WO2022024804A1 - Light-emitting semiconductor compound and production method therefor - Google Patents

Light-emitting semiconductor compound and production method therefor Download PDF

Info

Publication number
WO2022024804A1
WO2022024804A1 PCT/JP2021/026750 JP2021026750W WO2022024804A1 WO 2022024804 A1 WO2022024804 A1 WO 2022024804A1 JP 2021026750 W JP2021026750 W JP 2021026750W WO 2022024804 A1 WO2022024804 A1 WO 2022024804A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
perovskite
composition
perovskite compound
Prior art date
Application number
PCT/JP2021/026750
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 内藤
瑞穂 杉内
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022024804A1 publication Critical patent/WO2022024804A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/12Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a luminescent semiconductor compound, and more particularly to a luminescent semiconductor compound having a perovskite type crystal structure.
  • a light emitting semiconductor compound As a light emitting material, a light emitting semiconductor compound is attracting attention. In order to produce a light emitting material having high color purity, a light emitting semiconductor compound is required to have a light emission spectrum having a wide color gamut.
  • Non-Patent Document 1 a compound having a perovskite-type crystal structure has been reported.
  • the compounds described in Non-Patent Document 1 do not have sufficiently grown crystals, and improvement in color purity cannot be expected.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a luminescent semiconductor compound having sufficiently grown crystals. Further, more specifically, it is an object of the present invention to provide a compound having a perovskite-type crystal structure capable of widening the color gamut of the emission spectrum.
  • the present invention has a perovskite-type crystal structure containing A, B, and X as constituents
  • A is a component located at each vertex of a hexahedron centered on B and is a monovalent cation.
  • B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex, and is a metal ion.
  • X is a component located at each vertex of the octahedron centered on B, and is at least one kind of anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • It is a compound having The compound has a particle size of primary particles of 100 nm to 1.0 ⁇ m and has a particle size of 100 nm to 1.0 ⁇ m.
  • the present invention also provides a composition containing the above compound, a silicon compound having a silazane, an amino group, an alkoxy group or an alkylthio group, and at least one compound selected from the group consisting of a condensate thereof.
  • the present invention also provides a composition containing the compound or the composition and a dispersion medium, a polymerizable compound or a polymer.
  • the present invention also provides a film containing the compound or the composition.
  • the present invention also provides a laminated structure including the film.
  • the present invention also provides a light emitting device provided with the laminated structure.
  • the present invention also provides a display provided with the laminated structure.
  • the present invention comprises a step of reacting a compound which is a raw material of a luminescent semiconductor compound in a solvent to obtain a luminescent semiconductor compound and a dispersion liquid containing the solvent.
  • a method for producing a luminescent semiconductor compound which comprises a step of hot-holding the dispersion liquid.
  • the luminescent semiconductor compound has a metal element and a particle size of primary particles of 100 nm to 1.0 ⁇ m. In the X-ray diffraction pattern, the peak of the Miller index (110) plane having a half width of 0.10 ° to 0.30 ° is shown.
  • the solvent has a boiling point under atmospheric pressure of 100-400 ° C.
  • a method is provided in which the hot retention of the dispersion is carried out at a temperature that does not boil for 10 to 600 minutes.
  • a luminescent semiconductor compound having a sufficiently grown crystal is provided.
  • Such a luminescent semiconductor compound can exhibit an emission spectrum having a wide color gamut.
  • the compound of the present invention is a compound having a perovskite-type crystal structure containing A, B, and X as constituents (hereinafter, also referred to as “perovskite compound (1)”).
  • perovskite compound (1) a compound having a perovskite-type crystal structure containing A, B, and X as constituents.
  • the constituents A, B, and X have the same meaning as described above.
  • the structure of the perovskite compound (1) may be any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional (quasi-2D) structure.
  • the composition formula of the perovskite compound is represented by ABX (3 + ⁇ ) .
  • the composition formula of the perovskite compound is represented by A 2 BX (4 + ⁇ ) .
  • is a number that can be appropriately changed according to the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less.
  • A is a monovalent cation
  • B is a divalent cation
  • X is a monovalent anion
  • can be selected so that the perovskite compound is electrically neutral.
  • the fact that the perovskite compound is electrically neutral means that the charge of the perovskite compound is zero.
  • the perovskite compound contains an octahedron centered on B and having an apex X.
  • the octahedron is represented by BX 6 .
  • BX 6 When the perovskite compound has a three-dimensional structure, the BX 6 contained in the perovskite compound shares one X located at the apex of the octahedron (BX 6 ) among two adjacent octahedrons (BX 6 ) in the crystal. By doing so, a three-dimensional network is constructed.
  • the BX 6 contained in the perovskite compound shares two Xs located at the vertices of the octahedron (BX 6 ) among two adjacent octahedrons (BX 6 ) in the crystal. By doing so, the ridgeline of the octahedron is shared, and a two-dimensionally connected layer is formed.
  • the perovskite compound has a structure in which a layer made of BX 6 and a layer made of A, which are two-dimensionally connected, are alternately laminated.
  • the crystal structure of the perovskite compound can be confirmed by an X-ray diffraction pattern (hereinafter, also referred to as XRD).
  • the perovskite compound preferably has a three-dimensional structure.
  • the half width is preferably 0.10 ° or more and 0.21 ° or less, more preferably 0.10 ° or more and 0.15 ° or less, and further preferably 0.10 ° or more and 0.25 ° or less.
  • crystals of the perovskite compound are stably formed.
  • a constituting the perovskite compound is a monovalent cation.
  • Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
  • organic ammonium ion Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
  • R 6 to R 9 independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and not all of R 6 to R 9 become hydrogen atoms at the same time.
  • the alkyl group represented by R 6 to R 9 may be linear or branched. Further, the alkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
  • the number of carbon atoms of the alkyl groups represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, more preferably 1 to 3, and 1 respectively. Is even more preferable.
  • the cycloalkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the groups represented by R 6 to R 9 are preferably hydrogen atoms or alkyl groups independently of each other.
  • the perovskite compound contains an organic ammonium ion represented by the above formula (A3) as A
  • the number of alkyl groups and cycloalkyl groups that can be contained in the formula (A3) is small. Further, the number of carbon atoms of the alkyl group and the cycloalkyl group that can be contained in the formula (A3) is preferably small. This makes it possible to obtain a perovskite compound having a three-dimensional structure with high emission intensity.
  • the total number of carbon atoms contained in the alkyl group represented by R 6 to R 9 and the cycloalkyl group is preferably 1 to 4. Further, in the organic ammonium ion represented by the formula (A3), one of R 6 to R 9 is an alkyl group having 1 to 3 carbon atoms, and three of R 6 to R 9 are hydrogen atoms. It is more preferable to have.
  • the alkyl groups of R 6 to R 9 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and isopentyl group.
  • Examples of the cycloalkyl groups of R 6 to R 9 include those in which the alkyl groups having 3 or more carbon atoms exemplified in the alkyl groups of R 6 to R 9 independently form a ring.
  • Etc. can be exemplified.
  • Organic ammonium ions represented by A include CH 3 NH 3+ (also referred to as methylammonium ion) , C2H 5 NH 3+ (also referred to as ethylammonium ion) or C3 H7 NH 3+ (propyl) . It is also preferably ammonium ion), more preferably methylammonium ion or ethylammonium ion, and even more preferably methylammonium ion.
  • amidinium ion examples include the amidinium ion represented by the following formula (A4).
  • R 10 R 11 N CH-NR 12 R 13 ) + ... (A4)
  • R 10 to R 13 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • the alkyl groups represented by R 10 to R 13 may be independently linear or branched. Further, the alkyl groups represented by R 10 to R 13 may independently have an amino group as a substituent.
  • the number of carbon atoms of the alkyl groups represented by R 10 to R 13 is usually 1 to 20 independently, preferably 1 to 4, and more preferably 1 to 3.
  • the cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • alkyl groups of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 , respectively.
  • cycloalkyl groups of R 10 to R 13 include the same groups as the cycloalkyl groups exemplified in R 6 to R 9 , respectively.
  • a hydrogen atom or an alkyl group is preferable independently.
  • the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 and the cycloalkyl group is preferably 1 to 4, and R 10 is an alkyl group having 1 carbon atom. It is more preferable that R 11 to R 13 are hydrogen atoms.
  • the perovskite compound when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound generally has a three-dimensional structure.
  • the perovskite compound when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound has either a two-dimensional structure or a pseudo two-dimensional (quasi-2D) structure. Have one or both. In this case, the perovskite compound can have a two-dimensional structure or a pseudo two-dimensional structure in a part or the whole of the crystal. When a plurality of two-dimensional perovskite-type crystal structures are laminated, they become equivalent to a three-dimensional perovskite-type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907, etc.).
  • perovskite compound (1) only one type of A may be used, or two or more types may be used in combination.
  • B constituting the perovskite compound may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions.
  • B preferably contains a divalent metal ion, more preferably one or more metal ions selected from the group consisting of lead ion, tin ion, antimony ion, bismuth ion, and indium ion, and more preferably lead ion or tin ion. Is more preferable, and lead ion is particularly preferable.
  • perovskite compound (1) only one type of B may be used, or two or more types may be used in combination.
  • X constituting the perovskite compound may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • halide ion examples include chloride ion, bromide ion, fluoride ion, and iodide ion.
  • X is preferably a bromide ion.
  • perovskite compound (1) only one type of X may be used, or two or more types may be used in combination.
  • the content ratio of the halide ions can be appropriately selected depending on the emission wavelength.
  • it can be a combination of a bromide ion and a chloride ion, or a combination of a bromide ion and an iodide ion.
  • X can be appropriately selected according to the desired emission wavelength.
  • a perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
  • the perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of the emitted fluorescence is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
  • a perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
  • the perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of the emitted fluorescence is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
  • a perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
  • the perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of the emitted fluorescence is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
  • Examples of the perovskite compound having a three-dimensional structure represented by ABX (3 + ⁇ ) are CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr (3-y) .
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 ⁇ a ⁇ 0.7) and CH 3 NH 3 Pb (1-a) Sr a Br 3 . (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7), CH 3 NH 3 Pb ( 1-a) Ba a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7) ) Can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0), CH 3 NH. 3 Pb (1-a) Li a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CsPb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0), CsPb (1-a) Li. a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0,0 ⁇ y ⁇ 3 ), CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0,0 ⁇ y ⁇ 3) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure are CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 ⁇ y ⁇ 3), CsPbBr (3-y) Cl y (0 ⁇ y ⁇ 3) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Al a Br ( 1-a). 3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb ( 1) 1-a) Mn a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CsPb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Al a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0). .7, 0 ⁇ ⁇ 0.7), CsPb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Mn a Br 3 (0 ⁇ a ⁇ 0.7) ), CsPb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Al a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1- a) Co a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0) ⁇ a ⁇ 0.7,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) Iy (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) Cly (0
  • Preferred examples of the perovskite compound having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C).
  • Preferred examples of the perovskite compound having a two-dimensional structure are (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0). ), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Rb a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned.
  • Preferred examples of the two-dimensional structure of the perovskite compound are (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7). ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7) ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7) ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4) can also be mentioned.
  • Preferred examples of the two-dimensional structure of the perovskite compound are (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7). ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7) ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7) ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4) can also be mentioned.
  • Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .
  • Preferred examples of the perovskite compound having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cly (0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 PbBr (4- ). y) I y (0 ⁇ y ⁇ 4) can also be mentioned.
  • Preferred examples of the perovskite compound having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 .
  • Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7), ( C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the two-dimensional structure of the perovskite compound are (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7), ( C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH) 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4) can also be mentioned.
  • Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH) 3 ) 2 Pb (1-a) Co a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4) can also be mentioned.
  • the particle size of the primary particles of the perovskite compound (1) is the average particle size of the perovskite compound (1) in the mixture of the perovskite compound (1) composed of the plurality of perovskite compounds (1).
  • the average particle size is 100 nm or more and 1 ⁇ m or less. From the viewpoint of expanding the color gamut of the perovskite compound (1), the average particle size of the perovskite compound (1) is 100 nm or more, more preferably 200 nm or more, and further preferably 300 nm or more.
  • the average particle size of the perovskite compound (1) exceeds 1 ⁇ m, the dispersibility of the perovskite compound (1) may decrease, and the quantum yield may decrease.
  • the average particle size of the perovskite compound (1) is preferably 1 ⁇ m or less, more preferably 500 nm or less. It is more preferably 400 nm or less, and particularly preferably 351 nm or less.
  • the average particle size of the perovskite compound (1) can be measured by, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM). Specifically, by observing the maximum ferret diameter of 30 or more perovskite compounds (1) randomly selected by TEM or SEM and calculating the average maximum ferret diameter, which is the average value thereof, the above-mentioned The average particle size can be obtained.
  • the term "maximum ferret diameter” means the maximum distance between two parallel straight lines sandwiching a perovskite compound on a TEM or SEM image.
  • Examples of the method for observing the perovskite compound (1) of the present invention include a method of observing a dispersion containing the perovskite compound (1) using SEM, TEM, or the like. Furthermore, detailed element distribution can be analyzed by energy dispersive X-ray analysis (EDX) measurement using SEM or TEM.
  • EDX energy dispersive X-ray analysis
  • the average particle size of the perovskite compound (1) there is a method of capturing an SEM image into a computer and analyzing it using image analysis software.
  • the SEM image is taken into a computer and binarized using image analysis software.
  • a binarized image is obtained by converting the perovskite compound (1) into black and the others as white.
  • it is confirmed by comparing with the element mapping image obtained by the SEM-EDX measurement that the portion where the component derived from the perovskite compound (1) is detected is converted to black. If a discrepancy is found, adjust the threshold value for binarization processing.
  • the average particle size of the perovskite compound (1) is measured using image analysis software.
  • Image J, Photoshop, or the like can be appropriately selected.
  • a surface protective layer may be formed on the perovskite compound (1).
  • the surface protective layer is formed by bringing the perovskite compound (1) into contact with the surface protective agent (2) and, if necessary, curing the surface protective agent (2).
  • a mixture of the perovskite compound (1) and the surface protectant (2) is referred to as composition 1.
  • the composition 1 of the present invention has the effect of further expanding the color gamut by covering the perovskite compound (1) with the surface protective agent (2).
  • composition 1 of the present invention comprises silicon having at least one group selected from the group consisting of silazane (2-1), an amino group, an alkoxy group and an alkylthio group as the surface protectant (2) of the perovskite compound (1). It contains at least one compound selected from the group consisting of compound (2-2) and a condensate thereof.
  • Cilazan (2-1) is a compound having a Si—N—Si bond. Cilazan may be linear, branched, or cyclic.
  • the shirazan may be a small molecule shirazan or a high molecular weight shirazan.
  • the polymer silazane may be referred to as polysilazane.
  • small molecule means that the number average molecular weight is less than 600.
  • polymer means that the number average molecular weight is 600 or more and 2000 or less.
  • number average molecular weight means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
  • Small molecule silazan As the small molecule silazane, for example, disilazane represented by the following formula (B1) is preferable.
  • R 14 and R 15 are independently hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and a cycloalkyl having 3 to 20 carbon atoms. It represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 may have a substituent such as an amino group.
  • the plurality of R 15s may be the same or different.
  • Examples of the small molecule silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1. Examples thereof include 3,3,3-hexamethyldisilazane.
  • the small molecule silazane for example, the small molecule silazane represented by the following formula (B2) is also preferable.
  • R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
  • the plurality of R 14s may be the same or different.
  • the plurality of R 15s may be the same or different.
  • n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
  • Examples of the small molecule silazane represented by the formula (B2) include octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2,4. , 6-Trivinylcyclotrisilazane.
  • octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
  • polymer silazane As the polymer silazane, for example, the polymer silazane (polysilazane) represented by the following formula (B3) is preferable.
  • Polysilazane is a polymer compound having a Si—N—Si bond.
  • the constituent unit of polysilazane represented by the formula (B3) may be one kind or a plurality of kinds.
  • R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
  • Equation (B3) * represents a bond.
  • R14 is bonded to the bond of the N atom at the end of the molecular chain.
  • R15 is bonded to the bond of the Si atom at the end of the molecular chain.
  • the plurality of R 14s may be the same or different.
  • the plurality of R 15s may be the same or different.
  • M represents an integer of 2 or more and 10000 or less.
  • the polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
  • polysilazane represented by the formula (B3) may be, for example, organopolysilazane in which at least one R15 is a group other than a hydrogen atom.
  • Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and may be mixed and used.
  • the composition of the present invention preferably contains organopolysilazane represented by the formula (B3).
  • R 14 and R 15 has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. It may be a cycloalkyl group, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms.
  • organopolysilazane represented by the formula (B3) in which at least one of R 14 and R 15 is a methyl group is preferable.
  • polysilazane having a structure represented by the following formula (B4) is also preferable.
  • Polysilazane may have a ring structure in a part of the molecule, and may have a structure represented by the formula (B4), for example.
  • * represents a bond.
  • the bond of the formula (B4) may be bonded to the bond of polysilazane represented by the formula (B3) or the bond of the constituent unit of polysilazane represented by the formula (B3).
  • a bond of the structure represented by the formula (B4) is a bond of a structure represented by another formula (B4). It may be directly connected to the hand.
  • R14 is bonded to the bond of no N atom.
  • R15 is bonded to the bond of no Si atom.
  • n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
  • the composition of the present invention preferably contains organopolysilazane having a structure represented by the formula (B4).
  • an organopolysilazane having a structure represented by the formula (B4) at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is an alkyl having 1 to 20 carbon atoms.
  • the structure is represented by the formula (B4), at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is polysilazane, which is a methyl group. ..
  • the general polysilazane has, for example, a structure in which a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring exist, that is, a structure represented by the above formula (B3) and the above formula (B4). ..
  • the molecular weight of general polysilazane is about 600 to 2000 (in terms of polystyrene) in terms of number average molecular weight (Mn), and may be a liquid or solid substance depending on the molecular weight.
  • polysilazane a commercially available product may be used, and the commercially available products include NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ Electronic Materials Co., Ltd.).
  • the polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, and more preferably Durazane1500 SlowCure.
  • Condensation means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed.
  • Si—O—Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
  • the term "condensate” refers to a compound obtained by condensing a silicon compound having a Si—N bond, a Si—SR bond or a Si—OR bond.
  • the condensate of (2-1) includes a condensate of disilazane represented by the formula (B1), a condensate of low molecular weight silazane represented by the formula (B2), and a condensate of the formula (B3). It is preferable that it is a condensate of polysilazane, or a condensate of polysilazane having a structure represented by the above formula (B4) in the molecule.
  • the ratio is preferably 0.1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
  • the "ratio of silicon atoms not bonded to nitrogen atoms” is defined as ((Si (mol))-(N (mol) in Si—N bond)) / Si (mol) using the measured values described later. ) ⁇ 100.
  • the "ratio of silicon atoms not bonded to nitrogen atoms” means “ratio of silicon atoms contained in the siloxane bond generated in the condensation treatment”.
  • the ratio of silicon atoms not bonded to the nitrogen atom to all the silicon atoms contained in the polysilazane condensate represented by the formula (B3) is 0. It is preferably 1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
  • silicon not bonded to the nitrogen atom for all the silicon atoms contained in the condensate of polysilazane having the structure represented by the formula (B4).
  • the proportion of atoms is preferably 0.1 to 99%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 97%, further preferably 30 to 95%.
  • the number of Si atoms and the number of Si—N bonds in the condensate can be measured by X-ray photoelectron spectroscopy (XPS).
  • the "ratio of silicon atoms not bonded to nitrogen atoms" obtained by using the measured values by the above method is preferably 0.1 to 99%, and preferably 10 to 99%. More preferably, it is more preferably 30 to 95%.
  • composition 1 of the present invention may contain a silicon compound (2-2) having at least one group selected from the group consisting of an amino group, an alkoxy group and an alkylthio group.
  • silicon compound (2-2) having at least one group selected from the group consisting of an amino group, an alkoxy group and an alkylthio group may be generically referred to as "silicon compound (2-2)".
  • Examples of the silicon compound (2-2) include tetraethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H, 1H, 2H, and 2H-perfluoro. Examples thereof include octyltriethoxysilane, trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
  • trimethoxyphenylsilane trimethoxyphenylsilane and trimetraethoxysilane are preferable, from the viewpoint of expanding the color range of (1). preferable.
  • the condensate of the silicon compound (2-2) refers to a compound obtained by condensing the above-mentioned silicon compound (2-2). Regarding “condensation”, it is the same as the description in the condensate of silazane (2-1).
  • composition 1 of the present invention only one kind of the above-mentioned surface protective agent (2) may be contained, or two or more kinds thereof may be used in combination.
  • a preferred surface protectant (2) is a mixture of silazane (2-1) and a silicon compound (2-2), and a condensate thereof.
  • composition 2 The perovskite compound (1) or composition 1 may be dispersed in a dispersion medium material.
  • Dispersion refers to a state in which the dispersoid is suspended in the dispersion medium material, or a state in which the dispersoid is suspended in the dispersion medium material. The dispersoid may be partially settled.
  • Specific examples of the dispersion medium material are a dispersion medium (3), a polymerizable compound (4), and a polymer (5).
  • the perovskite compound (1) or a mixture of the composition 1 and the dispersion medium material is referred to as composition 2.
  • the dispersion medium (3) contained in the composition of the present invention is a medium for dispersing the perovskite compound (1) of the present invention therein.
  • the dispersion medium (3) is preferably one in which the perovskite compound (1) of the present invention is difficult to dissolve. Further, the dispersion medium (3) is in a liquid state at 1 atm and 25 ° C. However, the dispersion medium (3) does not contain the polymerizable compound described later.
  • Examples of the dispersion medium (3) include the following compounds (a) to (k).
  • Examples of the (a) ester include methylformate, ethylformate, propylformate, pentylformate, methyl acetate, ethyl acetate, pentyl acetate and the like.
  • Examples of the (b) ketone include ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
  • ether examples include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetol. And so on.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol and diacetone alcohol. , Cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like.
  • Examples of the (e) glycol ether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
  • Examples of the organic solvent having an amide group include N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like.
  • Examples of the organic solvent having a nitrile group include acetonitrile, isobutyronitrile, propionitrile, methoxynitrile and the like.
  • Examples of the organic solvent having a carbonate group include ethylene carbonate and propylene carbonate.
  • halogenated hydrocarbon examples include methylene chloride and chloroform.
  • Examples of the (j) hydrocarbon include n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene, xylene and the like.
  • composition 1 and the composition 2 of the present invention only one kind of the above-mentioned dispersion medium (3) may be used, or two or more kinds thereof may be used in combination.
  • the polymerizable compound of the composition of the present invention is preferably one in which the perovskite compound (1) of the present invention is difficult to dissolve at the temperature at which the composition of the present invention is produced.
  • polymerizable compound means a monomer compound (monomer) having a polymerizable group.
  • the polymerizable compound may be a monomer that is in a liquid state at 1 atm and 25 ° C.
  • the polymerizable compound when produced at room temperature and under normal pressure, is not particularly limited.
  • the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile.
  • the polymerizable compound either one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, is preferable.
  • composition 1 and the composition 2 of the present invention only one type of polymerizable compound may be used, or two or more types may be used in combination.
  • the ratio of the total amount of the acrylic acid ester and the methacrylic acid ester to all the polymerizable compounds (4) may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the polymer contained in the composition of the present invention is preferably a polymer having a low solubility of the perovskite compound (1) of the present invention at the temperature at which the composition of the present invention is produced.
  • the polymer when the polymer is produced at room temperature and under normal pressure, the polymer is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin. Among them, acrylic resin is preferable as the polymer.
  • the acrylic resin contains one or both of a structural unit derived from an acrylic acid ester and a structural unit derived from a methacrylic acid ester.
  • the ratio of the total amount of the structural unit derived from acrylic acid ester and the structural unit derived from methacrylic acid ester to all the structural units contained in the polymer (5) is 10 mol% or more. You may. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the weight average molecular weight of the polymer (5) is preferably 100 to 1200,000, more preferably 1,000 to 800,000, and even more preferably 5,000 to 150,000.
  • weight average molecular weight means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
  • composition 1 and the composition 2 of the present invention only one kind of the above-mentioned polymer (5) may be contained, or two or more kinds thereof may be used in combination.
  • the composition 1 and the composition 2 may further contain a surface modifier (6).
  • the surface modifier (6) has an action of covering the surface of the perovskite compound (1) and stably dispersing the perovskite compound (1) in the composition when the composition of the present invention is produced by the production method described later. It is a compound having.
  • the surface of the perovskite compound (1) of the present invention may be covered with a surface modifier layer.
  • the surface modifier layer may be located between the perovskite compound (1) and the surface protectant (2).
  • the material for forming the surface modifier layer is referred to as "surface modifier (6)".
  • the fact that the surface modifier layer covers the "surface” of the perovskite compound (1) means that the surface modifier layer directly contacts and covers the perovskite compound (1), and the surface modifier layer covers the perovskite compound (1). It is formed in direct contact with the surface of another layer formed on the surface of the perovskite compound (1) and includes covering without direct contact with the surface of the perovskite compound (1).
  • the surface modifier layer is a material for forming at least one ion or compound selected from the group consisting of ammonium ions, amines, primary to quaternary ammonium cations, ammonium salts, carboxylic acids, carboxylate ions, and carboxylate salts. And.
  • the surface modifier layer is made of at least one selected from the group consisting of amines and carboxylic acids as a forming material.
  • Ammonium ion, primary to quaternary ammonium cation, ammonium salt Ammonium ions, which are surface modifiers (6), and primary to quaternary ammonium cations are represented by the following formula (A1).
  • the ammonium salt which is the surface modifier (6) is a salt containing an ion represented by the following formula (A1).
  • R 1 to R 4 represent a hydrogen atom or a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 1 to R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 1 to R 4 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon groups R1 to R4 may be linear or branched.
  • the number of carbon atoms of the unsaturated hydrocarbon group of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 1 to R 4 are preferably hydrogen atoms, alkyl groups, or unsaturated hydrocarbon groups.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • R 1 to R 4 are preferably alkenyl groups having 8 to 20 carbon atoms.
  • alkyl groups of R 1 to R 4 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl groups of R 1 to R 4 include the cycloalkyl groups exemplified in R 6 to R 9 .
  • a single bond (CC) between any one carbon atom is two.
  • Preferred alkenyl groups of R1 to R4 are, for example, an ethenyl group, a propenyl group, a 3-butenyl group, a 2-butenyl group, a 2-pentenyl group, a 2-hexenyl group, a 2-nonenyl group and a 2-dodecenyl group.
  • Groups include 9-octadecenyl groups.
  • the counter anion is not particularly limited.
  • a halide ion, a carboxylate ion, or the like is preferable.
  • the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
  • ammonium salt having an ammonium cation represented by the formula (A1) and a counter anion As the ammonium salt having an ammonium cation represented by the formula (A1) and a counter anion, n-octyl ammonium salt and oleyl ammonium salt are preferable examples.
  • R 1 to R 3 represent the same group as R 1 to R 3 possessed by the above formula (A1). However, at least one of R 1 to R 3 is a monovalent hydrocarbon group.
  • the amine as the surface modifier (6) may be any of primary and tertiary amines, but primary amines and secondary amines are preferable, and primary amines are more preferable.
  • oleylamine is preferable.
  • the carboxylate ion which is the surface modifier (6) is represented by the following formula (A2).
  • the carboxylate salt which is a surface modifier is a salt containing an ion represented by the following formula (A2). R 5 - CO 2 -... (A2)
  • Examples of the carboxylic acid as the surface modifier (6) include carboxylic acids in which a proton (H + ) is bound to the carboxylate anion represented by the above (A2).
  • R 5 represents a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R5 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 5 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon group represented by R5 may be linear or branched.
  • the number of carbon atoms of the unsaturated hydrocarbon group represented by R5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 5 is preferably an alkyl group or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl group of R 5 include the cycloalkyl groups exemplified in R 6 to R 9 .
  • alkenyl group of R 5 examples include the alkenyl group exemplified in R 4 .
  • the carboxylate anion represented by the formula (A2) is preferably an oleate anion.
  • the counter cation is not particularly limited, but alkali metal cations, alkaline earth metal cations, ammonium cations and the like are preferable examples.
  • Oleic acid is preferable as the carboxylic acid that is the surface modifier (6).
  • ammonium salts ammonium ions, primary to quaternary ammonium cations, carboxylate salts, and carboxylate ions are preferable.
  • ammonium salts and ammonium ions oleylamine salts and oleylammonium ions are more preferable.
  • carboxylate salts and carboxylate ions oleate and oleate cations are more preferable.
  • composition 1 and the composition 2 of the present invention only one kind of the above-mentioned surface modifier (6) may be contained, or two or more kinds thereof may be used in combination.
  • the content ratio of the perovskite compound (1) to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 90% by mass or less, more preferably 40% by mass or less, further preferably 10% by mass or less, and 3% by mass or less. Is particularly preferred.
  • the content ratio is preferably 0.0002% by mass or more, more preferably 0.002% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of obtaining a good quantum yield. Is even more preferable.
  • the content ratio of the perovskite compound (1) to the total mass of the composition is usually 0.0002 to 90% by mass.
  • the content ratio of the perovskite compound (1) to the total mass of the composition is preferably 0.001 to 40% by mass, more preferably 0.002 to 10% by mass, and 0.01 to 3% by mass. Is more preferable.
  • a composition in which the content ratio of the perovskite compound (1) to the total mass of the composition is within the above range is preferable in that the perovskite compound (1) is less likely to aggregate and the luminescence is well exhibited.
  • the content ratio of the surface protective agent (2) to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 10% by mass or less, from the viewpoint of improving the dispersibility of the perovskite compound (1) and improving the durability. It is more preferably 5% by mass or less.
  • the content ratio is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and more preferably 0.1% by mass or more from the viewpoint of improving durability. More preferred.
  • the content ratio of the surface protective agent (2) to the total mass of the composition is usually 0.001 to 30% by mass.
  • the content ratio of the surface protective agent (2) to the total mass of the composition is preferably 0.001 to 30% by mass, preferably 0.001 to 10% by mass, and 0.1 to 7.5% by mass. Is more preferable.
  • the content ratio of the dispersion medium material to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 99.99% by mass or less, and more preferably 99.9% by mass or less, from the viewpoint of improving the dispersibility of the perovskite compound (1) and improving the durability. It is preferably 99% by mass or less, and more preferably 99% by mass or less.
  • the content ratio is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 10% by mass or more, and 50%. It is more preferably mass% or more, more preferably 80% by mass or more, and most preferably 90% by mass or more.
  • the content ratio of the dispersion medium material to the total mass of the composition is usually 0.1 to 99.99 mass%.
  • the content ratio of the dispersion medium material to the total mass of the composition is preferably 1 to 99% by mass, more preferably 10 to 99% by mass, further preferably 20 to 99% by mass, and 50. It is particularly preferably to 99% by mass, and most preferably 90 to 99% by mass.
  • the total content ratio of the perovskite compound (1), the surface protective agent (2) and the dispersion medium material may be 90% by mass or more with respect to the total mass of the composition, or 95% by mass. It may be more than 99% by mass, may be 99% by mass or more, and may be 100% by mass.
  • the content ratio of the surface modifier (6) to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 30% by mass or less, more preferably 1% by mass or less, and further preferably 0.1% by mass or less.
  • the content ratio is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of improving thermal durability. Is more preferable.
  • the content ratio of the surface modifier (6) to the total mass of the composition is usually 0.0001 to 30% by mass.
  • the content ratio of the surface modifier (6) to the total mass of the composition is preferably 0.001 to 1% by mass, more preferably 0.01 to 0.1% by mass.
  • a composition in which the content ratio of the surface modifier (6) to the total mass of the composition is within the above range is preferable in terms of excellent thermal durability.
  • the total content of some impurities, the compound having an amorphous structure composed of the elements constituting the perovskite compound (1), and the polymerization initiator is 10% by mass or less with respect to the total mass of the composition. It is preferably 5% by mass or less, more preferably 1% by mass or less.
  • the mass ratio of the perovskite compound (1) to the dispersion medium material may be 0.00001 to 10, and may be 0.0001 to 0.0001. It may be 5 or 0.0005 to 3.
  • a composition in which the range of the blending ratio of the perovskite compound (1) and the dispersion medium material is within the above range is preferable because the perovskite compound (1) is less likely to aggregate and emits light well.
  • the compounding ratio of the perovskite compound (1) and the surface protective agent (2) can be appropriately determined according to the types of (1) and (2) and the like.
  • the molar ratio [Si / B] of the metal ion which is the B component of the perovskite compound (1) and the Si element of the surface protectant (2) is 0.001 to 200. It may be 0.01 to 50.
  • the surface protective agent (2) is a condensate of silazane represented by the formula (B1) or (B2)
  • the metal ion which is the B component of the perovskite compound (1) and the metal ion
  • the molar ratio [Si / B] of the condensate of silazane (2-1) to Si may be 0.001 to 100, 0.001 to 50, or 1 to 20. May be good.
  • the surface protective agent (2) is polysilazane having a structural unit represented by the formula (B3)
  • the metal ion which is the B component of the perovskite compound (1) and silazane (2).
  • the molar ratio [Si / B] of the condensate of -1) with the Si element may be 0.001 to 100, 0.01 to 100, or 0.1 to 100. It may be 1 to 50, or 1 to 20.
  • the effect of the surface protectant (2) on improving the durability against water vapor is particularly well exhibited. It is preferable in that it is done.
  • the molar ratio [Si / B] of the metal ion which is the B component of the perovskite compound and the Si element of the surface protective agent (2) can be obtained by the following method.
  • the number of moles (B) of the metal ion, which is the B component of the perovskite compound, is converted into moles after calculating the mass of the metal, which is the B component contained in the perovskite compound, by inductively coupled plasma mass spectrometry (ICP-MS). Ask by.
  • the number of moles (Si) of the Si element of the surface protectant (2) is obtained by converting the mass of the surface protectant (2) used into moles.
  • the ratio of the number of moles (Si) of the Si element of the surface protective agent (2) to the number of moles (B) of the metal ion which is the B component of the perovskite compound is [Si / B].
  • the mass of the surface protective agent (2) is preferably 1.1 parts by mass or more with respect to the mass of the perovskite compound (1) from the viewpoint of sufficiently improving the quantum yield. It is preferably 1.5 parts by mass or more, and more preferably 1.8 parts by mass or more.
  • the mass of the surface protective agent (2) is preferably 10 parts by mass or less, more preferably 4.9 parts by mass or less, and further preferably 2.5 parts by mass with respect to the mass of the perovskite compound (1). It is less than a part.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the luminescent semiconductor compound referred to here is a luminescent semiconductor compound containing a metal element.
  • Examples of the metal element contained in the luminescent semiconductor compound include the metal elements of Groups 2 to 14 in the periodic table.
  • the metal elements of Groups 2 to 14 in the periodic table are not particularly limited, and examples thereof include Mg, Ca, Sr, Ba, Cu, Zn, Cd, Hg, Al, Ga, In, Sn, and Pb.
  • the luminescent semiconductor compound may contain non-metal elements of Groups 13 to 17 in the periodic table in addition to the metal elements.
  • the non-metal element of Group 13 to 17 of the periodic table is not particularly limited, and examples thereof include B, C, N, P, As, Sb, Se, Te, F, Cl, Br, and I.
  • Examples of the semiconductor compound produced by the production method of the present invention include the perovskite compound (1) of the present invention and the semiconductor compounds of the following (i) to (vii).
  • (I) Semiconductor compound containing a group II-VI compound ii) Semiconductor compound containing a group II-V compound (iii) A semiconductor compound containing a group III-V compound (iv) Containing a group III-IV compound Semiconductor compound (v) Semiconductor compound containing group III-VI compound (vi) Semiconductor compound containing group IV-VI compound (vii) Semiconductor compound containing transition metal-p-block compound
  • the semiconductor compound containing the group II-VI compound includes a semiconductor compound containing a compound containing a group 2 element and a group 16 element in the periodic table, and a group 12 element and a group 16 element in the periodic table. Examples thereof include semiconductor compounds including compounds.
  • the "periodic table” means a long-periodic table.
  • a semiconductor compound containing a compound containing a Group 2 element and a Group 16 element is referred to as a “semiconductor compound (i-1)”, and a semiconductor compound containing a compound containing a Group 12 element and a Group 16 element is used. May be referred to as “semiconductor compound (i-2)”.
  • examples of the binary semiconductor compound include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, and BaTe.
  • (I-1-1) A ternary semiconductor compound containing one type of Group 2 element and two types of Group 16 element (i-1-2) Two types of Group 2 element and one type of Group 16 element.
  • a ternary semiconductor compound containing various types (i-1-3) A quaternary semiconductor compound containing two types of Group 2 elements and two types of Group 16 elements may be used.
  • examples of the binary semiconductor compound include ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, and HgTe.
  • the semiconductor compound (i-2), (I-2-1) A ternary semiconductor compound containing one type of Group 12 element and two types of Group 16 element (i-2-2) Two types of Group 12 element and one type of Group 16 element.
  • a ternary semiconductor compound containing various types (i-2-3) A quaternary semiconductor compound containing two types of Group 12 elements and two types of Group 16 elements may be used.
  • the group II-VI semiconductor compound may contain an element other than the group 2 element, the group 12 element, and the group 16 element as a doping element.
  • the group II-group V semiconductor compound contains a group 12 element and a group 15 element.
  • the binary semiconductor compounds include, for example, Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N. 2 is mentioned.
  • (Ii-1) A ternary semiconductor compound containing one type of Group 12 element and two types of Group 15 element (ii-2) A ternary containing two types of Group 12 element and one type of Group 15 element.
  • System Semiconductor Compound (ii-3) A quaternary semiconductor compound containing two types of Group 12 elements and two types of Group 15 elements may be used.
  • the Group II-Group V semiconductor compound may contain elements other than Group 12 elements and Group 15 elements as doping elements.
  • the group III-V semiconductor compound contains a group 13 element and a group 15 element.
  • examples of the binary semiconductor compound include AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, and AlN.
  • (Iii-1) A ternary semiconductor compound containing one type of Group 13 element and two types of Group 15 element (iii-2) A ternary containing two types of Group 13 element and one type of Group 15 element.
  • System-based semiconductor compound (iii-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 15 elements may be used.
  • the Group III-Group V semiconductor compound may contain an element other than the Group 13 element and the Group 15 element as a doping element.
  • the group III-IV semiconductor compound contains a group 13 element and a group 14 element.
  • examples of the binary semiconductor compound include B 4 C 3 , Al 4 C 3 , and Ga 4 C 3 .
  • (Iv-1) A ternary semiconductor compound containing one type of Group 13 element and two types of Group 14 element (iv-2) A ternary containing two types of Group 13 element and one type of Group 14 element.
  • System-based semiconductor compound (iv-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 14 elements may be used.
  • Group III-Group IV semiconductor compounds may contain elements other than Group 13 elements and Group 14 elements as doping elements.
  • the group III-VI semiconductor compound contains a group 13 element and a group 16 element.
  • the binary semiconductor compounds include, for example, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , and Ga 2 Te 3 . , GaTe, In 2 S 3 , In 2 Se 3 , In 2 Te 3 , or InTe.
  • V-1 A ternary semiconductor compound containing one type of Group 13 element and two types of Group 16 element
  • v-2 A ternary containing two types of Group 13 element and one type of Group 16 element.
  • Systemic semiconductor compound (v-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 16 elements may be used.
  • the Group III-Group VI semiconductor compound may contain an element other than the Group 13 element and the Group 16 element as a doping element.
  • Group IV-Group VI semiconductor compounds include Group 14 elements and Group 16 elements.
  • examples of the binary semiconductor compound include PbS, PbSe, PbTe, SnS, SnSe, and SnTe.
  • Vi-1 A ternary semiconductor compound containing one type of Group 14 element and two types of Group 16 element
  • VI-2 A ternary compound containing two types of Group 14 element and one type of Group 16 element.
  • System Semiconductor Compound (vi-3) A quaternary semiconductor compound containing two types of Group 14 elements and two types of Group 16 elements may be used.
  • the Group III-Group VI semiconductor compound may contain an element other than the Group 14 element and the Group 16 element as a doping element.
  • the transition metal-p-block semiconductor compound contains a transition metal element and a p-block element.
  • the "p-block element” is an element belonging to the 13th to 18th groups of the periodic table.
  • transition metal-p-block semiconductor compounds examples include NiS and CrS.
  • transition metal-p-block semiconductor compound (Vii-1) A ternary semiconductor compound containing one type of transition metal element and two types of p-block element (vii-2) A ternary system containing two types of transition metal element and one type of p-block element.
  • Semiconductor compound (vii-3) A quaternary semiconductor compound containing two types of transition metal elements and two types of p-block elements may be used.
  • the transition metal-p-block semiconductor compound may contain a transition metal element and an element other than the p-block element as a doping element.
  • ternary semiconductor compound and quaternary semiconductor compound include ZnCdS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnSe, and CdZne.
  • the luminescent semiconductor compound is the perovskite compound (1).
  • the luminescent semiconductor compound is a semiconductor compound containing Cd, which is a Group 12 element, and a semiconductor compound containing In, which is a Group 13 element.
  • the preferable luminescent semiconductor compound is a perovskite compound (1), a semiconductor compound containing Cd and Se, and a semiconductor compound containing In and P.
  • any of a binary semiconductor compound, a ternary semiconductor compound, and a quaternary semiconductor compound is preferable.
  • CdSe which is a binary semiconductor compound, is particularly preferable.
  • any of a binary semiconductor compound, a ternary semiconductor compound, and a quaternary semiconductor compound is preferable.
  • InP which is a binary semiconductor compound, is particularly preferable.
  • the average particle size of the semiconductor compound produced by the method for producing a luminescent semiconductor compound of the present invention is the same as the average particle size of the perovskite compound (1) described above.
  • the average particle size of the semiconductor compound produced by the method for producing a luminescent semiconductor compound of the present invention may be measured by the same method as the above-mentioned measurement of the average particle size of the perovskite compound (1). can.
  • the compound used as a raw material for the luminescent semiconductor compound of the present invention includes a raw material compound containing a metal element and a raw material compound containing a non-metal element.
  • the raw material compound containing a metal element include simple substances of the above-mentioned metal element, oxides containing the metal element, acetates, organic metal compounds, halides, nitrates and the like.
  • the raw material compound containing a metal element only one kind may be used, or two or more kinds may be used in combination.
  • the raw material compound containing a non-metal element examples include a compound containing a non-metal element contained in a luminescent semiconductor compound.
  • a compound containing a non-metal element of Groups 13 to 17 of the above-mentioned periodic table can be used as a raw material compound containing a non-metal element.
  • the raw material compound containing a non-metal element only one kind may be used, or two or more kinds may be used in combination.
  • the raw material compound containing a metal element is preferably a raw material compound containing the constituent component B. Further, in this case, the raw material compound containing the non-metal element is a raw material compound containing the constituent component A and the raw material compound containing the constituent component X.
  • the solvent is a medium used for dissolving a raw material compound when synthesizing a luminescent semiconductor compound.
  • a liquid having a boiling point under atmospheric pressure higher than the temperature at which the dispersion liquid is kept hot is used.
  • the reaction liquid boils during the hot holding, and the crystal growth of the luminescent semiconductor compound becomes insufficient.
  • the solvent for example, a compound having a boiling point at atmospheric pressure of 100 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C. is selected.
  • the solvent include a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, an oxygen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, and the like.
  • hydrocarbon group having 4 to 20 carbon atoms examples include a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • saturated aliphatic hydrocarbon group having 4 to 20 carbon atoms examples include an n-butyl group, an isobutyl group, an n-pentyl group, an octyl group, a decyl group, a dodecyl group, a hexadecyl group and an octadecyl group.
  • Examples of the unsaturated aliphatic hydrocarbon group having 4 to 20 carbon atoms include an oleyl group.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aromatic hydrocarbon group having 4 to 20 carbon atoms include a phenyl group, a benzyl group, a naphthyl group, and a naphthylmethyl group.
  • hydrocarbon group having 4 to 20 carbon atoms a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
  • Examples of the nitrogen-containing compound include amines and amides.
  • Examples of the oxygen-containing compound include fatty acids.
  • solvent examples include toluene, oleic acid, oleylamine, and 1-octadecene.
  • Such a solvent can be bonded to the surface of a semiconductor compound produced by synthesis.
  • Examples of the bond when the solvent binds to the surface of the semiconductor particles include chemical bonds such as covalent bonds, ionic bonds, coordinate bonds, hydrogen bonds, and van der Waals bonds.
  • a raw material compound such as a raw material compound containing a metal element and a raw material compound containing a non-metal element is dissolved in a solvent to obtain a raw material solution.
  • the raw material compound is dissolved by heating as appropriate.
  • the heating temperature is, for example, 80 to 400 ° C, preferably 80 to 150 ° C, and more preferably 120 to 140 ° C.
  • the heating temperature of the raw material solution is appropriately set according to the type of raw material (elemental substance or compound) to be used.
  • the heating temperature of the raw material solution is usually 80 to 400 ° C, preferably 80 to 230 ° C, and more preferably 120 to 180 ° C. If the heating temperature of the raw material solution is lower than room temperature, the reaction of the raw material compound does not proceed sufficiently, and if it exceeds 400 ° C., the crystal structure becomes unstable due to heat.
  • the heating time of the raw material solution may be appropriately set according to the type of raw material (single substance or compound) used and the heating temperature.
  • the heating time of the raw material solution is, for example, several seconds to several hours, generally 1 to 60 minutes.
  • the raw material compound is reacted in the solvent to produce a luminescent semiconductor compound.
  • the produced semiconductor compound is insoluble in a solvent, and a dispersion liquid containing the semiconductor compound and the solvent can be obtained.
  • the hot retention of the dispersion is performed at a temperature at which the dispersion does not boil. If the dispersion liquid boils during hot holding, the crystal growth of the luminescent semiconductor compound becomes insufficient.
  • the hot holding temperature is generally 80 to 200 ° C., preferably 100 to 180 ° C., and more preferably 120 to 150 ° C. from the viewpoint of further promoting crystal growth and expanding the color gamut.
  • the hot holding temperature is at least the above lower limit value, the crystal structure is likely to be unified, which is preferable.
  • the hot holding temperature is not more than the above upper limit value, the crystal structure of the generated semiconductor particles is less likely to collapse and the desired product can be easily obtained, which is preferable.
  • the time for hot-retaining the dispersion is 10 to 600 minutes or less, preferably 20 to 180 minutes, and more preferably 30 to 120 minutes from the viewpoint of promoting crystal growth and expanding the color gamut.
  • the obtained dispersion is cooled to obtain a precipitate containing the target semiconductor compound.
  • the cooling temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
  • the precipitate is separated and appropriately washed to obtain the desired semiconductor compound.
  • the precipitate can be separated by a method such as centrifugation or filtration.
  • the composition 1 of the present invention that is, a mixture of the perovskite compound (1) and the surface protectant (2), for example, brings the perovskite compound (1) and the surface protectant (2) into contact with each other, and if necessary, the surface thereof. It is produced by condensing the protective agent (2) to form a surface protective layer on the perovskite compound (1).
  • the contact between the perovskite compound (1) and the surface protective agent (2) may be carried out in the presence of the dispersion medium (3). In such a case, the dispersion medium is removed after forming the composition 1.
  • the dispersion liquid of the composition 1 may be allowed to stand at room temperature for natural drying, may be vacuum dried using a vacuum dryer, or heated and dried by heating. May be good.
  • the dispersion medium (3) can be removed by drying at 0 ° C. or higher and 300 ° C. or lower for 1 minute or more and 7 days or less.
  • the dispersion liquid of the composition 1 containing the dispersion medium (3) may be used as the composition 2 as it is or by adjusting the concentration.
  • the condensation treatment of the surface protectant (2) can be performed by a known method such as irradiating the surface protectant (2) with ultraviolet rays or reacting the surface protectant (2) with water vapor.
  • the treatment of reacting the surface protective agent (2) with water vapor may be referred to as "humidifying treatment”.
  • the wavelength of the ultraviolet rays used is usually 10 to 400 nm, preferably 10 to 350 nm, and more preferably 100 to 180 nm.
  • the light source that generates ultraviolet rays include a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, an excimer lamp, and UV laser light.
  • the condensation treatment is more preferably performed by a humidification treatment from the viewpoint of forming a stronger protected region in the vicinity of the perovskite compound (1).
  • the composition may be allowed to stand for a certain period of time under the temperature and humidity conditions described later, or may be stirred for a certain period of time under the same conditions.
  • the temperature in the humidification treatment may be a temperature at which condensation proceeds sufficiently.
  • the temperature in the humidification treatment is, for example, preferably 5 to 150 ° C, more preferably 10 to 100 ° C, and even more preferably 15 to 80 ° C.
  • the humidity in the humidification treatment may be any humidity as long as sufficient moisture is supplied to the above (2-1) and the above (2-2) in the composition.
  • the humidity in the humidification treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and even more preferably 60% to 90%.
  • the time required for the humidification treatment may be a time during which the condensation proceeds sufficiently.
  • the time required for the humidification treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
  • Water may be supplied in the humidification treatment by circulating a gas containing water vapor in the reaction vessel, or by stirring in an atmosphere containing water vapor to supply water from the interface.
  • the flow rate of the gas containing water vapor is preferably 0.01 L / min or more and 100 L / min or less, preferably 0.1 L / min, in order to improve the durability of the obtained composition. More than 10 L / min or less is more preferable, and 0.15 L / min or more and 5 L / min or less is further preferable.
  • the gas containing water vapor include nitrogen containing a saturated amount of water vapor.
  • composition 2 of the present invention that is, the perovskite compound (1) or a mixture of the composition 1 and the dispersion medium material can be produced, for example, by dispersing the perovskite compound (1) or the composition 1 in the dispersion medium material. can.
  • the perovskite compound (1) or the composition 1 is dispersed in a dispersion medium material, a surface protective agent (2) is added to the obtained dispersion liquid, and the surface protective agent (2) is brought into contact with the perovskite compound (1). If necessary, the surface protective agent (2) may be condensed to produce the product.
  • the composition 2 can also be obtained by polymerizing the polymerizable compound (4) to obtain a part thereof as the polymer (5).
  • the total of the perovskite compound (1), the surface protectant (2), and the polymer (5) is preferably 90% by mass or more of the total composition.
  • the step of polymerizing the polymerizable compound (4) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
  • a radical polymerization initiator is added to a mixture of a perovskite compound (1), a surface protectant (2), and a polymerizable compound (4) to generate a radical to carry out a polymerization reaction.
  • a radical polymerization initiator is added to a mixture of a perovskite compound (1), a surface protectant (2), and a polymerizable compound (4) to generate a radical to carry out a polymerization reaction.
  • a radical polymerization initiator is added to a mixture of a perovskite compound (1), a surface protectant (2), and a polymerizable compound (4) to generate a radical to carry out a polymerization reaction.
  • the radical polymerization initiator is not particularly limited, and examples thereof include a photoradical polymerization initiator.
  • photoradical polymerization initiator examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and the like.
  • compositions 1 and 2 may contain a surface modifier (6).
  • the surface modifier (6) can be added together with the surface protectant (2) to the dispersion liquid in which the perovskite compound (1) is dispersed in the dispersion medium material.
  • the surface modifier (6) has an action of stably dispersing the perovskite compound (1) in the composition.
  • a layer of an inorganic silicon compound having a siloxane bond may be further formed.
  • the perovskite compound (1) contained in the composition of the present invention is applied to the following formula 1 by the dry mass method to calculate the solid content concentration (mass%).
  • Solid content concentration (mass%) mass after drying ⁇ mass before drying x 100 ... Equation 1
  • the chromaticity coordinates of the perovskite compound (1) of the present invention are obtained by using an absolute PL quantum yield measuring device (for example, "C9920-02" (trade name) manufactured by Hamamatsu Photonics Co., Ltd.) with an excitation light of 450 nm, room temperature, and atmosphere. Measure below.
  • the chromaticity coordinates are calculated from the range of 480 nm to 800 nm.
  • the color gamut is calculated by applying the above-mentioned measurement result of the chromaticity coordinates to the following equation 2.
  • the numerical values of the evaluation result of the color gamut are preferably 0 or more and 0.075 or less, more preferably 0 or more and 0.0622 or less, further preferably 0 or more and 0.0567 or less, and 0.
  • 0.0496 or less is more preferable, 0 or more and 0.0470 or less are further preferable, 0 or more and 0.0458 or less are further preferable, and 0 or more and 0.0355 or less are most preferable.
  • the film according to the present invention contains the perovskite compound (1) of the present invention.
  • the film according to the present invention uses the above-mentioned composition as a forming material.
  • the film according to the present invention contains the perovskite compound (1) and the polymer (5), and the total of the perovskite compound (1) and the polymer (5) is 90% by mass or more of the whole film.
  • the film shape is not particularly limited, and can be any shape such as a sheet shape or a bar shape.
  • the term "bar-shaped" means, for example, a planar visual band-shaped shape extending in one direction. Examples of the plan-view band-shaped shape include a plate-shaped shape having different lengths on each side.
  • the thickness of the film may be 0.01 ⁇ m to 1000 mm, 0.1 ⁇ m to 10 mm, or 1 ⁇ m to 1 mm.
  • the laminated structure according to the present invention has a plurality of layers, and at least one layer is the above-mentioned film.
  • layers other than the above-mentioned film include arbitrary layers such as a base material, a barrier layer, and a light scattering layer.
  • the shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape or a bar shape.
  • the base material is not particularly limited, but may be a film.
  • the base material preferably has light transmission.
  • a laminated structure having a light-transmitting substrate is preferable because it is easy to take out the light emitted by the perovskite compound (1).
  • the material for forming the base material for example, a polymer such as polyethylene terephthalate or a known material such as glass can be used.
  • a polymer such as polyethylene terephthalate or a known material such as glass
  • the above-mentioned film may be provided on the base material.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the laminated structure according to the present invention.
  • the film 10 according to the present invention is provided between the first base material 20 and the second base material 21.
  • the film 10 is sealed by the sealing layer 22.
  • One aspect of the present invention is the film 10 according to the present embodiment, which is located between the first base material 20, the second base material 21, and the first base material 20 and the second base material 21. And, in a laminated structure having a sealing layer 22, the sealing layer 22 is arranged on a surface of the film 10 that is not in contact with the first base material 20 and the second base material 21. It is a laminated structure 1a characterized by the above. ⁇ Light emitting device> The light emitting device according to the present invention can be obtained by combining the compound, composition or the laminated structure of the present invention with a light source.
  • the light emitting device is a device that emits light from a light source by irradiating a compound, composition, or laminated structure installed in a subsequent stage to emit light, and extracts light.
  • One aspect of the present invention is a light emitting device 2 in which a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
  • the light source constituting the light emitting device according to the present invention is not particularly limited, but has a emission wavelength of 600 nm or less from the viewpoint of causing the perovskite compound (1) in the above-mentioned compound, the above-mentioned composition, or the laminated structure to emit light.
  • a light source having the above is preferable.
  • the light source for example, a light emitting diode (LED) such as a blue light emitting diode, a known light source such as a laser or EL can be used.
  • One aspect of the present invention is a liquid crystal display 3 in which a liquid crystal panel 40, a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
  • the display 3 according to the present invention includes a liquid crystal panel 40 and the above-mentioned light emitting device 2 in this order from the visual recognition side.
  • the light emitting device 2 includes a second laminated structure 1b and a light source 30.
  • the above-mentioned first laminated structure 1a further includes a prism sheet 50 and a light guide plate 60.
  • the display may further include any suitable other components.
  • the film according to the present invention is, for example, coated with a liquid composition 1 containing a dispersion medium (3) and a polymerizable compound (4) to obtain a coating film, and then the polymerizable compound contained in the coating film. It can be obtained by polymerizing (4).
  • the method for coating the liquid composition 1 on the substrate is not particularly limited, and known methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method are known. It can be coated using a coating and coating method.
  • the laminated structure according to the present invention can be manufactured by laminating the obtained film on a base material. In the process of laminating the film on the base material, the films are bonded to each other using an adhesive.
  • the adhesive is not particularly limited as long as it does not dissolve the perovskite compound (1), and the adhesive can be bonded using a known adhesive.
  • the laminated structure obtained above may further contain any film.
  • Examples of such an arbitrary film include a reflective film, a diffusion film and the like.
  • the light emitting device can be manufactured, for example, by installing the above-mentioned light source and the above-mentioned compound, the above-mentioned composition, or a laminated structure on the optical path from the light source.
  • a display can be manufactured by laminating a display element including a polarizing plate or the like on the light emitting device.
  • the solid content concentration of the perovskite compound in the composition obtained in Example 7 was the mass remaining after drying the dispersion liquid containing the perovskite compound and the solvent obtained by redispersion at 105 ° C. for 3 hours, respectively. was measured and calculated by applying it to the above formula 1.
  • the average particle size of the perovskite compounds obtained in Examples 1 to 7 and Comparative Example 1 was calculated using the image analysis software Image J.
  • a binarized image was obtained in which the compounds obtained in Examples 1 to 5 and Comparative Example 1 in the SEM image of each dispersion were converted to black and the others were converted to white.
  • the position where the component derived from each of the perovskite compounds obtained in Examples 1 to 5 and Comparative Example 1 is detected can be converted to black by comparing with the element mapping image obtained by the SEM-EDX measurement. I confirmed that.
  • the size of the perovskite compound was measured for the binarized image.
  • the average particle size was calculated from the average length of the longest side of the cube or rectangular parallelepiped particles of 30 randomly selected perovskite compounds.
  • the chromaticity coordinates (xy chromaticity system) of the compounds obtained in Examples 1 to 7 and Comparative Example 1 are used as an absolute PL quantum yield measuring device (“C9920-02” (trade name) manufactured by Hamamatsu Photonics Co., Ltd.). Was measured at an excitation light of 450 nm at room temperature and in the atmosphere.
  • the chromaticity coordinates were calculated from the emission spectrum in the range of 480 nm to 800 nm after setting the excitation light removal (100%).
  • the color gamut was calculated by applying the above equation 2 to the above-mentioned measurement results of the chromaticity coordinates.
  • Example 1 After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred while cooling with ice, 17.12 mL of a hydrobromic acid solution (48%) was added, and the mixture was dried under reduced pressure to obtain a precipitate. The precipitate was washed with diethyl ether and then dried under reduced pressure to give oleylammonium bromide. After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred while cooling with ice, 30.06 mL of a hydrochloride solution (20%) was added, and the mixture was dried under reduced pressure to obtain a precipitate. The precipitate was washed with diethyl ether and then dried under reduced pressure to obtain oleylammonium chloride.
  • Toluene oleylammonium bromide was prepared by mixing 200 mL of toluene with 21 g of oleylammonium bromide.
  • Toluene oleylammonium chloride solution was prepared by mixing 200 mL of toluene with 18.3 g of oleylammonium chloride. 85.44 mL of the above-mentioned oleyl ammonium bromide solution and 21.36 mL of the above-mentioned oleyl ammonium chloride solution were mixed.
  • a solution obtained by mixing 106.5 mL of toluene and 106.5 mL of ethyl acetate with 330 mL of the above dispersion was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 106.5 mL of toluene and 106.5 mL of ethyl acetate twice, and filtered. Thereby, the perovskite compound (1) was isolated.
  • the obtained perovskite compound (1) was dispersed with 150 mL of xylene to obtain a dispersion for analysis.
  • the chromaticity coordinates of a mixture of 20 ⁇ L of the dispersion for analysis and 2.97 mL of xylene were measured, and the color gamut was evaluated.
  • 50 ⁇ L of the dispersion for analysis was cast on a non-reflective plate and dried, and then XRD was measured.
  • Example 2 The perovskite compound (1) was isolated and its characteristics were measured by the same method as in Example 1 except that the heating time after synthesizing the compound having a perovskite crystal structure was 120 minutes. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
  • Example 3 3.04 g of lead acetate trihydrate, 3.12 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 80 mL of oleic acid were mixed. After stirring and heating to 130 ° C. with flowing nitrogen, 85.44 mL of the above-mentioned oleylammonium bromide solution was added, and immediately 21.36 mL of the above-mentioned oleylammonium chloride solution was added to the compound having a perovskite crystal structure. Was synthesized and then heated for 120 minutes while maintaining the temperature of 130 ° C. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
  • a solution obtained by mixing 106.5 mL of toluene and 106.5 mL of ethyl acetate with 330 mL of the above dispersion was separated into solid and liquid by filtration. Then, the solid content on the filtration is washed by flowing a mixed solution of 106.5 mL of toluene and 106.5 mL of ethyl acetate twice, and filtered to isolate the perovskite compound (1), which is the same as in Example 1. The characteristics were measured. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
  • Example 4 The perovskite compound (1) was isolated and its characteristics were measured by the same method as in Example 3 except that the heating time after synthesizing the compound having a perovskite crystal structure was 20 minutes. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
  • Example 5 1.52 g of lead acetate trihydrate, 1.56 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 40 mL of oleic acid were mixed. After stirring and heating to 135 ° C. with flowing nitrogen, 42.72 mL of the above-mentioned oleylammonium bromide solution was added, and immediately 10.68 mL of the above-mentioned oleylammonium chloride solution was added to the compound having a perovskite crystal structure. Was synthesized and then heated for 30 minutes while maintaining the temperature of 135 ° C. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
  • a solution obtained by mixing 77 mL of toluene and 77 mL of ethyl acetate with 240 mL of the above dispersion 1 was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 77 mL of toluene and 77 mL of ethyl acetate twice, and filtered to isolate the perovskite compound (1), and its characteristics were measured in the same manner as in Example 1. ..
  • the measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
  • Example 6 2.28 g of lead acetate trihydrate, 2.34 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 60 mL of oleic acid were mixed. After stirring and heating to 135 ° C. with flowing nitrogen, 64.08 mL of the above-mentioned oleylammonium bromide solution was added, and immediately 16.02 mL of the above-mentioned oleylammonium chloride solution was added to the compound having a perovskite crystal structure. Was synthesized and then heated for 30 minutes while maintaining the temperature of 135 ° C. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
  • a solution obtained by mixing 90 mL of toluene and 90 mL of ethyl acetate with 280 mL of the above dispersion 1 was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 90 mL of toluene and 90 mL of ethyl acetate twice, and filtered to isolate the perovskite compound (1), and its characteristics were measured in the same manner as in Example 1. ..
  • the measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
  • Example 7 Xylene was mixed with the xylene dispersion of the perovskite compound (1) obtained in Example 3 so that the solid content concentration was 0.33% by mass to prepare a dispersion of 150 mL. To this, 2 parts by mass of organopolysilazane (1500 Slow Cure, Durazane, manufactured by Merck Performance Materials Co., Ltd.) was added to 1 part by mass of the perovskite compound in the dispersion. Further, 1 part by mass of tetraethoxysilane was added to 1 part by mass of the perovskite compound in the dispersion liquid.
  • organopolysilazane (1500 Slow Cure, Durazane, manufactured by Merck Performance Materials Co., Ltd.
  • a condensation treatment with water vapor was carried out for 4 hours to obtain a composition containing a perovskite compound (1) and a surface protective agent (2).
  • the flow rate of steam was 0.2 L / min (supplied with N 2 gas, the amount of saturated steam at 30 ° C.), and the heating temperature was 80 ° C.
  • the chromaticity coordinates of a solution obtained by mixing 200 ⁇ L of the obtained composition and 2.97 mL of xylene were measured, and the color gamut was evaluated. The result was 0.0400.
  • the perovskite compounds of Examples 1 to 7 in which the synthesized luminescent semiconductor compound was hot-held in a solvent had a larger particle size and a color gamut than the quenching of the perovskite compound of Comparative Example 1. It was confirmed that it was wide.
  • a resin composition can be obtained by forming a sheet of the compounds or compositions according to Examples 1 to 7, and a film sandwiched between two barrier films and sealed is placed on a light guide plate. As a result, a backlight capable of converting the blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate to the sheet through the light guide plate into green light or red light is manufactured.
  • a wavelength conversion material can be obtained by removing the solvent after mixing the compound or composition described in Examples 1 to 7 with a resist. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or after the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light or red light can be obtained. To manufacture.
  • a dense layer of titanium oxide is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, and a porous aluminum oxide layer is laminated therein, and the compound or composition according to Examples 1 to 7 is laminated on the layer.
  • FTO fluorine-doped tin oxide
  • a porous aluminum oxide layer is laminated therein, and the compound or composition according to Examples 1 to 7 is laminated on the layer.
  • 2,2', 7,7'-tetrakis- (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro-OMeTAD) 2,2', 7,7'-tetrakis- (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro-OMeTAD), etc.
  • the hole transport layer of No. 1 is laminated, and a silver (Ag) layer is laminated
  • the composition of the present embodiment can be obtained by removing the solvent from the compounds or compositions described in Examples 1 to 7 and molding the composition, and by installing this in the subsequent stage of the blue light emitting diode, it is blue.
  • a laser diode illumination that emits white light by converting blue light emitted from a light emitting diode onto a composition into green light or red light is manufactured.
  • the composition of the present embodiment can be obtained by removing the solvent of the compound or the composition described in Examples 1 to 7 and molding.
  • a photoelectric conversion element (photodetection element) material contained in a detection unit for detecting light is manufactured.
  • the photoelectric conversion element material is a part of a living body such as an image detection unit (image sensor) for a solid-state image sensor such as an X-ray image sensor and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit, and an iris detection unit. It is used in an optical biosensor such as a detection unit and a pulse oximeter that detects a predetermined feature.
  • the luminescent semiconductor compound obtained by the production method of the present invention can be used as a light emitting material for a light emitting device such as a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A compound having a perovskite crystal structure having A, B, and X as constituent components thereof (in the perovskite crystal structure, A is a monovalent positive ion and a component positioned at each vertex of a hexahedron centered on B; B is a metal ion and a component that is at the center of a hexahedron having A positioned at the vertices thereof and an octahedron having X positioned at the vertices thereof; X is a component positioned at each vertex of an octahedron and is at least one type of negative ion selected from the group consisting of a halogen compound ion and a thiocyanate ion). The compound has a primary particle size of 100 nm – 1.0 μm and shows a peak for a Miller index (110) plane having a half width of 0.10–0.30°, in an X-ray diffraction pattern.

Description

発光性の半導体化合物及びその製造方法Luminescent semiconductor compounds and their manufacturing methods
 本発明は、発光性の半導体化合物に関し、特にペロブスカイト型結晶構造を有する発光性の半導体化合物に関する。 The present invention relates to a luminescent semiconductor compound, and more particularly to a luminescent semiconductor compound having a perovskite type crystal structure.
 発光材料として、発光性の半導体化合物が注目されている。色純度の高い発光材料を製造するため、発光性の半導体化合物は、色域の広い発光スペクトルとなることが求められている。 As a light emitting material, a light emitting semiconductor compound is attracting attention. In order to produce a light emitting material having high color purity, a light emitting semiconductor compound is required to have a light emission spectrum having a wide color gamut.
 上述の発光性の半導体化合物として、例えば、ペロブスカイト型結晶構造を有する化合物が報告されている(非特許文献1)。しかしながら、非特許文献1に記載の化合物は結晶が十分に成長しておらず、色純度の向上が期待できるものではない。 As the above-mentioned luminescent semiconductor compound, for example, a compound having a perovskite-type crystal structure has been reported (Non-Patent Document 1). However, the compounds described in Non-Patent Document 1 do not have sufficiently grown crystals, and improvement in color purity cannot be expected.
 本発明は、上記課題に鑑みてなされたものであって、十分に成長した結晶を有する発光性の半導体化合物を提供することを目的とする。また、本発明は、より具体的には、発光スペクトルの色域を広げることが可能な、ペロブスカイト型結晶構造を有する化合物を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a luminescent semiconductor compound having sufficiently grown crystals. Further, more specifically, it is an object of the present invention to provide a compound having a perovskite-type crystal structure capable of widening the color gamut of the emission spectrum.
 本発明は、A、B、及びXを構成成分とするペロブスカイト型結晶構造
[ペロブスカイト型結晶構造において、AはBを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンであり、
 BはAを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンであり、
 XはBを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。]
を有する化合物であって、
 該化合物は、100nm~1.0μmの一次粒子の粒子径を有し、
 X線回折パターンにおいて、半値幅0.10°~0.30°のミラー指数(110)面のピークを示す、化合物を提供する。
The present invention has a perovskite-type crystal structure containing A, B, and X as constituents [In the perovskite-type crystal structure, A is a component located at each vertex of a hexahedron centered on B and is a monovalent cation. Ion,
B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex, and is a metal ion.
X is a component located at each vertex of the octahedron centered on B, and is at least one kind of anion selected from the group consisting of a halide ion and a thiocyanate ion. ]
It is a compound having
The compound has a particle size of primary particles of 100 nm to 1.0 μm and has a particle size of 100 nm to 1.0 μm.
Provided are a compound showing a peak of a Miller index (110) plane with a half width of 0.10 ° to 0.30 ° in an X-ray diffraction pattern.
 また、本発明は、前記化合物と、シラザン、アミノ基、アルコキシ基又はアルキルチオ基を有するケイ素化合物、及びこれらの縮合物からなる群より選ばれる少なくとも1つの化合物とを、含む組成物を提供する。 The present invention also provides a composition containing the above compound, a silicon compound having a silazane, an amino group, an alkoxy group or an alkylthio group, and at least one compound selected from the group consisting of a condensate thereof.
 また、本発明は、前記化合物又は前記組成物と、分散媒、重合性化合物又は重合体とを、含む組成物を提供する。 The present invention also provides a composition containing the compound or the composition and a dispersion medium, a polymerizable compound or a polymer.
 また、本発明は、前記化合物又は前記組成物を含む、フィルムを提供する。 The present invention also provides a film containing the compound or the composition.
 また、本発明は、前記フィルムを含む、積層構造体を提供する。 The present invention also provides a laminated structure including the film.
 また、本発明は、前記積層構造体を備える、発光装置を提供する。 The present invention also provides a light emitting device provided with the laminated structure.
 また、本発明は、前記積層構造体を備える、ディスプレイを提供する。 The present invention also provides a display provided with the laminated structure.
 また、本発明は、発光性の半導体化合物の原料になる化合物を溶媒中で反応させて、発光性の半導体化合物及び該溶媒を含む分散液を得る工程と、
 該分散液を熱間保持する工程とを包含する、発光性の半導体化合物の製造方法であって、
 該発光性の半導体化合物は、金属元素、及び100nm~1.0μmの一次粒子の粒子径を有し、
 X線回折パターンにおいて、半値幅0.10°~0.30°のミラー指数(110)面のピークを示し、
 該溶媒は100~400℃の大気圧下における沸点を有し、
 該分散液の熱間保持は、沸騰しない温度で10~600分間行われるものである、方法を提供する。
Further, the present invention comprises a step of reacting a compound which is a raw material of a luminescent semiconductor compound in a solvent to obtain a luminescent semiconductor compound and a dispersion liquid containing the solvent.
A method for producing a luminescent semiconductor compound, which comprises a step of hot-holding the dispersion liquid.
The luminescent semiconductor compound has a metal element and a particle size of primary particles of 100 nm to 1.0 μm.
In the X-ray diffraction pattern, the peak of the Miller index (110) plane having a half width of 0.10 ° to 0.30 ° is shown.
The solvent has a boiling point under atmospheric pressure of 100-400 ° C.
A method is provided in which the hot retention of the dispersion is carried out at a temperature that does not boil for 10 to 600 minutes.
 本発明によれば、十分に成長した結晶を有する発光性の半導体化合物が提供される。かかる発光性の半導体化合物は、色域の広い発光スペクトルを示すことができる。 According to the present invention, a luminescent semiconductor compound having a sufficiently grown crystal is provided. Such a luminescent semiconductor compound can exhibit an emission spectrum having a wide color gamut.
本発明に係る積層構造体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the laminated structure which concerns on this invention. 本発明に係るディスプレイの構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the display which concerns on this invention.
[1.ペロブスカイト型結晶構造を有する化合物]
 本発明の化合物は、A、B、及びXを構成成分とするペロブスカイト型結晶構造を有する化合物(以下、「ペロブスカイト化合物(1)」ともいう。)である。ここで、構成成分A、B及びXは上記と同意義である。
[1. Compounds with perovskite-type crystal structure]
The compound of the present invention is a compound having a perovskite-type crystal structure containing A, B, and X as constituents (hereinafter, also referred to as “perovskite compound (1)”). Here, the constituents A, B, and X have the same meaning as described above.
 ペロブスカイト化合物(1)の構造としては、3次元構造、2次元構造、疑似2次元(quasi-2D)構造のいずれの構造であってもよい。
 3次元構造の場合、ペロブスカイト化合物の組成式は、ABX(3+δ)で表される。
 2次元構造の場合、ペロブスカイト化合物の組成式は、ABX(4+δ)で表される。
The structure of the perovskite compound (1) may be any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional (quasi-2D) structure.
In the case of a three-dimensional structure, the composition formula of the perovskite compound is represented by ABX (3 + δ) .
In the case of a two-dimensional structure, the composition formula of the perovskite compound is represented by A 2 BX (4 + δ) .
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。例えば、Aが1価の陽イオン、Bが2価の陽イオン、Xが1価の陰イオンである場合、ペロブスカイト化合物が電気的に中性となるようにδを選択することができる。ペロブスカイト化合物が電気的に中性とは、ペロブスカイト化合物の電荷が0であることを意味する。 Here, δ is a number that can be appropriately changed according to the charge balance of B, and is −0.7 or more and 0.7 or less. For example, when A is a monovalent cation, B is a divalent cation, and X is a monovalent anion, δ can be selected so that the perovskite compound is electrically neutral. The fact that the perovskite compound is electrically neutral means that the charge of the perovskite compound is zero.
 ペロブスカイト化合物は、Bを中心とし、頂点をXとする八面体を含む。八面体は、BXで表される。
 ペロブスカイト化合物が3次元構造を有する場合、ペロブスカイト化合物に含まれるBXは、八面体(BX)において頂点に位置する1つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで、3次元ネットワークを構成する。
The perovskite compound contains an octahedron centered on B and having an apex X. The octahedron is represented by BX 6 .
When the perovskite compound has a three-dimensional structure, the BX 6 contained in the perovskite compound shares one X located at the apex of the octahedron (BX 6 ) among two adjacent octahedrons (BX 6 ) in the crystal. By doing so, a three-dimensional network is constructed.
 ペロブスカイト化合物が2次元構造を有する場合、ペロブスカイト化合物に含まれるBXは、八面体(BX)において頂点に位置する2つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで八面体の稜線を共有し、2次元的に連なった層を構成する。ペロブスカイト化合物では、2次元的に連なったBXからなる層と、Aからなる層と、が交互に積層された構造を有する。 When the perovskite compound has a two-dimensional structure, the BX 6 contained in the perovskite compound shares two Xs located at the vertices of the octahedron (BX 6 ) among two adjacent octahedrons (BX 6 ) in the crystal. By doing so, the ridgeline of the octahedron is shared, and a two-dimensionally connected layer is formed. The perovskite compound has a structure in which a layer made of BX 6 and a layer made of A, which are two-dimensionally connected, are alternately laminated.
 本明細書において、ペロブスカイト化合物の結晶構造は、X線回折パターン(以下、XRDともいう)により確認することができる。 In the present specification, the crystal structure of the perovskite compound can be confirmed by an X-ray diffraction pattern (hereinafter, also referred to as XRD).
 ペロブスカイト化合物が3次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、ペロブスカイト化合物の面のミラー指数(hkl)は、2θ=12~18°の位置に、好ましくはθ=13~16°の位置に、(hkl)=(110)に由来するピークが確認される。又は2θ=18~25°の位置に、好ましくは2θ=20~23°の位置に、(hkl)=(110)に由来するピークが確認される。 When the perovskite compound has a perovskite-type crystal structure having a three-dimensional structure, the Miller index (hkl) of the surface of the perovskite compound is usually at a position of 2θ = 12 to 18 °, preferably θ = 13 in the X-ray diffraction pattern. A peak derived from (hkl) = (110) is confirmed at a position of about 16 °. Alternatively, a peak derived from (hkl) = (110) is confirmed at a position of 2θ = 18 to 25 °, preferably at a position of 2θ = 20 to 23 °.
 ペロブスカイト化合物が2次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、ペロブスカイト化合物の面のミラー指数(hkl)は、2θ=1~10°の位置に、(hkl)=(002)由来のピークが確認される。また、2θ=2~8°の位置に、(hkl)=(002)由来のピークが確認されることが好ましい。 When the perovskite compound has a perovskite-type crystal structure having a two-dimensional structure, the Miller index (hkl) of the surface of the perovskite compound is usually at the position of 2θ = 1 to 10 ° in the X-ray diffraction pattern, (hkl) = (. The peak derived from 002) is confirmed. Further, it is preferable that a peak derived from (hkl) = (002) is confirmed at a position of 2θ = 2 to 8 °.
 ペロブスカイト化合物は、3次元構造を有することが好ましい。 The perovskite compound preferably has a three-dimensional structure.
 XRDによって測定したX線回折パターンにおいて、本発明のペロブスカイト化合物(1)の(hkl)=(110)のピークの半値幅は0.10°以上、0.30°以下である。前記半値幅は、0.10°以上、0.21°以下が好ましく、0.10°以上、0.15°以下がより好ましく、0.10°以上、0.25°以下がさらに好ましい。
 ペロブスカイト化合物(1)の(hkl)=(110)のピークの半値幅が0.10°以上であると、ペロブスカイト化合物の結晶が安定的に形成される。
 ペロブスカイト化合物(1)の(hkl)=(110)のピークの半値幅が0.30°未満であると、色域が拡大する。
In the X-ray diffraction pattern measured by XRD, the half width of the peak of (hkl) = (110) of the perovskite compound (1) of the present invention is 0.10 ° or more and 0.30 ° or less. The half width is preferably 0.10 ° or more and 0.21 ° or less, more preferably 0.10 ° or more and 0.15 ° or less, and further preferably 0.10 ° or more and 0.25 ° or less.
When the half width of the peak of (hkl) = (110) of the perovskite compound (1) is 0.10 ° or more, crystals of the perovskite compound are stably formed.
When the half width of the peak of (hkl) = (110) of the perovskite compound (1) is less than 0.30 °, the color gamut is expanded.
 ペロブスカイト化合物(1)の(hkl)=(110)の半値幅は、XRDパターン(CuKα線)より、統合粉末X線解析ソフトウェア(リガク社製「PDXL」(商品名))を用いて算出することができる。 The half width of (hkl) = (110) of the perovskite compound (1) shall be calculated from the XRD pattern (CuKα ray) using integrated powder X-ray analysis software (“PDXL” (trade name) manufactured by Rigaku). Can be done.
 後述の本発明の製造方法で製造されるペロブスカイト化合物及び半導体化合物の(hkl)=(110)の半値幅は、具体的には、以下のようにして確認することが出来る。
 前記半導体微粒子を含む分散液を洗浄した無反射板に0.05mL滴下し、自然乾燥させる。CuKαを線源とし、かつ回折角2θの測定範囲を5°以上60°以下とする粉末X線回折測定を行い、(hkl)=(110)に対応するピークを決定する。さらに、上述の解析ソフトを用いて、決定した(hkl)=(110)の半値幅を算出する。
Specifically, the half-value width of (hkl) = (110) of the perovskite compound and the semiconductor compound produced by the production method of the present invention described later can be confirmed as follows.
0.05 mL of the dispersion liquid containing the semiconductor fine particles is dropped onto the washed non-reflective plate, and the mixture is naturally dried. Powder X-ray diffraction measurement is performed using CuKα as a radiation source and the measurement range of the diffraction angle 2θ is 5 ° or more and 60 ° or less, and the peak corresponding to (hkl) = (110) is determined. Further, the half width of the determined (hkl) = (110) is calculated using the above-mentioned analysis software.
<構成成分A>
 ペロブスカイト化合物を構成するAは、1価の陽イオンである。Aとしては、セシウムイオン、有機アンモニウムイオン、又はアミジニウムイオンが挙げられる。
<Component A>
A constituting the perovskite compound is a monovalent cation. Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
(有機アンモニウムイオン)
 Aの有機アンモニウムイオンとして具体的には、下記式(A3)で表される陽イオンが挙げられる。
(Organic ammonium ion)
Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(A3)中、R~Rは、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。但し、R~Rは、少なくとも1つがアルキル基又はシクロアルキル基であり、R~Rの全てが同時に水素原子となることはない。 In the formula (A3), R 6 to R 9 independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and not all of R 6 to R 9 become hydrogen atoms at the same time.
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。また、R~Rで表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The alkyl group represented by R 6 to R 9 may be linear or branched. Further, the alkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
 R~Rで表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましく、1であることがさらに好ましい。 The number of carbon atoms of the alkyl groups represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, more preferably 1 to 3, and 1 respectively. Is even more preferable.
 R~Rで表されるシクロアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The cycloalkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
 R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R~Rで表される基としては、それぞれ独立に、水素原子又はアルキル基であることが好ましい。 The groups represented by R 6 to R 9 are preferably hydrogen atoms or alkyl groups independently of each other.
 ペロブスカイト化合物が、Aとして上記式(A3)で表される有機アンモニウムイオンを含む場合、式(A3)に含まれ得るアルキル基及びシクロアルキル基の数は少ないとよい。また、式(A3)に含まれ得るアルキル基及びシクロアルキル基の炭素原子数は小さいとよい。これにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。 When the perovskite compound contains an organic ammonium ion represented by the above formula (A3) as A, it is preferable that the number of alkyl groups and cycloalkyl groups that can be contained in the formula (A3) is small. Further, the number of carbon atoms of the alkyl group and the cycloalkyl group that can be contained in the formula (A3) is preferably small. This makes it possible to obtain a perovskite compound having a three-dimensional structure with high emission intensity.
 式(A3)で表される有機アンモニウムイオンにおいて、R~Rで表されるアルキル基及びシクロアルキル基に含まれる炭素原子の合計数は1~4であることが好ましい。
また、式(A3)で表される有機アンモニウムイオンにおいて、R~Rのうちの1つが炭素原子数1~3のアルキル基であり、R~Rのうちの3つが水素原子であることがより好ましい。
In the organic ammonium ion represented by the formula (A3), the total number of carbon atoms contained in the alkyl group represented by R 6 to R 9 and the cycloalkyl group is preferably 1 to 4.
Further, in the organic ammonium ion represented by the formula (A3), one of R 6 to R 9 is an alkyl group having 1 to 3 carbon atoms, and three of R 6 to R 9 are hydrogen atoms. It is more preferable to have.
 R~Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。 The alkyl groups of R 6 to R 9 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and isopentyl group. , Neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl Group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl Group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl Examples thereof include a group, an octadecyl group, a nonadecyl group, and an icosyl group.
 R~Rのシクロアルキル基としては、それぞれ独立にR~Rのアルキル基で例示した炭素原子数3以上のアルキル基が環を形成したものが挙げられる。一例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等を例示できる。 Examples of the cycloalkyl groups of R 6 to R 9 include those in which the alkyl groups having 3 or more carbon atoms exemplified in the alkyl groups of R 6 to R 9 independently form a ring. As an example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group. Etc. can be exemplified.
 Aで表される有機アンモニウムイオンとしては、CHNH (メチルアンモニウムイオンともいう。)、CNH (エチルアンモニウムイオンともいう。)又はCNH (プロピルアンモニウムイオンともいう。)であることが好ましく、メチルアンモニウムイオン又はエチルアンモニウムイオンであることより好ましく、メチルアンモニウムイオンであることがさらに好ましい。 Organic ammonium ions represented by A include CH 3 NH 3+ (also referred to as methylammonium ion) , C2H 5 NH 3+ ( also referred to as ethylammonium ion) or C3 H7 NH 3+ (propyl) . It is also preferably ammonium ion), more preferably methylammonium ion or ethylammonium ion, and even more preferably methylammonium ion.
(アミジニウムイオン)
 Aで表されるアミジニウムイオンとしては、例えば、下記式(A4)で表されるアミジニウムイオンが挙げられる。
(R1011N=CH-NR1213・・・(A4)
(Amidinium ion)
Examples of the amidinium ion represented by A include the amidinium ion represented by the following formula (A4).
(R 10 R 11 N = CH-NR 12 R 13 ) + ... (A4)
 式(A4)中、R10~R13は、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。 In formula (A4), R 10 to R 13 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
 R10~R13で表されるアルキル基は、それぞれ独立に直鎖状であっても、分岐鎖状であってもよい。また、R10~R13で表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The alkyl groups represented by R 10 to R 13 may be independently linear or branched. Further, the alkyl groups represented by R 10 to R 13 may independently have an amino group as a substituent.
 R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。 The number of carbon atoms of the alkyl groups represented by R 10 to R 13 is usually 1 to 20 independently, preferably 1 to 4, and more preferably 1 to 3.
 R10~R13で表されるシクロアルキル基は、それぞれ独立に置換基として、アミノ基を有していてもよい。 The cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
 R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R10~R13のアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したアルキル基と同じ基が挙げられる。
 R10~R13のシクロアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したシクロアルキル基と同じ基が挙げられる。
Specific examples of the alkyl groups of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 , respectively.
Specific examples of the cycloalkyl groups of R 10 to R 13 include the same groups as the cycloalkyl groups exemplified in R 6 to R 9 , respectively.
 R10~R13で表される基としては、それぞれ独立に水素原子又はアルキル基が好ましい。 As the group represented by R 10 to R 13 , a hydrogen atom or an alkyl group is preferable independently.
 式(A4)に含まれる、アルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。 By reducing the number of alkyl groups and cycloalkyl groups contained in the formula (A4) and reducing the number of carbon atoms of the alkyl groups and cycloalkyl groups, a perovskite compound having a three-dimensional structure with high emission intensity can be obtained. be able to.
 アミジニウムイオンにおいて、R10~R13で表されるアルキル基及びシクロアルキル基に含まれる炭素原子数の合計数は1~4であることが好ましく、R10が炭素原子数1のアルキル基であり、R11~R13が水素原子であることがさらに好ましい。 In the amidinium ion, the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 and the cycloalkyl group is preferably 1 to 4, and R 10 is an alkyl group having 1 carbon atom. It is more preferable that R 11 to R 13 are hydrogen atoms.
 ペロブスカイト化合物において、Aがセシウムイオン、炭素原子数が3以下の有機アンモニウムイオン、又は炭素原子数が3以下のアミジニウムイオンである場合、一般的にペロブスカイト化合物は3次元構造を有する。 In the perovskite compound, when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound generally has a three-dimensional structure.
 ペロブスカイト化合物において、Aが炭素原子数4以上の有機アンモニウムイオン、又は炭素原子数4以上のアミジニウムイオンである場合、ペロブスカイト化合物は、2次元構造及び擬似2次元(quasi-2D)構造のいずれか一方又は両方を有する。この場合、ペロブスカイト化合物は、2次元構造又は疑似2次元構造を、結晶の一部又は全体に有することができる。
 2次元のペロブスカイト型結晶構造が複数積層すると3次元のペロブスカイト型結晶構造と同等になる(参考文献:P.PBoixら、J.Phys.Chem.Lett.2015,6,898-907など)。
In the perovskite compound, when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound has either a two-dimensional structure or a pseudo two-dimensional (quasi-2D) structure. Have one or both. In this case, the perovskite compound can have a two-dimensional structure or a pseudo two-dimensional structure in a part or the whole of the crystal.
When a plurality of two-dimensional perovskite-type crystal structures are laminated, they become equivalent to a three-dimensional perovskite-type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907, etc.).
 ペロブスカイト化合物中のAは、セシウムイオン、又はアミジニウムイオンが好ましく、アミジニウムイオンがより好ましい。 As A in the perovskite compound, cesium ion or amidinium ion is preferable, and amidinium ion is more preferable.
 ペロブスカイト化合物(1)において、Aを1種のみ用いてもよく、2種以上を併用してもよい。 In the perovskite compound (1), only one type of A may be used, or two or more types may be used in combination.
<構成成分B>
 ペロブスカイト化合物を構成するBは、1価の金属イオン、2価の金属イオン、及び3価の金属イオンからなる群より選ばれる1種類以上の金属イオンであってよい。Bは2価の金属イオンを含むことが好ましく、鉛イオン、スズイオン、アンチモンイオン、ビスマスイオン、及びインジウムイオンからなる群より選ばれる1種類以上の金属イオンを含むことがより好ましく、鉛イオン又はスズイオンがさらに好ましく、鉛イオンが特に好ましい。
<Component B>
B constituting the perovskite compound may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions. B preferably contains a divalent metal ion, more preferably one or more metal ions selected from the group consisting of lead ion, tin ion, antimony ion, bismuth ion, and indium ion, and more preferably lead ion or tin ion. Is more preferable, and lead ion is particularly preferable.
 ペロブスカイト化合物(1)において、Bを1種のみ用いてもよく、2種以上を併用してもよい。 In the perovskite compound (1), only one type of B may be used, or two or more types may be used in combination.
<構成成分X>
 ペロブスカイト化合物を構成するXは、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンであってよい。
<Component X>
X constituting the perovskite compound may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
 ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオンを挙げることができる。Xは、臭化物イオンであることが好ましい。 Examples of the halide ion include chloride ion, bromide ion, fluoride ion, and iodide ion. X is preferably a bromide ion.
 ペロブスカイト化合物(1)において、Xを1種のみ用いてもよく、2種以上を併用してもよい。 In the perovskite compound (1), only one type of X may be used, or two or more types may be used in combination.
 Xが2種以上のハロゲン化物イオンを含む場合、ハロゲン化物イオンの含有比率は、発光波長により適宜選ぶことができる。例えば、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせとすることができる。 When X contains two or more kinds of halide ions, the content ratio of the halide ions can be appropriately selected depending on the emission wavelength. For example, it can be a combination of a bromide ion and a chloride ion, or a combination of a bromide ion and an iodide ion.
 Xは、所望の発光波長に応じて適宜選択することができる。 X can be appropriately selected according to the desired emission wavelength.
 Xが臭化物イオンであるペロブスカイト化合物は、通常480nm以上、好ましくは500nm以上、より好ましくは520nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 A perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
 また、Xが臭化物イオンであるペロブスカイト化合物は、通常700nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物中のXが臭化物イオンの場合、発する蛍光のピークは、通常480~700nmであり、500~600nmであることが好ましく、520~580nmであることがより好ましい。 When X in the perovskite compound is a bromide ion, the peak of the emitted fluorescence is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
 Xがヨウ化物イオンであるペロブスカイト化合物は、通常520nm以上、好ましくは530nm以上、より好ましくは540nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 A perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
 また、Xがヨウ化物イオンであるペロブスカイト化合物は、通常800nm以下、好ましくは750nm以下、より好ましくは730nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物中のXがヨウ化物イオンの場合、発する蛍光のピークは、通常520~800nmであり、530~750nmであることが好ましく、540~730nmであることがより好ましい。 When X in the perovskite compound is an iodide ion, the peak of the emitted fluorescence is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
 Xが塩化物イオンであるペロブスカイト化合物は、通常300nm以上、好ましくは310nm以上、より好ましくは330nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 A perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
 また、Xが塩化物イオンであるペロブスカイト化合物は、通常600nm以下、好ましくは580nm以下、より好ましくは550nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物中のXが塩化物イオンの場合、発する蛍光のピークは、通常300~600nmであり、310~580nmであることが好ましく、330~550nmであることがより好ましい。 When X in the perovskite compound is a chloride ion, the peak of the emitted fluorescence is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
<ペロブスカイト化合物の例示>
(3次元構造のペロブスカイト化合物の例示)
 ABX(3+δ)で表される3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbIを挙げることができる。
<Example of perovskite compound>
(Example of a perovskite compound having a three-dimensional structure)
Preferred examples of the perovskite compound having a three-dimensional structure represented by ABX (3 + δ) are CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr (3-y) . ) I y (0 <y <3), CH 3 NH 3 PbBr (3-y) Cly (0 <y <3), (H 2 N = CH-NH 2 ) PbBr 3 , (H 2 N = CH) -NH 2 ) PbCl 3 and (H 2 N = CH-NH 2 ) PbI 3 can be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 <a ≦ 0.7) and CH 3 NH 3 Pb (1-a) Sr a Br 3 . (0 <a ≤ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + δ) (0 <a ≤ 0.7, 0 <δ ≤ 0.7), CH 3 NH 3 Pb ( 1-a) Ba a Br 3 (0 <a ≤ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + δ) (0 <a ≤ 0.7, 0 <δ ≤ 0.7) ) Can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), CH 3 NH. 3 Pb (1-a) Li a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CsPb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), CsPb (1-a) Li. a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + δ-y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ-y) I y (0 <a≤0.7, -0.7≤δ <0,0 <y <3 ), CH 3 NH 3 Pb (1-a) Na a Br (3 + δ-y) Cly (0 <a≤0.7, -0.7≤δ <0,0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ-y) Cly (0 <a≤0.7, -0.7≤δ <0,0 <y <3) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、(HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができる。 A preferred example of a perovskite compound having a three-dimensional structure is (H 2 N = CH-NH 2 ) Pb (1-a) Na a Br (3 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ < 0), (H 2 N = CH-NH 2 ) Pb (1-a) Li a Br (3 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ <0), (H 2 N = CH) -NH 2 ) Pb (1-a) Na a Br (3 + δ-y) I y (0 <a ≤ 0.7, -0.7 ≤ δ <0, 0 <y <3), (H 2 N = CH-NH 2 ) Pb (1-a) Na a Br (3 + δ-y) Cly (0 <a ≤ 0.7, -0.7 ≤ δ <0, 0 <y <3) can also be mentioned. ..
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure are CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 <y <3), CsPbBr (3-y) Cl y (0 <y < 3) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) Al a Br ( 1-a). 3 + δ) (0 <a ≤ 0.7, 0 ≤ δ ≤ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 <a ≤ 0.7), CH 3 NH 3 Pb ( 1) 1-a) Mn a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 <a ≦ 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7、0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CsPb (1-a) Zn a Br 3 (0 <a ≦ 0.7), CsPb (1-a) Al a Br (3 + δ) (0 <a ≦ 0). .7, 0 <δ ≤ 0.7), CsPb (1-a) Co a Br 3 (0 <a ≤ 0.7), CsPb (1-a) Mn a Br 3 (0 <a ≤ 0.7) ), CsPb (1-a) Mg a Br 3 (0 <a ≦ 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7、0<δ≦0.7、0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 <a ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br (3 + δ-y) I y (0 <a ≤ 0.7, 0 <δ ≤ 0.7, 0 <y <3), CH 3 NH 3 Pb (1- a) Co a Br (3-y) I y (0 <a ≤ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0) <a≤0.7,0 <y <3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) Iy (0 <a≤0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) Cly (0 <a≤0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br ( 1-a) 3 + δ-y) Cly (0 <a≤0.7, 0 <δ≤0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Co a Br (3 + δ-y) Cly (0 <a≤0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) Cly (0 <a≤0.7, 0 <y <3) ), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) Cly (0 <a ≦ 0.7, 0 <y <3) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、(HN=CH-NH)PbBr(3-y)Cl(0<y<3)、(HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include (H 2 N = CH-NH 2 ) PbBr (3-y ) Cly (0 <y <3), (H 2 N = CH-NH 2 ) Zn a . Br 3 (0 <a ≤ 0.7), (H 2 N = CH-NH 2 ) Mg a Br 3 (0 <a ≤ 0.7), (H 2 N = CH-NH 2 ) Pb (1- a) Zn a Br (3-y) I y (0 <a ≤ 0.7, 0 <y <3), (H 2 N = CH-NH 2 ) Pb (1-a) Zn a Br (3 -a) y) Cl y (0 <a ≦ 0.7, 0 <y <3) can also be mentioned.
 上述した3次元構造のペロブスカイト化合物の中でも、(HN=CH-NH)PbBr(3-y)Cl(0<y<3)、CsPbBr、CsPbBr(3-y)(0<y<3)、(HN=CH-NH)PbBrがより好ましく、(HN=CH-NH)PbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBrがさらに好ましい。 Among the perovskite compounds having the above-mentioned three-dimensional structure, (H 2 N = CH-NH 2 ) PbBr (3-y) Cly (0 <y <3), CsPbBr 3 , CsPbBr (3-y) I y (0) <y <3), (H 2 N = CH-NH 2 ) PbBr 3 is more preferable, and (H 2 N = CH-NH 2 ) PbBr (3-y) Cl y (0 <y <3), (H). 2 N = CH-NH 2 ) PbBr 3 is more preferable.
(2次元構造のペロブスカイト化合物の例示)
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)を挙げることができる。
(Example of a perovskite compound having a two-dimensional structure)
Preferred examples of the perovskite compound having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C). 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ <0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ) (0 <a ≤) 0.7, -0.7 ≤ δ <0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ) <0) can be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)も挙げることができる。 Preferred examples of the perovskite compound having a two-dimensional structure are (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0). ), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ <0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができる。 Preferred examples of the two-dimensional structure of the perovskite compound are (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ-y) I y (0 <a ≤ 0.7, -0.7). ≤δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ-y) I y (0 <a ≤ 0.7, -0.7) ≤δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ-y) I y (0 <a ≤ 0.7, -0.7) ≦ δ <0, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができる。 Preferred examples of the two-dimensional structure of the perovskite compound are (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ-y) Cly (0 <a ≤ 0.7, -0.7). ≤δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ-y) Cly (0 <a ≤ 0.7, -0.7) ≤δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ-y) Cly (0 <a ≤ 0.7, -0.7) ≦ δ <0, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr、(C15NHPbBrも挙げることができる。 Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)も挙げることができる。 Preferred examples of the perovskite compound having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cly (0 <y <4), (C 4 H 9 NH 3 ) 2 PbBr (4- ). y) I y (0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 <a ≦ 0.7), (C 4 H 9 NH 3 ) 2 . Pb (1-a) Mg a Br 4 (0 <a ≤ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 <a ≤ 0.7), ( C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 <a ≦ 0.7) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)も挙げることができる。 Preferred examples of the two-dimensional structure of the perovskite compound are (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 <a ≤ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 <a ≤ 0.7), ( C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 <a ≦ 0.7) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7、0<y<4)も挙げることができる。 Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0 <a ≤ 0.7, 0 <y < 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0 <a ≤ 0.7, 0 <y <4), (C 4 H 9 NH) 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0 <a ≤ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) I y (0 <a ≦ 0.7, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7、0<y<4)も挙げることができる。 Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) Cly (0 <a ≤ 0.7, 0 <y < 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) Cly (0 <a ≤ 0.7, 0 <y <4), (C 4 H 9 NH) 3 ) 2 Pb (1-a) Co a Br (4-y) Cly (0 <a ≤ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) Cly (0 <a ≦ 0.7, 0 <y <4) can also be mentioned.
<ペロブスカイト化合物(1)の一次粒子の粒子径>
 本明細書において、ペロブスカイト化合物(1)の一次粒子の粒子径とは、複数のペロブスカイト化合物(1)で構成されるペロブスカイト化合物(1)の混合物におけるペロブスカイト化合物(1)の平均粒径であり、その平均粒径は、100nm以上1μm以下である。
 ペロブスカイト化合物(1)の色域を拡大する観点から、ペロブスカイト化合物(1)の平均粒径は100nm以上であり、200nm以上であることがより好ましく、300nm以上であることがさらに好ましい。また、ペロブスカイト化合物(1)の平均粒径が、1μmを超える場合、ペロブスカイト化合物(1)の分散性が低下することによって、量子収率が低下することがある。ペロブスカイト化合物(1)の色域を拡大する観点及び量子収率低下を抑制する観点から、ペロブスカイト化合物(1)の平均粒径は1μm以下であることが好ましく、500nm以下であることがより好ましく、400nm以下であることがさらに好ましく、351nm以下であることが特に好ましい。
<Particle diameter of primary particles of perovskite compound (1)>
In the present specification, the particle size of the primary particles of the perovskite compound (1) is the average particle size of the perovskite compound (1) in the mixture of the perovskite compound (1) composed of the plurality of perovskite compounds (1). The average particle size is 100 nm or more and 1 μm or less.
From the viewpoint of expanding the color gamut of the perovskite compound (1), the average particle size of the perovskite compound (1) is 100 nm or more, more preferably 200 nm or more, and further preferably 300 nm or more. Further, when the average particle size of the perovskite compound (1) exceeds 1 μm, the dispersibility of the perovskite compound (1) may decrease, and the quantum yield may decrease. From the viewpoint of expanding the color gamut of the perovskite compound (1) and suppressing the decrease in quantum yield, the average particle size of the perovskite compound (1) is preferably 1 μm or less, more preferably 500 nm or less. It is more preferably 400 nm or less, and particularly preferably 351 nm or less.
 本明細書において、ペロブスカイト化合物(1)の平均粒径は、例えば透過型電子顕微鏡(以下、TEMともいう。)、又は走査型電子顕微鏡(以下、SEMともいう。)により測定することができる。具体的には、TEM、又はSEMにより、無作為に選んだ30個以上のペロブスカイト化合物(1)の最大フェレー径を観察し、それらの平均値である平均最大フェレー径を計算することにより、前記平均粒径を求めることができる。本明細書において「最大フェレー径」とは、TEM又はSEM画像上において、ペロブスカイト化合物を挟む2本の平行な直線の最大距離を意味する。 In the present specification, the average particle size of the perovskite compound (1) can be measured by, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM). Specifically, by observing the maximum ferret diameter of 30 or more perovskite compounds (1) randomly selected by TEM or SEM and calculating the average maximum ferret diameter, which is the average value thereof, the above-mentioned The average particle size can be obtained. As used herein, the term "maximum ferret diameter" means the maximum distance between two parallel straight lines sandwiching a perovskite compound on a TEM or SEM image.
 本発明のペロブスカイト化合物(1)を観察する方法としては、例えば、ペロブスカイト化合物(1)を含む分散液をSEM、又はTEMなどを用いて観察する方法が挙げられる。さらに、SEM、またはTEMを用いたエネルギー分散型X線分析(EDX)測定によって、詳細な元素分布を解析することができる。 Examples of the method for observing the perovskite compound (1) of the present invention include a method of observing a dispersion containing the perovskite compound (1) using SEM, TEM, or the like. Furthermore, detailed element distribution can be analyzed by energy dispersive X-ray analysis (EDX) measurement using SEM or TEM.
 ペロブスカイト化合物(1)をSEMで観察する方法としては、ペロブスカイト化合物(1)を含む分散液を自然乾燥させたものを用いる方法が挙げられる。 As a method of observing the perovskite compound (1) by SEM, there is a method of using a dispersion liquid containing the perovskite compound (1) that has been naturally dried.
 ペロブスカイト化合物(1)の平均粒径を解析する方法としては、SEM像をコンピュータに取り込み、画像解析ソフトを用いて解析する方法が挙げられる。
 まず、前記SEM像をコンピュータに取り込み、画像解析ソフトを用いて二値化処理を行う。ペロブスカイト化合物(1)を黒色とし、それ以外を白色として変換した二値化処理済み画像を得る。このとき、SEM-EDX測定で得られた元素マッピング像と比較し、ペロブスカイト化合物(1)に由来する成分が検出されている部分が黒色に変換されていることを確認する。齟齬が見られた場合は、二値化処理を行う閾値の調整を行う。前記二値化処理済み画像について、画像解析ソフトを用いて、ペロブスカイト化合物(1)の平均粒径を測定する。画像解析ソフトは、Image JやPhotoshop等を適宜選択することができる。
As a method of analyzing the average particle size of the perovskite compound (1), there is a method of capturing an SEM image into a computer and analyzing it using image analysis software.
First, the SEM image is taken into a computer and binarized using image analysis software. A binarized image is obtained by converting the perovskite compound (1) into black and the others as white. At this time, it is confirmed by comparing with the element mapping image obtained by the SEM-EDX measurement that the portion where the component derived from the perovskite compound (1) is detected is converted to black. If a discrepancy is found, adjust the threshold value for binarization processing. For the binarized image, the average particle size of the perovskite compound (1) is measured using image analysis software. As the image analysis software, Image J, Photoshop, or the like can be appropriately selected.
<組成物1>
 ペロブスカイト化合物(1)には、表面保護層を形成してよい。表面保護層は、ペロブスカイト化合物(1)と表面保護剤(2)とを接触させ、必要に応じて、表面保護剤(2)を硬化させることで形成される。ペロブスカイト化合物(1)と表面保護剤(2)との混合物を組成物1という。本発明の組成物1は、表面保護剤(2)がペロブスカイト化合物(1)を覆うことによって、さらに色域を拡大するという効果が得られる。
<Composition 1>
A surface protective layer may be formed on the perovskite compound (1). The surface protective layer is formed by bringing the perovskite compound (1) into contact with the surface protective agent (2) and, if necessary, curing the surface protective agent (2). A mixture of the perovskite compound (1) and the surface protectant (2) is referred to as composition 1. The composition 1 of the present invention has the effect of further expanding the color gamut by covering the perovskite compound (1) with the surface protective agent (2).
<表面保護剤(2)>
 本発明の組成物1は、ペロブスカイト化合物(1)の表面保護剤(2)として、シラザン(2-1)、アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物(2-2)、及びこれらの縮合物からからなる群より選ばれる少なくとも1つの化合物を含む。
<Surface protectant (2)>
The composition 1 of the present invention comprises silicon having at least one group selected from the group consisting of silazane (2-1), an amino group, an alkoxy group and an alkylthio group as the surface protectant (2) of the perovskite compound (1). It contains at least one compound selected from the group consisting of compound (2-2) and a condensate thereof.
<シラザン(2-1)>
 シラザン(2-1)は、Si-N-Si結合を有する化合物である。シラザンは、直鎖状、分岐鎖状、又は環状のいずれであってもよい。
<Shirazan (2-1)>
Cilazan (2-1) is a compound having a Si—N—Si bond. Cilazan may be linear, branched, or cyclic.
 シラザンは、低分子シラザンであっても、高分子シラザンであってもよい。本明細書では、高分子シラザンをポリシラザンと記載することがある。 The shirazan may be a small molecule shirazan or a high molecular weight shirazan. In the present specification, the polymer silazane may be referred to as polysilazane.
 本明細書において「低分子」とは、数平均分子量が600未満であることを意味する。
また、本明細書において「高分子」とは、数平均分子量が600以上2000以下であることを意味する。
As used herein, the term "small molecule" means that the number average molecular weight is less than 600.
Further, in the present specification, the term "polymer" means that the number average molecular weight is 600 or more and 2000 or less.
 本明細書において「数平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。 As used herein, the term "number average molecular weight" means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
(低分子シラザン)
 低分子シラザンとしては、例えば、下記式(B1)で表されるジシラザンであることが好ましい。
(Small molecule silazan)
As the small molecule silazane, for example, disilazane represented by the following formula (B1) is preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(B1)中、R14及びR15は、それぞれ独立して、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基を表す。 In the formula (B1), R 14 and R 15 are independently hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and a cycloalkyl having 3 to 20 carbon atoms. It represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
 R14及びR15は、アミノ基などの置換基を有していてもよい。複数あるR15は、同一であってもよく、異なっていてもよい。 R 14 and R 15 may have a substituent such as an amino group. The plurality of R 15s may be the same or different.
 式(B1)で表される低分子シラザンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、及び1,1,1,3,3,3-ヘキサメチルジシラザンが挙げられる。 Examples of the small molecule silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1. Examples thereof include 3,3,3-hexamethyldisilazane.
 低分子シラザンとしては、例えば、下記式(B2)で表される低分子シラザンも好ましい。 As the small molecule silazane, for example, the small molecule silazane represented by the following formula (B2) is also preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(B2)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。 In the formula (B2), R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
The plurality of R 14s may be the same or different.
The plurality of R 15s may be the same or different.
 式(B2)中、nは1以上20以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。 In equation (B2), n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
 式(B2)で表される低分子シラザンとしては、オクタメチルシクロテトラシラザン、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、及び2,4,6-トリメチル-2,4,6-トリビニルシクロトリシラザンが挙げられる。 Examples of the small molecule silazane represented by the formula (B2) include octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2,4. , 6-Trivinylcyclotrisilazane.
 低分子のシラザンとしては、オクタメチルシクロテトラシラザン、及び1,3-ジフェニルテトラメチルジシラザンが好ましく、オクタメチルシクロテトラシラザンがより好ましい。 As the small molecule silazane, octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
(高分子シラザン)
 高分子シラザンとしては、例えば、下記式(B3)で表される高分子シラザン(ポリシラザン)が好ましい。
(Polymer Shirazan)
As the polymer silazane, for example, the polymer silazane (polysilazane) represented by the following formula (B3) is preferable.
 ポリシラザンは、Si-N-Si結合を有する高分子化合物である。式(B3)で表されるポリシラザンの構成単位は、一種であっても、複数種であってもよい。 Polysilazane is a polymer compound having a Si—N—Si bond. The constituent unit of polysilazane represented by the formula (B3) may be one kind or a plurality of kinds.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(B3)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。 In the formula (B3), R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
 式(B3)中、*は、結合手を表す。分子鎖末端のN原子の結合手には、R14が結合している。
 分子鎖末端のSi原子の結合手には、R15が結合している。
In equation (B3), * represents a bond. R14 is bonded to the bond of the N atom at the end of the molecular chain.
R15 is bonded to the bond of the Si atom at the end of the molecular chain.
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
The plurality of R 14s may be the same or different.
The plurality of R 15s may be the same or different.
 mは、2以上10000以下の整数を表す。 M represents an integer of 2 or more and 10000 or less.
 式(B3)で表されるポリシラザンは、例えば、R14、及びR15のすべてが水素原子であるパーヒドロポリシラザンでもよい。 The polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
 また、式(B3)で表されるポリシラザンは、例えば、少なくとも1つのR15が水素原子以外の基であるオルガノポリシラザンであってもよい。用途に応じて、適宜にパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 Further, the polysilazane represented by the formula (B3) may be, for example, organopolysilazane in which at least one R15 is a group other than a hydrogen atom. Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and may be mixed and used.
 (1)の分散性を向上させ、凝集を抑制する効果が高まる観点から、本発明の組成物は、式(B3)で表されるオルガノポリシラザンを含むことが好ましい。 From the viewpoint of improving the dispersibility of (1) and enhancing the effect of suppressing aggregation, the composition of the present invention preferably contains organopolysilazane represented by the formula (B3).
 式(B3)で表されるオルガノポリシラザンとしては、R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。 As the organopolysilazane represented by the formula (B3), at least one of R 14 and R 15 has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. It may be a cycloalkyl group, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms.
 その中でも、式(B3)で表されR14及びR15の少なくとも1つがメチル基であるオルガノポリシラザンが好ましい。 Among them, organopolysilazane represented by the formula (B3) in which at least one of R 14 and R 15 is a methyl group is preferable.
(高分子シラザン)
 高分子シラザンとしては、例えば、下記式(B4)で表される構造を有するポリシラザンも好ましい。
(Polymer Shirazan)
As the polymer silazane, for example, polysilazane having a structure represented by the following formula (B4) is also preferable.
 ポリシラザンは、分子内の一部に環構造を有していてもよく、例えば、式(B4)で表される構造を有していてもよい。 Polysilazane may have a ring structure in a part of the molecule, and may have a structure represented by the formula (B4), for example.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(B4)中、*は、結合手を表す。
 式(B4)の結合手は、式(B3)で表されるポリシラザンの結合手、又は式(B3)で表されるポリシラザンの構成単位の結合手と結合していてもよい。
In equation (B4), * represents a bond.
The bond of the formula (B4) may be bonded to the bond of polysilazane represented by the formula (B3) or the bond of the constituent unit of polysilazane represented by the formula (B3).
 また、ポリシラザンが、分子内に複数の式(B4)で表される構造を含む場合、式(B4)で表される構造の結合手は、他の式(B4)で表される構造の結合手と直接結合していてもよい。 Further, when polysilazane contains a structure represented by a plurality of formulas (B4) in the molecule, a bond of the structure represented by the formula (B4) is a bond of a structure represented by another formula (B4). It may be directly connected to the hand.
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないN原子の結合手には、R14が結合している。 It is bonded to any of the polysilazane bond represented by the formula (B3), the polysilazane constituent unit bond represented by the formula (B3), and the structural bond represented by the other formula (B4). R14 is bonded to the bond of no N atom.
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないSi原子の結合手には、R15が結合している。 It is bonded to any of the polysilazane bond represented by the formula (B3), the polysilazane constituent unit bond represented by the formula (B3), and the structural bond represented by the other formula (B4). R15 is bonded to the bond of no Si atom.
 nは、1以上10000以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。 n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
 (1)の分散性を向上させ、凝集を抑制する効果が高まる観点から、本発明の組成物は、式(B4)で表される構造を有するオルガノポリシラザンを含むことが好ましい。 From the viewpoint of improving the dispersibility of (1) and enhancing the effect of suppressing aggregation, the composition of the present invention preferably contains organopolysilazane having a structure represented by the formula (B4).
 式(B4)で表される構造を有するオルガノポリシラザンとしては、少なくとも1つの結合手がR14又はR15と結合し、当該R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。 As an organopolysilazane having a structure represented by the formula (B4), at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is an alkyl having 1 to 20 carbon atoms. A group, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms. May be.
 その中でも、式(B4)で表される構造を含み、少なくとも1つの結合手がR14又はR15と結合し、当該R14及びR15の少なくとも1つがメチル基であるポリシラザンであることが好ましい。 Among them, it is preferable that the structure is represented by the formula (B4), at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is polysilazane, which is a methyl group. ..
 一般的なポリシラザンは、例えば、直鎖構造と、6員環、又は8員環等の環構造とが存在した構造、すなわち前記式(B3)、前記式(B4)で表される構造を有する。一般的なポリシラザンの分子量は、数平均分子量(Mn)で600~2000程度(ポリスチレン換算)であり、分子量によって液体又は固体の物質でありうる。 The general polysilazane has, for example, a structure in which a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring exist, that is, a structure represented by the above formula (B3) and the above formula (B4). .. The molecular weight of general polysilazane is about 600 to 2000 (in terms of polystyrene) in terms of number average molecular weight (Mn), and may be a liquid or solid substance depending on the molecular weight.
 ポリシラザンは、市販品を使用してもよく、市販品としては、NN120-10、NN120-20、NAX120-20、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)並びに、AZNN-120-20、Durazane(登録商標)1500 Slow Cure、Durazane1500 Rapid Cure、Durazane1800、及びDurazane1033(メルクパフォーマンスマテリアルズ株式会社製)等が挙げられる。 As the polysilazane, a commercially available product may be used, and the commercially available products include NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ Electronic Materials Co., Ltd.). AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane 1500 Rapid Cure, Durazane 1800, Durazane 1033 (manufactured by Merck Performance Materials Co., Ltd.) and the like.
 ポリシラザンは、色域拡大の観点から、好ましくはAZNN-120-20、Durazane1500 Slow Cure、Durazane1500 Rapid Cureであり、より好ましくはDurazane1500 Slow Cureである。 From the viewpoint of expanding the color gamut, the polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, and more preferably Durazane1500 SlowCure.
<シラザン(2-1)の縮合物>
 本明細書において「縮合」とは、Si-N結合、Si-SR結合(Rは水素原子又は有機基)又はSi-OR結合(Rは水素原子又は有機基)を有するケイ素化合物が加水分解し、Si-O-Si結合を有するケイ素化合物が生成することをいう。Si-O-Si結合は、分子間の縮合反応で生成してもよく、分子内の縮合反応で生成してもよい。
<Condensate of Silazan (2-1)>
As used herein, the term "condensation" means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed. , Refers to the formation of a silicon compound having a Si—O—Si bond. The Si—O—Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
 本明細書において「縮合物」とは、Si-N結合、Si-SR結合又はSi-OR結合を有するケイ素化合物を縮合させることにより得られた化合物をいう。 As used herein, the term "condensate" refers to a compound obtained by condensing a silicon compound having a Si—N bond, a Si—SR bond or a Si—OR bond.
 (2-1)の縮合物としては、前記式(B1)で表されるジシラザンの縮合物、前記式(B2)で表される低分子シラザンの縮合物、前記式(B3)で表されるポリシラザンの縮合物、前記式(B4)で表される構造を分子内に有するポリシラザンの縮合物であることが好ましい。 The condensate of (2-1) includes a condensate of disilazane represented by the formula (B1), a condensate of low molecular weight silazane represented by the formula (B2), and a condensate of the formula (B3). It is preferable that it is a condensate of polysilazane, or a condensate of polysilazane having a structure represented by the above formula (B4) in the molecule.
 式(B2)で表される低分子シラザンの縮合物について、式(B2)で表される低分子シラザンの縮合物に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~100%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。 Regarding the condensate of low molecular weight silazane represented by the formula (B2), the silicon atom which is not bonded to the nitrogen atom with respect to all the silicon atoms contained in the condensate of low molecular weight silazane represented by the formula (B2). The ratio is preferably 0.1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
 なお、「窒素原子と結合していないケイ素原子の割合」は、後述する測定値を用いて、((Si(モル))-(Si-N結合中のN(モル)))/Si(モル)×100で求められる。縮合反応を考慮すると、「窒素原子と結合していないケイ素原子の割合」とは、「縮合処理にて生じるシロキサン結合に含まれるケイ素原子の割合」を意味する。 The "ratio of silicon atoms not bonded to nitrogen atoms" is defined as ((Si (mol))-(N (mol) in Si—N bond)) / Si (mol) using the measured values described later. ) × 100. Considering the condensation reaction, the "ratio of silicon atoms not bonded to nitrogen atoms" means "ratio of silicon atoms contained in the siloxane bond generated in the condensation treatment".
 式(B3)で表されるポリシラザンの縮合物について、式(B3)で表されるポリシラザンの縮合物に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~100%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。 Regarding the polysilazane condensate represented by the formula (B3), the ratio of silicon atoms not bonded to the nitrogen atom to all the silicon atoms contained in the polysilazane condensate represented by the formula (B3) is 0. It is preferably 1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
 式(B4)で表される構造を有するポリシラザンの縮合物について、式(B4)で表される構造を有するポリシラザンの縮合物に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~99%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~97%であることがより好ましく、30~95%であることがさらに好ましい。 Regarding the condensate of polysilazane having the structure represented by the formula (B4), silicon not bonded to the nitrogen atom for all the silicon atoms contained in the condensate of polysilazane having the structure represented by the formula (B4). The proportion of atoms is preferably 0.1 to 99%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 97%, further preferably 30 to 95%.
 縮合物中のSi原子数、Si-N結合の数は、X線光電子分光法(XPS)によって測定することができる。 The number of Si atoms and the number of Si—N bonds in the condensate can be measured by X-ray photoelectron spectroscopy (XPS).
 縮合物について、上述の方法による測定値を用いて求められる「窒素原子と結合していないケイ素原子の割合」は、0.1~99%であることが好ましく、10~99%であることがより好ましく、30~95%であることがさらに好ましい。 For the condensate, the "ratio of silicon atoms not bonded to nitrogen atoms" obtained by using the measured values by the above method is preferably 0.1 to 99%, and preferably 10 to 99%. More preferably, it is more preferably 30 to 95%.
<アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物(2-2)>
 本発明の組成物1は、アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物(2-2)を含んでいてもよい。以下、アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物(2-2)を総称して「ケイ素化合物(2-2)」と称することがある。
<Silicon compound having at least one group selected from the group consisting of an amino group, an alkoxy group and an alkylthio group (2-2)>
The composition 1 of the present invention may contain a silicon compound (2-2) having at least one group selected from the group consisting of an amino group, an alkoxy group and an alkylthio group. Hereinafter, the silicon compound (2-2) having at least one group selected from the group consisting of an amino group, an alkoxy group and an alkylthio group may be generically referred to as "silicon compound (2-2)".
 ケイ素化合物(2-2)としては、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、ドデシルトリメトキシシラン、トリメトキシフェニルシラン、1H,1H,2H,2H-パーフルオロオクチルトリエトキシシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが例として挙げられる。 Examples of the silicon compound (2-2) include tetraethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H, 1H, 2H, and 2H-perfluoro. Examples thereof include octyltriethoxysilane, trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
 中でも、(1)の色域拡大の観点から、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、トリメトキシフェニルシランが好ましく、トリメトキシフェニルシラン、テトラエトキシシランがより好ましい。 Of these, tetraethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, and trimethoxyphenylsilane are preferable, and trimethoxyphenylsilane and tetraethoxysilane are more preferable, from the viewpoint of expanding the color range of (1). preferable.
<ケイ素化合物(2-2)の縮合物>
 ケイ素化合物(2-2)の縮合物は、上述のケイ素化合物(2-2)を縮合させることにより得られる化合物をいう。「縮合」に関しては、シラザン(2-1)の縮合物における説明と同様である。
<Condensate of silicon compound (2-2)>
The condensate of the silicon compound (2-2) refers to a compound obtained by condensing the above-mentioned silicon compound (2-2). Regarding "condensation", it is the same as the description in the condensate of silazane (2-1).
 本発明の組成物1において、上述の表面保護剤(2)を1種のみ有していてもよく、2種以上を併用してもよい。好ましい表面保護剤(2)は、シラザン(2-1)とケイ素化合物(2-2)との混合物、及びその縮合物である。 In the composition 1 of the present invention, only one kind of the above-mentioned surface protective agent (2) may be contained, or two or more kinds thereof may be used in combination. A preferred surface protectant (2) is a mixture of silazane (2-1) and a silicon compound (2-2), and a condensate thereof.
<組成物2>
 ペロブスカイト化合物(1)又は組成物1は、分散媒体材料に分散させてよい。「分散」とは、分散質が分散媒体材料に浮遊している状態、又は分散質が分散媒体材料に懸濁している状態のことを指す。分散質は、一部が沈降していてもよい。分散媒体材料の具体例は、分散媒(3)、重合性化合物(4)及び重合体(5)である。ペロブスカイト化合物(1)又は組成物1と分散媒体材料との混合物を組成物2という。
<Composition 2>
The perovskite compound (1) or composition 1 may be dispersed in a dispersion medium material. "Dispersion" refers to a state in which the dispersoid is suspended in the dispersion medium material, or a state in which the dispersoid is suspended in the dispersion medium material. The dispersoid may be partially settled. Specific examples of the dispersion medium material are a dispersion medium (3), a polymerizable compound (4), and a polymer (5). The perovskite compound (1) or a mixture of the composition 1 and the dispersion medium material is referred to as composition 2.
<分散媒(3)>
 本発明の組成物が有する分散媒(3)は、その中に本発明のペロブスカイト化合物(1)を分散させる媒体である。分散媒(3)は、本発明のペロブスカイト化合物(1)を溶解し難いものが好ましい。また、分散媒(3)は、1気圧、25℃において液体状態である。ただし、分散媒(3)には、後述する重合性化合物は含まれない。
<Dispersion medium (3)>
The dispersion medium (3) contained in the composition of the present invention is a medium for dispersing the perovskite compound (1) of the present invention therein. The dispersion medium (3) is preferably one in which the perovskite compound (1) of the present invention is difficult to dissolve. Further, the dispersion medium (3) is in a liquid state at 1 atm and 25 ° C. However, the dispersion medium (3) does not contain the polymerizable compound described later.
 分散媒(3)としては、下記(a)~(k)の化合物を挙げることができる。
(a)エステル
(b)ケトン
(c)エーテル
(d)アルコール
(e)グリコールエーテル
(f)アミド基を有する有機溶媒
(g)ニトリル基を有する有機溶媒
(h)カーボネート基を有する有機溶媒
(i)ハロゲン化炭化水素
(j)炭化水素
(k)ジメチルスルホキシド
Examples of the dispersion medium (3) include the following compounds (a) to (k).
(A) Ester (b) Ketone (c) Ether (d) Alcohol (e) Glycol ether (f) Organic solvent having an amide group (g) Organic solvent having a nitrile group (h) Organic solvent having a carbonate group (i) ) Halogenated hydrocarbons (j) Hydrocarbons (k) Dimethylsulfoxide
 (a)エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等を挙げることができる。 Examples of the (a) ester include methylformate, ethylformate, propylformate, pentylformate, methyl acetate, ethyl acetate, pentyl acetate and the like.
 (b)ケトンとしては、γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等を挙げることができる。 Examples of the (b) ketone include γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
 (c)エーテルとしては、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等を挙げることができる。 (C) Examples of the ether include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetol. And so on.
 (d)アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等を挙げることができる。 (D) Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol and diacetone alcohol. , Cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like.
 (e)グリコールエーテルとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等を挙げることができる。 Examples of the (e) glycol ether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
 (f)アミド基を有する有機溶媒としては、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等を挙げることができる。 (F) Examples of the organic solvent having an amide group include N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like.
 (g)ニトリル基を有する有機溶媒としては、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等を挙げることができる。 (G) Examples of the organic solvent having a nitrile group include acetonitrile, isobutyronitrile, propionitrile, methoxynitrile and the like.
 (h)カーボネート基を有する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。 (H) Examples of the organic solvent having a carbonate group include ethylene carbonate and propylene carbonate.
 (i)ハロゲン化炭化水素としては、塩化メチレン、クロロホルム等を挙げることができる。 (I) Examples of the halogenated hydrocarbon include methylene chloride and chloroform.
 (j)炭化水素としては、n-ペンタン、シクロヘキサン、n-ヘキサン、1-オクタデセン、ベンゼン、トルエン、キシレン等を挙げることができる。 Examples of the (j) hydrocarbon include n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene, xylene and the like.
 これらの化合物の中でも、(a)エステル、(b)ケトン、(c)エーテル、(g)ニトリル基を有する有機化合物、(h)カーボネート基を有する有機化合物、(i)ハロゲン化炭化水素及び(j)炭化水素は、極性が低く、本発明のペロブスカイト化合物(1)を溶解し難いと考えられるため好ましい。 Among these compounds, (a) ester, (b) ketone, (c) ether, (g) organic compound having a nitrile group, (h) organic compound having a carbonate group, (i) halogenated hydrocarbon and (i) j) Hydrocarbons are preferable because they have low polarity and are considered to be difficult to dissolve the perovskite compound (1) of the present invention.
 さらに、本発明の組成物に用いる分散媒(3)としては、(i)ハロゲン化炭化水素、(j)炭化水素がより好ましい。 Further, as the dispersion medium (3) used in the composition of the present invention, (i) halogenated hydrocarbons and (j) hydrocarbons are more preferable.
 本発明の組成物1及び組成物2においては、上述の分散媒(3)を1種のみ用いてもよく、2種以上を併用してもよい。 In the composition 1 and the composition 2 of the present invention, only one kind of the above-mentioned dispersion medium (3) may be used, or two or more kinds thereof may be used in combination.
<重合性化合物(4)>
 本発明の組成物が有する重合性化合物は、本発明の組成物を製造する温度において、本発明のペロブスカイト化合物(1)を溶解し難いものが好ましい。
<Polymerizable compound (4)>
The polymerizable compound of the composition of the present invention is preferably one in which the perovskite compound (1) of the present invention is difficult to dissolve at the temperature at which the composition of the present invention is produced.
 本明細書において「重合性化合物」とは、重合性基を有する単量体化合物(モノマー)を意味する。例えば、重合性化合物は、1気圧、25℃において液体状態であるモノマーを挙げることができる。 As used herein, the term "polymerizable compound" means a monomer compound (monomer) having a polymerizable group. For example, the polymerizable compound may be a monomer that is in a liquid state at 1 atm and 25 ° C.
 例えば、常温、常圧下において製造する場合、重合性化合物としては、特に制限は無い。重合性化合物としては、例えば、スチレン、アクリル酸エステル、メタクリル酸エステル、アクリロニトリル等の公知の重合性化合物が挙げられる。なかでも、重合性化合物としては、アクリル系樹脂の単量体であるアクリル酸エステル及びメタクリル酸エステルのいずれか一方又は両方が好ましい。 For example, when produced at room temperature and under normal pressure, the polymerizable compound is not particularly limited. Examples of the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile. Among them, as the polymerizable compound, either one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, is preferable.
 本発明の組成物1及び組成物2においては、重合性化合物を1種のみ用いてもよく、2種以上を併用してもよい。 In the composition 1 and the composition 2 of the present invention, only one type of polymerizable compound may be used, or two or more types may be used in combination.
 本発明の組成物において、全ての重合性化合物(4)に対する、アクリル酸エステル及びメタクリル酸エステルの合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。 In the composition of the present invention, the ratio of the total amount of the acrylic acid ester and the methacrylic acid ester to all the polymerizable compounds (4) may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
<重合体(5)>
 本発明の組成物に含まれる重合体は、本発明の組成物を製造する温度において、本発明のペロブスカイト化合物(1)の溶解度が低い重合体が好ましい。
<Polymer (5)>
The polymer contained in the composition of the present invention is preferably a polymer having a low solubility of the perovskite compound (1) of the present invention at the temperature at which the composition of the present invention is produced.
 例えば、常温、常圧下において製造する場合、重合体としては、特に制限は無いが、例えば、ポリスチレン、アクリル系樹脂、エポキシ樹脂等の公知の重合体が挙げられる。なかでも、重合体としては、アクリル系樹脂が好ましい。アクリル系樹脂は、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位のいずれか一方又は両方を含む。 For example, when the polymer is produced at room temperature and under normal pressure, the polymer is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin. Among them, acrylic resin is preferable as the polymer. The acrylic resin contains one or both of a structural unit derived from an acrylic acid ester and a structural unit derived from a methacrylic acid ester.
 本発明の組成物において、重合体(5)に含まれる全ての構成単位に対する、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位の合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。 In the composition of the present invention, the ratio of the total amount of the structural unit derived from acrylic acid ester and the structural unit derived from methacrylic acid ester to all the structural units contained in the polymer (5) is 10 mol% or more. You may. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
 重合体(5)の重量平均分子量は、100~1200000であることが好ましく、1000~800000であることがより好ましく、5000~150000であることがさらに好ましい。 The weight average molecular weight of the polymer (5) is preferably 100 to 1200,000, more preferably 1,000 to 800,000, and even more preferably 5,000 to 150,000.
 本明細書において「重量平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。 As used herein, the term "weight average molecular weight" means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
 本発明の組成物1及び組成物2において、上述の重合体(5)を1種のみ有していてもよく、2種以上を併用してもよい。 In the composition 1 and the composition 2 of the present invention, only one kind of the above-mentioned polymer (5) may be contained, or two or more kinds thereof may be used in combination.
<表面修飾剤(6)>
 組成物1及び組成物2は、さらに表面修飾剤(6)を含んでいてもよい。表面修飾剤(6)は、後述する製造方法で本発明の組成物を製造する際に、ペロブスカイト化合物(1)の表面を覆い、ペロブスカイト化合物(1)を組成物中に安定して分散させる作用を有する化合物である。
<Surface modifier (6)>
The composition 1 and the composition 2 may further contain a surface modifier (6). The surface modifier (6) has an action of covering the surface of the perovskite compound (1) and stably dispersing the perovskite compound (1) in the composition when the composition of the present invention is produced by the production method described later. It is a compound having.
 本発明のペロブスカイト化合物(1)の表面は表面修飾剤層により覆われていてもよい。表面修飾剤層は、ペロブスカイト化合物(1)と表面保護剤(2)との間に位置していてもよい。以下、表面修飾剤層の形成材料を「表面修飾剤(6)」と称する The surface of the perovskite compound (1) of the present invention may be covered with a surface modifier layer. The surface modifier layer may be located between the perovskite compound (1) and the surface protectant (2). Hereinafter, the material for forming the surface modifier layer is referred to as "surface modifier (6)".
 なお、表面修飾剤層がペロブスカイト化合物(1)の「表面」を覆うとは、表面修飾剤層がペロブスカイト化合物(1)に直接接して覆うことの他、表面修飾剤層がペロブスカイト化合物(1)の表面に形成された他の層の表面に直接接して形成され、ペロブスカイト化合物(1)の表面に直接接することなく覆うことも含む。 The fact that the surface modifier layer covers the "surface" of the perovskite compound (1) means that the surface modifier layer directly contacts and covers the perovskite compound (1), and the surface modifier layer covers the perovskite compound (1). It is formed in direct contact with the surface of another layer formed on the surface of the perovskite compound (1) and includes covering without direct contact with the surface of the perovskite compound (1).
 表面修飾剤層は、アンモニウムイオン、アミン、第1級~第4級アンモニウムカチオン、アンモニウム塩、カルボン酸、カルボキシレートイオン、及びカルボキシレート塩からなる群より選ばれる少なくとも一種のイオン又は化合物を形成材料とする。 The surface modifier layer is a material for forming at least one ion or compound selected from the group consisting of ammonium ions, amines, primary to quaternary ammonium cations, ammonium salts, carboxylic acids, carboxylate ions, and carboxylate salts. And.
 中でも、表面修飾剤層は、アミン、及びカルボン酸からなる群より選ばれる少なくとも一種を形成材料とすることが好ましい。 Above all, it is preferable that the surface modifier layer is made of at least one selected from the group consisting of amines and carboxylic acids as a forming material.
(アンモニウムイオン、第1級~第4級アンモニウムカチオン、アンモニウム塩)
 表面修飾剤(6)であるアンモニウムイオン、及び第1級~第4級アンモニウムカチオンは、下記式(A1)で表される。表面修飾剤(6)であるアンモニウム塩は、下記式(A1)で表されるイオンを含む塩である。
(Ammonium ion, primary to quaternary ammonium cation, ammonium salt)
Ammonium ions, which are surface modifiers (6), and primary to quaternary ammonium cations are represented by the following formula (A1). The ammonium salt which is the surface modifier (6) is a salt containing an ion represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A1)で表されるイオンにおいて、R~Rは、水素原子、又は1価の炭化水素基を表す。 In the ion represented by the formula (A1), R 1 to R 4 represent a hydrogen atom or a monovalent hydrocarbon group.
 R~Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができる。 The hydrocarbon group represented by R 1 to R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。
 R~Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
The alkyl group represented by R 1 to R 4 may be linear or branched.
The number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
 シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R~Rの不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。 The unsaturated hydrocarbon groups R1 to R4 may be linear or branched.
 R~Rの不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The number of carbon atoms of the unsaturated hydrocarbon group of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
 R~Rは、水素原子、アルキル基、又は不飽和炭化水素基であることが好ましい。
不飽和炭化水素基としては、アルケニル基が好ましい。R~Rは、炭素原子数8~20のアルケニル基であることが好ましい。
R 1 to R 4 are preferably hydrogen atoms, alkyl groups, or unsaturated hydrocarbon groups.
As the unsaturated hydrocarbon group, an alkenyl group is preferable. R 1 to R 4 are preferably alkenyl groups having 8 to 20 carbon atoms.
 R~Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。 Specific examples of the alkyl groups of R 1 to R 4 include the alkyl groups exemplified in R 6 to R 9 .
 R~Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。 Specific examples of the cycloalkyl groups of R 1 to R 4 include the cycloalkyl groups exemplified in R 6 to R 9 .
 R~Rのアルケニル基としては、R~Rにおいて例示した前記直鎖状又は分岐鎖状のアルキル基において、いずれか一つの炭素原子間の単結合(C-C)が、二重結合(C=C)に置換されたものが例示でき、二重結合の位置は限定されない。 As the alkenyl group of R 1 to R 4 , in the linear or branched alkyl group exemplified in R 6 to R 9 , a single bond (CC) between any one carbon atom is two. Examples thereof include those substituted with a double bond (C = C), and the position of the double bond is not limited.
 R~Rのアルケニル基の好ましいものとしては、例えば、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられる。 Preferred alkenyl groups of R1 to R4 are, for example, an ethenyl group, a propenyl group, a 3-butenyl group, a 2-butenyl group, a 2-pentenyl group, a 2-hexenyl group, a 2-nonenyl group and a 2-dodecenyl group. Groups include 9-octadecenyl groups.
 式(A1)で表されるアンモニウムカチオンが塩を形成する場合、カウンターアニオンとしては、特に制限は無い。カウンターアニオンとしては、ハロゲン化物イオンや、カルボキシレートイオンなどが好ましい。ハロゲン化物イオンとしては、臭化物イオン、塩化物イオン、ヨウ化物イオン、フッ化物イオンが挙げられる。 When the ammonium cation represented by the formula (A1) forms a salt, the counter anion is not particularly limited. As the counter anion, a halide ion, a carboxylate ion, or the like is preferable. Examples of the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
 式(A1)で表されるアンモニウムカチオンと、カウンターアニオンとを有するアンモニウム塩としては、n-オクチルアンモニウム塩、オレイルアンモニウム塩が好ましい例として挙げられる。 As the ammonium salt having an ammonium cation represented by the formula (A1) and a counter anion, n-octyl ammonium salt and oleyl ammonium salt are preferable examples.
(アミン)
 表面修飾剤(6)であるアミンとしては、下記式(A11)で表すことができる。
(Amine)
The amine which is the surface modifier (6) can be represented by the following formula (A11).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(A11)において、R~Rは、上記式(A1)が有するR~Rと同じ基を表す。ただし、R~Rのうち少なくとも1つは1価の炭化水素基である。 In the above formula (A11), R 1 to R 3 represent the same group as R 1 to R 3 possessed by the above formula (A1). However, at least one of R 1 to R 3 is a monovalent hydrocarbon group.
 表面修飾剤(6)であるアミンとしては、第1級~第3級アミンのいずれであってもよいが、第1級アミン及び第2級アミンが好ましく、第1級アミンがより好ましい。 The amine as the surface modifier (6) may be any of primary and tertiary amines, but primary amines and secondary amines are preferable, and primary amines are more preferable.
 表面修飾剤(6)であるアミンとしては、オレイルアミンが好ましい。 As the amine which is the surface modifier (6), oleylamine is preferable.
(カルボン酸、カルボキシレートイオン、カルボキシレート塩)
 表面修飾剤(6)であるカルボキシレートイオンは、下記式(A2)で表される。表面修飾剤であるカルボキシレート塩は、下記式(A2)で表されるイオンを含む塩である。
 R-CO ・・・(A2)
(Carboxylic acid, carboxylate ion, carboxylate salt)
The carboxylate ion which is the surface modifier (6) is represented by the following formula (A2). The carboxylate salt which is a surface modifier is a salt containing an ion represented by the following formula (A2).
R 5 - CO 2 -... (A2)
 表面修飾剤(6)であるカルボン酸は、上記(A2)で表されるカルボキシレートアニオンにプロトン(H)が結合したカルボン酸が挙げられる。 Examples of the carboxylic acid as the surface modifier (6) include carboxylic acids in which a proton (H + ) is bound to the carboxylate anion represented by the above (A2).
 式(A2)で表されるイオンにおいて、Rは、一価の炭化水素基を表す。Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。
飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができる。
In the ion represented by the formula (A2), R 5 represents a monovalent hydrocarbon group. The hydrocarbon group represented by R5 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であってもよい。 The alkyl group represented by R 5 may be linear or branched.
 Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The number of carbon atoms of the alkyl group represented by R5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
 シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。 The number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms also includes the number of carbon atoms of the substituent.
 Rで表される不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。 The unsaturated hydrocarbon group represented by R5 may be linear or branched.
 Rで表される不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The number of carbon atoms of the unsaturated hydrocarbon group represented by R5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
 Rはアルキル基又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。 R 5 is preferably an alkyl group or an unsaturated hydrocarbon group. As the unsaturated hydrocarbon group, an alkenyl group is preferable.
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
Specific examples of the alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
Specific examples of the cycloalkyl group of R 5 include the cycloalkyl groups exemplified in R 6 to R 9 .
 Rのアルケニル基の具体例としては、Rにおいて例示したアルケニル基が挙げられる。 Specific examples of the alkenyl group of R 5 include the alkenyl group exemplified in R 4 .
 式(A2)で表されるカルボキシレートアニオンは、オレイン酸アニオンが好ましい。
 
The carboxylate anion represented by the formula (A2) is preferably an oleate anion.
 カルボキレートアニオンが塩を形成する場合、カウンターカチオンとしては、特に制限は無いが、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンなどが好ましい例として挙げられる。 When the carbochelate anion forms a salt, the counter cation is not particularly limited, but alkali metal cations, alkaline earth metal cations, ammonium cations and the like are preferable examples.
 表面修飾剤(6)であるカルボン酸としては、オレイン酸が好ましい。 Oleic acid is preferable as the carboxylic acid that is the surface modifier (6).
 上述した表面修飾剤(6)の中では、アンモニウム塩、アンモニウムイオン、第1級~第4級アンモニウムカチオン、カルボキシレート塩、カルボキシレートイオンが好ましい。 Among the above-mentioned surface modifiers (6), ammonium salts, ammonium ions, primary to quaternary ammonium cations, carboxylate salts, and carboxylate ions are preferable.
 アンモニウム塩、アンモニウムイオンの中では、オレイルアミン塩、オレイルアンモニウムイオンがより好ましい。 Of the ammonium salts and ammonium ions, oleylamine salts and oleylammonium ions are more preferable.
 カルボキシレート塩、カルボキシレートイオンの中では、オレイン酸塩、オレイン酸カチオンがより好ましい。 Among the carboxylate salts and carboxylate ions, oleate and oleate cations are more preferable.
 本発明の組成物1及び組成物2において、上述の表面修飾剤(6)を1種のみ有していてもよく、2種以上を併用してもよい。 In the composition 1 and the composition 2 of the present invention, only one kind of the above-mentioned surface modifier (6) may be contained, or two or more kinds thereof may be used in combination.
<組成物中の各成分の含有量>
 本発明の組成物1及び組成物2において、組成物の総質量に対するペロブスカイト化合物(1)の含有割合は、特に限定されるものではない。
<Contents of each component in the composition>
In the composition 1 and the composition 2 of the present invention, the content ratio of the perovskite compound (1) to the total mass of the composition is not particularly limited.
 上記含有割合は、濃度消光を防ぐ観点から、90質量%以下であることが好ましく、40質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。 From the viewpoint of preventing concentration quenching, the content ratio is preferably 90% by mass or less, more preferably 40% by mass or less, further preferably 10% by mass or less, and 3% by mass or less. Is particularly preferred.
 また、上記含有割合は、良好な量子収率を得る観点から、0.0002質量%以上であることが好ましく、0.002質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。 Further, the content ratio is preferably 0.0002% by mass or more, more preferably 0.002% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of obtaining a good quantum yield. Is even more preferable.
 上記の上限値及び下限値は任意に組み合わせることができる。 The above upper limit and lower limit can be combined arbitrarily.
 組成物の総質量に対するペロブスカイト化合物(1)の含有割合は、通常0.0002~90質量%である。 The content ratio of the perovskite compound (1) to the total mass of the composition is usually 0.0002 to 90% by mass.
 組成物の総質量に対するペロブスカイト化合物(1)の含有割合は、0.001~40質量%であることが好ましく、0.002~10質量%であることがより好ましく、0.01~3質量%であることがさらに好ましい。 The content ratio of the perovskite compound (1) to the total mass of the composition is preferably 0.001 to 40% by mass, more preferably 0.002 to 10% by mass, and 0.01 to 3% by mass. Is more preferable.
 組成物の総質量に対するペロブスカイト化合物(1)の含有割合が上記範囲内である組成物は、ペロブスカイト化合物(1)の凝集が生じ難く、発光性も良好に発揮される点で好ましい。 A composition in which the content ratio of the perovskite compound (1) to the total mass of the composition is within the above range is preferable in that the perovskite compound (1) is less likely to aggregate and the luminescence is well exhibited.
 本発明の組成物1において、組成物の総質量に対する表面保護剤(2)の含有割合は、特に限定されるものではない。 In the composition 1 of the present invention, the content ratio of the surface protective agent (2) to the total mass of the composition is not particularly limited.
 上記含有割合は、ペロブスカイト化合物(1)の分散性を向上させる観点、及び耐久性を向上させる観点から、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、7.5質量%以下であることがさらに好ましい。 The content ratio is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 10% by mass or less, from the viewpoint of improving the dispersibility of the perovskite compound (1) and improving the durability. It is more preferably 5% by mass or less.
 また、上記含有割合は、耐久性を向上させる観点から、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。 Further, the content ratio is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and more preferably 0.1% by mass or more from the viewpoint of improving durability. More preferred.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper limit value and lower limit value can be combined arbitrarily.
 組成物の総質量に対する表面保護剤(2)の含有割合は、通常0.001~30質量%である。 The content ratio of the surface protective agent (2) to the total mass of the composition is usually 0.001 to 30% by mass.
 組成物の総質量に対する表面保護剤(2)の含有割合は、0.001~30質量%であることが好ましく、0.001~10質量%、0.1~7.5質量%であることがより好ましい。 The content ratio of the surface protective agent (2) to the total mass of the composition is preferably 0.001 to 30% by mass, preferably 0.001 to 10% by mass, and 0.1 to 7.5% by mass. Is more preferable.
 本発明の組成物1及び組成物2において、組成物の総質量に対する分散媒体材料の含有割合は、特に限定されるものではない。 In the composition 1 and the composition 2 of the present invention, the content ratio of the dispersion medium material to the total mass of the composition is not particularly limited.
 上記含有割合は、ペロブスカイト化合物(1)の分散性を向上させる観点、及び耐久性を向上させる観点から、99.99質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99質量%以下であることがさらに好ましい。 The content ratio is preferably 99.99% by mass or less, and more preferably 99.9% by mass or less, from the viewpoint of improving the dispersibility of the perovskite compound (1) and improving the durability. It is preferably 99% by mass or less, and more preferably 99% by mass or less.
 また、上記含有割合は、耐久性を向上させる観点から、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることがもっとも好ましい。 Further, from the viewpoint of improving durability, the content ratio is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 10% by mass or more, and 50%. It is more preferably mass% or more, more preferably 80% by mass or more, and most preferably 90% by mass or more.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper limit value and lower limit value can be combined arbitrarily.
 組成物の総質量に対する分散媒体材料の含有割合は、通常0.1~99.99質量%である。 The content ratio of the dispersion medium material to the total mass of the composition is usually 0.1 to 99.99 mass%.
 組成物の総質量に対する分散媒体材料の含有割合は、1~99質量%であることが好ましく、10~99質量%であることがより好ましく、20~99質量%であることがさらに好ましく、50~99質量%であることが特に好ましく、90~99質量%であることが最も好ましい。 The content ratio of the dispersion medium material to the total mass of the composition is preferably 1 to 99% by mass, more preferably 10 to 99% by mass, further preferably 20 to 99% by mass, and 50. It is particularly preferably to 99% by mass, and most preferably 90 to 99% by mass.
 また、上記組成物において、ペロブスカイト化合物(1)、表面保護剤(2)及び分散媒体材料の合計含有割合は、組成物の総質量に対して90質量%以上であってもよく、95質量%以上であってもよく、99質量%以上であってもよく、100質量%であってもよい。 Further, in the above composition, the total content ratio of the perovskite compound (1), the surface protective agent (2) and the dispersion medium material may be 90% by mass or more with respect to the total mass of the composition, or 95% by mass. It may be more than 99% by mass, may be 99% by mass or more, and may be 100% by mass.
 本発明の組成物1及び組成物2において、組成物の総質量に対する表面修飾剤(6)の含有割合は、特に限定されるものではない。 In the composition 1 and the composition 2 of the present invention, the content ratio of the surface modifier (6) to the total mass of the composition is not particularly limited.
 上記含有割合は、耐久性向上の観点から、30質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。 From the viewpoint of improving durability, the content ratio is preferably 30% by mass or less, more preferably 1% by mass or less, and further preferably 0.1% by mass or less.
 また、上記含有割合は、熱耐久性を向上させる観点から、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。 Further, the content ratio is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of improving thermal durability. Is more preferable.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper limit value and lower limit value can be combined arbitrarily.
 組成物の総質量に対する表面修飾剤(6)の含有割合は、通常0.0001~30質量%である。 The content ratio of the surface modifier (6) to the total mass of the composition is usually 0.0001 to 30% by mass.
 組成物の総質量に対する表面修飾剤(6)の含有割合は、0.001~1質量%であることが好ましく、0.01~0.1質量%であることがより好ましい。 The content ratio of the surface modifier (6) to the total mass of the composition is preferably 0.001 to 1% by mass, more preferably 0.01 to 0.1% by mass.
 組成物の総質量に対する表面修飾剤(6)の含有割合が上記範囲内である組成物は、熱耐久性に優れる点で好ましい。 A composition in which the content ratio of the surface modifier (6) to the total mass of the composition is within the above range is preferable in terms of excellent thermal durability.
 本発明の組成物における、若干の不純物、ペロブスカイト化合物(1)を構成する元素からなるアモルファス構造を有する化合物、重合開始剤の合計含有割合は、組成物の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。 In the composition of the present invention, the total content of some impurities, the compound having an amorphous structure composed of the elements constituting the perovskite compound (1), and the polymerization initiator is 10% by mass or less with respect to the total mass of the composition. It is preferably 5% by mass or less, more preferably 1% by mass or less.
<各成分の配合比>
 本発明の組成物1及び2において、分散媒体材料に対するペロブスカイト化合物(1)の質量比[ペロブスカイト化合物(1)/分散媒体材料]は、0.00001~10であってもよく、0.0001~5であってもよく、0.0005~3であってもよい。
<Mixing ratio of each component>
In the compositions 1 and 2 of the present invention, the mass ratio of the perovskite compound (1) to the dispersion medium material [perovskite compound (1) / dispersion medium material] may be 0.00001 to 10, and may be 0.0001 to 0.0001. It may be 5 or 0.0005 to 3.
 ペロブスカイト化合物(1)と、分散媒体材料との配合比に係る範囲が上記範囲内である組成物は、ペロブスカイト化合物(1)の凝集が生じ難く、良好に発光する点で好ましい。 A composition in which the range of the blending ratio of the perovskite compound (1) and the dispersion medium material is within the above range is preferable because the perovskite compound (1) is less likely to aggregate and emits light well.
 本発明の組成物1において、ペロブスカイト化合物(1)と表面保護剤(2)との配合比は、(1)、(2)の種類等に応じて、適宜定めることができる。 In the composition 1 of the present invention, the compounding ratio of the perovskite compound (1) and the surface protective agent (2) can be appropriately determined according to the types of (1) and (2) and the like.
 本発明の組成物1において、ペロブスカイト化合物(1)のB成分である金属イオンと、表面保護剤(2)のSi元素とのモル比[Si/B]は、0.001~200であってもよく、0.01~50であってもよい。 In the composition 1 of the present invention, the molar ratio [Si / B] of the metal ion which is the B component of the perovskite compound (1) and the Si element of the surface protectant (2) is 0.001 to 200. It may be 0.01 to 50.
 本発明の組成物1において、表面保護剤(2)が、式(B1)又は(B2)で表されるシラザンの縮合物である場合、ペロブスカイト化合物(1)のB成分である金属イオンと、シラザン(2-1)の縮合物のSiとのモル比[Si/B]は、0.001~100であってもよく、0.001~50であってもよく、1~20であってもよい。 In the composition 1 of the present invention, when the surface protective agent (2) is a condensate of silazane represented by the formula (B1) or (B2), the metal ion which is the B component of the perovskite compound (1) and the metal ion The molar ratio [Si / B] of the condensate of silazane (2-1) to Si may be 0.001 to 100, 0.001 to 50, or 1 to 20. May be good.
 本発明の組成物1において、表面保護剤(2)が、式(B3)で表される構成単位を有するポリシラザンである場合、ペロブスカイト化合物(1)のB成分である金属イオンと、シラザン(2-1)の縮合物のSi元素とのモル比[Si/B]は、0.001~100であってもよく、0.01~100であってもよく、0.1~100であってもよく、1~50であってもよく、1~20であってもよい。 In the composition 1 of the present invention, when the surface protective agent (2) is polysilazane having a structural unit represented by the formula (B3), the metal ion which is the B component of the perovskite compound (1) and silazane (2). The molar ratio [Si / B] of the condensate of -1) with the Si element may be 0.001 to 100, 0.01 to 100, or 0.1 to 100. It may be 1 to 50, or 1 to 20.
 ペロブスカイト化合物(1)と表面保護剤(2)との配合比に係る範囲が上記範囲内である組成物は、表面保護剤(2)による、水蒸気に対する耐久性向上の作用が、特に良好に発揮される点で好ましい。 In the composition in which the range of the blending ratio of the perovskite compound (1) and the surface protectant (2) is within the above range, the effect of the surface protectant (2) on improving the durability against water vapor is particularly well exhibited. It is preferable in that it is done.
 上記ペロブスカイト化合物のB成分である金属イオンと、表面保護剤(2)のSi元素とのモル比[Si/B]は、以下のような方法で求めることができる。
 ペロブスカイト化合物のB成分である金属イオンのモル数(B)は、誘導結合プラズマ質量分析(ICP-MS)によって、ペロブスカイト化合物に含まれるB成分である金属の質量を算出したのち、モルに換算することによって求める。また、表面保護剤(2)のSi元素のモル数(Si)は、用いた表面保護剤(2)の質量からモル換算することによって求める。
 このときの、表面保護剤(2)のSi元素のモル数(Si)とペロブスカイト化合物のB成分である金属イオンのモル数(B)の比が、[Si/B]である。
The molar ratio [Si / B] of the metal ion which is the B component of the perovskite compound and the Si element of the surface protective agent (2) can be obtained by the following method.
The number of moles (B) of the metal ion, which is the B component of the perovskite compound, is converted into moles after calculating the mass of the metal, which is the B component contained in the perovskite compound, by inductively coupled plasma mass spectrometry (ICP-MS). Ask by. The number of moles (Si) of the Si element of the surface protectant (2) is obtained by converting the mass of the surface protectant (2) used into moles.
At this time, the ratio of the number of moles (Si) of the Si element of the surface protective agent (2) to the number of moles (B) of the metal ion which is the B component of the perovskite compound is [Si / B].
 本発明の組成物において、十分に量子収率を向上させる観点から、ペロブスカイト化合物(1)の質量に対して表面保護剤(2)の質量は、好ましくは1.1質量部以上であり、より好ましくは1.5質量部以上であり、さらに好ましくは1.8質量部以上である。
また、ペロブスカイト化合物(1)の質量に対して表面保護剤(2)の質量は、好ましくは10質量部以下であり、より好ましくは4.9質量部以下であり、さらに好ましくは2.5質量部以下である。
 上記の上限値及び下限値は任意に組み合わせることができる。
In the composition of the present invention, the mass of the surface protective agent (2) is preferably 1.1 parts by mass or more with respect to the mass of the perovskite compound (1) from the viewpoint of sufficiently improving the quantum yield. It is preferably 1.5 parts by mass or more, and more preferably 1.8 parts by mass or more.
The mass of the surface protective agent (2) is preferably 10 parts by mass or less, more preferably 4.9 parts by mass or less, and further preferably 2.5 parts by mass with respect to the mass of the perovskite compound (1). It is less than a part.
The above upper limit value and lower limit value can be arbitrarily combined.
[2.発光性の半導体化合物の製造方法]
 本発明の発光性の半導体化合物の製造方法は、発光性の半導体化合物を溶媒中で合成した後に、得られた分散液を熱間保持して、合成された発光性の半導体化合物の結晶を成長させることを含む。ここでいう発光性の半導体化合物は、金属元素を含む発光性の半導体化合物である。
[2. Method for manufacturing luminescent semiconductor compound]
In the method for producing a luminescent semiconductor compound of the present invention, after synthesizing a luminescent semiconductor compound in a solvent, the obtained dispersion is hot-held to grow crystals of the synthesized luminescent semiconductor compound. Including letting. The luminescent semiconductor compound referred to here is a luminescent semiconductor compound containing a metal element.
<金属元素>
 発光性の半導体化合物に含まれる金属元素としては、周期表の第2族~14族の金属元素が例として挙げられる。周期表の第2~14族の金属元素としては特に限定されないが、例えば、Mg、Ca、Sr、Ba、Cu、Zn、Cd、Hg、Al、Ga、In、Sn、Pbが挙げられる。
<Metal element>
Examples of the metal element contained in the luminescent semiconductor compound include the metal elements of Groups 2 to 14 in the periodic table. The metal elements of Groups 2 to 14 in the periodic table are not particularly limited, and examples thereof include Mg, Ca, Sr, Ba, Cu, Zn, Cd, Hg, Al, Ga, In, Sn, and Pb.
 発光性の半導体化合物は、前記金属元素以外に周期表の第13~17族の非金属元素を含んでいてもよい。周期表第13~17族の非金属元素としては特に限定されないが、例えば、B、C、N、P、As、Sb、Se、Te、F,Cl、Br、Iが挙げられる。 The luminescent semiconductor compound may contain non-metal elements of Groups 13 to 17 in the periodic table in addition to the metal elements. The non-metal element of Group 13 to 17 of the periodic table is not particularly limited, and examples thereof include B, C, N, P, As, Sb, Se, Te, F, Cl, Br, and I.
 本発明の製造方法によって製造される半導体化合物としては、本発明のペロブスカイト化合物(1)、及び下記(i)~(vii)の半導体化合物を挙げることができる。
(i)II族-VI族化合物を含む半導体化合物
(ii)II族-V族化合物を含む半導体化合物
(iii)III族-V族化合物を含む半導体化合物
(iv)III族-IV族化合物を含む半導体化合物
(v)III族-VI族化合物を含む半導体化合物
(vi)IV族-VI族化合物を含む半導体化合物
(vii)遷移金属-p-ブロック化合物を含む半導体化合物
Examples of the semiconductor compound produced by the production method of the present invention include the perovskite compound (1) of the present invention and the semiconductor compounds of the following (i) to (vii).
(I) Semiconductor compound containing a group II-VI compound (ii) Semiconductor compound containing a group II-V compound (iii) A semiconductor compound containing a group III-V compound (iv) Containing a group III-IV compound Semiconductor compound (v) Semiconductor compound containing group III-VI compound (vi) Semiconductor compound containing group IV-VI compound (vii) Semiconductor compound containing transition metal-p-block compound
((i)II族-VI族化合物を含む半導体化合物)
 II族-VI族化合物を含む半導体化合物としては、周期表の第2族元素と第16族元素とを含む化合物を含む半導体化合物と、周期表の第12族元素と第16族元素とを含む化合物を含む半導体化合物とを挙げることができる。
 なお、本明細書において、「周期表」とは、長周期型周期表を意味する。
((I) Semiconductor compound containing group II-VI compound)
The semiconductor compound containing the group II-VI compound includes a semiconductor compound containing a compound containing a group 2 element and a group 16 element in the periodic table, and a group 12 element and a group 16 element in the periodic table. Examples thereof include semiconductor compounds including compounds.
In the present specification, the "periodic table" means a long-periodic table.
 以下の説明では、第2族元素と第16族元素とを含む化合物を含む半導体化合物を「半導体化合物(i-1)」、第12族元素と第16族元素とを含む化合物を含む半導体化合物を「半導体化合物(i-2)」と称することがある。 In the following description, a semiconductor compound containing a compound containing a Group 2 element and a Group 16 element is referred to as a “semiconductor compound (i-1)”, and a semiconductor compound containing a compound containing a Group 12 element and a Group 16 element is used. May be referred to as "semiconductor compound (i-2)".
 半導体化合物(i-1)のうち、二元系の半導体化合物としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、又はBaTeが挙げられる。 Among the semiconductor compounds (i-1), examples of the binary semiconductor compound include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, and BaTe.
 また、半導体化合物(i-1)としては、
(i-1-1)第2族元素を1種類、第16族元素を2種類含む三元系の半導体化合物
(i-1-2)第2族元素を2種類、第16族元素を1種類含む三元系の半導体化合物
(i-1-3)第2族元素を2種類、第16族元素を2種類含む四元系の半導体化合物
であってもよい。
Further, as the semiconductor compound (i-1),
(I-1-1) A ternary semiconductor compound containing one type of Group 2 element and two types of Group 16 element (i-1-2) Two types of Group 2 element and one type of Group 16 element. A ternary semiconductor compound containing various types (i-1-3) A quaternary semiconductor compound containing two types of Group 2 elements and two types of Group 16 elements may be used.
 半導体化合物(i-2)のうち、二元系の半導体化合物としては、例えば、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、又はHgTeが挙げられる。 Among the semiconductor compounds (i-2), examples of the binary semiconductor compound include ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, and HgTe.
 また、半導体化合物(i-2)としては、
(i-2-1)第12族元素を1種類、第16族元素を2種類含む三元系の半導体化合物(i-2-2)第12族元素を2種類、第16族元素を1種類含む三元系の半導体化合物(i-2-3)第12族元素を2種類、第16族元素を2種類含む四元系の半導体化合物であってもよい。
Further, as the semiconductor compound (i-2),
(I-2-1) A ternary semiconductor compound containing one type of Group 12 element and two types of Group 16 element (i-2-2) Two types of Group 12 element and one type of Group 16 element. A ternary semiconductor compound containing various types (i-2-3) A quaternary semiconductor compound containing two types of Group 12 elements and two types of Group 16 elements may be used.
 II族-VI族半導体化合物は、第2族元素、第12族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。 The group II-VI semiconductor compound may contain an element other than the group 2 element, the group 12 element, and the group 16 element as a doping element.
((ii)II族-V族化合物を含む半導体化合物)
 II族-V族半導体化合物は、第12族元素と、第15族元素とを含む。
((Ii) Semiconductor compound containing Group II-Group V compound)
The group II-group V semiconductor compound contains a group 12 element and a group 15 element.
 II族-V族半導体化合物のうち、二元系の半導体化合物としては、例えば、Zn、ZnAs、Cd、CdAs、Cd、又はZnが挙げられる。 Among the group II-V semiconductor compounds, the binary semiconductor compounds include, for example, Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N. 2 is mentioned.
 また、II族-V族半導体化合物としては、
(ii-1)第12族元素を1種類、第15族元素を2種類含む三元系の半導体化合物
(ii-2)第12族元素を2種類、第15族元素を1種類含む三元系の半導体化合物
(ii-3)第12族元素を2種類、第15族元素を2種類含む四元系の半導体化合物
であってもよい。
Further, as a group II-V semiconductor compound,
(Ii-1) A ternary semiconductor compound containing one type of Group 12 element and two types of Group 15 element (ii-2) A ternary containing two types of Group 12 element and one type of Group 15 element. System Semiconductor Compound (ii-3) A quaternary semiconductor compound containing two types of Group 12 elements and two types of Group 15 elements may be used.
 II族-V族半導体化合物は、第12族元素、及び第15族元素以外の元素をドープ元素として含んでいてもよい。 The Group II-Group V semiconductor compound may contain elements other than Group 12 elements and Group 15 elements as doping elements.
((iii)III族-V族化合物を含む半導体化合物)
 III族-V族半導体化合物は、第13族元素と、第15族元素とを含む。
(Semiconductor compounds including (iii) group III-group V compounds)
The group III-V semiconductor compound contains a group 13 element and a group 15 element.
 III族-V族半導体化合物のうち、二元系の半導体化合物としては、例えば、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、又はAlNが挙げられる。 Among the group III-V semiconductor compounds, examples of the binary semiconductor compound include AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, and AlN.
 また、III族-V族半導体化合物としては、
(iii-1)第13族元素を1種類、第15族元素を2種類含む三元系の半導体化合物(iii-2)第13族元素を2種類、第15族元素を1種類含む三元系の半導体化合物(iii-3)第13族元素を2種類、第15族元素を2種類含む四元系の半導体化合物であってもよい。
Further, as a group III-V semiconductor compound,
(Iii-1) A ternary semiconductor compound containing one type of Group 13 element and two types of Group 15 element (iii-2) A ternary containing two types of Group 13 element and one type of Group 15 element. System-based semiconductor compound (iii-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 15 elements may be used.
 III族-V族半導体化合物は、第13族元素、及び第15族元素以外の元素をドープ元素として含んでいてもよい。 The Group III-Group V semiconductor compound may contain an element other than the Group 13 element and the Group 15 element as a doping element.
((iv)III族-IV族化合物を含む半導体化合物)
 III族-IV族半導体化合物は、第13族元素と、第14族元素とを含む。
(Semiconductor compounds including (iv) Group III-Group IV compounds)
The group III-IV semiconductor compound contains a group 13 element and a group 14 element.
 III族-IV族半導体化合物のうち、二元系の半導体化合物としては、例えば、B、Al、Gaが挙げられる。 Among the group III-IV semiconductor compounds, examples of the binary semiconductor compound include B 4 C 3 , Al 4 C 3 , and Ga 4 C 3 .
 また、III族-IV族半導体化合物としては、
(iv-1)第13族元素を1種類、第14族元素を2種類含む三元系の半導体化合物
(iv-2)第13族元素を2種類、第14族元素を1種類含む三元系の半導体化合物
(iv-3)第13族元素を2種類、第14族元素を2種類含む四元系の半導体化合物
であってもよい。
In addition, as a group III-IV semiconductor compound,
(Iv-1) A ternary semiconductor compound containing one type of Group 13 element and two types of Group 14 element (iv-2) A ternary containing two types of Group 13 element and one type of Group 14 element. System-based semiconductor compound (iv-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 14 elements may be used.
 III族-IV族半導体化合物は、第13族元素、及び第14族元素以外の元素をドープ元素として含んでいてもよい。 Group III-Group IV semiconductor compounds may contain elements other than Group 13 elements and Group 14 elements as doping elements.
((v)III族-VI族化合物を含む半導体化合物)
 III族-VI族半導体化合物は、第13族元素と、第16族元素とを含む。
((V) Semiconductor compound containing Group III-Group VI compound)
The group III-VI semiconductor compound contains a group 13 element and a group 16 element.
 III族-VI族半導体化合物のうち、二元系の半導体化合物としては、例えば、Al、AlSe、AlTe、Ga、GaSe、GaTe、GaTe、In、InSe、InTe、又はInTeが挙げられる。 Among the group III-VI semiconductor compounds, the binary semiconductor compounds include, for example, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , and Ga 2 Te 3 . , GaTe, In 2 S 3 , In 2 Se 3 , In 2 Te 3 , or InTe.
 また、III族-VI族半導体化合物としては、
(v-1)第13族元素を1種類、第16族元素を2種類含む三元系の半導体化合物
(v-2)第13族元素を2種類、第16族元素を1種類含む三元系の半導体化合物
(v-3)第13族元素を2種類、第16族元素を2種類含む四元系の半導体化合物
であってもよい。
Further, as a group III-VI semiconductor compound,
(V-1) A ternary semiconductor compound containing one type of Group 13 element and two types of Group 16 element (v-2) A ternary containing two types of Group 13 element and one type of Group 16 element. Systemic semiconductor compound (v-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 16 elements may be used.
 III族-VI族半導体化合物は、第13族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。 The Group III-Group VI semiconductor compound may contain an element other than the Group 13 element and the Group 16 element as a doping element.
((vi)IV族-VI族化合物を含む半導体化合物)
 IV族-VI族半導体化合物は、第14族元素と、第16族元素とを含む。
(Semiconductor compounds including (vi) Group IV-Group VI compounds)
Group IV-Group VI semiconductor compounds include Group 14 elements and Group 16 elements.
 IV族-VI族半導体化合物のうち、二元系の半導体化合物としては、例えば、PbS、PbSe、PbTe、SnS、SnSe、又はSnTeが挙げられる。 Among the group IV-VI semiconductor compounds, examples of the binary semiconductor compound include PbS, PbSe, PbTe, SnS, SnSe, and SnTe.
 また、IV族-VI族半導体化合物としては、
(vi-1)第14族元素を1種類、第16族元素を2種類含む三元系の半導体化合物
(vi-2)第14族元素を2種類、第16族元素を1種類含む三元系の半導体化合物
(vi-3)第14族元素を2種類、第16族元素を2種類含む四元系の半導体化合物
であってもよい。
Further, as a group IV-VI semiconductor compound,
(Vi-1) A ternary semiconductor compound containing one type of Group 14 element and two types of Group 16 element (vi-2) A ternary compound containing two types of Group 14 element and one type of Group 16 element. System Semiconductor Compound (vi-3) A quaternary semiconductor compound containing two types of Group 14 elements and two types of Group 16 elements may be used.
 III族-VI族半導体化合物は、第14族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。 The Group III-Group VI semiconductor compound may contain an element other than the Group 14 element and the Group 16 element as a doping element.
((vii)遷移金属-p-ブロック化合物を含む半導体化合物)
 遷移金属-p-ブロック半導体化合物は、遷移金属元素と、p-ブロック元素とを含む。「p-ブロック元素」とは、周期表の第13族から第18族に属する元素である。
(Semiconductor compounds containing (vii) transition metal-p-block compounds)
The transition metal-p-block semiconductor compound contains a transition metal element and a p-block element. The "p-block element" is an element belonging to the 13th to 18th groups of the periodic table.
 遷移金属-p-ブロック半導体化合物のうち、二元系の半導体化合物としては、例えば、NiS、CrSが挙げられる。 Among the transition metal-p-block semiconductor compounds, examples of the binary semiconductor compound include NiS and CrS.
 また、遷移金属-p-ブロック半導体化合物としては、
(vii-1)遷移金属元素を1種類、p-ブロック元素を2種類含む三元系の半導体化合物
(vii-2)遷移金属元素を2種類、p-ブロック元素を1種類含む三元系の半導体化合物
(vii-3)遷移金属元素を2種類、p-ブロック元素を2種類含む四元系の半導体化合物
であってもよい。
Further, as a transition metal-p-block semiconductor compound,
(Vii-1) A ternary semiconductor compound containing one type of transition metal element and two types of p-block element (vii-2) A ternary system containing two types of transition metal element and one type of p-block element. Semiconductor compound (vii-3) A quaternary semiconductor compound containing two types of transition metal elements and two types of p-block elements may be used.
 遷移金属-p-ブロック半導体化合物は、遷移金属元素、及びp-ブロック元素以外の元素をドープ元素として含んでいてもよい。 The transition metal-p-block semiconductor compound may contain a transition metal element and an element other than the p-block element as a doping element.
 上述の三元系の半導体化合物や四元系の半導体化合物の具体例としては、ZnCdS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、ZnCdSSe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、CuInS、又はInAlPAs等が挙げられる。 Specific examples of the above-mentioned ternary semiconductor compound and quaternary semiconductor compound include ZnCdS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnSe, and CdZne. , CdHgTe, HgZnS, HgZnSe, HgZnTe, ZnCdSSe, CdZnSeS, CdZnSeTe, CdZnSte, CdHgSeS, CdHgSeTe, CdHgSte, HgZnSeS, HgZnSe, HgZnSeS, HgZnSe, HgZnSe, HgZnSe, HgZnSe, HgZnSe, , GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, CuInS 2 , or InAlPAs.
 好ましい一実施形態において、発光性の半導体化合物はペロブスカイト化合物(1)である。好ましい他の実施形態において、発光性の半導体化合物は、第12族元素であるCdを含む半導体化合物、及び第13族元素であるInを含む半導体化合物である。中でも、好ましい発光性の半導体化合物は、ペロブスカイト化合物(1)、CdとSeとを含む半導体化合物、及びInとPとを含む半導体化合物である。 In one preferred embodiment, the luminescent semiconductor compound is the perovskite compound (1). In another preferred embodiment, the luminescent semiconductor compound is a semiconductor compound containing Cd, which is a Group 12 element, and a semiconductor compound containing In, which is a Group 13 element. Among them, the preferable luminescent semiconductor compound is a perovskite compound (1), a semiconductor compound containing Cd and Se, and a semiconductor compound containing In and P.
 CdとSeとを含む半導体化合物は、二元系の半導体化合物、三元系の半導体化合物、四元系の半導体化合物のいずれも好ましい。中でも、二元系の半導体化合物であるCdSeが特に好ましい。 As the semiconductor compound containing Cd and Se, any of a binary semiconductor compound, a ternary semiconductor compound, and a quaternary semiconductor compound is preferable. Of these, CdSe, which is a binary semiconductor compound, is particularly preferable.
 InとPとを含む半導体化合物は、二元系の半導体化合物、三元系の半導体化合物、四元系の半導体化合物のいずれも好ましい。中でも、二元系の半導体化合物であるInPが特に好ましい。 As the semiconductor compound containing In and P, any of a binary semiconductor compound, a ternary semiconductor compound, and a quaternary semiconductor compound is preferable. Of these, InP, which is a binary semiconductor compound, is particularly preferable.
<半導体化合物の粒径>
 本発明の発光性の半導体化合物の製造方法によって製造される半導体化合物の平均粒径は、上述のペロブスカイト化合物(1)の平均粒径と同様である。
<Particle size of semiconductor compound>
The average particle size of the semiconductor compound produced by the method for producing a luminescent semiconductor compound of the present invention is the same as the average particle size of the perovskite compound (1) described above.
 本明細書において、本発明の発光性の半導体化合物の製造方法によって製造される半導体化合物の平均粒径は、上述のペロブスカイト化合物(1)の平均粒径の測定と同様の方法によって測定することができる。 In the present specification, the average particle size of the semiconductor compound produced by the method for producing a luminescent semiconductor compound of the present invention may be measured by the same method as the above-mentioned measurement of the average particle size of the perovskite compound (1). can.
<原料化合物>
 本発明の発光性の半導体化合物の原料になる化合物(以下「原料化合物」ということがある。)には、金属元素を含む原料化合物及び非金属元素を含む原料化合物がある。金属元素を含む原料化合物としては、上述の金属元素の単体、及び金属元素を含む酸化物、酢酸塩、有機金属化合物、ハロゲン化物、硝酸塩等が挙げられる。金属元素を含む原料化合物は、1種のみ用いてもよく、2種以上を併用してもよい。非金属元素を含む原料化合物としては、発光性の半導体化合物に含まれる非金属元素を含む化合物が挙げられる。例えば、上述の周期表第13~17族の非金属元素を含む化合物を、非金属元素を含む原料化合物として使用することができる。非金属元素を含む原料化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
<Raw material compound>
The compound used as a raw material for the luminescent semiconductor compound of the present invention (hereinafter, may be referred to as “raw material compound”) includes a raw material compound containing a metal element and a raw material compound containing a non-metal element. Examples of the raw material compound containing a metal element include simple substances of the above-mentioned metal element, oxides containing the metal element, acetates, organic metal compounds, halides, nitrates and the like. As the raw material compound containing a metal element, only one kind may be used, or two or more kinds may be used in combination. Examples of the raw material compound containing a non-metal element include a compound containing a non-metal element contained in a luminescent semiconductor compound. For example, a compound containing a non-metal element of Groups 13 to 17 of the above-mentioned periodic table can be used as a raw material compound containing a non-metal element. As the raw material compound containing a non-metal element, only one kind may be used, or two or more kinds may be used in combination.
 発光性の半導体化合物がペロブスカイト化合物(1)である場合、金属元素を含む原料化合物は、好ましくは、構成成分Bを含む原料化合物である。また、この場合、非金属元素を含む原料化合物は、構成成分Aを含む原料化合物及び構成成分Xを含む原料化合物である。 When the luminescent semiconductor compound is the perovskite compound (1), the raw material compound containing a metal element is preferably a raw material compound containing the constituent component B. Further, in this case, the raw material compound containing the non-metal element is a raw material compound containing the constituent component A and the raw material compound containing the constituent component X.
<溶媒>
 溶媒は、発光性の半導体化合物を合成する際に、原料化合物を溶解させるために使用する媒体である。溶媒は、大気圧下における沸点が、分散液を熱間保持する温度よりも高い液体を使用する。溶媒の沸点が反応液を熱間保持する温度以下である場合、熱間保持中に反応液が沸騰して、発光性の半導体化合物の結晶成長が不十分になる。溶媒としては、例えば100~400℃、好ましくは200~370℃、より好ましくは250~350℃の大気圧下における沸点を有する化合物を選択する。溶媒の例には、炭素原子数4~20の炭化水素基を有する含窒素化合物、炭素原子数4~20の炭化水素基を有する含酸素化合物などが挙げられる。
<Solvent>
The solvent is a medium used for dissolving a raw material compound when synthesizing a luminescent semiconductor compound. As the solvent, a liquid having a boiling point under atmospheric pressure higher than the temperature at which the dispersion liquid is kept hot is used. When the boiling point of the solvent is equal to or lower than the temperature at which the reaction liquid is kept hot, the reaction liquid boils during the hot holding, and the crystal growth of the luminescent semiconductor compound becomes insufficient. As the solvent, for example, a compound having a boiling point at atmospheric pressure of 100 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C. is selected. Examples of the solvent include a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, an oxygen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, and the like.
 炭素原子数4~20の炭化水素基としては、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基を挙げることができる。 Examples of the hydrocarbon group having 4 to 20 carbon atoms include a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
 炭素原子数4~20の飽和脂肪族炭化水素基としては、n-ブチル基、イソブチル基、n-ペンチル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基などを挙げることができる。 Examples of the saturated aliphatic hydrocarbon group having 4 to 20 carbon atoms include an n-butyl group, an isobutyl group, an n-pentyl group, an octyl group, a decyl group, a dodecyl group, a hexadecyl group and an octadecyl group.
 炭素原子数4~20の不飽和脂肪族炭化水素基としては、オレイル基を挙げることができる。 Examples of the unsaturated aliphatic hydrocarbon group having 4 to 20 carbon atoms include an oleyl group.
 炭素原子数4~20の脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基などを挙げることができる。 Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclopentyl group and a cyclohexyl group.
 炭素原子数4~20の芳香族炭化水素基としては、フェニル基、ベンジル基、ナフチル基、ナフチルメチル基などを挙げることができる。 Examples of the aromatic hydrocarbon group having 4 to 20 carbon atoms include a phenyl group, a benzyl group, a naphthyl group, and a naphthylmethyl group.
 炭素原子数4~20の炭化水素基としては、飽和脂肪族炭化水素基、及び不飽和脂肪族炭化水素基が好ましい。 As the hydrocarbon group having 4 to 20 carbon atoms, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
 含窒素化合物としては、アミン類やアミド類を挙げることができる。
 含酸素化合物としては、脂肪酸類を挙げることができる。
Examples of the nitrogen-containing compound include amines and amides.
Examples of the oxygen-containing compound include fatty acids.
溶媒の具体例としては、トルエン、オレイン酸、オレイルアミン、1-オクタデセンが挙げられる。 Specific examples of the solvent include toluene, oleic acid, oleylamine, and 1-octadecene.
 こうした溶媒は、合成により生じる半導体化合物の表面に結合可能である。溶媒が半導体粒子の表面に結合する際の結合としては、例えば共有結合、イオン結合、配位結合、水素結合、ファンデルワールス結合等の化学結合が挙げられる。 Such a solvent can be bonded to the surface of a semiconductor compound produced by synthesis. Examples of the bond when the solvent binds to the surface of the semiconductor particles include chemical bonds such as covalent bonds, ionic bonds, coordinate bonds, hydrogen bonds, and van der Waals bonds.
<半導体化合物の製造方法>
 発光性の半導体化合物の製造方法は、まず、金属元素を含む原料化合物及び非金属元素を含む原料化合物等の原料化合物を溶媒に溶解して、原料溶液を得る。原料化合物の溶解は、適宜加熱して行う。加熱温度は、例えば、80~400℃、好ましくは80~150℃、より好ましくは120~140℃である。
<Manufacturing method of semiconductor compounds>
In the method for producing a luminescent semiconductor compound, first, a raw material compound such as a raw material compound containing a metal element and a raw material compound containing a non-metal element is dissolved in a solvent to obtain a raw material solution. The raw material compound is dissolved by heating as appropriate. The heating temperature is, for example, 80 to 400 ° C, preferably 80 to 150 ° C, and more preferably 120 to 140 ° C.
 次いで、得られる原料溶液を加熱して、原料化合物を反応させる。原料溶液の加熱温度は、使用する原料(単体や化合物)の種類に応じて適宜設定する。原料溶液の加熱温度は、通常、80~400℃、好ましくは80~230℃、より好ましくは120~180℃である。原料溶液の加熱温度が室温未満であると原料化合物の反応が十分に進行せず、400℃を超えると熱によって結晶構造が不安定となる。 Next, the obtained raw material solution is heated to react the raw material compound. The heating temperature of the raw material solution is appropriately set according to the type of raw material (elemental substance or compound) to be used. The heating temperature of the raw material solution is usually 80 to 400 ° C, preferably 80 to 230 ° C, and more preferably 120 to 180 ° C. If the heating temperature of the raw material solution is lower than room temperature, the reaction of the raw material compound does not proceed sufficiently, and if it exceeds 400 ° C., the crystal structure becomes unstable due to heat.
 原料溶液の加熱時間は、使用する原料(単体や化合物)の種類、加熱温度によって適宜設定すればよい。原料溶液液の加熱時間は、例えば、数秒間~数時間、一般に1~60分である。このように、原料化合物を溶媒中で反応させて、発光性の半導体化合物を生成させる。生成した半導体化合物は溶媒に不溶性であり、半導体化合物と溶媒とを含む分散液が得られる。 The heating time of the raw material solution may be appropriately set according to the type of raw material (single substance or compound) used and the heating temperature. The heating time of the raw material solution is, for example, several seconds to several hours, generally 1 to 60 minutes. In this way, the raw material compound is reacted in the solvent to produce a luminescent semiconductor compound. The produced semiconductor compound is insoluble in a solvent, and a dispersion liquid containing the semiconductor compound and the solvent can be obtained.
 次いで、得られた分散液を熱間保持する。分散液の熱間保持は、分散液が沸騰しない温度で行う。熱間保持中に分散液が沸騰すると、発光性の半導体化合物の結晶成長が不十分になる。熱間保持の温度は、一般に80~200℃であり、より結晶成長を促進させて色域を拡大する観点から、好ましくは100~180℃であり、より好ましくは120~150℃である。熱間保持の温度が上記下限値以上であると結晶構造が単一化しやすいため好ましい。熱間保持の温度が上記上限値以下であると、生じる半導体粒子の結晶構造が崩壊しにくく、目的物が得られやすいため好ましい。 Next, the obtained dispersion is hot-held. The hot retention of the dispersion is performed at a temperature at which the dispersion does not boil. If the dispersion liquid boils during hot holding, the crystal growth of the luminescent semiconductor compound becomes insufficient. The hot holding temperature is generally 80 to 200 ° C., preferably 100 to 180 ° C., and more preferably 120 to 150 ° C. from the viewpoint of further promoting crystal growth and expanding the color gamut. When the hot holding temperature is at least the above lower limit value, the crystal structure is likely to be unified, which is preferable. When the hot holding temperature is not more than the above upper limit value, the crystal structure of the generated semiconductor particles is less likely to collapse and the desired product can be easily obtained, which is preferable.
 前記分散液を熱間保持する時間は、結晶成長を促進させて色域を拡大する観点から10~600分以下、好ましくは20~180分であり、より好ましくは30~120分である。 The time for hot-retaining the dispersion is 10 to 600 minutes or less, preferably 20 to 180 minutes, and more preferably 30 to 120 minutes from the viewpoint of promoting crystal growth and expanding the color gamut.
 次いで、得られた分散液を冷却して、目的物である半導体化合物を含む沈殿物が得られる。冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。その後、冷却する工程のあと、沈殿物を分離して適宜洗浄することで、目的物である半導体化合物が得られる。沈殿物を分離は、遠心分離、ろ過などの手法により行うことができる。 Next, the obtained dispersion is cooled to obtain a precipitate containing the target semiconductor compound. The cooling temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C. The cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min. Then, after the step of cooling, the precipitate is separated and appropriately washed to obtain the desired semiconductor compound. The precipitate can be separated by a method such as centrifugation or filtration.
<組成物の製造方法>
 本発明の組成物1、即ち、ペロブスカイト化合物(1)と表面保護剤(2)との混合物は、例えば、ペロブスカイト化合物(1)と表面保護剤(2)とを接触させ、必要に応じて表面保護剤(2)を縮合させ、ペロブスカイト化合物(1)に表面保護層を形成して製造される。ペロブスカイト化合物(1)と表面保護剤(2)との接触は、分散媒(3)の存在下で行ってもよい。かかる場合、分散媒は、組成物1を形成した後に除去される。
<Manufacturing method of composition>
The composition 1 of the present invention, that is, a mixture of the perovskite compound (1) and the surface protectant (2), for example, brings the perovskite compound (1) and the surface protectant (2) into contact with each other, and if necessary, the surface thereof. It is produced by condensing the protective agent (2) to form a surface protective layer on the perovskite compound (1). The contact between the perovskite compound (1) and the surface protective agent (2) may be carried out in the presence of the dispersion medium (3). In such a case, the dispersion medium is removed after forming the composition 1.
 分散媒(3)を除去する場合、組成物1の分散液は、室温で静置して自然乾燥してもよく、真空乾燥機を用いて減圧乾燥してもよく、加熱によって加熱乾燥してもよい。例えば、0℃以上300℃以下で、1分間以上7日間以下乾燥させることで、分散媒(3)を除去することができる。尚、分散媒(3)を含む組成物1の分散液は、そのまま又は濃度を調節して、組成物2として使用してもよい。 When removing the dispersion medium (3), the dispersion liquid of the composition 1 may be allowed to stand at room temperature for natural drying, may be vacuum dried using a vacuum dryer, or heated and dried by heating. May be good. For example, the dispersion medium (3) can be removed by drying at 0 ° C. or higher and 300 ° C. or lower for 1 minute or more and 7 days or less. The dispersion liquid of the composition 1 containing the dispersion medium (3) may be used as the composition 2 as it is or by adjusting the concentration.
 表面保護剤(2)の縮合処理は、表面保護剤(2)に対し紫外線を照射する、表面保護剤(2)と水蒸気とを反応させる等の公知の方法で行うことができる。以下の説明では、表面保護剤(2)と水蒸気とを反応させる処理のことを、「加湿処理」と称することがある。 The condensation treatment of the surface protectant (2) can be performed by a known method such as irradiating the surface protectant (2) with ultraviolet rays or reacting the surface protectant (2) with water vapor. In the following description, the treatment of reacting the surface protective agent (2) with water vapor may be referred to as "humidifying treatment".
 縮合処理は、紫外線を照射する方法で行う場合、用いられる紫外線の波長は、通常10~400nmであり、10~350nmが好ましく、100~180nmがより好ましい。紫外線の発生させる光源としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UVレーザー光等が挙げられる。 When the condensation treatment is carried out by a method of irradiating ultraviolet rays, the wavelength of the ultraviolet rays used is usually 10 to 400 nm, preferably 10 to 350 nm, and more preferably 100 to 180 nm. Examples of the light source that generates ultraviolet rays include a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, an excimer lamp, and UV laser light.
 縮合処理は、ペロブスカイト化合物(1)の近傍により強固な保護領域を形成する観点から、加湿処理で行うことがより好ましい。 The condensation treatment is more preferably performed by a humidification treatment from the viewpoint of forming a stronger protected region in the vicinity of the perovskite compound (1).
 加湿処理を施す場合、例えば、後述する温度、及び湿度条件下で一定の時間、組成物を静置してもよく、同条件下、一定の時間撹拌してもよい。 When the humidification treatment is performed, for example, the composition may be allowed to stand for a certain period of time under the temperature and humidity conditions described later, or may be stirred for a certain period of time under the same conditions.
 加湿処理における温度は、十分に縮合が進行する温度であればよい。加湿処理における温度は、例えば、5~150℃であることが好ましく、10~100℃であることがより好ましく、15~80℃であることがさらに好ましい。 The temperature in the humidification treatment may be a temperature at which condensation proceeds sufficiently. The temperature in the humidification treatment is, for example, preferably 5 to 150 ° C, more preferably 10 to 100 ° C, and even more preferably 15 to 80 ° C.
 加湿処理における湿度は、組成物中の前記(2-1)及び前記(2-2)に十分に水分が供給される湿度であればよい。加湿処理における湿度は、例えば30%~100%であることが好ましく、40%~95%であることがより好ましく、60%~90%であることがさらに好ましい。 The humidity in the humidification treatment may be any humidity as long as sufficient moisture is supplied to the above (2-1) and the above (2-2) in the composition. The humidity in the humidification treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and even more preferably 60% to 90%.
 加湿処理に要する時間は、十分に縮合が進行する時間であればよい。加湿処理に要する時間は、例えば、10分間以上1週間以下であることが好ましく、1時間以上5日間以下であることがより好ましく、2時間以上3日間以下であることがさらに好ましい。 The time required for the humidification treatment may be a time during which the condensation proceeds sufficiently. The time required for the humidification treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
 加湿処理における水の供給は、水蒸気を含むガスを反応容器中に流通させることによってもよく、水蒸気を含む雰囲気中で撹拌することで、界面から水分を供給してもよい。 Water may be supplied in the humidification treatment by circulating a gas containing water vapor in the reaction vessel, or by stirring in an atmosphere containing water vapor to supply water from the interface.
 水蒸気を含むガスを反応容器中に流通させる場合、得られる組成物の耐久性が向上するため、水蒸気を含むガス流量は、0.01L/分以上100L/分以下が好ましく、0.1L/分以上10L/分以下がより好ましく、0.15L/分以上5L/分以下がさらに好ましい。水蒸気を含むガスとしては、例えば飽和量の水蒸気を含む窒素を挙げることができる。 When a gas containing water vapor is circulated in the reaction vessel, the flow rate of the gas containing water vapor is preferably 0.01 L / min or more and 100 L / min or less, preferably 0.1 L / min, in order to improve the durability of the obtained composition. More than 10 L / min or less is more preferable, and 0.15 L / min or more and 5 L / min or less is further preferable. Examples of the gas containing water vapor include nitrogen containing a saturated amount of water vapor.
 本発明の組成物2、即ち、ペロブスカイト化合物(1)又は組成物1と分散媒体材料との混合物は、例えば、分散媒体材料にペロブスカイト化合物(1)又は組成物1を分散させて製造することができる。 The composition 2 of the present invention, that is, the perovskite compound (1) or a mixture of the composition 1 and the dispersion medium material can be produced, for example, by dispersing the perovskite compound (1) or the composition 1 in the dispersion medium material. can.
 組成物2は、分散媒体材料にペロブスカイト化合物(1)又は組成物1を分散させ、得られる分散液中に表面保護剤(2)を添加して、これをペロブスカイト化合物(1)に接触させ、必要に応じて表面保護剤(2)を縮合させて製造してもよい。 In the composition 2, the perovskite compound (1) or the composition 1 is dispersed in a dispersion medium material, a surface protective agent (2) is added to the obtained dispersion liquid, and the surface protective agent (2) is brought into contact with the perovskite compound (1). If necessary, the surface protective agent (2) may be condensed to produce the product.
 組成物2は、重合性化合物(4)を重合して、その一部を重合体(5)とすることもできる。この場合、ペロブスカイト化合物(1)、表面保護剤(2)、重合体(5)の合計が組成物全体の90質量%以上であることが好ましい。 The composition 2 can also be obtained by polymerizing the polymerizable compound (4) to obtain a part thereof as the polymer (5). In this case, the total of the perovskite compound (1), the surface protectant (2), and the polymer (5) is preferably 90% by mass or more of the total composition.
 重合性化合物(4)を重合させる工程は、ラジカル重合などの公知の重合反応を適宜用いることで行うことができる。 The step of polymerizing the polymerizable compound (4) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
 例えばラジカル重合の場合は、ペロブスカイト化合物(1)と、表面保護剤(2)と、重合性化合物(4)との混合物に、ラジカル重合開始剤を添加し、ラジカルを発生させることで重合反応を進行させることができる。 For example, in the case of radical polymerization, a radical polymerization initiator is added to a mixture of a perovskite compound (1), a surface protectant (2), and a polymerizable compound (4) to generate a radical to carry out a polymerization reaction. Can be advanced.
 ラジカル重合開始剤は特に限定されるものではないが、例えば、光ラジカル重合開始剤等が挙げられる。 The radical polymerization initiator is not particularly limited, and examples thereof include a photoradical polymerization initiator.
 上記光ラジカル重合開始剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等が挙げられる。 Examples of the photoradical polymerization initiator include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and the like.
 組成物1及び2は、表面修飾剤(6)を含んでもよい。その場合、表面修飾剤(6)は、表面保護剤(2)とともに、分散媒体材料にペロブスカイト化合物(1)を分散させた分散液中に、添加することができる。表面修飾剤(6)は、ペロブスカイト化合物(1)を組成物中に安定して分散させる作用を有する。 The compositions 1 and 2 may contain a surface modifier (6). In that case, the surface modifier (6) can be added together with the surface protectant (2) to the dispersion liquid in which the perovskite compound (1) is dispersed in the dispersion medium material. The surface modifier (6) has an action of stably dispersing the perovskite compound (1) in the composition.
 ペロブスカイト化合物(1)の表面に前記表面保護剤(2)からなる表面保護層を形成した後に、さらにシロキサン結合を有する無機ケイ素化合物の層を形成してもよい。 After forming a surface protective layer made of the surface protective agent (2) on the surface of the perovskite compound (1), a layer of an inorganic silicon compound having a siloxane bond may be further formed.
<組成物に含まれるペロブスカイト化合物(1)の含有量の測定>
 本発明の組成物に含まれるペロブスカイト化合物(1)は乾燥質量法によって、下記式1に当てはめて、固形分濃度(質量%)を算出する。
  固形分濃度(質量%)=乾燥後の質量÷乾燥前の質量×100・・・式1
<Measurement of the content of the perovskite compound (1) contained in the composition>
The perovskite compound (1) contained in the composition of the present invention is applied to the following formula 1 by the dry mass method to calculate the solid content concentration (mass%).
Solid content concentration (mass%) = mass after drying ÷ mass before drying x 100 ... Equation 1
<色度座標の測定>
 本発明のペロブスカイト化合物(1)の色度座標は、絶対PL量子収率測定装置(例えば、浜松ホトニクス株式会社製「C9920-02」(商品名))を用いて、励起光450nm、室温、大気下で測定する。色度座標は480nmから800nmの範囲から算出する。色域は、上述の色度座標の測定結果を用いて、下記式2に当てはめて算出する。
 (0.170(BT2020(緑)規格のx座標)-実施例の色座標のx座標)の2乗と(0.797(BT2020(緑)規格のy座標)-実施例の色座標のy座標)の2乗の和の平方根・・・式2
<Measurement of chromaticity coordinates>
The chromaticity coordinates of the perovskite compound (1) of the present invention are obtained by using an absolute PL quantum yield measuring device (for example, "C9920-02" (trade name) manufactured by Hamamatsu Photonics Co., Ltd.) with an excitation light of 450 nm, room temperature, and atmosphere. Measure below. The chromaticity coordinates are calculated from the range of 480 nm to 800 nm. The color gamut is calculated by applying the above-mentioned measurement result of the chromaticity coordinates to the following equation 2.
Squared (0.170 (x-coordinate of BT2020 (green) standard) -x-coordinate of color coordinate of example) and (0.797 (y-coordinate of BT2020 (green) standard) -y of color coordinate of example Square root of the sum of squares of coordinates) ... Equation 2
 色域を拡大する観点から、色域の評価結果の数値は、0以上、0.075以下が好ましく、0以上、0.0622以下がより好ましく、0以上、0.0567以下がさらに好ましく、0以上、0.0496以下がさらに好ましく 、0以上、0.0470以下がさらに好ましく 、0以上、0.0458以下がさらに好ましく、0以上、0.0355以下が最も好ましい。 From the viewpoint of expanding the color gamut, the numerical values of the evaluation result of the color gamut are preferably 0 or more and 0.075 or less, more preferably 0 or more and 0.0622 or less, further preferably 0 or more and 0.0567 or less, and 0. As mentioned above, 0.0496 or less is more preferable, 0 or more and 0.0470 or less are further preferable, 0 or more and 0.0458 or less are further preferable, and 0 or more and 0.0355 or less are most preferable.
 <フィルム>
 本発明に係るフィルムは、本発明のペロブスカイト化合物(1)を含む。本発明に係るフィルムは、上述の組成物を形成材料とする。例えば、本発明に係るフィルムは、ペロブスカイト化合物(1)及び重合体(5)を含み、ペロブスカイト化合物(1)及び重合体(5)の合計がフィルム全体の90質量%以上である。
<Film>
The film according to the present invention contains the perovskite compound (1) of the present invention. The film according to the present invention uses the above-mentioned composition as a forming material. For example, the film according to the present invention contains the perovskite compound (1) and the polymer (5), and the total of the perovskite compound (1) and the polymer (5) is 90% by mass or more of the whole film.
 フィルム形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。本明細書において「バー状の形状」とは、例えば、一方向に延在する平面視帯状の形状を意味する。平面視帯状の形状としては、各辺の長さが異なる板状の形状が例示される。 The film shape is not particularly limited, and can be any shape such as a sheet shape or a bar shape. As used herein, the term "bar-shaped" means, for example, a planar visual band-shaped shape extending in one direction. Examples of the plan-view band-shaped shape include a plate-shaped shape having different lengths on each side.
 フィルムの厚さは、0.01μm~1000mmであってもよく、0.1μm~10mmであってもよく、1μm~1mmであってもよい。 The thickness of the film may be 0.01 μm to 1000 mm, 0.1 μm to 10 mm, or 1 μm to 1 mm.
 <積層構造体>
 本発明に係る積層構造体は、複数の層を有し、少なくとも一層が、上述のフィルムである。
<Laminated structure>
The laminated structure according to the present invention has a plurality of layers, and at least one layer is the above-mentioned film.
 積層構造体が有する複数の層のうち、上述のフィルム以外の層としては、基材、バリア層、光散乱層等の任意の層が挙げられる。
 積層されるフィルムの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
Among the plurality of layers of the laminated structure, examples of layers other than the above-mentioned film include arbitrary layers such as a base material, a barrier layer, and a light scattering layer.
The shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape or a bar shape.
 基材は、特に制限はないが、フィルムであってもよい。基材は、光透過性を有するものが好ましい。光透過性を有する基材を有する積層構造体では、ペロブスカイト化合物(1)が発した光を取り出しやすいため好ましい。 The base material is not particularly limited, but may be a film. The base material preferably has light transmission. A laminated structure having a light-transmitting substrate is preferable because it is easy to take out the light emitted by the perovskite compound (1).
 基材の形成材料としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラスなどの公知の材料を用いることができる。
 例えば、積層構造体において、上述のフィルムを、基材上に設けていてもよい。
As the material for forming the base material, for example, a polymer such as polyethylene terephthalate or a known material such as glass can be used.
For example, in the laminated structure, the above-mentioned film may be provided on the base material.
 図1は、本発明に係る積層構造体の構成を模式的に示す断面図である。第1の積層構造体1aは、第1の基材20及び第2の基材21の間に、本発明に係るフィルム10が設けられている。フィルム10は、封止層22によって封止されている。 FIG. 1 is a cross-sectional view schematically showing the structure of the laminated structure according to the present invention. In the first laminated structure 1a, the film 10 according to the present invention is provided between the first base material 20 and the second base material 21. The film 10 is sealed by the sealing layer 22.
 本発明の一つの側面は、第1の基材20と、第2の基材21と、第1の基材20と第2の基材21との間に位置する本実施形態に係るフィルム10と、封止層22と、を有する積層構造体であって、封止層22が、フィルム10の第1の基材20、及び第2の基材21と接していない面上に配置されることを特徴とする積層構造体1aである。
<発光装置>
 本発明に係る発光装置は、本発明の化合物、組成物又は前記積層構造体と、光源とを合せることで得ることができる。発光装置は、光源から発光した光を、後段に設置した化合物、組成物又は積層構造体に照射することで、化合物、組成物又は積層構造体を発光させ、光を取り出す装置である。本発明の一つの側面は、プリズムシート50と、導光板60と、前記第一の積層構造体1aと、光源30と、がこの順に積層された発光装置2である。
One aspect of the present invention is the film 10 according to the present embodiment, which is located between the first base material 20, the second base material 21, and the first base material 20 and the second base material 21. And, in a laminated structure having a sealing layer 22, the sealing layer 22 is arranged on a surface of the film 10 that is not in contact with the first base material 20 and the second base material 21. It is a laminated structure 1a characterized by the above.
<Light emitting device>
The light emitting device according to the present invention can be obtained by combining the compound, composition or the laminated structure of the present invention with a light source. The light emitting device is a device that emits light from a light source by irradiating a compound, composition, or laminated structure installed in a subsequent stage to emit light, and extracts light. One aspect of the present invention is a light emitting device 2 in which a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
 本発明に係る発光装置を構成する光源は、特に制限は無いが、前述の化合物、前述の組成物、又は積層構造体中のペロブスカイト化合物(1)を発光させるという観点から、600nm以下の発光波長を有する光源が好ましい。光源としては、例えば、青色発光ダイオードなどの発光ダイオード(LED)、レーザー、ELなどの公知の光源を用いることができる。 The light source constituting the light emitting device according to the present invention is not particularly limited, but has a emission wavelength of 600 nm or less from the viewpoint of causing the perovskite compound (1) in the above-mentioned compound, the above-mentioned composition, or the laminated structure to emit light. A light source having the above is preferable. As the light source, for example, a light emitting diode (LED) such as a blue light emitting diode, a known light source such as a laser or EL can be used.
<ディスプレイ>
 本発明の一つの側面は、液晶パネル40と、プリズムシート50と、導光板60と、前記第一の積層構造体1aと、光源30と、がこの順に積層された液晶ディスプレイ3である。図2に示すように、本発明に係るディスプレイ3は、液晶パネル40と、前述の発光装置2とを視認側からこの順に備える。発光装置2は、第2の積層構造体1bと光源30とを備える。第2の積層構造体1bは、前述の第1の積層構造体1aが、プリズムシート50と、導光板60と、をさらに備えたものである。ディスプレイは、任意の適切なその他の部材をさらに備えていてもよい。
<Display>
One aspect of the present invention is a liquid crystal display 3 in which a liquid crystal panel 40, a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order. As shown in FIG. 2, the display 3 according to the present invention includes a liquid crystal panel 40 and the above-mentioned light emitting device 2 in this order from the visual recognition side. The light emitting device 2 includes a second laminated structure 1b and a light source 30. In the second laminated structure 1b, the above-mentioned first laminated structure 1a further includes a prism sheet 50 and a light guide plate 60. The display may further include any suitable other components.
<フィルムの製造方法>
 本発明に係るフィルムは、例えば、分散媒(3)と重合性化合物(4)とを含む液状の組成物1を塗工して塗膜を得た後、該塗膜に含まれる重合性化合物(4)を重合することで得ることができる。
<Film manufacturing method>
The film according to the present invention is, for example, coated with a liquid composition 1 containing a dispersion medium (3) and a polymerizable compound (4) to obtain a coating film, and then the polymerizable compound contained in the coating film. It can be obtained by polymerizing (4).
 液状の組成物1を基材上に塗工する方法としては、特に制限はなく、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等の、公知の塗布、塗工方法を用いて塗工することができる。 The method for coating the liquid composition 1 on the substrate is not particularly limited, and known methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method are known. It can be coated using a coating and coating method.
<積層構造体の製造方法>
 本発明に係る積層構造体は、上記得られたフィルムを基材の上に積層することで製造することができる。基材上にフィルムを積層する工程では、フィルム同士を粘接着剤を用いて貼合する。粘接着剤は、ペロブスカイト化合物(1)を溶解しないものであれば特に制限は無く、公知の粘接着剤を用いて貼合を行うことができる。
<Manufacturing method of laminated structure>
The laminated structure according to the present invention can be manufactured by laminating the obtained film on a base material. In the process of laminating the film on the base material, the films are bonded to each other using an adhesive. The adhesive is not particularly limited as long as it does not dissolve the perovskite compound (1), and the adhesive can be bonded using a known adhesive.
 上記得られた積層構造体は、さらに任意のフィルムを含んでいてもよい。かかる任意のフィルムとしては、例えば、反射フィルム、拡散フィルム等が挙げられる。 The laminated structure obtained above may further contain any film. Examples of such an arbitrary film include a reflective film, a diffusion film and the like.
<発光装置の製造方法>
 発光装置は、例えば、前述の光源と、光源からの光路上に前述の化合物、前述の組成物、又は積層構造体を設置することで、製造することができる。
<Manufacturing method of light emitting device>
The light emitting device can be manufactured, for example, by installing the above-mentioned light source and the above-mentioned compound, the above-mentioned composition, or a laminated structure on the optical path from the light source.
<ディスプレイの製造方法>
 ディスプレイは、上記発光装置上に偏光板等を含む表示素子を積層することで製造することができる。
<Display manufacturing method>
A display can be manufactured by laminating a display element including a polarizing plate or the like on the light emitting device.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<測定及び評価>
 実施例及び比較例で得られた組成物は、下記方法に従って測定及び評価した。
<Measurement and evaluation>
The compositions obtained in Examples and Comparative Examples were measured and evaluated according to the following method.
(ペロブスカイト化合物(1)の固形分濃度測定)
 実施例7で得られた組成物におけるペロブスカイト化合物の固形分濃度は、それぞれ、再分散させることで得られたペロブスカイト化合物及び溶媒を含む分散液を105℃で3時間乾燥させた後に、残存した質量を測定して上記記式1に当てはめて算出した。
(Measurement of solid content concentration of perovskite compound (1))
The solid content concentration of the perovskite compound in the composition obtained in Example 7 was the mass remaining after drying the dispersion liquid containing the perovskite compound and the solvent obtained by redispersion at 105 ° C. for 3 hours, respectively. Was measured and calculated by applying it to the above formula 1.
((hkl)=(110)の半値幅測定)
 実施例1~7、及び比較例1で得られた化合物をX線構造回折(XRD、CuKα線=1.5458λ、スペクトリス社製「X’pert PRO MPD」(商品名))によって測定したのち、(hkl)=(110)のピークの半値幅を測定した。(hkl)=(110)のピークの半値幅は、統合粉末X線解析ソフトウェア(リガク社製「PDXL」(商品名))を用いて算出した。
(Measurement of half width of (hkl) = (110))
The compounds obtained in Examples 1 to 7 and Comparative Example 1 were measured by X-ray structural diffraction (XRD, CuKα ray = 1.5458λ, "X'pert PRO MPD" (trade name) manufactured by Spectris), and then. The half width of the peak of (hkl) = (110) was measured. The half width of the peak of (hkl) = (110) was calculated using integrated powder X-ray analysis software (“PDXL” (trade name) manufactured by Rigaku Corporation).
(平均粒径測定)
 実施例1~7、及び比較例1で得られた化合物を走査型電子顕微鏡(JEOL社製「JSM-5500」(商品名))で観察した。実施例1~7、及び比較例1で得られた化合物をそれぞれ含む分散液を自然乾燥させたものを観察した。また、観察した視野では、エネルギー分散型X線分析(日本電子株式会社製「JED-2300」(商品名))も行い、元素マッピング像を得た。
(Measurement of average particle size)
The compounds obtained in Examples 1 to 7 and Comparative Example 1 were observed with a scanning electron microscope (“JSM-5500” (trade name) manufactured by JEOL Ltd.). Dispersions containing the compounds obtained in Examples 1 to 7 and Comparative Example 1 were observed to be naturally dried. In the observed field of view, energy dispersive X-ray analysis (“JED-2300” (trade name) manufactured by JEOL Ltd.) was also performed to obtain an element mapping image.
 実施例1~7、及び比較例1で得られたペロブスカイト化合物の平均粒径は、画像解析ソフトImage Jを用いて算出した。各分散液のSEM像中の、実施例1~5、及び比較例1で得られた化合物それぞれを黒色とし、それ以外を白色として変換した二値化処理済み画像を得た。このとき、SEM-EDX測定で得られた元素マッピング像と比較し、実施例1~5、及び比較例1で得られたペロブスカイト化合物それぞれに由来する成分が検出されている位置を黒色に変換できていることを確認した。前記二値化処理済み画像について、ペロブスカイト化合物のサイズを測定した。
 平均粒径は無作為に選んだ30個のペロブスカイト化合物の立方体もしくは直方体をした粒子の最も長い辺の長さの平均から算出した。
The average particle size of the perovskite compounds obtained in Examples 1 to 7 and Comparative Example 1 was calculated using the image analysis software Image J. A binarized image was obtained in which the compounds obtained in Examples 1 to 5 and Comparative Example 1 in the SEM image of each dispersion were converted to black and the others were converted to white. At this time, the position where the component derived from each of the perovskite compounds obtained in Examples 1 to 5 and Comparative Example 1 is detected can be converted to black by comparing with the element mapping image obtained by the SEM-EDX measurement. I confirmed that. The size of the perovskite compound was measured for the binarized image.
The average particle size was calculated from the average length of the longest side of the cube or rectangular parallelepiped particles of 30 randomly selected perovskite compounds.
(色度座標の測定)
 実施例1~7、及び比較例1で得られた化合物の色度座標(xy色度系)を、絶対PL量子収率測定装置(浜松ホトニクス株式会社製「C9920-02」(商品名))を用いて、励起光450nm、室温、大気下で測定した。色度座標は励起光除去(100%)に設定した後、480nmから800nmの範囲の発光スペクトルから算出した。色域は、上述の色度座標の測定結果を用いて、上記式2に当てはめて算出した。
(Measurement of chromaticity coordinates)
The chromaticity coordinates (xy chromaticity system) of the compounds obtained in Examples 1 to 7 and Comparative Example 1 are used as an absolute PL quantum yield measuring device (“C9920-02” (trade name) manufactured by Hamamatsu Photonics Co., Ltd.). Was measured at an excitation light of 450 nm at room temperature and in the atmosphere. The chromaticity coordinates were calculated from the emission spectrum in the range of 480 nm to 800 nm after setting the excitation light removal (100%). The color gamut was calculated by applying the above equation 2 to the above-mentioned measurement results of the chromaticity coordinates.
[実施例1]
 オレイルアミン25mL、及びエタノール200mLを混合した後、氷冷しながら攪拌し、臭化水素酸溶液(48%)を17.12mL添加した後、減圧乾燥して沈殿を得た。
沈殿はジエチルエーテルを用いて洗浄した後、減圧乾燥して臭化オレイルアンモニウムを得た。
 オレイルアミン25mL、及びエタノール200mLを混合した後、氷冷しながら攪拌し、塩化水素酸溶液(20%)を30.06mL添加した後、減圧乾燥して沈殿を得た。
沈殿はジエチルエーテルを用いて洗浄した後、減圧乾燥して塩化オレイルアンモニウムを得た。
[Example 1]
After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred while cooling with ice, 17.12 mL of a hydrobromic acid solution (48%) was added, and the mixture was dried under reduced pressure to obtain a precipitate.
The precipitate was washed with diethyl ether and then dried under reduced pressure to give oleylammonium bromide.
After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred while cooling with ice, 30.06 mL of a hydrochloride solution (20%) was added, and the mixture was dried under reduced pressure to obtain a precipitate.
The precipitate was washed with diethyl ether and then dried under reduced pressure to obtain oleylammonium chloride.
 臭化オレイルアンモニウム21gに対して、トルエン200mLを混合して臭化オレイルアンモニウム溶液を調製した。
 塩化オレイルアンモニウム18.3gに対して、トルエン200mLを混合して塩化オレイルアンモニウム溶液を調製した。
 上述の臭化オレイルアンモニウム溶液85.44mLと、上述の塩化オレイルアンモニウム溶液21.36mLを混合した。
Toluene oleylammonium bromide was prepared by mixing 200 mL of toluene with 21 g of oleylammonium bromide.
Toluene oleylammonium chloride solution was prepared by mixing 200 mL of toluene with 18.3 g of oleylammonium chloride.
85.44 mL of the above-mentioned oleyl ammonium bromide solution and 21.36 mL of the above-mentioned oleyl ammonium chloride solution were mixed.
 酢酸鉛・3水和物3.04gと、ホルムアミジン酢酸塩3.12g、1-オクタデセンの溶媒160mLと、オレイン酸80mLとを混合した。攪拌して、窒素を流しながら130℃でまで加熱した後、上述の臭化オレイルアンモニウム、及び塩化オレイルアンモニウムの混合液を添加してペロブスカイト結晶構造の化合物を合成した後、130℃の温度を維持したまま、30分間加熱した。添加後溶液を室温まで降温し、ペロブスカイト化合物(1)を含む分散液を得た。 3.04 g of lead acetate trihydrate, 3.12 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 80 mL of oleic acid were mixed. After stirring and heating to 130 ° C while flowing nitrogen, the above-mentioned mixed solution of oleylammonium bromide and oleylammonium chloride is added to synthesize a compound having a perovskite crystal structure, and then the temperature is maintained at 130 ° C. It was heated for 30 minutes. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
 330mLの上記分散液に対してトルエン106.5mL、及び酢酸エチル106.5mLを混合した溶液をろ過で固液分離した。その後、ろ過上の固形分をトルエン106.5mL、及酢酸エチル106.5mLの混合溶液を2回流して洗浄し、ろ過した。これにより、ペロブスカイト化合物(1)を単離した。 A solution obtained by mixing 106.5 mL of toluene and 106.5 mL of ethyl acetate with 330 mL of the above dispersion was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 106.5 mL of toluene and 106.5 mL of ethyl acetate twice, and filtered. Thereby, the perovskite compound (1) was isolated.
 得られたペロブスカイト化合物(1)をキシレン150mLで分散し、分析用分散液を得た。分析用分散液20μLとキシレン2.97mLを混合した液の色度座標を測定し、色域を評価した。また、分析用分散液50μLを無反射板にキャスト・乾燥した後、XRDを測定した。XRDスペクトルは2θ=20~23°の位置に(hkl)=(110)由来のピークを有し、そのピークの半値幅を測定した。XRD測定結果より、3次元のペロブスカイト型結晶構造が確認された。また、SEMによって平均粒径を測定した。測定結果を表1に示す。 The obtained perovskite compound (1) was dispersed with 150 mL of xylene to obtain a dispersion for analysis. The chromaticity coordinates of a mixture of 20 μL of the dispersion for analysis and 2.97 mL of xylene were measured, and the color gamut was evaluated. Further, 50 μL of the dispersion for analysis was cast on a non-reflective plate and dried, and then XRD was measured. The XRD spectrum had a peak derived from (hkl) = (110) at a position of 2θ = 20 to 23 °, and the half width of the peak was measured. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed. In addition, the average particle size was measured by SEM. The measurement results are shown in Table 1.
[実施例2]
 ペロブスカイト結晶構造の化合物を合成した後の加熱時間を120分とした以外は、実施例1と同様の方法でペロブスカイト化合物(1)を単離し、その特性を測定した。測定結果を表1に示す。XRD測定結果より、3次元のペロブスカイト型結晶構造が確認された。
[Example 2]
The perovskite compound (1) was isolated and its characteristics were measured by the same method as in Example 1 except that the heating time after synthesizing the compound having a perovskite crystal structure was 120 minutes. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
[実施例3]
 酢酸鉛・3水和物3.04gと、ホルムアミジン酢酸塩3.12g、1-オクタデセンの溶媒160mLと、オレイン酸80mLとを混合した。攪拌して、窒素を流しながら130℃でまで加熱した後、上述の臭化オレイルアンモニウム溶液を85.44mL添加し、すぐに上述の塩化オレイルアンモニウム溶液を21.36mL添加してペロブスカイト結晶構造の化合物を合成した後、130℃の温度を維持したまま、120分間加熱した。
添加後溶液を室温まで降温し、ペロブスカイト化合物(1)を含む分散液を得た。
[Example 3]
3.04 g of lead acetate trihydrate, 3.12 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 80 mL of oleic acid were mixed. After stirring and heating to 130 ° C. with flowing nitrogen, 85.44 mL of the above-mentioned oleylammonium bromide solution was added, and immediately 21.36 mL of the above-mentioned oleylammonium chloride solution was added to the compound having a perovskite crystal structure. Was synthesized and then heated for 120 minutes while maintaining the temperature of 130 ° C.
After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
 330mLの上記分散液に対してトルエン106.5mL、及び酢酸エチル106.5mLを混合した溶液をろ過で固液分離した。その後、ろ過上の固形分をトルエン106.5mL、及酢酸エチル106.5mLの混合溶液を2回流して洗浄し、ろ過してペロブスカイト化合物(1)を単離し、実施例1と同様にしてその特性を測定した。測定結果を表1に示す。XRD測定結果より、3次元のペロブスカイト型結晶構造が確認された。 A solution obtained by mixing 106.5 mL of toluene and 106.5 mL of ethyl acetate with 330 mL of the above dispersion was separated into solid and liquid by filtration. Then, the solid content on the filtration is washed by flowing a mixed solution of 106.5 mL of toluene and 106.5 mL of ethyl acetate twice, and filtered to isolate the perovskite compound (1), which is the same as in Example 1. The characteristics were measured. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
[実施例4]
 ペロブスカイト結晶構造の化合物を合成した後の加熱時間を20分とした以外は、実施例3と同様の方法でペロブスカイト化合物(1)を単離し、その特性を測定した。測定結果を表1に示す。XRD測定結果より、3次元のペロブスカイト型結晶構造が確認された。
[Example 4]
The perovskite compound (1) was isolated and its characteristics were measured by the same method as in Example 3 except that the heating time after synthesizing the compound having a perovskite crystal structure was 20 minutes. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
[実施例5]
 酢酸鉛・3水和物1.52gと、ホルムアミジン酢酸塩1.56g、1-オクタデセンの溶媒160mLと、オレイン酸40mLとを混合した。攪拌して、窒素を流しながら135℃でまで加熱した後、上述の臭化オレイルアンモニウム溶液を42.72mL添加し、すぐに上述の塩化オレイルアンモニウム溶液を10.68mL添加してペロブスカイト結晶構造の化合物を合成した後、135℃の温度を維持したまま、30分間加熱した。添加後溶液を室温まで降温し、ペロブスカイト化合物(1)を含む分散液を得た。
[Example 5]
1.52 g of lead acetate trihydrate, 1.56 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 40 mL of oleic acid were mixed. After stirring and heating to 135 ° C. with flowing nitrogen, 42.72 mL of the above-mentioned oleylammonium bromide solution was added, and immediately 10.68 mL of the above-mentioned oleylammonium chloride solution was added to the compound having a perovskite crystal structure. Was synthesized and then heated for 30 minutes while maintaining the temperature of 135 ° C. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
 240mLの上記分散液1に対してトルエン77mL、及び酢酸エチル77mLを混合した溶液をろ過で固液分離した。その後、ろ過上の固形分をトルエン77mL、及酢酸エチル77mLの混合溶液を2回流して洗浄し、ろ過してペロブスカイト化合物(1)を単離し、実施例1と同様にしてその特性を測定した。測定結果を表1に示す。XRD測定結果より、3次元のペロブスカイト型結晶構造が確認された。 A solution obtained by mixing 77 mL of toluene and 77 mL of ethyl acetate with 240 mL of the above dispersion 1 was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 77 mL of toluene and 77 mL of ethyl acetate twice, and filtered to isolate the perovskite compound (1), and its characteristics were measured in the same manner as in Example 1. .. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
[実施例6]
 酢酸鉛・3水和物2.28gと、ホルムアミジン酢酸塩2.34g、1-オクタデセンの溶媒160mLと、オレイン酸60mLとを混合した。攪拌して、窒素を流しながら135℃でまで加熱した後、上述の臭化オレイルアンモニウム溶液を64.08mL添加し、すぐに上述の塩化オレイルアンモニウム溶液を16.02mL添加してペロブスカイト結晶構造の化合物を合成した後、135℃の温度を維持したまま、30分間加熱した。添加後溶液を室温まで降温し、ペロブスカイト化合物(1)を含む分散液を得た。
[Example 6]
2.28 g of lead acetate trihydrate, 2.34 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 60 mL of oleic acid were mixed. After stirring and heating to 135 ° C. with flowing nitrogen, 64.08 mL of the above-mentioned oleylammonium bromide solution was added, and immediately 16.02 mL of the above-mentioned oleylammonium chloride solution was added to the compound having a perovskite crystal structure. Was synthesized and then heated for 30 minutes while maintaining the temperature of 135 ° C. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
 280mLの上記分散液1に対してトルエン90mL、及び酢酸エチル90mLを混合した溶液をろ過で固液分離した。その後、ろ過上の固形分をトルエン90mL、及酢酸エチル90mLの混合溶液を2回流して洗浄し、ろ過してペロブスカイト化合物(1)を単離し、実施例1と同様にしてその特性を測定した。測定結果を表1に示す。XRD測定結果より、3次元のペロブスカイト型結晶構造が確認された。 A solution obtained by mixing 90 mL of toluene and 90 mL of ethyl acetate with 280 mL of the above dispersion 1 was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 90 mL of toluene and 90 mL of ethyl acetate twice, and filtered to isolate the perovskite compound (1), and its characteristics were measured in the same manner as in Example 1. .. The measurement results are shown in Table 1. From the XRD measurement results, a three-dimensional perovskite-type crystal structure was confirmed.
[実施例7]
 実施例3で得られたペロブスカイト化合物(1)のキシレン分散液に、固形分濃度が0.33質量%となるようにキシレンを混合して、150mLの分散液を調製した。ここに、オルガノポリシラザン(1500 Slow Cure、Durazane, メルクパフォーマンスマテリアルズ株式会社製)を、分散液中の1質量部のペロブスカイト化合物に対し、2質量部加えた。さらにテトラエトキシシランを分散液中の1質量部のペロブスカイト化合物に対し、1質量部加えた。その後、水蒸気による縮合処理を4時間実施し、ペロブスカイト化合物(1)と表面保護剤(2)を含む組成物を得た。
 この際の縮合処理条件として、水蒸気の流量は0.2L/min(Nガスとともに供給、30℃の飽和水蒸気量)、加熱温度は80℃とした。
 得られた組成物を200μLとキシレン2.97mLを混合した溶液の色度座標を測定し、色域の評価を行ったところ、0.0400であった。
[Example 7]
Xylene was mixed with the xylene dispersion of the perovskite compound (1) obtained in Example 3 so that the solid content concentration was 0.33% by mass to prepare a dispersion of 150 mL. To this, 2 parts by mass of organopolysilazane (1500 Slow Cure, Durazane, manufactured by Merck Performance Materials Co., Ltd.) was added to 1 part by mass of the perovskite compound in the dispersion. Further, 1 part by mass of tetraethoxysilane was added to 1 part by mass of the perovskite compound in the dispersion liquid. Then, a condensation treatment with water vapor was carried out for 4 hours to obtain a composition containing a perovskite compound (1) and a surface protective agent (2).
As the conditions for the condensation treatment at this time, the flow rate of steam was 0.2 L / min (supplied with N 2 gas, the amount of saturated steam at 30 ° C.), and the heating temperature was 80 ° C.
The chromaticity coordinates of a solution obtained by mixing 200 μL of the obtained composition and 2.97 mL of xylene were measured, and the color gamut was evaluated. The result was 0.0400.
[比較例1]
 ペロブスカイト化合物の製造工程における塩化オレイルアンモニウムの混合液を添加してペロブスカイト結晶構造の化合物を合成した後の加熱処理を行わず、すぐに冷却した以外は、実施例5と同様の方法で分散液を得た。(hkl)=(110)の半値幅は、0.324°であった。また、色域の評価結果は、0.0735であった。SEMによって測定した平均粒径は76nmであった。
[Comparative Example 1]
A dispersion was prepared in the same manner as in Example 5 except that a mixed solution of oleylammonium chloride was added in the process for producing a perovskite compound to synthesize a compound having a perovskite crystal structure, and then the compound was immediately cooled without heat treatment. Obtained. The full width at half maximum of (hkl) = (110) was 0.324 °. The evaluation result of the color gamut was 0.0735. The average particle size measured by SEM was 76 nm.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記の結果から、合成した発光性の半導体化合物を溶媒中で熱間保持した実施例1~7のペロブスカイト化合物は、急冷した比較例1のペロブスカイト化合物と比べて、粒径が大きく、色域も広いことが確認された。 From the above results, the perovskite compounds of Examples 1 to 7 in which the synthesized luminescent semiconductor compound was hot-held in a solvent had a larger particle size and a color gamut than the quenching of the perovskite compound of Comparative Example 1. It was confirmed that it was wide.
[参考例1]
 実施例1~7に記載の化合物、又は組成物を、ガラスチューブ等の中に入れて封止した後に、これを光源である青色発光ダイオードと導光板の間に配置することで、青色発光ダイオードの青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 1]
The compounds or compositions according to Examples 1 to 7 are placed in a glass tube or the like and sealed, and then the blue light emitting diode is arranged between the blue light emitting diode as a light source and the light guide plate. Manufacture backlights that can convert blue light into green or red light.
[参考例2]
 実施例1~7に記載の化合物、又は組成物をシート化する事で樹脂組成物を得ることができ、これを2枚のバリアーフィルムで挟んで封止したフィルムを導光板の上に設置することで、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 2]
A resin composition can be obtained by forming a sheet of the compounds or compositions according to Examples 1 to 7, and a film sandwiched between two barrier films and sealed is placed on a light guide plate. As a result, a backlight capable of converting the blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate to the sheet through the light guide plate into green light or red light is manufactured.
[参考例3]
 実施例1~7に記載の化合物、又は組成物を、青色発光ダイオードの発光部近傍に設置することで照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 3]
By installing the compounds or compositions according to Examples 1 to 7 in the vicinity of the light emitting portion of the blue light emitting diode, a backlight capable of converting the blue light emitted into green light or red light is manufactured. ..
[参考例4]
 実施例1~7に記載の化合物、又は組成物とレジストを混合した後に、溶媒を除去する事で波長変換材料を得ることができる。得られた波長変換材料を光源である青色発光ダイオードと導光板の間や、光源であるOLEDの後段に配置することで、光源の青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference example 4]
A wavelength conversion material can be obtained by removing the solvent after mixing the compound or composition described in Examples 1 to 7 with a resist. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or after the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light or red light can be obtained. To manufacture.
[参考例5]
 実施例1~7に記載の化合物、又は組成物をZnSなどの導電性粒子を混合して成膜し、片面にn型輸送層を積層し、もう片面をp型輸送層で積層することでLEDを得る。電流を流すことによりp型半導体の正孔と、n型半導体の電子が接合面のペロブスカイト化合物中で電荷を打ち消されることで発光させることができる。
[Reference Example 5]
By mixing the compounds or compositions described in Examples 1 to 7 with conductive particles such as ZnS to form a film, an n-type transport layer is laminated on one side, and the other side is laminated with a p-type transport layer. Get the LED. By passing an electric current, the holes of the p-type semiconductor and the electrons of the n-type semiconductor can be made to emit light by canceling the charges in the perovskite compound on the bonding surface.
[参考例6]
 フッ素ドープされた酸化スズ(FTO)基板の表面上に、酸化チタン緻密層を積層させ、その上から多孔質酸化アルミニウム層を積層し、その上に実施例1~7に記載の化合物、又は組成物を積層し、溶媒を除去した後にその上から2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro-OMeTAD)などのホール輸送層を積層し、その上に銀(Ag)層を積層し、太陽電池を作製する。
[Reference Example 6]
A dense layer of titanium oxide is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, and a porous aluminum oxide layer is laminated therein, and the compound or composition according to Examples 1 to 7 is laminated on the layer. After laminating the substances and removing the solvent, 2,2', 7,7'-tetrakis- (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro-OMeTAD), etc. The hole transport layer of No. 1 is laminated, and a silver (Ag) layer is laminated on the same, to produce a solar cell.
[参考例7]
 実施例1~7に記載の化合物、又は組成物の、溶媒を除去して成形する事で本実施形態の組成物を得ることができ、これを青色発光ダイオードの後段に設置することで、青色発光ダイオードから組成物に照射される青色の光を緑色光や赤色光に変換して白色光を発するレーザーダイオード照明を製造する。
[Reference Example 7]
The composition of the present embodiment can be obtained by removing the solvent from the compounds or compositions described in Examples 1 to 7 and molding the composition, and by installing this in the subsequent stage of the blue light emitting diode, it is blue. A laser diode illumination that emits white light by converting blue light emitted from a light emitting diode onto a composition into green light or red light is manufactured.
[参考例8]
 実施例1~7に記載の化合物、又は組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができる。得られた組成物を光電変換層の一部とすることで、光を検知する検出部に使用する含まれる光電変換素子(光検出素子)材料を製造する。光電変換素子材料は、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーに用いられる。
[Reference Example 8]
The composition of the present embodiment can be obtained by removing the solvent of the compound or the composition described in Examples 1 to 7 and molding. By using the obtained composition as a part of the photoelectric conversion layer, a photoelectric conversion element (photodetection element) material contained in a detection unit for detecting light is manufactured. The photoelectric conversion element material is a part of a living body such as an image detection unit (image sensor) for a solid-state image sensor such as an X-ray image sensor and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit, and an iris detection unit. It is used in an optical biosensor such as a detection unit and a pulse oximeter that detects a predetermined feature.
 本発明の製造方法で得られる発光性の半導体化合物は、ディスプレイ等の発光装置の発光材料として使用することができる。 The luminescent semiconductor compound obtained by the production method of the present invention can be used as a light emitting material for a light emitting device such as a display.
 1a…第1の積層構造体、1b…第2の積層構造体、10…フィルム、20…第1の基材、21…第2の基材、22…封止層、2…発光装置、3…ディスプレイ、30…光源、40…液晶パネル、50…プリズムシート、60…導光板。 1a ... 1st laminated structure, 1b ... 2nd laminated structure, 10 ... film, 20 ... first base material, 21 ... second base material, 22 ... sealing layer, 2 ... light emitting device, 3 ... Display, 30 ... Light source, 40 ... Liquid crystal panel, 50 ... Prism sheet, 60 ... Light guide plate.

Claims (8)

  1.  A、B、及びXを構成成分とするペロブスカイト型結晶構造
    [ペロブスカイト型結晶構造において、AはBを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンであり、
     BはAを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンであり、
     XはBを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。]
    を有する化合物であって、
     該化合物は、100nm~1.0μmの一次粒子の粒子径を有し、
     X線回折パターンにおいて、半値幅0.10°~0.30°のミラー指数(110)面のピークを示す、化合物。
    Perovskite-type crystal structure containing A, B, and X as constituents [In the perovskite-type crystal structure, A is a component located at each vertex of a hexahedron centered on B, and is a monovalent cation.
    B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex, and is a metal ion.
    X is a component located at each vertex of the octahedron centered on B, and is at least one kind of anion selected from the group consisting of a halide ion and a thiocyanate ion. ]
    It is a compound having
    The compound has a particle size of primary particles of 100 nm to 1.0 μm and has a particle size of 100 nm to 1.0 μm.
    A compound showing a peak on the Miller index (110) plane with a half width of 0.10 ° to 0.30 ° in an X-ray diffraction pattern.
  2.  請求項1に記載の化合物と、シラザン、アミノ基、アルコキシ基又はアルキルチオ基を有するケイ素化合物、及びこれらの縮合物からなる群より選ばれる少なくとも1つの化合物とを、含む組成物。 A composition comprising the compound according to claim 1, a silicon compound having a silazane, an amino group, an alkoxy group or an alkylthio group, and at least one compound selected from the group consisting of a condensate thereof.
  3.  請求項1に記載の化合物又は請求項2に記載の組成物と、分散媒、重合性化合物又は重合体とを、含む組成物。 A composition comprising the compound according to claim 1 or the composition according to claim 2 and a dispersion medium, a polymerizable compound or a polymer.
  4.  請求項1に記載の化合物又は請求項2に記載の組成物を含む、フィルム。 A film containing the compound according to claim 1 or the composition according to claim 2.
  5.  請求項4に記載のフィルムを含む、積層構造体。 A laminated structure including the film according to claim 4.
  6.  請求項5に記載の積層構造体を備える、発光装置。 A light emitting device including the laminated structure according to claim 5.
  7.  請求項5に記載の積層構造体を備える、ディスプレイ。 A display provided with the laminated structure according to claim 5.
  8.  発光性の半導体化合物の原料になる化合物を溶媒中で反応させて、発光性の半導体化合物及び該溶媒を含む分散液を得る工程と、
     該分散液を熱間保持する工程とを包含する、発光性の半導体化合物の製造方法であって、
     該発光性の半導体化合物は、金属元素、及び100nm~1.0μmの一次粒子の粒子径を有し、
     X線回折パターンにおいて、半値幅0.10°~0.30°のミラー指数(110)面のピークを示し、
     該溶媒は100~400℃の大気圧下における沸点を有し、
     該分散液の熱間保持は、沸騰しない温度で10~600分間行われるものである、方法。
    A step of reacting a compound that is a raw material of a luminescent semiconductor compound in a solvent to obtain a luminescent semiconductor compound and a dispersion liquid containing the solvent.
    A method for producing a luminescent semiconductor compound, which comprises a step of hot-holding the dispersion liquid.
    The luminescent semiconductor compound has a metal element and a particle size of primary particles of 100 nm to 1.0 μm.
    In the X-ray diffraction pattern, the peak of the Miller index (110) plane having a half width of 0.10 ° to 0.30 ° is shown.
    The solvent has a boiling point under atmospheric pressure of 100-400 ° C.
    The method, wherein the hot retention of the dispersion is carried out at a temperature that does not boil for 10 to 600 minutes.
PCT/JP2021/026750 2020-07-29 2021-07-16 Light-emitting semiconductor compound and production method therefor WO2022024804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128535 2020-07-29
JP2020128535A JP2022025615A (en) 2020-07-29 2020-07-29 Luminous semiconductor compound and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022024804A1 true WO2022024804A1 (en) 2022-02-03

Family

ID=80036831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026750 WO2022024804A1 (en) 2020-07-29 2021-07-16 Light-emitting semiconductor compound and production method therefor

Country Status (3)

Country Link
JP (1) JP2022025615A (en)
TW (1) TW202211491A (en)
WO (1) WO2022024804A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170152608A1 (en) * 2015-11-30 2017-06-01 Wisconsin Alumni Research Foundation Solution growth of single-crystal perovskite structures
US20180151813A1 (en) * 2015-05-19 2018-05-31 Alliance For Sustainable Energy, Llc Organo-metal halide perovskites films and methods of making the same
JP2018193467A (en) * 2017-05-17 2018-12-06 住友化学株式会社 Composition, and manufacturing method of composition
KR20190083957A (en) * 2018-01-05 2019-07-15 울산과학기술원 Perovskite Solar Cell having Improved Efficiency and Stability, and the Fabrication Method Thereof
GB2577492A (en) * 2018-09-24 2020-04-01 Oxford Photovoltaics Ltd Method of forming a crystalline or polycrystalline layer of an organic-inorganic metal halide perovskite
KR20210031206A (en) * 2019-09-11 2021-03-19 연세대학교 산학협력단 Organic-inorganic hybrid perovskite compound film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180151813A1 (en) * 2015-05-19 2018-05-31 Alliance For Sustainable Energy, Llc Organo-metal halide perovskites films and methods of making the same
US20170152608A1 (en) * 2015-11-30 2017-06-01 Wisconsin Alumni Research Foundation Solution growth of single-crystal perovskite structures
JP2018193467A (en) * 2017-05-17 2018-12-06 住友化学株式会社 Composition, and manufacturing method of composition
KR20190083957A (en) * 2018-01-05 2019-07-15 울산과학기술원 Perovskite Solar Cell having Improved Efficiency and Stability, and the Fabrication Method Thereof
GB2577492A (en) * 2018-09-24 2020-04-01 Oxford Photovoltaics Ltd Method of forming a crystalline or polycrystalline layer of an organic-inorganic metal halide perovskite
KR20210031206A (en) * 2019-09-11 2021-03-19 연세대학교 산학협력단 Organic-inorganic hybrid perovskite compound film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOUICH AMAL; ULLAH SHAFI; MARí BERNABé; ATOURKI LAHOUCINE; TOUHAMI MOHAMED EBN: "One-step synthesis of FA1-xGAxPbI3 perovskites thin film with enhanced stability of alpha (α) phase", MATERIALS CHEMISTRY AND PHYSICS, vol. 258, 24 October 2020 (2020-10-24), Switzerland, Taiwan, Republic of China , XP086367766, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2020.123973 *
HUANG PAO-HSUN, CHEN YU-HAO, LIEN SHUI-YANG, LEE KUAN-WEI, WANG NA-FU, HUANG CHIEN-JUNG: "Effect of Annealing on Innovative CsPbI3-QDs Doped Perovskite Thin Films", CRYSTALS, vol. 11, no. 2, pages 101, XP055890381, DOI: 10.3390/cryst11020101 *
MURUGAN VIGNESHWARAN, OGOMI YUHEI, PANDEY SHYAM S., TOYODA TARO, SHEN QING, HAYASE SHUZI: "Effects of different chloride precursors on crystal growth of lead halide perovskites", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 8, no. 12, 1 December 2015 (2015-12-01), JP , pages 125501, XP055890383, ISSN: 1882-0778, DOI: 10.7567/APEX.8.125501 *

Also Published As

Publication number Publication date
JP2022025615A (en) 2022-02-10
TW202211491A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
EP3643764A1 (en) Composition, film, multilayer structure, light emitting device and display
JP6830964B2 (en) Compositions, films, laminated structures, light emitting devices, displays, and methods for producing compositions.
US20210395608A1 (en) Particle, Composition, Film, Laminated Structure, Light-Emitting Device and Display
TWI830795B (en) Compositions, films, laminated structures, light-emitting devices and displays
US11981844B2 (en) Composition, film, laminated structure, light-emitting device and display
WO2020085363A1 (en) Composition, film, laminate structure, light-emitting device, and display
TW202033734A (en) Composition, film, laminated structure, light-emitting device, and display
JP6830966B2 (en) Compositions, films, laminated structures, light emitting devices, and displays
WO2022024804A1 (en) Light-emitting semiconductor compound and production method therefor
JP7340373B2 (en) Compositions, films, laminate structures, light emitting devices and displays
WO2020085514A1 (en) Composition, film, laminate structure, light-emitting device, and display
WO2020085361A1 (en) Particles, composition, film, layered structure, light-emitting device, and display
TWI841690B (en) Compound, composition, film, laminated structure, light-emitting device, display and method for producing the compound
JP7470532B2 (en) Compound, composition, film, laminated structure, light-emitting device, display, and method for producing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850655

Country of ref document: EP

Kind code of ref document: A1