WO2022027228A1 - Method and apparatus for antenna switching - Google Patents

Method and apparatus for antenna switching Download PDF

Info

Publication number
WO2022027228A1
WO2022027228A1 PCT/CN2020/106807 CN2020106807W WO2022027228A1 WO 2022027228 A1 WO2022027228 A1 WO 2022027228A1 CN 2020106807 W CN2020106807 W CN 2020106807W WO 2022027228 A1 WO2022027228 A1 WO 2022027228A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
srs resource
resource set
panel
per
Prior art date
Application number
PCT/CN2020/106807
Other languages
French (fr)
Inventor
Wei Ling
Chenxi Zhu
Bingchao LIU
Yi Zhang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2020/106807 priority Critical patent/WO2022027228A1/en
Publication of WO2022027228A1 publication Critical patent/WO2022027228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • Embodiments of the present application generally relate to wireless communication technology, especially to a method and an apparatus for antenna switching, e.g., in multi-transmit-receive point (multi-TRP) transmission.
  • multi-TRP multi-transmit-receive point
  • Multi-TRP/panel transmission has been introduced into new radio (NR) release 16 (Rel-16) , and enhancements on multiple-input multiple-output (MIMO) for NR have been discussed, for example in RP-182067.
  • NR new radio
  • MIMO multiple-input multiple-output
  • one specific objective of the work item is to extend specification support in enhancements on multi-TRP/panel transmission including: improved reliability and robustness with both ideal and non-ideal backhaul, including: specifying downlink control signalling enhancement (s) for efficient support of non-coherent joint transmission; performing study and, if needed, specifying enhancements on uplink control signalling and/or reference signal (s) for non-coherent joint transmission; and multi-TRP techniques for ultra reliable low latency communications (URLLC) requirements are included in this work item.
  • URLLC ultra reliable low latency communications
  • multiple panels can be activated for receiving (Rx) but only one activated panel can be used to transmit in uplink (UL) .
  • SRS sounding reference signal
  • Antenna switching is a scheme to obtain the DL channel information from UL sounding according to channel reciprocity, e.g., using the transmitting (Tx) ports of a UE to sound channel (s) .
  • One objective of the embodiments of the present application is to provide a technical solution for antenna switching, especially in multi-TRP communication.
  • a method may include: receiving configuration information via at least one signalling, and transmitting sounding reference signal (SRS) resources based on the configuration information.
  • the configuration information indicates that different CORESETPoolIndex values are configured for control resource sets (CORESETs) or that at least one transmission configuration indicator (TCI) codepoint of a medium access control (MAC) control element (CE) for physical downlink shared channel (PDSCH) TCI activation/deactivation is mapped to 2 TCI states.
  • CORESETs control resource sets
  • TCI transmission configuration indicator
  • MAC medium access control
  • CE control element
  • PDSCH physical downlink shared channel
  • the configuration information also indicates one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and wherein the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.
  • a method may include: transmitting configuration information via at least one signalling, and receiving SRS resources based on the configuration information.
  • the configuration information indicates that different CORESETPoolIndex values are configured for CORESETs or that at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states.
  • the configuration information also indicates one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and wherein the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.
  • Some embodiments of the present application also provide an apparatus, include: at least one non-transitory computer-readable medium having computer executable instructions stored therein, at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry.
  • the computer executable instructions are programmed to implement any method as stated above with the at least one receiving circuitry, the at least one transmitting circuitry and the at least one processor.
  • Embodiments of the present application provide a technical solution for antenna switching, especially for enhancing the antenna switching for a UE with multiple panels in multiple TRP communication, and can facilitate and improve the implementation of 5G NR.
  • FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system including at least one TRP according to an embodiment of the present application
  • FIG. 2 is a flow chart illustrating a method for antenna switching according to some embodiments of the present application
  • FIG. 3 is a flow chart illustrating a method for antenna switching some other embodiments of the present application.
  • FIG. 4 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some embodiments of the present application
  • FIG. 5 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some other embodiments of the present application.
  • FIG. 6 illustrates a block diagram of an apparatus for antenna switching according to some embodiments of the present application.
  • a TRP acts like a small base station, and can be identified by a CORESETPoolIndex value or by other manners.
  • Each TRP can be used to serve one or more user equipment (UE) under the control of a base station (BS) .
  • BS base station
  • a TRP may be described using different terminologies.
  • the TRP can even be a base station.
  • CoMP Coordinated Multi-Point
  • Such backhaul may be an ideal backhaul or a non-ideal backhaul. Latency of the ideal backhaul may be deemed as zero, and latency of the non-ideal backhaul may be tens of milliseconds and much larger, e.g. on the order of tens of milliseconds, than that of the ideal backhaul.
  • FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system 100 including at least one TRP 103 according to an embodiment of the present application.
  • a wireless communication system 100 includes one base station 101, two TRPs 103, e.g., a first TRP 103a and a second TRP 103b, and two UEs 105, e.g., a first UE 105a and a second UE 105b.
  • two TRPs 103 and two UEs 105 are shown for simplicity, it should be noted that the wireless communication system 100 may further include more base stations 101, TRPs 103, and UEs 105.
  • the base station 101 may be a gNB in some application scenarios.
  • the TRPs 103 may be connected to the same or different base stations 101, for example using a backhaul.
  • Each TRP 103 may also serve a number of UEs 105.
  • both the first TRP 103a and the second TRP 103b may serve a number of mobile stations including the first UE 105a and the second UE 105b within a serving area, for example, a cell or a cell sector.
  • the first TRP 103a and the second TRP 103b can also communicate with each other, for example via a backhaul.
  • Either or both of the first UE 105a and the second UE 105b may represent a computing device, a wearable device, or a mobile device, etc.
  • a channel sounding procedure will be performed to get channel information by using SRS resource set (s) (or SRS sequence (s) ) .
  • SRS resource set s
  • SRS sequence s
  • CSI channel state information
  • each SRS resource in a given set consisting of a single SRS port
  • the SRS port of the second resource in the set is associated with a different UE antenna port than the SRS port of the first resource in the same set
  • each SRS resource set has two SRS resources transmitted in different symbols, each SRS resource in a given set consisting of two SRS ports, and the SRS port pair of the second resource is associated with a different UE antenna port pair than the SRS port pair of the first resource, or
  • zero or two SRS resource sets each configured with high layer parameter resourceType in SRS-ResourceSet set to 'aperiodic' and with a total of four SRS resources transmitted in different symbols of two different slots, and where the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  • the two sets are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources.
  • the UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet.
  • the UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different. Or,
  • T (or t) " represents a transmitting port and “R (or r) ) " represents a receiving port.
  • the high (or higher) layer may represent a layer higher than the physical (PHY) layer, such as media access control (MAC) layer, a radio resource control (RRC) layer.
  • PHY physical
  • MAC media access control
  • RRC radio resource control
  • 4 SRS resources with one port per SRS resource in two aperiodic SRS resource sets configured with the same power control parameters and the same trigger state with different slot offset can sound the channel as required.
  • 2 aperiodic SRS resource sets with 4 TX ports together in 4 SRS sources as in TS 38.214 cannot sound the whole DL channel as required.
  • the configuration of SRS resource set (s) configured for antenna switching should consider the target receiving TRP due to the UL power control.
  • RRC parameters related to UL power control of SRS resource set (s) can be configured when the SRS resource set (s) are targeting for different TRPs, it will cause a lot of overhead and latency when frequently sounding the channel between different TRPs and a UE since each TRP of multiple TRPs can schedule DL transmission for the UE which needs to obtain the DL channel information between each TRP and the UE. Therefore, existing antenna switching should be enhanced for UEs with multiple panels especially in the multi-TRP scenario.
  • L 2 when 2 CORESETPoolIndex values are configured for CORESETs or at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states.
  • L 2 when 2 CORESETPoolIndex values are configured for CORESETs or at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states.
  • FIG. 2 and FIG. 3 illustrate a basic solution implemented on a UE side and network side, respectively, according to some embodiments of the present application.
  • FIG. 2 is a flow chart illustrating a method for antenna switching according to some embodiments of the present application, which can be performed by a UE or the like.
  • step 201 configuration information can be received via at least one signaling in the UE side.
  • the at least one signaling may be radio resource control signaling etc.
  • the UE may have at least one activated panel, and the number of the at least one activated panel is marked as "K" as stated above.
  • the UE may report the number of the at least one activated panels of the UE to the network side.
  • the configuration information may indicate that different CORESETPoolIndex values are configured for CORESETs or that at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states.
  • the UE side can determine the number of TRPs based on that. For example, as stated above, the number of TRPs equals to 2 when 2 CORESETPoolIndex values are configured for CORESETs or at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states.
  • the configuration information may also indicate one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching. "
  • the at least one SRS resource set within a SRS resource set group can be configured with the same resource type, which is periodic, semi-persistent or aperiodic according to different embodiments of the present application.
  • the SRS resource set (s) within a SRS resource set group is configured as aperiodic, all the SRS resource sets in the SRS resource set group should be configured with the same value of the higher layer parameter aperiodicSRS-ResourceTrigger, or the value of an entry in AperiodicSRS-ResourceTriggerList, and should be configured with different values of the higher layer parameter slotOffset.
  • the more than one SRS resource set is configured with the same power control parameters.
  • the exemplary power control parameters may include target power, scaling factor, pathloss reference reference signal (RS) , and closed pool index.
  • RS pathloss reference reference signal
  • a higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet as recited in TS38.214 6.2.1.2.
  • the maximum number of the one or more SRS resource set groups can be determined by different manners dependent on the setting of the number of activated panels for receiving DL transmission. According to some embodiments of the present application, the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission. A total of SRS ports in each SRS resource set group is the sum of receiving ports on all activated panels, e.g., N*K.
  • Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 1, 2 or 4 SRS ports per SRS resource respectively, and the SRS ports of a second resource in the set are associated with different UE antenna ports than the SRS ports of a first resource in the same set.
  • Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 1 SRS port per SRS resource, and the SRS port of each SRS resource is associated with a UE antenna port different from others'.
  • Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 2 SRS ports per SRS resource, and the SRS ports of each SRS resource are associated with UE antenna ports different from others'.
  • Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 4 SRS ports per SRS resource respectively, and the SRS ports of each SRS resource are associated with UE antenna ports different from others'.
  • Each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • Each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  • Each SRS resource set group includes one SRS resource set and 4 SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  • Each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 2 SRS ports per SRS resource transmitted in different symbols of two different slots, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  • Each SRS resource set group includes one SRS resource set and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • Each SRS resource set group includes at least 2 SRS resource sets and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols of different slots, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • the maximum number of the one or more SRS resource set groups may be determined based on K, i.e., the number of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.
  • a total of SRS ports in each SRS resource set group is the sum of receiving ports on the only one activated panel for receiving downlink transmission, e.g., N.
  • Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively.
  • Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 1 SRS port per SRS resource.
  • the SRS port of each SRS source is associated with a UE antenna port different from others'.
  • Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 2 SRS ports per SRS resource.
  • the SRS ports of each SRS source are associated with UE antenna ports different from others'.
  • Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 4 SRS ports per SRS resource.
  • the SRS ports of each SRS source are associated with UE antenna ports different from others'.
  • Each group includes one SRS resource set and a total of 2 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS ports of the second resource in the set are associated with different UE antenna ports than the SRS ports of the first resource in the same set.
  • Each group includes one SRS resource set and a total of two SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  • Each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • Each SRS resource set group including two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  • each SRS resource set within the 2K SRS resource set groups may be configured with a panel ID or an antenna group ID to identify an activated panel (also referred to as "UE panel" ) .
  • SRS resources can be transmitted in step 203, e.g., to perform a channel sounding procedure.
  • FIG. 3 is a flow chart illustrating a method for antenna switching according to some other embodiments of the present application, which can be performed by a BS or the like. Considering the consistency between the network side and UE side, the exemplary procedure will be briefly illustrated in the network side.
  • configuration information can be transmitted via at least one signalling, e.g., from the network side to the UE side.
  • the configuration information may indicate that different CORESETPoolIndex values are configured for CORESETs or that at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states.
  • the configuration information may also indicate one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching.
  • the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission.
  • the number of the at least one activated panel of the UE i.e., K can be received from the UE.
  • a total of SRS ports in each SRS resource set group is the sum of receiving ports on all activated panels.
  • the maximum number of the one or more SRS resource set groups may be determined based on K, i.e., the number of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.
  • a total of SRS ports in each SRS resource set group is the sum of receiving ports on the only one activated panel for receiving downlink transmission.
  • step 303 SRS resources may be received based on the configuration information.
  • N*K Rx ports can be used to receive DL transmission from a TRP; and setting b) , only N Rx ports can be used to receive DL transmission from a TRP.
  • setting a) or setting b) dependent on UE’ capability and the carry frequency of transmission.
  • Rx in only one panel can be used to receive DL transmission from a TRP in a same time interval. Therefore, it only needs to get the DL channel information between a given TRP and its corresponding received panel for the given TRP.
  • a UE may only support setting b) in FR2 considering the beam forming.
  • Rx ports in all K activated panels of a UE can be used simultaneously to receive DL transmission from a TRP of 2 TRPs.
  • FIG. 4 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some embodiments of the present application, which is in the scenario a) .
  • TRP1 and TRP2 there are two TRPs, i.e., TRP1 and TRP2.
  • a UE with K activated panels can receive DL transmission from a given TRP, e.g., TRP1 or TRP2, by using N*K Rx ports.
  • Each TRP, e.g., TRP1 and TRP2 can obtain full DL channel information by UL sounding.
  • At most 2 SRS resource set groups are configured for antenna switching, wherein each SRS resource set group of the 2 SRS resource set groups includes total N*K SRS ports in N*K/M SRS resources with M SRS ports per SRS resource within a SRS resource set group.
  • each SRS resource set group has N*K/M SRS resources and N*K SRS ports, wherein each SRS resource has M SRS ports.
  • the SRS resources within each SRS resource set group can belong to at least one SRS resource set.
  • two SRS resource set groups are configured for UE in the embodiment shown in FIG. 5, wherein SRS resource set group 0 is associated with TRP1, and SRS resource set group 1 is associated with TRP2.
  • Each SRS resource set group includes N*K/M SRS resources with M SRS ports per SRS resource.
  • only one SRS resource set group is configured for UE, which is alternatively associated with TRP1 and TRP2 to perform channel sounding by adjusting related parameters.
  • More specific configuration can be illustrated by using a typical number of activated panels, e.g., 2 in a similar expression to the existing specification, e.g., TS38.214 6.2.1.2 to keep consistency and compatibility, so that persons skilled in the art can determine the configuration information in the same way.
  • 1T1R, 2T2R or 4T4R per panel with 2 panels (1T2R, 2T4R or 4T8R) up to 2 SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group includes 2 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs. Therefore, the UL power control parameters of different SRS source sets associated with different TRPs are configured independently.
  • 1T2R per panel with 2 panels (1T4R) up to 2 SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each group has 4 SRS resources transmitted in different symbols, each SRS resource in a given group consisting of 1 SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
  • 1T2R per panel (1T4R) up to 2 aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set group including two SRS resource sets has a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and where the SRS port of each SRS resource in the given group is associated with a different UE antenna port.
  • the two sets in each SRS resource set group are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources.
  • the UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet.
  • the UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
  • 2T4R per panel (2T8R) up to 2 SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group has 4 SRS resources transmitted in different symbols, each SRS resource in a given group consisting of 2 SRS port, and the SRS ports of each SRS resource are associated with different UE antenna ports.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
  • 2T4R per panel (2T8R) up to 2 aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set groups including two SRS resource sets has a total of four SRS resources with 2 SRS ports per SRS resource transmitted in different symbols of two different slots, and where 2 SRS ports of each SRS resource in the given group are associated with different UE antenna ports.
  • the two sets in each SRS resource set group are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources.
  • the UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet.
  • the UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
  • 1T4R per panel (1T8R) up to 2 periodic or semi-persistent SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each set has 8 SRS resources transmitted in different symbols, each SRS resource in a given set consisting of 1 SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
  • 1T4R per panel (1T8R) up to 2 aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set group including at least 2 SRS resource sets has a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols of different slots, and where the SRS port of each SRS resource in the given group is associated with a different UE antenna port.
  • the UE shall expect that the SRS resource sets in a SRS resource set group are configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet.
  • the UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different.
  • Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
  • scenario b Some embodiments for illustrating the scheme based on setting b) are described in the following scenario (scenario b) hereafter) : only Rx ports in one activated panel can be used to receive DL transmission from a TRP of 2 TRPs in a same time interval.
  • This scenario corresponds to multi-DCI multi-TRP PDSCH transmission.
  • FIG. 5 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some other embodiments of the present application, which is in the scenario b) .
  • TRP1 and TRP2 there are two TRPS, i.e., TRP1 and TRP2.
  • a TRP may be only associated with one panel which is used to transmit and/or receive transmission corresponding to the TRP, where it can be obtained by DL beam management. Therefore, the number of SRS resource set groups is determined by DL beam management of TRPs and a UE. For a UE with K activated panels (N Rx ports and M Tx ports per panel) , the maximum configured number of SRS resource set groups can be 2K, while the actual number of SRS resource set groups is determined by a BS, e.g., a gNB according the result of DL beam management between the multiple TRPs of gNB and UE.
  • a BS e.g., a gNB according the result of DL beam management between the multiple TRPs of gNB and UE.
  • 2K SRS resource set groups are configured for UE for antenna switching, e.g., SRS resource set groups 0, 1...K-1 associated with TRP1 and SRS resource set groups K, K+1...2K-1 associated with TRP2.
  • Each SRS resource set group includes total N SRS ports in N/M SRS sources with M SRS ports per SRS resource within one SRS resource set group.
  • Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify an activated panel.
  • More specific configuration can be illustrated by using a typical number of activated panels, e.g., 2 in a similar expression to the existing specification, e.g., TS38.214 6.2.1.2 to keep consistency and compatibility, so that persons skilled in the art can determine the configuration information in the same way.
  • each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group includes 1 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively.
  • Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
  • each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each set group has 2 SRS resources transmitted in different symbols, each SRS resource in a given set group consisting of 1 SRS port, and the SRS port of the second resource in the set is associated with a different UE antenna port than the SRS port of the first resource in the same set.
  • Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
  • each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group has two SRS resources transmitted in different symbols, each SRS resource in a given set group consisting of two SRS ports, and the SRS port pair of the second resource is associated with a different UE antenna port pair than the SRS port group of the first resource.
  • Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
  • each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each set group has 4 SRS resources transmitted in different symbols, each SRS resource in a given set group consisting of 1 SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port.
  • Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
  • aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set group including two SRS resource sets has a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and where the SRS port of each SRS resource in the given group is associated with a different UE antenna port.
  • the two sets in each SRS resource set group are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources.
  • the UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet.
  • the UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different.
  • Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
  • FIG. 6 illustrates a block diagram of an apparatus 600 for antenna switching according to some embodiments of the present application.
  • the apparatus 600 may include at least one non-transitory computer-readable medium 601, at least one receiving circuitry 602, at least one transmitting circuitry 604, and at least one processor 606 coupled to the non-transitory computer-readable medium 601, the receiving circuitry 602 and the transmitting circuitry 604.
  • the apparatus 600 may be a network side apparatus (e.g., a BS) configured to perform a method illustrated in FIG. 3 and the like, or a remote unit (e.g., a UE) configured to perform a method illustrated in FIG. 2 or the like.
  • the at least one processor 606, transmitting circuitry 604, and receiving circuitry 602 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated.
  • the receiving circuitry 602 and the transmitting circuitry 604 can be combined into a single device, such as a transceiver.
  • the apparatus 600 may further include an input device, a memory, and/or other components.
  • the non-transitory computer-readable medium 601 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the UE as described above.
  • the computer-executable instructions when executed, cause the processor 606 interacting with receiving circuitry 602 and transmitting circuitry 604, so as to perform the steps with respect to the UE depicted in FIG. 2.
  • the non-transitory computer-readable medium 601 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the BS as described above.
  • the computer-executable instructions when executed, cause the processor 606 interacting with receiving circuitry 602 and transmitting circuitry 604, so as to perform the steps with respect to the BS depicted in FIG. 3.
  • the method according to embodiments of the present application can also be implemented on a programmed processor.
  • the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like.
  • any device on which resides a finite state machine capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application.
  • an embodiment of the present application provides an apparatus including a processor and a memory. Computer programmable instructions for implementing a method stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method.
  • the method may be a method as stated above or other method according to an embodiment of the present application.
  • An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions.
  • the instructions are preferably executed by computer-executable components preferably integrated with a network security system.
  • the non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device.
  • the computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device.
  • an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein.
  • the computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present application are related to a method and apparatus for antenna switching. An exemplary method of the present application includes: receiving configuration information via at least one signalling, and transmitting sounding reference signal (SRS) resources based on the configuration information. The configuration information indicates one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and wherein the maximum number of the one or more SRS resource set groups is 2 for a user equipment (UE) in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.

Description

METHOD AND APPARATUS FOR ANTENNA SWITCHING TECHNICAL FIELD
Embodiments of the present application generally relate to wireless communication technology, especially to a method and an apparatus for antenna switching, e.g., in multi-transmit-receive point (multi-TRP) transmission.
BACKGROUND
Multi-TRP/panel transmission has been introduced into new radio (NR) release 16 (Rel-16) , and enhancements on multiple-input multiple-output (MIMO) for NR have been discussed, for example in RP-182067. According to RP-182067, one specific objective of the work item is to extend specification support in enhancements on multi-TRP/panel transmission including: improved reliability and robustness with both ideal and non-ideal backhaul, including: specifying downlink control signalling enhancement (s) for efficient support of non-coherent joint transmission; performing study and, if needed, specifying enhancements on uplink control signalling and/or reference signal (s) for non-coherent joint transmission; and multi-TRP techniques for ultra reliable low latency communications (URLLC) requirements are included in this work item.
In Rel-17 MIMO, multiple panels can be activated for receiving (Rx) but only one activated panel can be used to transmit in uplink (UL) . Besides, there can be multiple TRPs to receive the UL transmissions from a user equipment (UE) with multiple activated panels. In order to get downlink (DL) channel information from UL sounding, sounding reference signal (SRS) resource sets are configured with the parameter "usage" as "antenna switching. " Antenna switching is a scheme to obtain the DL channel information from UL sounding according to channel reciprocity, e.g., using the transmitting (Tx) ports of a UE to sound channel (s) .
However, there is only a rough frame on the scheme of "antenna switching, " more enhancements on antenna switching are needed, especially for a UE with  multiple panels in a multi-TRP scenario.
SUMMARY OF THE APPLICATION
One objective of the embodiments of the present application is to provide a technical solution for antenna switching, especially in multi-TRP communication.
According to an embodiment of the present application, a method may include: receiving configuration information via at least one signalling, and transmitting sounding reference signal (SRS) resources based on the configuration information. The configuration information indicates that different CORESETPoolIndex values are configured for control resource sets (CORESETs) or that at least one transmission configuration indicator (TCI) codepoint of a medium access control (MAC) control element (CE) for physical downlink shared channel (PDSCH) TCI activation/deactivation is mapped to 2 TCI states. The configuration information also indicates one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and wherein the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.
According to another embodiment of the present application, a method may include: transmitting configuration information via at least one signalling, and receiving SRS resources based on the configuration information. Wherein the configuration information indicates that different CORESETPoolIndex values are configured for CORESETs or that at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states. The configuration information also indicates one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and wherein the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one  activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time.
Some embodiments of the present application also provide an apparatus, include: at least one non-transitory computer-readable medium having computer executable instructions stored therein, at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry. The computer executable instructions are programmed to implement any method as stated above with the at least one receiving circuitry, the at least one transmitting circuitry and the at least one processor.
Embodiments of the present application provide a technical solution for antenna switching, especially for enhancing the antenna switching for a UE with multiple panels in multiple TRP communication, and can facilitate and improve the implementation of 5G NR.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the application can be obtained, a description of the application is rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. These drawings depict only example embodiments of the application and are not therefore to be considered limiting of its scope.
FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system including at least one TRP according to an embodiment of the present application;
FIG. 2 is a flow chart illustrating a method for antenna switching according to some embodiments of the present application;
FIG. 3 is a flow chart illustrating a method for antenna switching some other embodiments of the present application;
FIG. 4 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some embodiments of the present application;
FIG. 5 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some other embodiments of the present application; and
FIG. 6 illustrates a block diagram of an apparatus for antenna switching according to some embodiments of the present application.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of preferred embodiments of the present application, and is not intended to represent the only form in which the present application may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present application.
In a wireless communication system, there may be at least one TRP. A TRP acts like a small base station, and can be identified by a CORESETPoolIndex value or by other manners. Each TRP can be used to serve one or more user equipment (UE) under the control of a base station (BS) . In different application scenarios, a TRP may be described using different terminologies. In fact, in some application scenarios, for example, in a scenario of Coordinated Multi-Point (CoMP) , the TRP can even be a base station. Persons skilled in the art should understand that as the 3GPP and the communication technology develop, the terminologies recited in the specification may change, which should not affect the scope of the present application.
Multiple TRPs may communicate with each other using a backhaul. Such backhaul may be an ideal backhaul or a non-ideal backhaul. Latency of the ideal backhaul may be deemed as zero, and latency of the non-ideal backhaul may be tens of milliseconds and much larger, e.g. on the order of tens of milliseconds, than that of the ideal backhaul.
FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system 100 including at least one TRP 103 according to an embodiment of the present application.
Specifically, as shown in FIG. 1, a wireless communication system 100 includes one base station 101, two TRPs 103, e.g., a first TRP 103a and a second TRP 103b, and two UEs 105, e.g., a first UE 105a and a second UE 105b. Although only one base station 101, two TRPs 103 and two UEs 105 are shown for simplicity, it should be noted that the wireless communication system 100 may further include more base stations 101, TRPs 103, and UEs 105. The base station 101 may be a gNB in some application scenarios. The TRPs 103, for example, the first TRP 103a and the second TRP 103b may be connected to the same or different base stations 101, for example using a backhaul. Each TRP 103 may also serve a number of UEs 105. As an example, both the first TRP 103a and the second TRP 103b may serve a number of mobile stations including the first UE 105a and the second UE 105b within a serving area, for example, a cell or a cell sector. The first TRP 103a and the second TRP 103b can also communicate with each other, for example via a backhaul. Either or both of the first UE 105a and the second UE 105b may represent a computing device, a wearable device, or a mobile device, etc.
For cross-link interference measurement in the network, a channel sounding procedure will be performed to get channel information by using SRS resource set (s) (or SRS sequence (s) ) . For example, an exemplary UE sounding procedure for DL channel state information (CSI) acquisition is drafted in TS 38.214 6.2.1.2. Specifically, TS 38.214 6.2.1.2 recites the following configuration for UE, "when the UE, is configured with the higher layer parameter usage in SRS-ResourceSet set as 'antennaSwitching, ' the UE may be configured with only one of the following configurations depending on the indicated UE capability the UE may be configured  with only one of the following configurations depending on the indicated UE capability supportedSRS-TxPortSwitch ( 't1r2' for 1T2R, 't1r1-t1r2' for 1T=1R/1T2R, 't2r4' for 2T4R, 't1r4' for 1T4R, 't1r1-t1r2-t1r4' for 1T=1R/1T2R/1T4R, 't1r4-t2r4' for 1T4R/2T4R, 't1r1-t1r2-t2r2-t2r4' for 1T=1R/1T2R/2T=2R/2T4R, 't1r1-t1r2-t2r2-t1r4-t2r4' for 1T=1R/1T2R/2T=2R/1T4R/2T4R, 't1r1' for 1T=1R, 't2r2' for 2T=2R, 't1r1-t2r2' for 1T=1R/2T=2R, 't4r4' for 4T=4R, or 't1r1-t2r2-t4r4' for 1T=1R/2T=2R/4T=4R) :
- For 1T2R, up to two SRS resource sets configured with a different value for the high layer parameter resourceType in SRS-ResourceSet set, where each set has two SRS resources transmitted in different symbols, each SRS resource in a given set consisting of a single SRS port, and the SRS port of the second resource in the set is associated with a different UE antenna port than the SRS port of the first resource in the same set, or
- For 2T4R, up to two SRS resource sets configured with a different value for the high layer parameter resourceType in SRS-ResourceSet set, where each SRS resource set has two SRS resources transmitted in different symbols, each SRS resource in a given set consisting of two SRS ports, and the SRS port pair of the second resource is associated with a different UE antenna port pair than the SRS port pair of the first resource, or
- For 1T4R, zero or one SRS resource set configured with higher layer parameter resourceType in SRS-ResourceSet set to 'periodic' or 'semi-persistent' with four SRS resources transmitted in different symbols, each SRS resource in a given set consisting of a single SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port, and
- For 1T4R, zero or two SRS resource sets each configured with high layer parameter resourceType in SRS-ResourceSet set to 'aperiodic' and with a total of four SRS resources transmitted in different symbols of two different slots, and where the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port. The two sets are each configured with two  SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources. The UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet. The UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different. Or,
- For 1T=1R, or 2T=2R, or 4T=4R, up to two SRS resource sets each with one SRS resource, where the number of SRS ports for each SRS resource is equal to 1, 2, or 4. "
Where, "T (or t) " represents a transmitting port and "R (or r) ) " represents a receiving port. The high (or higher) layer may represent a layer higher than the physical (PHY) layer, such as media access control (MAC) layer, a radio resource control (RRC) layer.
According to the above configuration, 4 SRS resources with one port per SRS resource in two aperiodic SRS resource sets configured with the same power control parameters and the same trigger state with different slot offset can sound the channel as required. However, when there are two activated panels in the UE side with one 1T4R per panel, 2 aperiodic SRS resource sets with 4 TX ports together in 4 SRS sources as in TS 38.214 cannot sound the whole DL channel as required. Besides, when there are multiple TRPs to be used to receive UL transmission from a UE with multiple panels, the configuration of SRS resource set (s) configured for antenna switching should consider the target receiving TRP due to the UL power control. Although RRC parameters related to UL power control of SRS resource set (s) can be configured when the SRS resource set (s) are targeting for different TRPs, it will cause a lot of overhead and latency when frequently sounding the channel between different TRPs and a UE since each TRP of multiple TRPs can schedule DL transmission for the UE which needs to obtain the DL channel information between  each TRP and the UE. Therefore, existing antenna switching should be enhanced for UEs with multiple panels especially in the multi-TRP scenario.
It is assumed that there are K activated panels in a UE, and there are M Tx ports and N Rx ports per panel. Besides, it is assumed that there are L TRPs receiving UL transmission from the UE with multiple activated panels. K, M and N can be reported by the UE according to UE capability reporting. Although the term "multiple (activated) panels" is used, the technical solution illustrated herein can also be adaptive to only one activated panel, i.e., K>=1. Similarly, M, N and L can also be 1 or greater than 1. In addition, according to Rel-16, only up to 2 TRPs can be supported in Rel-16, and a UE operates in a multi-TRP scenario when 2 CORESETPoolIndex values are configured for CORESETs or at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states. Therefore, L equals to 2 when 2 CORESETPoolIndex values are configured for CORESETs or at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states. In order to simplify the following description, we assume L=2 in the following descriptions. However, based on the disclosure and teaching of the following descriptions, persons skilled in the art can obtain the technical solution when L is larger than 2, which should also be included in the present application.
Specifically, according to embodiments of the present application, different strategies can be applied to enhance antenna switching. For example, FIG. 2 and FIG. 3 illustrate a basic solution implemented on a UE side and network side, respectively, according to some embodiments of the present application.
Specifically, FIG. 2 is a flow chart illustrating a method for antenna switching according to some embodiments of the present application, which can be performed by a UE or the like.
As shown in FIG. 2, in step 201, configuration information can be received via at least one signaling in the UE side. The at least one signaling may be radio resource control signaling etc. The UE may have at least one activated panel, and the number of the at least one activated panel is marked as "K" as stated above. Before receiving the configuration information, the UE may report the number of the  at least one activated panels of the UE to the network side.
The configuration information may indicate that different CORESETPoolIndex values are configured for CORESETs or that at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states. The UE side can determine the number of TRPs based on that. For example, as stated above, the number of TRPs equals to 2 when 2 CORESETPoolIndex values are configured for CORESETs or at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states. The configuration information may also indicate one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching. "
The at least one SRS resource set within a SRS resource set group can be configured with the same resource type, which is periodic, semi-persistent or aperiodic according to different embodiments of the present application. When the SRS resource set (s) within a SRS resource set group is configured as aperiodic, all the SRS resource sets in the SRS resource set group should be configured with the same value of the higher layer parameter aperiodicSRS-ResourceTrigger, or the value of an entry in AperiodicSRS-ResourceTriggerList, and should be configured with different values of the higher layer parameter slotOffset.
In the case that there is more than one SRS resource set within in a SRS resource set group, the more than one SRS resource set is configured with the same power control parameters. The exemplary power control parameters may include target power, scaling factor, pathloss reference reference signal (RS) , and closed pool index. For example, a higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet as recited in TS38.214 6.2.1.2.
The maximum number of the one or more SRS resource set groups can be determined by different manners dependent on the setting of the number of activated panels for receiving DL transmission. According to some embodiments of the present application, the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for  simultaneously receiving downlink transmission. A total of SRS ports in each SRS resource set group is the sum of receiving ports on all activated panels, e.g., N*K.
For example, when an antenna configuration of the UE is 1T1R per panel, 2T2R per panel or 4T4R per panel with 2 panels, there are up to 2 SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 1, 2 or 4 SRS ports per SRS resource respectively, and the SRS ports of a second resource in the set are associated with different UE antenna ports than the SRS ports of a first resource in the same set. For example, for an antenna configuration being 1T1R per panel, there are up to 2 SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 1 SRS port per SRS resource, and the SRS port of each SRS resource is associated with a UE antenna port different from others'. For an antenna configuration of the UE being 2T2R per panel or 4T4R per panel with 2 panels, there are up to 2 SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 2 SRS ports per SRS resource, and the SRS ports of each SRS resource are associated with UE antenna ports different from others'. For an antenna configuration of the UE being 4T4R per panel with 2 panels, there are up to 2 SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 4 SRS ports per SRS resource respectively, and the SRS ports of each SRS resource are associated with UE antenna ports different from others'.
When an antenna configuration of the UE is 1T2R per panel with 2 panels, there are up to 2 SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
When an antenna configuration of the UE is 1T2R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups. Each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna  port.
When an antenna configuration of the UE is 2T4R per panel with 2 panels, there are up to 2 SRS resource set groups. Each SRS resource set group includes one SRS resource set and 4 SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
When an antenna configuration of the UE is 2T4R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups. Each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 2 SRS ports per SRS resource transmitted in different symbols of two different slots, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
When an antenna configuration of the UE is 1T4R per panel with 2 panels, there are up to 2 periodic or semi-persistent SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
When an antenna configuration is 1T4R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups. Each SRS resource set group includes at least 2 SRS resource sets and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols of different slots, and the SRS port of each SRS resource is associated with a different UE antenna port.
According to some other embodiments of the present application, the maximum number of the one or more SRS resource set groups may be determined based on K, i.e., the number of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time. A total of SRS ports in each SRS resource set group is the sum of receiving ports on the only one activated panel for receiving downlink transmission, e.g., N.
For example, when an antenna configuration is 1T1R per panel, 2T2R per  panel or 4T4R per panel with K panels, there are up to 2K SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively. For example, for an antenna configuration being 1T1R per panel with K panels, there are up to 2K SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 1 SRS port per SRS resource. The SRS port of each SRS source is associated with a UE antenna port different from others'. For an antenna configuration being 2T2R per panel with K panels, there are up to 2K SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 2 SRS ports per SRS resource. The SRS ports of each SRS source are associated with UE antenna ports different from others'. For an antenna configuration being 4T4R per panel with K panels, there are up to 2K SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 4 SRS ports per SRS resource. The SRS ports of each SRS source are associated with UE antenna ports different from others'.
When an antenna configuration is 1T2R per panel with K panels, there are up to 2K SRS resource set groups. Each group includes one SRS resource set and a total of 2 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS ports of the second resource in the set are associated with different UE antenna ports than the SRS ports of the first resource in the same set.
When an antenna configuration is 2T4R per panel with K panels, there are up to 2K SRS resource set groups. Each group includes one SRS resource set and a total of two SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
When an antenna configuration is 1T4R per panel with K panels, there are up to 2K SRS resource set groups. Each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
When an antenna configuration is 1T4R per panel with K panels, there are up  to 2K aperiodic SRS resource set groups. Each SRS resource set group including two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
In addition, for the above exemplary configurations of SRS resource set group in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time, each SRS resource set within the 2K SRS resource set groups may be configured with a panel ID or an antenna group ID to identify an activated panel (also referred to as "UE panel" ) .
Based on the configuration information, SRS resources can be transmitted in step 203, e.g., to perform a channel sounding procedure.
On the network side, a similar procedure can be performed. For example, FIG. 3 is a flow chart illustrating a method for antenna switching according to some other embodiments of the present application, which can be performed by a BS or the like. Considering the consistency between the network side and UE side, the exemplary procedure will be briefly illustrated in the network side.
As shown in FIG. 3, in step 301, configuration information can be transmitted via at least one signalling, e.g., from the network side to the UE side. The configuration information may indicate that different CORESETPoolIndex values are configured for CORESETs or that at least one TCI codepoint of a MAC CE for PDSCH TCI activation/deactivation is mapped to 2 TCI states. The configuration information may also indicate one or more SRS resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching. " According to some embodiments of the present application, the maximum number of the one or more SRS resource set groups is 2 for a UE in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission. The number of the at least one activated panel of the UE, i.e., K can be received from the UE. A total of SRS ports in each SRS resource set group is the sum of receiving ports on all activated panels. According to some other embodiments of the present application, the maximum  number of the one or more SRS resource set groups may be determined based on K, i.e., the number of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time. A total of SRS ports in each SRS resource set group is the sum of receiving ports on the only one activated panel for receiving downlink transmission.
In step 303, SRS resources may be received based on the configuration information.
Based on the above basic solutions, more details will be illustrated in various embodiments hereafter.
As stated above, there are at least two schemes for determining the maximum number of SRS resource set groups dependent on the setting of the panels of a UE, i.e.: setting a) , N*K Rx ports can be used to receive DL transmission from a TRP; and setting b) , only N Rx ports can be used to receive DL transmission from a TRP. Whether a UE supports setting a) or setting b) dependent on UE’s capability and the carry frequency of transmission. For example, in FR2, Rx in only one panel can be used to receive DL transmission from a TRP in a same time interval. Therefore, it only needs to get the DL channel information between a given TRP and its corresponding received panel for the given TRP. Accordingly, a UE may only support setting b) in FR2 considering the beam forming. When there is only one activated panel, the technical solution based on setting a) and setting b) can both be adaptive.
Scheme Based On Setting a)
Some embodiments for illustrating the scheme based on setting a) are described in the following scenario (scenario a) hereafter) : Rx ports in all K activated panels of a UE can be used simultaneously to receive DL transmission from a TRP of 2 TRPs.
FIG. 4 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some embodiments of the present application, which is in the scenario a) .
Referring to FIG. 4, there are two TRPs, i.e., TRP1 and TRP2. A UE with K activated panels (N Rx ports and M Tx ports per panel) can receive DL transmission from a given TRP, e.g., TRP1 or TRP2, by using N*K Rx ports. Each TRP, e.g., TRP1 and TRP2 can obtain full DL channel information by UL sounding. At most 2 SRS resource set groups are configured for antenna switching, wherein each SRS resource set group of the 2 SRS resource set groups includes total N*K SRS ports in N*K/M SRS resources with M SRS ports per SRS resource within a SRS resource set group. That is, there are at most 2 SRS resource set groups, each SRS resource set group has N*K/M SRS resources and N*K SRS ports, wherein each SRS resource has M SRS ports. The SRS resources within each SRS resource set group can belong to at least one SRS resource set. For example, two SRS resource set groups are configured for UE in the embodiment shown in FIG. 5, wherein SRS resource set group 0 is associated with TRP1, and SRS resource set group 1 is associated with TRP2. Each SRS resource set group includes N*K/M SRS resources with M SRS ports per SRS resource. In another example, only one SRS resource set group is configured for UE, which is alternatively associated with TRP1 and TRP2 to perform channel sounding by adjusting related parameters.
More specific configuration can be illustrated by using a typical number of activated panels, e.g., 2 in a similar expression to the existing specification, e.g., TS38.214 6.2.1.2 to keep consistency and compatibility, so that persons skilled in the art can determine the configuration information in the same way.
1T1R, 2T2R or 4T4R per panel with 2 panels (1T2R, 2T4R or 4T8R) : up to 2 SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group includes 2 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs. Therefore, the UL power control parameters of different SRS source sets associated with different TRPs are configured independently.
1T2R per panel with 2 panels (1T4R) : up to 2 SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each group has 4 SRS resources transmitted in different symbols,  each SRS resource in a given group consisting of 1 SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
1T2R per panel (1T4R) : up to 2 aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set group including two SRS resource sets has a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and where the SRS port of each SRS resource in the given group is associated with a different UE antenna port. The two sets in each SRS resource set group are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources. The UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet. The UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
2T4R per panel (2T8R) : up to 2 SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group has 4 SRS resources transmitted in different symbols, each SRS resource in a given group consisting of 2 SRS port, and the SRS ports of each SRS resource are associated with different UE antenna ports. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
2T4R per panel (2T8R) : up to 2 aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set groups including two SRS resource sets has a total of four SRS resources with 2 SRS ports per SRS resource transmitted in different symbols of two different slots, and where 2  SRS ports of each SRS resource in the given group are associated with different UE antenna ports. The two sets in each SRS resource set group are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources. The UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet. The UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
1T4R per panel (1T8R) : up to 2 periodic or semi-persistent SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each set has 8 SRS resources transmitted in different symbols, each SRS resource in a given set consisting of 1 SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP of 2 TRPs.
1T4R per panel (1T8R) : up to 2 aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set group including at least 2 SRS resource sets has a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols of different slots, and where the SRS port of each SRS resource in the given group is associated with a different UE antenna port. The UE shall expect that the SRS resource sets in a SRS resource set group are configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet. The UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different. Each SRS resource set group of 2 SRS resource set groups is associated with one TRP  of 2 TRPs.
A summary of SRS resource set group configuration for antenna switching according to different configurations of the number of UE Tx ports and Rx ports and the number of UE activated panels in scenario a) is shown in Table 1.
Table 1
Figure PCTCN2020106807-appb-000001
Figure PCTCN2020106807-appb-000002
Scheme Based On Setting b)
Some embodiments for illustrating the scheme based on setting b) are described in the following scenario (scenario b) hereafter) : only Rx ports in one activated panel can be used to receive DL transmission from a TRP of 2 TRPs in a same time interval. This scenario corresponds to multi-DCI multi-TRP PDSCH transmission.
FIG. 5 illustrates a schematic diagram of configuration of SRS resource set groups for antenna switching according to some other embodiments of the present application, which is in the scenario b) .
Referring to FIG. 5, there are two TRPS, i.e., TRP1 and TRP2. A TRP may be only associated with one panel which is used to transmit and/or receive transmission corresponding to the TRP, where it can be obtained by DL beam management. Therefore, the number of SRS resource set groups is determined by DL beam management of TRPs and a UE. For a UE with K activated panels (N Rx ports and M Tx ports per panel) , the maximum configured number of SRS resource set groups can be 2K, while the actual number of SRS resource set groups is determined by a BS, e.g., a gNB according the result of DL beam management between the multiple TRPs of gNB and UE.
For example, in FIG. 5, 2K SRS resource set groups are configured for UE for antenna switching, e.g., SRS resource set  groups  0, 1…K-1 associated with TRP1 and SRS resource set groups K, K+1…2K-1 associated with TRP2. Each SRS  resource set group includes total N SRS ports in N/M SRS sources with M SRS ports per SRS resource within one SRS resource set group. Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify an activated panel.
More specific configuration can be illustrated by using a typical number of activated panels, e.g., 2 in a similar expression to the existing specification, e.g., TS38.214 6.2.1.2 to keep consistency and compatibility, so that persons skilled in the art can determine the configuration information in the same way.
For 1T1R, 2T2R or 4T4R per panel: up to 2K SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group includes 1 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively. Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
For 1T2R per panel: up to 2K SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each set group has 2 SRS resources transmitted in different symbols, each SRS resource in a given set group consisting of 1 SRS port, and the SRS port of the second resource in the set is associated with a different UE antenna port than the SRS port of the first resource in the same set. Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
For 2T4R per panel: up to 2K SRS resource set groups where each group includes one SRS resource set are configured with usage as ‘antenna switching’ , where each SRS resource set group has two SRS resources transmitted in different symbols, each SRS resource in a given set group consisting of two SRS ports, and the SRS port pair of the second resource is associated with a different UE antenna port pair than the SRS port group of the first resource. Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
For 1T4R per panel: up to 2K SRS resource set groups where each group  includes one SRS resource set are configured with usage as ‘antenna switching’ , where each set group has 4 SRS resources transmitted in different symbols, each SRS resource in a given set group consisting of 1 SRS port, and the SRS port of each SRS resource is associated with a different UE antenna port. Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
For 1T4R per panel: up to 2K aperiodic SRS resource set groups are configured with usage as ‘antenna switching’ , where each SRS resource set group including two SRS resource sets has a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and where the SRS port of each SRS resource in the given group is associated with a different UE antenna port. The two sets in each SRS resource set group are each configured with two SRS resources, or one set is configured with one SRS resource and the other set is configured with three SRS resources. The UE shall expect that the two sets are both configured with the same values of the higher layer parameters alpha, p0, pathlossReferenceRS, and srs-PowerControlAdjustmentStates in SRS-ResourceSet. The UE shall expect that the value of the higher layer parameter aperiodicSRS-ResourceTrigger or the value of an entry in AperiodicSRS-ResourceTriggerList in each SRS-ResourceSet is the same, and the value of the higher layer parameter slotOffset in each SRS-ResourceSet is different. Each SRS resource set within 2K SRS resource set groups may be configured with a panel ID or antenna group ID to identify a UE panel.
A summary of SRS resource set group configuration for antenna switching according to different configurations of the number of UE Tx ports and Rx ports and the number of UE activated panels in scenario b) is shown in Table 2.
Table 2
Figure PCTCN2020106807-appb-000003
Figure PCTCN2020106807-appb-000004
Embodiments of the present application also propose an apparatus for antenna switching. For example, FIG. 6 illustrates a block diagram of an apparatus 600 for antenna switching according to some embodiments of the present application.
As shown in FIG. 6, the apparatus 600 may include at least one non-transitory computer-readable medium 601, at least one receiving circuitry 602, at least one transmitting circuitry 604, and at least one processor 606 coupled to the non-transitory computer-readable medium 601, the receiving circuitry 602 and the transmitting circuitry 604. The apparatus 600 may be a network side apparatus (e.g., a BS) configured to perform a method illustrated in FIG. 3 and the like, or a remote unit (e.g., a UE) configured to perform a method illustrated in FIG. 2 or the like.
Although in this figure, elements such as the at least one processor 606, transmitting circuitry 604, and receiving circuitry 602 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated. In some embodiments of the present application, the receiving circuitry 602 and the  transmitting circuitry 604 can be combined into a single device, such as a transceiver. In certain embodiments of the present application, the apparatus 600 may further include an input device, a memory, and/or other components.
For example, in some embodiments of the present application, the non-transitory computer-readable medium 601 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the UE as described above. For example, the computer-executable instructions, when executed, cause the processor 606 interacting with receiving circuitry 602 and transmitting circuitry 604, so as to perform the steps with respect to the UE depicted in FIG. 2.
In some embodiments of the present application, the non-transitory computer-readable medium 601 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the BS as described above. For example, the computer-executable instructions, when executed, cause the processor 606 interacting with receiving circuitry 602 and transmitting circuitry 604, so as to perform the steps with respect to the BS depicted in FIG. 3.
The method according to embodiments of the present application can also be implemented on a programmed processor. However, the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like. In general, any device on which resides a finite state machine capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application. For example, an embodiment of the present application provides an apparatus including a processor and a memory. Computer programmable instructions for implementing a method stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method. The method may be a method as stated above or other method according to an embodiment of the present application.
An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a network security system. The non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device. For example, an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein. The computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.
While this application has been described with specific embodiments thereof, it is evident that many alternatives, modifications, and variations may be apparent to those skilled in the art. For example, various components of the embodiments may be interchanged, added, or substituted in the other embodiments. Also, all of the elements of each figure are not necessary for operation of the disclosed embodiments. For example, one of ordinary skill in the art of the disclosed embodiments would be enabled to make and use the teachings of the application by simply employing the elements of the independent claims. Accordingly, embodiments of the application as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the application.

Claims (46)

  1. A method, comprising:
    receiving configuration information via at least one signalling,
    wherein the configuration information indicates that different CORESETPoolIndex values are configured for control resource sets (CORESETs) or that at least one transmission configuration indicator (TCI) codepoint of a medium access control (MAC) control element (CE) for physical downlink shared channel (PDSCH) TCI activation/deactivation is mapped to 2 TCI states;
    wherein the configuration information indicates one or more sounding reference signal (SRS) resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and
    wherein the maximum number of the one or more SRS resource set groups is 2 for a user equipment (UE) in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel of the UE in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time; and
    transmitting SRS resources based on the configuration information.
  2. The method of claim 1, wherein in the case that there is more than one SRS resource set within in a SRS resource set group, the more than one SRS resource set is configured with same power control parameters.
  3. The method of claim 2, wherein the power control parameters include target power, scaling factor, pathloss reference reference signal (RS) , and closed pool index.
  4. The method of claim 1, comprising reporting the number of the at least one activated panels of the UE.
  5. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T1R per panel, 2T2R per panel or 4T4R per panel with 2 panels, there are up to 2 SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 1, 2 or 4 SRS ports per SRS resource respectively, and the SRS ports of a second resource in the set is associated with different UE antenna ports than the SRS ports of a first resource in the same set.
  6. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T2R per panel with 2 panels, there are up to 2 SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  7. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T2R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups, wherein each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  8. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 2T4R per panel with 2 panels, there are up to 2 SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and 4 SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  9. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 2T4R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups, wherein each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 2 SRS ports per SRS resource transmitted in different symbols of two different slots, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  10. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T4R per panel with 2 panels, there are up to 2 periodic or semi-persistent SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  11. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T4R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups, wherein each SRS resource set group includes at least 2 SRS resource sets and a total of 8 SRS resources with 1 SRS port per SRS resource  transmitted in different symbols of different slots, and the SRS port of each SRS resource is associated with a different UE antenna port.
  12. The method of claim 1, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T1R per panel, 2T2R per panel or 4T4R per panel with K panels, there are up to 2K SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively.
  13. The method of claim 1, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T2R per panel with K panels, there are up to 2K SRS resource set groups, wherein each group includes one SRS resource set and a total of 2 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of the second resource in the set is associated with different UE antenna port than the SRS port of the first resource in the same set.
  14. The method of claim 1, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 2T4R per panel with K panels, there are up to 2K SRS resource set groups, wherein each group includes one SRS resource set and a total of two SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  15. The method of claim 1, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T4R per panel with K panels, there are up to 2K SRS  resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  16. The method of claim 1, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T4R per panel with K panels, there are up to 2K aperiodic SRS resource set groups, wherein each SRS resource set group including two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  17. The method of anyone of claims 12-16, wherein each SRS resource set within the 2K SRS resource set groups is configured with a panel ID or an antenna group ID to identify an activated panel.
  18. The method of anyone of claims 7, 9, 11, and 16, wherein in the case that there is more than one aperiodic SRS resource set within in a SRS resource set group, the more than one aperiodic SRS resource set is configured with a same value of a parameter "aperiodicSRS-ResourceTrigger" or a same value of an entry in "AperiodicSRS-ResourceTriggerList, " while is configured with different slot offsets.
  19. The method of anyone of claims 7, 9, 11 and 16, wherein the number of SRS resources within each SRS resource set are the same or different.
  20. The method of claim 1, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission, a total of SRS  ports in each SRS resource set group is the sum of receiving ports on all activated panels.
  21. The method of claim 1, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time, a total of SRS ports in each SRS resource set group is the sum of receiving ports on the only one activated panel for receiving downlink transmission.
  22. The method of claim 1, wherein the at least one SRS resource sets is configured with a same resource type, which is one of periodic, semi-persistent and aperiodic.
  23. A method, comprising:
    transmitting configuration information via at least one signalling,
    wherein the configuration information indicates that different CORESETPoolIndex values are configured for control resource sets (CORESETs) or that at least one transmission configuration indicator (TCI) codepoint of a medium access control (MAC) control element (CE) for physical downlink shared channel (PDSCH) TCI activation/deactivation is mapped to 2 TCI states;
    wherein the configuration information indicates one or more sounding reference signal (SRS) resource set groups, each of the one or more SRS resource set groups includes at least one SRS resource set configured with a parameter usage as "antenna switching, " and
    wherein the maximum number of the one or more SRS resource set groups is 2 for a user equipment (UE) in the case that at least one activated panel of the UE is for simultaneously receiving downlink transmission, or is determined based on the number, K of the at least one activated panel in the  case that only one of the at least one activated panel is for receiving downlink transmission at the same time; and
    receiving SRS resources based on the configuration information.
  24. The method of claim 23, wherein in the case that there is more than one SRS resource set within in a SRS resource set group, the more than one SRS resource set is configured with same power control parameters.
  25. The method of claim 24, wherein the power control parameters include target power, scaling factor, pathloss reference reference signal (RS) , and closed pool index.
  26. The method of claim 23, comprising receiving the number of the at least one activated panels of the UE.
  27. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T1R per panel, 2T2R per panel or 4T4R per panel with 2 panels, there are up to 2 SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 2 SRS resources with 1, 2 or 4 SRS ports per SRS resource respectively, and the SRS ports of a second resource in the set is associated with different UE antenna ports than the SRS ports of a first resource in the same set.
  28. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T2R per panel with 2 panels, there are up to 2 SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different  symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  29. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T2R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups, wherein each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  30. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 2T4R per panel with 2 panels, there are up to 2 SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and 4 SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  31. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 2T4R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups, wherein each SRS resource set group includes two SRS resource sets and a total of four SRS resources with 2 SRS ports per SRS resource transmitted in different symbols of two different slots, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  32. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna  configuration is 1T4R per panel with 2 panels, there are up to 2 periodic or semi-persistent SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource is associated with a different UE antenna port.
  33. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission and an antenna configuration is 1T4R per panel with 2 panels, there are up to 2 aperiodic SRS resource set groups, wherein each SRS resource set group includes at least 2 SRS resource sets and a total of 8 SRS resources with 1 SRS port per SRS resource transmitted in different symbols of different slots, the SRS port of each SRS resource is associated with a different UE antenna port.
  34. The method of claim 23, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T1R per panel, 2T2R per panel or 4T4R per panel with K panels, there are up to 2K SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 1 SRS resource with 1, 2 or 4 SRS ports per SRS resource respectively.
  35. The method of claim 23, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T2R per panel with K panels, there are up to 2K SRS resource set groups, wherein each group includes one SRS resource set and a total of 2 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS ports of the second resource in the set is associated with different UE antenna ports than the SRS ports of the first resource in the same set.
  36. The method of claim 23, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 2T4R per panel with K panels, there are up to 2K SRS resource set groups, wherein each group includes one SRS resource set and a total of two SRS resources with 2 SRS ports per SRS resource transmitted in different symbols, and the SRS port pair of each SRS resource is associated with a different UE antenna port pair.
  37. The method of claim 23, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T4R per panel with K panels, there are up to 2K SRS resource set groups, wherein each SRS resource set group includes one SRS resource set and a total of 4 SRS resources with 1 SRS port per SRS resource transmitted in different symbols, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  38. The method of claim 23, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time and an antenna configuration is 1T4R per panel with K panels, there are up to 2K aperiodic SRS resource set groups, wherein each SRS resource set group including two SRS resource sets and a total of four SRS resources with 1 SRS port per SRS resource transmitted in different symbols of two different slots, and the SRS port of each SRS resource in the given two sets is associated with a different UE antenna port.
  39. The method of anyone of claims 34-38, wherein each SRS resource set within the 2K SRS resource set groups is configured with a panel ID or an antenna group ID to identify an activated panel.
  40. The method of anyone of claims 29, 31, 33, and 38, wherein in the case that there is more than one aperiodic SRS resource set within in a SRS resource set group, the more than one aperiodic SRS resource set is configured with a same value of a parameter "aperiodicSRS-ResourceTrigger" or a same value of an entry in "AperiodicSRS-ResourceTriggerList, " while is configured with different slot offsets.
  41. The method of anyone of claims 29, 31, 33 and 38, wherein the number of SRS resources within each SRS resource set are the same or different.
  42. The method of claim 23, wherein in the case that the at least one activated panel of the UE is for simultaneously receiving downlink transmission, a total of SRS ports in each SRS resource set group is the sum of receiving ports on all activated panels.
  43. The method of claim 23, wherein in the case that only one of the at least one activated panel is for receiving downlink transmission at the same time, a total of SRS ports in each SRS resource set group is the sum of receiving ports on the only one activated panel for receiving downlink transmission.
  44. The method of claim 23, wherein the at least one SRS resource sets is configured with a same resource type, which is one of periodic, semi-persistent and aperiodic.
  45. An apparatus, comprising:
    at least one non-transitory computer-readable medium having stored thereon computer-executable instructions;
    at least one receiving circuitry;
    at least one transmitting circuitry; and
    at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry,
    wherein the computer-executable instructions cause the at least one processor to implement the method of anyone of Claims 1-22 with the at least one receiving circuitry and the at least one transmitting circuitry.
  46. An apparatus, comprising:
    at least one non-transitory computer-readable medium having stored thereon computer-executable instructions;
    at least one receiving circuitry;
    at least one transmitting circuitry; and
    at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry,
    wherein the computer-executable instructions cause the at least one processor to implement the method of anyone of Claims 23-44 with the at least one receiving circuitry and the at least one transmitting circuitry.
PCT/CN2020/106807 2020-08-04 2020-08-04 Method and apparatus for antenna switching WO2022027228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106807 WO2022027228A1 (en) 2020-08-04 2020-08-04 Method and apparatus for antenna switching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106807 WO2022027228A1 (en) 2020-08-04 2020-08-04 Method and apparatus for antenna switching

Publications (1)

Publication Number Publication Date
WO2022027228A1 true WO2022027228A1 (en) 2022-02-10

Family

ID=80119288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106807 WO2022027228A1 (en) 2020-08-04 2020-08-04 Method and apparatus for antenna switching

Country Status (1)

Country Link
WO (1) WO2022027228A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245575A (en) * 2020-01-10 2020-06-05 展讯半导体(南京)有限公司 Semi-persistent scheduling method and device, base station, user terminal and readable storage medium
CN111314035A (en) * 2020-01-20 2020-06-19 北京紫光展锐通信技术有限公司 PDCCH monitoring method, device, user equipment and storage medium
WO2020146141A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Qcl relationship and/or dmrs port identification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146141A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Qcl relationship and/or dmrs port identification
CN111245575A (en) * 2020-01-10 2020-06-05 展讯半导体(南京)有限公司 Semi-persistent scheduling method and device, base station, user terminal and readable storage medium
CN111314035A (en) * 2020-01-20 2020-06-19 北京紫光展锐通信技术有限公司 PDCCH monitoring method, device, user equipment and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "[AT109e][121][EMIMO] DL MAC CE design (Oppo)", 3GPP DRAFT; R2-2001686, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200306, 11 March 2020 (2020-03-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051864442 *

Similar Documents

Publication Publication Date Title
US11737111B2 (en) Method and apparatus for communicating user data via a physical shared channel
US10887843B2 (en) Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
US12022497B2 (en) Configuration information transmission method and device
JP7416293B2 (en) Methods performed on terminal devices, terminal devices, methods performed on network devices, and network devices
US20210321355A1 (en) Timing adjustment
CN112073129B (en) Method and device for determining state of antenna panel
JP2021530123A (en) Methods, network devices, and terminals
US20230396307A1 (en) Apparatus and method of communicating on different beams
US20220240120A1 (en) Resource Measurement Method and Apparatus
US20230239032A1 (en) Beam processing method and apparatus, and related device
US20240072965A1 (en) Methods and nodes for pusch port selection for srs transmission with multiple srs resource sets
WO2022027228A1 (en) Method and apparatus for antenna switching
WO2022116094A1 (en) Method, device and computer readable medium for communication
CN112312441B (en) Communication method and communication device
WO2022236530A1 (en) Methods and apparatuses for beam failure recovery
WO2023050343A1 (en) Methods and apparatuses for pusch repetition transmissions
WO2023010389A1 (en) Method and apparatus for physical uplink control channel (pucch) transmission
US20240205919A1 (en) Methods and apparatuses for multiple transmit-receive point (m-trp) based physical uplink shared channel (pusch) transmission
WO2023004636A1 (en) Methods and apparatuses for m-trp based transmission
US20240072862A1 (en) Uplink transmission with repetitions
WO2024065746A1 (en) Indications of precoder and transmission layer for subscriber data management based simulation uplink transmission
WO2022236591A1 (en) Methods and apparatuses for multi-trp transmission
WO2022011607A1 (en) Method and apparatus for harq-ack feedback in multi-trp transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20948544

Country of ref document: EP

Kind code of ref document: A1