WO2022024551A1 - Egr system - Google Patents

Egr system Download PDF

Info

Publication number
WO2022024551A1
WO2022024551A1 PCT/JP2021/021502 JP2021021502W WO2022024551A1 WO 2022024551 A1 WO2022024551 A1 WO 2022024551A1 JP 2021021502 W JP2021021502 W JP 2021021502W WO 2022024551 A1 WO2022024551 A1 WO 2022024551A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
valve
passage
engine
failure
Prior art date
Application number
PCT/JP2021/021502
Other languages
French (fr)
Japanese (ja)
Inventor
衛 吉岡
海翔 曹
崇 別所
伸二 河井
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2022024551A1 publication Critical patent/WO2022024551A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system

Definitions

  • the technique disclosed herein relates to an EGR system configured to allow a portion of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to flow through the EGR passage to the intake passage and return to the engine. Relates to an EGR system configured to diagnose a failure of that system.
  • the exhaust gas recirculation device (EGR device) of this technology is an EGR control valve (EGR gas flow rate) that controls the exhaust gas circulation amount (EGR gas flow rate) in the exhaust gas recirculation passage (EGR passage) that connects the exhaust passage and the intake passage of the engine. It is provided with an EGR valve), an EGR cooler that cools the EGR gas, a bypass passage that bypasses the EGR cooler, and a switching control valve (bypass valve) that controls the inflow of the EGR gas into the bypass passage.
  • EGR control valve EGR gas flow rate
  • EGR passage exhaust gas recirculation passage
  • this EGR device is detected by the temperature detecting means provided on the downstream side of the bypass valve, the operating means for switching and operating the bypass valve at a predetermined time, and the temperature detecting means before and after the switching operation of the bypass valve by the operating means. Further provided with a diagnostic means for diagnosing a cooling abnormality of the EGR cooler based on the temperature difference.
  • Patent Document 1 can diagnose a cooling abnormality of the EGR cooler, it particularly shows how to control the introduction of EGR gas into the engine when the occurrence of the cooling abnormality is determined. Not. Therefore, it was not possible to properly deal with the cooling abnormality. As a result, if EGR is performed even though a cooling abnormality has occurred, there is a risk that condensed water will be generated in the EGR passage due to insufficient warming up, or that the EGR passage will be melted due to overheating. there were.
  • This disclosure technique was made in view of the above circumstances, and the purpose is to generate condensed water in the EGR cooler and the EGR passage downstream of the bypass passage even if the bypass valve provided in the bypass passage fails. It is an object of the present invention to provide an EGR system capable of suppressing melting damage of an EGR passage.
  • the aspect of the present invention is configured so that a part of the exhaust gas discharged from the engine to the exhaust passage is passed as EGR gas to the intake passage through the EGR passage and returned to the engine.
  • an EGR valve for adjusting the flow rate of EGR gas in the EGR passage and an EGR cooler for exchanging heat between the EGR gas and the cooling water of the engine to cool the EGR gas flowing in the EGR passage.
  • EGR temperature detecting means for detecting wall temperature or EGR gas temperature
  • bypass valve failure diagnostic means for diagnosing a bypass valve failure based on at least the operating state of the bypass valve and the detected temperature. It is intended that the EGR valve control means for controlling the EGR valve according to the failure diagnosis result by the bypass valve failure diagnosis means is provided.
  • the bypass valve when the bypass valve is normally opened, the pressure loss of the bypass passage is small, so that most of the EGR gas flowing from the exhaust passage to the EGR passage flows to the bypass passage, and the rest is the EGR cooler. Flow to. Then, these two flows merge in the downstream EGR passage, flow to the intake passage, and are returned to the engine. Therefore, even if a high-temperature EGR gas flows from the exhaust passage to the EGR passage, a part of the EGR gas is heat-exchanged by the EGR cooler to lower the temperature, and then merges with the EGR gas flowing through the bypass passage to increase the temperature. As the temperature drops, the EGR gas lowered to an appropriate temperature flows to the intake passage through the downstream EGR passage.
  • the bypass valve failure diagnosis means diagnoses the failure of the bypass valve based on at least the operating state of the bypass valve and the temperature of the wall of the EGR passage or the temperature of the EGR gas detected by the EGR temperature detecting means. Then, the EGR valve control means controls the EGR valve according to the failure diagnosis result by the bypass valve failure diagnosis means. Therefore, since the EGR valve is controlled according to the diagnosis result of the failure of the bypass valve, it is possible to prevent the high temperature EGR gas from unnecessarily flowing to the downstream EGR passage.
  • the diagnosis result by the bypass valve failure diagnosis means is a failure of the bypass valve open failure (a failure with the bypass valve open).
  • the EGR valve is controlled to an opening of less than a predetermined value, and the diagnosis result is a failure to close the bypass valve (a failure with the bypass valve closed). Underneath, it is preferable to control the EGR valve to be fully closed.
  • the EGR control means sets the EGR valve to a predetermined value or less. Since the opening degree is controlled, the flow rate of the high temperature EGR gas flowing to the downstream EGR passage is suppressed, and the temperature of the EGR gas flowing to the downstream EGR passage is reduced.
  • the diagnosis result by the bypass valve failure diagnosis means is a closed failure of the bypass valve
  • the EGR control means controls the EGR valve to be fully closed under the valve opening condition of the bypass valve. The flow of EGR gas is cut off, and the EGR gas whose temperature has dropped due to heat exchange by the EGR cooler does not flow to the downstream EGR passage.
  • the cooling water temperature detecting means for detecting the temperature of the cooling water of the engine is further provided, and the bypass valve failure diagnosis means is provided. It is preferable to diagnose the failure of the bypass valve by comparing the temperature of the cooling water detected after starting the engine with the temperature of the wall of the EGR passage or the temperature of the EGR gas detected by the EGR temperature detecting means.
  • the bypass valve failure diagnosis means is the temperature of the cooling water detected by the cooling water temperature detecting means after the engine is started.
  • the failure of the bypass valve is diagnosed by comparing the temperature of the wall of the EGR passage detected by the EGR temperature detecting means or the temperature of the EGR gas.
  • the cooling water temperature detecting means is usually used to control the engine. Therefore, in order to diagnose the failure of the bypass valve, it is not necessary to provide a special detecting means other than the EGR temperature detecting means.
  • bypass valve failure diagnosis means corrects the temperature of the detected cooling water according to the opening degree of the EGR valve.
  • the bypass valve failure diagnosis means corrects the temperature of the detected cooling water according to the opening degree of the EGR valve.
  • the temperature of the EGR gas flowing through the EGR passage changes according to the flow rate of the EGR gas, that is, the opening degree of the EGR valve. Therefore, the temperature of the wall of the EGR passage or the temperature of the cooling water compared with the temperature of the EGR gas is corrected according to the flow rate of the EGR gas.
  • an EGR valve failure diagnosis means for diagnosing a failure of the EGR valve and an engine output for adjusting the output of the engine.
  • an engine control means for controlling the output adjusting means.
  • the diagnosis result by the bypass valve failure diagnosis means is the open failure of the bypass valve, and the EGR valve failure diagnosis means.
  • the engine control means controls the output adjusting means in order to limit the output of the engine. Therefore, in the case of an open failure in which the EGR valve cannot be controlled (double failure) in addition to the open failure of the bypass valve, the output of the engine is limited by the output adjusting means, so that the engine can be operated normally. It disappears.
  • the configuration of the EGR system in addition to the effect of the configuration of the above (1) or (2), the configuration of the EGR system can be simplified to the extent that no special detection means needs to be provided. Product costs can be reduced.
  • FIG. 1 shows a gasoline engine system of this embodiment (hereinafter, simply referred to as “engine system”) by a schematic configuration diagram.
  • the engine system mounted on the automobile includes an engine 1 having a plurality of cylinders.
  • the engine 1 is a 4-cylinder, 4-cycle reciprocating engine and includes well-known configurations such as a piston and a crankshaft.
  • the engine 1 is provided with an intake passage 2 for introducing intake air into each cylinder and an exhaust passage 3 for deriving exhaust gas from each cylinder of the engine 1.
  • the intake passage 2 is provided with an air cleaner 9, a throttle device 4, and an intake manifold 5 from the upstream side thereof.
  • this engine system comprises a high pressure loop type exhaust gas recirculation device (EGR device) 11.
  • EGR device high pressure loop type exhaust gas recirculation device
  • the throttle device 4 is arranged in the intake passage 2 upstream of the intake manifold 5, and by driving the butterfly type throttle valve 4a to open and close with a variable opening according to the accelerator operation of the driver, the amount of intake air flowing through the intake passage 2 Is designed to be adjusted.
  • the throttle device 4 corresponds to an example of the output adjusting means in the disclosed technique.
  • the intake manifold 5 is mainly composed of a resin material and is arranged in the intake passage 2 directly upstream of the engine 1.
  • One surge tank 5a into which the intake air is introduced and the intake air introduced in the surge tank 5a are used in the engine 1. It includes a plurality of (four) branch pipes 5b branched from the surge tank 5a for distribution to each cylinder.
  • the exhaust manifold 6 and the catalyst 7 are provided in the exhaust passage 3 in order from the upstream side thereof. For example, a three-way catalyst is built in the catalyst 7 in order to purify the exhaust gas.
  • the engine 1 is provided with a fuel injection device (not shown) for injecting fuel corresponding to each cylinder.
  • the fuel injection device is configured to inject fuel supplied from a fuel supply device (not shown) into each cylinder of the engine 1.
  • a combustible air-fuel mixture is formed by the fuel injected from the fuel injection device and the intake air introduced from the intake manifold 5.
  • the engine 1 is provided with an ignition device (not shown) corresponding to each cylinder.
  • the igniter is configured to ignite the combustible mixture in each cylinder.
  • the combustible air-fuel mixture in each cylinder explodes and burns due to the ignition operation of the ignition device, and the exhaust gas after combustion is discharged from each cylinder to the outside via the exhaust manifold 6 and the catalyst 7.
  • the piston (not shown) moves up and down in each cylinder, and the crankshaft (not shown) rotates to obtain power to the engine 1.
  • the EGR system of this embodiment includes a high pressure loop type EGR device 11.
  • the EGR device 11 is configured to flow a part of the exhaust gas discharged from each cylinder of the engine 1 to the exhaust passage 3 as an exhaust gas recirculation gas (EGR gas) to the intake passage 2 and return the exhaust gas to each cylinder of the engine 1.
  • the EGR device 11 includes an exhaust gas recirculation passage (EGR passage) 12 for flowing EGR gas from the exhaust passage 3 to the intake passage 2, and an exhaust gas recirculation cooler (EGR cooler) 13 for cooling the EGR gas flowing through the EGR passage 12.
  • EGR passage exhaust gas recirculation passage
  • EGR cooler exhaust gas recirculation cooler
  • the exhaust gas recirculation valve (EGR valve) 14 provided downstream from the EGR cooler 13 in order to adjust the flow rate of the EGR gas flowing through the EGR passage 12, and the EGR gas flowing through the EGR passage 12 are distributed to each cylinder of the engine 1. Therefore, an exhaust gas recirculation gas distributor (EGR gas distributor) 15 made of a resin that distributes EGR gas to each branch pipe 5b of the intake manifold 5 is provided.
  • the EGR gas distributor 15 is provided in the EGR passage 12 downstream of the EGR cooler 13 and the EGR valve 14.
  • the EGR passage 12 includes an inlet 12a and an outlet 12b.
  • the inlet 12a of the EGR passage 12 is connected to the exhaust passage 3 upstream of the catalyst 7, and the outlet 12b of the passage 12 is connected to the EGR gas distributor 15.
  • the EGR gas distributor 15 constitutes the final stage of the EGR passage 12.
  • the EGR valve 14 is provided adjacent to the EGR cooler 13 downstream of the EGR cooler 13.
  • the EGR valve 14 is configured to drive the valve body using a step motor as a drive source.
  • the EGR cooler 13 is configured to allow the cooling water of the engine 1 to flow.
  • the EGR cooler 13 is configured to exchange heat between the EGR gas and the cooling water of the engine 1 in order to cool the EGR gas flowing through the EGR passage 12.
  • the detailed description of the configuration of the EGR cooler 13 will be omitted.
  • the EGR cooler 13 is provided with a bypass passage 16.
  • the bypass passage 16 is a passage for bypassing a part of the EGR gas flowing to the EGR cooler 13 in the EGR passage 12.
  • the bypass passage 16 is provided with a bypass valve 17 for opening and closing the passage 16.
  • the EGR gas distributor 15 is mainly composed of a resin material, has a horizontally long shape as a whole, and has a plurality of branch pipes of the intake manifold 5 in the longitudinal direction (left-right direction in FIG. 1) as shown in FIG. Arranged so as to cross 5b.
  • the EGR gas distributor 15 is branched from one gas chamber 15a in which the EGR gas introduced from the outlet 12b of the EGR passage 12 collects, and the gas chamber 15a, and the EGR is branched from the gas chamber 15a to each branch pipe 5b. It includes a plurality (4) gas distribution passages 15b for distributing gas.
  • bypass valve 17 is attached to the housing of the EGR cooler 13 and is configured to open and close the bypass passage 16 integrally with the housing.
  • the bypass valve 17 is configured to allow engine cooling water to flow.
  • the bypass valve 17 is configured to operate in response to a change in the temperature of the cooling water.
  • the bypass valve 17 includes an actuator configured to close the valve body from the open state when the temperature of the cooling water exceeds a predetermined value.
  • the actuator can be configured, for example, with a thermowax.
  • a detailed description of the configuration of the bypass valve 17 will be omitted.
  • the bypass valve 17 is opened by an actuator to open the bypass passage 16 at a low temperature, and closed by an actuator to shut off the bypass passage 16 at a high temperature. That is, in this embodiment, when the temperature of the cooling water is lower than a predetermined value, the bypass valve 17 is not warmed and is opened.
  • the bypass valve 17 opens, most of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the bypass passage 16, and the remaining EGR gas flows to the EGR cooler 13, respectively downstream of the EGR cooler 13. Meet at EGR passage 12.
  • the merged EGR gas further flows to the EGR gas distributor 15 and is distributed to each cylinder of the engine 1 via the intake manifold 5.
  • the bypass valve 17 is warmed and closed.
  • the bypass valve 17 is closed, all of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the EGR cooler 13 to be cooled, and further flows to the EGR valve 14 and the EGR gas distributor 15 to drive the intake manifold 5. It is distributed to each cylinder of the engine 1 and circulated.
  • various sensors and the like 70 to 79 provided in this engine system constitute an operating state detecting means for detecting an operating state of the engine 1.
  • the ignition switch (IG switch) 70 provided in the driver's seat is turned on and off by the driver in order to start or stop the engine 1, and outputs an electric signal corresponding to the operation.
  • the water temperature sensor 71 provided in the engine 1 detects the temperature (cooling water temperature) THW of the cooling water flowing inside the engine 1 and outputs an electric signal according to the detected value.
  • the water temperature sensor 71 corresponds to an example of the cooling water temperature detecting means in the disclosed technology.
  • the rotation speed sensor 72 provided in the engine 1 detects the rotation angle (crank angle) of the crankshaft of the engine 1 and uses the change in the crank angle (crank angle speed) as the rotation speed (engine rotation speed) NE of the engine 1. Detects and outputs an electric signal according to the detected value.
  • the air flow meter 73 provided in the vicinity of the air cleaner 9 detects the intake air amount Ga flowing through the air cleaner 9, and outputs an electric signal according to the detected value.
  • the intake pressure sensor 74 provided in the surge tank 5a detects the intake pressure PM in the intake passage 2 (surge tank 5a) downstream of the throttle device 4, and outputs an electric signal according to the detected value.
  • the throttle sensor 75 provided in the throttle device 4 detects the opening degree (throttle opening degree) TA of the throttle valve 4a and outputs an electric signal corresponding to the detected value.
  • the oxygen sensor 76 provided in the exhaust passage 3 between the inlet 12a of the EGR passage 12 and the catalyst 7 detects the oxygen concentration Ox in the exhaust and outputs an electric signal according to the detected value.
  • the intake air temperature sensor 77 provided at the inlet of the air cleaner 9 detects the temperature (intake air temperature) THA of the outside air sucked into the air cleaner 9, and outputs an electric signal according to the detected value.
  • the wall temperature sensor 78 provided in the EGR gas distributor 15 detects the wall temperature (wall temperature) THDW of the EGR gas distributor 15 and outputs an electric signal according to the detected value.
  • the wall temperature sensor 78 corresponds to an example of the EGR temperature detecting means in this disclosed technique.
  • the accelerator sensor 79 provided on the accelerator pedal 10 in the driver's seat detects the amount of depression of the accelerator pedal 10 by the driver as the accelerator opening ACC, and outputs an electric signal according to the detected value.
  • This engine system further includes an electronic control unit (ECU) 80 that controls the system.
  • ECU electronice control unit
  • Various sensors and the like 70 to 79 are connected to the ECU 80, respectively.
  • an injector (not shown) and an ignition coil (not shown) are connected to the ECU 80.
  • the ECU 80 corresponds to an example of the bypass valve failure diagnosis means, the EGR control means, the EGR valve failure diagnosis means, and the engine control means in the disclosed technology.
  • the ECU 80 includes a central processing unit (CPU), various memories, an external input circuit, an external output circuit, and the like.
  • a predetermined control program related to various controls is stored in the memory.
  • the CPU executes fuel injection control, ignition timing control, EGR control, and the like based on a predetermined control program based on the detection signals of various sensors and the like 70 to 79 input via the input circuit.
  • the ECU 80 controls the EGR valve 14 (the step motor thereof) according to the operating state of the engine 1 in the EGR control. Specifically, the ECU 80 controls the EGR valve 14 to be fully closed during engine 1 stop, idle operation, and deceleration operation, and calculates a target EGR opening degree according to the operating state during other operations. However, the EGR valve 14 is controlled to the target EGR opening degree. At this time, when the EGR valve 14 is opened, it is discharged from the engine 1 to the exhaust passage 3, and a part of the exhaust gas is used as EGR gas in the EGR passage 12, the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It flows to the intake passage 2 (intake manifold 5) via the above, and is distributed to each cylinder of the engine 1 to be circulated.
  • bypass valve failure diagnosis control In this embodiment, when the engine 1 is started, the following bypass valve failure diagnosis control is executed in order to diagnose the failure of the bypass valve 17 according to the EGR operating state after the start.
  • FIG. 2 shows the contents of the bypass valve failure diagnosis control of this embodiment by a flowchart.
  • step 110 the ECU 80 determines whether or not the engine 1 has been operated. For example, the ECU 80 can make this determination based on the engine speed NE detected by the rotation speed sensor 72. If the determination result is affirmative, the ECU 80 shifts the process to step 120, and if the determination result is negative, the ECU 80 returns the process to step 100.
  • step 120 the ECU 80 determines whether or not the EGR is on, that is, whether or not the EGR is being executed. If the determination result is affirmative, the ECU 80 shifts the process to step 130, and if the determination result is negative, the ECU 80 returns the process to step 100.
  • the ECU 80 takes in the cooling water temperature THW, the intake air temperature THA, and the wall temperature THDW, respectively, based on the detection values of the water temperature sensor 71, the intake air temperature sensor 77, and the wall temperature sensor 78, and opens the EGR valve 14 ( EGR opening) Take in EEGR.
  • the ECU 80 can obtain, for example, the EGR opening degree EEGR based on the control command value for the step motor of the EGR valve 14.
  • step 140 the ECU 80 determines whether or not the EGR opening degree EEGR is equal to or greater than the predetermined value ⁇ . If the determination result is affirmative, the ECU 80 shifts the process to step 150, and if the determination result is negative, the ECU 80 returns the process to step 100.
  • step 150 the ECU 80 determines whether or not the cooling water temperature THW is smaller than the half-open temperature THVHO of the bypass valve 17.
  • the half-open temperature THVHO means the temperature at which the bypass valve 17 is half-open.
  • FIG. 3 graphically shows the opening characteristic of the bypass valve 17 with respect to the cooling water temperature THW.
  • the temperature (55 ° C.)) THVHO and the temperature at which the bypass valve 17 is fully closed (fully closed temperature (70 ° C.)) THVFC are shown. If the determination result is affirmative, the ECU 80 shifts the process to step 160, and if the determination result is negative, the ECU 80 shifts the process to step 190.
  • step 160 the ECU 80 waits for the elapse of the predetermined time A1 and shifts the process to step 170.
  • step 170 the ECU 80 determines whether or not the wall temperature THDW is lower than the cooling water temperature THW. If the determination result is affirmative, the ECU 80 shifts the process to step 180, and if the determination result is negative, the ECU 80 returns the process to step 100.
  • step 180 in the ECU 80, although the cooling water temperature THW is lower than the half-open temperature THVHO, the wall temperature THDW is lower than the cooling water temperature THW, so that the bypass valve 17 is closed (the bypass valve 17 is closed).
  • the closed failure flag XCL is set to "1", and the process is returned to step 100.
  • step 190 after shifting from step 150, the ECU 80 determines whether or not the cooling water temperature THW is equal to or higher than the fully closed temperature THVFC (see FIG. 3) of the bypass valve 17. If the determination result is affirmative, the ECU 80 shifts the process to step 200, and if the determination result is negative, the ECU 80 returns the process to step 100.
  • step 200 the ECU 80 waits for the elapse of the predetermined time B1 and shifts the process to step 210.
  • step 210 the ECU 80 determines whether or not the wall temperature THDW is equal to or higher than the cooling water temperature THW. If the determination result is affirmative, the ECU 80 shifts the process to step 220, and if the determination result is negative, the ECU 80 shifts the process to step 230.
  • step 220 the ECU 80 fails to open the bypass valve 17 (the bypass valve 17 opens) because the wall temperature THWW is equal to or higher than the cooling water temperature THW even though the cooling water temperature THW is equal to or higher than the fully closed temperature THVFC. It is determined that the failure is caused while the valve is in the valved state), the open failure flag XOP is set to "1", and the process is returned to step 100.
  • step 230 after shifting from step 210, the ECU 80 determines whether or not the closed failure flag XCL is "0". If the determination result is affirmative, the ECU 80 shifts the process to step 240 because the closing failure has not been determined, and if the determination result is negative, the closing failure has been determined. , Return the process to step 100.
  • step 240 since the ECU 80 has not determined whether the bypass valve 17 has opened or closed, it determines that the bypass valve 17 is normal, sets the normal flag XOK to "1", and steps the process. Return to 100.
  • step 250 after shifting from step 100, the ECU 80 sets the open failure flag XOP, the closed failure flag XCL, and the normal flag XOK to "0", respectively.
  • step 260 the ECU 80 stops the engine 1. That is, the control of the fuel supply to the engine 1 and the ignition operation is stopped.
  • step 270 the ECU 80 stops the ECU 80 and then returns the process to step 100.
  • the ECU 80 diagnoses the failure of the bypass valve 17 based on at least the operating state of the bypass valve 17 and the detected wall temperature THDW (the temperature of the wall of the EGR passage 12). It has become. Specifically, after the engine 1 is started, the failure of the bypass valve 17 is diagnosed by comparing the cooling water temperature THW reflecting the operating state of the bypass valve 17 with the wall temperature THW.
  • the correlation between the intake air temperature THA, the wall temperature THDW, and the cooling water temperature THW before the start of the engine 1 is THA ⁇ THDW ⁇ THW after a long stop, and THA ⁇ THDW ⁇ THW after a short stop.
  • the correlation between the intake air temperature THA, the wall temperature THDW and the cooling water temperature THW after the start of the engine 1 is as follows: (1) After a long stop and before the start of the EGR, the cooling water temperature THW is delayed and the wall The temperature THDW rises, the change in the intake air temperature THA is small, and the rise in the wall temperature ⁇ THWW is smaller than the rise in the cooling water temperature THW ⁇ THW.
  • EGR control will be described.
  • the ECU 80 is adapted to execute EGR control as follows according to the diagnosis result of the bypass valve failure diagnosis control described above.
  • FIG. 4 shows the contents of the EGR control by a flowchart.
  • step 300 the ECU 80 determines the cooling water temperature THW, the engine rotation speed NE, and the engine load based on the detection values of the water temperature sensor 71, the rotation speed sensor 72, the intake pressure sensor 74, and the throttle sensor 75. Import each KL.
  • the ECU 80 can obtain, for example, the engine load KL based on the intake pressure PM or the throttle opening degree TA.
  • the ECU 80 calculates the target EGR opening degree TEGR according to the engine speed NE and the engine load KL. For example, the ECU 80 can obtain the target EGR opening degree TEGR according to the engine speed NE and the engine load KL by referring to a predetermined target EGR opening degree map.
  • step 320 the ECU 80 determines whether or not the normal flag XOK is "1", that is, whether or not the failure diagnosis result of the bypass valve 17 is a normal determination. If the determination result is affirmative, the ECU 80 shifts the process to step 330, and if the determination result is negative, the ECU 80 shifts the process to 350.
  • step 330 the ECU 80 determines whether or not the cooling water temperature THW is "40 ° C.” or higher. If the determination result is affirmative, the ECU 80 shifts the process to step 340, and if the determination result is negative, the ECU 80 shifts the process to 410.
  • step 340 the ECU 80 controls the EGR valve 14 to the target EGR opening degree TEGR, and returns the process to step 300.
  • step 410 the ECU 80 sets the target EGR opening TEGR to "0" for EGR cut, and shifts the process to step 340.
  • step 350 after shifting from step 320, it is determined whether or not the closed failure flag XCL is "1", that is, whether or not the failure diagnosis result of the bypass valve 17 is a closed failure determination. If the determination result is affirmative, the ECU 80 shifts the process to step 360 as a closed failure determination, and if the determination result is negative, the ECU 80 shifts the process to 370 as an open failure determination.
  • step 360 the ECU 80 determines whether or not the cooling water temperature THW is "65 ° C.” or higher. If the determination result is affirmative, the ECU 80 shifts the process to step 340, and if the determination result is negative, the ECU 80 shifts the process to 410.
  • step 370 after shifting from step 350, the ECU 80 determines whether or not the cooling water temperature THW is "40 ° C.” or higher. If the determination result is affirmative, the ECU 80 shifts the process to step 380, and if the determination result is negative, the ECU 80 shifts the process to 410.
  • step 380 the ECU 80 determines whether or not the cooling water temperature THW is equal to or higher than the fully closed temperature THVFC. If the determination result is affirmative, the ECU 80 shifts the process to step 390, and if the determination result is negative, the ECU 80 shifts the process to 340.
  • step 390 the ECU 80 determines whether or not the target EGR opening degree TEGR is equal to or greater than the predetermined opening degree C1. If the determination result is affirmative, the ECU 80 shifts the process to step 400, and if the determination result is negative, the ECU 80 shifts the process to 340.
  • step 400 the ECU 80 sets the target EGR opening TEGR to the predetermined opening C1 in order to guard the target EGR opening TEGR at the predetermined opening C1, and shifts the process to step 340.
  • the ECU 80 controls the EGR valve 14 according to the diagnosis result of the failure of the bypass valve 17. Specifically, the ECU 80 controls the EGR valve 14 to an opening degree of C1 (predetermined value) or less when the failure diagnosis result is an open failure of the bypass valve 17 after the EGR start condition is satisfied.
  • the failure diagnosis result is a closed failure of the bypass valve 17
  • the EGR valve 14 is controlled to be fully closed under the valve opening condition of the bypass valve 17.
  • the ECU 80 has the following EGR valve failure in order to diagnose an open failure (for example, due to foreign matter biting) of the EGR valve 14 according to the EGR operating state after the engine 1 is started. It is designed to execute diagnostic control.
  • FIG. 5 shows the contents of the EGR valve failure diagnosis control of this embodiment by a flowchart.
  • This flowchart shows the contents for diagnosing the presence or absence of an open failure of the EGR valve 14 when the EGR valve 14 is controlled to be fully closed or when the EGR valve 14 is controlled to be fully closed during deceleration of the engine 1.
  • step 500 the ECU 80 takes in various signals indicating the operating state of the engine 1 from various sensors and the like 72, 73, 75, 77. That is, the engine rotation speed NE, the engine load KL, the throttle opening TA, the intake amount Ga, and the intake pressure PM, and the motor step number STegr of the step motor corresponding to the opening degree of the EGR valve 14 are taken in, respectively.
  • the ECU 80 can obtain the engine load KL based on the throttle opening TA or the intake pressure PM.
  • the number of motor steps STegr has a relationship proportional to the opening degree (EGR opening degree) of the EGR valve 14.
  • the ECU 80 determines whether or not the operating state of the engine 1 is within the foreign matter biting detection range.
  • the ECU 50 can determine, for example, whether the range defined by the relationship between the engine speed NE and the engine load KL is within a predetermined detection range suitable for detecting foreign matter biting.
  • the predetermined detection range includes deceleration operation or steady operation of the engine 1. If the determination result is affirmative, the ECU 80 shifts the process to step 520, and if the determination result is negative, the ECU 80 returns the process to step 500.
  • step 520 the ECU 80 determines whether or not the number of motor steps STegr is smaller than "8 steps". “8 steps” is an example and corresponds to a minute opening degree of the EGR valve 14. If the determination result is affirmative, the ECU 80 shifts the process to step 530, and if the determination result is negative, the ECU 80 returns the process to step 500.
  • the ECU 80 takes in the fully closed reference intake pressure PMegr0 at the time of deceleration according to the engine speed NE and the engine load KL.
  • the ECU 80 can obtain the fully closed reference intake pressure PMegr0 at the time of deceleration according to the engine speed NE and the engine load KL by referring to a preset fully closed reference intake pressure map (not shown). ..
  • a preset fully closed reference intake pressure map (not shown). ..
  • this fully closed reference intake pressure map the relationship between the fully closed reference intake pressure PMegr0 with respect to the engine speed NE and the engine load KL when the opening (EGR opening) of the EGR valve 14 is "0", that is, when fully closed, is in advance. It is a set map.
  • the intake pressure PM at the time of deceleration of the engine 1 has a correlation with the engine load KL regardless of the presence or absence of foreign matter being caught in the EGR valve 14, and both are substantially proportional to each other.
  • the fully closed reference intake pressure PMegr0 is set for the engine speed NE and the engine load KL in the fully closed reference intake pressure map.
  • step 540 the ECU 80 takes in the pressure increase allowance ⁇ according to the engine speed NE.
  • the ECU 80 can obtain this pressure increase allowance ⁇ , for example, by referring to a predetermined pressure increase allowance map set in advance.
  • This pressure increase allowance ⁇ is added to the fully closed reference intake pressure PMegr0 in order to allow an error or the like at the time of determination described later.
  • step 550 the ECU 80 determines whether or not the detected intake pressure PM is larger than the addition result of the fully closed reference intake pressure PMegr0 and the pressure increase allowance ⁇ . If the determination result is affirmative, the ECU 80 shifts the process to step 560, and if the determination result is negative, the ECU 80 shifts the process to step 580.
  • step 560 the ECU 80 determines that the EGR valve 14 is an open failure due to foreign matter biting, and stores the determination result in the memory.
  • step 570 the ECU 80 calculates the biting foreign matter diameter K ⁇ XOP based on the current intake pressure PM and the fully closed reference intake pressure PMegr0.
  • the ECU 80 can obtain the biting foreign matter diameter K ⁇ XOP according to the difference between the intake pressure PM and the fully closed reference intake pressure PMegr0, for example, by referring to a predetermined biting foreign matter diameter map set in advance. After that, the ECU 80 returns the process to step 500.
  • step 580 after shifting from step 550, the ECU 50 determines that the EGR valve 14 is fully closed and normal, and returns the process to step 500.
  • the ECU 80 diagnoses an open failure of the EGR valve 14 (for example, due to foreign matter biting) based on the detected operating state of the engine 1 (intake pressure PM). It is composed. Specifically, when the engine 1 is decelerating and the ECU 80 controls the EGR valve 14 to be fully closed or the valve is closed, the ECU 80 refers to the fully closed reference intake pressure map to obtain an EGR opening degree. The fully closed reference intake pressure PMegr0 according to the engine rotation speed NE and the engine load KL is obtained.
  • the ECU 80 diagnoses the presence or absence of an open failure (for example, due to foreign matter biting) of the EGR valve 14 by comparing the fully closed reference intake pressure PMegr0 with the detected intake pressure PM. ..
  • the ECU 80 calculates the degree of the open failure (bite foreign matter diameter K ⁇ XOP) based on the detected intake pressure PM and the fully closed reference intake pressure PMegr0 when it is determined that the open failure exists.
  • FIG. 6 shows the contents of the control by a flowchart.
  • the ECU 80 determines in step 600 whether the operating state of the engine 1 is decelerated or idle. The ECU 80 can make this determination based on, for example, the accelerator opening degree ACC and the engine speed NE. If the determination result is affirmative, the ECU 80 shifts the process to step 610, and if the determination result is negative, the ECU 80 returns the process to step 600.
  • step 610 the ECU 80 determines whether or not the EGR valve 14 has an open failure.
  • the ECU 80 can make this determination based on the diagnosis result by the EGR valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 620, and if the determination result is negative, the ECU 80 returns the process to step 600.
  • step 620 the ECU 80 determines whether the bypass valve 17 is open or not. The ECU 80 can make this determination based on the diagnosis result by the bypass valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 630, and if the determination result is negative, the ECU 80 shifts the process to step 640.
  • step 630 the ECU 80 causes a double failure in which both the EGR valve 14 and the bypass valve 17 are open failures. Therefore, after prohibiting the engine stall countermeasure control, the process is returned to step 600.
  • the open failure of the EGR valve 14 and the open failure of the bypass valve 17 double failure
  • high-temperature EGR gas flows into the resin EGR gas distributor 15 and the intake manifold 5, and these There is a risk of melting damage.
  • engine stall countermeasure control for example, idle-up control
  • the implementation of engine stall countermeasure control that is effective when the EGR valve 14 is opened is prohibited. That is, it is designed to be stalled. In this way, the engine stall control is prohibited and the vehicle is intentionally stalled to make the vehicle unable to drive normally and to urge the driver to repair it.
  • step 640 since the open failure of the EGR valve 14 and the open failure of the bypass valve 17 do not overlap, the ECU 80 executes the engine stall countermeasure control (for example, idle-up control) and returns the process to step 600. That is, since only the EGR valve 14 has an open failure, the ECU 80 executes the engine stall countermeasure control.
  • the engine stall countermeasure control for example, idle-up control
  • the ECU 80 determines that the diagnosis result by the bypass valve failure diagnosis control is the open failure of the bypass valve 17 and the diagnosis result by the EGR valve failure diagnosis control is the open failure of the EGR valve 14. It is designed to prohibit the control of anti-stall measures.
  • This prohibition of anti-stall control means that when the operating state of the engine 1 is decelerated or idle, the engine stalls without helping to stall, and the throttle is used to limit the output of the engine 1. It corresponds to controlling the device 4 (output adjusting means).
  • the EGR gas lowered to an appropriate temperature flows to the intake passage 2 (including the intake manifold 5) through the downstream EGR passage 12 (including the EGR gas distributor 15).
  • the bypass valve 17 is normally closed, almost all of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the EGR cooler 13, and heat is exchanged by the EGR cooler 13 to lower the temperature to an appropriate level.
  • EGR gas at a different temperature flows to the intake passage 2 (including the intake manifold 5) via the downstream EGR passage 12 (including the EGR gas distributor 15).
  • the ECU 80 fails the bypass valve 17 based on at least the operating state (open / closed state) of the bypass valve 17 and the wall temperature THDW of the EGR passage 12 (including the EGR gas distributor 15) detected by the wall temperature sensor 78. To diagnose. Then, the ECU 80 controls the EGR valve 14 according to the diagnosis result of the failure of the bypass valve 17. Therefore, since the EGR valve 14 is controlled according to the diagnosis result of the failure of the bypass valve 17, the high temperature EGR gas is prevented from unnecessarily flowing to the downstream EGR passage 12 (including the EGR gas distributor 15). It becomes possible.
  • the ECU 80 when the diagnosis result by the ECU 80 is an open failure of the bypass valve 17 after the EGR start condition is satisfied, the ECU 80 opens the EGR valve 14 at a predetermined opening degree C1 (predetermined value) or less. Since the opening degree is controlled, the flow rate of the high temperature EGR gas flowing to the downstream EGR passage 12 (including the EGR gas distributor 15) is suppressed, and the temperature of the EGR gas flowing to the downstream EGR passage 12 is reduced.
  • the diagnosis result of the bypass valve 17 by the ECU 80 when the diagnosis result of the bypass valve 17 by the ECU 80 is a closed failure, the ECU 80 controls the EGR valve 14 to be fully closed under the valve opening condition of the bypass valve 17, so that the downstream EGR passage 12 (EGR gas distribution) is used.
  • the ECU 80 compares the cooling water temperature THW detected by the water temperature sensor 71 after the engine 1 is started with the wall temperature THW of the EGR gas distributor 15 detected by the wall temperature sensor 78. By doing so, the failure of the bypass valve 17 is diagnosed.
  • the water temperature sensor 71 is usually used to control the engine 1. Therefore, in order to diagnose the failure of the bypass valve 17, it is not necessary to provide a special detecting means other than the wall temperature sensor 78. Therefore, the configuration of the EGR system can be simplified and the product cost can be suppressed because it is not necessary to provide a special detection means.
  • the ECU 80 controls the engine stall. Is prohibited. Therefore, in the case of an open failure in which the EGR valve 14 cannot be controlled (double failure) in addition to the open failure of the bypass valve 17, the output of the engine 1 is limited by the throttle device 4, so that the engine 1 is normally operated. You will not be able to make it. Therefore, it is possible to promptly notify the driver that the engine 1 cannot be operated normally, and urge the driver to repair the bypass valve 17 and the EGR valve 14 as soon as possible for a double failure.
  • the ECU 80 determines the engine stall countermeasure control (for example, idle-up control) which is effective when the EGR valve 14 opens failure.
  • the implementation is intentionally prohibited. Therefore, after the engine 1 is started, an engine stall can be generated at the time of deceleration or idle, and the driver can be urged to repair.
  • bypass valve 17 since the bypass valve 17 operates in response to a change in the temperature of the cooling water, it is not necessary to electrically control the bypass valve 17, and the configuration relating to the bypass valve 17 is simplified. Therefore, the product cost as an EGR system can be suppressed.
  • This embodiment is different from the first embodiment in the content of the bypass valve failure diagnosis control executed by the ECU 80.
  • FIG. 7 shows the contents of the bypass valve failure diagnosis control of this embodiment by a flowchart.
  • the flowchart shown in FIG. 7 is different from the first embodiment in that step 700 and step 710 are provided instead of step 210 in the flowchart of FIG.
  • the ECU 80 calculates the correction temperature KTHW according to the EGR opening degree EEGR in step 700.
  • the ECU 80 can obtain the correction temperature KTHW according to the EGR opening degree EEGR by referring to the correction temperature map as shown in FIG. 8, for example.
  • the correction temperature KTHW is set so that the EGR opening EEGR becomes "0" from the fully closed state to the predetermined opening E1 and increases linearly from the predetermined opening E1 to the fully open. Will be done.
  • step 710 the ECU 80 determines whether or not the wall temperature THDW is equal to or higher than the addition result of the cooling water temperature THW and the correction temperature KTHW. If the determination result is affirmative, the ECU 80 shifts the process to step 220, and if the determination result is negative, the ECU 80 shifts the process to 230.
  • the ECU 80 corrects the detected cooling water temperature THW according to the opening degree of the EGR valve 14, unlike the first embodiment.
  • the cooling water temperature THW is corrected according to the EGR opening EEGR because the temperature of the EGR gas flowing out from the EGR cooler 13 and the bypass passage 16 increases as the flow rate of the EGR gas increases, that is, the EGR valve 14. This is because it becomes higher as the opening degree of is increased.
  • the ECU 80 corrects the detected cooling water temperature THW according to the opening degree of the EGR valve 14.
  • the temperature of the EGR gas flowing through the EGR passage 12 changes according to the flow rate of the EGR gas, that is, the opening degree of the EGR valve 14. Therefore, the cooling water temperature THW to be compared with the wall temperature THDW of the EGR passage 12 (including the EGR gas distributor 15) is corrected according to the flow rate of the EGR gas. Therefore, the failure of the bypass valve 17 can be accurately diagnosed.
  • This embodiment differs from each of the above embodiments in the content of the fail-safe control of the engine.
  • FIG. 9 shows the contents of the fail-safe control of the engine in this embodiment by a flowchart.
  • the ECU 80 calculates the target throttle opening TTA based on the detected accelerator opening ACC in step 800.
  • the ECU 80 can obtain the target throttle opening TTA according to the accelerator opening ACC by referring to the target throttle opening map shown in FIG. 10, for example.
  • step 810 the ECU 80 determines whether or not the bypass valve 17 is open.
  • the ECU 80 can make this determination based on the diagnosis result by the bypass valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 820, and if the determination result is negative, the ECU 80 shifts the process to step 860.
  • step 820 the ECU 80 determines whether or not the EGR valve 14 has an open failure.
  • the ECU 80 can make this determination based on the diagnosis result by the EGR valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 830, and if the determination result is negative, the ECU 80 shifts the process to step 860.
  • step 830 the ECU 80 takes in the open failure opening TEGROD of the EGR valve 14.
  • the ECU 80 can obtain this open failure opening TEGROD based on the biting foreign matter diameter K ⁇ XOP obtained by the EGR valve failure diagnosis control, for example, by referring to a predetermined map.
  • step 840 the ECU 80 calculates the limited throttle opening TAEM according to the open failure opening TEGROD.
  • the ECU 80 can obtain the limited throttle opening TAEM according to the open failure opening TEGROD by referring to the limited throttle opening map shown in FIG. 11, for example. In this map, the limit throttle opening TAEM is set to decrease as the open failure opening TEGROD increases.
  • step 850 the ECU 80 determines whether or not the target throttle opening TTA is less than the limit throttle opening TAEM. If the determination result is affirmative, the ECU 80 shifts the process to step 860, and if the determination result is negative, the ECU 80 shifts the process to step 870.
  • step 860 the ECU 80 sets the target throttle opening TTA as the final control throttle opening LTTA. Then, the ECU 80 controls the throttle device 4 to this final control throttle opening degree LTTA. After that, the ECU 80 returns the process to step 800.
  • step 870 the ECU 80 sets the limited throttle opening TAEM as the target throttle opening TTA, and then shifts the process to step 860.
  • the ECU 80 outputs the output of the engine 1 unlike the above embodiments.
  • the throttle device 4 output adjusting means
  • the throttle device 4 is controlled to a limited throttle opening TAEM smaller than the original target throttle opening TTA.
  • This embodiment is different from the third embodiment in the content of the fail-safe control of the engine.
  • FIG. 12 shows the contents of the fail-safe control of the engine in this embodiment by a flowchart.
  • the flowchart shown in FIG. 12 differs from the third embodiment in that steps 900, 910, and 920 are provided in place of steps 840, 850, and 870 of the flowchart of FIG.
  • the ECU 80 calculates the fuel cut throttle opening TAEMFC according to the open failure opening TEGROD in step 900 after executing the processes of steps 800 to 830.
  • the ECU 80 can obtain the fuel cut throttle opening TAEMFC according to the open failure opening TEGROD by referring to the fuel cut throttle opening map according to FIG. 11, for example.
  • step 910 the ECU 80 determines whether or not the target throttle opening TTA is less than the fuel cut throttle opening TAEMFC. If the determination result is affirmative, the ECU 80 shifts the process to step 860, and if the determination result is negative, the ECU 80 shifts the process to step 920.
  • step 920 the ECU 80 is configured to execute a fuel cut (cut off the supply of fuel to the engine 1). Therefore, the ECU 80 controls the fuel injection device. After that, the ECU 80 shifts the process to step 860.
  • the ECU 80 is a fuel injection device (output) in order to limit the output of the engine 1 when a double failure of the bypass valve 17 and the EGR valve 14 occurs, unlike the third embodiment.
  • the adjusting means is controlled to cut the fuel.
  • the bypass valve 17 is configured to open or close according to the temperature of the cooling water, but the bypass valve is opened or closed according to the temperature of the EG gas. It can also be configured.
  • thermowax is used for the bypass valve 17 as an actuator that operates in response to a change in temperature, but bimetal or a shape memory alloy can also be used instead of the thermowax.
  • a wall temperature sensor 78 for detecting the temperature of the inner wall of the EGR gas distributor 15 is provided as an EGR temperature detecting means for detecting the temperature of the EGR passage 12 downstream of the EGR cooler 13.
  • a wall temperature sensor that detects the temperature of the inner wall of the EGR passage 12 itself can be provided.
  • a wall temperature sensor 78 for detecting the temperature of the inner wall of the EGR gas distributor 15 is provided as an EGR temperature detecting means for detecting the temperature of the EGR passage 12 downstream of the EGR cooler 13.
  • an EGR gas temperature sensor for detecting the temperature of the EGR gas can also be provided as an EGR temperature detecting means.
  • This disclosure technology can be applied to gasoline engines and diesel engines mounted on vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

This EGR system comprises: an EGR valve (14) that regulates the flow rate of EGR gas in an EGR passage (12); an EGR cooler (13) that performs heat exchange between the EGR gas and engine cooling water to cool the EGR gas flowing through the EGR passage (12); a bypass passage (16) that allows a portion of the EGR gas flowing toward the EGR cooler (13) in the EGR passage (12) to avoid the EGR cooler (13); a bypass valve (17) that opens and closes the bypass passage (16); a wall temperature sensor (78) that is provided in the EGR passage (12) downstream of the EGR cooler (13) and the bypass passage (16) and that detects the wall temperature of the EGR passage (12); and an ECU (80) that diagnoses a failure of the bypass valve (17) on the basis of at least the operating state of the bypass valve (17) and the detected wall temperature, and that controls the EGR valve (14) in accordance with the result of the diagnosis.

Description

EGRシステムEGR system
 この明細書に開示される技術は、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介して吸気通路へ流してエンジンへ還流させるように構成したEGRシステムに係り、詳しくは、そのシステムの故障を診断するように構成したEGRシステムに関する。 The technique disclosed herein relates to an EGR system configured to allow a portion of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to flow through the EGR passage to the intake passage and return to the engine. Relates to an EGR system configured to diagnose a failure of that system.
 従来、この種の技術として、例えば、下記の特許文献1に記載される技術(内燃機関の排気ガス還流装置)が知られている。この技術の排気ガス還流装置(EGR装置)は、エンジンの排気通路と吸気通路とを連通する排気ガス還流通路(EGR通路)に、排気ガス循環量(EGRガス流量)を制御するEGR制御弁(EGR弁)とEGRガスを冷却するEGRクーラと、EGRクーラをバイパスするバイパス通路と、バイパス通路へのEGRガスの流入を制御する切替え制御弁(バイパス弁)とを備える。また、このEGR装置は、バイパス弁の下流側に設けられる温度検出手段と、所定時にバイパス弁を切り替え作動させる作動手段と、その作動手段によるバイパス弁の切り替え作動の前後において温度検出手段により検出される温度差に基づきEGRクーラの冷却異常を診断する診断手段とを更に備える。 Conventionally, as this kind of technology, for example, the technology described in Patent Document 1 below (exhaust gas recirculation device for an internal combustion engine) is known. The exhaust gas recirculation device (EGR device) of this technology is an EGR control valve (EGR gas flow rate) that controls the exhaust gas circulation amount (EGR gas flow rate) in the exhaust gas recirculation passage (EGR passage) that connects the exhaust passage and the intake passage of the engine. It is provided with an EGR valve), an EGR cooler that cools the EGR gas, a bypass passage that bypasses the EGR cooler, and a switching control valve (bypass valve) that controls the inflow of the EGR gas into the bypass passage. Further, this EGR device is detected by the temperature detecting means provided on the downstream side of the bypass valve, the operating means for switching and operating the bypass valve at a predetermined time, and the temperature detecting means before and after the switching operation of the bypass valve by the operating means. Further provided with a diagnostic means for diagnosing a cooling abnormality of the EGR cooler based on the temperature difference.
特開2008-106633号公報Japanese Unexamined Patent Publication No. 2008-106633
 ところが、特許文献1に記載の技術では、EGRクーラの冷却異常を診断できるものの、その冷却異常の発生を判断したときに、エンジンへのEGRガスの導入をどのように制御するかについては特に示していない。そのため、冷却異常に対し適正に対処することができなかった。その結果、冷却異常が発生しているにもかかわらずEGRを実施してしまうことで、不十分な暖機によりEGR通路に凝縮水が発生したり、過熱によりEGR通路が溶損したりするおそれがあった。 However, although the technique described in Patent Document 1 can diagnose a cooling abnormality of the EGR cooler, it particularly shows how to control the introduction of EGR gas into the engine when the occurrence of the cooling abnormality is determined. Not. Therefore, it was not possible to properly deal with the cooling abnormality. As a result, if EGR is performed even though a cooling abnormality has occurred, there is a risk that condensed water will be generated in the EGR passage due to insufficient warming up, or that the EGR passage will be melted due to overheating. there were.
 この開示技術は、上記事情に鑑みてなされたものであって、その目的は、バイパス通路に設けられるバイパス弁が故障しても、EGRクーラ及びバイパス通路より下流のEGR通路において凝縮水の発生とEGR通路の溶損を抑制することを可能としたEGRシステムを提供することにある。 This disclosure technique was made in view of the above circumstances, and the purpose is to generate condensed water in the EGR cooler and the EGR passage downstream of the bypass passage even if the bypass valve provided in the bypass passage fails. It is an object of the present invention to provide an EGR system capable of suppressing melting damage of an EGR passage.
 (1)上記目的を達成するために、本発明の態様は、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介し吸気通路へ流してエンジンへ還流させるように構成したEGRシステムにおいて、EGR通路においてEGRガスの流量を調節するためのEGR弁と、EGR通路を流れるEGRガスを冷却するために、EGRガスとエンジンの冷却水との間で熱交換を行うEGRクーラと、EGR通路においてEGRクーラへ流れるEGRガスの一部を迂回させるためのバイパス通路と、バイパス通路を開閉するためのバイパス弁と、EGRクーラ及びバイパス通路より下流のEGR通路に設けられ、EGR通路の壁の温度又はEGRガスの温度を検出するためのEGR温度検出手段と、少なくともバイパス弁の作動状態と、検出される温度とに基づきバイパス弁の故障を診断するためのバイパス弁故障診断手段と、バイパス弁故障診断手段による故障の診断結果に応じてEGR弁を制御するためのEGR弁制御手段とを備えたことを趣旨とする。 (1) In order to achieve the above object, the aspect of the present invention is configured so that a part of the exhaust gas discharged from the engine to the exhaust passage is passed as EGR gas to the intake passage through the EGR passage and returned to the engine. In the EGR system, an EGR valve for adjusting the flow rate of EGR gas in the EGR passage and an EGR cooler for exchanging heat between the EGR gas and the cooling water of the engine to cool the EGR gas flowing in the EGR passage. , A bypass passage for bypassing a part of the EGR gas flowing to the EGR cooler in the EGR passage, a bypass valve for opening and closing the bypass passage, and an EGR passage downstream of the EGR cooler and the bypass passage, which are provided in the EGR passage. EGR temperature detecting means for detecting wall temperature or EGR gas temperature, and bypass valve failure diagnostic means for diagnosing a bypass valve failure based on at least the operating state of the bypass valve and the detected temperature. It is intended that the EGR valve control means for controlling the EGR valve according to the failure diagnosis result by the bypass valve failure diagnosis means is provided.
 上記(1)の構成によれば、バイパス弁が正常に開いた状態では、バイパス通路は圧損が小さいので、排気通路からEGR通路へ流れるEGRガスの大半がバイパス通路へ流れると共に、残りがEGRクーラへ流れる。そして、それら二つの流れが下流のEGR通路で合流して吸気通路へ流れ、エンジンへ還流される。従って、排気通路からEGR通路へ温度の高いEGRガスが流れても、そのEGRガスの一部がEGRクーラで熱交換されて温度が低下してからバイパス通路を流れたEGRガスと合流し温度が低下するので、適度な温度に低下したEGRガスが下流のEGR通路を介して吸気通路へ流れる。一方、バイパス弁が正常に閉じた状態では、排気通路からEGR通路へ流れるEGRガスのほぼ全部がEGRクーラへ流れ、EGRクーラで熱交換されて適度な温度に低下し、適度な温度のEGRガスが下流のEGR通路を介して吸気通路へ流れる。ここで、バイパス弁故障診断手段は、少なくともバイパス弁の作動状態と、EGR温度検出手段により検出されるEGR通路の壁の温度又はEGRガスの温度とに基づきバイパス弁の故障を診断する。そして、EGR弁制御手段は、バイパス弁故障診断手段による故障の診断結果に応じてEGR弁を制御する。従って、バイパス弁の故障の診断結果に応じてEGR弁が制御されるので、高温のEGRガスが不必要に下流のEGR通路へ流れないようにすることが可能となる。 According to the configuration of (1) above, when the bypass valve is normally opened, the pressure loss of the bypass passage is small, so that most of the EGR gas flowing from the exhaust passage to the EGR passage flows to the bypass passage, and the rest is the EGR cooler. Flow to. Then, these two flows merge in the downstream EGR passage, flow to the intake passage, and are returned to the engine. Therefore, even if a high-temperature EGR gas flows from the exhaust passage to the EGR passage, a part of the EGR gas is heat-exchanged by the EGR cooler to lower the temperature, and then merges with the EGR gas flowing through the bypass passage to increase the temperature. As the temperature drops, the EGR gas lowered to an appropriate temperature flows to the intake passage through the downstream EGR passage. On the other hand, when the bypass valve is normally closed, almost all of the EGR gas flowing from the exhaust passage to the EGR passage flows to the EGR cooler, heat is exchanged by the EGR cooler, and the temperature drops to an appropriate temperature. Flows to the intake passage through the downstream EGR passage. Here, the bypass valve failure diagnosis means diagnoses the failure of the bypass valve based on at least the operating state of the bypass valve and the temperature of the wall of the EGR passage or the temperature of the EGR gas detected by the EGR temperature detecting means. Then, the EGR valve control means controls the EGR valve according to the failure diagnosis result by the bypass valve failure diagnosis means. Therefore, since the EGR valve is controlled according to the diagnosis result of the failure of the bypass valve, it is possible to prevent the high temperature EGR gas from unnecessarily flowing to the downstream EGR passage.
 (2)上記目的を達成するために、上記(1)の構成において、EGR弁制御手段は、バイパス弁故障診断手段による診断結果がバイパス弁の開故障(バイパス弁が開弁した状態のまま故障)である場合に、EGR弁を所定値以下の開度に制御し、診断結果がバイパス弁の閉故障(バイパス弁が閉弁した状態のまま故障)である場合に、バイパス弁の開弁条件下において、EGR弁を全閉に制御することが好ましい。 (2) In order to achieve the above object, in the configuration of the above (1), in the EGR valve control means, the diagnosis result by the bypass valve failure diagnosis means is a failure of the bypass valve open failure (a failure with the bypass valve open). ), The EGR valve is controlled to an opening of less than a predetermined value, and the diagnosis result is a failure to close the bypass valve (a failure with the bypass valve closed). Underneath, it is preferable to control the EGR valve to be fully closed.
 上記(2)の構成によれば、上記(1)の構成の作用に加え、バイパス弁故障診断手段による診断結果がバイパス弁の開故障である場合に、EGR制御手段がEGR弁を所定値以下の開度に制御するので、下流のEGR通路へ流れる高温のEGRガスの流量が抑えられ、下流のEGR通路へ流れるEGRガスの温度が低減される。一方、バイパス弁故障診断手段による診断結果がバイパス弁の閉故障である場合に、バイパス弁の開弁条件下において、EGR制御手段がEGR弁を全閉に制御するので、下流のEGR通路へのEGRガスの流れが遮断され、EGRクーラで熱交換されて温度が低下したEGRガスが下流のEGR通路へ流れることがない。 According to the configuration of (2) above, in addition to the operation of the configuration of (1) above, when the diagnosis result by the bypass valve failure diagnosis means is an open failure of the bypass valve, the EGR control means sets the EGR valve to a predetermined value or less. Since the opening degree is controlled, the flow rate of the high temperature EGR gas flowing to the downstream EGR passage is suppressed, and the temperature of the EGR gas flowing to the downstream EGR passage is reduced. On the other hand, when the diagnosis result by the bypass valve failure diagnosis means is a closed failure of the bypass valve, the EGR control means controls the EGR valve to be fully closed under the valve opening condition of the bypass valve. The flow of EGR gas is cut off, and the EGR gas whose temperature has dropped due to heat exchange by the EGR cooler does not flow to the downstream EGR passage.
 (3)上記目的を達成するために、上記(1)又は(2)の構成において、エンジンの冷却水の温度を検出するための冷却水温度検出手段を更に備え、バイパス弁故障診断手段は、エンジンの始動後に検出される冷却水の温度と、EGR温度検出手段により検出されるEGR通路の壁の温度又はEGRガスの温度とを比較することによりバイパス弁の故障を診断することが好ましい。 (3) In order to achieve the above object, in the configuration of (1) or (2) above, the cooling water temperature detecting means for detecting the temperature of the cooling water of the engine is further provided, and the bypass valve failure diagnosis means is provided. It is preferable to diagnose the failure of the bypass valve by comparing the temperature of the cooling water detected after starting the engine with the temperature of the wall of the EGR passage or the temperature of the EGR gas detected by the EGR temperature detecting means.
 上記(3)の構成によれば、上記(1)又は(2)の構成の作用に加え、バイパス弁故障診断手段は、エンジンの始動後に冷却水温度検出手段により検出される冷却水の温度と、EGR温度検出手段により検出されるEGR通路の壁の温度又はEGRガスの温度とを比較することによりバイパス弁の故障を診断する。ここで、冷却水温度検出手段は、通常、エンジンを制御するために使用される。従って、バイパス弁の故障を診断するために、EGR温度検出手段の他に特別な検出手段を設ける必要がない。 According to the configuration of the above (3), in addition to the operation of the configuration of the above (1) or (2), the bypass valve failure diagnosis means is the temperature of the cooling water detected by the cooling water temperature detecting means after the engine is started. , The failure of the bypass valve is diagnosed by comparing the temperature of the wall of the EGR passage detected by the EGR temperature detecting means or the temperature of the EGR gas. Here, the cooling water temperature detecting means is usually used to control the engine. Therefore, in order to diagnose the failure of the bypass valve, it is not necessary to provide a special detecting means other than the EGR temperature detecting means.
 (4)上記目的を達成するために、上記(3)の構成において、バイパス弁故障診断手段は、検出される冷却水の温度をEGR弁の開度に応じて補正することが好ましい。 (4) In order to achieve the above object, in the configuration of the above (3), it is preferable that the bypass valve failure diagnosis means corrects the temperature of the detected cooling water according to the opening degree of the EGR valve.
 上記(4)の構成によれば、上記(3)の構成の作用に加え、バイパス弁故障診断手段は、検出される冷却水の温度をEGR弁の開度に応じて補正する。ここで、EGR通路を流れるEGRガスの温度は、EGRガスの流量、すなわちEGR弁の開度に応じて変化する。従って、EGR通路の壁の温度又はEGRガスの温度と比較される冷却水の温度が、EGRガスの流量に応じて補正される。 According to the configuration of (4) above, in addition to the operation of the configuration of (3) above, the bypass valve failure diagnosis means corrects the temperature of the detected cooling water according to the opening degree of the EGR valve. Here, the temperature of the EGR gas flowing through the EGR passage changes according to the flow rate of the EGR gas, that is, the opening degree of the EGR valve. Therefore, the temperature of the wall of the EGR passage or the temperature of the cooling water compared with the temperature of the EGR gas is corrected according to the flow rate of the EGR gas.
 (5)上記目的を達成するために、上記(1)乃至(4)のいずれかの構成において、EGR弁の故障を診断するためのEGR弁故障診断手段と、エンジンの出力を調節するための出力調節手段と、バイパス弁故障診断手段による診断結果がバイパス弁の開故障となり、かつEGR弁故障診断手段による診断結果がEGR弁の開故障となる場合に、エンジンの出力に制限をかけるために出力調節手段を制御するエンジン制御手段とを更に備えることが好ましい。 (5) In order to achieve the above object, in any of the above configurations (1) to (4), an EGR valve failure diagnosis means for diagnosing a failure of the EGR valve and an engine output for adjusting the output of the engine. To limit the output of the engine when the diagnosis result by the output adjusting means and the bypass valve failure diagnosis means is the open failure of the bypass valve and the diagnosis result by the EGR valve failure diagnosis means is the open failure of the EGR valve. It is preferable to further include an engine control means for controlling the output adjusting means.
 上記(5)の構成によれば、上記(1)乃至(4)のいずれかの構成の作用に加え、バイパス弁故障診断手段による診断結果がバイパス弁の開故障となり、かつEGR弁故障診断手段による診断結果がEGR弁の開故障となる二重故障の場合には、エンジン制御手段がエンジンの出力に制限をかけるために出力調節手段を制御する。従って、バイパス弁の開故障に加えEGR弁も制御できない開故障となる(二重故障となる)場合は、出力調節手段によりエンジンの出力に制限がかけられるので、エンジンを通常運転させることができなくなる。 According to the configuration of (5) above, in addition to the operation of any of the configurations (1) to (4) above, the diagnosis result by the bypass valve failure diagnosis means is the open failure of the bypass valve, and the EGR valve failure diagnosis means. In the case of a double failure in which the diagnosis result by EGR valve is an open failure, the engine control means controls the output adjusting means in order to limit the output of the engine. Therefore, in the case of an open failure in which the EGR valve cannot be controlled (double failure) in addition to the open failure of the bypass valve, the output of the engine is limited by the output adjusting means, so that the engine can be operated normally. It disappears.
 上記(1)の構成によれば、バイパス通路に設けられるバイパス弁が故障しても、EGRクーラ及びバイパス通路より下流のEGR通路において凝縮水の発生とEGR通路の溶損を抑制することができる。 According to the configuration (1) above, even if the bypass valve provided in the bypass passage fails, it is possible to suppress the generation of condensed water and the melting damage of the EGR passage in the EGR cooler and the EGR passage downstream of the bypass passage. ..
 上記(2)の構成によれば、上記(1)の構成と同等の効果を得ることができる。 According to the configuration of (2) above, the same effect as the configuration of (1) above can be obtained.
 上記(3)の構成によれば、上記(1)又は(2)の構成の効果に加え、特別な検出手段を設ける必要がない分だけ、EGRシステムの構成を簡略化することができ、その製品コストを抑えることができる。 According to the configuration of the above (3), in addition to the effect of the configuration of the above (1) or (2), the configuration of the EGR system can be simplified to the extent that no special detection means needs to be provided. Product costs can be reduced.
 上記(4)の構成によれば、上記(3)の構成の効果に加え、バイパス弁の故障を精度よく診断することができる。 According to the configuration of (4) above, in addition to the effect of the configuration of (3) above, the failure of the bypass valve can be accurately diagnosed.
 上記(5)の構成によれば、上記(1)乃至(4)のいずれかの構成の効果に加え、エンジンが通常運転できない状態であることを速やかに運転者に気づかせ、バイパス弁とEGR弁の二重故障に対する早めの修理を運転者に促すことができる。 According to the configuration of (5) above, in addition to the effect of any of the configurations (1) to (4) above, the driver is promptly noticed that the engine cannot be operated normally, and the bypass valve and EGR are made. It is possible to encourage the driver to repair the valve for double failure as soon as possible.
第1実施形態に係り、エンジンシステムを示す概略構成図。A schematic configuration diagram showing an engine system according to the first embodiment. 第1実施形態に係り、バイパス弁故障診断制御の内容を示すフローチャート。The flowchart which concerns on 1st Embodiment and shows the content of the bypass valve failure diagnosis control. 第1実施形態に係り、冷却水温度に対するバイパス弁の開度特性を示すグラフ。The graph which shows the opening degree characteristic of the bypass valve with respect to the cooling water temperature which concerns on 1st Embodiment. 第1実施形態に係り、EGR制御の内容を示すフローチャート。A flowchart showing the contents of EGR control according to the first embodiment. 第1実施形態に係り、EGR弁故障診断制御の内容を示すフローチャート。The flowchart which concerns on 1st Embodiment and shows the content of EGR valve failure diagnosis control. 第1実施形態に係り、エンジンのフェイルセーフ制御の内容を示すフローチャート。A flowchart showing the contents of the fail-safe control of the engine according to the first embodiment. 第2実施形態に係り、バイパス弁故障診断制御の内容を示すフローチャート。A flowchart showing the contents of the bypass valve failure diagnosis control according to the second embodiment. 第2実施形態に係り、EGR開度に応じた補正温度を求めるために参照される補正温度マップ。A correction temperature map referred to in order to obtain a correction temperature according to the EGR opening degree according to the second embodiment. 第3実施形態に係り、エンジンのフェイルセーフ制御の内容を示すフローチャート。A flowchart showing the contents of the fail-safe control of the engine according to the third embodiment. 第3実施形態に係り、アクセル開度に応じた目標スロットル開度を求めるために参照される目標スロットル開度マップ。A target throttle opening degree map referred to in order to obtain a target throttle opening degree according to an accelerator opening degree according to the third embodiment. 第3実施形態に係り、開故障開度に応じた制限スロットル開度を求めるために参照される制限スロットル開度マップ。A limited throttle opening degree map referred to in order to obtain a limited throttle opening degree according to an open failure opening degree according to a third embodiment. 第4実施形態に係り、エンジンのフェイルセーフ制御の内容を示すフローチャート。A flowchart showing the contents of the fail-safe control of the engine according to the fourth embodiment.
 以下、EGRシステムをガソリンエンジンシステムに具体化したいくつかの実施形態について説明する。 Hereinafter, some embodiments in which the EGR system is embodied in a gasoline engine system will be described.
<第1実施形態>
 先ず、第1実施形態について図面を参照して詳細に説明する。
<First Embodiment>
First, the first embodiment will be described in detail with reference to the drawings.
[エンジンシステムについて]
 図1に、この実施形態のガソリンエンジンシステム(以下、単に「エンジンシステム」と言う。)を概略構成図により示す。自動車に搭載されたエンジンシステムは、複数の気筒を有するエンジン1を備える。このエンジン1は、4気筒、4サイクルのレシプロエンジンであり、ピストン及びクランクシャフト等の周知の構成を含む。エンジン1には、各気筒へ吸気を導入するための吸気通路2と、エンジン1の各気筒から排気を導出するための排気通路3が設けられる。吸気通路2には、その上流側からエアクリーナ9、スロットル装置4及び吸気マニホールド5が設けられる。加えて、このエンジンシステムは、高圧ループタイプの排気還流装置(EGR装置)11を備える。
[About the engine system]
FIG. 1 shows a gasoline engine system of this embodiment (hereinafter, simply referred to as “engine system”) by a schematic configuration diagram. The engine system mounted on the automobile includes an engine 1 having a plurality of cylinders. The engine 1 is a 4-cylinder, 4-cycle reciprocating engine and includes well-known configurations such as a piston and a crankshaft. The engine 1 is provided with an intake passage 2 for introducing intake air into each cylinder and an exhaust passage 3 for deriving exhaust gas from each cylinder of the engine 1. The intake passage 2 is provided with an air cleaner 9, a throttle device 4, and an intake manifold 5 from the upstream side thereof. In addition, this engine system comprises a high pressure loop type exhaust gas recirculation device (EGR device) 11.
 スロットル装置4は、吸気マニホールド5より上流の吸気通路2に配置され、運転者のアクセル操作に応じてバタフライ式のスロットル弁4aを開度可変に開閉駆動させることで、吸気通路2を流れる吸気量を調節するようになっている。スロットル装置4は、この開示技術における出力調節手段の一例に相当する。吸気マニホールド5は、主として樹脂材より構成され、エンジン1の直上流にて吸気通路2に配置され、吸気が導入される一つのサージタンク5aと、サージタンク5aに導入された吸気をエンジン1の各気筒へ分配するためにサージタンク5aから分岐した複数(4つ)の分岐管5bとを含む。排気通路3には、その上流側から順に排気マニホールド6及び触媒7が設けられる。触媒7には、排気を浄化するために、例えば、三元触媒が内蔵される。 The throttle device 4 is arranged in the intake passage 2 upstream of the intake manifold 5, and by driving the butterfly type throttle valve 4a to open and close with a variable opening according to the accelerator operation of the driver, the amount of intake air flowing through the intake passage 2 Is designed to be adjusted. The throttle device 4 corresponds to an example of the output adjusting means in the disclosed technique. The intake manifold 5 is mainly composed of a resin material and is arranged in the intake passage 2 directly upstream of the engine 1. One surge tank 5a into which the intake air is introduced and the intake air introduced in the surge tank 5a are used in the engine 1. It includes a plurality of (four) branch pipes 5b branched from the surge tank 5a for distribution to each cylinder. The exhaust manifold 6 and the catalyst 7 are provided in the exhaust passage 3 in order from the upstream side thereof. For example, a three-way catalyst is built in the catalyst 7 in order to purify the exhaust gas.
 エンジン1には、各気筒に対応して燃料を噴射するための燃料噴射装置(図示略)が設けられる。燃料噴射装置は、燃料供給装置(図示略)から供給される燃料をエンジン1の各気筒へ噴射するように構成される。各気筒では、燃料噴射装置から噴射される燃料と吸気マニホールド5から導入される吸気とにより可燃混合気が形成される。 The engine 1 is provided with a fuel injection device (not shown) for injecting fuel corresponding to each cylinder. The fuel injection device is configured to inject fuel supplied from a fuel supply device (not shown) into each cylinder of the engine 1. In each cylinder, a combustible air-fuel mixture is formed by the fuel injected from the fuel injection device and the intake air introduced from the intake manifold 5.
 エンジン1には、各気筒に対応して点火装置(図示略)が設けられる。点火装置は、各気筒で可燃混合気に点火するように構成される。各気筒内の可燃混合気は、点火装置の点火動作により爆発・燃焼し、燃焼後の排気は、各気筒から排気マニホールド6及び触媒7を経て外部へ排出される。このとき、各気筒でピストン(図示略)が上下運動し、クランクシャフト(図示略)が回転することにより、エンジン1に動力が得られる。 The engine 1 is provided with an ignition device (not shown) corresponding to each cylinder. The igniter is configured to ignite the combustible mixture in each cylinder. The combustible air-fuel mixture in each cylinder explodes and burns due to the ignition operation of the ignition device, and the exhaust gas after combustion is discharged from each cylinder to the outside via the exhaust manifold 6 and the catalyst 7. At this time, the piston (not shown) moves up and down in each cylinder, and the crankshaft (not shown) rotates to obtain power to the engine 1.
[EGRシステムについて]
 この実施形態のEGRシステムは、高圧ループタイプのEGR装置11を備える。EGR装置11は、エンジン1の各気筒から排気通路3へ排出される排気の一部を排気還流ガス(EGRガス)として吸気通路2へ流してエンジン1の各気筒へ還流させるように構成される。EGR装置11は、排気通路3から吸気通路2へEGRガスを流すための排気還流通路(EGR通路)12と、EGR通路12を流れるEGRガスを冷却するための排気還流クーラ(EGRクーラ)13と、EGR通路12を流れるEGRガスの流量を調節するためにEGRクーラ13より下流に設けられた排気還流弁(EGR弁)14と、EGR通路12を流れるEGRガスをエンジン1の各気筒へ分配するために、吸気マニホールド5の各分岐管5bへEGRガスを分配する樹脂製の排気還流ガス分配器(EGRガス分配器)15とを備える。EGRガス分配器15は、EGRクーラ13及びEGR弁14より下流のEGR通路12に設けられる。EGR通路12は、入口12aと出口12bを含む。EGR通路12の入口12aは、触媒7より上流の排気通路3に接続され、同通路12の出口12bは、EGRガス分配器15に接続される。この実施形態で、EGRガス分配器15は、EGR通路12の終段を構成している。EGR通路12において、EGR弁14は、EGRクーラ13より下流にてEGRクーラ13に隣接して設けられる。EGR弁14は、ステップモータを駆動源として弁体を駆動するように構成される。EGRクーラ13には、エンジン1の冷却水が流れるように構成される。EGRクーラ13は、EGR通路12を流れるEGRガスを冷却するために、EGRガスとエンジン1の冷却水との間で熱交換を行うように構成される。ここでは、EGRクーラ13の詳しい構成の説明を省略する。
[About the EGR system]
The EGR system of this embodiment includes a high pressure loop type EGR device 11. The EGR device 11 is configured to flow a part of the exhaust gas discharged from each cylinder of the engine 1 to the exhaust passage 3 as an exhaust gas recirculation gas (EGR gas) to the intake passage 2 and return the exhaust gas to each cylinder of the engine 1. .. The EGR device 11 includes an exhaust gas recirculation passage (EGR passage) 12 for flowing EGR gas from the exhaust passage 3 to the intake passage 2, and an exhaust gas recirculation cooler (EGR cooler) 13 for cooling the EGR gas flowing through the EGR passage 12. , The exhaust gas recirculation valve (EGR valve) 14 provided downstream from the EGR cooler 13 in order to adjust the flow rate of the EGR gas flowing through the EGR passage 12, and the EGR gas flowing through the EGR passage 12 are distributed to each cylinder of the engine 1. Therefore, an exhaust gas recirculation gas distributor (EGR gas distributor) 15 made of a resin that distributes EGR gas to each branch pipe 5b of the intake manifold 5 is provided. The EGR gas distributor 15 is provided in the EGR passage 12 downstream of the EGR cooler 13 and the EGR valve 14. The EGR passage 12 includes an inlet 12a and an outlet 12b. The inlet 12a of the EGR passage 12 is connected to the exhaust passage 3 upstream of the catalyst 7, and the outlet 12b of the passage 12 is connected to the EGR gas distributor 15. In this embodiment, the EGR gas distributor 15 constitutes the final stage of the EGR passage 12. In the EGR passage 12, the EGR valve 14 is provided adjacent to the EGR cooler 13 downstream of the EGR cooler 13. The EGR valve 14 is configured to drive the valve body using a step motor as a drive source. The EGR cooler 13 is configured to allow the cooling water of the engine 1 to flow. The EGR cooler 13 is configured to exchange heat between the EGR gas and the cooling water of the engine 1 in order to cool the EGR gas flowing through the EGR passage 12. Here, the detailed description of the configuration of the EGR cooler 13 will be omitted.
 このEGR装置11では、EGR弁14が開弁することにより、排気通路3を流れる排気の一部がEGRガスとしてEGR通路12を流れ、EGRクーラ13、EGR弁14及びEGRガス分配器15を介して吸気マニホールド5の各分岐管5bへ分配され、更にエンジン1の各気筒へ分配されて還流される。 In this EGR device 11, when the EGR valve 14 is opened, a part of the exhaust gas flowing through the exhaust passage 3 flows through the EGR passage 12 as EGR gas, and passes through the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It is distributed to each branch pipe 5b of the intake manifold 5, and further distributed to each cylinder of the engine 1 to be circulated.
 この実施形態において、EGRクーラ13には、バイパス通路16が設けられる。バイパス通路16は、EGR通路12において、EGRクーラ13へ流れるEGRガスの一部を迂回させるための通路である。バイパス通路16には、同通路16を開閉するためのバイパス弁17が設けられる。 In this embodiment, the EGR cooler 13 is provided with a bypass passage 16. The bypass passage 16 is a passage for bypassing a part of the EGR gas flowing to the EGR cooler 13 in the EGR passage 12. The bypass passage 16 is provided with a bypass valve 17 for opening and closing the passage 16.
 EGRガス分配器15は、主として樹脂材により構成され、全体として横長な形状を有し、その長手方向(図1の左右方向)において、図1に示すように、吸気マニホールド5の複数の分岐管5bを横切るように配置される。この実施形態で、EGRガス分配器15は、EGR通路12の出口12bから導入されるEGRガスが集まる一つのガスチャンバ15aと、ガスチャンバ15aから分岐され、ガスチャンバ15aから各分岐管5bへEGRガスを分配する複数(4つ)のガス分配通路15bとを含む。 The EGR gas distributor 15 is mainly composed of a resin material, has a horizontally long shape as a whole, and has a plurality of branch pipes of the intake manifold 5 in the longitudinal direction (left-right direction in FIG. 1) as shown in FIG. Arranged so as to cross 5b. In this embodiment, the EGR gas distributor 15 is branched from one gas chamber 15a in which the EGR gas introduced from the outlet 12b of the EGR passage 12 collects, and the gas chamber 15a, and the EGR is branched from the gas chamber 15a to each branch pipe 5b. It includes a plurality (4) gas distribution passages 15b for distributing gas.
[バイパス弁について]
 この実施形態において、バイパス弁17は、EGRクーラ13のハウジングに取り付けられ、同ハウジングと一体をなすバイパス通路16を開閉するように構成される。この実施形態で、バイパス弁17には、エンジンの冷却水が流れるように構成される。バイパス弁17は、冷却水の温度の変化に感応して動作するように構成される。バイパス弁17は、冷却水の温度が所定値以上となるときに、その弁体を開いた状態から閉じるように構成されるアクチュエータを含む。アクチュエータは、例えば、サーモワックスにより構成することができる。ここでは、バイパス弁17の詳しい構成の説明を省略する。
[Bypass valve]
In this embodiment, the bypass valve 17 is attached to the housing of the EGR cooler 13 and is configured to open and close the bypass passage 16 integrally with the housing. In this embodiment, the bypass valve 17 is configured to allow engine cooling water to flow. The bypass valve 17 is configured to operate in response to a change in the temperature of the cooling water. The bypass valve 17 includes an actuator configured to close the valve body from the open state when the temperature of the cooling water exceeds a predetermined value. The actuator can be configured, for example, with a thermowax. Here, a detailed description of the configuration of the bypass valve 17 will be omitted.
 この実施形態で、バイパス弁17は、低温時には、アクチュエータにより開弁してバイパス通路16を開放し、高温時には、アクチュエータにより閉弁してバイパス通路16を遮断する。すなわち、この実施形態で、冷却水の温度が所定値より低い場合は、バイパス弁17は暖められず、開弁する。バイパス弁17が開弁する場合は、排気通路3からEGR通路12へ流れるEGRガスの大部分がバイパス通路16へ流れ、残りのEGRガスがEGRクーラ13へ流れて、それぞれEGRクーラ13より下流のEGR通路12にて合流する。合流したEGRガスは、更にEGRガス分配器15へ流れ、吸気マニホールド5を介してエンジン1の各気筒へ分配される。これに対し、冷却水の温度が所定値より高い場合には、バイパス弁17は暖められ、閉弁する。バイパス弁17が閉弁する場合は、排気通路3からEGR通路12へ流れるEGRガスの全部がEGRクーラ13へ流れて冷却され、更にEGR弁14及びEGRガス分配器15へ流れ、吸気マニホールド5を介してエンジン1の各気筒へ分配され還流される。 In this embodiment, the bypass valve 17 is opened by an actuator to open the bypass passage 16 at a low temperature, and closed by an actuator to shut off the bypass passage 16 at a high temperature. That is, in this embodiment, when the temperature of the cooling water is lower than a predetermined value, the bypass valve 17 is not warmed and is opened. When the bypass valve 17 opens, most of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the bypass passage 16, and the remaining EGR gas flows to the EGR cooler 13, respectively downstream of the EGR cooler 13. Meet at EGR passage 12. The merged EGR gas further flows to the EGR gas distributor 15 and is distributed to each cylinder of the engine 1 via the intake manifold 5. On the other hand, when the temperature of the cooling water is higher than a predetermined value, the bypass valve 17 is warmed and closed. When the bypass valve 17 is closed, all of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the EGR cooler 13 to be cooled, and further flows to the EGR valve 14 and the EGR gas distributor 15 to drive the intake manifold 5. It is distributed to each cylinder of the engine 1 and circulated.
[エンジンシステムの電気的構成について]
 次に、エンジンシステムの電気的構成の一例について説明する。図1において、このエンジンシステムに設けられる各種センサ等70~79は、エンジン1の運転状態を検出するための運転状態検出手段を構成する。運転席に設けられるイグニションスイッチ(IGスイッチ)70は、エンジン1を始動又は停止させるために運転者によりオン・オフ操作され、その操作に応じた電気信号を出力する。エンジン1に設けられる水温センサ71は、エンジン1の内部を流れる冷却水の温度(冷却水温度)THWを検出し、その検出値に応じた電気信号を出力する。水温センサ71は、この開示技術における冷却水温度検出手段の一例に相当する。エンジン1に設けられる回転数センサ72は、エンジン1のクランクシャフトの回転角(クランク角度)を検出すると共に、そのクランク角度の変化(クランク角速度)をエンジン1の回転数(エンジン回転数)NEとして検出し、その検出値に応じた電気信号を出力する。エアクリーナ9の近傍に設けられるエアフローメータ73は、エアクリーナ9を流れる吸気量Gaを検出し、その検出値に応じた電気信号を出力する。サージタンク5aに設けられる吸気圧センサ74は、スロットル装置4より下流の吸気通路2(サージタンク5a)における吸気圧力PMを検出し、その検出値に応じた電気信号を出力する。スロットル装置4に設けられるスロットルセンサ75は、スロットル弁4aの開度(スロットル開度)TAを検出し、その検出値に応じた電気信号を出力する。EGR通路12の入口12aと触媒7との間の排気通路3に設けられる酸素センサ76は、排気中の酸素濃度Oxを検出し、その検出値に応じた電気信号を出力する。エアクリーナ9の入口に設けられる吸気温センサ77は、エアクリーナ9に吸入される外気の温度(吸気温度)THAを検出し、その検出値に応じた電気信号を出力する。EGRガス分配器15に設けられる壁温センサ78は、EGRガス分配器15の壁の温度(壁温度)THDWを検出し、その検出値に応じた電気信号を出力する。壁温センサ78は、この開示技術におけるEGR温度検出手段の一例に相当する。運転席のアクセルペダル10に設けられるアクセルセンサ79は、運転者によるアクセルペダル10の踏み込み量をアクセル開度ACCとして検出し、その検出値に応じた電気信号を出力するようになっている。
[About the electrical configuration of the engine system]
Next, an example of the electrical configuration of the engine system will be described. In FIG. 1, various sensors and the like 70 to 79 provided in this engine system constitute an operating state detecting means for detecting an operating state of the engine 1. The ignition switch (IG switch) 70 provided in the driver's seat is turned on and off by the driver in order to start or stop the engine 1, and outputs an electric signal corresponding to the operation. The water temperature sensor 71 provided in the engine 1 detects the temperature (cooling water temperature) THW of the cooling water flowing inside the engine 1 and outputs an electric signal according to the detected value. The water temperature sensor 71 corresponds to an example of the cooling water temperature detecting means in the disclosed technology. The rotation speed sensor 72 provided in the engine 1 detects the rotation angle (crank angle) of the crankshaft of the engine 1 and uses the change in the crank angle (crank angle speed) as the rotation speed (engine rotation speed) NE of the engine 1. Detects and outputs an electric signal according to the detected value. The air flow meter 73 provided in the vicinity of the air cleaner 9 detects the intake air amount Ga flowing through the air cleaner 9, and outputs an electric signal according to the detected value. The intake pressure sensor 74 provided in the surge tank 5a detects the intake pressure PM in the intake passage 2 (surge tank 5a) downstream of the throttle device 4, and outputs an electric signal according to the detected value. The throttle sensor 75 provided in the throttle device 4 detects the opening degree (throttle opening degree) TA of the throttle valve 4a and outputs an electric signal corresponding to the detected value. The oxygen sensor 76 provided in the exhaust passage 3 between the inlet 12a of the EGR passage 12 and the catalyst 7 detects the oxygen concentration Ox in the exhaust and outputs an electric signal according to the detected value. The intake air temperature sensor 77 provided at the inlet of the air cleaner 9 detects the temperature (intake air temperature) THA of the outside air sucked into the air cleaner 9, and outputs an electric signal according to the detected value. The wall temperature sensor 78 provided in the EGR gas distributor 15 detects the wall temperature (wall temperature) THDW of the EGR gas distributor 15 and outputs an electric signal according to the detected value. The wall temperature sensor 78 corresponds to an example of the EGR temperature detecting means in this disclosed technique. The accelerator sensor 79 provided on the accelerator pedal 10 in the driver's seat detects the amount of depression of the accelerator pedal 10 by the driver as the accelerator opening ACC, and outputs an electric signal according to the detected value.
 このエンジンシステムは、同システムの制御を司る電子制御装置(ECU)80を更に備える。ECU80には、各種センサ等70~79がそれぞれ接続される。また、ECU80には、EGR弁14の他、インジェクタ(図示略)及びイグニションコイル(図示略)が接続される。ECU80は、この開示技術におけるバイパス弁故障診断手段、EGR制御手段、EGR弁故障診断手段及びエンジン制御手段の一例に相当する。周知のようにECU80は、中央処理装置(CPU)、各種メモリ、外部入力回路及び外部出力回路等を備える。メモリには、各種制御に関する所定の制御プログラムが格納される。CPUは、入力回路を介して入力される各種センサ等70~79の検出信号に基づき、所定の制御プログラムに基づいて燃料噴射制御、点火時期制御及びEGR制御等を実行するようになっている。 This engine system further includes an electronic control unit (ECU) 80 that controls the system. Various sensors and the like 70 to 79 are connected to the ECU 80, respectively. Further, in addition to the EGR valve 14, an injector (not shown) and an ignition coil (not shown) are connected to the ECU 80. The ECU 80 corresponds to an example of the bypass valve failure diagnosis means, the EGR control means, the EGR valve failure diagnosis means, and the engine control means in the disclosed technology. As is well known, the ECU 80 includes a central processing unit (CPU), various memories, an external input circuit, an external output circuit, and the like. A predetermined control program related to various controls is stored in the memory. The CPU executes fuel injection control, ignition timing control, EGR control, and the like based on a predetermined control program based on the detection signals of various sensors and the like 70 to 79 input via the input circuit.
 この実施形態で、ECU80は、EGR制御において、エンジン1の運転状態に応じてEGR弁14(そのステップモータ)を制御するようになっている。具体的には、ECU80は、エンジン1の停止時、アイドル運転時及び減速運転時には、EGR弁14を全閉に制御し、それ以外の運転時には、その運転状態に応じて目標EGR開度を算出し、EGR弁14をその目標EGR開度に制御するようになっている。このときEGR弁14が開弁されることにより、エンジン1から排気通路3へ排出され、その排気の一部が、EGRガスとしてEGR通路12、EGRクーラ13、EGR弁14及びEGRガス分配器15等を介して吸気通路2(吸気マニホールド5)へ流れ、エンジン1の各気筒へ分配され還流される。 In this embodiment, the ECU 80 controls the EGR valve 14 (the step motor thereof) according to the operating state of the engine 1 in the EGR control. Specifically, the ECU 80 controls the EGR valve 14 to be fully closed during engine 1 stop, idle operation, and deceleration operation, and calculates a target EGR opening degree according to the operating state during other operations. However, the EGR valve 14 is controlled to the target EGR opening degree. At this time, when the EGR valve 14 is opened, it is discharged from the engine 1 to the exhaust passage 3, and a part of the exhaust gas is used as EGR gas in the EGR passage 12, the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It flows to the intake passage 2 (intake manifold 5) via the above, and is distributed to each cylinder of the engine 1 to be circulated.
[バイパス弁故障診断制御について]
 この実施形態で、エンジン1の始動時、始動後のEGR作動状態に応じてバイパス弁17の故障を診断するために、次のようなバイパス弁故障診断制御を実行するようになっている。
[Bypass valve failure diagnosis control]
In this embodiment, when the engine 1 is started, the following bypass valve failure diagnosis control is executed in order to diagnose the failure of the bypass valve 17 according to the EGR operating state after the start.
 図2に、この実施形態のバイパス弁故障診断制御の内容をフローチャートにより示す。処理がこのルーチンへ移行すると、ステップ100で、ECU80は、IGオンか否か、すなわちIGスイッチ70がオン操作されたか否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ110へ移行し、この判断結果が否定となる場合は処理をステップ250へ移行する。 FIG. 2 shows the contents of the bypass valve failure diagnosis control of this embodiment by a flowchart. When the process shifts to this routine, in step 100, the ECU 80 determines whether or not the IG is on, that is, whether or not the IG switch 70 is turned on. If the determination result is affirmative, the ECU 80 shifts the process to step 110, and if the determination result is negative, the ECU 80 shifts the process to step 250.
 ステップ110では、ECU80は、エンジン1が稼働したか否かを判断する。ECU80は、例えば、この判断を回転数センサ72により検出されるエンジン回転数NEに基づき行うことができる。ECU80は、この判断結果が肯定となる場合は処理をステップ120へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 In step 110, the ECU 80 determines whether or not the engine 1 has been operated. For example, the ECU 80 can make this determination based on the engine speed NE detected by the rotation speed sensor 72. If the determination result is affirmative, the ECU 80 shifts the process to step 120, and if the determination result is negative, the ECU 80 returns the process to step 100.
 ステップ120では、ECU80は、EGRがオンか否か、すなわちEGRを実行しているか否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ130へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 In step 120, the ECU 80 determines whether or not the EGR is on, that is, whether or not the EGR is being executed. If the determination result is affirmative, the ECU 80 shifts the process to step 130, and if the determination result is negative, the ECU 80 returns the process to step 100.
 ステップ130では、ECU80は、水温センサ71、吸気温センサ77及び壁温センサ78の検出値に基づき、冷却水温度THW、吸気温度THA及び壁温度THDWをそれぞれ取り込むと共に、EGR弁14の開度(EGR開度)EEGRを取り込む。ECU80は、例えば、EGR弁14のステップモータに対する制御指令値に基づきEGR開度EEGRを求めることができる。 In step 130, the ECU 80 takes in the cooling water temperature THW, the intake air temperature THA, and the wall temperature THDW, respectively, based on the detection values of the water temperature sensor 71, the intake air temperature sensor 77, and the wall temperature sensor 78, and opens the EGR valve 14 ( EGR opening) Take in EEGR. The ECU 80 can obtain, for example, the EGR opening degree EEGR based on the control command value for the step motor of the EGR valve 14.
 次に、ステップ140で、ECU80は、EGR開度EEGRが所定値α以上か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ150へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 Next, in step 140, the ECU 80 determines whether or not the EGR opening degree EEGR is equal to or greater than the predetermined value α. If the determination result is affirmative, the ECU 80 shifts the process to step 150, and if the determination result is negative, the ECU 80 returns the process to step 100.
 次に、ステップ150で、ECU80は、冷却水温度THWがバイパス弁17の半開温度THVHOよりも小さいか否かを判断する。図3に示すように、半開温度THVHOは、バイパス弁17が半開となる温度を意味する。図3は、冷却水温度THWに対するバイパス弁17の開度特性をグラフに示し、バイパス弁17が全開となる温度(全開温度(40℃))THVFOと、バイパス弁17が半開となる温度(半開温度(55℃))THVHOと、バイパス弁17が全閉となる温度(全閉温度(70℃))THVFCをそれぞれ示す。ECU80は、この判断結果が肯定となる場合は処理をステップ160へ移行し、この判断結果が否定となる場合は処理をステップ190へ移行する。 Next, in step 150, the ECU 80 determines whether or not the cooling water temperature THW is smaller than the half-open temperature THVHO of the bypass valve 17. As shown in FIG. 3, the half-open temperature THVHO means the temperature at which the bypass valve 17 is half-open. FIG. 3 graphically shows the opening characteristic of the bypass valve 17 with respect to the cooling water temperature THW. The temperature at which the bypass valve 17 is fully opened (fully open temperature (40 ° C.)) THVFO and the temperature at which the bypass valve 17 is half open (half open). The temperature (55 ° C.)) THVHO and the temperature at which the bypass valve 17 is fully closed (fully closed temperature (70 ° C.)) THVFC are shown. If the determination result is affirmative, the ECU 80 shifts the process to step 160, and if the determination result is negative, the ECU 80 shifts the process to step 190.
 ステップ160では、ECU80は、所定時間A1の経過を待って処理をステップ170へ移行する。 In step 160, the ECU 80 waits for the elapse of the predetermined time A1 and shifts the process to step 170.
 ステップ170では、ECU80は、壁温度THDWが冷却水温度THW未満か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ180へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 In step 170, the ECU 80 determines whether or not the wall temperature THDW is lower than the cooling water temperature THW. If the determination result is affirmative, the ECU 80 shifts the process to step 180, and if the determination result is negative, the ECU 80 returns the process to step 100.
 ステップ180では、ECU80は、冷却水温度THWが半開温度THVHO未満であるにもかかわらず、壁温度THDWが冷却水温度THW未満であることから、バイパス弁17が閉故障(バイパス弁17が閉弁した状態のまま故障)と判定すると共に、閉故障フラグXCLを「1」に設定し、処理をステップ100へ戻す。 In step 180, in the ECU 80, although the cooling water temperature THW is lower than the half-open temperature THVHO, the wall temperature THDW is lower than the cooling water temperature THW, so that the bypass valve 17 is closed (the bypass valve 17 is closed). The closed failure flag XCL is set to "1", and the process is returned to step 100.
 一方、ステップ150から移行してステップ190では、ECU80は、冷却水温度THWがバイパス弁17の全閉温度THVFC(図3参照)以上か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ200へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 On the other hand, in step 190 after shifting from step 150, the ECU 80 determines whether or not the cooling water temperature THW is equal to or higher than the fully closed temperature THVFC (see FIG. 3) of the bypass valve 17. If the determination result is affirmative, the ECU 80 shifts the process to step 200, and if the determination result is negative, the ECU 80 returns the process to step 100.
 ステップ200では、ECU80は、所定時間B1の経過を待って処理をステップ210へ移行する。 In step 200, the ECU 80 waits for the elapse of the predetermined time B1 and shifts the process to step 210.
 ステップ210では、ECU80は、壁温度THDWが冷却水温度THW以上か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ220へ移行し、この判断結果が否定となる場合は処理をステップ230へ移行する。 In step 210, the ECU 80 determines whether or not the wall temperature THDW is equal to or higher than the cooling water temperature THW. If the determination result is affirmative, the ECU 80 shifts the process to step 220, and if the determination result is negative, the ECU 80 shifts the process to step 230.
 ステップ220では、ECU80は、冷却水温度THWが全閉温度THVFC以上であるにもかかわらず、壁温度THDWが冷却水温度THW以上であることから、バイパス弁17が開故障(バイパス弁17が開弁した状態のまま故障)と判定すると共に、開故障フラグXOPを「1」に設定し、処理をステップ100へ戻す。 In step 220, the ECU 80 fails to open the bypass valve 17 (the bypass valve 17 opens) because the wall temperature THWW is equal to or higher than the cooling water temperature THW even though the cooling water temperature THW is equal to or higher than the fully closed temperature THVFC. It is determined that the failure is caused while the valve is in the valved state), the open failure flag XOP is set to "1", and the process is returned to step 100.
 一方、ステップ210から移行してステップ230では、ECU80は、閉故障フラグXCLが「0」か否かを判断する。ECU80は、この判断結果が肯定となる場合は、閉故障が未判定であることから、処理をステップ240へ移行し、この判断結果が否定となる場合は、閉故障が判定済みであることから、処理をステップ100へ戻す。 On the other hand, in step 230 after shifting from step 210, the ECU 80 determines whether or not the closed failure flag XCL is "0". If the determination result is affirmative, the ECU 80 shifts the process to step 240 because the closing failure has not been determined, and if the determination result is negative, the closing failure has been determined. , Return the process to step 100.
 そして、ステップ240では、ECU80は、バイパス弁17の開故障も閉故障も未判定であることから、バイパス弁17が正常と判定すると共に、正常フラグXOKを「1」に設定し、処理をステップ100へ戻す。 Then, in step 240, since the ECU 80 has not determined whether the bypass valve 17 has opened or closed, it determines that the bypass valve 17 is normal, sets the normal flag XOK to "1", and steps the process. Return to 100.
 一方、ステップ100から移行してステップ250では、ECU80は、開故障フラグXOP、閉故障フラグXCL及び正常フラグXOKをそれぞれ「0」に設定する。 On the other hand, in step 250 after shifting from step 100, the ECU 80 sets the open failure flag XOP, the closed failure flag XCL, and the normal flag XOK to "0", respectively.
 次に、ステップ260で、ECU80は、エンジン1を停止させる。すなわち、エンジン1への燃料供給や点火動作の制御を停止する。 Next, in step 260, the ECU 80 stops the engine 1. That is, the control of the fuel supply to the engine 1 and the ignition operation is stopped.
 次に、ステップ270で、ECU80は、ECU80を停止させた後、処理をステップ100へ戻す。 Next, in step 270, the ECU 80 stops the ECU 80 and then returns the process to step 100.
 上記バイパス弁故障診断制御によれば、ECU80は、少なくともバイパス弁17の作動状態と、検出される壁温度THDW(EGR通路12の壁の温度)とに基づきバイパス弁17の故障を診断するようになっている。詳しくは、エンジン1の始動後にバイパス弁17の作動状態を反映した冷却水温度THWと、壁温度THDWとを比較することによりバイパス弁17の故障を診断するようになっている。 According to the bypass valve failure diagnosis control, the ECU 80 diagnoses the failure of the bypass valve 17 based on at least the operating state of the bypass valve 17 and the detected wall temperature THDW (the temperature of the wall of the EGR passage 12). It has become. Specifically, after the engine 1 is started, the failure of the bypass valve 17 is diagnosed by comparing the cooling water temperature THW reflecting the operating state of the bypass valve 17 with the wall temperature THW.
 ここで、エンジン1の始動前における吸気温度THA、壁温度THDW及び冷却水温度THWの相関は、長時間停止後には、THA≒THDW≒THWとなり、短時間停止後には、THA<THDW<THWとなる。一方、エンジン1の始動後における吸気温度THA、壁温度THDW及び冷却水温度THWの相関は、(1)長時間停止後であってEGR開始前には、冷却水温度THWの上昇に遅れ、壁温度THDWが上昇し、吸気温度THAの変化が小さく、冷却水温度THWの上昇分ΔTHWに比べ、壁温度の上昇分ΔTHDWが小さくなる。(2)長時間停止後であってEGR開始後(バイパス弁17の開弁)には、EGR開始に合わせ、壁温度THDWの上昇分ΔTHDWが増加(EGR開始前と比べ)し、THW<THDWとなる場合がある。(3)長時間停止後であってEGR開始後(バイパス弁17が開弁状態から閉弁)には、EGRによる壁温度THDWの上昇分ΔTHDWが鈍化又は降下する。(4)短時間停止(冷却水温度THWがEGR開始水温度以下)後にエンジン1が始動する場合は、上記(1)~(3)と各温度の挙動は同じとなる。(5)短時間停止(壁温度THDWと冷却水温度THWが高温となる)後にエンジン1が始動する場合は、始動後、壁温度THDWと冷却水温度THWの変化が小さくなり、吸気温度THAのみ降下する場合がある。そして、上記各挙動パターンから離脱する挙動の場合に、バイパス弁17が故障していると判定することができる。 Here, the correlation between the intake air temperature THA, the wall temperature THDW, and the cooling water temperature THW before the start of the engine 1 is THA ≈ THDW≈THW after a long stop, and THA <THDW <THW after a short stop. Become. On the other hand, the correlation between the intake air temperature THA, the wall temperature THDW and the cooling water temperature THW after the start of the engine 1 is as follows: (1) After a long stop and before the start of the EGR, the cooling water temperature THW is delayed and the wall The temperature THDW rises, the change in the intake air temperature THA is small, and the rise in the wall temperature ΔTHWW is smaller than the rise in the cooling water temperature THW ΔTHW. (2) After a long stop and after the start of EGR (opening of the bypass valve 17), the increase ΔTHWW of the wall temperature THDW increases (compared to before the start of EGR) in accordance with the start of EGR, and THW <THWW. May be. (3) After stopping for a long time and after starting EGR (bypass valve 17 is closed from the valve open state), the increase ΔTHWW of the wall temperature THDW due to EGR slows down or decreases. (4) When the engine 1 is started after a short stop (cooling water temperature THW is equal to or lower than the EGR start water temperature), the behavior of each temperature is the same as in (1) to (3) above. (5) When the engine 1 is started after a short stop (the wall temperature THW and the cooling water temperature THW become high), the change between the wall temperature THDW and the cooling water temperature THW becomes small after the start, and only the intake air temperature THA. It may descend. Then, in the case of the behavior of deviating from each of the above behavior patterns, it can be determined that the bypass valve 17 is out of order.
[EGR制御について]
 次に、EGR制御について説明する。ECU80は、上記したバイパス弁故障診断制御の診断結果に応じて次のようにEGR制御を実行するようになっている。図4に、そのEGR制御の内容をフローチャートにより示す。
[About EGR control]
Next, EGR control will be described. The ECU 80 is adapted to execute EGR control as follows according to the diagnosis result of the bypass valve failure diagnosis control described above. FIG. 4 shows the contents of the EGR control by a flowchart.
 処理がこのルーチンへ移行すると、ECU80は、ステップ300で、水温センサ71、回転数センサ72、吸気圧センサ74及びスロットルセンサ75の検出値に基づき、冷却水温度THW、エンジン回転数NE及びエンジン負荷KLをそれぞれ取り込む。ECU80は、例えば、ECU80は、エンジン負荷KLを、吸気圧力PM又はスロットル開度TAに基づいて求めることができる。 When the process shifts to this routine, in step 300, the ECU 80 determines the cooling water temperature THW, the engine rotation speed NE, and the engine load based on the detection values of the water temperature sensor 71, the rotation speed sensor 72, the intake pressure sensor 74, and the throttle sensor 75. Import each KL. The ECU 80 can obtain, for example, the engine load KL based on the intake pressure PM or the throttle opening degree TA.
 次に、ステップ310で、ECU80は、エンジン回転数NEとエンジン負荷KLに応じた目標EGR開度TEGRを算出する。ECU80は、例えば、所定の目標EGR開度マップを参照することによりエンジン回転数NEとエンジン負荷KLに応じた目標EGR開度TEGRを求めることができる。 Next, in step 310, the ECU 80 calculates the target EGR opening degree TEGR according to the engine speed NE and the engine load KL. For example, the ECU 80 can obtain the target EGR opening degree TEGR according to the engine speed NE and the engine load KL by referring to a predetermined target EGR opening degree map.
 次に、ステップ320で、ECU80は、正常フラグXOKが「1」か否か、すなわち、バイパス弁17の故障診断結果が正常判定であるか否かを判断する。ECU80は、この判断結果が肯定である場合は処理をステップ330へ移行し、この判断結果が否定である場合は処理を350へ移行する。 Next, in step 320, the ECU 80 determines whether or not the normal flag XOK is "1", that is, whether or not the failure diagnosis result of the bypass valve 17 is a normal determination. If the determination result is affirmative, the ECU 80 shifts the process to step 330, and if the determination result is negative, the ECU 80 shifts the process to 350.
 ステップ330では、ECU80は、冷却水温度THWが「40℃」以上であるか否かを判断する。ECU80は、この判断結果が肯定である場合は処理をステップ340へ移行し、この判断結果が否定である場合は処理を410へ移行する。 In step 330, the ECU 80 determines whether or not the cooling water temperature THW is "40 ° C." or higher. If the determination result is affirmative, the ECU 80 shifts the process to step 340, and if the determination result is negative, the ECU 80 shifts the process to 410.
 ステップ340では、ECU80は、EGR弁14を目標EGR開度TEGRに制御し、処理をステップ300へ戻す。 In step 340, the ECU 80 controls the EGR valve 14 to the target EGR opening degree TEGR, and returns the process to step 300.
 一方、ステップ410では、ECU80は、EGRカットのために目標EGR開度TEGRを「0」に設定し、処理をステップ340へ移行する。 On the other hand, in step 410, the ECU 80 sets the target EGR opening TEGR to "0" for EGR cut, and shifts the process to step 340.
 また、ステップ320から移行してステップ350では、閉故障フラグXCLが「1」か否か、すなわち、バイパス弁17の故障診断結果が閉故障判定であるか否かを判断する。ECU80は、この判断結果が肯定である場合は、閉故障判定であるとして処理をステップ360へ移行し、この判断結果が否定である場合は、開故障判定であるとして処理を370へ移行する。 Further, in step 350 after shifting from step 320, it is determined whether or not the closed failure flag XCL is "1", that is, whether or not the failure diagnosis result of the bypass valve 17 is a closed failure determination. If the determination result is affirmative, the ECU 80 shifts the process to step 360 as a closed failure determination, and if the determination result is negative, the ECU 80 shifts the process to 370 as an open failure determination.
 ステップ360では、ECU80は、冷却水温度THWが「65℃」以上であるか否かを判断する。ECU80は、この判断結果が肯定である場合は処理をステップ340へ移行し、この判断結果が否定である場合は処理を410へ移行する。 In step 360, the ECU 80 determines whether or not the cooling water temperature THW is "65 ° C." or higher. If the determination result is affirmative, the ECU 80 shifts the process to step 340, and if the determination result is negative, the ECU 80 shifts the process to 410.
 一方、ステップ350から移行してステップ370では、ECU80は、冷却水温度THWが「40℃」以上であるか否かを判断する。ECU80は、この判断結果が肯定である場合は処理をステップ380へ移行し、この判断結果が否定である場合は処理を410へ移行する。 On the other hand, in step 370 after shifting from step 350, the ECU 80 determines whether or not the cooling water temperature THW is "40 ° C." or higher. If the determination result is affirmative, the ECU 80 shifts the process to step 380, and if the determination result is negative, the ECU 80 shifts the process to 410.
 ステップ380では、ECU80は、冷却水温度THWが全閉温度THVFC以上か否かを判断する。ECU80は、この判断結果が肯定である場合は処理をステップ390へ移行し、この判断結果が否定である場合は処理を340へ移行する。 In step 380, the ECU 80 determines whether or not the cooling water temperature THW is equal to or higher than the fully closed temperature THVFC. If the determination result is affirmative, the ECU 80 shifts the process to step 390, and if the determination result is negative, the ECU 80 shifts the process to 340.
 ステップ390では、ECU80は、目標EGR開度TEGRが所定開度C1以上であるか否かを判断する。ECU80は、この判断結果が肯定である場合は処理をステップ400へ移行し、この判断結果が否定である場合は処理を340へ移行する。 In step 390, the ECU 80 determines whether or not the target EGR opening degree TEGR is equal to or greater than the predetermined opening degree C1. If the determination result is affirmative, the ECU 80 shifts the process to step 400, and if the determination result is negative, the ECU 80 shifts the process to 340.
 そして、ステップ400では、ECU80は、目標EGR開度TEGRを所定開度C1でガードするために目標EGR開度TEGRを所定開度C1に設定し、処理をステップ340へ移行する。 Then, in step 400, the ECU 80 sets the target EGR opening TEGR to the predetermined opening C1 in order to guard the target EGR opening TEGR at the predetermined opening C1, and shifts the process to step 340.
 上記EGR制御によれば、ECU80は、バイパス弁17の故障の診断結果に応じてEGR弁14を制御するようになっている。詳しくは、ECU80は、EGR開始条件成立後であって、故障の診断結果がバイパス弁17の開故障である場合に、EGR弁14を所定開度C1(所定値)以下の開度に制御し、故障の診断結果がバイパス弁17の閉故障である場合に、バイパス弁17の開弁条件下において、EGR弁14を全閉に制御するようになっている。 According to the above EGR control, the ECU 80 controls the EGR valve 14 according to the diagnosis result of the failure of the bypass valve 17. Specifically, the ECU 80 controls the EGR valve 14 to an opening degree of C1 (predetermined value) or less when the failure diagnosis result is an open failure of the bypass valve 17 after the EGR start condition is satisfied. When the failure diagnosis result is a closed failure of the bypass valve 17, the EGR valve 14 is controlled to be fully closed under the valve opening condition of the bypass valve 17.
[EGR弁故障診断制御について]
 次に、EGR弁故障診断制御について説明する。この実施形態で、ECU80は、エンジン1の始動時、始動後のEGR作動状態に応じてEGR弁14の開故障(例えば、異物噛み込みによる)を診断するために、次のようなEGR弁故障診断制御を実行するようになっている。
[About EGR valve failure diagnosis control]
Next, the EGR valve failure diagnosis control will be described. In this embodiment, the ECU 80 has the following EGR valve failure in order to diagnose an open failure (for example, due to foreign matter biting) of the EGR valve 14 according to the EGR operating state after the engine 1 is started. It is designed to execute diagnostic control.
 図5に、この実施形態のEGR弁故障診断制御の内容をフローチャートにより示す。このフローチャートは、エンジン1の減速時であって、EGR弁14を全閉に制御するとき又は閉弁制御するときに、EGR弁14の開故障の有無を診断するための内容を示す。 FIG. 5 shows the contents of the EGR valve failure diagnosis control of this embodiment by a flowchart. This flowchart shows the contents for diagnosing the presence or absence of an open failure of the EGR valve 14 when the EGR valve 14 is controlled to be fully closed or when the EGR valve 14 is controlled to be fully closed during deceleration of the engine 1.
 処理がこのルーチンへ移行すると、先ず、ステップ500で、ECU80は、エンジン1の運転状態を示す各種信号を各種センサ等72,73,75,77から取り込む。すなわち、エンジン回転数NE、エンジン負荷KL、スロットル開度TA、吸気量Ga及び吸気圧力PMと、EGR弁14の開度に対応するステップモータのモータステップ数STegrとをそれぞれ取り込む。ここで、ECU80は、スロットル開度TA又は吸気圧力PMに基づきエンジン負荷KLを求めることができる。また、モータステップ数STegrは、EGR弁14の開度(EGR開度)に比例する関係を有する。 When the process shifts to this routine, first, in step 500, the ECU 80 takes in various signals indicating the operating state of the engine 1 from various sensors and the like 72, 73, 75, 77. That is, the engine rotation speed NE, the engine load KL, the throttle opening TA, the intake amount Ga, and the intake pressure PM, and the motor step number STegr of the step motor corresponding to the opening degree of the EGR valve 14 are taken in, respectively. Here, the ECU 80 can obtain the engine load KL based on the throttle opening TA or the intake pressure PM. Further, the number of motor steps STegr has a relationship proportional to the opening degree (EGR opening degree) of the EGR valve 14.
 次に、ステップ510で、ECU80は、エンジン1の運転状態が異物噛み込み検出範囲内か否かを判断する。ECU50は、例えば、エンジン回転数NEとエンジン負荷KLとの関係から規定される範囲が、異物噛み込み検出に適した所定の検出範囲内であるかを判断することができる。この所定の検出範囲内として、エンジン1の減速運転又は定常運転が含まれる。ECU80は、この判断結果が肯定となる場合は処理をステップ520へ移行し、この判断結果が否定となる場合は処理をステップ500へ戻す。 Next, in step 510, the ECU 80 determines whether or not the operating state of the engine 1 is within the foreign matter biting detection range. The ECU 50 can determine, for example, whether the range defined by the relationship between the engine speed NE and the engine load KL is within a predetermined detection range suitable for detecting foreign matter biting. The predetermined detection range includes deceleration operation or steady operation of the engine 1. If the determination result is affirmative, the ECU 80 shifts the process to step 520, and if the determination result is negative, the ECU 80 returns the process to step 500.
 ステップ520では、ECU80は、モータステップ数STegrが「8ステップ」より小さいか否かを判断する。「8ステップ」は、一例であり、EGR弁14の微小開度に対応する。ECU80は、この判断結果が肯定となる場合は処理をステップ530へ移行し、この判断結果が否定となる場合は処理をステップ500へ戻す。 In step 520, the ECU 80 determines whether or not the number of motor steps STegr is smaller than "8 steps". “8 steps” is an example and corresponds to a minute opening degree of the EGR valve 14. If the determination result is affirmative, the ECU 80 shifts the process to step 530, and if the determination result is negative, the ECU 80 returns the process to step 500.
 ステップ530では、ECU80は、エンジン回転数NEとエンジン負荷KLに応じた減速時の全閉基準吸気圧力PMegr0を取り込む。ECU80は、例えば、予め設定された全閉基準吸気圧力マップ(図示略)を参照することにより、エンジン回転数NEとエンジン負荷KLに応じた減速時の全閉基準吸気圧力PMegr0を求めることができる。この全閉基準吸気圧力マップは、EGR弁14の開度(EGR開度)が「0」、すなわち全閉時における、エンジン回転数NE及びエンジン負荷KLに対する全閉基準吸気圧力PMegr0の関係が予め設定されたマップである。ここで、一般に、エンジン1の減速時の吸気圧力PMは、EGR弁14における異物の噛み込みの有無にかかわらずエンジン負荷KLと相関を有し、両者はほぼ比例する。ただし、吸気圧力PMは、エンジン回転数NEに応じて変化するので、全閉基準吸気圧力マップでは、エンジン回転数NE及びエンジン負荷KLに対して全閉基準吸気圧力PMegr0が設定される。 In step 530, the ECU 80 takes in the fully closed reference intake pressure PMegr0 at the time of deceleration according to the engine speed NE and the engine load KL. For example, the ECU 80 can obtain the fully closed reference intake pressure PMegr0 at the time of deceleration according to the engine speed NE and the engine load KL by referring to a preset fully closed reference intake pressure map (not shown). .. In this fully closed reference intake pressure map, the relationship between the fully closed reference intake pressure PMegr0 with respect to the engine speed NE and the engine load KL when the opening (EGR opening) of the EGR valve 14 is "0", that is, when fully closed, is in advance. It is a set map. Here, in general, the intake pressure PM at the time of deceleration of the engine 1 has a correlation with the engine load KL regardless of the presence or absence of foreign matter being caught in the EGR valve 14, and both are substantially proportional to each other. However, since the intake pressure PM changes according to the engine speed NE, the fully closed reference intake pressure PMegr0 is set for the engine speed NE and the engine load KL in the fully closed reference intake pressure map.
 次に、ステップ540で、ECU80は、エンジン回転数NEに応じた圧力上昇代βを取り込む。ECU80は、例えば、予め設定された所定の圧力上昇代マップを参照することにより、この圧力上昇代βを求めることができる。この圧力上昇代βは、後述する判定時に誤差等を許容するために全閉基準吸気圧力PMegr0に加算される。 Next, in step 540, the ECU 80 takes in the pressure increase allowance β according to the engine speed NE. The ECU 80 can obtain this pressure increase allowance β, for example, by referring to a predetermined pressure increase allowance map set in advance. This pressure increase allowance β is added to the fully closed reference intake pressure PMegr0 in order to allow an error or the like at the time of determination described later.
 次に、ステップ550で、ECU80は、検出される吸気圧力PMが、全閉基準吸気圧力PMegr0と圧力上昇代βとの加算結果より大きいか否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ560へ移行し、この判断結果が否定となる場合に処理をステップ580へ移行する。 Next, in step 550, the ECU 80 determines whether or not the detected intake pressure PM is larger than the addition result of the fully closed reference intake pressure PMegr0 and the pressure increase allowance β. If the determination result is affirmative, the ECU 80 shifts the process to step 560, and if the determination result is negative, the ECU 80 shifts the process to step 580.
 ステップ560では、ECU80は、EGR弁14が、異物噛み込みによる開故障であると判定し、その判定結果をメモリに記憶する。 In step 560, the ECU 80 determines that the EGR valve 14 is an open failure due to foreign matter biting, and stores the determination result in the memory.
 次に、ステップ570で、ECU80は、今回の吸気圧力PMと全閉基準吸気圧力PMegr0に基づき噛み込み異物径KΦXOPを算出する。ECU80は、例えば、予め設定された所定の噛み込み異物径マップを参照することにより、吸気圧力PMと全閉基準吸気圧力PMegr0との差に応じた噛み込み異物径KΦXOPを求めることができる。その後、ECU80は、処理をステップ500へ戻す。 Next, in step 570, the ECU 80 calculates the biting foreign matter diameter KΦXOP based on the current intake pressure PM and the fully closed reference intake pressure PMegr0. The ECU 80 can obtain the biting foreign matter diameter KΦXOP according to the difference between the intake pressure PM and the fully closed reference intake pressure PMegr0, for example, by referring to a predetermined biting foreign matter diameter map set in advance. After that, the ECU 80 returns the process to step 500.
 一方、ステップ550から移行してステップ580では、ECU50は、EGR弁14が全閉に閉弁して正常であると判定し、処理をステップ500へ戻す。 On the other hand, in step 580 after shifting from step 550, the ECU 50 determines that the EGR valve 14 is fully closed and normal, and returns the process to step 500.
 また、上記EGR弁故障診断制御によれば、ECU80は、検出されるエンジン1の運転状態(吸気圧力PM)に基づき、EGR弁14の開故障(例えば、異物噛み込みによる)を診断するように構成される。詳しくは、ECU80は、エンジン1の減速時であってECU80がEGR弁14を全閉に制御するとき又は閉弁制御するときに、全閉基準吸気圧力マップを参照することにより、EGR開度、エンジン回転数NE及びエンジン負荷KLに応じた全閉基準吸気圧力PMegr0を求める。そして、ECU80は、その全閉基準吸気圧力PMegr0と検出される吸気圧力PMとを比較することにより、EGR弁14の開故障(例えば、異物噛み込みによる)の有無を診断するようになっている。ECU80は、その開故障が有ると判定したときに、検出される吸気圧力PMと全閉基準吸気圧力PMegr0とに基づき開故障の程度(噛み込み異物径KΦXOP)を算出するようになっている。 Further, according to the EGR valve failure diagnosis control, the ECU 80 diagnoses an open failure of the EGR valve 14 (for example, due to foreign matter biting) based on the detected operating state of the engine 1 (intake pressure PM). It is composed. Specifically, when the engine 1 is decelerating and the ECU 80 controls the EGR valve 14 to be fully closed or the valve is closed, the ECU 80 refers to the fully closed reference intake pressure map to obtain an EGR opening degree. The fully closed reference intake pressure PMegr0 according to the engine rotation speed NE and the engine load KL is obtained. Then, the ECU 80 diagnoses the presence or absence of an open failure (for example, due to foreign matter biting) of the EGR valve 14 by comparing the fully closed reference intake pressure PMegr0 with the detected intake pressure PM. .. The ECU 80 calculates the degree of the open failure (bite foreign matter diameter KΦXOP) based on the detected intake pressure PM and the fully closed reference intake pressure PMegr0 when it is determined that the open failure exists.
[エンジンのフェイルセーフ制御について]
 次に、バイパス弁故障診断及びEGR弁故障診断の診断結果に応じたエンジンのフェイルセーフ制御について説明する。図6に、その制御の内容をフローチャートにより示す。
[About engine fail-safe control]
Next, the fail-safe control of the engine according to the diagnosis results of the bypass valve failure diagnosis and the EGR valve failure diagnosis will be described. FIG. 6 shows the contents of the control by a flowchart.
 処理がこのルーチンへ移行すると、ECU80は、ステップ600で、エンジン1の運転状態が減速又はアイドルであるか否かを判断する。ECU80は、この判断を、例えば、アクセル開度ACC及びエンジン回転数NEに基づき行うことができる。ECU80は、この判断結果が肯定となる場合は処理をステップ610へ移行し、この判断結果が否定となる場合は処理をステップ600へ戻す。 When the process shifts to this routine, the ECU 80 determines in step 600 whether the operating state of the engine 1 is decelerated or idle. The ECU 80 can make this determination based on, for example, the accelerator opening degree ACC and the engine speed NE. If the determination result is affirmative, the ECU 80 shifts the process to step 610, and if the determination result is negative, the ECU 80 returns the process to step 600.
 ステップ610では、ECU80は、EGR弁14が開故障か否かを判断する。ECU80は、EGR弁故障診断制御による診断結果に基づきこの判断を行うことができる。ECU80は、この判断結果が肯定となる場合は処理をステップ620へ移行し、この判断結果が否定となる場合は処理をステップ600へ戻す。 In step 610, the ECU 80 determines whether or not the EGR valve 14 has an open failure. The ECU 80 can make this determination based on the diagnosis result by the EGR valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 620, and if the determination result is negative, the ECU 80 returns the process to step 600.
 ステップ620では、ECU80は、バイパス弁17が開故障か否かを判断する。ECU80は、バイパス弁故障診断制御による診断結果に基づきこの判断を行うことができる。ECU80は、この判断結果が肯定となる場合は処理をステップ630へ移行し、この判断結果が否定となる場合は処理をステップ640へ移行する。 In step 620, the ECU 80 determines whether the bypass valve 17 is open or not. The ECU 80 can make this determination based on the diagnosis result by the bypass valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 630, and if the determination result is negative, the ECU 80 shifts the process to step 640.
 ステップ630では、ECU80は、EGR弁14とバイパス弁17が共に開故障となる二重故障となることから、エンスト対策制御を禁止した後、処理をステップ600へ戻す。本来、EGR弁14の開故障とバイパス弁17の開故障が重なること(二重故障)は無いに等しく、その対応は不要である。しかし、バイパス弁17が開故障となる状態で車両の走行が続けられ、EGR弁14に開故障が生じると、樹脂製のEGRガス分配器15や吸気マニホールド5に高温のEGRガスが流れ、それらに溶損のおそれがある。そこで、二重故障が生じたときは、EGR弁14の開故障時に有効となるエンスト対策制御(例えば、アイドルアップ制御)の実施をあえて禁止するようになっている。すなわち、あえてエンストさせるようになっている。このようにエンスト対策制御を禁止し、あえてエンストさせることで、車両を通常走行できない状態にして運転者に修理を促すようになっている。 In step 630, the ECU 80 causes a double failure in which both the EGR valve 14 and the bypass valve 17 are open failures. Therefore, after prohibiting the engine stall countermeasure control, the process is returned to step 600. Originally, there is almost no overlap between the open failure of the EGR valve 14 and the open failure of the bypass valve 17 (double failure), and it is not necessary to deal with it. However, if the vehicle continues to run in a state where the bypass valve 17 has an open failure and the EGR valve 14 has an open failure, high-temperature EGR gas flows into the resin EGR gas distributor 15 and the intake manifold 5, and these There is a risk of melting damage. Therefore, when a double failure occurs, the implementation of engine stall countermeasure control (for example, idle-up control) that is effective when the EGR valve 14 is opened is prohibited. That is, it is designed to be stalled. In this way, the engine stall control is prohibited and the vehicle is intentionally stalled to make the vehicle unable to drive normally and to urge the driver to repair it.
 一方、ステップ640では、ECU80は、EGR弁14の開故障とバイパス弁17の開故障が重ならないことから、エンスト対策制御(例えば、アイドルアップ制御)を実行し、処理をステップ600へ戻す。すなわち、ECU80は、EGR弁14のみが開故障となることから、エンスト対策制御を実行するのである。 On the other hand, in step 640, since the open failure of the EGR valve 14 and the open failure of the bypass valve 17 do not overlap, the ECU 80 executes the engine stall countermeasure control (for example, idle-up control) and returns the process to step 600. That is, since only the EGR valve 14 has an open failure, the ECU 80 executes the engine stall countermeasure control.
 上記フェイルセーフ制御によれば、ECU80は、バイパス弁故障診断制御による診断結果がバイパス弁17の開故障であり、かつEGR弁故障診断制御による診断結果がEGR弁14の開故障である場合は、エンスト対策制御を禁止するようになっている。このエンスト対策制御の禁止は、エンジン1の運転状態が減速又はアイドルである場合に、エンストしてしまうことを助けず、そのままエンストさせることを意味し、エンジン1の出力に制限をかけるためにスロットル装置4(出力調節手段)を制御することに相当する。 According to the fail-safe control, the ECU 80 determines that the diagnosis result by the bypass valve failure diagnosis control is the open failure of the bypass valve 17 and the diagnosis result by the EGR valve failure diagnosis control is the open failure of the EGR valve 14. It is designed to prohibit the control of anti-stall measures. This prohibition of anti-stall control means that when the operating state of the engine 1 is decelerated or idle, the engine stalls without helping to stall, and the throttle is used to limit the output of the engine 1. It corresponds to controlling the device 4 (output adjusting means).
[EGRシステムの作用及び効果について]
 以上説明したように、この実施形態におけるEGRシステムの構成によれば、バイパス弁17が正常に開いた状態では、バイパス通路16はEGRクーラ13より圧損が小さいので、排気通路3からEGR通路12へ流れるEGRガスの大半がバイパス通路16へ流れると共に、残りがEGRクーラ13へ流れる。そして、それら二つの流れが下流のEGR通路12で合流して吸気通路2へ流れ、エンジン1へ還流される。従って、排気通路3からEGR通路12へ温度の高いEGRガスが流れても、そのEGRガスの一部がEGRクーラ13で熱交換されて温度が低下してからバイパス通路16を流れたEGRガスと合流し温度が低下するので、適度な温度に低下したEGRガスが下流のEGR通路12(EGRガス分配器15を含む)を介して吸気通路2(吸気マニホールド5を含む)へ流れる。一方、バイパス弁17が正常に閉じた状態では、排気通路3からEGR通路12へ流れるEGRガスのほぼ全部がEGRクーラ13へ流れ、EGRクーラ13で熱交換されて適度な温度に低下し、適度な温度のEGRガスが下流のEGR通路12(EGRガス分配器15を含む)を介して吸気通路2(吸気マニホールド5を含む)へ流れる。ここで、ECU80は、少なくともバイパス弁17の作動状態(開閉状態)と、壁温センサ78により検出されるEGR通路12(EGRガス分配器15を含む)の壁温度THDWに基づきバイパス弁17の故障を診断する。そして、ECU80は、バイパス弁17の故障の診断結果に応じてEGR弁14を制御する。従って、バイパス弁17の故障の診断結果に応じてEGR弁14が制御されるので、高温のEGRガスが不必要に下流のEGR通路12(EGRガス分配器15を含む)へ流れないようにすることが可能となる。このため、バイパス通路16に設けられるバイパス弁17が故障しても、EGRクーラ13及びバイパス通路16より下流のEGR通路12(EGRガス分配器15を含む)において凝縮水の発生とEGR通路12(EGRガス分配器15を含む)の溶損を抑制することができる。
[About the action and effect of the EGR system]
As described above, according to the configuration of the EGR system in this embodiment, in the state where the bypass valve 17 is normally opened, the pressure loss of the bypass passage 16 is smaller than that of the EGR cooler 13, so that the exhaust passage 3 is changed to the EGR passage 12. Most of the flowing EGR gas flows to the bypass passage 16, and the rest flows to the EGR cooler 13. Then, these two flows merge in the downstream EGR passage 12, flow to the intake passage 2, and are returned to the engine 1. Therefore, even if a high-temperature EGR gas flows from the exhaust passage 3 to the EGR passage 12, a part of the EGR gas is heat-exchanged by the EGR cooler 13 to lower the temperature, and then the EGR gas flows through the bypass passage 16. Since the merging temperature is lowered, the EGR gas lowered to an appropriate temperature flows to the intake passage 2 (including the intake manifold 5) through the downstream EGR passage 12 (including the EGR gas distributor 15). On the other hand, when the bypass valve 17 is normally closed, almost all of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the EGR cooler 13, and heat is exchanged by the EGR cooler 13 to lower the temperature to an appropriate level. EGR gas at a different temperature flows to the intake passage 2 (including the intake manifold 5) via the downstream EGR passage 12 (including the EGR gas distributor 15). Here, the ECU 80 fails the bypass valve 17 based on at least the operating state (open / closed state) of the bypass valve 17 and the wall temperature THDW of the EGR passage 12 (including the EGR gas distributor 15) detected by the wall temperature sensor 78. To diagnose. Then, the ECU 80 controls the EGR valve 14 according to the diagnosis result of the failure of the bypass valve 17. Therefore, since the EGR valve 14 is controlled according to the diagnosis result of the failure of the bypass valve 17, the high temperature EGR gas is prevented from unnecessarily flowing to the downstream EGR passage 12 (including the EGR gas distributor 15). It becomes possible. Therefore, even if the bypass valve 17 provided in the bypass passage 16 fails, condensed water is generated in the EGR cooler 13 and the EGR passage 12 (including the EGR gas distributor 15) downstream of the bypass passage 16 and the EGR passage 12 (including the EGR gas distributor 15). It is possible to suppress the melting damage of the EGR gas distributor (including the EGR gas distributor 15).
 この実施形態の構成によれば、EGR開始条件成立後であって、ECU80による診断結果がバイパス弁17の開故障である場合に、ECU80がEGR弁14を所定開度C1(所定値)以下の開度に制御するので、下流のEGR通路12(EGRガス分配器15を含む)へ流れる高温のEGRガスの流量が抑えられ、下流のEGR通路12へ流れるEGRガスの温度が低減される。一方、ECU80によるバイパス弁17の診断結果が閉故障である場合に、バイパス弁17の開弁条件時において、ECU80がEGR弁14を全閉に制御するので、下流のEGR通路12(EGRガス分配器15を含む)へのEGRガスの流れが遮断され、EGRクーラ13で熱交換されて温度が低下したEGRガスが下流のEGR通路12(EGRガス分配器15を含む)へ流れることがない。このため、バイパス通路16に設けられるバイパス弁17が故障しても、EGRクーラ13及びバイパス通路16より下流のEGR通路12(EGRガス分配器15を含む)において凝縮水の発生とEGR通路12(EGRガス分配器15を含む)の溶損を抑制することができる。 According to the configuration of this embodiment, when the diagnosis result by the ECU 80 is an open failure of the bypass valve 17 after the EGR start condition is satisfied, the ECU 80 opens the EGR valve 14 at a predetermined opening degree C1 (predetermined value) or less. Since the opening degree is controlled, the flow rate of the high temperature EGR gas flowing to the downstream EGR passage 12 (including the EGR gas distributor 15) is suppressed, and the temperature of the EGR gas flowing to the downstream EGR passage 12 is reduced. On the other hand, when the diagnosis result of the bypass valve 17 by the ECU 80 is a closed failure, the ECU 80 controls the EGR valve 14 to be fully closed under the valve opening condition of the bypass valve 17, so that the downstream EGR passage 12 (EGR gas distribution) is used. The flow of EGR gas to (including the vessel 15) is cut off, and the EGR gas whose temperature has dropped due to heat exchange by the EGR cooler 13 does not flow to the downstream EGR passage 12 (including the EGR gas distributor 15). Therefore, even if the bypass valve 17 provided in the bypass passage 16 fails, condensed water is generated in the EGR cooler 13 and the EGR passage 12 (including the EGR gas distributor 15) downstream of the bypass passage 16 and the EGR passage 12 (including the EGR gas distributor 15). It is possible to suppress the melting damage of the EGR gas distributor (including the EGR gas distributor 15).
 この実施形態の構成によれば、ECU80は、エンジン1の始動後に水温センサ71により検出される冷却水温度THWと、壁温センサ78により検出されるEGRガス分配器15の壁温度THDWとを比較することによりバイパス弁17の故障を診断する。ここで、水温センサ71は、通常、エンジン1を制御するために使用される。従って、バイパス弁17の故障を診断するために、壁温センサ78の他に特別な検出手段を設ける必要がない。このため、特別な検出手段を設ける必要がない分だけ、EGRシステムの構成を簡略化することができ、その製品コストを抑えることができる。 According to the configuration of this embodiment, the ECU 80 compares the cooling water temperature THW detected by the water temperature sensor 71 after the engine 1 is started with the wall temperature THW of the EGR gas distributor 15 detected by the wall temperature sensor 78. By doing so, the failure of the bypass valve 17 is diagnosed. Here, the water temperature sensor 71 is usually used to control the engine 1. Therefore, in order to diagnose the failure of the bypass valve 17, it is not necessary to provide a special detecting means other than the wall temperature sensor 78. Therefore, the configuration of the EGR system can be simplified and the product cost can be suppressed because it is not necessary to provide a special detection means.
 この実施形態の構成によれば、ECU80による診断結果がバイパス弁17の開故障となり、かつECU80による診断結果がEGR弁14の開故障となる二重故障の場合には、ECU80は、エンスト対策制御を禁止する。従って、バイパス弁17の開故障に加えEGR弁14も制御できない開故障となる(二重故障となる)場合は、スロットル装置4によりエンジン1の出力に制限がかけられるので、エンジン1を通常運転させることができなくなる。このため、エンジン1が通常運転できない状態であることを速やかに運転者に気づかせ、バイパス弁17とEGR弁14の二重故障に対する早めの修理を運転者に促すことができる。 According to the configuration of this embodiment, in the case of a double failure in which the diagnosis result by the ECU 80 is the open failure of the bypass valve 17 and the diagnosis result by the ECU 80 is the open failure of the EGR valve 14, the ECU 80 controls the engine stall. Is prohibited. Therefore, in the case of an open failure in which the EGR valve 14 cannot be controlled (double failure) in addition to the open failure of the bypass valve 17, the output of the engine 1 is limited by the throttle device 4, so that the engine 1 is normally operated. You will not be able to make it. Therefore, it is possible to promptly notify the driver that the engine 1 cannot be operated normally, and urge the driver to repair the bypass valve 17 and the EGR valve 14 as soon as possible for a double failure.
 この実施形態の構成によれば、バイパス弁17とEGR弁14の二重故障が生じた場合は、ECU80は、EGR弁14の開故障時に有効となるエンスト対策制御(例えば、アイドルアップ制御)の実施をあえて禁止する。このため、エンジン1の始動後、減速時又はアイドル時にエンストを生じさせ、運転者に修理を促すことができる。 According to the configuration of this embodiment, when a double failure of the bypass valve 17 and the EGR valve 14 occurs, the ECU 80 determines the engine stall countermeasure control (for example, idle-up control) which is effective when the EGR valve 14 opens failure. The implementation is intentionally prohibited. Therefore, after the engine 1 is started, an engine stall can be generated at the time of deceleration or idle, and the driver can be urged to repair.
 この実施形態の構成によれば、バイパス弁17が冷却水の温度の変化に感応して動作するので、バイパス弁17を電気的に制御する必要がなく、バイパス弁17に関する構成が簡略化する。このため、EGRシステムとしての製品コストを抑えることができる。 According to the configuration of this embodiment, since the bypass valve 17 operates in response to a change in the temperature of the cooling water, it is not necessary to electrically control the bypass valve 17, and the configuration relating to the bypass valve 17 is simplified. Therefore, the product cost as an EGR system can be suppressed.
<第2実施形態>
 次に、第2実施形態について図面を参照して詳細に説明する。なお、以下の説明において、第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に説明する。
<Second Embodiment>
Next, the second embodiment will be described in detail with reference to the drawings. In the following description, the components equivalent to those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences will be mainly described.
 この実施形態では、ECU80が実行するバイパス弁故障診断制御の内容の点で、第1実施形態と異なる。 This embodiment is different from the first embodiment in the content of the bypass valve failure diagnosis control executed by the ECU 80.
[バイパス弁故障診断制御について]
 図7に、この実施形態のバイパス弁故障診断制御の内容をフローチャートにより示す。図7に示すフローチャートでは、図2のフローチャートのステップ210の代わりにステップ700とステップ710を設けた点で第1実施形態と異なる。
[Bypass valve failure diagnosis control]
FIG. 7 shows the contents of the bypass valve failure diagnosis control of this embodiment by a flowchart. The flowchart shown in FIG. 7 is different from the first embodiment in that step 700 and step 710 are provided instead of step 210 in the flowchart of FIG.
 ECU80は、このルーチンの処理中に、ステップ200にて所定時間B1が経過すると、ステップ700で、EGR開度EEGRに応じた補正温度KTHWを算出する。ECU80は、例えば、図8に示すような補正温度マップを参照することにより、EGR開度EEGRに応じた補正温度KTHWを求めることができる。この補正温度マップにおいて、補正温度KTHWは、EGR開度EEGRが全閉から所定開度E1までの間では「0」となり、所定開度E1から全開までの間では直線的に増加するように設定される。 When the predetermined time B1 elapses in step 200 during the processing of this routine, the ECU 80 calculates the correction temperature KTHW according to the EGR opening degree EEGR in step 700. The ECU 80 can obtain the correction temperature KTHW according to the EGR opening degree EEGR by referring to the correction temperature map as shown in FIG. 8, for example. In this correction temperature map, the correction temperature KTHW is set so that the EGR opening EEGR becomes "0" from the fully closed state to the predetermined opening E1 and increases linearly from the predetermined opening E1 to the fully open. Will be done.
 次に、ステップ710では、ECU80は、壁温度THDWが、冷却水温度THWと補正温度KTHWとの加算結果以上か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ220へ移行し、この判断結果が否定となる場合は処理を230へ移行する。 Next, in step 710, the ECU 80 determines whether or not the wall temperature THDW is equal to or higher than the addition result of the cooling water temperature THW and the correction temperature KTHW. If the determination result is affirmative, the ECU 80 shifts the process to step 220, and if the determination result is negative, the ECU 80 shifts the process to 230.
 上記バイパス弁故障診断制御によれば、ECU80は、第1実施形態とは異なり、検出される冷却水温度THWを、EGR弁14の開度に応じて補正するようになっている。このように冷却水温度THWをEGR開度EEGRに応じて補正するのは、EGRクーラ13及びバイパス通路16から流れ出たEGRガスの温度が、そのEGRガスの流量が増加するほど、すなわちEGR弁14の開度が増加するほど高くなるからである。 According to the bypass valve failure diagnosis control, the ECU 80 corrects the detected cooling water temperature THW according to the opening degree of the EGR valve 14, unlike the first embodiment. In this way, the cooling water temperature THW is corrected according to the EGR opening EEGR because the temperature of the EGR gas flowing out from the EGR cooler 13 and the bypass passage 16 increases as the flow rate of the EGR gas increases, that is, the EGR valve 14. This is because it becomes higher as the opening degree of is increased.
[EGRシステムの作用及び効果について]
 以上説明したように、この実施形態におけるEGRシステムの構成によれば、第1実施形態と同等の作用及び効果を得ることができる。加えて、この実施形態では、バイパス弁故障診断制御につき次のような作用及び効果を得ることができる。すなわち、この実施形態で、ECU80は、検出される冷却水温度THWをEGR弁14の開度に応じて補正する。ここで、EGR通路12を流れるEGRガスの温度は、EGRガスの流量、すなわちEGR弁14の開度に応じて変化する。従って、EGR通路12(EGRガス分配器15を含む)の壁温度THDWと比較される冷却水温度THWが、EGRガスの流量に応じて補正される。このため、バイパス弁17の故障を精度よく診断することができる。
[About the action and effect of the EGR system]
As described above, according to the configuration of the EGR system in this embodiment, the same operations and effects as those in the first embodiment can be obtained. In addition, in this embodiment, the following actions and effects can be obtained for the bypass valve failure diagnosis control. That is, in this embodiment, the ECU 80 corrects the detected cooling water temperature THW according to the opening degree of the EGR valve 14. Here, the temperature of the EGR gas flowing through the EGR passage 12 changes according to the flow rate of the EGR gas, that is, the opening degree of the EGR valve 14. Therefore, the cooling water temperature THW to be compared with the wall temperature THDW of the EGR passage 12 (including the EGR gas distributor 15) is corrected according to the flow rate of the EGR gas. Therefore, the failure of the bypass valve 17 can be accurately diagnosed.
<第3実施形態>
 次に、第3実施形態について図面を参照して詳細に説明する。
<Third Embodiment>
Next, the third embodiment will be described in detail with reference to the drawings.
 この実施形態では、エンジンのフェイルセーフ制御の内容の点で、前記各実施形態と異なる。 This embodiment differs from each of the above embodiments in the content of the fail-safe control of the engine.
[エンジンのフェイルセーフ制御について]
 図9に、この実施形態におけるエンジンのフェイルセーフ制御の内容をフローチャートにより示す。処理がこのルーチンへ移行すると、ECU80は、ステップ800で、検出されるアクセル開度ACCに基づき目標スロットル開度TTAを算出する。ECU80は、例えば、図10に示す目標スロットル開度マップを参照することによりアクセル開度ACCに応じた目標スロットル開度TTAを求めることができる。
[About engine fail-safe control]
FIG. 9 shows the contents of the fail-safe control of the engine in this embodiment by a flowchart. When the process shifts to this routine, the ECU 80 calculates the target throttle opening TTA based on the detected accelerator opening ACC in step 800. The ECU 80 can obtain the target throttle opening TTA according to the accelerator opening ACC by referring to the target throttle opening map shown in FIG. 10, for example.
 次に、ステップ810で、ECU80は、バイパス弁17が開故障か否かを判断する。ECU80は、この判断をバイパス弁故障診断制御による診断結果に基づき行うことができる。ECU80は、この判断結果が肯定となる場合は処理をステップ820へ移行し、この判断結果が否定となる場合は処理をステップ860へ移行する。 Next, in step 810, the ECU 80 determines whether or not the bypass valve 17 is open. The ECU 80 can make this determination based on the diagnosis result by the bypass valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 820, and if the determination result is negative, the ECU 80 shifts the process to step 860.
 ステップ820で、ECU80は、EGR弁14が開故障か否かを判断する。ECU80は、この判断をEGR弁故障診断制御による診断結果に基づき行うことができる。ECU80は、この判断結果が肯定となる場合は処理をステップ830へ移行し、この判断結果が否定となる場合は処理をステップ860へ移行する。 In step 820, the ECU 80 determines whether or not the EGR valve 14 has an open failure. The ECU 80 can make this determination based on the diagnosis result by the EGR valve failure diagnosis control. If the determination result is affirmative, the ECU 80 shifts the process to step 830, and if the determination result is negative, the ECU 80 shifts the process to step 860.
 ステップ830では、ECU80は、EGR弁14の開故障開度TEGRODを取り込む。ECU80は、例えば、所定のマップを参照することにより、EGR弁故障診断制御で求めた噛み込み異物径KΦXOPに基づき、この開故障開度TEGRODを求めることができる。 In step 830, the ECU 80 takes in the open failure opening TEGROD of the EGR valve 14. The ECU 80 can obtain this open failure opening TEGROD based on the biting foreign matter diameter KΦXOP obtained by the EGR valve failure diagnosis control, for example, by referring to a predetermined map.
 次に、ステップ840で、ECU80は、開故障開度TEGRODに応じた制限スロットル開度TAEMを算出する。ECU80は、例えば、図11に示す制限スロットル開度マップを参照することにより開故障開度TEGRODに応じた制限スロットル開度TAEMを求めることができる。このマップでは、開故障開度TEGRODが大きくなるほど制限スロットル開度TAEMが減少するように設定される。 Next, in step 840, the ECU 80 calculates the limited throttle opening TAEM according to the open failure opening TEGROD. The ECU 80 can obtain the limited throttle opening TAEM according to the open failure opening TEGROD by referring to the limited throttle opening map shown in FIG. 11, for example. In this map, the limit throttle opening TAEM is set to decrease as the open failure opening TEGROD increases.
 次に、ステップ850で、ECU80は、目標スロットル開度TTAが制限スロットル開度TAEM未満か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ860へ移行し、この判断結果が否定となる場合は処理をステップ870へ移行する。 Next, in step 850, the ECU 80 determines whether or not the target throttle opening TTA is less than the limit throttle opening TAEM. If the determination result is affirmative, the ECU 80 shifts the process to step 860, and if the determination result is negative, the ECU 80 shifts the process to step 870.
 ステップ860では、ECU80は、目標スロットル開度TTAを、最終制御スロットル開度LTTAとして設定する。そして、ECU80は、スロットル装置4を、この最終制御スロットル開度LTTAに制御する。その後、ECU80は、処理をステップ800へ戻す。 In step 860, the ECU 80 sets the target throttle opening TTA as the final control throttle opening LTTA. Then, the ECU 80 controls the throttle device 4 to this final control throttle opening degree LTTA. After that, the ECU 80 returns the process to step 800.
 一方、ステップ870では、ECU80は、制限スロットル開度TAEMを、目標スロットル開度TTAとして設定した後、処理をステップ860へ移行する。 On the other hand, in step 870, the ECU 80 sets the limited throttle opening TAEM as the target throttle opening TTA, and then shifts the process to step 860.
 上記エンジン制御によれば、ECU80は、バイパス弁17とEGR弁14の両方が開故障となった場合、すなわち二重故障となった場合に、前記各実施形態とは異なり、エンジン1の出力を制限するためにスロットル装置4(出力調節手段)を、本来の目標スロットル開度TTAより小さい制限スロットル開度TAEMに制御するようになっている。 According to the engine control, when both the bypass valve 17 and the EGR valve 14 have an open failure, that is, a double failure, the ECU 80 outputs the output of the engine 1 unlike the above embodiments. In order to limit the throttle device 4 (output adjusting means), the throttle device 4 (output adjusting means) is controlled to a limited throttle opening TAEM smaller than the original target throttle opening TTA.
[EGRシステムの作用及び効果について]
 以上説明したように、この実施形態におけるEGRシステムの構成によれば、前記各実施形態と同等の作用及び効果を得ることができる。加えて、この実施形態では、エンジンのフェイルセーフ制御につき次のような作用及び効果を得ることができる。すなわち、この実施形態では、バイパス弁17とEGR弁14の両方が開故障(二重故障)となる場合に、エンジン1の出力を制限するために、スロットル装置4(出力調節手段)が、本来の目標スロットル開度TTAより小さい制限スロットル開度TAEMに制御される。このため、エンジン1が通常運転できない状態であることを速やかに運転者に気づかせ、バイパス弁17とEGR弁14の二重故障に対する早めの修理を運転者に促すことができる。また、エンジン1の出力を、制限スロットル開度TAEMの範囲以内で制御するので、EGR通路12の溶損を抑制し、エンジン1の運転を継続させて車両を適当な場所まで確実に退避走行させることができる。
[About the action and effect of the EGR system]
As described above, according to the configuration of the EGR system in this embodiment, the same operations and effects as those in each of the above embodiments can be obtained. In addition, in this embodiment, the following actions and effects can be obtained for the fail-safe control of the engine. That is, in this embodiment, when both the bypass valve 17 and the EGR valve 14 have an open failure (double failure), the throttle device 4 (output adjusting means) is originally used to limit the output of the engine 1. It is controlled by the limit throttle opening TAEM which is smaller than the target throttle opening TTA. Therefore, it is possible to promptly notify the driver that the engine 1 cannot be operated normally, and urge the driver to repair the bypass valve 17 and the EGR valve 14 as soon as possible for a double failure. Further, since the output of the engine 1 is controlled within the range of the limited throttle opening TAEM, the EGR passage 12 is suppressed from being melted, the engine 1 is continued to operate, and the vehicle is reliably evacuated to an appropriate place. be able to.
<第4実施形態>
 次に、第4実施形態について図面を参照して詳細に説明する。
<Fourth Embodiment>
Next, the fourth embodiment will be described in detail with reference to the drawings.
 この実施形態では、エンジンのフェイルセーフ制御の内容の点で、前記第3実施形態と異なる。 This embodiment is different from the third embodiment in the content of the fail-safe control of the engine.
[エンジンのフェイルセーフ制御について]
 図12に、この実施形態におけるエンジンのフェイルセーフ制御の内容をフローチャートにより示す。図12に示すフローチャートでは、図9のフローチャートのステップ840、850及び870の代わりにステップ900、910及び920を設けた点で第3実施形態と異なる。
[About engine fail-safe control]
FIG. 12 shows the contents of the fail-safe control of the engine in this embodiment by a flowchart. The flowchart shown in FIG. 12 differs from the third embodiment in that steps 900, 910, and 920 are provided in place of steps 840, 850, and 870 of the flowchart of FIG.
 処理がこのルーチンへ移行すると、ECU80は、ステップ800~ステップ830の処理を実行した後、ステップ900で、開故障開度TEGRODに応じた燃料カットスロットル開度TAEMFCを算出する。ECU80は、例えば、図11に準ずる燃料カットスロットル開度マップを参照することにより開故障開度TEGRODに応じた燃料カットスロットル開度TAEMFCを求めることができる。 When the process shifts to this routine, the ECU 80 calculates the fuel cut throttle opening TAEMFC according to the open failure opening TEGROD in step 900 after executing the processes of steps 800 to 830. The ECU 80 can obtain the fuel cut throttle opening TAEMFC according to the open failure opening TEGROD by referring to the fuel cut throttle opening map according to FIG. 11, for example.
 次に、ステップ910で、ECU80は、目標スロットル開度TTAが燃料カットスロットル開度TAEMFC未満か否かを判断する。ECU80は、この判断結果が肯定となる場合は処理をステップ860へ移行し、この判断結果が否定となる場合は処理をステップ920へ移行する。 Next, in step 910, the ECU 80 determines whether or not the target throttle opening TTA is less than the fuel cut throttle opening TAEMFC. If the determination result is affirmative, the ECU 80 shifts the process to step 860, and if the determination result is negative, the ECU 80 shifts the process to step 920.
 そして、ステップ920では、ECU80は、燃料カット(エンジン1に対する燃料の供給を遮断する)を実行するようになっている。そのために、ECU80は、燃料噴射装置を制御するようになっている。その後、ECU80は、処理をステップ860へ移行する。 Then, in step 920, the ECU 80 is configured to execute a fuel cut (cut off the supply of fuel to the engine 1). Therefore, the ECU 80 controls the fuel injection device. After that, the ECU 80 shifts the process to step 860.
 上記エンジン制御によれば、ECU80は、バイパス弁17とEGR弁14の二重故障が生じた場合に、第3実施形態とは異なり、エンジン1の出力に制限をかけるために燃料噴射装置(出力調節手段)を制御して燃料カットを行うようになっている。 According to the above engine control, the ECU 80 is a fuel injection device (output) in order to limit the output of the engine 1 when a double failure of the bypass valve 17 and the EGR valve 14 occurs, unlike the third embodiment. The adjusting means) is controlled to cut the fuel.
[EGRシステムの作用及び効果について]
 以上説明したように、この実施形態におけるEGRシステムの構成によれば、前記第3実施形態と異なり次のような作用及び効果を得ることができる。すなわち、この実施形態では、バイパス弁17とEGR弁14の二重故障が生じた場合に、エンジン1の出力に制限をかけるために、燃料噴射装置(出力調節手段)が制御され、燃料カットが行われる。このため、エンジン1の運転中に出力を強制的に停止させてエンジン1を減速させることができ、エンジン1が通常運転できない状態であることを速やかに運転者に気づかせ、バイパス弁17とEGR弁14の二重故障に対する早めの修理を運転者に促すことができる。
[About the action and effect of the EGR system]
As described above, according to the configuration of the EGR system in this embodiment, the following actions and effects can be obtained unlike the third embodiment. That is, in this embodiment, when a double failure of the bypass valve 17 and the EGR valve 14 occurs, the fuel injection device (output adjusting means) is controlled in order to limit the output of the engine 1, and the fuel cut is performed. Will be done. Therefore, the output can be forcibly stopped during the operation of the engine 1 to decelerate the engine 1, and the driver is promptly noticed that the engine 1 cannot be operated normally, and the bypass valve 17 and the EGR are used. The driver can be urged to make an early repair for the double failure of the valve 14.
 なお、この開示技術は前記各実施形態に限定されるものではなく、開示技術の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。 Note that this disclosure technique is not limited to each of the above-described embodiments, and a part of the configuration may be appropriately modified and implemented within a range that does not deviate from the purpose of the disclosure technique.
 (1)前記各実施形態では、バイパス弁17を冷却水の温度に応じて開弁又は閉弁させるように構成したが、EGガスの温度に応じてバイパス弁を開弁又は閉弁させるように構成することもできる。 (1) In each of the above embodiments, the bypass valve 17 is configured to open or close according to the temperature of the cooling water, but the bypass valve is opened or closed according to the temperature of the EG gas. It can also be configured.
 (2)前記各実施形態では、バイパス弁17につき、温度の変化に感応して動作するアクチュエータとして、サーモワックスを使用したが、サーモワックスの代わりにバイメタルや形状記憶合金を使用することもできる。 (2) In each of the above embodiments, thermowax is used for the bypass valve 17 as an actuator that operates in response to a change in temperature, but bimetal or a shape memory alloy can also be used instead of the thermowax.
 (3)前記各実施形態では、バイパス弁17につき、温度の変化に感応して動作するアクチュエータを使用したが、電磁弁等のアクチュエータを使用することもできる。 (3) In each of the above embodiments, an actuator that operates in response to a change in temperature is used for the bypass valve 17, but an actuator such as a solenoid valve can also be used.
 (4)前記各実施形態では、前記EGRクーラ13より下流のEGR通路12の温度を検出するためのEGR温度検出手段として、EGRガス分配器15の内壁の温度を検出する壁温センサ78を設けたが、EGRガス分配器15ではなく、EGR通路12そのものの内壁の温度を検出する壁温センサを設けることもできる。 (4) In each of the above embodiments, a wall temperature sensor 78 for detecting the temperature of the inner wall of the EGR gas distributor 15 is provided as an EGR temperature detecting means for detecting the temperature of the EGR passage 12 downstream of the EGR cooler 13. However, instead of the EGR gas distributor 15, a wall temperature sensor that detects the temperature of the inner wall of the EGR passage 12 itself can be provided.
 (5)前記各実施形態では、前記EGRクーラ13より下流のEGR通路12の温度を検出するためのEGR温度検出手段として、EGRガス分配器15の内壁の温度を検出する壁温センサ78を設けたが、EGRガスの温度を検出するためのEGRガス温センサをEGR温度検出手段として設けることもできる。 (5) In each of the above embodiments, a wall temperature sensor 78 for detecting the temperature of the inner wall of the EGR gas distributor 15 is provided as an EGR temperature detecting means for detecting the temperature of the EGR passage 12 downstream of the EGR cooler 13. However, an EGR gas temperature sensor for detecting the temperature of the EGR gas can also be provided as an EGR temperature detecting means.
 この開示技術は、車両に搭載されるガソリンエンジンやディーゼルエンジンに適用することができる。 This disclosure technology can be applied to gasoline engines and diesel engines mounted on vehicles.
1 エンジン
2 吸気通路
3 排気通路
4 スロットル装置(出力調節手段)
5 吸気マニホールド(吸気通路)
12 EGR通路
13 EGRクーラ
14 EGR弁
15 EGRガス分配器(EGR通路)
71 水温センサ(運転状態検出手段、冷却水温度検出手段)
72 回転数センサ(運転状態検出手段)
73 エアフローメータ(運転状態検出手段)
74 吸気圧センサ(運転状態検出手段)
75 スロットルセンサ(運転状態検出手段)
77 吸気温センサ(運転状態検出手段)
78 壁温センサ(運転状態検出手段、EGR温度検出手段)
79 アクセルセンサ(運転状態検出手段)
80 ECU(バイパス弁故障診断手段、EGR制御手段、EGR弁故障診断手段、エンジン制御手段)
1 Engine 2 Intake passage 3 Exhaust passage 4 Throttle device (output adjusting means)
5 Intake manifold (intake passage)
12 EGR passage 13 EGR cooler 14 EGR valve 15 EGR gas distributor (EGR passage)
71 Water temperature sensor (operating state detection means, cooling water temperature detection means)
72 Rotation speed sensor (operating state detection means)
73 Air flow meter (operating state detection means)
74 Intake pressure sensor (operating state detection means)
75 Throttle sensor (operation state detection means)
77 Intake air temperature sensor (operating state detection means)
78 Wall temperature sensor (operating state detection means, EGR temperature detection means)
79 Accelerator sensor (operating state detection means)
80 ECU (bypass valve failure diagnosis means, EGR control means, EGR valve failure diagnosis means, engine control means)

Claims (5)

  1.  エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介し吸気通路へ流して前記エンジンへ還流させるように構成したEGRシステムにおいて、
     前記EGR通路において前記EGRガスの流量を調節するためのEGR弁と、
     前記EGR通路を流れる前記EGRガスを冷却するために、前記EGRガスと前記エンジンの冷却水との間で熱交換を行うEGRクーラと、
     前記EGR通路において前記EGRクーラへ流れる前記EGRガスの一部を迂回させるためのバイパス通路と、
     前記バイパス通路を開閉するためのバイパス弁と、
     前記EGRクーラ及び前記バイパス通路より下流の前記EGR通路に設けられ、前記EGR通路の壁の温度又は前記EGRガスの温度を検出するためのEGR温度検出手段と、
     少なくとも前記バイパス弁の作動状態と、検出される前記温度とに基づき前記バイパス弁の故障を診断するためのバイパス弁故障診断手段と、
     前記バイパス弁故障診断手段による前記故障の診断結果に応じて前記EGR弁を制御するためのEGR弁制御手段と
    を備えたことを特徴とするEGRシステム。
    In the EGR system configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
    An EGR valve for adjusting the flow rate of the EGR gas in the EGR passage, and
    An EGR cooler that exchanges heat between the EGR gas and the cooling water of the engine in order to cool the EGR gas flowing through the EGR passage.
    A bypass passage for bypassing a part of the EGR gas flowing to the EGR cooler in the EGR passage, and a bypass passage.
    A bypass valve for opening and closing the bypass passage and
    An EGR temperature detecting means provided in the EGR passage downstream of the EGR cooler and the bypass passage to detect the temperature of the wall of the EGR passage or the temperature of the EGR gas.
    A bypass valve failure diagnosis means for diagnosing a failure of the bypass valve based on at least the operating state of the bypass valve and the detected temperature.
    An EGR system including an EGR valve control means for controlling the EGR valve according to the diagnosis result of the failure by the bypass valve failure diagnosis means.
  2.  請求項1に記載のEGRシステムにおいて、
     前記EGR弁制御手段は、前記バイパス弁故障診断手段による診断結果が前記バイパス弁の開故障(前記バイパス弁が開弁した状態のまま故障)である場合に、前記EGR弁を所定値以下の開度に制御し、前記診断結果が前記バイパス弁の閉故障(前記バイパス弁が閉弁した状態のまま故障)である場合に、前記バイパス弁の開弁条件下において、前記EGR弁を全閉に制御する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 1,
    The EGR valve control means opens the EGR valve to a predetermined value or less when the diagnosis result by the bypass valve failure diagnosis means is an open failure of the bypass valve (a failure with the bypass valve open). When the diagnosis result is a failure to close the bypass valve (a failure with the bypass valve closed), the EGR valve is fully closed under the valve opening condition of the bypass valve. An EGR system characterized by control.
  3.  請求項1又は2に記載のEGRシステムにおいて、
     前記エンジンの冷却水の温度を検出するための冷却水温度検出手段を更に備え、
     前記バイパス弁故障診断手段は、前記エンジンの始動後に検出される前記冷却水の温度と、前記EGR通路の壁の温度又は前記EGRガスの温度とを比較することにより前記バイパス弁の故障を診断する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 1 or 2.
    Further provided with cooling water temperature detecting means for detecting the temperature of the cooling water of the engine,
    The bypass valve failure diagnosis means diagnoses the failure of the bypass valve by comparing the temperature of the cooling water detected after the start of the engine with the temperature of the wall of the EGR passage or the temperature of the EGR gas. The EGR system is characterized by that.
  4.  請求項3に記載のEGRシステムにおいて、
     前記バイパス弁故障診断手段は、検出される前記冷却水の温度を前記EGR弁の開度に応じて補正する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 3,
    The bypass valve failure diagnosis means is an EGR system characterized in that the temperature of the detected cooling water is corrected according to the opening degree of the EGR valve.
  5.  請求項1乃至4のいずれかに記載のEGRシステムにおいて、
     前記EGR弁の故障を診断するためのEGR弁故障診断手段と、
     前記エンジンの出力を調節するための出力調節手段と、
     前記バイパス弁故障診断手段による診断結果が前記バイパス弁の開故障となり、かつ前記EGR弁故障診断手段による診断結果が前記EGR弁の開故障となる場合に、前記エンジンの出力に制限をかけるために前記出力調節手段を制御するエンジン制御手段と
    を更に備えたことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 4.
    The EGR valve failure diagnosis means for diagnosing the failure of the EGR valve and the EGR valve failure diagnosis means.
    An output adjusting means for adjusting the output of the engine and
    In order to limit the output of the engine when the diagnosis result by the bypass valve failure diagnosis means is the open failure of the bypass valve and the diagnosis result by the EGR valve failure diagnosis means is the open failure of the EGR valve. An EGR system further comprising an engine control means for controlling the output adjusting means.
PCT/JP2021/021502 2020-07-31 2021-06-07 Egr system WO2022024551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-129943 2020-07-31
JP2020129943A JP2022026460A (en) 2020-07-31 2020-07-31 EGR system

Publications (1)

Publication Number Publication Date
WO2022024551A1 true WO2022024551A1 (en) 2022-02-03

Family

ID=80035350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021502 WO2022024551A1 (en) 2020-07-31 2021-06-07 Egr system

Country Status (2)

Country Link
JP (1) JP2022026460A (en)
WO (1) WO2022024551A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247459A (en) * 2002-02-20 2003-09-05 Toyota Motor Corp Egr mechanism for internal combustion engine
JP2010539388A (en) * 2007-09-20 2010-12-16 ルノー・エス・アー・エス Diagnostic method for heat exchanger bypass flaps in exhaust gas recirculation circuits.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247459A (en) * 2002-02-20 2003-09-05 Toyota Motor Corp Egr mechanism for internal combustion engine
JP2010539388A (en) * 2007-09-20 2010-12-16 ルノー・エス・アー・エス Diagnostic method for heat exchanger bypass flaps in exhaust gas recirculation circuits.

Also Published As

Publication number Publication date
JP2022026460A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US20180128145A1 (en) Method and system for an exhaust diverter valve
US9909541B1 (en) Method and system for exhaust heat exchanger diagnostics
US9212631B2 (en) Control apparatus of internal combustion engine
JP5293897B2 (en) Control device for internal combustion engine
CN108463620B (en) Control method and control device for exhaust gas bypass valve
US20140041380A1 (en) Multi-staged wastegate
JP2015014275A (en) Failure detection device for exhaust gas recirculation device of engine with supercharger
JP6486523B1 (en) Engine system
JP2008215183A (en) Cooling system trouble diagnosing device of internal-combustion engine
JP6744245B2 (en) Engine system
JP2017172573A (en) Exhaust gas recirculation device
JP6071799B2 (en) Fault detection device for engine exhaust gas recirculation system
US20190360417A1 (en) Method of operating an internal combustion engine
WO2022024551A1 (en) Egr system
JP2021080888A (en) EGR device
JP3642169B2 (en) EGR diagnosis device for engine
JP2023127291A (en) EGR system
JP2017008855A (en) Engine system
TWI729797B (en) internal combustion engine
JP5965361B2 (en) Internal combustion engine system failure detection apparatus and internal combustion engine system failure detection method
JP2022021455A (en) EGR system
JP6522187B1 (en) Engine system
JPH04279752A (en) Exhaust gas recirculation device of internal combustion engine
JP5771911B2 (en) Automatic stop / restart system for compression ignition internal combustion engine
JP2017180226A (en) Engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851198

Country of ref document: EP

Kind code of ref document: A1