WO2022027199A1 - 可移动平台的控制方法、可移动平台及存储介质 - Google Patents

可移动平台的控制方法、可移动平台及存储介质 Download PDF

Info

Publication number
WO2022027199A1
WO2022027199A1 PCT/CN2020/106657 CN2020106657W WO2022027199A1 WO 2022027199 A1 WO2022027199 A1 WO 2022027199A1 CN 2020106657 W CN2020106657 W CN 2020106657W WO 2022027199 A1 WO2022027199 A1 WO 2022027199A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable platform
sub
value
obstacle
signal transmission
Prior art date
Application number
PCT/CN2020/106657
Other languages
English (en)
French (fr)
Inventor
赵力尧
刘昂
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080005979.5A priority Critical patent/CN112969976A/zh
Priority to PCT/CN2020/106657 priority patent/WO2022027199A1/zh
Publication of WO2022027199A1 publication Critical patent/WO2022027199A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Definitions

  • the present application relates to the field of control, and in particular, to a control method of a movable platform, a movable platform and a storage medium.
  • the movable platform such as drones, ground mobile robots, etc.
  • the connection between the movable platform and the ground control equipment will be lost, causing the movable platform to the ground control device.
  • the image transmission signal of the device is interrupted, and the user who operates the movable platform cannot monitor the status of the movable platform on the ground control equipment, so that the user loses the actual control ability of the movable platform. On the one hand, this is not good for the user experience, on the other hand.
  • the movable platform if the user continues to operate the movable platform without monitoring the state of the movable platform, it is easy to cause an accident on the movable platform (for example, causing the movable platform to collide with an obstacle) and easily damage the movable platform.
  • the present application provides a control method of a movable platform, a movable platform and a storage medium.
  • the present application provides a method for controlling a movable platform, wherein the movable platform is communicatively connected to a ground control device, and the method includes:
  • a signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform is determined, and the signal quality parameter corresponding to each sub-area indicates that the movable platform is in the In the sub-region, the signal transmission quality when the movable platform and the ground control equipment transmit signals;
  • a target path of the movable platform is planned, so that the movable platform moves along the target path.
  • the present application provides a movable platform, the movable platform is communicatively connected with a ground control device, and the movable platform includes: a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • a signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform is determined, and the signal quality parameter corresponding to each sub-area indicates that the movable platform is in the In the sub-region, the signal transmission quality when the movable platform and the ground control equipment transmit signals;
  • a target path of the movable platform is planned, so that the movable platform moves along the target path.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, enables the processor to implement the above-mentioned removable platform control method.
  • the embodiments of the present application provide a method for controlling a movable platform, a movable platform, and a storage medium, to obtain an obstacle distribution map of the surrounding environment of the movable platform; and to determine the surrounding environment of the movable platform according to the obstacle distribution map.
  • the signal transmission quality parameter corresponding to each sub-region in the multiple sub-regions of Signal transmission quality at the time of signal according to the signal transmission quality parameters corresponding to the multiple sub-regions, plan the target path of the movable platform, so that the movable platform moves along the target path.
  • the signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform is determined according to the obtained obstacle distribution map, the signal quality parameter corresponding to each sub-area represents the movable platform and the ground control in the sub-area.
  • the movable platform can always keep in contact with the ground control equipment when moving along the target path, and accidents can be avoided. And improve the user experience; when planning the target path, in addition to avoiding areas with poor signal transmission quality, and also considering not to encounter obstacles, it can also make the movable platform move along the target path to avoid collision with obstacles to ensure flight safety. sex.
  • FIG. 1 is a schematic flowchart of an embodiment of a control method for a mobile platform of the present application
  • FIG. 2 is a schematic diagram of an embodiment of an obstacle distribution map constructed in the control method of the mobile platform of the present application
  • FIG. 3 is a schematic flowchart of another embodiment of the control method of the mobile platform of the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the control method of the mobile platform of the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of the control method of the mobile platform of the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of the control method of the mobile platform of the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of a control method for a movable platform of the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of a control method for a movable platform of the present application.
  • FIG. 9 is a schematic diagram of an embodiment of determining the RSSI value corresponding to each grid area in the control method of the mobile platform of the present application.
  • Fig. 10 is a schematic diagram of the RSSI value obtained by updating the calculated RSSI value with the detected actual RSSI value in Fig. 9;
  • FIG. 11 is a schematic diagram of an embodiment of constructing a cost map in the control method of the mobile platform of the present application.
  • FIG. 12 is a schematic diagram of an embodiment of planning a target path according to a cost map in the control method of the mobile platform of the present application
  • FIG. 13 is a schematic diagram of an embodiment of re-planning the target path on the basis of FIG. 12;
  • FIG. 14 is a schematic structural diagram of an embodiment of a movable platform of the present application.
  • the connection between the movable platform and the ground control equipment may be lost during the movement process, resulting in the interruption of the image transmission signal, and the operating user cannot monitor the status of the movable platform, so that the user loses the actual control ability.
  • the user experience is not good, if the user continues to operate the movable platform, it is easy to cause an accident on the movable platform (for example, the movable platform collides with an obstacle), and it is easy to damage the movable platform.
  • the embodiments of the present application provide a method for controlling a movable platform, a movable platform, and a storage medium, to obtain an obstacle distribution map of the surrounding environment of the movable platform; and to determine the surrounding environment of the movable platform according to the obstacle distribution map.
  • the signal transmission quality parameter corresponding to each sub-region in the multiple sub-regions of Signal transmission quality at the time of signal according to the signal transmission quality parameters corresponding to the multiple sub-regions, plan the target path of the movable platform, so that the movable platform moves along the target path.
  • the signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform is determined according to the obtained obstacle distribution map, the signal quality parameter corresponding to each sub-area represents the movable platform and the ground control in the sub-area.
  • the movable platform can avoid obstacles and provide technical support; when the target path is planned to avoid areas with poor signal transmission quality, the movable platform can always keep in contact with the ground control equipment when moving along the target path, which can avoid accidents. And improve the user experience; when planning the target path, in addition to avoiding areas with poor signal transmission quality, and also considering not to encounter obstacles, it can also make the movable platform move along the target path to avoid collision with obstacles and ensure flight safety. sex.
  • FIG. 1 is a schematic flowchart of an embodiment of a control method for a movable platform of the present application.
  • the movable platform is communicatively connected to a ground control device, and the movable platform can be automatically moved or controlled.
  • Various platforms that move under conditions such as: drones, vehicles, unmanned vehicles, ground robots, unmanned ships, etc.; the ground control equipment can be operated by the user or under the user's instructions. Controlled equipment, such as remote controls, ground stations, etc.
  • the method includes: step S101, step S102 and step S103.
  • Step S101 Obtain an obstacle distribution map of the surrounding environment of the movable platform.
  • the distribution map of obstacles in the surrounding environment of the movable platform may be a map of the distribution of obstacles in the surrounding environment where the movable platform is moving or is about to move
  • the information on the distribution map of obstacles includes: obstacles in the surrounding environment Location in the environment, height of obstacles, etc.
  • the information on the distribution map of obstacles may further include: categories or types of obstacles, and sizes of obstacles.
  • the obstacle distribution map of the surrounding environment of the movable platform can be obtained by constructing the movable platform in real time during the moving process, or it can be obtained by pre-constructing.
  • the obtaining an obstacle distribution map of the surrounding environment of the movable platform may include: obtaining obstacles in the surrounding environment of the movable platform constructed by obstacle avoidance sensors of the movable platform Distribution.
  • the movable platform can construct an obstacle distribution map by using its own obstacle avoidance sensor, and mark information such as the position and height of the obstacle on the map. It is worth noting that the specific content of the obstacle distribution map constructed in this way is strongly related to the movement trajectory of the movable platform. This is because the observation range of the movable platform is limited, and the map can only show the movement trajectory of the movable platform as A central, channel-like area with a radius of the observation distance. Areas that are not observed in the map can be considered free of obstacles.
  • the movable platform is an unmanned aerial vehicle (that is, an aircraft), the three circles in the figure are the obstacles detected by the drone, the white area is the area explored by the drone, and the gray area is the drone Unexplored areas are treated as if there are no obstacles.
  • obstacle avoidance sensors include but are not limited to: visual sensors, radar sensors, ultrasonic sensors, infrared sensors, and the like. Visual sensors have low cost and are widely used.
  • the obstacle avoidance sensor includes a visual sensor.
  • the obtaining an obstacle distribution map of the surrounding environment of the movable platform may further include: obtaining the surrounding environment of the movable platform constructed by a third-party server loaded on the movable platform obstacle distribution map.
  • the third-party server has already constructed an obstacle distribution map in the surrounding environment where the movable platform is about to move, and the movable platform can directly load the obstacles in the surrounding environment of the movable platform constructed by the third-party server. Distribution.
  • the movable platform can pre-load the obstacle distribution map before moving, or can load the obstacle distribution map during the moving process.
  • the above two methods can be combined to obtain the obstacle distribution map, that is, in step S101, the obtaining the obstacle distribution map of the surrounding environment of the movable platform may further include: obtaining the movable platform The obstacle distribution map of the surrounding environment of the movable platform constructed by the third-party server loaded by the platform; the obstacle distribution map of the surrounding environment of the movable platform constructed by the obstacle avoidance sensor of the movable platform is obtained; according to the loaded obstacles The object distribution map and the obstacle distribution map constructed by the obstacle avoidance sensor are used to obtain the final obstacle distribution map.
  • Step S102 According to the obstacle distribution map, determine a signal transmission quality parameter corresponding to each sub-area in a plurality of sub-areas of the surrounding environment of the movable platform, and the signal quality parameter corresponding to each sub-area represents the movable platform The signal transmission quality when the movable platform and the ground control equipment transmit signals when in the sub-area.
  • the electromagnetic wave signal In the process of signal transmission, the electromagnetic wave signal encounters obstacles such as rolling hills, buildings, woods, etc. on the propagation path, which will cause the attenuation of the electromagnetic wave signal, and even fail to reach the destination receiving end.
  • the surrounding environment of the movable platform can be divided into multiple sub-regions in advance, and a signal quality parameter can be determined, so that the signal quality parameter of each sub-region can characterize the transmission between the movable platform in the sub-region and the ground control device Signal transmission quality at the time of the signal.
  • the signal transmission quality parameter corresponding to each sub-area is determined according to the obstacle distribution map, which enables the signal transmission quality parameter corresponding to each sub-area to consider the influence of obstacles on the signal transmission quality, so that the signal transmission quality corresponding to each sub-area
  • the parameters can relatively and objectively characterize the signal transmission quality of the sub-region.
  • the signal transmission quality parameters include but are not limited to: Received Signal Strength (RSSI, Received Signal Strength Indicator), Signal to Interference plus Noise Ratio (SINR, Signal to Interference plus Noise Ratio), Reference Signal Received Power (RSRP, Reference Signal Receiving Power), Reference Signal Receiving Quality (RSRQ, Reference Signal Receiving Quality), and so on.
  • RSSI Received Signal Strength
  • SINR Received Signal Strength Indicator
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Receiving Power
  • Reference Signal Receiving Quality Reference Signal Receiving Quality
  • Step S103 Plan a target path of the movable platform according to the signal transmission quality parameters corresponding to the multiple sub-regions, so that the movable platform moves along the target path.
  • the signal transmission quality parameter corresponding to the sub-region of the target path satisfies a preset condition.
  • the preset condition may be that the signal transmission quality parameter corresponding to the sub-region of the target path is greater than a preset signal transmission quality parameter threshold.
  • the target path of the movable platform can be planned according to the signal transmission quality parameters corresponding to the multiple sub-areas and in combination with specific path planning requirements.
  • the target path planned in this way has already considered the signal transmission quality parameter corresponding to each sub-area (ie, the signal transmission quality corresponding to each sub-area).
  • an obstacle distribution map of the surrounding environment of the movable platform is obtained; according to the obstacle distribution map, a signal transmission quality parameter corresponding to each sub-region in multiple sub-regions of the surrounding environment of the movable platform is determined.
  • the signal quality parameters corresponding to the sub-areas represent the signal transmission quality when the movable platform and the ground control equipment transmit signals when the movable platform is in the sub-area; according to the signal transmission quality corresponding to the multiple sub-areas parameters, plan a target path for the movable platform so that the movable platform moves along the target path.
  • the signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform is determined according to the obtained obstacle distribution map, the signal quality parameter corresponding to each sub-area represents the movable platform and the ground control in the sub-area.
  • the movable platform can avoid obstacles and provide technical support; when the target path is planned to avoid areas with poor signal transmission quality, the movable platform can always keep in contact with the ground control equipment when moving along the target path, which can avoid accidents. And improve the user experience; when planning the target path, in addition to avoiding areas with poor signal transmission quality, and also considering not to encounter obstacles, it can also make the movable platform move along the target path to avoid collision with obstacles to ensure flight safety. sex.
  • a signal propagation model can be constructed according to the signals sampled from the surrounding environment of the movable platform in advance, and the signal propagation model can be directly combined with the signal propagation model to determine the signal transmission quality parameters corresponding to each sub-area more accurately and conveniently.
  • step S102 before determining the signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform according to the obstacle distribution map and the signal propagation model, the method may include: According to the surrounding environment of the movable platform, a signal propagation model corresponding to the surrounding environment of the movable platform is determined.
  • the signal propagation model includes but is not limited to: a free space loss model, a ray tracing model, a dual-path model, a Hata model, an indoor attenuation model, and the like.
  • Each signal propagation model has corresponding applicable conditions, and the corresponding signal propagation model can be determined according to the characteristics of the surrounding environment of the movable platform.
  • step S102 according to the obstacle distribution map, the signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform is determined, which may be The method includes: determining, according to the obstacle distribution map and the signal propagation model, a signal transmission quality parameter corresponding to each sub-area in the surrounding environment of the movable platform.
  • the signal propagation model adopts a widely used path loss model, that is, step S102, wherein according to the obstacle distribution map and the signal propagation model, each of the multiple sub-regions of the surrounding environment of the movable platform is determined.
  • the signal transmission quality parameters corresponding to the sub-areas may include: determining the signal transmission quality parameter corresponding to each of the sub-areas in the surrounding environment of the movable platform according to the obstacle distribution map and the path loss model.
  • Path loss models may include free space propagation models and logarithmic distance path loss models. Among them, since the logarithmic distance path loss model is more widely used, the effect is better, and the model parameters have a large amount of actual data for reference, and the path loss model can include the logarithmic distance path loss model.
  • step S102 before determining the signal transmission quality parameter corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform according to the obstacle distribution map, it may include: step S104 and step S104. S105, as shown in FIG. 3 .
  • Step S104 Divide a plurality of grid regions on the obstacle distribution map to obtain a gridded obstacle distribution map.
  • Step S105 Use each grid area in the grid areas on the gridded obstacle distribution map as each sub area in the sub areas of the surrounding environment of the movable platform.
  • a plurality of grid areas are divided on the obstacle distribution map, and each grid area corresponds to a sub-area of the surrounding environment of the movable platform, so that the gridded obstacle distribution map can visually display the obstacles on the grid.
  • step S102 the determining, according to the obstacle distribution map, the signal transmission quality parameter corresponding to each sub-region in the multiple sub-regions of the surrounding environment of the movable platform may include: according to the gridding The obstacle distribution map is obtained, and the signal transmission quality parameter corresponding to each grid area in the multiple grid areas is determined.
  • step S102 the determining the signal transmission quality parameter corresponding to each grid area in the plurality of grid areas according to the gridded obstacle distribution map, may further include: sub-step S1021, Sub-step S1022 and sub-step S1023 are shown in FIG. 4 .
  • Sub-step S1021 Determine the first distance between the actual position corresponding to each grid area and the actual position where the ground control device is located.
  • the actual position corresponding to each grid area may be the actual position of the sub-area in the surrounding environment of the movable platform corresponding to each grid area, and may represent the position of the signal receiving end or the signal transmitting end.
  • the actual location of the ground control equipment can represent the location of the signal transmitter or the signal receiver.
  • the distance between the ground control equipment and the movable platform can be known through the positioning of the movable platform itself.
  • Sub-step S1022 Determine the first obstacle category on the connection between the actual position corresponding to each grid area and the actual position corresponding to the ground control device.
  • the first obstacle category may be the category of the first obstacle on the connecting line between the actual position corresponding to each grid area and the actual position corresponding to the ground control device.
  • the first obstacle category includes no obstacles (LOS, Line of Sight) and obstacles; when there are obstacles, the obstacle categories include but are not limited to: buildings, trees, bridges, mountains, iron plates, reinforced concrete, etc.
  • the distribution of obstacles in the surrounding environment and the specific information of obstacles can be obtained through obstacle avoidance sensors (eg, vision sensors) of the movable platform.
  • obstacle avoidance sensors eg, vision sensors
  • Sub-step S1023 Determine a signal transmission quality parameter corresponding to each grid area in the plurality of grid areas according to the first distance and the first obstacle category.
  • the first distance and the first obstacle type are mainly considered, which can simplify the steps of determining the signal transmission quality parameter and reduce the complexity.
  • sub-step S1023, the determining the signal transmission quality parameter corresponding to each grid area in the plurality of grid areas according to the first distance and the first obstacle category may further include: Sub-step S10231 and sub-step S10232 are shown in FIG. 5 .
  • Sub-step S10231 Determine the value of a model parameter corresponding to each grid area according to the first obstacle category, where the model parameter is a parameter of a signal propagation model.
  • Sub-step S10232 Determine, according to the first distance, the value of the model parameter, and the signal propagation model, a signal transmission quality parameter corresponding to each grid area of the plurality of grid areas.
  • a signal propagation model is used when determining the signal transmission quality parameter.
  • the signal propagation model has model parameters, and the model parameter may be one or multiple.
  • the model parameters are usually related to the first obstacle category. According to the first obstacle category, the value of the model parameter corresponding to each grid area can be determined. According to the first distance, the value of the model parameter, and the According to the signal propagation model, the signal transmission quality parameter corresponding to each grid area of the multiple grid areas can be determined. In this way, the signal transmission quality parameter corresponding to each grid area can be determined simply and conveniently.
  • sub-step S10231 the determining the value of the model parameter corresponding to each grid area according to the first obstacle category, may further include: sub-step S10231A, sub-step S10231B and sub-step S10231C, As shown in Figure 6.
  • Sub-step S10231A Determine the value of the model parameter corresponding to the first obstacle class according to the correspondence between the first obstacle class, the preset obstacle class and the model parameters.
  • the corresponding relationship between the obstacle category and the model parameter is preset, and according to the first obstacle category, the value of the model parameter corresponding to the first obstacle category can be determined in the corresponding relationship.
  • the corresponding relationship between obstacle categories and model parameters can be expressed as a corresponding table, which is more intuitive and convenient.
  • Sub-step S10231B If there is only one first obstacle type corresponding to the grid area, determine the value of the model parameter corresponding to the first obstacle type to the value of the model parameter corresponding to the grid area.
  • Sub-step S10231C If the first obstacle category corresponding to the grid area includes multiple types, determine the value of the model parameter corresponding to the grid area according to the values of the model parameters corresponding to the multiple first obstacle categories .
  • the first obstacle category may be one type or multiple types. If there is only one type, the value of the model parameter corresponding to the first obstacle category is the value of the model parameter corresponding to the grid area. If there are multiple types, the value of the model parameter corresponding to the grid area needs to be determined according to the value of the model parameter corresponding to the multiple types of the first obstacle category.
  • the first obstacle category includes obstacle 1, obstacle 2, and obstacle 3 (that is, the first obstacle category has three types), the value of the model parameter corresponding to obstacle 1 is 1, and the value of obstacle 2 corresponds to The value of the model parameter is value 2, the value of the model parameter corresponding to obstacle 3 is value 3, and the value of the model parameter corresponding to the final grid area needs to be determined by value 1, value 2, and value 3.
  • the determining the value of the model parameter corresponding to the grid area according to the values of the model parameters corresponding to the various types of the first obstacle may include: combining the various types of the first obstacle category.
  • the maximum value among the values of the model parameters corresponding to an obstacle category is used as the value of the model parameters corresponding to the grid area. This method is relatively simple, and the maximum value is directly taken as the value of the model parameter corresponding to the grid area.
  • the first obstacle category includes obstacle 1, obstacle 2 and obstacle 3 (that is, the first obstacle category is 3), the value of the model parameter corresponding to obstacle 1 is 1, and the value of obstacle 2 corresponds to The value of the model parameter is value 2, the value of the model parameter corresponding to obstacle 3 is value 3, among value 1, value 2 and value 3, value 2 is the maximum value, and value 2 can be used as the corresponding grid area The value of the model parameter.
  • a more refined manner may be: performing a weighted average of the values of the model parameters corresponding to the plurality of types of the first obstacle to obtain the values of the model parameters corresponding to the grid area. That is, the value of the model parameter corresponding to each obstacle category can be given a weight in advance, and finally the value of the model parameter corresponding to the grid area is equal to the value of the model parameters corresponding to the first obstacle category, and the weighted average is obtained. .
  • the values of the model parameters corresponding to the plurality of types of the first obstacle are arithmetically averaged.
  • the movable platform When the movable platform passes through these sub-regions, it will detect and record the actual signal transmission quality parameters of these sub-regions through its own signal receiving device.
  • the detected actual signal transmission quality parameter of the sub-area may be corrected to the signal transmission quality parameter of the corresponding sub-area, that is, the method further includes: according to the movable platform detected by the movable platform and the ground control
  • the actual signal transmission quality parameter between devices and the sub-area corresponding to the actual signal transmission quality parameter, and the signal transmission quality parameter corresponding to the sub-area is updated.
  • the signal transmission quality parameters corresponding to sub-areas A, B, C, and D are a, b, c, and d
  • the actual signal transmission quality parameters of sub-areas A and C detected by the movable platform are a1 and c1, which can be Update the signal transmission quality parameter a of sub-region A to a1, and update the signal transmission quality parameter c of sub-region C to c1.
  • the signal transmission quality parameters corresponding to sub-regions A, B, C, and D are a1, b, and c1 , d.
  • the actual signal transmission quality parameter between the movable platform and the ground control equipment includes the received signal strength of the mobile platform receiving the signal sent by the ground control equipment.
  • step S103 The details of step S103 will be described in detail below.
  • the planning of the target path of the movable platform according to the signal transmission quality parameters corresponding to the multiple sub-regions may include: according to the signal transmission quality parameters corresponding to the multiple sub-regions, The target path of the movable platform is planned so that the movable platform can at least avoid sub-regions where the signal transmission quality parameter is smaller than a threshold value when moving along the target path.
  • the movable platform when moving along the target path, can at least avoid the sub-regions where the signal transmission quality parameter is smaller than the threshold value. In this way, the movable platform can always keep the ground control when moving along the target path.
  • the connection of the equipment can avoid accidents and improve the user experience.
  • the planning of the target path of the movable platform according to the signal transmission quality parameters corresponding to the multiple sub-regions may further include: sub-step S1031 and sub-step S1032, as shown in FIG. 7 . .
  • Sub-step S1031 Construct a cost map of the surrounding environment of the movable platform according to the signal transmission quality parameters and obstacle distribution maps corresponding to the multiple sub-regions.
  • Sub-step S1032 Plan the target path of the movable platform according to the cost map of the surrounding environment of the movable platform, so that the movable platform can at least avoid that the signal transmission quality parameter is less than a threshold value when moving along the target path sub-region without colliding with obstacles.
  • the cost map may refer to the map with the lowest moving cost
  • the requirements of the cost map include but are not limited to: avoiding sub-regions where the signal transmission quality parameter is less than a threshold, not colliding with obstacles, and having the shortest moving distance to the destination, etc.
  • the cost map constructed according to the signal transmission quality parameters and obstacle distribution maps corresponding to multiple sub-regions the planned target path can meet at least two requirements, can avoid sub-regions whose signal transmission quality parameters are less than the threshold, and will not collide with obstacles thing.
  • sub-step S1031 the construction of a cost map of the surrounding environment of the movable platform according to the signal transmission quality parameters and obstacle distribution maps corresponding to the plurality of sub-areas may include: sub-step S10311, sub-step S10311, sub-step Step S10312 and sub-step S10313 are shown in FIG. 8 .
  • Sub-step S10311 Map the signal transmission quality parameters corresponding to the multiple sub-regions to the first generation value corresponding to the multiple sub-regions.
  • each signal gear may correspond to a first generation value.
  • the signal level corresponding to each sub-area is determined according to the signal transmission quality parameter corresponding to each sub-area, and then the first generation value of each sub-area mapping is determined.
  • Sub-step S10312 Map the obstacle distribution information corresponding to the multiple sub-regions to the second generation value corresponding to the multiple sub-regions.
  • the distance scale (ie, the distance range) of the distance to the obstacle may be determined first, and each distance scale may correspond to a second generation value.
  • the distance gear corresponding to each sub-area is determined, and then the second generation value of each sub-area mapping is determined.
  • Sub-step S10313 According to the first-generation value and the second-generation value corresponding to the plurality of sub-regions, construct a cost map of the surrounding environment of the movable platform.
  • sub-step S10313 the construction of a cost map of the surrounding environment of the movable platform according to the first-generation value and the second-generation value corresponding to the plurality of sub-regions may include:
  • the determining the cost value corresponding to the sub-region according to the first cost value and the second cost value corresponding to the sub-region may also include: combining the first cost value and the second cost value The larger value of the second-generation values is used as the cost value corresponding to the sub-area; or, the first-generation value and the second-generation value are weighted and averaged to obtain the cost value corresponding to the sub-area.
  • the first cost value corresponding to sub-region A is cost1
  • the corresponding second cost value is cost2, where cost1 is greater than cost2
  • the final cost value corresponding to sub-region A may be cost1.
  • the first cost value corresponding to sub-region A is cost1
  • the corresponding second cost value is cost2
  • the weight of the first generation value is Q1
  • the cost value corresponding to the final sub-region A may be (cost1*Q1+cost2*Q2).
  • the first cost value corresponding to sub-region A is cost1
  • the corresponding second cost value is cost2
  • the first-generation value and the second-generation value have no determined weight
  • the final cost value corresponding to sub-region A can be (cost1 +cost2)/2.
  • the weight of the first-generation value of the sub-area can be Increase; if the obstacles near the sub-area are detected by the obstacle avoidance sensor, the weight of the second generation value of the sub-area can be increased; if the signal transmission quality parameter of the sub-area is the actual signal transmission quality, the sub-area Obstacles near the area are detected by the obstacle avoidance sensor, then the weight of the first generation value and the second generation value of the sub-area can be 0.5 respectively.
  • the first cost value corresponding to sub-region A is cost1
  • the corresponding second cost value is cost2
  • the weight of the predetermined first-generation value is 0.6
  • the predetermined weight of the second-generation value is 0.4
  • the sub-region The signal transmission quality parameter corresponding to A is the actual signal transmission quality
  • the weight of the first generation value can be re-determined as 0.7
  • the predetermined weight of the second generation value is 0.3
  • the cost value corresponding to the final sub-area A can be (cost1 *0.7+cost2*0.3).
  • the first cost value corresponding to sub-area A is cost1
  • the corresponding second cost value is cost2
  • the weight of the predetermined first-generation value is 0.7
  • the predetermined weight of the second-generation value is 0.3. Obstacles near area A are detected by visual sensors, then the weight of the first generation value can be re-determined as 0.6
  • the predetermined weight of the second generation value is 0.4
  • the final cost value corresponding to sub-area A can be ( cost1*0.6+cost2*0.4).
  • the first generation value and the second generation value corresponding to the sub-regions of the target path meet a preset condition.
  • the preset condition may be that the first generation value and the second generation value corresponding to the sub-regions of the target path are greater than a preset cost value threshold.
  • the above process can be performed cyclically, that is, during the moving process, new obstacles can be found through the obstacle avoidance sensor, and the actual signal transmission quality parameters of the sub-areas in the moving area can be detected. According to this, the target path is re-planned and the current movement trajectory is corrected.
  • A1 Obtain the obstacle distribution map.
  • A2 Determine the signal transmission quality parameter corresponding to each sub-region.
  • the signal propagation model used is the log distance path loss model, and its mathematical expression is: in:
  • PL represents the amount of signal attenuation
  • PL 0 represents the signal attenuation at the distance d 0 from the ground control equipment
  • represents the signal attenuation exponent (path-loss exponent);
  • d is the distance to the ground control equipment (ie the first distance from the sub-area to the ground control equipment);
  • d 0 is the reference distance to the ground control equipment
  • X g is a Gaussian random variable with mean 0 and standard deviation ⁇ .
  • the values of the model parameter ⁇ and the model parameter ⁇ are different.
  • This set of model parameters mainly reflects the influence of signal propagation medium, signal refraction, diffraction, multipath effect, etc. on signal propagation.
  • R rx R tx -PL M .
  • R tx is the signal transmission strength of the ground control equipment
  • PL M is the signal attenuation at point M.
  • the value of the model parameter corresponding to each obstacle class can be known according to the preset correspondence table (ie, the comparison relationship) between the obstacle class and the model parameter, see Table 1.
  • the RSSI value of the signal strength corresponding to each raster area can be calculated, as shown in FIG. 9 .
  • A3 Update the transmission quality parameter.
  • A4 Build a cost map and plan the target path.
  • the signal transmission quality parameter it is divided into three signal gears: no signal, weak signal, and normal signal.
  • Each signal gear can map a first generation value, see Table 2. This is related to the following target path planning strategy.
  • the path planning strategy is: absolutely avoid areas with no signal, try to avoid areas with weak signals, and the movable platform can pass freely in areas with normal signals.
  • Signal interval Mapped value (first generation value) meaning RSSI ⁇ R1 2 no signal R1 ⁇ RSSI ⁇ R2 1 weak signal RSSI>R2 0 Signal is normal
  • a costmap can be used to represent the signal distribution and obstacle distribution.
  • a safe passing radius that is, the distance to the obstacle
  • the following mapping is also made to the obstacle distribution information, see Table 3.
  • A1-A4 can be continuously executed in a loop.
  • the costmap is constantly updated as the mobile platform has new observations (including RSSI values and obstacles).
  • step B1 plan a target path according to the latest cost map.
  • the movable platform is an unmanned aerial vehicle (that is, the aircraft in the picture)
  • the ground control device is a remote controller
  • the planned target path will avoid the dark gray area (that is, no signal, obstacles, collision obstacles) ), try to avoid the light gray area (that is, the signal is weak, there is no obstacle, and it is possible to collide with an obstacle), and the planned target path is in the medium gray area (that is, the signal is normal, there is no obstacle, and it will not collide with obstacles).
  • the movable platform When the movable platform is moving, repeat the above A1-A4; and re-plan the target path (that is, repeat the above B1 with a certain frequency, especially when new obstacles are found in the process of returning home, re-plan the target path.
  • the current movement trajectory of the movable platform is particularly useful); the current movement trajectory is corrected according to the latest target path.
  • the movable platform is a UAV (that is, the aircraft in the picture), the ground control device is a remote controller, and the old planned target path (the dotted line in the picture is the old target path) will avoid the old dark gray Area (that is, no signal, there are obstacles, will collide with obstacles), try to avoid the old light gray area (that is, weak signal, no obstacles, may collide with obstacles), the old planned target path is in the old Gray area (that is, the signal is normal, there are no obstacles, and there will be no collision with obstacles); the UAV has new observation information during the flight, determines new no-signal areas and new obstacles, and re-plans to get new targets path (the solid line in the figure is the new target path), correct the current motion trajectory according to the latest target path.
  • the old planned target path the dotted line in the picture is the old target path
  • FIG. 14 is a schematic structural diagram of an embodiment of a movable platform of the present application. It should be noted that the movable platform of this embodiment can execute the steps in the above-mentioned control method of the movable platform. Please refer to the above-mentioned control method of the movable platform, which will not be repeated here.
  • the movable platform 100 is in communication connection with the ground control equipment, and the movable platform 100 includes: a memory 1 and a processor 2; the processor 2 and the memory 1 are connected through a bus.
  • the processor 2 may be a microcontroller unit, a central processing unit or a digital signal processor, and so on.
  • the memory 1 may be a Flash chip, a read-only memory, a magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the memory 1 is used to store a computer program; the processor 2 is used to execute the computer program and implement the following steps when executing the computer program:
  • the obstacle distribution map of the surrounding environment of the movable platform determines the signal transmission quality parameter corresponding to each sub-region in the multiple sub-regions of the surrounding environment of the movable platform, and each sub-region
  • the corresponding signal quality parameter represents the signal transmission quality when the movable platform and the ground control equipment transmit signals when the movable platform is in the sub-area; according to the signal transmission quality parameters corresponding to the plurality of sub-areas, A target path for the movable platform is planned to move the movable platform along the target path.
  • the processor when executing the computer program, implements the following steps: according to the obstacle distribution map and the signal propagation model, determine the signal transmission corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform quality parameters.
  • the processor when executing the computer program, implements the following steps: according to the obstacle distribution map and the path loss model, determine the signal transmission corresponding to each sub-area in the multiple sub-areas of the surrounding environment of the movable platform quality parameters.
  • the processor when executing the computer program, implements the following steps: determining a signal propagation model corresponding to the surrounding environment of the movable platform according to the surrounding environment of the movable platform.
  • the processor when executing the computer program, implements the following steps: dividing a plurality of grid regions on the obstacle distribution map to obtain a gridded obstacle distribution map; Each grid area in the plurality of grid areas on the obstacle distribution map is used as each sub area in the plurality of sub areas of the surrounding environment of the movable platform.
  • the processor when executing the computer program, implements the following steps: determining a signal transmission quality parameter corresponding to each grid region in the plurality of grid regions according to the gridded obstacle distribution map.
  • the processor when executing the computer program, implements the following steps: determining the first distance between the actual position corresponding to each grid area and the actual position of the ground control equipment; determining each grid area a first obstacle type on the connection line between the corresponding actual position and the actual position corresponding to the ground control device; according to the first distance and the first obstacle type, determine each of the plurality of grid areas The signal transmission quality parameter corresponding to the grid area.
  • the processor when executing the computer program, implements the following steps: determining the value of a model parameter corresponding to each grid area according to the first obstacle category, where the model parameter is a parameter of a signal propagation model ; According to the first distance, the value of the model parameter and the signal propagation model, determine the signal transmission quality parameter corresponding to each grid area of the plurality of grid areas.
  • the processor when executing the computer program, implements the following steps: determining the first obstacle category according to the correspondence between the first obstacle category, the preset obstacle category and model parameters The value of the corresponding model parameter; if there is only one first obstacle category corresponding to the grid area, the value of the model parameter corresponding to the first obstacle category is determined to be the value of the model parameter corresponding to the grid area. If the first obstacle category corresponding to the grid area includes multiple types, the value of the model parameter corresponding to the grid area is determined according to the values of the model parameters corresponding to the multiple first obstacle categories.
  • the processor when executing the computer program, implements the following steps: taking the maximum value among the values of the model parameters corresponding to the plurality of types of the first obstacle as the value of the model parameter corresponding to the grid area ; or, performing a weighted average of the values of the model parameters corresponding to a plurality of the first obstacle categories to obtain the values of the model parameters corresponding to the grid area.
  • the processor executes the computer program, the following steps are implemented: according to the actual signal transmission quality parameter between the movable platform and the ground control device detected by the movable platform and the actual signal transmission quality parameter For the sub-region corresponding to the signal transmission quality parameter, the signal transmission quality parameter corresponding to the sub-region is updated.
  • the actual signal transmission quality parameter between the movable platform and the ground control equipment includes the received signal strength of the mobile platform receiving the signal sent by the ground control equipment.
  • the processor when executing the computer program, implements the following steps: acquiring an obstacle distribution map of the surrounding environment of the movable platform constructed by the obstacle avoidance sensor of the movable platform.
  • the obstacle avoidance sensor includes a visual sensor.
  • the processor when executing the computer program, implements the following steps: acquiring an obstacle distribution map of the surrounding environment of the movable platform constructed by a third-party server loaded on the movable platform.
  • the processor when executing the computer program, implements the following steps: planning the target path of the movable platform according to the signal transmission quality parameters corresponding to the multiple sub-regions, so that the movable platform can move along the When the target path moves, it can at least avoid sub-regions where the signal transmission quality parameter is smaller than the threshold.
  • the processor when executing the computer program, implements the following steps: constructing a cost map of the surrounding environment of the movable platform according to the signal transmission quality parameters and obstacle distribution maps corresponding to the plurality of sub-regions; A cost map of the surrounding environment of the movable platform is used to plan the target path of the movable platform, so that the movable platform can at least avoid sub-regions where the signal transmission quality parameter is less than a threshold when moving along the target path, and does not collision with obstacles.
  • the processor when executing the computer program, implements the following steps: mapping the signal transmission quality parameters corresponding to the multiple sub-regions to the first generation value corresponding to the multiple sub-regions; mapping the multiple sub-regions to the first generation value corresponding to the multiple sub-regions The corresponding obstacle distribution information is mapped to the second generation value corresponding to the multiple sub-areas; according to the first generation value and the second generation value corresponding to the multiple sub-areas, a cost map of the surrounding environment of the movable platform is constructed.
  • the processor when executing the computer program, implements the following steps: if the first generation value and the second generation value corresponding to any one of the multiple sub-areas are equal, then use one of the cost values as the The cost value corresponding to the sub-area, if the first-generation value and the second-generation value corresponding to any one of the multiple sub-areas are not equal, then the first-generation value and the second-generation value corresponding to the sub-area are Determine the cost value corresponding to the sub-areas; construct a cost map of the surrounding environment of the movable platform according to the cost value corresponding to each sub-area in the plurality of sub-areas.
  • the processor when executing the computer program, implements the following steps: taking the larger value of the first generation value and the second generation value as the cost value corresponding to the sub-region; or, using The first generation value and the second generation value are weighted and averaged to obtain the cost value corresponding to the sub-area.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor enables the processor to implement the above-mentioned mobile platform.
  • Control Method For a detailed description of the relevant content, please refer to the above-mentioned relevant content section, which will not be repeated here.
  • the computer-readable storage medium may be an internal storage unit of the above-mentioned removable platform, such as a hard disk or a memory.
  • the computer-readable storage medium may also be an external storage device, such as an equipped plug-in hard disk, smart memory card, secure digital card, flash memory card, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种可移动平台的控制方法、可移动平台及存储介质,该方法包括:获取可移动平台周围环境的障碍物分布图(S101);确定可移动平台周围环境的每个子区域对应的信号传输质量参数,每个子区域对应的信号传输质量参数表征处于子区域时,可移动平台与地面控制设备传输信号时的信号传输质量(S102);根据多个子区域对应的信号传输质量参数,规划目标路径,以使可移动平台沿目标路径移动(S103)。

Description

可移动平台的控制方法、可移动平台及存储介质 技术领域
本申请涉及控制领域,尤其涉及一种可移动平台的控制方法、可移动平台及存储介质。
背景技术
可移动平台(如无人机、地面移动机器人,等等)在移动过程中,由于障碍物对信号的遮挡,可移动平台与地面控制设备之间的连接会丢失,造成可移动平台到地面控制设备的图传信号被中断,操作可移动平台的用户无法在地面控制设备上监控可移动平台的状态,使用户失去对可移动平台的实际操控能力,一方面这对用户体验不好,另一方面用户在失去监控可移动平台的状态情况下如果继续操作可移动平台,容易使可移动平台发生事故(例如使可移动平台碰撞障碍物),容易损坏可移动平台。
发明内容
基于此,本申请提供一种可移动平台的控制方法、可移动平台及存储介质。
第一方面,本申请提供了一种可移动平台的控制方法,所述可移动平台与地面控制设备通信连接,所述方法包括:
获取所述可移动平台周围环境的障碍物分布图;
根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;
根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。
第二方面,本申请提供了一种可移动平台,所述可移动平台与地面控制设备通信连接,所述可移动平台包括:存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述可移动平台周围环境的障碍物分布图;
根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;
根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。
第三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的可移动平台的控制方法。
本申请实施例提供了一种可移动平台的控制方法、可移动平台及存储介质,获取可移动平台周围环境的障碍物分布图;根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。由于根据获取的障碍物分布图,确定可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,每个子区域对应的信号质量参数表征处于该子区域的可移动平台与地面控制设备传输信号时的信号传输质量,因此每个子区域对应的信号质量参数均是考虑障碍物影响后的信号质量参数,据此规划的目标路径也是考虑每个子区域对应的信号质量参数后的目标路径,通过这种方式,能够为可移动平台移动时避开因信号传输质量差、容易与地面控制设备失去联系、容易造成事故的区域提供 技术支持,能够为既避开信号传输质量差的区域,又同时避开障碍物提供技术支持;当规划目标路径专门避开信号传输质量差的区域时,能够使可移动平台沿该目标路径移动时始终保持与地面控制设备的联系,能够避免事故发生,并提升用户体验;当规划目标路径除了专门避开信号传输质量差的区域,还同时考虑不要碰到障碍物时,还能够使可移动平台沿该目标路径移动时避免碰撞障碍物,保证飞行安全性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请可移动平台的控制方法一实施例的流程示意图;
图2是本申请可移动平台的控制方法中构建障碍物分布图一实施例的示意图;
图3是本申请可移动平台的控制方法另一实施例的流程示意图;
图4是本申请可移动平台的控制方法又一实施例的流程示意图;
图5是本申请可移动平台的控制方法又一实施例的流程示意图;
图6是本申请可移动平台的控制方法又一实施例的流程示意图;
图7是本申请可移动平台的控制方法又一实施例的流程示意图;
图8是本申请可移动平台的控制方法又一实施例的流程示意图;
图9是本申请可移动平台的控制方法中确定每个栅格区域对应的RSSI值一实施例的示意图;
图10是图9中利用检测到的实际RSSI值更新计算得到的RSSI值的示意图;
图11是本申请可移动平台的控制方法中构建代价地图一实施例的示意图;
图12是本申请可移动平台的控制方法中根据代价地图规划目标路径一实施例的示意图;
图13是在图12的基础上重新规划目标路径一实施例的示意图;
图14是本申请可移动平台一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
由于障碍物对信号的遮挡,在移动过程中可移动平台与地面控制设备之间的连接可能会丢失,造成图传信号被中断,操作用户无法监控可移动平台的状态,使用户失去实际操控能力,用户体验不好,如果用户继续操作可移动平台,容易使可移动平台发生事故(例如使可移动平台碰撞障碍物),容易损坏可移动平台。
本申请实施例提供了一种可移动平台的控制方法、可移动平台及存储介质,获取可移动平台周围环境的障碍物分布图;根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。由于根据获取的障碍物分布图,确定可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,每个子区域对应的信号质量参数表征处于该子区域的可移动平台与地面控制设备传输信号时的信号传输质量,因此每个子区域对应的信号质量参数均是考虑障碍物影响后的信号质量参数,据此规划的目标路径也是考虑每个子区域对应 的信号质量参数后的目标路径,通过这种方式,能够为可移动平台移动时避开因信号传输质量差、容易与地面控制设备失去联系、容易造成事故的区域提供技术支持,能够为既避开信号传输质量差的区域,又同时避开障碍物提供技术支持;当规划目标路径专门避开信号传输质量差的区域时,能够使可移动平台沿该目标路径移动时始终保持与地面控制设备的联系,能够避免事故发生,并提升用户体验;当规划目标路径除了专门避开信号传输质量差的区域,还同时考虑不要碰到障碍物时,还能够使可移动平台沿该目标路径移动时避免碰撞障碍物,保证飞行安全性。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参见图1,图1是本申请可移动平台的控制方法一实施例的流程示意图,本实施例中,所述可移动平台与地面控制设备通信连接,可移动平台可以是自动移动或者在受控条件下移动的各种平台,例如:无人机、车辆、无人车辆、地面机器人、无人船等等;地面控制设备可以是在用户的操作下或用户的指令下可以对可移动平台进行控制的设备,例如:遥控器、地面站,等等。
所述方法包括:步骤S101、步骤S102以及步骤S103。
步骤S101:获取可移动平台周围环境的障碍物分布图。
本实施例中,可移动平台周围环境的障碍物分布图可以是可移动平台正在移动或者即将移动的周围环境中障碍物的分布情况图,障碍物的分布图上的信息包括:障碍物在周围环境中的位置、障碍物的高度等。可选的,障碍物的分布图上的信息还可以包括:障碍物的类别或种类、障碍物的大小。
可移动平台周围环境的障碍物分布图可以是可移动平台在移动过程中实时构建而获得,也可以是预先构建而获得。
在一实施例中,步骤S101,所述获取所述可移动平台周围环境的障碍物分布图,可以包括:获取所述可移动平台的避障传感器构建的所述可移动平台周围环境的障碍物分布图。
在本实施例中,可移动平台利用自身的避障传感器可以构建出一张障碍物分布图,在地图上标注出障碍物的位置、障碍物高度等信息。值得注意的是,此种方式构建的障碍物分布图的具体内容与可移动平台的移动轨迹强相关,这 是因为可移动平台的观测范围有限,地图只能呈现以可移动平台的移动轨迹为中心、以观测距离为半径的通道状区域。对于地图中未观测的区域,可以认为无障碍物。如图2所示,可移动平台为无人机(即飞机),图中3个圆圈为无人机探测到的障碍物,白色区域为无人机探索过的区域,灰色区域为无人机未探索过的区域,当做没有障碍物。
其中,避障传感器包括但不限于:视觉传感器、雷达传感器、超声波传感器、红外传感器,等等。视觉传感器成本较低,应用较为广泛,在一实施例中,所述避障传感器包括视觉传感器。
在另一实施例中,步骤S101,所述获取所述可移动平台周围环境的障碍物分布图,还可以包括:获取所述可移动平台加载的第三方服务器构建的所述可移动平台周围环境的障碍物分布图。
本实施例中,可移动平台即将进行移动的周围环境,第三方服务器已经构建该区域的障碍物分布图,可移动平台可以直接加载该第三方服务器构建的所述可移动平台周围环境的障碍物分布图。可移动平台可以在移动之前预先加载该障碍物分布图,也可以在移动过程中加载该障碍物分布图。
在又一实施例中,可以将上述两种方式结合起来获取障碍物分布图,即步骤S101,所述获取所述可移动平台周围环境的障碍物分布图,还可以包括:获取所述可移动平台加载的第三方服务器构建的所述可移动平台周围环境的障碍物分布图;获取所述可移动平台的避障传感器构建的所述可移动平台周围环境的障碍物分布图;根据加载的障碍物分布图和避障传感器构建的障碍物分布图,得到最终的障碍物分布图。
步骤S102:根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量。
在信号传输过程中,电磁波信号在传播路径上遇到起伏的山丘、建筑物、树林等障碍物的阻挡,会造成电磁波信号的衰减,甚至无法到达目的接收端。
本实施例可以预先将可移动平台周围环境划分为多个子区域,并确定一个信号质量参数,使每个子区域的信号质量参数能够表征处于所述子区域的可移 动平台与所述地面控制设备传输信号时的信号传输质量。每个子区域对应的信号传输质量参数根据所述障碍物分布图来确定,这使得每个子区域对应的信号传输质量参数能够考虑障碍物对信号传输质量的影响,使得每个子区域对应的信号传输质量参数能够相对比较客观地表征该子区域的信号传输质量。
其中,信号传输质量参数包括但不限于:接收信号强度(RSSI,Received Signal Strength Indicator)、信号与干扰加噪声比(SINR,Signal to Interference plus Noise Ratio)、参考信号接收功率(RSRP,Reference Signal Receiving Power)、参考信号接收质量(RSRQ,Reference Signal Receiving Quality),等等。
步骤S103:根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。
在一实施例中,所述目标路径途径的子区域对应的信号传输质量参数满足预设条件。可选的,该预设条件可以是所述目标路径途径的子区域对应的信号传输质量参数大于预设信号传输质量参数阈值。
得到多个子区域对应的信号传输质量参数后,可以根据多个子区域对应的信号传输质量参数,并结合具体的路径规划要求,规划可移动平台的目标路径。通过这种方式规划的目标路径,已经考虑了每个子区域对应的信号传输质量参数(即每个子区域对应的信号传输质量)。
本申请实施例获取可移动平台周围环境的障碍物分布图;根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。由于根据获取的障碍物分布图,确定可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,每个子区域对应的信号质量参数表征处于该子区域的可移动平台与地面控制设备传输信号时的信号传输质量,因此每个子区域对应的信号质量参数均是考虑障碍物影响后的信号质量参数,据此规划的目标路径也是考虑每个子区域对应的信号质量参数后的目标路径,通过这种方式,能够为可移动平台移 动时避开因信号传输质量差、容易与地面控制设备失去联系、容易造成事故的区域提供技术支持,能够为既避开信号传输质量差的区域,又同时避开障碍物提供技术支持;当规划目标路径专门避开信号传输质量差的区域时,能够使可移动平台沿该目标路径移动时始终保持与地面控制设备的联系,能够避免事故发生,并提升用户体验;当规划目标路径除了专门避开信号传输质量差的区域,还同时考虑不要碰到障碍物时,还能够使可移动平台沿该目标路径移动时避免碰撞障碍物,保证飞行安全性。
在信号传输过程中,随着距离的增加,信号在有规律的衰减。因此可以预先根据可移动平台的周围环境采样的信号构建信号传播模型,后续可以直接结合该信号传播模型可以更加准确、便捷地确定每个子区域对应的信号传输质量参数。
在一实施例中,步骤S102,所述根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数之前,可以包括:根据所述可移动平台周围环境,确定与所述可移动平台周围环境对应的信号传播模型。
本实施例中,信号传播模型包括但不限于:自由空间损耗模型、射线追踪模型、双路径模型、Hata模型、室内衰减模型,等等。每个信号传播模型都有对应的适用条件,可以根据可移动平台周围环境的特点,确定对应的信号传播模型。
信号传播模型预先确定后,在一实施例中,步骤S102,所述根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,可以包括:根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
在一实施例中,信号传播模型采用应用较为广泛的路径损耗模型,即步骤S102,所述根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,可以包括:根据所述障碍物分布图和路径损耗模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
路径损耗模型可以包括自由空间传播模型和对数距离路径损耗模型。其中由于对数距离路径损耗模型的应用更加广泛,效果较好,模型参数有大量的实际数据可供参考,路径损耗模型可以包括对数距离路径损耗模型。
在一实施例中,步骤S102,所述根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数之前,可以包括:步骤S104和步骤S105,如图3所示。
步骤S104:在所述障碍物分布图上划分多个栅格区域,得到栅格化的障碍物分布图。
步骤S105:将所述栅格化的障碍物分布图上多个栅格区域中每个栅格区域作为所述可移动平台周围环境的多个子区域中每个子区域。
本实施例在碍物分布地图上划分多个栅格区域,每个栅格区域对应可移动平台周围环境的一个子区域,这样便于在栅格化的障碍物分布图能够直观呈现障碍物在栅格化的障碍物分布图上的位置信息、可移动平台周围环境每个子区域在栅格化的障碍物分布图上的位置信息、以及障碍物与可移动平台周围环境之间在栅格化的障碍物分布图上的位置关系信息。
在此基础上,步骤S102,所述根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,可以包括:根据所述栅格化的障碍物分布图,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
在一实施例中,步骤S102,所述根据所述栅格化的障碍物分布图,确定多个栅格区域中每个栅格区域对应的信号传输质量参数,还可以包括:子步骤S1021、子步骤S1022以及子步骤S1023,如图4所示。
子步骤S1021:确定每个栅格区域对应的实际位置与所述地面控制设备所在实际位置之间的第一距离。
每个栅格区域对应的实际位置可以是每个栅格区域对应的可移动平台周围环境中的子区域的实际位置,可以代表信号接收端或信号发射端的位置。地面控制设备所在实际位置可以代表信号发射端或信号接收端的位置。
通过可移动平台自身的定位可以得知地面控制设备与可移动平台之间的距离。
子步骤S1022:确定每个栅格区域对应的实际位置与所述地面控制设备对应的实际位置之间连线上的第一障碍物类别。
第一障碍物类别可以是每个栅格区域对应的实际位置与所述地面控制设备对应的实际位置之间连线上的第一障碍物的类别。第一障碍物的类别包括没有障碍物(LOS,Line of Sight)和有障碍物;有障碍物时,障碍物的类别包括但不限于:楼房、树木、桥梁、山体、铁板、钢筋混凝土,等等。
通过可移动平台的避障传感器(例如:视觉传感器)可以得知周围环境当中的障碍物分布情况、障碍物的具体信息(类别、高度,等等)。
子步骤S1023:根据所述第一距离和所述第一障碍物类别,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
信号传播过程中有很多因素会导致信号衰减,其中有两个因素会导致信号非常明显的衰减,一个是信号发射端与信号接收端之间的距离,信号发射端与信号接收端之间的距离越远,信号衰减越严重;另一个是信号发射端与信号接收端之间的障碍物阻挡,信号衰减的程度与障碍物类别(例如:无障碍物、楼房、树木、桥梁、山体、铁板、钢筋混凝土,等等)有关,不同的障碍物类别,信号衰减的程度不一样。
本申请实施例在确定每个栅格区域对应的信号传输质量参数时,主要考虑第一距离和第一障碍物类别,能够简化确定信号传输质量参数的步骤,降低复杂程度。
在一实施例中,子步骤S1023,所述根据所述第一距离和所述第一障碍物类别,确定多个栅格区域中每个栅格区域对应的信号传输质量参数,还可以包括:子步骤S10231和子步骤S10232,如图5所示。
子步骤S10231:根据所述第一障碍物类别,确定每个栅格区域对应的模型参数的值,所述模型参数为信号传播模型的参数。
子步骤S10232:根据所述第一距离、所述模型参数的值以及所述信号传播模型,确定多个栅格区域每个栅格区域对应的信号传输质量参数。
本申请实施例中,在确定信号传输质量参数时采用信号传播模型,信号传播模型具有模型参数,模型参数可以是一个,也可以是多个。模型参数通常与第一障碍物类别相关,根据所述第一障碍物类别,即可确定每个栅格区域对应 的模型参数的值,根据所述第一距离、所述模型参数的值以及所述信号传播模型,即可确定多个栅格区域每个栅格区域对应的信号传输质量参数。通过这种方式,能够简单方便地确定每个栅格区域对应的信号传输质量参数。
在一实施例中,子步骤S10231,所述根据所述第一障碍物类别,确定每个栅格区域对应的模型参数的值,还可以包括:子步骤S10231A、子步骤S10231B以及子步骤S10231C,如图6所示。
子步骤S10231A:根据所述第一障碍物类别、预设的障碍物类别与模型参数之间的对应关系,确定所述第一障碍物类别对应的模型参数的值。
预先设置障碍物类别与模型参数之间的对应关系,根据所述第一障碍物类别,在对应关系中可以确定第一障碍物类别对应的模型参数的值。其中,障碍物类别与模型参数之间的对应关系可以表示为对应表格,比较直观方便。
子步骤S10231B:若所述栅格区域对应的第一障碍物类别只有一种,则确定所述第一障碍物类别对应的模型参数的值为所述栅格区域对应的模型参数的值。
子步骤S10231C:若所述栅格区域对应的第一障碍物类别包括多种,则根据多种所述第一障碍物类别对应的模型参数的值确定所述栅格区域对应的模型参数的值。
第一障碍物类别可以是一种,也可以是多种。如果只有一种,则第一障碍物类别对应的模型参数的值为所述栅格区域对应的模型参数的值。如果是多种,则需要根据多种所述第一障碍物类别对应的模型参数的值来确定栅格区域对应的模型参数的值。
例如,第一障碍物类别包括障碍物1、障碍物2以及障碍物3(即第一障碍物类别是3种),障碍物1对应的该模型参数的值为值1,障碍物2对应的该模型参数的值为值2,障碍物3对应的该模型参数的值为值3,最终栅格区域对应的模型参数的值需要通过值1、值2以及值3来确定。
在一实施例中,子步骤S10231C,所述根据多种所述第一障碍物类别对应的模型参数的值确定所述栅格区域对应的模型参数的值,可以包括:将多种所述第一障碍物类别对应的模型参数的值中的最大值作为所述栅格区域对应的模型参数的值。该方式较为简单,直接取最大值作为所述栅格区域对应的模型 参数的值。
例如:第一障碍物类别包括障碍物1、障碍物2以及障碍物3(即第一障碍物类别是3种),障碍物1对应的该模型参数的值为值1,障碍物2对应的该模型参数的值为值2,障碍物3对应的该模型参数的值为值3,值1、值2以及值3中,值2为最大值,可以将值2作为所述栅格区域对应的模型参数的值。
或者,子步骤S10231C,更为精细的方式可以是:将多种所述第一障碍物类别对应的模型参数的值进行加权平均以得到所述栅格区域对应的模型参数的值。即可以预先给每个障碍物类别对应的模型参数的值一个权重,最终所述栅格区域对应的模型参数的值等于多种所述第一障碍物类别对应的模型参数的值进行加权平均得到。或者,在没有权重的情况下,多种所述第一障碍物类别对应的模型参数的值进行算数平均。
例如:第一障碍物类别包括障碍物1、障碍物2以及障碍物3(即第一障碍物类别是3种),障碍物1对应的该模型参数的值为值1,障碍物2对应的该模型参数的值为值2,障碍物3对应的该模型参数的值为值3,值1、值2以及值3的权重分别为a1、a2、a3,其中a1+a2+a3=1,最终所述栅格区域对应的模型参数的值等于(值1*a1+值2*a2+值3*a3)。或者,如果没有权重,最终所述栅格区域对应的模型参数的值等于(值1+值2+值3)/3。
可移动平台周围环境中有些子区域是可移动平台探索过的,可移动平台在经过这些子区域时,会通过自身的信号接收装置检测并记录下这些子区域的实际信号传输质量参数。可以将检测到的该子区域的实际信号传输质量参数修正对应子区域的信号传输质量参数,即所述方法还包括:根据所述可移动平台检测到的所述可移动平台和所述地面控制设备之间的实际信号传输质量参数和所述实际信号传输质量参数对应的子区域,更新所述子区域对应的信号传输质量参数。
例如:子区域A、B、C、D对应的信号传输质量参数为a、b、c、d,其中可移动平台检测到的子区域A、C的实际信号传输质量参数为a1、c1,可以将子区域A的信号传输质量参数a更新为a1,将子区域C的信号传输质量参数c更新为c1,最终子区域A、B、C、D对应的信号传输质量参数为a1、b、c1、d。 通过上述方式,能够充分利用检测到的实际信号传输质量参数,使后续规划的目标路径更加接近实际情况。
其中,所述可移动平台和所述地面控制设备之间的实际信号传输质量参数包括所述可移动平台接收所述地面控制设备发送的信号的接收信号强度。
下面详细说明步骤S103的细节内容。
在一实施例中,步骤S103,所述根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,可以包括:根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域。
本实施例中,按照所述目标路径移动时可移动平台至少能够避开信号传输质量参数小于阈值的子区域,通过这种方式,能够使可移动平台沿该目标路径移动时始终保持与地面控制设备的联系,能够避免事故发生,并提升用户体验。
在一实施例中,步骤S103,所述根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,还可以包括:子步骤S1031和子步骤S1032,如图7所示。
子步骤S1031:根据所述多个子区域对应的信号传输质量参数和障碍物分布图,构建所述可移动平台周围环境的代价地图。
子步骤S1032:根据所述可移动平台周围环境的代价地图,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域,且不会碰撞障碍物。
本实施例中,代价地图可以是指移动代价最低的地图,代价地图的要求包括但不限于:避开信号传输质量参数小于阈值的子区域、不碰撞障碍物、到达目的地的移动距离最短,等等。根据多个子区域对应的信号传输质量参数和障碍物分布图构建的代价地图,规划得到的目标路径,至少可以满足两个要求能够避开信号传输质量参数小于阈值的子区域,且不会碰撞障碍物。
在一实施例中,子步骤S1031,所述根据所述多个子区域对应的信号传输质量参数和障碍物分布图,构建所述可移动平台周围环境的代价地图,可以包括:子步骤S10311、子步骤S10312以及子步骤S10313,如图8所示。
子步骤S10311:将所述多个子区域对应的信号传输质量参数映射为所述 多个子区域对应的第一代价值。
本实施例中,可以先确定几个信号档位(即信号区间),每个信号档位可以对应一个第一代价值。信号传输质量越差,第一代价值越高,第一代价值越高,表示越容易出问题,越容易丢失信号。根据每个子区域对应的信号传输质量参数确定每个子区域对应的信号档位,进而确定每个子区域映射的第一代价值。
子步骤S10312:将所述多个子区域对应的障碍物分布信息映射为所述多个子区域对应的第二代价值。
本实施例中,可以先确定与障碍物之间距离的距离档位(即距离范围),每个距离档位可以对应一个第二代价值。与障碍物之间距离越近,第二代价值越高,第二代价值越高,表示越容易碰撞障碍物(如果该子区域有障碍物,第二代价值最高了)。根据每个子区域与障碍物之间的距离确定每个子区域对应的距离档位,进而确定每个子区域映射的第二代价值。
子步骤S10313:根据所述多个子区域对应的第一代价值和第二代价值,构建所述可移动平台周围环境的代价地图。
其中,子步骤S10313,所述根据所述多个子区域对应的第一代价值和第二代价值,构建所述可移动平台周围环境的代价地图,可以包括:
(A)若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值相等,则以其中一个代价值作为所述子区域对应的代价值,若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值不相等,则根据所述子区域对应的第一代价值和第二代价值确定所述子区域对应的代价值。
(B)根据所述多个子区域中每个子区域对应的代价值,构建所述可移动平台周围环境的代价地图。
其中,(A)中,所述根据所述子区域对应的第一代价值和第二代价值确定所述子区域对应的代价值,还可以包括:将所述第一代价值和所述第二代价值中的较大值作为所述子区域对应的代价值;或者,将所述第一代价值和所述第二代价值进行加权平均以得到所述子区域对应的代价值。
例如:子区域A对应的第一代价值为cost1,对应的第二代价值为cost2,其中cost1大于cost2,则最终子区域A对应的代价值可以为cost1。
又如:子区域A对应的第一代价值为cost1,对应的第二代价值为cost2,第一代价值的权重为Q1,第二代价值的权重为Q2,其中Q1+Q2=1,则最终子区域A对应的代价值可以为(cost1*Q1+cost2*Q2)。
又如:子区域A对应的第一代价值为cost1,对应的第二代价值为cost2,第一代价值和第二代价值没有确定权重,则最终子区域A对应的代价值可以为(cost1+cost2)/2。
在一实施例中,在采用加权平均的方式得到所述子区域对应的代价值时,如果该子区域的信号传输质量参数为实际信号传输质量,则该子区域的第一代价值的权重可以增加;如果该子区域附近的障碍物是通过避障传感器检测到的,则该子区域的第二代价值的权重可以增加;如果该子区域的信号传输质量参数为实际信号传输质量,该子区域附近的障碍物是通过避障传感器检测到的,则该子区域的第一代价值和第二代价值的权重可以分别为0.5。
例如:子区域A对应的第一代价值为cost1,对应的第二代价值为cost2,预先确定的第一代价值的权重为0.6,预先确定的第二代价值的权重为0.4,其中子区域A对应的信号传输质量参数为实际信号传输质量,则可以重新确定第一代价值的权重为0.7,预先确定的第二代价值的权重为0.3,最终子区域A对应的代价值可以为(cost1*0.7+cost2*0.3)。
又如:子区域A对应的第一代价值为cost1,对应的第二代价值为cost2,预先确定的第一代价值的权重为0.7,预先确定的第二代价值的权重为0.3,其中子区域A附近的障碍物是通过视觉传感器检测到的,则可以重新确定第一代价值的权重为0.6,预先确定的第二代价值的权重为0.4,最终子区域A对应的代价值可以为(cost1*0.6+cost2*0.4)。
在一实施例中,所述目标路径途径的子区域对应的第一代价值和第二代价值满足预设条件。可选的,该预设条件可以是所述目标路径途径的子区域对应的第一代价值和第二代价值大于预设代价值阈值。
需要说明的是,可移动平台在移动过程中,可以循环执行上述过程,即在移动过程中可以通过避障传感器发现新的障碍物,可以检测到移动区域中子区域的实际信号传输质量参数,据此重新规划目标路径,修正当前移动轨迹。
下面以一个相对比较完整的实施过程为例,来说明上述的可移动平台的控 制方法。
A1:获取障碍物分布图。
A2:确定每个子区域对应的信号传输质量参数。
采用的信号传播模型为对数距离路径损耗模型(logdistance pathloss model),它的数学表达式为:
Figure PCTCN2020106657-appb-000001
其中:
PL表示信号衰减量;
PL 0表示在距离地面控制设备d 0处的信号衰减量;
γ表示信号衰减指数(path-loss exponent);
d是到地面控制设备的距离(即子区域到地面控制设备的第一距离);
d 0是到地面控制设备的参考距离;
X g是一个高斯随机变量,它的均值为0,标准差为σ。
在不同的场景中,模型参数γ和模型参数σ(即两个模型参数)的取值是不同的。
为了方便,可以把这组模型参数记为θ=(γ,σ)。这组模型参数主要反映信号传播介质、信号折射、衍射、多路径效应等对信号传播的影响。
对于任意点M(即子区域M),它的能接收到的信号强度为R rx=R tx-PL M。其中,R tx是地面控制设备的信号发送强度,PL M为M点的信号衰减量。
对于任意点M,若M与地面控制设备之间的连线上没有障碍物(LOS,Line of Sight),那么M点的θ M=θ 0。若M与地面控制设备之间的连线上有障碍物(即第一障碍物),障碍物类别(即第一障碍物类别)为楼房,那么θ M=θ 1。若M与地面控制设备之间的连线上有障碍物,障碍物类别为树木,那么θ M=θ 2。以此类推,可以根据预设的障碍物类别与模型参数之间的对应表格(即对比关系)知道每一种障碍物类别对应的模型参数的值,参见表1。
表1 预设的障碍物类别与模型参数之间的对应表格
预设的障碍物类别 模型参数
LOS θ 0
楼房 θ 1
树木 θ 2
桥梁 θ 3
山体 θ 4
需要说明的是,如果M与地面控制设备之间的连线上有不止一种障碍物(即多种障碍物类别),可以采取γ值最大的那组θ。即θ M=θ i,where i=argmax ii)。
在栅格化的障碍物分布图中,利用上述原理,可以计算出每一个栅格区域对应的信号强度RSSI值,如图9所示。
A3:更新传输质量参数。
可移动平台的周围环境中,有一些子区域是可移动平台已经探索过的。在可移动平台经过这些子区域时,会检测到并记录下当时的实际RSSI值(真值)。需要用真值来更新A2中计算得到的信号传输质量参数。例如:在M2点,根据信号传播模型计算得到的信号传输质量参数为RSSI=10,但可移动平台检测到并记录的M2点的RSSI=9。那么,需要将M2点的RSSI值从10更新为9,如图10所示。
A4:构建代价地图,规划目标路径。
将根据信号传输质量参数的值,分为三个信号档位分为:无信号、信号弱、信号正常,每个信号档位可以映射一个第一代价值,参见表2。这与后面的目标路径规划策略有关,路径规划策略是:绝对规避无信号的区域,尽量规避信号弱的区域,可移动平台可以在信号正常的区域自由通行。
表2 信号档位映射表格
信号区间 映射值(第一代价值) 含义
RSSI<R1 2 无信号
R1≤RSSI≤R2 1 信号弱
RSSI>R2 0 信号正常
在规划目标路径时,除了要考虑各个子区域的信号传输质量参数以外,还要考虑障碍物的分布,因此可以用一张代价地图(costmap)来表示信号分布和障碍物分布。可以设定一个安全通行半径(即与障碍物的距离),并对障碍物分布信息也做如下映射,参见表3。
表3 障碍物分布信息映射表格
Figure PCTCN2020106657-appb-000002
将每一个栅格区域(子区域)的代价值(v)取第一代价值(信号映射值,v signal)和第二代价值(障碍物映射值,v obs)中的较大值,即v=max(v signal,v obs),得到需要的代价地图。
如果我们用深灰色表示2(即无信号,有障碍物、会碰撞障碍物),用浅灰色表示1(即信号弱,无障碍物、有可能碰撞障碍物),中灰色表示0(即信号正常,无障碍物、不会碰撞障碍物),每一个栅格区域代表子区域,那么可以将代价地图可视化为如图11所示。
在可移动平台的移动过程中,A1-A4可以不断循环执行。随着可移动平台有新的观测信息(包括RSSI值和障碍物),代价地图也会被不断更新。
B1:根据最新的代价地图,规划一条目标路径。
在触发移动到目的地(例如返航)时,进入步骤B1:根据最新的代价地图,规划一条目标路径。如图12所示,可移动平台为无人机(即图中飞机),地面控制设备为遥控器,规划的目标路径会避开深灰色区域(即无信号,有障碍物、会碰撞障碍物),尽量避开浅灰色区域(即信号弱,无障碍物、有可能碰撞障碍物),规划的目标路径在中灰色区域(即信号正常,无障碍物、不会碰撞障碍物)。
B2:可移动平台根据目标路径移动。
在可移动平台正在移动时,重复上面的A1-A4;并重新进行目标路径的规划(即以一定频率重复上面的B1,尤其是在返航过程中发现新的障碍物时重新规划目标路径,对可移动平台的当前移动轨迹特别有用);根据最新的目标路径修正当前运动轨迹。如图13所示,可移动平台为无人机(即图中飞机),地面控制设备为遥控器,规划的旧的目标路径(图中虚线为旧的目标路径)会避开旧的深灰色区域(即无信号,有障碍物、会碰撞障碍物),尽量避开旧的浅灰色区域(即信号弱,无障碍物、有可能碰撞障碍物),规划的旧的目标路 径在旧的中灰色区域(即信号正常,无障碍物、不会碰撞障碍物);无人机在飞行过程中有新的观测信息,确定新的无信号区域和新的障碍物,并重新规划得到新的目标路径(图中实线为新的目标路径),根据最新的目标路径修正当前运动轨迹。
参见图14,图14是本申请可移动平台一实施例的结构示意图,需要说明的是,本实施例的可移动平台能够执行上述可移动平台的控制方法中的步骤,相关内容的详细说明,请参见上述可移动平台的控制方法,在此不再赘叙。
本实施例中,所述可移动平台100与地面控制设备通信连接,所述可移动平台100包括:存储器1和处理器2;处理器2与存储器1通过总线连接。
其中,处理器2可以是微控制单元、中央处理单元或数字信号处理器,等等。
其中,存储器1可以是Flash芯片、只读存储器、磁盘、光盘、U盘或者移动硬盘等等。
所述存储器1用于存储计算机程序;所述处理器2用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述可移动平台周围环境的障碍物分布图;根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述障碍物分布图和路径损耗模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述可移动平台周围环境,确定与所述可移动平台周围环境对应的信号传播模型。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:在所述障碍物分布图上划分多个栅格区域,得到栅格化的障碍物分布图;将所述栅格化的障碍物分布图上多个栅格区域中每个栅格区域作为所述可移动平台周围环境的多个子区域中每个子区域。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述栅格化的障碍物分布图,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:确定每个栅格区域对应的实际位置与所述地面控制设备所在实际位置之间的第一距离;确定每个栅格区域对应的实际位置与所述地面控制设备对应的实际位置之间连线上的第一障碍物类别;根据所述第一距离和所述第一障碍物类别,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述第一障碍物类别,确定每个栅格区域对应的模型参数的值,所述模型参数为信号传播模型的参数;根据所述第一距离、所述模型参数的值以及所述信号传播模型,确定多个栅格区域每个栅格区域对应的信号传输质量参数。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述第一障碍物类别、预设的障碍物类别与模型参数之间的对应关系,确定所述第一障碍物类别对应的模型参数的值;若所述栅格区域对应的第一障碍物类别只有一种,则确定所述第一障碍物类别对应的模型参数的值为所述栅格区域对应的模型参数的值;若所述栅格区域对应的第一障碍物类别包括多种,则根据多种所述第一障碍物类别对应的模型参数的值确定所述栅格区域对应的模型参数的值。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:将多种所述第一障碍物类别对应的模型参数的值中的最大值作为所述栅格区域对应的模型参数的值;或者,将多种所述第一障碍物类别对应的模型参数的值进行加权平均以得到所述栅格区域对应的模型参数的值。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述可移动平台检测到的所述可移动平台和所述地面控制设备之间的实际信号传输 质量参数和所述实际信号传输质量参数对应的子区域,更新所述子区域对应的信号传输质量参数。
其中,所述可移动平台和所述地面控制设备之间的实际信号传输质量参数包括所述可移动平台接收所述地面控制设备发送的信号的接收信号强度。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:获取所述可移动平台的避障传感器构建的所述可移动平台周围环境的障碍物分布图。
其中,所述避障传感器包括视觉传感器。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:获取所述可移动平台加载的第三方服务器构建的所述可移动平台周围环境的障碍物分布图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述多个子区域对应的信号传输质量参数和障碍物分布图,构建所述可移动平台周围环境的代价地图;根据所述可移动平台周围环境的代价地图,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域,且不会碰撞障碍物。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:将所述多个子区域对应的信号传输质量参数映射为所述多个子区域对应的第一代价值;将所述多个子区域对应的障碍物分布信息映射为所述多个子区域对应的第二代价值;根据所述多个子区域对应的第一代价值和第二代价值,构建所述可移动平台周围环境的代价地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值相等,则以其中一个代价值作为所述子区域对应的代价值,若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值不相等,则根据所述子区域对应的第一代价值和第二代价值确定所述子区域对应的代价值;根据所述多个子区域中每个子区域 对应的代价值,构建所述可移动平台周围环境的代价地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:将所述第一代价值和所述第二代价值中的较大值作为所述子区域对应的代价值;或者,将所述第一代价值和所述第二代价值进行加权平均以得到所述子区域对应的代价值。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上任一项所述的可移动平台的控制方法。相关内容的详细说明请参见上述相关内容部分,在此不再赘叙。
其中,该计算机可读存储介质可以是上述可移动平台的内部存储单元,例如硬盘或内存。该计算机可读存储介质也可以是外部存储设备,例如配备的插接式硬盘、智能存储卡、安全数字卡、闪存卡,等等。
应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (41)

  1. 一种可移动平台的控制方法,其特征在于,所述可移动平台与地面控制设备通信连接,所述方法包括:
    获取所述可移动平台周围环境的障碍物分布图;
    根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;
    根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,包括:
    根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,包括:
    根据所述障碍物分布图和路径损耗模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数之前,还包括:
    根据所述可移动平台周围环境,确定与所述可移动平台周围环境对应的信号传播模型。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数之前,包括:
    在所述障碍物分布图上划分多个栅格区域,得到栅格化的障碍物分布图;
    将所述栅格化的障碍物分布图上多个栅格区域中每个栅格区域作为所述可移动平台周围环境的多个子区域中每个子区域。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,包括:
    根据所述栅格化的障碍物分布图,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述栅格化的障碍物分布图,确定多个栅格区域中每个栅格区域对应的信号传输质量参数,包括:
    确定每个栅格区域对应的实际位置与所述地面控制设备所在实际位置之间的第一距离;
    确定每个栅格区域对应的实际位置与所述地面控制设备对应的实际位置之间连线上的第一障碍物类别;
    根据所述第一距离和所述第一障碍物类别,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一距离和所述第一障碍物类别,确定多个栅格区域中每个栅格区域对应的信号传输质量参数,包括:
    根据所述第一障碍物类别,确定每个栅格区域对应的模型参数的值,所述模型参数为信号传播模型的参数;
    根据所述第一距离、所述模型参数的值以及所述信号传播模型,确定多个栅格区域每个栅格区域对应的信号传输质量参数。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一障碍物类别,确定每个栅格区域对应的模型参数的值,包括:
    根据所述第一障碍物类别、预设的障碍物类别与模型参数之间的对应关系,确定所述第一障碍物类别对应的模型参数的值;
    若所述栅格区域对应的第一障碍物类别只有一种,则确定所述第一障碍物 类别对应的模型参数的值为所述栅格区域对应的模型参数的值;
    若所述栅格区域对应的第一障碍物类别包括多种,则根据多种所述第一障碍物类别对应的模型参数的值确定所述栅格区域对应的模型参数的值。
  10. 根据权利要求9所述的方法,其特征在于,所述根据多种所述第一障碍物类别对应的模型参数的值确定所述栅格区域对应的模型参数的值,包括:
    将多种所述第一障碍物类别对应的模型参数的值中的最大值作为所述栅格区域对应的模型参数的值;或者
    将多种所述第一障碍物类别对应的模型参数的值进行加权平均以得到所述栅格区域对应的模型参数的值。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述可移动平台检测到的所述可移动平台和所述地面控制设备之间的实际信号传输质量参数和所述实际信号传输质量参数对应的子区域,更新所述子区域对应的信号传输质量参数。
  12. 根据权利要求11所述的方法,其特征在于,所述可移动平台和所述地面控制设备之间的实际信号传输质量参数包括所述可移动平台接收所述地面控制设备发送的信号的接收信号强度。
  13. 根据权利要求1所述的方法,其特征在于,所述获取所述可移动平台周围环境的障碍物分布图,包括:
    获取所述可移动平台的避障传感器构建的所述可移动平台周围环境的障碍物分布图。
  14. 根据权利要求13所述的方法,其特征在于,所述避障传感器包括视觉传感器。
  15. 根据权利要求1所述的方法,其特征在于,所述获取所述可移动平台周围环境的障碍物分布图,包括:
    获取所述可移动平台加载的第三方服务器构建的所述可移动平台周围环境的障碍物分布图。
  16. 根据权利要求1所述的方法,其特征在于,所述根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,包括:
    根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目 标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域。
  17. 根据权利要求1所述的方法,其特征在于,所述根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,包括:
    根据所述多个子区域对应的信号传输质量参数和障碍物分布图,构建所述可移动平台周围环境的代价地图;
    根据所述可移动平台周围环境的代价地图,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域,且不会碰撞障碍物。
  18. 根据权利要求17所述的方法,其特征在于,所述根据所述多个子区域对应的信号传输质量参数和障碍物分布图,构建所述可移动平台周围环境的代价地图,包括:
    将所述多个子区域对应的信号传输质量参数映射为所述多个子区域对应的第一代价值;
    将所述多个子区域对应的障碍物分布信息映射为所述多个子区域对应的第二代价值;
    根据所述多个子区域对应的第一代价值和第二代价值,构建所述可移动平台周围环境的代价地图。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述多个子区域对应的第一代价值和第二代价值,构建所述可移动平台周围环境的代价地图,包括:
    若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值相等,则以其中一个代价值作为所述子区域对应的代价值,若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值不相等,则根据所述子区域对应的第一代价值和第二代价值确定所述子区域对应的代价值;
    根据所述多个子区域中每个子区域对应的代价值,构建所述可移动平台周围环境的代价地图。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述子区域对应的第一代价值和第二代价值确定所述子区域对应的代价值,包括:
    将所述第一代价值和所述第二代价值中的较大值作为所述子区域对应的代价值;或者,
    将所述第一代价值和所述第二代价值进行加权平均以得到所述子区域对应的代价值。
  21. 一种可移动平台,其特征在于,所述可移动平台与地面控制设备通信连接,所述可移动平台包括:存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取所述可移动平台周围环境的障碍物分布图;
    根据所述障碍物分布图,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数,所述每个子区域对应的信号质量参数表征所述可移动平台处于所述子区域时,所述可移动平台与所述地面控制设备传输信号时的信号传输质量;
    根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动。
  22. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述障碍物分布图和信号传播模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
  23. 根据权利要求22所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述障碍物分布图和路径损耗模型,确定所述可移动平台周围环境的多个子区域中每个子区域对应的信号传输质量参数。
  24. 根据权利要求22所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述可移动平台周围环境,确定与所述可移动平台周围环境对应的信号传播模型。
  25. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执 行所述计算机程序时,实现如下步骤:
    在所述障碍物分布图上划分多个栅格区域,得到栅格化的障碍物分布图;
    将所述栅格化的障碍物分布图上多个栅格区域中每个栅格区域作为所述可移动平台周围环境的多个子区域中每个子区域。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述栅格化的障碍物分布图,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    确定每个栅格区域对应的实际位置与所述地面控制设备所在实际位置之间的第一距离;
    确定每个栅格区域对应的实际位置与所述地面控制设备对应的实际位置之间连线上的第一障碍物类别;
    根据所述第一距离和所述第一障碍物类别,确定多个栅格区域中每个栅格区域对应的信号传输质量参数。
  28. 根据权利要求27所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述第一障碍物类别,确定每个栅格区域对应的模型参数的值,所述模型参数为信号传播模型的参数;
    根据所述第一距离、所述模型参数的值以及所述信号传播模型,确定多个栅格区域每个栅格区域对应的信号传输质量参数。
  29. 根据权利要求28所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述第一障碍物类别、预设的障碍物类别与模型参数之间的对应关系,确定所述第一障碍物类别对应的模型参数的值;
    若所述栅格区域对应的第一障碍物类别只有一种,则确定所述第一障碍物类别对应的模型参数的值为所述栅格区域对应的模型参数的值;
    若所述栅格区域对应的第一障碍物类别包括多种,则根据多种所述第一障 碍物类别对应的模型参数的值确定所述栅格区域对应的模型参数的值。
  30. 根据权利要求29所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    将多种所述第一障碍物类别对应的模型参数的值中的最大值作为所述栅格区域对应的模型参数的值;或者,
    将多种所述第一障碍物类别对应的模型参数的值进行加权平均以得到所述栅格区域对应的模型参数的值。
  31. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述可移动平台检测到的所述可移动平台和所述地面控制设备之间的实际信号传输质量参数和所述实际信号传输质量参数对应的子区域,更新所述子区域对应的信号传输质量参数。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述可移动平台和所述地面控制设备之间的实际信号传输质量参数包括所述可移动平台接收所述地面控制设备发送的信号的接收信号强度。
  33. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    获取所述可移动平台的避障传感器构建的所述可移动平台周围环境的障碍物分布图。
  34. 根据权利要求33所述的可移动平台,其特征在于,所述避障传感器包括视觉传感器。
  35. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    获取所述可移动平台加载的第三方服务器构建的所述可移动平台周围环境的障碍物分布图。
  36. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述多个子区域对应的信号传输质量参数,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质 量参数小于阈值的子区域。
  37. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述多个子区域对应的信号传输质量参数和障碍物分布图,构建所述可移动平台周围环境的代价地图;
    根据所述可移动平台周围环境的代价地图,规划所述可移动平台的目标路径,以使所述可移动平台沿所述目标路径移动时至少能够避开信号传输质量参数小于阈值的子区域,且不会碰撞障碍物。
  38. 根据权利要求37所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    将所述多个子区域对应的信号传输质量参数映射为所述多个子区域对应的第一代价值;
    将所述多个子区域对应的障碍物分布信息映射为所述多个子区域对应的第二代价值;
    根据所述多个子区域对应的第一代价值和第二代价值,构建所述可移动平台周围环境的代价地图。
  39. 根据权利要求38所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值相等,则以其中一个代价值作为所述子区域对应的代价值,若所述多个子区域中任意一个子区域对应的第一代价值和第二代价值不相等,则根据所述子区域对应的第一代价值和第二代价值确定所述子区域对应的代价值;
    根据所述多个子区域中每个子区域对应的代价值,构建所述可移动平台周围环境的代价地图。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    将所述第一代价值和所述第二代价值中的较大值作为所述子区域对应的代价值;或者,
    将所述第一代价值和所述第二代价值进行加权平均以得到所述子区域对 应的代价值。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-20任一项所述的可移动平台的控制方法。
PCT/CN2020/106657 2020-08-03 2020-08-03 可移动平台的控制方法、可移动平台及存储介质 WO2022027199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005979.5A CN112969976A (zh) 2020-08-03 2020-08-03 可移动平台的控制方法、可移动平台及存储介质
PCT/CN2020/106657 WO2022027199A1 (zh) 2020-08-03 2020-08-03 可移动平台的控制方法、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106657 WO2022027199A1 (zh) 2020-08-03 2020-08-03 可移动平台的控制方法、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2022027199A1 true WO2022027199A1 (zh) 2022-02-10

Family

ID=76271526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106657 WO2022027199A1 (zh) 2020-08-03 2020-08-03 可移动平台的控制方法、可移动平台及存储介质

Country Status (2)

Country Link
CN (1) CN112969976A (zh)
WO (1) WO2022027199A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001743A (zh) * 2021-10-29 2022-02-01 京东方科技集团股份有限公司 地图绘制方法,装置,***,存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369549A (zh) * 2013-06-19 2013-10-23 山东润谱通信工程有限公司 基于射线跟踪传播模型的室内三维空间无线信号预测方法
CN105466421A (zh) * 2015-12-16 2016-04-06 东南大学 面向可靠wifi连接的移动机器人自主巡航方法
CN108334062A (zh) * 2017-01-18 2018-07-27 华为技术有限公司 路径规划方法和装置
EP3570133A1 (en) * 2018-05-16 2019-11-20 Siemens Aktiengesellschaft Method and system for controlling a vehicle moving within an environment
CN110988498A (zh) * 2019-12-23 2020-04-10 湘潭大学 一种建筑密集区域的基站电磁辐射预测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861508B (zh) * 2017-10-20 2021-04-20 纳恩博(北京)科技有限公司 一种移动机器人局部运动规划方法及装置
KR20200084423A (ko) * 2018-12-24 2020-07-13 삼성전자주식회사 기계 학습 기반의 로컬 모션 생성 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369549A (zh) * 2013-06-19 2013-10-23 山东润谱通信工程有限公司 基于射线跟踪传播模型的室内三维空间无线信号预测方法
CN105466421A (zh) * 2015-12-16 2016-04-06 东南大学 面向可靠wifi连接的移动机器人自主巡航方法
CN108334062A (zh) * 2017-01-18 2018-07-27 华为技术有限公司 路径规划方法和装置
EP3570133A1 (en) * 2018-05-16 2019-11-20 Siemens Aktiengesellschaft Method and system for controlling a vehicle moving within an environment
CN110988498A (zh) * 2019-12-23 2020-04-10 湘潭大学 一种建筑密集区域的基站电磁辐射预测方法

Also Published As

Publication number Publication date
CN112969976A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US20170013413A1 (en) Operating unmanned aerial vehicles to maintain or create wireless networks
EP3531222A1 (en) Path planning method and device for unmanned aerial vehicle, and flight management method and device
US10657827B2 (en) Drone flight operations
JP2020098567A (ja) 適応検知・回避システム
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
WO2018170733A1 (zh) 一种可移动平台的控制方法以及可移动平台
JP6960518B2 (ja) 制御装置、作業機械、プログラム及び制御方法
CN107561547A (zh) 输电线路到目标物的距离测量方法、装置及***
EP3747000B1 (en) Proximity navigation of unmanned vehicles
WO2022027199A1 (zh) 可移动平台的控制方法、可移动平台及存储介质
EP3062123A1 (en) System and methods of detecting an intruding object in a relative navigation system
CN107219521B (zh) 一种雷达组网通信方法,雷达及终端设备
Reiser et al. Autonomous field navigation, data acquisition and node location in wireless sensor networks
CN112306078B (zh) 一种无人机自动避障导线的方法及***
WO2021088133A1 (zh) 一种多旋翼无人机飞行轨迹的构建方法及***
CN113949439A (zh) 一种面向无人机空对空通信的几何随机信道建模方法
CN111431644B (zh) 面向频谱认知的无人机路径自主规划装置及方法
KR20180023258A (ko) 드론의 자율 비행 방법 및 시스템
WO2022099468A1 (zh) 雷达及雷达的数据处理方法、可移动平台、存储介质
WO2021168810A1 (zh) 无人机控制方法、装置及无人机
KR20200082219A (ko) 실내 비행 드론의 충돌방지 시스템 및 방법
KR20170101087A (ko) 복합센서를 이용한 드론 제어 장치 및 그 방법
CN113433965B (zh) 无人机避障方法,装置,存储介质及电子设备
WO2021068136A1 (zh) 雷达的抗干扰方法、设备、***及存储介质
KR101396887B1 (ko) 3차원 지도에서의 통신 가시선 표시 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948177

Country of ref document: EP

Kind code of ref document: A1