1
WO2022027278A1 PCT/CN2020/106970 CN2020106970W WO2022027278A1 WO 2022027278 A1 WO2022027278 A1 WO 2022027278A1 CN 2020106970 W CN2020106970 W CN 2020106970W WO 2022027278 A1 WO2022027278 A1 WO 2022027278A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
circular
polygonal
tube
fixed
Prior art date
Application number
PCT/CN2020/106970
Other languages
English (en)
French (fr)
Inventor
李�杰
Original Assignee
李�杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李�杰 filed Critical 李�杰
Priority to PCT/CN2020/106970 priority Critical patent/WO2022027278A1/zh
Publication of WO2022027278A1 publication Critical patent/WO2022027278A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of new energy, in particular to a track-type photoelectric and photothermal integrated tracking system that does not require a photoelectric sensor.
  • the track-type photoelectric and photothermal integrated tracking system without the need for photoelectric sensors provided by the present invention solves the above technical problems.
  • the tracking system is divided into two different modes: 1-dimensional or 2-dimensional tracking. Divided into 1+1 and 1+N two different types, in the track device of 2-latitude tracking mode, it mainly includes base, track, bracket, pulley, turntable, driving device, in a circle fixed on the foundation
  • a circular-shaped track is installed on the shaped base, and the sectional shape of the track is divided into two types: L-shaped or polygonal.
  • a ring-shaped groove member is embedded on both sides of each track, and the opening of the groove member is The top is narrow and the bottom is wide. There is also a ring-shaped groove member embedded in the upper wall of the L-shaped section base.
  • the base with polygonal section has only two groove-shaped members, which are installed on the track.
  • There is a circular or triangular bracket X pulleys are installed under the circular bracket, and a pulley is installed at each corner of the triangular bracket, and the shaft of each pulley hangs down on both sides of the pulley.
  • the lower end of the chain, beam or chain has a circular or polygonal member. Insert the beam or chain into the grooves on both sides of the track respectively, and the circular or polygonal member is snapped in the groove and moves with the pulley.
  • the pulley on the track with a truncated surface, one end with a circular or polygonal member is buckled in the groove of the upper wall of the track, and the other end is directly fixed or fixed on the shaft of the pulley through a chain, in the circular or triangular bracket.
  • a turntable is fixedly installed in the center, and both ends of the S beam are fixed on the turntable and the shaft of a circular or triangular bracket or pulley, and a polygonal or circular frame is fixedly installed above the circular or triangular bracket.
  • Y T-shaped joists are fixedly installed on the periphery of the polygonal or circular frame.
  • One of the T-shaped joists has a member with a hinge device installed at the top, and the other side corresponding to it is also installed with H sets of driving devices. Except for the T-joist with hinged device, the top of the rest is fixedly installed with a U-shaped frame, a polygonal or circular platform is framed on the T-joist and the drive device, in the frame at the bottom of the platform, a line with the T The joist is hinged to form a hinged device, and the rest of the frame is placed in the U-shaped frame of the T-shaped joist. The top of the driving device is bolted to the platform. The turntable is a rotatable column, according to the rotation of the column.
  • the turntable of the 1+1 mode is a rotation mode, which is an intelligent electric column.
  • the column is mainly composed of a shaft and a hollow tube. It is fixed on the shaft and rotates with the shaft and cannot move up and down.
  • the above-mentioned S beams are installed on the column.
  • the turntable in the 1+N mode is a non-rotating mode.
  • the structure and installation method of the turntable are the same as those in the 1+1 mode. , but there is no drive motor and mechanical transmission mechanism in the base, but an additional gear is added to the shaft.
  • the gear is fixedly installed on the shaft of the turntable and rotates with the same axis.
  • the gears of the N turntables are linked by a closed chain as One end of the chain is linked with the mechanical transmission mechanism.
  • the turntable in 1+1 mode drives a circular or triangular bracket to rotate by itself, while 1 In the +N mode, the drive motor and the mechanical transmission mechanism jointly drive N circular or triangular brackets to rotate together.
  • the drive device is an intelligent electric column that can be lifted and lowered.
  • the column is mainly composed of polygonal or circular nuts, belts It is composed of a threaded shaft and a T-shaped hollow tube.
  • the T-shaped hollow tube is fixed on the nut to form an integral body.
  • the nut moves up and down along the shaft.
  • the cylinders of all the above-mentioned intelligent electric columns are fixed on the machine base.
  • R groups of large hollow tubes are installed horizontally on the polygonal or circular platform.
  • the system installed on the polygonal or circular platform has two different modes. The first one Both are optoelectronic systems; the second is an integrated system of optoelectronics and photothermal.
  • the bottom of each photovoltaic panel of the optoelectronic system is installed with a II-shaped beam, and a small hollow tube is fixedly installed on it.
  • the photothermal system is a A solar furnace installed with a heat collecting device.
  • the solar furnace is divided into two different types: multi-tube and single-tube.
  • the multi-tube type refers to a solar furnace formed by installing multiple vacuum heat collectors in a box.
  • the bottom of the box and the inner side of the wall are all plates coated with reflective materials, the bottom surface of the bottom of the box is installed with a hollow tube, and an n-type or h-type bracket is fixed on the inner four corners of the bottom of the box.
  • Shelf the box is divided into multiple polygonal or circular lattices, the box is divided into upper and lower layers, the lower layer is fixed on the bracket, the upper layer is movable installation called the cover, the upper and lower layers are connected by hinges, and the bottom of the box wall is hinged On the bottom of the box, the wall of the box is divided into upper and lower sections, and the two sections are connected by hinges. After the box wall is opened, it is supported by a rod.
  • the two ends of the rod are connected to the upper section of the box wall and the lattice-shaped box respectively, so that the box wall and the bottom of the box form an inclined state.
  • the inner tank with a lid is movably placed in the vacuum heat collector , a plurality of vacuum collector tubes are fixed on the polygonal or circular lattice in the box.
  • the single-tube solar furnace is divided into two different types: square and rectangle.
  • the shape of the vacuum collector tube of the square solar furnace is It is square, and the shape of the rectangular solar furnace vacuum heat collecting tube is round.
  • the vacuum heat collecting tube of the square solar furnace is installed in a box.
  • the square lattice-shaped box is fixed on the above-mentioned bracket, the cover of the box is installed on the side, one end is hingedly connected with the box wall through a hinge, and the other end is fastened on the box wall through a buckle,
  • the material of the inner tank is stainless steel or aluminum alloy, which is a polygonal or circular box without a cover with a frame.
  • the inner tank is It is movably placed in a square vacuum heat collecting tube.
  • the rectangular solar furnace includes a light collecting mirror, a polygonal or circular vacuum heat collecting hollow tube, and the light collecting mirror is a plate coated with a reflective material.
  • each type of mirror There are two types of mirrors: flat and parabolic. The two pieces are spliced together to form a triangular or parabolic light collecting mirror. Each type of mirror has N pieces. In the skeleton of each piece, there are X skeletons protruding from the edge of the concentrator, and the positions of the X skeletons in the corresponding two concentrators are staggered.
  • each of the X skeletons has a fixed member at the rear end and a round hole at the front end, and the distance between the fixed member and the round hole is the same as the width of the pipe beam,
  • the X skeletons are inserted into 2X holes on each side of the tube beam respectively, and bolts are fixed on both sides of the tube beam.
  • the M brackets of a vacuum heat collector hollow tube are Y-shaped.
  • the structure of the hollow tube at the bottom and the way of fixing it to the tube beam are the same as the X frame, but the distance between the fixing member and the circular hole is the same as the thickness of the tube beam.
  • the hollow tube of the bracket is inserted into the M holes on the surface of the tube beam , bolts are fixed on the bottom of the tube beam, the vacuum heat collector tube is mounted on the top of the M brackets and fastened to the bracket, an inner tube is inserted inside the heat collector tube, a small hollow tube is installed at the bottom of the tube beam, and the photovoltaic panel of the photovoltaic system
  • the small hollow tube is inserted into the large hollow tube of the platform and fixed by bolts.
  • the multi-tube or single-tube solar furnace of the photovoltaic and photothermal integrated system is mounted on the photovoltaic panel parallel to it through the bracket and fixed on the frame.
  • the 1 latitude The tracking mode can only adjust the azimuth angle.
  • the structure of the 1+1 or 1+N type of track device is the same as that of the above-mentioned 2-latitude tracking mode, but the polygonal or circular platform is directly fixed on the polygonal or circular frame. There is no drive device and T-shaped joist, and a stepped frame is installed on the platform. The photovoltaic panel of the photovoltaic system is inclined to the ground and installed on the platform and the stepped frame by a fixed bracket. The installation method of the solar furnace of the photothermal system is the same as the above. The same as 2 latitude tracking, the angle adjustment of photovoltaic power generation or photoelectric and photothermal integrated system is to adjust the angle of polygon or circular platform, which will be controlled by a solar angle controller installed with an embedded angle sensor.
  • Solar angle controller is an intelligent control device that uses time to control the angle of polygon or circular platform to change. It mainly includes main chip, angle sensor, GPS satellite positioning or electronic compass, clock chip, Bluetooth, motor drive The main chip reads the real-time clock and angle values, and controls the change of the angle of the polygon or circular platform according to different time periods. After the solar angle controller is powered on, the clock chip will automatically use GPS or Bluetooth to carry out The working principle of time calibration, polygon or circular platform angle adjustment is that the solar angle controller and the polygon platform are installed on the same level, when the time reaches the preset time, the controller locates by GPS satellite or electronic compass.
  • the angle detection module is controlled by the motor control module to make the rotation action, so that the polygon or circular platform can complete the horizontal or inclined action, and the intelligent electric column at this time will rotate with the motor.
  • the analog output from the angle sensor is converted by the analog-to-digital converter and sent to the main controller. According to this input, it is determined whether the polygon or circular platform has been rotated to a predetermined angle, and the control module of the motor is controlled accordingly, thereby completing the adjustment of the angle once.
  • the adjusted angle value is ⁇ -J* ⁇ /F in the morning period; the inclination angle is fixed in the noon period, and is ⁇ + ⁇ /F in the afternoon period.
  • the corresponding analog voltage value or adjustment time is input into the storage module of the controller in advance.
  • the specific implementation is that when the angle sensor is in the horizontal position and the angle is 0°, the output terminal Vo outputs an analog voltage of A volt.
  • the analog voltage of B volts is output at this time.
  • the angle sensor changes in the interval of 0° ⁇ or ⁇ 180°
  • the output voltage of the output terminal Vo will be from 0° ⁇ or ⁇ 180°.
  • the components of the hinge device are composed of a bottom plate and a polygonal vertical plate of C block. One end of the vertical plate with an arc has a hole, and the other end is welded and fixed on the bottom plate.
  • the components of the hinge device, C 2 When C > 2, it is a fixed connection with bolts, and when C > 2, it is a hinged connection to form a hinged device, which is characterized in that: no photoelectric sensor device is required, and a track device, polygonal or circular platform is used to construct a non-inductive type.
  • 1-dimensional or 2-dimensional tracking photovoltaic power generation or photovoltaic and photothermal integrated systems, the adjustment of the azimuth and inclination of the photovoltaic and photothermal systems will be timed and controlled by a solar angle controller.
  • the solar angle control The device is based on the timing of time, by controlling the intelligent electric column or driving motor to intelligently drive the polygon or circular platform azimuth to move horizontally to the east or west, or the inclination to rotate from east to west, thereby adjusting the polygon or circle.
  • the method in which the azimuth or inclination of the platform changes with the change of time.
  • the adjustment sequence is that the azimuth angle is adjusted first and the inclination angle is later.
  • the adjustment of the azimuth angle is performed by the solar angle controller according to the signal output by the GPS or electronic compass module.
  • the adjustment of the inclination is an input method, and the input method is to use the maximum inclination arithmetic average method to calculate the required adjustment of the inclination angle value and the corresponding adjustment time.
  • the maximum inclination angle refers to the maximum inclination angle that can be formed by a polygonal or circular platform in the morning or afternoon.
  • the method of arithmetic averaging is performed according to the number of adjustments. Adjust three or more times in a day. The adjustment time period of 2-dimensional tracking is divided into three time periods: morning, noon, and afternoon.
  • the inclination angle is the largest, in the noon period, it is horizontal; in the afternoon period, it faces west, and the inclination angle is the largest.
  • the azimuth angle is adjusted every E minutes, and the inclination angle is adjusted F times within E minutes.
  • the angle value of the maximum inclination angle ⁇ of the polygon or circular platform in the input method is divided into F times according to the arithmetic mean, and the angle value of each adjustment is divided into F times. It is ⁇ /F.
  • the orientation of the photovoltaic panels in the three time periods is the same as that of the three adjustments within 1 day.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F, where J is an integer number series value, the minimum value is 1, and the maximum value is F; in the afternoon period, the newly adjusted angle value is ⁇ + ⁇ /F, ⁇ is the angle value at the previous moment of adjustment, each time the azimuth angle is adjusted, the inclination angle is It has been returned to the initial position, and the 1-dimensional tracking solar angle controller without driving device is installed horizontally. Calculated in minutes.
  • the track-type photoelectric and photothermal integrated tracking system without photoelectric sensors provided by the invention can not only solve the problems of electricity consumption and eating in the state of no-name fire and no electricity, but also can solve the urgent problems encountered in the photoelectric and photothermal fields.
  • the technical problem is that the photoelectric and photothermal system should not only be able to catch up with the sun, but also have practical value.
  • Figure 1 is a top plan view of the platform in 1+1 mode: symbol 1 is a polygonal or circular platform, symbol 2 is a T-joist with a U-shaped frame, symbol 3 is a T-joist, and symbol 4 is a polygonal or circular frame , the symbol 5 is the circular or triangular bracket, the symbol 6 is the pulley, the symbol 7 is the track, the symbol 8 is the S beam, the symbol 9 is the turntable, and the symbol 10 is the driving device;
  • Figure 2 is the 1+1 mode photoelectric or photothermal system
  • the front view of: the symbol 11 is a photovoltaic panel or a solar furnace;
  • Figure 3 is a plan top view of the 1+N mode platform: the symbol 12 is a single-tube solar furnace, the symbol 13 is a gear, the symbol 14 is a chain, and the symbol 15 is a drive motor, Figure 4 It is the front view of 1+N platform mode, Fig.
  • Fig. 5 is the structure drawing of L-shaped track
  • symbol 16 is the groove
  • Fig. 6 is the structure drawing of polygonal track
  • Fig. 7 is the front view of 1 latitude tracking
  • symbol 17 is ladder frame
  • Fig. 8 is the plan top view when the multi-tube solar furnace is received: symbol 18 is the box wall that the upper layer is a trapezoid, and the symbol 19 is the box wall that the upper layer is a triangular shape; Fig.
  • FIG. 9 is the plane plan view when the multi-tube solar furnace works :
  • Symbol 20 is the cover in the box, symbol 21 is the longitudinal beam of the cover, symbol 22 is the beam of the cover, symbol 23 is the vacuum collector tube,
  • Figure 10 is the front view of the working state of the multi-tube solar furnace:
  • the symbol 24 is the box wall The support rod, the symbol 25 is the bottom layer of the box that is fixedly installed on the bracket, and the symbol 26 is the bracket.
  • FIG. 1-2 and 5-6 it is a photoelectric or photothermal system of 2-dimensional tracking in the 1+1 mode.
  • the polygonal or circular platform 1 When the polygonal or circular platform 1 is in a horizontal state, one side of the four-sided beam is hinged with the T-shaped joist 3.
  • Hinged system the remaining three sides are supported on the T-beam 2 with a U-shaped frame, and the other side corresponding to the hinged system is installed with a driving device 10, and the driving device 10 and the T-beams 2 and 3 are fixed on the polygonal or On the circular frame 4, the frame 4 is fixed on the circular or triangular bracket 5, the bracket 5 is fixed on the pulley 6, and the beams or chains on both sides of the shaft of the pulley 6 hang down into the grooves 16 of the track 7.
  • the polygonal or circular member is snapped into the groove 16, and with the sliding of the pulley 6, the bracket 5 and the turntable 9 are respectively connected at both ends of the S beam 8, and the photovoltaic panel or the solar furnace 11 is installed horizontally on the polygonal or circular platform 1. , thus forming a 2-dimensional tracking system.
  • 3 ⁇ 4 and 5 ⁇ 6 are photoelectric or photothermal systems of 2-dimensional tracking in 1+N mode.
  • Each turntable 9 is fixedly installed with a gear 13, a closed chain 14 is linked with N gears, and the other end Fixed on the gear of the drive motor 15, the N groups of turntables 9 will rotate together with the drive motor 15 through a mechanical transmission mechanism, thus forming a system in which a drive motor drives N groups of polygonal or circular platforms 1 to rotate together .
  • FIG. 7 for a photoelectric or photothermal system for 1-dimensional tracking in 1+1 mode.
  • This is a step-type 1-dimensional tracking without a driver that can only adjust the azimuth angle.
  • This mode uses a step-type frame 17 for fixed installation.
  • the platform 1 On the polygonal or circular platform 1, the platform 1 is directly and fixedly installed on the polygonal or circular frame 4, and the photovoltaic panel or solar furnace 11 of the photovoltaic system is inclined to the ground and is installed on the platform 1 and the stepped frame 17 with a fixed bracket .
  • the adjustment of the angle is three or more times in a day.
  • the adjustment time period of the 2-dimensional tracking is divided into three time periods: morning, noon, and afternoon.
  • Three adjustments in one day, polygonal or circular platform, in the morning period is a surface. Facing east, the inclination angle is the largest, and at noon, it is horizontal; in the afternoon, it faces west, and the inclination angle is the largest.
  • the inclination angle is adjusted F times within E minutes, the angle value of the maximum inclination angle ⁇ of the polygon or circular platform in the input method is divided into F times according to the arithmetic mean, and the angle value of each adjustment is ⁇ /F,
  • the orientation of the photovoltaic panels in the three time periods is the same as that of the three adjustments within one day.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F, J is an integer number series value, and the minimum value is 1, the maximum value is F; in the afternoon period, the newly adjusted angle value is ⁇ + ⁇ /F, ⁇ is the angle value at the previous moment of adjustment, each time the azimuth angle is adjusted, the inclination angle has returned to the initial position.
  • the position of the 1-dimensional tracking solar angle controller without drive device is installed horizontally, the inclination is fixed, and the number of azimuth adjustment is the sum of all adjustment times in one day, calculated at every interval of D minutes.
  • the azimuth angle of the polygonal or circular platform 1 is adjusted first.
  • the azimuth angle is determined by the electronic compass module method.
  • the solar angle controller will obtain the signal output by the electronic compass module.
  • the azimuth angle of the sun facing east or west is controlled by the solar angle controller to rotate the turntable 9, and the pulley 6 of the circular or triangular bracket 5 is driven to move by the S beams, and the azimuth angle of the polygonal or circular platform 1 is adjusted in place.
  • the solar angle controller drives the turntable 9 to adjust the azimuth to face east, and in the afternoon, it faces west.
  • the adjustment of the inclination of the polygonal or circular platform 1 adopts the arithmetic average method of the maximum inclination, and the azimuth is adjusted in place. Then adjust the inclination angle, refer to paragraph 0012 for the specific adjustment method.
  • the adjustment method of the azimuth and inclination of the polygonal or circular platform 1 in the 1+N mode is the same as that in the 1+1 mode. signal, control the driving motor 15 to rotate, and drive the N turntables 9 to rotate through the mechanical transmission mechanism, so that the azimuth angle of the polygon or circular platform 1 is adjusted. After the azimuth angle is adjusted in place, the solar angle controller will start the drive of the N groups.
  • the device 10 adjusts the inclination angle of the photovoltaic panel support 1, and the adjustment method refers to paragraph 0012.
  • the adjustment of the azimuth angle is divided into two time periods in the morning and afternoon within a day, and multiple adjustments within a day.
  • the number of times of multiple adjustments is the sum of all time from morning to afternoon, calculated at every E minute interval, and the adjustment method of azimuth angle is consistent with the above 0012 section 2 latitude tracking.
  • the structure of the turntable 9 in the 1+N mode of 1-dimensional tracking is the same as that of the above-mentioned 2-dimensional tracking. Please refer to paragraphs 0012-0014 for the installation of photovoltaic panels or solar furnaces and the adjustment of azimuth angle.
  • the track-type photoelectric and photothermal integrated tracking system without photoelectric sensors of the present invention provides a tracking technology for 1 latitude or 2 latitudes without photoelectric sensors, which is different from the known fixed bracket technology and inductive tracking technology.
  • the new non-inductive photovoltaic power generation technology adopts non-inductive tracking, orbital movement and lever support technology, which greatly improves the cost-effectiveness of the 1-dimensional or 2-dimensional tracking power system of the present invention.
  • the technology is simple, low in cost, and self-destructive.
  • the power is small, which not only solves the problems of electricity consumption and food in people's daily life in the case of no electricity and no fire, but also solves the technical problems that need to be solved in the field of optoelectronics and solar thermal, that is, the optoelectronic and solar thermal systems must not only be able to It also has the problem of practical value.
  • the invention Compared with the photovoltaic and photothermal systems without the function of tracking the sun, the invention has an average increase of about 60% in power generation and heat collection efficiency.
  • the invention has good economic benefits and Ecological Benefits.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种轨道型非感应式追踪的光电和光热一体化***,涉及新能源领域,分别采用轨道装置、多边形或圆形平台(1),构建成一个非感应式1维度或2维度追踪的光伏发电或光电和光热一体化的***,解决了采用燃煤等非环保的方式对环境造成污染以及容易引起火灾的问题,克服了碟式太阳能炉成本高、体积大以及集热效率低的缺陷,使得光电的发电和光热的集热效率平均提高了60%左右,在无明火无电情况下解决了人们吃饭和用电的难题。

Description

轨道式无需光电传感器的光电和光热一体化追踪*** 技术领域
本发明涉及新能源领域,具体为轨道式无需光电传感器的光电和光热一体化追踪***。
背景技术
目前贫困地区人们的日常生活多是采用木材或燃煤等非环保的方式进行,这对环境造成了很大污染的同时,也很容易引起火灾,在无电无明火的情况下,如何解决人们日常生活以及野外作业所需的用电及吃饭问题,不仅是关系到环保的问题,更是生活在这些区域里人们的生存问题,光伏发电的固定支架发电效率低下,而感应式追踪技术成本的高昂,导致这两种光伏发电技术的性价比低下,碟式太阳能炉,由于成本高、体积大以及集热效率低的缺陷,也难以满足人们日常生活的需求,所以在光电和光热的转换率难以大幅度提高的当下,提供一种为市场所接受、能够广泛推广应用的光电和光热一体化技术,就是当下光电和光热领域内所遇到的亟待解决的技术难题。
技术问题
在光电和光热的转换率难以大幅度提高的当下,提供一种为市场所接受、能够广泛推广应用的光电和光热一体化技术,就是当下光电和光热领域内所遇到的亟待解决的技术难题。
技术解决方案
针对上述缺陷,本发明提供的轨道式无需光电传感器的光电和光热一体化追踪***,使得上述的技术难题得到了解决。
为实现上述目的,本发明的技术方案为如下。
轨道式无需光电传感器的光电和光热一体化追踪***,包含轨道装置、太阳能角度控制器、集热装置,追踪***分为1维度或2维度追踪两种不同的模式,这两种类型当中又分为1+1和1+N两种不同的类型,在2纬度追踪模式的轨道装置中,主要包含了基座、轨道、支架、滑轮、转盘、驱动装置,在一个固定于地基上的圆形基座上安装有圆形状的轨道,轨道的截断面形状分为L型或多边形两种,在每条轨道两侧各预埋有一条圆环状的凹槽构件,凹槽构件开口部是上窄下宽,在L型截断面基座的上壁上也预埋有一条圆环状的凹槽构件,共有三条,而多边形截断面的基座只有两条凹槽形构件,轨道上安装有一个圆形或三角形的支架,圆形支架下安装有X个滑轮,而三角形支架的各个角处各安装有一个滑轮,每个滑轮的轴在滑轮的两侧分别下垂固定安装有根梁或链条,梁或链条的下端带有个圆形或多边形的构件,把梁或链条分别***轨道两侧的凹槽内,其圆形或多边形构件卡扣在凹槽内随着滑轮移动,在L型截断面轨道上的滑轮,带有圆形或多边形构件的一端是扣在轨道上壁的凹槽内,另一端是直接固定或通过链条固定在滑轮的轴上,在圆形或三角形支架的中心处固定安装有一个转盘,S条梁两端分别固定在转盘和圆形或三角形的支架或滑轮的轴上,在圆形或三角形支架的上方固定安装有一个多边形或圆形的框架,在多边形或圆形框架的周边上固定安装有Y根T型的托梁,T型托梁中有一边顶端安装有铰接装置的构件,与其相对应的另一边还安装有H套驱动装置,除了安装有铰接装置的T型托梁之外,其余的顶端都固定安装一个U型的框,一个多边形或圆形的平台架在T型托梁和驱动装置上,平台底部的边框中,一条与T型托梁铰接形成铰接装置,其余的边框托放在T型托梁的U型框内,驱动装置的顶端与平台是螺栓固定连接,所述转盘是一根可转动的柱,根据支柱是自转还是非自转分为1+1和1+N两种不同的模式,1+1模式的转盘是自转模式,其是一根智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,柱体上安装有上述的S根梁,所述1+N模式的转盘为非自转模式,转盘的结构及安装方式与1+1模式的相同,只是机座中没有驱动电机和机械传动机构,却在轴上多增加了一个齿轮,齿轮固定安装在转盘的轴上随同轴一起转动,N个转盘的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,1+1模式的转盘是独自带动一个圆形或三角形的支架转动,而1+N模式则由驱动电机与机械传动机构共同驱动N个圆形或三角形支架一同转动,所述驱动装置是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管固定在螺母上形成一体,螺母沿着轴上下移动,上述所有的智能电动柱的柱体固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,多边形或圆形平台上水平安装有R组大空心管,多边形或圆形平台安装的***有两种不同的模式,第一种都是光电***;第二种是光电和光热的一体化***,所述光电***的每块光伏板底部安装有Ⅱ字型梁,其上固定安装有小空心管,所述光热***是安装有集热装置的太阳能炉,所述太阳能炉,其分为多管和单管两种不同类型,多管型的是指多根真空集热管,安装在一个箱子内所形成的太阳能炉,所述多管型太阳能炉,箱底和壁的内侧都是涂有反光材料的板,箱底的底面安装有带有空心管,箱底的内侧四个角上分别固定安装一个n型或h型的托架,盒子内分隔成多个多边形或圆形的格子,盒子分为上下两层,下层固定在托架上,上层活动式安装称为盖子,上下层采用合页连接,箱壁的底部是铰接在箱底上,箱壁分为上下两段,两段之间采用合页连接,下段为四边形、其高度是托架和格子状盒子的高度之和,上段是梯形或梯形和三角形的组合体,箱壁打开后由杆支撑,杆的两端分别连接在箱壁的上段以及格子状的盒子上,使得箱壁与箱底形成倾斜的状态,有盖子的内胆是活动式安放于真空集热管内,多根真空集热管架在盒子内的多边形或圆形的格子上固定,所述单管型太阳能炉,其分为四方形和长方形两种不同的类型,四方形太阳能炉真空集热管的形状为四方形,长方形太阳能炉真空集热管的形状为圆形,所述四方形太阳能炉的真空集热管是安装在一个箱子的盒子内,箱底和箱壁的结构及安装方式都与上述多管型的相同,箱子内四方形格子状的盒子固定在上述的托架上,盒子的盖子是安装在侧面,其一端通过合页与盒子壁铰接连接,另一端通过卡扣扣紧在盒子壁上,内胆的材质为不锈钢或铝合金,其为多边形或圆形的带有边框的无盖的盒子,其侧边有个圆形的接口,接口内带有螺纹,活动式连接把手,内胆是活动式的安放于四方形真空集热管内,所述长方形的太阳能炉,其包含有集光镜、多边形或圆形的真空集热空心管,所述集光镜是涂有反光材料的板,镜面有平板型和抛物线型两种,两块拼接合为一体形成一块三角形或抛物面形的集光镜,每种类型的镜面有N块,每块的骨架中,有X根骨架凸出于集光镜边缘外,相对应两块集光镜中的X根骨架位置是相错的,一根截面为多边形的管梁,两侧各贯穿有2X个孔,上下面贯穿有M个孔,所述X根骨架的每根后端带有固定构件,前端带有圆孔,固定构件与圆孔之间的间距与管梁的宽度相同,两块集光镜拼接时,X根骨架是分别***管梁每侧的2X个孔后,螺栓固定在管梁的两侧上,一根真空集热空心管的M个支架为Y型,其底部空心管的结构以及与管梁固定的方式与X根骨架相同,但固定构件与圆孔之间的间距是与管梁的厚度相同,支架空心管***管梁面上的M个孔内后,螺栓固定固定在管梁底部上,真空集热管架在M个支架的顶端,扣紧在支架上,集热管内部插有一根内管,管梁底部安装有小空心管,光电***的光伏板的小空心管***平台的大空心管内螺栓固定,光电和光热一体化***的多管型或单管型太阳能炉通过支架架在光伏板上与其平行并固定在边框上,所述的1纬度追踪模式只能调节方位角,其1+1或1+N两种类型的轨道装置的结构与上述2纬度追踪模式的相同,但多边形或圆形的平台是直接固定安装在多边形或圆形框架上,无驱动装置和T型托梁,在平台上安装有阶梯型框架,光电***的光伏板与地面倾斜采用固定支架安装在平台和阶梯型框架上,光热***的太阳能炉安装方式与上述2纬度追踪的相同,光伏发电或光电和光热一体化***的角度调节,是调节多边形或圆形平台的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制多边形或圆形平台的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制多边形或圆形平台角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,多边形或圆形平台角度调节的工作原理为,太阳能角度控制器与多边形平台安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作,以使得多边形或圆形平台完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动多边形或圆形平台转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定多边形或圆形平台是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就可以确定多边形或圆形平台与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=2时候,是螺栓的固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用轨道装置、多边形或圆形平台,构建成一个非感应式1维度或2维度追踪的光伏发电或光电和光热一体化的***,光电和光热***的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制,所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机智能驱动多边形或圆形平台方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节多边形或圆形平台的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角是指在上午或下午的时段内,多边形或圆形平台所能够形成的最大倾角,按调节的次数进行算术平均的方法,所述时间计时是一日之内调节三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
有益效果
本发明提供的轨道式无需光电传感器的光电和光热一体化追踪***,不仅能够解决无名火无电状态下用电和吃饭的问题,而且能够解决光电和光热领域内所遇到的亟待解决的技术难题,即光电和光热***不仅要能够追日,而且还要具有实用价值的难题。
附图说明
图1为1+1模式的平台平面俯视图:符号1为多边形或圆形平台,符号2为带U型框架的T型托梁,符号3是T型托梁,符号4为多边形或圆形框架,符号5为圆形或三角形支架,符号6为滑轮,符号7为轨道,符号8为S根梁,符号9为转盘,符号10为驱动装置;图2为1+1模式光电或光热***的正视图:符号11为光伏板或太阳能炉;图3为1+N模式平台的平面俯视图:符号12为单管太阳能炉,符号13为齿轮,符号14为链条,符号15驱动电机,图4为1+N平台模式的正视图,图5为L型轨道的结构图,符号16为凹槽,图6为多边形轨道的结构图;图7为1纬度追踪的正视图,符号17为阶梯框架;图8为多管型太阳能炉收纳时的平面俯视图:符号18是上层为梯形状的箱壁,符号19是上层为三角形状的箱壁;图9为多管型太阳能炉工作时的平面俯视图:符号20为盒子中的盖子,符号21为盖子的纵梁,符号22为盖子的横梁,符号23为真空集热管,图10为多管型太阳能炉工作状态的正视图:符号24是箱壁的支撑杆,符号25为固定安装在托架上的盒子底层,符号26为托架。
本发明的最佳实施方式
参阅图1~2和5~6是1+1模式的2维度追踪的光电或光热***,多边形或圆形平台1呈现水平状态时其四边梁中的一边是与T型托梁3铰接形成铰接***,其余三边托在带有U型框架的T型梁2上,与带有铰接***相对应的另一边安装有驱动装置10,驱动装置10和T型梁2和3固定在多边形或圆形框架4上,框架4固定在圆形或三角形支架5上,支架5固定在滑轮6上,滑轮6轴上两边的梁或链条下垂到轨道7的凹槽16内,梁或链条下端的多边形或圆形构件卡扣于凹槽16内,随着滑轮6滑动,在S条梁8两端分别连接支架5和转盘9,多边形或圆形平台1上水平状安装光伏板或太阳能炉11,由此形成一个2维度追踪***。
参阅图3~4和5~6是1+N模式的2维度追踪的光电或光热***,每个转盘9上固定安装有一个齿轮13,一条闭合链条14链接有N个齿轮,其另一端固定在驱动电机15的齿轮上,N组的转盘9将通过机械传动机构随着驱动电机15一起转动,由此形成了一个由一台驱动电机带动N组多边形或圆形平台1一同转动的***。
参阅图7是1+1模式的1维度追踪的光电或光热***,这是阶梯型的只能调节方位角的无驱动装置的1维度追踪,这种模式是采用阶梯型的框架17固定安装在多边形或圆形的平台1上,平台1是直接固定安装在多边形或圆形框架4上,光电***的光伏板或太阳能炉11与地面倾斜采用固定支架安装在平台1和阶梯型框架17上。
本发明的实施方式
角度的调节是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
在2维度追踪模式当中,在预定时刻,首先调节多边形或圆形平台1的方位角,方位角采用电子指南针模块法来确定方位角,太阳能角度控制器将根据电子指南针模块输出的信号,得出太阳朝东或朝西的方位角,由太阳能角度控制器控制转盘9转动,通过S条梁带动圆形或三角形支架5的滑轮6发生移动,则多边形或圆形平台1的方位角调整到位。上午及正午时间段,太阳能角度控制器驱动转盘9调节方位角面朝东侧,下午时间段则面朝西侧,多边形或圆形平台1倾角的调节采用最大倾角算术平均法,方位角调整到位后再进行倾角的调节,具体的调节方式参照0012段。
在1+N模式的多边形或圆形平台1方位角和倾角的调节方式与1+1模式的相一致,调节方式具体为,在调节的预定的时间,太阳能角度控制器依据角度传感器得出的信号,控制驱动电机15转动,通过机械传动机构带动N个转盘9发生转动,由此多边形或圆形平台1的方位角得到调节,方位角调节到位后,太阳能角度控制器将启动N组的驱动装置10对光伏板支架1的倾角进行调节,调节的方式参照0012段。
在1+1模式的1维度追踪的光电或光热***当中,方位角的调节分为1日之内的上午和下午两个时间段的二次调节,以及1日之内的多次调节,多次调节的次数,是从上午至下午的所有时间的总和,按每间隔E分钟计算所得,方位角的调节方式与上述0012段2纬度追踪的相一致。1维度追踪的1+N模式的转盘9的结构与上述2纬度追踪的相同,光伏板或太阳能炉的安装以及方位角的调节方式参照0012~0014段。
工业实用性
本发明的轨道式无需光电传感器的光电和光热一体化追踪***,提供的1纬度或2纬度无需光电传感器的追踪技术,是一种有别于公知固定支架技术和感应式追踪技术的一种新型非感应式光伏发电技术,其采用非感应式追踪、轨道移动和杠杆支撑技术,使得本发明的1纬度或2维度追踪电***的性价比得到极大提高,其技术简单、成本低、自损电量小,不仅在无电无明火的情况下,解决了人们日常生活的用电及吃饭的难题,而且解决了光电和光热领域内亟待解决的技术难题,即光电和光热***不仅要能够追日,而且还要具有实用价值的难题,本发明比不具有追日功能的光电和光热***的发电和集热的效率平均多增加了60%左右,本发明具有很好的经济效益和生态效益。

Claims (3)

  1. 轨道式无需光电传感器的光电和光热一体化追踪***,包含轨道装置、太阳能角度控制器、集热装置,追踪***分为1维度或2维度追踪两种不同的模式,这两种类型当中又分为1+1和1+N两种不同的类型,在2纬度追踪模式的轨道装置中,主要包含了基座、轨道、支架、滑轮、转盘、驱动装置,在一个固定于地基上的圆形基座上安装有圆形状的轨道,轨道的截断面形状分为L型或多边形两种,在每条轨道两侧各预埋有一条圆环状的凹槽构件,凹槽构件开口部是上窄下宽,在L型截断面基座的上壁上也预埋有一条圆环状的凹槽构件,共有三条,而多边形截断面的基座只有两条凹槽形构件,轨道上安装有一个圆形或三角形的支架,圆形支架下安装有X个滑轮,而三角形支架的各个角处各安装有一个滑轮,每个滑轮的轴在滑轮的两侧分别下垂固定安装有根梁或链条,梁或链条的下端带有个圆形或多边形的构件,把梁或链条分别***轨道两侧的凹槽内,其圆形或多边形构件卡扣在凹槽内随着滑轮移动,在L型截断面轨道上的滑轮,带有圆形或多边形构件的一端是扣在轨道上壁的凹槽内,另一端是直接固定或通过链条固定在滑轮的轴上,在圆形或三角形支架的中心处固定安装有一个转盘,S条梁两端分别固定在转盘和圆形或三角形的支架或滑轮的轴上,在圆形或三角形支架的上方固定安装有一个多边形或圆形的框架,在多边形或圆形框架的周边上固定安装有Y根T型的托梁,T型托梁中有一边顶端安装有铰接装置的构件,与其相对应的另一边还安装有H套驱动装置,除了安装有铰接装置的T型托梁之外,其余的顶端都固定安装一个U型的框,一个多边形或圆形的平台架在T型托梁和驱动装置上,平台底部的边框中,一条与T型托梁铰接形成铰接装置,其余的边框托放在T型托梁的U型框内,驱动装置的顶端与平台是螺栓固定连接,所述转盘是一根可转动的柱,根据支柱是自转还是非自转分为1+1和1+N两种不同的模式,1+1模式的转盘是自转模式,其是一根智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,柱体上安装有上述的S根梁,所述1+N模式的转盘为非自转模式,转盘的结构及安装方式与1+1模式的相同,只是机座中没有驱动电机和机械传动机构,却在轴上多增加了一个齿轮,齿轮固定安装在转盘的轴上随同轴一起转动,N个转盘的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,1+1模式的转盘是独自带动一个圆形或三角形的支架转动,而1+N模式则由驱动电机与机械传动机构共同驱动N个圆形或三角形支架一同转动,所述驱动装置是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管固定在螺母上形成一体,螺母沿着轴上下移动,上述所有的智能电动柱的柱体固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,多边形或圆形平台上水平安装有R组大空心管,多边形或圆形平台安装的***有两种不同的模式,第一种都是光电***;第二种是光电和光热的一体化***,所述光电***的每块光伏板底部安装有Ⅱ字型梁,其上固定安装有小空心管,所述光热***是安装有集热装置的太阳能炉,所述太阳能炉,其分为多管和单管两种不同类型,多管型的是指多根真空集热管,安装在一个箱子内所形成的太阳能炉,所述多管型太阳能炉,箱底和壁的内侧都是涂有反光材料的板,箱底的底面安装有带有空心管,箱底的内侧四个角上分别固定安装一个n型或h型的托架,盒子内分隔成多个多边形或圆形的格子,盒子分为上下两层,下层固定在托架上,上层活动式安装称为盖子,上下层采用合页连接,箱壁的底部是铰接在箱底上,箱壁分为上下两段,两段之间采用合页连接,下段为四边形、其高度是托架和格子状盒子的高度之和,上段是梯形或梯形和三角形的组合体,箱壁打开后由杆支撑,杆的两端分别连接在箱壁的上段以及格子状的盒子上,使得箱壁与箱底形成倾斜的状态,有盖子的内胆是活动式安放于真空集热管内,多根真空集热管架在盒子内的多边形或圆形的格子上固定,所述单管型太阳能炉,其分为四方形和长方形两种不同的类型,四方形太阳能炉真空集热管的形状为四方形,长方形太阳能炉真空集热管的形状为圆形,所述四方形太阳能炉的真空集热管是安装在一个箱子的盒子内,箱底和箱壁的结构及安装方式都与上述多管型的相同,箱子内四方形格子状的盒子固定在上述的托架上,盒子的盖子是安装在侧面,其一端通过合页与盒子壁铰接连接,另一端通过卡扣扣紧在盒子壁上,内胆的材质为不锈钢或铝合金,其为多边形或圆形的带有边框的无盖的盒子,其侧边有个圆形的接口,接口内带有螺纹,活动式连接把手,内胆是活动式的安放于四方形真空集热管内,所述长方形的太阳能炉,其包含有集光镜、多边形或圆形的真空集热空心管,所述集光镜是涂有反光材料的板,镜面有平板型和抛物线型两种,两块拼接合为一体形成一块三角形或抛物面形的集光镜,每种类型的镜面有N块,每块的骨架中,有X根骨架凸出于集光镜边缘外,相对应两块集光镜中的X根骨架位置是相错的,一根截面为多边形的管梁,两侧各贯穿有2X个孔,上下面贯穿有M个孔,所述X根骨架的每根后端带有固定构件,前端带有圆孔,固定构件与圆孔之间的间距与管梁的宽度相同,两块集光镜拼接时,X根骨架是分别***管梁每侧的2X个孔后,螺栓固定在管梁的两侧上,一根真空集热空心管的M个支架为Y型,其底部空心管的结构以及与管梁固定的方式与X根骨架相同,但固定构件与圆孔之间的间距是与管梁的厚度相同,支架空心管***管梁面上的M个孔内后,螺栓固定固定在管梁底部上,真空集热管架在M个支架的顶端,扣紧在支架上,集热管内部插有一根内管,管梁底部安装有小空心管,光电***的光伏板的小空心管***平台的大空心管内螺栓固定,光电和光热一体化***的多管型或单管型太阳能炉通过支架架在光伏板上与其平行并固定在边框上,所述的1纬度追踪模式只能调节方位角,其1+1或1+N两种类型的轨道装置的结构与上述2纬度追踪模式的相同,但多边形或圆形的平台是直接固定安装在多边形或圆形框架上,无驱动装置和T型托梁,在平台上安装有阶梯型框架,光电***的光伏板与地面倾斜采用固定支架安装在平台和阶梯型框架上,光热***的太阳能炉安装方式与上述2纬度追踪的相同,光伏发电或光电和光热一体化***的角度调节,是调节多边形或圆形平台的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制多边形或圆形平台的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制多边形或圆形平台角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,多边形或圆形平台角度调节的工作原理为,太阳能角度控制器与多边形平台安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作,以使得多边形或圆形平台完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动多边形或圆形平台转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定多边形或圆形平台是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就可以确定多边形或圆形平台与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=2时候,是螺栓的固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用轨道装置、多边形或圆形平台,构建成一个非感应式1维度或2维度追踪的光伏发电或光电和光热一体化的***,光电和光热***的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制。
  2. 根据权利要求1所述的轨道式无需光电传感器的光电和光热一体化追踪***,其特征在于:所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机智能驱动多边形或圆形平台方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节多边形或圆形平台的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角是指在上午或下午的时段内,多边形或圆形平台所能够形成的最大倾角,按调节的次数进行算术平均的方法。
  3. 根据权利要求2所述的轨道式无需光电传感器的光电和光热一体化追踪***,其特征在于:所述时间计时是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
PCT/CN2020/106970 2020-08-05 2020-08-05 轨道式无需光电传感器的光电和光热一体化追踪*** WO2022027278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106970 WO2022027278A1 (zh) 2020-08-05 2020-08-05 轨道式无需光电传感器的光电和光热一体化追踪***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106970 WO2022027278A1 (zh) 2020-08-05 2020-08-05 轨道式无需光电传感器的光电和光热一体化追踪***

Publications (1)

Publication Number Publication Date
WO2022027278A1 true WO2022027278A1 (zh) 2022-02-10

Family

ID=80119542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106970 WO2022027278A1 (zh) 2020-08-05 2020-08-05 轨道式无需光电传感器的光电和光热一体化追踪***

Country Status (1)

Country Link
WO (1) WO2022027278A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118347A (ko) * 2009-04-28 2010-11-05 (주)인디고존 태양광 전지판의 각도 조절장치
CN105790692A (zh) * 2016-05-04 2016-07-20 张建孝 一种组合式自动跟踪太阳能光伏电站
CN105871318A (zh) * 2016-04-18 2016-08-17 魏会芳 一种太阳能光伏板调节装置
CN107979335A (zh) * 2017-12-19 2018-05-01 江苏金州新能源科技有限公司 一种可伸缩和旋转型太阳能发电装置
CN110578897A (zh) * 2018-06-10 2019-12-17 李�杰 一种活动支架的太阳能路灯
CN111030575A (zh) * 2019-04-24 2020-04-17 李�杰 一种便携式的追踪型太阳能发电装置
WO2020145452A1 (ko) * 2019-01-09 2020-07-16 김도훈 태양광모듈의 경사각 조절 장치 및 이를 포함하는 태양광 추적 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118347A (ko) * 2009-04-28 2010-11-05 (주)인디고존 태양광 전지판의 각도 조절장치
CN105871318A (zh) * 2016-04-18 2016-08-17 魏会芳 一种太阳能光伏板调节装置
CN105790692A (zh) * 2016-05-04 2016-07-20 张建孝 一种组合式自动跟踪太阳能光伏电站
CN107979335A (zh) * 2017-12-19 2018-05-01 江苏金州新能源科技有限公司 一种可伸缩和旋转型太阳能发电装置
CN110578897A (zh) * 2018-06-10 2019-12-17 李�杰 一种活动支架的太阳能路灯
WO2020145452A1 (ko) * 2019-01-09 2020-07-16 김도훈 태양광모듈의 경사각 조절 장치 및 이를 포함하는 태양광 추적 시스템
CN111030575A (zh) * 2019-04-24 2020-04-17 李�杰 一种便携式的追踪型太阳能发电装置

Similar Documents

Publication Publication Date Title
EP2546975B1 (en) Sunlight-tracking device
WO2019237833A1 (zh) 一种便携式的追踪型太阳能发电装置
WO2022027281A1 (zh) 通信基站无需光电传感器的光伏发电追踪***
WO2022027271A1 (zh) 一种追日型太阳能和风光互补路灯
WO2022027274A1 (zh) 便携式无需光电传感器的光电和光热一体化追踪***
JP7281096B2 (ja) 一種な自動車用の日避けカバー
CN201936193U (zh) 跟踪太阳的立轴回转装置
CN113949337A (zh) 一种光伏板太阳追踪支架及其追踪方法
CN216356593U (zh) 一种光伏板太阳追踪支架
WO2022027267A1 (zh) 太阳能房无需光电传感器的光电和光热一体化追踪***
CN110868149A (zh) 一种具有智能追光、主动避风功能的自适应光伏支架
WO2022027278A1 (zh) 轨道式无需光电传感器的光电和光热一体化追踪***
CN111750545A (zh) 轨道型非感应式追踪的光电和光热一体化***
CN212431366U (zh) 一种追日型的轨道式光电和光热一体化装置
CN212457241U (zh) 一种追日型的太阳能空调和热水器一体化装置
WO2013082872A1 (zh) 同步跟踪摇杆式聚光型太阳能电站
CN212457450U (zh) 一种追日型的车载式光电和光热一体化装置
CN111878943A (zh) 太阳能空调和太阳能热水器的非感应式追踪***
JP3174073U (ja) 太陽光発電装置
CN212435634U (zh) 一种追日型的斜坡面上的分布式光伏发电装置
WO2022027272A1 (zh) 一种追日型的风光互补发电***
WO2022027285A1 (zh) 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪***
CN212457461U (zh) 一种追日型的便携式光电和光热一体化装置
CN212538330U (zh) 一种追日型的太阳能房光电和光热一体化装置
CN113078874A (zh) 一种考虑清洁能源的发电优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948390

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20948390

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.09.2023)